Games with Special Moves

Katherine Nogin Michelle Nogin

Clovis North High School Fresno, California

Maria Nogin

California State University Fresno, California

Joint Mathematics Meetings January 4, 2024

- Fresno Math Circle and Fresno State Math Field Day
- Examples of games and winning strategies
- What are special moves?
- Questions and some answers
- More questions to investigate

- 4 groups of grades 3-4, 5-6, 7-8, 9-12
- mental math, problems on various topics, hands-on activities, puzzles, 2-person strategy games, problem solving contests

- grades 6–8, 9–10, 11–12
- 3 types of contests:
 - ▶ individual, fast problem solving (2 minutes per problem)
 - ▶ teams of 2 people, 2 hours for 20 problems
 - ▶ game tournament, 2-person games
 - ★ a list of basic games and some variations are posted on the web, but the exact game and variation are not known in advance
 - $\star\,$ all games are pure strategy, no element of luck
 - $\star\,$ participants are paired randomly, each pair plays twice

Examples of games: a pile of counters

(MC, grades 5-6)

- Initially, there is a pile containing 24 counters.
- Turns alternate. In each move, the player can remove 1, 2, 3, or 4 counters from the pile.
- The game ends when the pile is empty.
- The player who made the last move wins.

(Math Field Day)

- Choose a random number between 12 and 30 and make a pile of that many counters.
- Choose a random number N between 3 and 6. In each move, the player can remove 1, 2, ..., or N counters from the pile.
- The game ends when the pile is empty.
- The player who made the last move wins.

Examples of games: counter on a board

(MC, grades 7-8)

- A counter is placed in the upper right corner of a 7×7 board.
- Turns alternate.
- In each turn, the player can move the counter one square to the left, one square down, or one space left/down diagonally.
- The game ends when the counter is in the bottom left corner.
- The player who made the last move wins.

- The person who made the last move loses (instead of wins)
- Modified moves—can remove a different number of counters or move counters on the board in a different pattern
- Some restrictions apply, e.g. may not land on a certain position, counters are not allowed to share a square on the board or are not allowed to "jump" one over another
- Once per game, each player may make "a special move" e.g.
 - ▶ may remove a number of counters not usually permitted
 - ▶ may move a counter on the board in a way not usually permitted
 - ▶ some restrictions may apply, e.g. two special moves cannot be consecutive

Finding winning positions: a pile of counters

- Initially, there is a pile containing 24 counters.
- Turns alternate. In each move, the player can remove 1, 2, 3, or 4 counters from the pile.
- The game ends when the pile is empty.
- The player who made the last move wins.

Winning position = one we want to go to on our move

Losing position = one we do not want to go to on our move

Work backwards to classify all positions (the number of counters left in the pile):

Finding winning positions: a pile of counters

- Initially, there is a pile containing 24 counters.
- Turns alternate. In each move, the player can remove 1, 2, 3, or 4 counters from the pile.
- The game ends when the pile is empty.
- The player who made the last move wins. loses.

Winning position = one we want to go to on our move

Losing position = one we do not want to go to on our move

Work backwards to classify all positions (the number of counters left in the pile):

0	1	2	3	4	5	6	7	8	9	10
W	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	W	L	\mathbf{L}	\mathbf{L}	\mathbf{L}	W
\mathbf{L}	W	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	W	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}

Finding winning positions: counter on board

- A counter is placed in the upper right corner of a 7×7 board.
- Turns alternate.
- In each turn, the player can move the counter one square to the left, one square down, or one space left/down diagonally.
- The game ends when the counter is in the bottom left corner.
- The player who made the last move wins.

W	L	W	L	W	L	
L	L	L	L	L	L	\mathbf{L}
W	L	W	L	W	L	W
L	L	L	L	L	L	L
W	L	W	L	W	L	W
L	L	L	L	L	L	L
W	L	W	L	W	L	W

Finding winning positions: counter on board

- A counter is placed in the upper right corner of a 7×7 board.
- Turns alternate.
- In each turn, the player can move the counter one square to the left, one square down, or one space left/down diagonally.
- The game ends when the counter is in the bottom left corner.
- The player who made the last move wins. loses.

