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Reverse Fibonacci Sequence

Intro

I was prompted to do this project when in math this year we had to write a report about a
mathematician of our choice. Some of the other students in my class wrote about Fibonacci. 1
found the Fibonacci sequence to be interesting and wanted to do something with it. First, when 1
began my research, I found that in 1202 Leonardo Pisano, known today to the world as
Fibonacci, published the first modern algebra book called Liber Abaci. For hundreds of years, it
was considered the best math textbook that had been written since the end of the ancient world.
In it, Fibonacci asked the following question: “How many pairs of rabbits will be produced in a
year, beginning with a single pair, if in every month each pair bears a new pair which becomes
productive from the second month on, and no death occurs?” The equation for this is a, =

Qp-1 + Qn_p, Where a,, denotes the pairs of rabbits in the n®*-month and where ay=0 and a, =
1. Basedonthisa; = a; +ap=1+0=1l,a,=a; +a;=1+1=2,a,=az+a;=2+1

=3, and we obtain the original Fibonacci sequence
0,1, 1,2, 35,8, 13, 21,.3%, 55, 89, 144, 233, ....,

where it is easy to compute the first 60 Fibonacci numbers with an Excel spreadsheet (see Table

1 below). The 60" Fibonacci number is ago = 1,548,008,755,920 but shortly after n = 60, Excel



runs out of precision and starts rounding the Fibonacci numbers. To compute the Fibonacci

numbers a, forn > 60, one can use the amazing Binet Formula, which is

o (5 -6).

With it one can compute the n*"* Fibonacci number (starting with 0 and 1) directly without

&

computing first all the previous ones. The number 1+2\/§ = 1.6180339 ... is the golden ratio

which can be found in many unexpected places. One is in a standard credit card where it
represents the ratio of the lengths of the sides of the card. Some other places are your overall
height divided by the height of your navel and the ratio of the length of your elbow to your wrist
to the length of your hand. It is found throughout nature in places such as spirals of seed heads

and leaf arrangements.

The values of the Fibonacci sequence will change when a, and a4 have different starting
values. For example if we start the Fibonacci sequence with ag=1 and a, = 3, then we obtain the

so-called Lucas numbers
1,3,4,7,11, 18, 29, 47, 76, 123, 199, ... .

When I started the project, I was wondering if there is something like Binet’s Formula for any
starting values ag and a, . The first main result of my project is that the answer is yes and an

explanation of how it works is given below.

The second main result of my project concerns the reversal of the Fibonacci sequence
where 1 start with two consecutive Fibonacci numbers ay—4 and ay and then try to find the

beginning numbers a, and a,. I was testing the question, “The values of the Fibonacci sequence



depend on the two initial values chosen. Can the Fibonacci sequence always be reversed or will

things such as rounding affect your results?” From this, my hypothesis was that the Fibonacci

sequence cannot always be reversed because after rounding multiple times, too much

information is lost about your original numbers. I hoped for and finally achieved in finding a

formula that allows the reversal of the Fibonacci sequence for any starting values.

Body

In this project, the materials needed are simple. You will need a pack of paper, pencils,

and a computer with Excel. The paper and pencils will be used to do the mathematics, and Excel

is used to compute Fibonacci sequences and test related equations and formulas.

STEP 1: Binet’s Formula for the Fibonacci Sequence. Because Excel cannot be trusted to

compute Fibonacci numbers a,, for large n due to a lack of precision (see Table 1; a4 is

incorrect since it is not a;3 + @z the first step in my project is to develop an explicit formula

for the Fibonacci sequence that holds for any starting values (extension of Binet’s formula).

