Exploring Prime Numbers and The abc Conjecture

 Joint Mathematics MeetingsDavid Patrick
Art of Problem Solving aops.com

January 4, 2023

Prime Numbers

Prime numbers are fundamental to the universe.

Why primes as a math circle topic?

- Typically seen only at a definitional/utilitarian level in school

Why primes as a math circle topic?

- Typically seen only at a definitional/utilitarian level in school
- Students miss out on the importance, beauty, and mystery of primes

Why primes as a math circle topic?

- Typically seen only at a definitional/utilitarian level in school
- Students miss out on the importance, beauty, and mystery of primes
- A great low-floor high-ceiling activity with lots of side explorations

Why primes as a math circle topic?

- Typically seen only at a definitional/utilitarian level in school
- Students miss out on the importance, beauty, and mystery of primes
- A great low-floor high-ceiling activity with lots of side explorations
- In the news! Mathematics is a living subject

Why primes as a math circle topic?

- Typically seen only at a definitional/utilitarian level in school
- Students miss out on the importance, beauty, and mystery of primes
- A great low-floor high-ceiling activity with lots of side explorations
- In the news! Mathematics is a living subject
- Exploration of primes can give participants a sense of what research mathematicians do

Tbe Atw Hork Eimes

A Possible Breakthrough in Explaining a Mathematical Riddle

Give this article \Rightarrow 冋

By Kenneth Chang
Sept. 17, 2012

Numbers, addition, multiplication - the basic stuff of grade-school arithmetic - are suddenly the excited talk of cutting-edge mathematicians.

On Aug. 30, with no fanfare, Shinichi Mochizuki, a mathematician at Kyoto University in Japan, dropped onto the Internet four papers.

The papers, encompassing 500 pages and four years of effort, claim to solve an important problem in number theory known as the abc

Prime Number Chart

Prime Numbers to $2500(+2,5)$

H	${ }_{3}^{0} 214$				
tu	1	3	7		
0	:		\square°		
1	-	-	-		
2		\bullet	\bullet	-	
3	${ }^{\circ}$:
4	\bullet				
5	\bullet	:			
6	-	\because	\because		
7	\bullet	:	-		
8		:-			
9					

$\begin{array}{r} 151716 \\ 18 \quad 19 \\ \hline \end{array}$			
1	3	7	9
-		\bigcirc	\bigcirc
-			\bigcirc
		\bigcirc	
		-	
\bigcirc	\bigcirc	\bigcirc	\bigcirc
-	0	-	0
\bigcirc		-	\bigcirc
		\bigcirc	\bigcirc
	0		
		\bigcirc	\bigcirc

Paul Zeitz, MTC Network

Explore the Chart

Prime Numbers to $2500(+2,5)$

- How do we read it?

Explore the Chart

Prime Numbers to $2500(+2,5)$

- How do we read it?
- What patterns do you notice?

Explore the Chart

Prime Numbers to $2500(+2,5)$

- How do we read it?
- What patterns do you notice?

Can you prove them?

Art of Problem Solving

Explore the Chart

Prime Numbers to $2500(+2,5)$

- How do we read it?
- What patterns do you notice?

Can you prove them?

- The four units columns 1,3,7,9 have roughly an equal number of dots? Is this a coincidence or a general pattern?

Art of Problem Solving

Explore the Chart

Prime Numbers to $2500(+2,5)$

- How do we read it?
- What patterns do you notice?

Can you prove them?

- The four units columns 1,3,7,9 have roughly an equal number of dots? Is this a coincidence or a general pattern?
- As the numbers get larger, there appear to be fewer dots. Is this a coincidence or a general pattern?

More Questions About Primes

- Do we ever run out of primes?

More Questions About Primes

- Do we ever run out of primes?
- The proof that there are infinitely many primes is something that everyone should see at least once in their life!

More Questions About Primes

- Do we ever run out of primes?
- The proof that there are infinitely many primes is something that everyone should see at least once in their life!
- What can we say about the sizes of the gaps between primes?