W	L	W	L	W	L	
L	L	L	L	L	L	L
W	L	W	L	W	L	W
L	L	L	L	L	L	L
W	L	W	L	W	L	W
L	L	L	L	L	L	L
W	L	W	L	W	L	W

L	L	W	L	W	L	
W	L	L	L	L	L	L
L	L	W	L	W	L	W
W	L	L	L	L	L	L
L	L	W	L	W	L	W
W	L	L	L	L	L	L
L	W	L	W	L	W	L

- How does a special move, allowed at most once per game for each player, affect the distribution of winning positions for each player?
 - ▶ Is it a "shift"?
 - ▶ Is the distribution drastically different?
- Can the percentage of initial positions for which the 1st player has a winning strategy change?
 - ▶ Can it increase?
 - ▶ Can it decrease?

Let m < n and p be natural numbers.

- Initially, a pile contains some number of counters.
- Turns alternate. In each move, the player removes m, m + 1, ..., or n counters from the pile.
- At most once per game, each player may remove p counters.
- The game ends when the pile is empty.
- The player who made the last move wins.

Results

- For the original game (with no special move), positions 0-(m-1) are winning, positions m-(m+n-1) are losing, then this pattern repeats in cycles of length m + n.
- For p = 0 or $m \le p \le n$, the game is equivalent to the original one.
- For any p, the winning/losing positions still form cycles of length m + n eventually.
- For $1 \le p < \frac{m}{2}$, the pattern is different, with fewer winning positions, so the percentage of times the first player has a winning strategy is higher.
- For $\frac{m}{2} \le p < m$, the original pattern is shifted by p m.
- For n , the original pattern is shifted by <math>p n.
- For p > m + n, let $r = p \mod (m + n)$. The pattern is shifted by m if r = 0, shifted by p m if 0 < r < m, shifted by p n if r > n, and the same as in the original game if $m \le r \le n$ eventually.

Winning/losing positions for the case when neither player has used their special move:

<i>p</i>	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
none, 0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	Х	Х	Х	×	×	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×	×	×	×	×	×	\checkmark
1	\checkmark	×	\checkmark	√	\checkmark	×	Х	Х	Х	×	×	×	×	\checkmark	×	\checkmark	\checkmark	\checkmark	×	×	×	×	×	×	×	×	\checkmark
2	\checkmark	✓	×	Х	√	Х	Х	Х	×	X	×	×	×	\checkmark	\checkmark	×	×	\checkmark	×	×	×	×	×	×	×	×	\checkmark
3	\checkmark	\checkmark	\checkmark	Х	×	×	Х	Х	Х	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×	×	×	×	×	×	\checkmark	\checkmark	\checkmark
4	\checkmark	✓	\checkmark	√	X	Х	×	Х	×	×	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×	×	×	×	×	×	✓	\checkmark
5-8	✓	\checkmark	\checkmark	✓	\checkmark	×	Х	Х	Х	×	×	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×	×	×	×	Х	×	\checkmark
9	✓	\checkmark	\checkmark	\checkmark	\checkmark	×	Х	Х	Х	×	×	×	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×	×	×	×	×	×
10	✓	\checkmark	\checkmark	√	\checkmark	×	Х	Х	Х	×	×	×	×	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×	×	×	×	×
11	\checkmark	✓	✓	\checkmark	√	Х	Х	Х	X	X	×	×	×	×	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×	×	×	×
12	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	Х	Х	Х	×	×	×	×	×	×	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×	×	×
13	✓	✓	✓	\checkmark	√	Х	Х	Х	Х	Х	×	×	×	×	×	×	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×	×
14	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	X	X	×	×	×	×	×	\checkmark	×	×	×	×	×	×	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

- What happens if we add the restriction that two special moves cannot be consecutive?
- What happens if each player can make up to two (or more) special moves per game?
 - Does the percentage of initial positions for which the first player has a winning strategy still either stay the same or increase?
- How do restrictions (e.g. cannot land in a certain position) affect the distribution/percentage of winning positions?
- How do special moves, restrictions, or other rules affect the distribution/percentage of winning positions for other games (e.g. the ones with counters on a board)?
 - ▶ Is there a game for which a special move decreases the percentage of initial positions for which the first player has a winning strategy?

Thank you!