

Supercomposite Numbers, Exponent Worms, and Lattice Rules

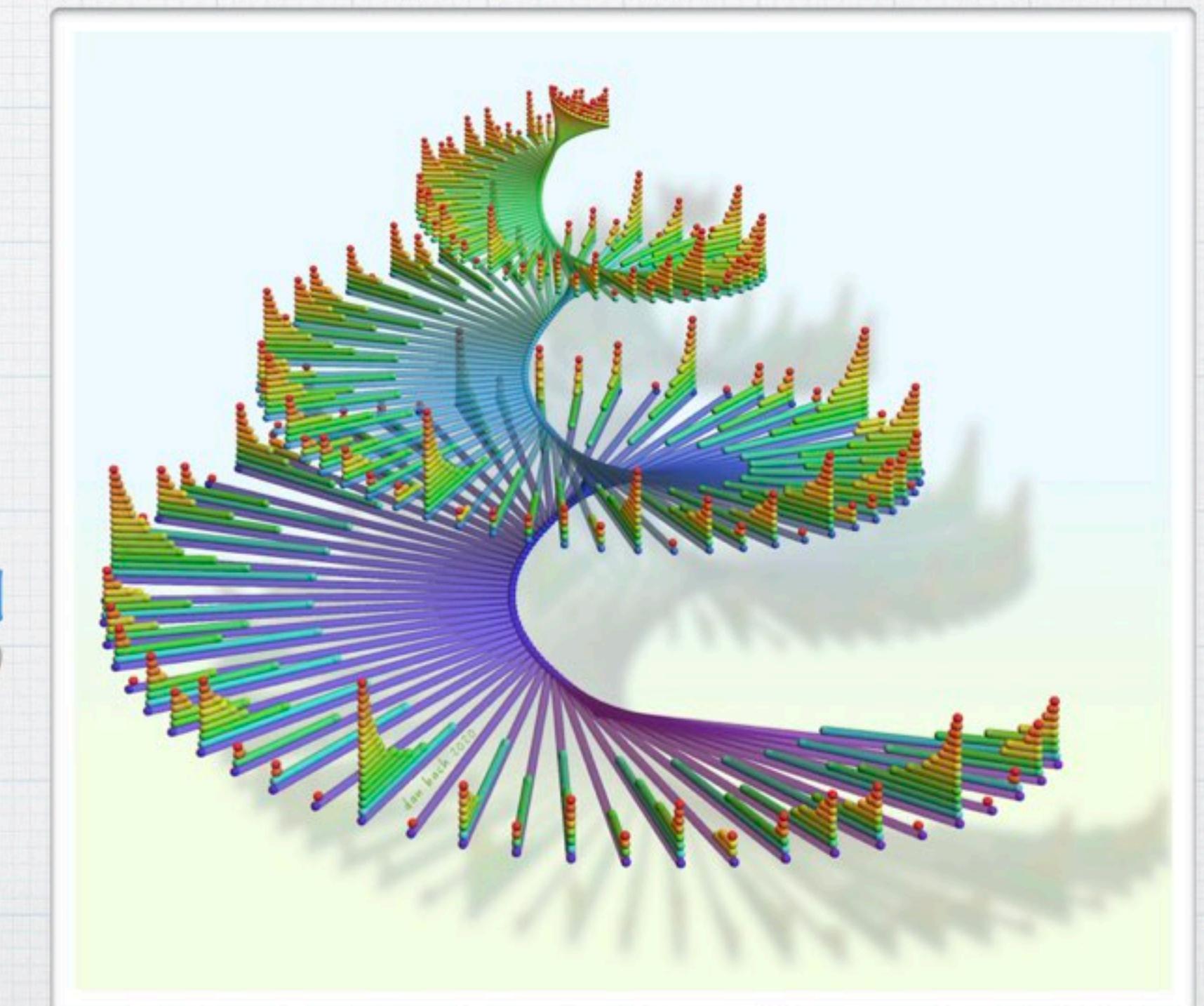
by Dan Bach - www.dansmath.com

MathFest Aug 9, 2025

Supercomposite Numbers, Exponent Worms, and Lattice Rules

by Dan Bach - www.dansmath.com

Divisor Stack Spiral
dan bach 2020



Supercomposite Numbers, Exponent Worms, and Lattice Rules

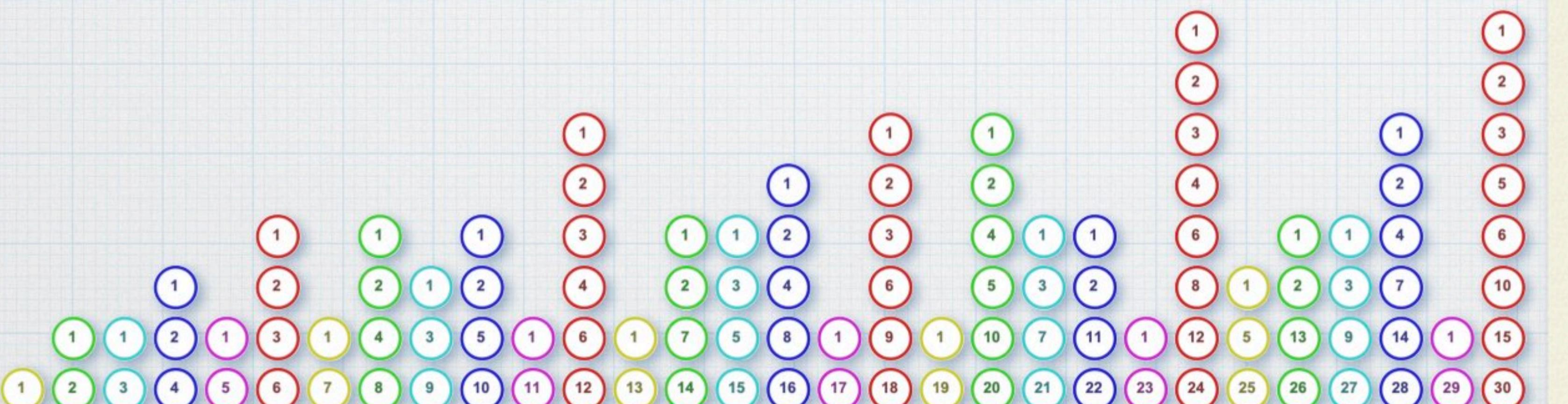
by Dan Bach - www.dansmath.com

- * A supercomposite number n is one with more divisors than any smaller number
- * The number of divisors of n can be calculated from the exponents of its prime factorization
- * Better exponent structures give more efficient n ;
'better' is judged by inequalities

Popularly called
highly composite
numbers (HCN)

Divisors - Stacks & Stats

Some numbers
have lots of divisors
but *primes* don't.