More Questions About Primes

- Do we ever run out of primes?
- The proof that there are infinitely many primes is something that everyone should see at least once in their life!
- What can we say about the sizes of the gaps between primes?
- Consecutive primes can be as far apart as we want:

$$
n!+2, n!+3, n!+4, \ldots, n!+n
$$

produces a gap of (at least) n between consecutive primes

More Questions About Primes

- Do we ever run out of primes?
- The proof that there are infinitely many primes is something that everyone should see at least once in their life!
- What can we say about the sizes of the gaps between primes?
- Consecutive primes can be as far apart as we want:

$$
n!+2, n!+3, n!+4, \ldots, n!+n
$$

produces a gap of (at least) n between consecutive primes

- Twin Prime Conjecture: we don't know if there are infinitely many prime pairs $(p, p+2)$!

More Questions About Primes

- Do we ever run out of primes?
- The proof that there are infinitely many primes is something that everyone should see at least once in their life!
- What can we say about the sizes of the gaps between primes?
- Consecutive primes can be as far apart as we want:

$$
n!+2, n!+3, n!+4, \ldots, n!+n
$$

produces a gap of (at least) n between consecutive primes

- Twin Prime Conjecture: we don't know if there are infinitely many prime pairs $(p, p+2)$!
(2013) Yitang Zhang: there are infinitely many pairs of primes that differ by at most 70 million.
(2014) Polymath: there are infinitely many pairs of primes that differ by at most 246.

More Questions About Primes

- Do we ever run out of primes?
- The proof that there are infinitely many primes is something that everyone should see at least once in their life!
- What can we say about the sizes of the gaps between primes?
- Consecutive primes can be as far apart as we want:

$$
n!+2, n!+3, n!+4, \ldots, n!+n
$$

produces a gap of (at least) n between consecutive primes

- Twin Prime Conjecture: we don't know if there are infinitely many prime pairs $(p, p+2)$!
(2013) Yitang Zhang: there are infinitely many pairs of primes that differ by at most 70 million.
(2014) Polymath: there are infinitely many pairs of primes that differ by at most 246.
- Probability that $\operatorname{gcd}(m, n)=1$ for randomly chosen m and n

More Questions About Primes

- Do we ever run out of primes?
- The proof that there are infinitely many primes is something that everyone should see at least once in their life!
- What can we say about the sizes of the gaps between primes?
- Consecutive primes can be as far apart as we want:

$$
n!+2, n!+3, n!+4, \ldots, n!+n
$$

produces a gap of (at least) n between consecutive primes

- Twin Prime Conjecture: we don't know if there are infinitely many prime pairs $(p, p+2)$!
(2013) Yitang Zhang: there are infinitely many pairs of primes that differ by at most 70 million.
(2014) Polymath: there are infinitely many pairs of primes that differ by at most 246.
- Probability that $\operatorname{gcd}(m, n)=1$ for randomly chosen m and n
- Can think about this experimentally (i.e. compute for $m, n \leq 10$)
- Can "prove" that this equals $\frac{6}{\pi^{2}}$ (you probably have to cheat somewhat)
- Connection to the Riemann Hypothesis

abc Conjecture

The abc Conjecture is a statement about positive integer solutions to the highly-complicated equation

$$
a+b=c
$$

abc Conjecture

The abc Conjecture is a statement about positive integer solutions to the highly-complicated equation

$$
a+b=c
$$

We're only interested in minimal solutions in which a, b, c have no common prime factors. (In other words, divide out by as much as you can first.)

abc Conjecture

The abc Conjecture is a statement about positive integer solutions to the highly-complicated equation

$$
a+b=c
$$

We're only interested in minimal solutions in which a, b, c have no common prime factors. (In other words, divide out by as much as you can first.)

This still seems profoundly unexciting.

abc Conjecture

Definition

The radical of a number n, denoted $\operatorname{rad}(n)$, is the product of all the prime factors of n.

We're interested in $\operatorname{rad}(a b c)$ for solutions to $a+b=c$.

abc Conjecture

Definition

The radical of a number n, denoted $\operatorname{rad}(n)$, is the product of all the prime factors of n.

We're interested in $\operatorname{rad}(a b c)$ for solutions to $a+b=c$. Example: $a=5, b=7, c=12$

abc Conjecture

Definition

The radical of a number n, denoted $\operatorname{rad}(n)$, is the product of all the prime factors of n.

