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Second class meeting: An Energy Balance Climate Model 
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• y = sin(latitude)

• T (y, t) – ave. temp. at latitude y at time t

• symmetry across the equator; no land

• ice cover above ice line η; no ice below η

y = sin(0) = 0 y = sin(π/2) = 1 HAPPY DAY!!
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Suppose we model the OLR in the global surface temperature model via a linear

term of the form A + BT :

R
dT

dt
= Q(1 − α) − (A + BT ), (T ◦C) (1)

(a) Explain, in terms of the model, the requirement that B > 0.

(b) Find the general solution of this equation. What is the behavior of solutions over
time?

(c) The parameters A = 202 W m−2 and B = 1.9 W m−2 (◦C)−1 have been estimated
via satellite measurements

(i) Using Q = 342 W m−2 and α = 0.3, compute the Earth’s average surface
temperature at equilibrium T ∗ per equation (1). Why might you expect this
value to be fairly close to 15.4◦C, the Earth’s current annual global average
surface temperature?

(ii) How does the magnitude of T ∗ vary with the parameters A and B? Discuss
in the context of the OLR term in the model.

(iii) Assume the albedo of open water is α = αw = 0.32. Compute T ∗ in the case
where the Earth is ice free, that is, with α in equation (1) replaced by αw.
With the temperature governed by equation (1), would ice ever form if the
Earth were to become ice free? (Assume ice forms when T < Tc = −10◦C.)

(iv) Assume the albedo of ice is α = αs = 0.62. Compute T ∗ in the snowball Earth
state, that is, with α in equation (1) replaced by αs, indicating the planet
is completely ice covered. With the temperature governed by equation (1),
would ice ever melt if the Earth were in a snowball state?

T ∗(Q)

R
dT

dt
= Q(1 − α(T )) − 0.6σT 4 = fQ(T ) α(T ) = 0.5 + 0.2 tanh(0.1(265 − T ))
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= 256 K = 1.4 ◦F

Also: phase line, linearization at T ∗

Incorporate atmosphere via emissivity factor �:

R
dT

dt
= Q(1 − α) − �σT 4

Note: � = 1 ↔ atmosphere completely transparent to OLR

What value of � gives a global mean temperature T ∗ = 288 K at equilibrium?
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Atmosphere: replace σT 4 with �σT 4

= Qs(y)(1 − αη(y)) − (A + BT (y, t)) − C
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� 1

0 T (y, t)dy
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Legendre polynomials p0(y), p2(y)

1 2 3 4 5

disagree somewhat disagree neutral somewhat agree agree

Question 1. This course served to increase my desire to learn more about mathemat-
ical modeling via differential equations.
Average response: 4.1

Question 2. The inclusion of material on climate modeling was a positive aspect of
this course.
Average response: 3.95

Question 3. The inclusion of material on climate modeling served to increase my
desire to learn more about mathematical modeling.
Average response: 3.65

Question 4. I would have an interest in taking a mathematics and climate course
having Math 234 as a prerequisite.
Average response: 3.15

Question 5. The required use of Mathematica was a positive aspect of this course.
Average response: 3.5
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(c) (i) Solving f(T ) = 0, one finds

Q = Q(T ) =
�σT 4

1− α(T )
(1)

(ii) We compute f �
(T ) = −Qα�

(T )−4�σT 3
. Plugging the above expression in for Q and setting the result

equal to 0 gives

− �σT 4

1− α(T )
α�
(T )− 4�σT 3

= −�σT 3

�
T

1− α(T )
α�
(T ) + 4

�
= 0. (2)

(iii) Execution of the FindRoot command yielded T1 = 252.063 K and T2 = 274.234 K as positive solutions

of equation (??).

(iv) Via equation (??), we find Q1 = Q(T1) = 418.7 and Q2 = Q(T2) = 298.1. For Q slightly larger

than Q1 (as with the top graph in Figure 1), there is but one equilibrium temperature T = T3 > 305K,

corresponding to an extremely hot planet. This makes sense in terms of the model given that Q1 is very

large in this case. Note by the Linearization Theorem, T = T3 is a sink.

For Q slightly below Q1 or slightly above Q2 (as with the green or gold curves in Figure 1), there are

three equilibrium points T1 < T2 < T3. By the Linearization Theorem we see that T = T1 and T = T3 are

sinks, while T = T2 is a source. Hence, as Q decreases through Q1, a second stable equilibrium solution

T1 appears, with T1 between roughly T = 225K and T = 250K. Thus the temperature of the planet can

tend to either the warmer T = T3 world (if T (0) > T2), or to the much colder T = T1 world (if T (0) < T2).