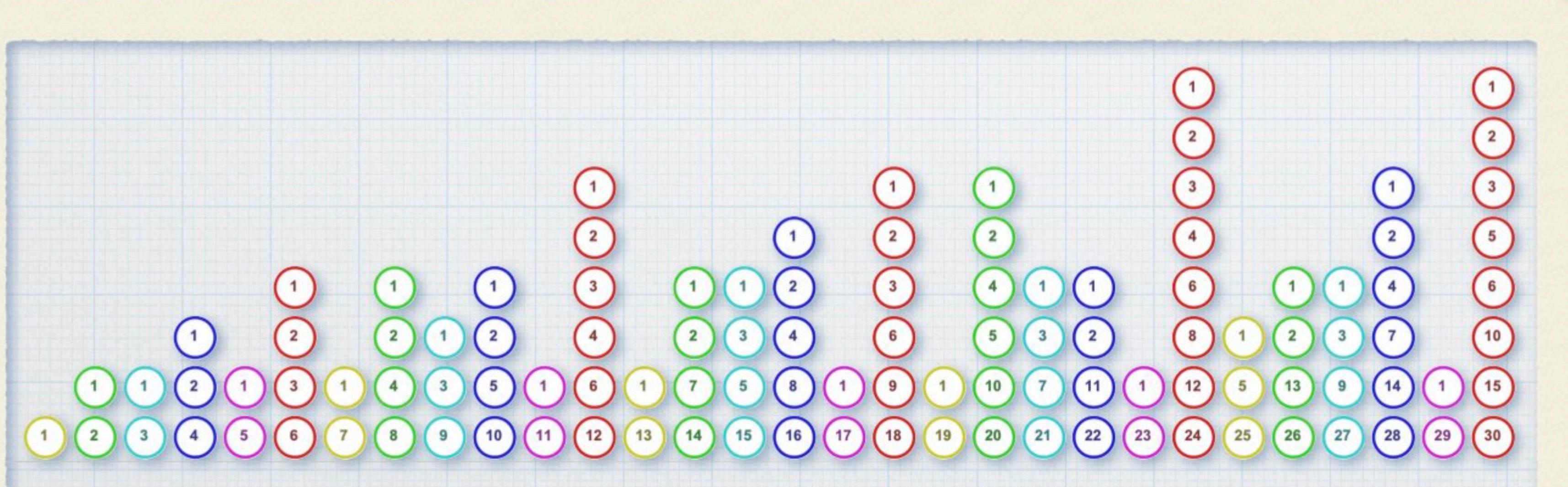


Divisors - Stacks & Stats

Some numbers have lots of divisors but *primes* don't.

Which numbers set a record for *most divisors so far*?

$d(n)$ = number of positive divisors of n .



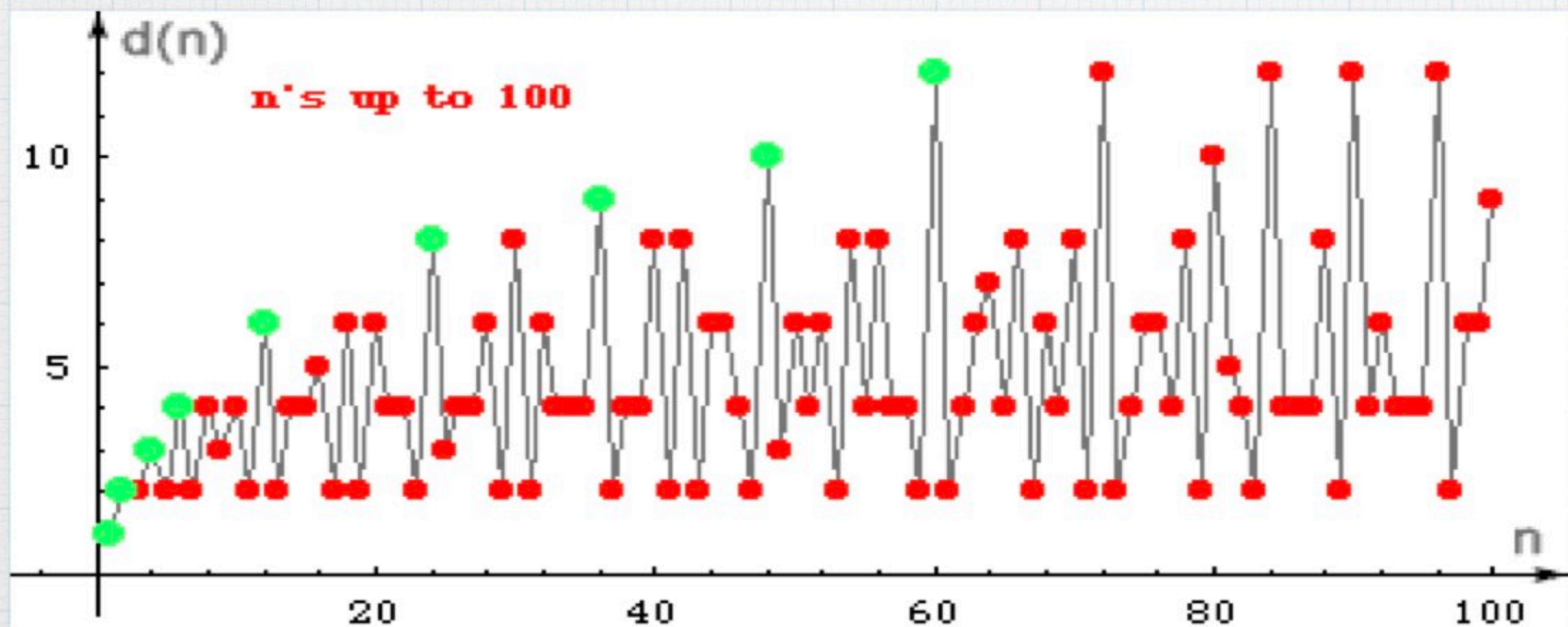
n	divisors	$d(n)$
1	1	1
2	1, 2	2
3	1, 3	2
4	1, 2, 4	3
5	1, 5	2
6	1, 2, 3, 6	4
7	1, 7	2
8	1, 2, 4, 8	4
9	1, 3, 9	3
10	1, 2, 5, 10	4
11	1, 11	2
12	1, 2, 3, 4, 6, 12	6
13	1, 13	2
14	1, 2, 7, 14	4
15	1, 3, 5, 15	4
16	1, 2, 4, 8, 16	5
17	1, 17	2
18	1, 2, 3, 6, 9, 18	6