We're interested in $\operatorname{rad}(a b c)$ for solutions to $a+b=c$. Example: $a=5, b=7, c=12$ $\operatorname{rad}(a b c)=5 \cdot 7 \cdot 2 \cdot 3=210$

abc Conjecture

Definition

The radical of a number n, denoted $\operatorname{rad}(n)$, is the product of all the prime factors of n.

We're interested in $\operatorname{rad}(a b c)$ for solutions to $a+b=c$.
Example: $a=5, b=7, c=12$
$\operatorname{rad}(a b c)=5 \cdot 7 \cdot 2 \cdot 3=210$
Example: $a=8, b=9, c=17$

abc Conjecture

Definition

The radical of a number n, denoted $\operatorname{rad}(n)$, is the product of all the prime factors of n.

We're interested in $\operatorname{rad}(a b c)$ for solutions to $a+b=c$.
Example: $a=5, b=7, c=12$
$\operatorname{rad}(a b c)=5 \cdot 7 \cdot 2 \cdot 3=210$
Example: $a=8, b=9, c=17$
$\operatorname{rad}(a b c)=2 \cdot 3 \cdot 17=102$

abc Conjecture

Definition

The radical of a number n, denoted $\operatorname{rad}(n)$, is the product of all the prime factors of n.

We're interested in $\operatorname{rad}(a b c)$ for solutions to $a+b=c$.
Example: $a=5, b=7, c=12$
$\operatorname{rad}(a b c)=5 \cdot 7 \cdot 2 \cdot 3=210$
Example: $a=8, b=9, c=17$
$\operatorname{rad}(a b c)=2 \cdot 3 \cdot 17=102$
Example: $a=1, b=4, c=5$

abc Conjecture

Definition

The radical of a number n, denoted $\operatorname{rad}(n)$, is the product of all the prime factors of n.

We're interested in $\operatorname{rad}(a b c)$ for solutions to $a+b=c$.
Example: $a=5, b=7, c=12$
$\operatorname{rad}(a b c)=5 \cdot 7 \cdot 2 \cdot 3=210$
Example: $a=8, b=9, c=17$
$\operatorname{rad}(a b c)=2 \cdot 3 \cdot 17=102$
Example: $a=1, b=4, c=5$
$\operatorname{rad}(a b c)=2 \cdot 5=10$

abc Conjecture

Definition

The radical of a number n, denoted $\operatorname{rad}(n)$, is the product of all the prime factors of n.

We're interested in $\operatorname{rad}(a b c)$ for solutions to $a+b=c$.
Example: $a=5, b=7, c=12$
$\operatorname{rad}(a b c)=5 \cdot 7 \cdot 2 \cdot 3=210$
Example: $a=8, b=9, c=17$
$\operatorname{rad}(a b c)=2 \cdot 3 \cdot 17=102$
Example: $a=1, b=4, c=5$
$\operatorname{rad}(a b c)=2 \cdot 5=10$
Notice that in all these examples, $\operatorname{rad}(a b c)>c$.

abc Conjecture

Definition

The radical of a number n, denoted $\operatorname{rad}(n)$, is the product of all the prime factors of n.

So here's the game:
Are there solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c) \leq c$?

abc Conjecture

Definition

The radical of a number n, denoted $\operatorname{rad}(n)$, is the product of all the prime factors of n.

So here's the game:
Are there solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c) \leq c$?
How about $\operatorname{rad}(a b c)=c$?

abc Conjecture

Definition

The radical of a number n, denoted $\operatorname{rad}(n)$, is the product of all the prime factors of n.

So here's the game:
Are there solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c) \leq c$?
How about $\operatorname{rad}(a b c)=c$?
Only $1+1=2$. (There are no primes left for a or b if $c=\operatorname{rad}(a b c)$.)

abc Conjecture

Definition

The radical of a number n, denoted $\operatorname{rad}(n)$, is the product of all the prime factors of n.

Are there solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)<c$?

abc Conjecture

Definition

The radical of a number n, denoted $\operatorname{rad}(n)$, is the product of all the prime factors of n.