Table 1
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13 233
147 377
15" 610
16" 987
17" 1,597
18" 2,584
19" 4,181
20" 6,765
217 10,946
227 17,711
237 28,657
24" 46,368
25" 75,025

n-th Fib

26 121,393
27 7 196,418
28 " 317,811
29 " 514,229
30 " 832,040
31 " 1,346,269
32 72,178,309
33 " 3,524,578
34 " 5,702,887
35 " 9,227,465
36 "14,930,352
37 724,157,817
38 39,088,169

n n-th Fib

39 63,245,986
40~ 102,334,155
41" 165,580,141
42" 267,914,296
43" 433,494,437
44" 701,408,733
45 " 1,134,903,170
46 " 1,836,311,903
47 " 2,971,215,073
48 " 4,807,526,976
49 " 7,778,742,049
50 " 12,586,269,025

51 7 20,365,011,074

n

52

53"

55
56
57

58"
59 7

61"
62"

63

n-th Fib

32,951,280,099
53,316,291,173
86,267,571,272
139,583,862,445
225,851,433,717
365,435,296,162
591,286,729,879
956,722,026,041
1,548,008,755,920
2,504,730,781,961
4,052,739,537,881
6,557,470,319,842
10,610,209,857,723

&R &

69
70
71
72
73
74
75
76
77

n-th Fib

17,167,680,177,565
27,777,890,035,288
44,945,570,212,853
72,723,460,248,141
117,669,030,460,994
190,392,490,709,135
308,061,521,170,129
498,454,011,879,264
806,515,533,049,393
1,304,960,544,928,660
2,111,485,077,978,050
3,416,454,622,906,710
5,527,939,700,884, 760



Maybe the most important observation when dealing with Fibonacci numbers is that when one
divides two Fibonacci numbers a,_; and a, (the larger n, the better), one obtains the golden

an 1+V5

an-1

ratio, which is = 1.6180339 ... . Using Excel spreadsheets, I found out that this is

true for any Fibonacci sequence independent of the particular choice of when a, and a;.

Table 2

n nthluc n n-thluc n n-thluc n n-th Lucas n n-th Lucas n n-th Lucas

1 13 843 26 439,204 39 228826127 52 119,218,851,371 65 62,113,250,390,418
3 14 1,364 27 710,647 40 370,248,451 53  192,900,153,618 66 100,501,350,283,429
4 15" 2,207 287 1,149,851 41 599,074,578 54 312,119,004,989 67 162,614,600,673,847
7 16 3571 29 1,860,498 42" 969,323,029 55  505,019,158,607 68 263,115,950,957,276
11 17 5778 30 3,010,349 437 1,568,397,607 56 817,138,163,596 69 425,730,551,631,123
187 9,349 31" 4,870,847 44" 2,537,720,636 57 1,322,157,322,203 70- 688,846,502,588,399
29 19715127 327 7,881,196 45 4,106,118,243 58" 2,139,295,485,799 71 1,114,577,054,219,520
47 20" 24476 337 12,752,043 46" 6,643,838,879 59  3,461,452,808,002 72 1,803,423,556,807,920
76 21739603 34 20,633,230 47 10,749,957,122 60" 5,600,748,293,801 73 2,918,000,611,027,440
123 22764079 35" 33,385,282 4817,393,796,001 61" 9,062,201,101,803 74 4,721,424,167,835,360
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107 199 237103,682 36 54,018,521 49 28,143,753,123 62 14,662,949,395,604 75 7,639,424,778,862,810
117 322 247167,761 377 87,403,803 50 '45,537,549,124 63 23,725,150,497,407 76 12,360,848,946,698,200
127 521 257271,443 387141,422,324 5173,681,302,247 64 38,388,099,893,011 77 20,000,273,725,561,000

For example, if we look at the Fibonacci sequence that starts with 1 and 3 (the Lucas Numbers,

see Table 2), then 245 — 1.618034. That is, when looking at Fibonacci sequences with different

Q44
starting values for a, and a4, I observed that a,, always grows exponentially. That is, it appears

an

that independent of the starting values a, and a,, the quotient is always approximately

an-1

equal to the golden ratio %g = 1.6180339 ... . This means that for large numbers like n = 100

it appears that

Q100 ~ 1.618 * go~1.618 * 1.618 * agg ~ ...~ 1.6187° * as,

This leads to the idea to look for a number x and a constant ¢ such that



- I o e ek
Substituting this into the Fibonacci equation a,, = a,_4 + a,_, gives
e X mp gV pay®2,
After dividing this equation by ¢ and by x™~2, T obtain the characteristic equation
xl=x+1.
Now bring x+1 to the other side, which gives you the quadratic equation
x2—x—-1=0