This phenomenon is know as bistability.

For Q just below Q2 (as with the bottom graph in Figure 1), there is but one equilibrium temperature

T = T1 < 225K, corresponding to a snowball Earth. Note T = T1 is a sink by the Linearization Theorem.

Thus as Q decreases sufficiently, the planet’s temperature inexorably tends to T = T1. This makes sense

(with current atmospheric conditions given by � = 0.6) as Q2 = 298.1 is far below today’s insolation value

of Q = 343 Wm
−2

.

(d)
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Figure 2

(e) From Figure 2, we see that temperatures approach the single equilibrium temperature T = T1 = 223K

when Q = 280. Thus with atmospheric transmissivity set to � = 0.6, the Earth would be completely

covered with ice for this Q-value.
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T = T (t) global annual average surface temperature (K) (α = 0.3)
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Exam question: Bifurcations   (thanks to Anna Barry) 

T T

Ein(T ) Eout(T )

T T T

T T

Note: The dashed curve

in each plot is Eout(T ).

The solid curve is

Ein(T ).

� = �1 � = �2 � = �3

� = �4 � = �5

Consider the autonomous ODE R
dT

dt
= Ein(T ) − Eout(T ), Eout(T ) = �σT 4

(a) Draw the phase line for each of the above �-values.
(b) Draw a bifurcation diagram with � decreasing on the horizontal axis.

(c) In a brief paragraph, discuss the bifurcation that occurs at � = �2 in the context

of the model and, in particular, in terms of the concentration of greenhouse gases

such as CO2.
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T T T

T T

Note: The dashed curve

in each plot is Eout(T ).

The solid curve is

Ein(T ).

� = �1 � = �2 � = �3

� = �4 � = �5

Consider the autonomous ODE R
dT

dt
= Ein(T ) − Eout(T ), Eout(T ) = �σT 4

(a) Draw the phase line for each of the above �-values.
(b) Draw a bifurcation diagram with � decreasing on the horizontal axis.

(c) In a brief paragraph, discuss the bifurcation that occurs at � = �2 in the context

of the model and, in particular, in terms of the concentration of greenhouse gases

such as CO2.
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in each plot is Eout(T ).

The solid curve is Ein(T ).

� = �1 � = �2 � = �3

� = �4 � = �5

Consider the autonomous ODE R
dT

dt
= Ein(T ) − Eout(T ), Eout(T ) = �σT 4

(a) Draw the phase line for each of the above �-values.
(b) Draw a bifurcation diagram with � decreasing on the horizontal axis.

(c) In a brief paragraph, discuss the bifurcation that occurs at � = �2 in the context

of the model and, in particular, in terms of the concentration of greenhouse gases

such as CO2.



Homework problem: 

Suppose we model the OLR in the global surface temperature model via a linear

term of the form A + BT :

R
dT

dt
= Q(1 − α) − (A + BT ), (T ◦C) (1)

(a) Explain, in terms of the model, the requirement that B > 0.

(b) Find the general solution of this equation. What is the behavior of solutions over
time?

(c) The parameters A = 202 W m−2 and B = 1.9 W m−2 (◦C)−1 have been estimated
via satellite measurements

(i) Using Q = 342 W m−2 and α = 0.3, compute the Earth’s average surface
temperature at equilibrium T ∗ per equation (1). Why might you expect this
value to be fairly close to 15.4◦C, the Earth’s current annual global average
surface temperature?

(ii) How does the magnitude of T ∗ vary with the parameters A and B? Discuss
in the context of the OLR term in the model.

(iii) Assume the albedo of open water is α = αw = 0.32. Compute T ∗ in the case
where the Earth is ice free, that is, with α in equation (1) replaced by αw.
With the temperature governed by equation (1), would ice ever form if the
Earth were to become ice free? (Assume ice forms when T < Tc = −10◦C.)

(iv) Assume the albedo of ice is α = αs = 0.62. Compute T ∗ in the snowball Earth
state, that is, with α in equation (1) replaced by αs, indicating the planet
is completely ice covered. With the temperature governed by equation (1),
would ice ever melt if the Earth were in a snowball state?