Are there solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)<c$?
$1+8=9$ is the smallest $\operatorname{rad}(72)=2 \cdot 3=6$.

abc Conjecture

Definition

The radical of a number n, denoted $\operatorname{rad}(n)$, is the product of all the prime factors of n.

Are there solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)<c$?
$1+8=9$ is the smallest
$\operatorname{rad}(72)=2 \cdot 3=6$.
$5+27=32$ is the smallest with all numbers greater than 1
$\operatorname{rad}(5 \cdot 27 \cdot 32)=5 \cdot 3 \cdot 2=30$.

abc Conjecture

Are there solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)<c$?
Four others with $c<100$:
$1+48=49$ (radical is 42)
$1+63=64$ (radical is 42)
$1+80=81$ (radical is 30)

abc Conjecture

Are there solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)<c$?
Four others with $c<100$:
$1+48=49$ (radical is 42)
$1+63=64$ (radical is 42)
$1+80=81$ (radical is 30)
$32+49=81$ (radical is 42)

abc Conjecture

Are there solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)<c$?
Four others with $c<100$:
$1+48=49$ (radical is 42)
$1+63=64$ (radical is 42)
$1+80=81$ (radical is 30)
$32+49=81$ (radical is 42)
Are there infinitely many solutions?

abc Conjecture

Are there solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)<c$?
Four others with $c<100$:
$1+48=49$ (radical is 42)
$1+63=64$ (radical is 42)
$1+80=81$ (radical is 30)
$32+49=81$ (radical is 42)
Are there infinitely many solutions?
Computer search has found over 23 million solutions!

abc Conjecture

Are there finitely many solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)<c$?

abc Conjecture

Are there finitely many solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)<c$?
No: there are infinitely many solutions.

abc Conjecture

Are there finitely many solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)<c$?
No: there are infinitely many solutions.

$$
1+\left(2^{6 n}-1\right)=2^{6 n} \quad \text { for } n \geq 1
$$

abc Conjecture

Are there finitely many solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)<c$?
No: there are infinitely many solutions.

$$
1+\left(2^{6 n}-1\right)=2^{6 n} \quad \text { for } n \geq 1
$$

Let $b=2^{6 n}-1=64^{n}-1$ and notice that b is a multiple of 9 .

abc Conjecture

Are there finitely many solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)<c$?
No: there are infinitely many solutions.

$$
1+\left(2^{6 n}-1\right)=2^{6 n} \quad \text { for } n \geq 1
$$

Let $b=2^{6 n}-1=64^{n}-1$ and notice that b is a multiple of 9 .
This means $\operatorname{rad}(b) \leq \frac{b}{3}$.

abc Conjecture

Are there finitely many solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)<c$?
No: there are infinitely many solutions.

$$
1+\left(2^{6 n}-1\right)=2^{6 n} \quad \text { for } n \geq 1
$$

Let $b=2^{6 n}-1=64^{n}-1$ and notice that b is a multiple of 9 .
This means $\operatorname{rad}(b) \leq \frac{b}{3}$.
So $\operatorname{rad}(a b c) \leq \frac{2 b}{3}<b<c$.

abc Conjecture

Are there finitely many solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)<c$?
No: there are infinitely many solutions.

$$
1+\left(2^{6 n}-1\right)=2^{6 n} \quad \text { for } n \geq 1
$$

Let $b=2^{6 n}-1=64^{n}-1$ and notice that b is a multiple of 9 .
This means $\operatorname{rad}(b) \leq \frac{b}{3}$.
So $\operatorname{rad}(a b c) \leq \frac{2 b}{3}<b<c$.
Examples:
$1+63=64, \operatorname{rad}(63 \cdot 64)=42$
$1+4095=4096, \operatorname{rad}(4095 \cdot 4096)=3 \cdot 5 \cdot 7 \cdot 13 \cdot 2=2730$

abc Conjecture

So we modify the question a little...

abc Conjecture

So we modify the question a little...
Are there finitely many solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)^{Q}<c$ for a fixed $Q>1$?

abc Conjecture

So we modify the question a little...
Are there finitely many solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)^{Q}<c$ for a fixed $Q>1$?