1++5 1-V5

5
and x, = ~>" Now we know that for all numbers ¢, ¢, the

whose two solutions are x; =
sequences a, = c;x; and a, = c,x5 satisfy the Fibonacci equation a, = a,—1 + ,-;.
Therefore, for all ¢, ¢,, the sequence

an, = X1 + cx%
will also solve the Fibonacci equation a,, = a,—1 + a,-». Next we choose ¢;, ¢, so that
ag = ¢; + cyand a; = c1xq + C2x,, where aq and a, are the given starting values. Because

we have two equations for the two unknowns ¢;, ¢,, we can solve for ¢; and ¢, and get

aq—apgX
¢g=—=—and ¢, = i
X1—X2 X1—X2

ApX1—aq

Plug these values into the equation a,, = ¢;x]* + ¢,x5 to get the Generalized Binet Formula

QpXi—a
ap = 2—= s xft + L xf,

X1—X2 " X1—X2

+V5 15 ... : : 3
and x, = — With this formula one can compute the Fibonacci sequence a,,

1
where x; =

for any starting values a, and a,. In order to better understand this formula, I will denote from

now on the standard Fibonacci sequence 0, 1, 1,2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, .... by



fn Instead of a,,. In the standard Fibonacci sequence one has a; =0 and a; = 1 and then the

formula above becomes
o n_omy_ 1 [(1#VBY" _ [1-VB\"
Rk -g1=2 (35 -(5D)

which is the old formula of Binet that I mentioned already above. Going back to the equation

a;—QapXx apX1—a
an N Al 0+2 % xIl + 0+1 1 & x?,
X1—X2 X1—X2
and breaking it into pieces, I get
a n n a n n
a, = X35 =g = XX —x1%3] .
e [x] 7] p Pt [x2x] 1%7]
Since x; * x, = —1, it follows that
1 '
s n n n-1 n-—2
Ap = Qg * [x1 — x3] + aq * [ —x27°]

which I can reduce to the following simplified form of the Generalized Binet Formula
An = Q1fn + Aofn-1
for the solution of the Fibonacci equation a,, = a,-; + a,-, with given starting values a,
and a;. To see how my formula works, I need the original Fibonacci numbers f,given in Table 1
(which are all correct up to at least n = 60; for a correct list of Fibonacci numbers for n up to 300,

see http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/). If one wants to find the

Fibonacci sequence that starts with ay = 1 and a, = 3, then according to the formula above

an = 3fn + fr-1
and one can get the sequence a,, by multiplying one Fibonacci number by 3 and adding to it the
previous one. This yields, for example that the 60™ Lucas number (see Table 2) is three times the

60™ plus the 59" Fibonacci number (see Table 1):
6
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5,600,748,293,801 = 3*1,548,008,755,920 + 956,722,026,041.

As the next table shows (Table 3), Excel cannot compute ag if we start with V20 = 4.472... and

V30 =5.477.... The result is not ag, = 12,757,384,119,926.900 .... as Excel says it is, but

ago= 30 *1,548,008,755,920 + /20 %956,722,026,041 = 12,757,384,119,926.92854265.......
Table 3