T ∗(Q)

R
dT

dt
= Q(1 − α(T )) − 0.6σT 4 = fQ(T ) α(T ) = 0.5 + 0.2 tanh(0.1(265 − T ))

T = T (t) global annual average surface temperature (K) (α = 0.3)

R
dT

dt
= Ein − Eout (W/m2, R heat capacity of Earth’s surface)

= Q(1 − α) − σT 4 Equilibrium solution: T ∗ =

�
Q(1 − α)

σ

�1/4

= 256 K = 1.4 ◦F

Also: phase line, linearization at T ∗

Incorporate atmosphere via emissivity factor �:

R
dT

dt
= Q(1 − α) − �σT 4

Note: � = 1 ↔ atmosphere completely transparent to OLR

What value of � gives a global mean temperature T ∗ = 288 K at equilibrium?
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value to be fairly close to 15.4◦C, the Earth’s current annual global average
surface temperature?

(ii) How does the magnitude of T ∗ vary with the parameters A and B? Discuss
in the context of the OLR term in the model.

(iii) Assume the albedo of open water is α = αw = 0.32. Compute T ∗ in the case
where the Earth is ice free, that is, with α in equation (1) replaced by αw.
With the temperature governed by equation (1), would ice ever form if the
Earth were to become ice free? (Assume ice forms when T < Tc = −10◦C.)
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is completely ice covered. With the temperature governed by equation (1),
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(ii) How does the magnitude of T ∗ vary with the parameters A and B? Discuss
in the context of the OLR term in the model.

(iii) Assume the albedo of open water is α = αw = 0.32. Compute T ∗ in the case
where the Earth is ice free, that is, with α in equation (1) replaced by αw.
With the temperature governed by equation (1), would ice ever form if the
Earth were to become ice free? (Assume ice forms when T < Tc = −10◦C.)
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state, that is, with α in equation (1) replaced by αs, indicating the planet
is completely ice covered. With the temperature governed by equation (1),
would ice ever melt if the Earth were in a snowball state?
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C, the Earth’s current annual global average surface tem-
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(a) Explain, in terms of the model, the requirement that B > 0.

(b) Find the general solution of this equation. What is the behavior of solutions over

time?

(c) The parameters A = 202 W m
−2

and B = 1.9 W m
−2

(
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−1
have been estimated

via satellite measurements

(i) Using Q = 342 W m
−2

and α = 0.3, compute the Earth’s average surface

temperature T ∗
at equilibrium. Why might you expect this value to be

fairly close to 15.4
◦
C, the Earth’s current annual global average surface tem-

perature?

T ∗
(Q)

R
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dt
= Q(1 − α(T )) − 0.6σT 4

= fQ(T ) α(T ) = 0.5 + 0.2 tanh(0.1(265 − T ))

T = T (t) global annual average surface temperature (K) (α = 0.3)

R
dT

dt
= Ein − Eout (W/m

2, R heat capacity of Earth’s surface)

= Q(1 − α) − σT 4
Equilibrium solution: T ∗

=
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Q(1 − α)

σ

�1/4

= 256 K = 1.4 ◦
F

Also: phase line, linearization at T ∗

Incorporate atmosphere via emissivity factor �:

R
dT

dt
= Q(1 − α) − �σT 4

Note: � = 1 ↔ atmosphere completely transparent to OLR

What value of � gives a global mean temperature T ∗
= 288 K at equilibrium?

Suppose we model the OLR in the global surface temperature model via a linear

term of the form A + BT :

R
dT

dt
= Q(1 − α) − (A + BT ), (T ◦C) (1)

(a) Explain, in terms of the model, the requirement that B > 0.

(b) Find the general solution of this equation. What is the behavior of solutions over
time?

(c) The parameters A = 202 W m−2 and B = 1.9 W m−2 (◦C)−1 have been estimated
via satellite measurements

(i) Using Q = 342 W m−2 and α = 0.3, compute the Earth’s average surface
temperature T ∗ at equilibrium. Why might you expect this value to be
fairly close to 15.4◦C, the Earth’s current annual global average surface tem-
perature?

(ii) How does the magnitude of T ∗ vary with the parameter A? Discuss in the
context of the OLR term in the model.

T ∗(Q)

R
dT

dt
= Q(1 − α(T )) − 0.6σT 4 = fQ(T ) α(T ) = 0.5 + 0.2 tanh(0.1(265 − T ))

T = T (t) global annual average surface temperature (K) (α = 0.3)

R
dT

dt
= Ein − Eout (W/m2, R heat capacity of Earth’s surface)

= Q(1 − α) − σT 4 Equilibrium solution: T ∗ =

�
Q(1 − α)

σ

�1/4

= 256 K = 1.4 ◦F

Also: phase line, linearization at T ∗

Incorporate atmosphere via emissivity factor �:

R
dT

dt
= Q(1 − α) − �σT 4

Note: � = 1 ↔ atmosphere completely transparent to OLR

What value of � gives a global mean temperature T ∗ = 288 K at equilibrium?