The value q such that $c=\operatorname{rad}(a b c)^{q}$ is called the quality of the triple (a, b, c).
So the question is: if we fix a baseline $Q>1$ for quality, are there finitely many solutions that have a higher quality (that is, that have $q>Q)$?

abc Conjecture

Are there finitely many solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)^{Q}<c$ for a fixed $Q>1$?

abc Conjecture

Are there finitely many solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)^{Q}<c$ for a fixed $Q>1$?

The conjecture is YES: if we fix a value of Q, then there are only finitely many solutions with quality $q>Q$.

abc Conjecture

Are there finitely many solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)^{Q}<c$ for a fixed $Q>1$?

The conjecture is YES: if we fix a value of Q, then there are only finitely many solutions with quality $q>Q$.
... but it's unknown whether this is true or not!

abc Conjecture

Are there finitely many solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)^{Q}<c$ for a fixed $Q>1$?
Highest known quality:

$$
2+6436341=6436343
$$

abc Conjecture

Are there finitely many solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)^{Q}<c$ for a fixed $Q>1$?
Highest known quality:

$$
2+6436341=6436343
$$

$$
2+3^{10} \cdot 109=23^{5}
$$

abc Conjecture

Are there finitely many solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)^{Q}<c$ for a fixed $Q>1$?
Highest known quality:

$$
\begin{gathered}
2+6436341=6436343 \\
2+3^{10} \cdot 109=23^{5} \\
\mathrm{rad}=2 \cdot 3 \cdot 23 \cdot 109=15042
\end{gathered}
$$

abc Conjecture

Are there finitely many solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)^{Q}<c$ for a fixed $Q>1$?
Highest known quality:

$$
\begin{gathered}
2+6436341=6436343 \\
2+3^{10} \cdot 109=23^{5} \\
\mathrm{rad}=2 \cdot 3 \cdot 23 \cdot 109=15042 \\
15042^{1.62991168 \cdots}=6436343
\end{gathered}
$$

abc Conjecture

Are there finitely many solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)^{Q}<c$ for a fixed $Q>1$?
There are 239 known triples with quality $q \geq 1.4$. The largest one is:

$$
2^{37} 3^{12} 9109^{3}+5^{13} 13^{15} 2939^{1}=7^{23} 11^{1} 793345871^{1}
$$

abc Conjecture

Are there finitely many solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)^{Q}<c$ for a fixed $Q>1$?
There are 239 known triples with quality $q \geq 1.4$. The largest one is:

$$
2^{37} 3^{12} 9109^{3}+5^{13} 13^{15} 2939^{1}=7^{23} 11^{1} 793345871^{1}
$$

The right-hand side of this

> 238841709663649705652770167283,
a 30-digit number.

abc Conjecture

Are there finitely many solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)^{Q}<c$ for a fixed $Q>1$?
In August, 2012, the Japanese mathematician Shinichi Mochizuki published on his website a 500 -page series of papers that he claimed proved the abc conjecture.

abc Conjecture

Are there finitely many solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)^{Q}<c$ for a fixed $Q>1$?

In August, 2012, the Japanese mathematician Shinichi Mochizuki published on his website a 500-page series of papers that he claimed proved the abc conjecture.

9/17/12 New York Times

At first glance, it feels like you're reading something from outer space. - Jordan Ellenberg, math professor at Univ. of Wisconsin

abc Conjecture

Are there finitely many solutions in relatively prime positive integers to

$$
a+b=c
$$

for which $\operatorname{rad}(a b c)^{Q}<c$ for a fixed $Q>1$?

In August, 2012, the Japanese mathematician Shinichi Mochizuki published on his website a 500-page series of papers that he claimed proved the abc conjecture.

9/17/12 New York Times

At first glance, it feels like you're reading something from outer space. - Jordan Ellenberg, math professor at Univ. of Wisconsin

The mathematical community is divided as to whether the proof is correct or not.

Thanks!

A version of this activity (without the abc conjecture) is on the Math Circles website at:
https://mathcircles.org/activity/primes/

Contact me: patrick@aops.com aops.com beastacademy.com