n n-th Fib n n-th Fib n n-th Fib n n-th Fib n n-th Fib n n-th Fib

0.000 4472 13.000 1920.181 26,000 1000418.844 39.000 521220138.039 52.000 271556692336.934 65.000 141481557927680.000
1.000 ” 5.477 14.000" 3106.922 27.000" 1618711.693 40.000 843351898.967 53.000 439387958073.657 66.000 228921969508274.000
2.000 " 9.949 15000  5027.103 28,000  2619130.537 41.000 1364572037.006 54.000  710944650410.590 67.000 370403527435954.000
3.000 " 15.427 16,000 8134.025 29,000  4237842.230 42.000" 2207923935.973 55.000” 1150332608484.250 68.000 599325496944228.000
4,000 " 25.376 17.000 13161.127 30.000  6856972.767 43.000  3572495972.979 56.000  1861277258894.840 69.000 969729024380183.000
5.000 " 40.803 18.000 21295.152 31.000 11094814.998 44.000 5780419908.952 57.000  3011609867379.080 70.000 1569054521324410.000
6.000 " 66.178 19.000 34456.279 32.000 17951787.765 45.000  9352915881.931 58.000 4872887126273.920 71000 2538783545704590.000
7.000 "106.981 20.000 55751.431 33.000  29046602.763 46.000 15133335790.883 59,000  7884496993653.000 72.000 4107838067029010.000
8.000 "173.160 21.000 90207.711 34.000 46998390528 47.000" 24486251672.815 60.000 12757384119926.900 73.000 6646621612733600.000
9,000 " 280.141 22,000 145959.142 35.000 76044993291 48.000 39619587463.698 61.000 20641881113579.900 74,000 10754459679762600.000
10.000453.300 23.000 236166.853 36.000 123043383.819 49.000 64105839136.513 62.000 33399265233506.900 75.000 17401081292496200.000
11.000"733.441 24.000 "382125.996 37.000 199088377110 50.000 "103725426600.211 63.000 54041146347086.800 76.000 28155540972258800.000
12.000 "1186.741 25.000 '618292.849 38.000 "322131760.929 51.000 167831265736.723 64.000 87440411580593.600 77.000 45556622264755000.000

The result is more striking if we compare Excel’s a;; = 45,556,622,264,755,000 with the true

result which is, according to my formula, a7 = a4f77 + aof76 = V30f77 + V20f76. As we will
see, Excel’s number is over 2 trillion larger than the true number! Since f;; is known to be

5,527,939,700,884,757 and f¢ = 3,416,454,622,906,707, the true value is

az7 =V30 77 + V20f;4 = 43,434,390,529,984,436.34.........

STEP 2: Binet’s Formula for the Reversed Fibonacci Sequence. The second step in my

project is to develop an explicit formula for the reversed Fibonacci sequence. To do so, we must
first have an equation for the reversed Fibonacci sequence. This can be done easily if one looks
at an example. If we know that 309 and 500 are two consecutive Fibonacci numbers, then we can

go backwards by subtracting 309 from 500 to get 191. Continuing in this manner we get the

7
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reverse Fibonacci sequence 500, 309, 191, 118, 73, 45, 28, 17, 11, 6, 5, 1. Now we know that the
Fibonacci numbers 309 and 500 are generated by a Fibonacci sequence with starting values of 1

and 5 and we know that the reverse Fibonacci sequence is given by the equation

by = —bpy + by

with starting values by = ay and b; = ay-4, Where ay and ay_, are two consecutive values of
a Fibonacci sequence. This looks simple enough to use an Excel spreadsheet to get the work
done — but what a surprise it is to see how badly Excel messes up! If we look at the Fibonacci

sequence starting with O and 0.2 then we get the numbers in Table 4 which are correct to at least

n = 60.