. 

Suppose we model the OLR in the global surface temperature model via a linear

term of the form A + BT :

R
dT

dt
= Q(1 − α) − (A + BT ), (T ◦C) (5)

(a) Explain, in terms of the model, the requirement that B > 0.

(b) Find the general solution of this equation. What is the behavior of solutions over
time?

(c) The parameters A = 202 W m−2 and B = 1.9 W m−2 (◦C)−1 have been estimated
via satellite measurements

(i) Using Q = 342 W m−2 and α = 0.3, compute the Earth’s average surface
temperature T ∗ at equilibrium. Why might you expect this value to be
fairly close to 15.4◦C, the Earth’s current annual global average surface tem-
perature?

(ii) How does the magnitude of T ∗ vary with the parameter A? Discuss in the
context of the OLR term in the model.

T ∗(Q)

R
dT

dt
= Q(1 − α(T )) − 0.6σT 4 = fQ(T ) α(T ) = 0.5 + 0.2 tanh(0.1(265 − T ))

T = T (t) global annual average surface temperature (K) (α = 0.3)

R
dT

dt
= Ein − Eout (W/m2, R heat capacity of Earth’s surface)

= Q(1 − α) − σT 4 Equilibrium solution: T ∗ =

�
Q(1 − α)

σ

�1/4

= 256 K = 1.4 ◦F

Also: phase line, linearization at T ∗

Incorporate atmosphere via emissivity factor �:

R
dT

dt
= Q(1 − α) − �σT 4

Note: � = 1 ↔ atmosphere completely transparent to OLR

What value of � gives a global mean temperature T ∗ = 288 K at equilibrium?



Latitude-dependent EBM: A project    (following Esther Widiasih) 

T ∗
= T ∗

η (y) =
Q

B + C

�
s(y)(1 − α(y, η)) +

C

B
(1 − α(η))

�
−

A

B
,

α(η) =
� 1

0 s(y)α(y, η)dy = αw

� η

0 s(y)dy + αs

� 1

η s(y)dy

R
∂T

∂t
= Ein − Eout − Etransport

= Qs(y)(1 − αη(y)) − (A + BT (y, t)) − C
�
T (y, t) −

� 1

0 T (y, t)dy
�

= Qs(y)(1 − αη(y))

= Qs(y)(1 − αη(y)) − (A + BT (y, t))

= Qs(y)(1 − αη(y)) − (A + BT (y, t)) − C
�
T (y, t) −

� 1

0 T (y, t)dy
�
T

• y = sin(latitude)

• T (y, t) – temp. at latitude y (zonal ave.)

• symmetry across the equator; no land

• ice cover above ice line η; no ice below η

y = sin(0) = 0 y = sin(π/2) = 1 HAPPY DAY!!

R
dT

dt
= Ein − Eout (W/m

2
)

T = T (t) – global average surface temperature (
◦
C)

R – heat capacity of the Earth’s surface (J/(
◦
C m

2
))

R
dT

dt
= Q(1 − α) − (A + BT )

Q – insolation (incoming solar radiation) (Q =342 W/m
2
) C = 1.6B

α – planetary albedo (α = 0.3) A = 199 W/m
2

= 21.2◦
C

A + BT – outgoing radiation (A = 202 W/m
2
, B = 1.9 W/(m

2 ◦
C) )

Ein = Q(1 − α)

Eout = (A + BT )

R
dT

dt
= Q(1 − α) − (A + BT ) = f(T ) T ∗ T ∗

=
1

B
(Q(1 − α) − A) = 19.7 ◦

C

−10
◦
C

incoming solar radiation (insolation)

M. I. Budyko, The effect of solar radiation variation on the climate of the Earth, Tellus 21 (1969), 611-619. 
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What did they think? 

1 2 3 4 5

disagree somewhat disagree neutral somewhat agree agree

Question 1. This course served to increase my desire to learn more about mathemat-
ical modeling via differential equations.
Average response: 4.1

Question 2. The inclusion of material on climate modeling was a positive aspect of
this course.
Average response: 3.95

Question 3. The inclusion of material on climate modeling served to increase my
desire to learn more about mathematical modeling.
Average response: 3.65

Question 4. I would have an interest in taking a mathematics and climate course
having Math 234 as a prerequisite.
Average response: 3.15

Question 5. The required use of Mathematica was a positive aspect of this course.
Average response: 3.5
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Second time will be the charm! 


