Games with Special Moves

Katherine Nogin Michelle Nogin

Clovis North High School
Fresno, California

Maria Nogin

California State University
Fresno, California

Joint Mathematics Meetings
January 4, 2024

Outline

- Fresno Math Circle and Fresno State Math Field Day
- Examples of games and winning strategies
- What are special moves?
- Questions and some answers
- More questions to investigate

Fresno Math Circle

- 4 groups of grades $3-4,5-6,7-8,9-12$
- mental math, problems on various topics, hands-on activities, puzzles, 2-person strategy games, problem solving contests

Fresno State Math Field Day

- grades 6-8, 9-10, 11-12
- 3 types of contests:
- individual, fast problem solving (2 minutes per problem)
- teams of 2 people, 2 hours for 20 problems
- game tournament, 2-person games

ぇ a list of basic games and some variations are posted on the web, but the exact game and variation are not known in advance
\star all games are pure strategy, no element of luck
\star participants are paired randomly, each pair plays twice

Examples of games: a pile of counters

(MC, grades 5-6)

- Initially, there is a pile containing 24 counters.
- Turns alternate. In each move, the player can remove $1,2,3$, or 4 counters from the pile.
- The game ends when the pile is empty.
- The player who made the last move wins.
(Math Field Day)
- Choose a random number between 12 and 30 and make a pile of that many counters.
- Choose a random number N between 3 and 6 . In each move, the player can remove $1,2, \ldots$, or N counters from the pile.
- The game ends when the pile is empty.
- The player who made the last move wins.

Examples of games: counter on a board

(MC, grades 7-8)

- A counter is placed in the upper right corner of a 7×7 board.
- Turns alternate.
- In each turn, the player can move the counter one square to the left, one square down, or one space left/down diagonally.
- The game ends when the counter is in the bottom left corner.
- The player who made the last move wins.

Variations

- The person who made the last move loses (instead of wins)
- Modified moves - can remove a different number of counters or move counters on the board in a different pattern
- Some restrictions apply, e.g. may not land on a certain position, counters are not allowed to share a square on the board or are not allowed to "jump" one over another
- Once per game, each player may make "a special move" e.g.
- may remove a number of counters not usually permitted
- may move a counter on the board in a way not usually permitted
- some restrictions may apply, e.g. two special moves cannot be consecutive

Finding winning positions: a pile of counters

- Initially, there is a pile containing 24 counters.
- Turns alternate. In each move, the player can remove $1,2,3$, or 4 counters from the pile.
- The game ends when the pile is empty.
- The player who made the last move wins.

Winning position $=$ one we want to go to on our move
Losing position $=$ one we do not want to go to on our move
Work backwards to classify all positions (the number of counters left in the pile):

0	1	2	3	4	5	6	7	8	9	10
W	L	L	L	L	W	L	L	L	L	W

Finding winning positions: a pile of counters

- Initially, there is a pile containing 24 counters.
- Turns alternate. In each move, the player can remove $1,2,3$, or 4 counters from the pile.
- The game ends when the pile is empty.
- The player who made the last move wins. loses.

Winning position $=$ one we want to go to on our move
Losing position $=$ one we do not want to go to on our move
Work backwards to classify all positions (the number of counters left in the pile):

0	1	2	3	4	5	6	7	8	9	10
W	L	L	L	L	W	L	L	L	L	W
L	W	L	L	L	L	W	L	L	L	L

Finding winning positions: counter on board

- A counter is placed in the upper right corner of a 7×7 board.
- Turns alternate.
- In each turn, the player can move the counter one square to the left, one square down, or one space left/down diagonally.
- The game ends when the counter is in the bottom left corner.
- The player who made the last move wins.

W	L	W	L	W	L	O
L	L	L	L	L	L	L
W	L	W	L	W	L	W
L	L	L	L	L	L	L
W	L	W	L	W	L	W
L	L	L	L	L	L	L
W	L	W	L	W	L	W

Finding winning positions: counter on board

- A counter is placed in the upper right corner of a 7×7 board.
- Turns alternate.
- In each turn, the player can move the counter one square to the left, one square down, or one space left/down diagonally.
- The game ends when the counter is in the bottom left corner.
- The player who made the last move wins. loses.

W	L	W	L	W	L	O
L	L	L	L	L	L	L
W	L	W	L	W	L	W
L	L	L	L	L	L	L
W	L	W	L	W	L	W
L	L	L	L	L	L	L
W	L	W	L	W	L	W

L	L	W	L	W	L	O
W	L	L	L	L	L	L
L	L	W	L	W	L	W
W	L	L	L	L	L	L
L	L	W	L	W	L	W
W	L	L	L	L	L	L
L	W	L	W	L	W	L

Questions

- How does a special move, allowed at most once per game for each player, affect the distribution of winning positions for each player?
- Is it a "shift"?
- Is the distribution drastically different?
- Can the percentage of initial positions for which the 1st player has a winning strategy change?
- Can it increase?
- Can it decrease?

Finding winning/losing positions for a game with a special move

opponent used the special move
both used the special move
neither used the special move
special

I used the special move

Game investigated

Let $m<n$ and p be natural numbers.

- Initially, a pile contains some number of counters.
- Turns alternate. In each move, the player removes $m, m+1, \ldots$, or n counters from the pile.
- At most once per game, each player may remove p counters.
- The game ends when the pile is empty.
- The player who made the last move wins.

Results

- For the original game (with no special move), positions $0-(m-1)$ are winning, positions $m-(m+n-1)$ are losing, then this pattern repeats in cycles of length $m+n$.
- For $p=0$ or $m \leq p \leq n$, the game is equivalent to the original one.
- For any p, the winning/losing positions still form cycles of length $m+n$ eventually.
- For $1 \leq p<\frac{m}{2}$, the pattern is different, with fewer winning positions, so the percentage of times the first player has a winning strategy is higher.
- For $\frac{m}{2} \leq p<m$, the original pattern is shifted by $p-m$.
- For $n<p \leq m+n$, the original pattern is shifted by $p-n$.
- For $p>m+n$, let $r=p \bmod (m+n)$. The pattern is shifted by m if $r=0$, shifted by $p-m$ if $0<r<m$, shifted by $p-n$ if $r>n$, and the same as in the original game if $m \leq r \leq n$ eventually.

Example: $m=5, n=8$

Winning/losing positions for the case when neither player has used their special move:

p	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
none, 0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark														
1	\checkmark	\times	\checkmark	\checkmark	\checkmark	\times	\checkmark	\times	\checkmark	\checkmark	\checkmark	\times	\checkmark														
2	\checkmark	\checkmark	\times	\times	\checkmark	\times	\checkmark	\checkmark	\times	\times	\checkmark	\times	\checkmark														
3	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark														
4	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark														
$5-8$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark														
9	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times															
10	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times															
11	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times	\times	\times	\times	\times	\times										
12	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times	\times	\times	\times	\times											
13	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times	\times	\times	\times												
14	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark														

Further questions

- What happens if we add the restriction that two special moves cannot be consecutive?
- What happens if each player can make up to two (or more) special moves per game?
- Does the percentage of initial positions for which the first player has a winning strategy still either stay the same or increase?
- How do restrictions (e.g. cannot land in a certain position) affect the distribution/percentage of winning positions?
- How do special moves, restrictions, or other rules affect the distribution/percentage of winning positions for other games (e.g. the ones with counters on a board)?
- Is there a game for which a special move decreases the percentage of initial positions for which the first player has a winning strategy?

Thank you!