Table 4
n n-thFib n n-thFib n n-th Fib n n-th Fib n n-th Fib n n-th Fib

00 00 130 466 260 242786 390 126491972 52.0 6590256019.8 65.0  3433536035513.0
10 02 140 754 27.0° 39283.6 400 20466831.0 53.0 10663258234.6 66.0  5555578007057.6
207 02 1507 1220 280 635622 410  33116028.2 540 172535142544 67.0  8989114042570.6
30" 04 1607 1974 29.0° 1028458 42.0° 53582859.2 55.0 279167724890.0 68.0 14544692049628.2
40”7 06 170" 3194 300" 1664080 430 86698887.4 56.0° 45170286743.4 69.0 23533806092198.8
50° 10 180 5168 310 269253.8 440 140281746.6 57.0  73087059232.4 70.0 38078498141827.0
60 1.6 190" 8362 32.0” 4356618 45.0 226980634.0 58.0° 118257345975.8 71.0 61612304234025.8
70" 26 20071353.0 33.0° 7049156 460 367262380.6 59.0° 191344405208.2 72.0 99690802375852.8
80 42 210721892 34.0 1140577.4 47.0° 594243014.6 60.0° 309601751184.0 73.0 161303106609879.0
90" 68 220735422 350 1845493.0 48.0 9615053952 61.0° 500946156392.2 74.0 260993908985731.0
100" 110 23.0 57314 36.0 2986070.4 49.0  1555748409.8 62.0° 8105479075762 75.0 422297015595610.0
11.07 17.8 24.079273.6 37.0  4831563.4 50.0 2517253805.0 63.0° 1311494063968.4 76.0 683290924581341.0
120" 288 25.0°15005.0 38.0° 7817633.8 51.0  4073002214.8 64.0  2122041971544.6 77.0

1105587940176950.0

As we see, agg = 309,601,751,184 and asq = 191,344,405,208.2. Subtracting as above, we get

asg = 118,257,345,975.8. Handing the next 57 steps over to Excel, we see that Excel can

compute a5, correctly and starts messing up from asg on (with the mistakes starting out small

and then getting bigger and bigger).



Table 5

n n-th Fib

0.0 309601751184.0
1.0 "191344405208.2
2.0 "118257345975.8
3.0 " 73087059232.4
4.0 " 45170286743.4
5.0 " 27916772489.0
6.0 " 17253514254.4
7.0 " 10663258234.6
8.0 " 6590256019.8
9.0 " 4073002214.8
10.0” 2517253805.0
11.0" 1555748409.8
12.0” 961505395.2

n n-th Fib

13.0 594243014.6
14.0 '367262380.6
15.0 226980634.0
16.0 140281746.6
17.0” 86698887.4
18.0” 53582859.2
19.0 7 33116028.1
20.0" 20466831.1
21.0” 12649197.0
2.0" 7817634.1
23.0” 4831562.9
24.0" 2986071.2
25.0" 1845491.6

n n-th Fib

26.0 1140579.6
27.0" 704912.0
28.0" 435667.6
29.0" 269244.4
30.0” 166423.2
31.0” 102821.1
32.07 63602.1
33.0" 39219.1
34.0” 24383.0
35.0" 14836.0
36.0" 9547.0
37.07 5289.1
38.07 4257.9

n

35.0

g
40.0
41.0
42.0

o
43.0

v
44.0

r
45.0
46.0

r
47.0

r
48.0

-
49.0

r
50.0

r
51.0

n-th Fib

1031.1
3226.8
-2195.7
5422.5
-7618.1
13040.6
-20658.7
33699.3
-54358.0
88057.2
-142415.2
230472.5
-372887.7

52.0
| 4
53.0
540"
r
55.0
r
56.0
57.0
58.0"
=
59.0
60.0"
61.07
62.07
¥
63.0
64.0°

n-th Fib

603360.2
-976247.8
1579608.0

-2555855.9
4135463.9
-6691319.7
10826783.6
-17518103.3
28344836.9
-45862990.2
74207877.1
-120070867.3
194278744.4

n

65.0
66.0
67.0
68.0
69.0
70.0
71.0
72.0
73.0
74.0
75.0
76.0
77.0

n-th Fib

-314349611.6
508628356.0
-822977967.6
1331606323.6
-2154584291.2
3486190614.8
-5640774906.0
9126965520.7
-14767740426.7
23894705947.5
-38662446374.2
62557152321.6
-101219598695.8

At the end Excel finds that the original Fibonacci sequence started out with ay = 28,344,886.89

and a; =-17,518,103.30. This is obviously nonsense since we know that we started out with a,

=0and a; =0.2.

Because Excel spreadsheets obviously do not work at all, I explored if there is also a formula

similar to Binet’s Formula for a reversed Fibonacci sequence b,, = —b,,_; + by_,. As in Step

1, the main idea is to look for a number z and a constant ¢ such that

Substituting this into the reversed Fibonacci equation b,, = —b,_; + b,,_, gives

cxz"=—c*2" 1 4 cx2"72,

— n
b,=cx*z".

After dividing this equation by ¢ and by z™~2, I obtain the characteristic reverse equation

z?2=—z +1.

Now bring -z+1 to the other side, which gives you the quadratic equation


http:17,518,103.30
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z2+z-1=0

’ -1++5 -1-v5
whose two solutions are z; = 5T = — X2 and z, =

= —x; , where x, are as in Step 1.

Now we know again that for all constants ¢y, 3 the sequences b, = ¢,z{* and b, = c,z%
satisfy the reversed Fibonacci equation b,, = —b,,—1 + by_5. Therefore, for all ¢;, c,, the

sequence
— n mn
b, = ¢12f + ;23

will also solve the reversed Fibonacci equation b, = —b,_; + b,_,. It remains to be shown
that we can choose ¢;, ¢, sothat by = ¢; + ¢; and by = ¢,z + ¢32,, where by = ay and
b; = ay-, and where ay and ay_, are two consecutive values of a Fibonacci sequence.

Solving the two equations for the two unknowns ¢;, ¢, one gets

b1 —bo2z: boz,—b
1 ozandc2= 0Z1—01

c4 = :
1 Z1—22 Z1—22

Plug these values into the equation b, = ¢,2{ + ¢,2z5 and use again that x; * x, = —1 to get

the Reversed Binet Formula

by + byx b
4

bo
X1—X2

-b
= (D2 B — ]+ 2 [ - %l

= D" b - ]+

X1—X2 X1—X2

[ — 27D

10



= (—D"(=bifn + bofn-1)

=(—D"(—ay_1fn + anfo-1)

1++/5

1-V5 - : .
where x; = and x, = —— and where f;,, denotes the standard Fibonacci sequence starting

with O and 1 as given in Table 1. To see how my formula works, let us go back to the Fibonacci

numbers starting with 0 and 0.2 as in Table 4. Then
ago = 309,601,751,184 and ase = 191,344,405,208.2,
fso = 956,722,026,041 and f¢, = 1,548,008,755,920.
Therefore my formula yields that
@y = bgo = —asefeo + @eofs9
=-191,344,405,208.2*1,548,008,755,920 + 309,601,751,184%956,722,026,041=0
Conclusion

My hypothesis was proved in the sense that rounding did cause Excel to mess up the reversion of
the Fibonacci sequence; that is, Excel is unable to compute the reverse Fibonacci sequence b,

accurately. However, I disproved my hypothesis in the sense that the equation
by = (-D"(—an-1/fn + anfn-1)
will always work to reverse the Fibonacci sequence if the following three conditions are true:

I. The numbers ay and ay_4 are known without any error.

II.  The original Fibonacci numbers f;,, are known without any error for 0 <n <N.

11



III. ~ You work with a machine that knows how to multiply the large numbers in the formula

b, = ('—l)n( _aN—lfn * aan—l)-

There are many ways to build upon this project. The first thing to do is to find out how one
can use Excel to multiply large numbers accurately. The next step is to investigate the

generalized Fibonacci sequence

a, = Aa,_1 + Ba,_,,

where A, B are given values and a, and a, are given starting values (this equation is also called

a second order linear difference equation).

A practical application of this project is the following banking problem: You want to
make sure (for whatever reason) that no one can find out how much money you put in a savings
account where the money gets r% interest every month. In order to hide from everyone how

much money you put in the bank initially, you strike the following deal with the bank:

a) The bank never reveals the past of the savings account but only what is in the bank in month N
and month N-1 (where N is the number of months the money sits in the savings account).

b) The bank pays interest on what is in the account with a delay of one month. That is, if a,, is
the amount of money in the bank at month », then a,, = a,_, + ra,_,.

¢) The bank always rounds a,, to the nearest penny.

In this situation, because of the rounding of a,, to the nearest penny, it should be impossible to
reverse the sequence a,,. That is, given ay and ay_, for sufficiently large N, it should be

impossible for anyone to ever find out for sure what a, and a, were.
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