Plotting the Divisors of n

Here's a look at the divisor function!

(We dig back to 1995 for my helpful graph)

This and most other graphics made in Mathematica



Primes p are along the bottom; $d(p) = 2$.
Can you 'spot' the supercomposite n's?

Examining the Exponents...

What's so 'super' about supercomposite numbers?

Let's take a look at their prime factorizations (pf).

List of supercomposites n under 100:

n	$d(n)$	pf of n
2	2	2^1
4	3	2^2
6	4	$2^1 \cdot 3^1$
12	6	$2^2 \cdot 3^1$
24	8	$2^3 \cdot 3^1$
36	9	$2^2 \cdot 3^2$
48	10	$2^4 \cdot 3^1$
72	12	$2^3 \cdot 3^2$
60	12	$2^2 \cdot 3^1 \cdot 5^1$

Examining the Exponents...

What's so 'super' about supercomposite numbers?

Let's take a look at their prime factorizations (pf).

Some necessary conditions to be super:

Saturated: No prime is skipped

not $20 = 2^2 \cdot 3^0 \cdot 5^1$ but $12 = 2^2 \cdot 3^1$

Monotone: Non-increasing exponents

not $18 = 2^1 \cdot 3^2$ but $12 = 2^2 \cdot 3^1$

Example: $35000 = 2^3 \cdot 5^4 \cdot 7^1$; saturate to

$2^3 \cdot 3^4 \cdot 5^1 = 3240$, then reorder to

$2^4 \cdot 3^3 \cdot 5^1 = 2160$. Is it super yet?

List of supercomposites n under 100:

n	$d(n)$	pf of n
2	2	2^1
4	3	2^2
6	4	$2^1 \cdot 3^1$
12	6	$2^2 \cdot 3^1$
24	8	$2^3 \cdot 3^1$
36	9	$2^2 \cdot 3^2$
48	10	$2^4 \cdot 3^1$
72	12	$2^3 \cdot 3^2$
60	12	$2^2 \cdot 3^1 \cdot 5^1$

Examining the Exponents...

What's so 'super' about supercomposite numbers?

Let's take a look at their prime factorizations (pf).

Some necessary conditions to be super:

Saturated: No prime is skipped

not $20 = 2^2 \cdot 3^0 \cdot 5^1$ but $12 = 2^2 \cdot 3^1$

Monotone: Non-increasing exponents

not $18 = 2^1 \cdot 3^2$ but $12 = 2^2 \cdot 3^1$

Example: $35000 = 2^3 \cdot 5^4 \cdot 7^1$; saturate to

$2^3 \cdot 3^4 \cdot 5^1 = 3240$, then reorder to

$2^4 \cdot 3^3 \cdot 5^1 = 2160$. Is it super yet?

List of supers under a billion, with exponent lists.

n	d(n)	a b c d e				
		2	3	5	7	11
2	2	1				
4	3	2				
6	4	1	1			
12	6	2	1			
24	8	3	1			
36	9	2	2			
48	10	4	1			
60	12	2	1	1		
120	16	3	1	1		
180	18	2	2	1		
240	20	4	1	1		
360	24	3	2	1		
720	30	4	2	1		
840	32	3	1	1	1	
1,260	36	2	2	1	1	
1,680	40	4	1	1	1	
2,520	48	3	2	1	1	
5,040	60	4	2	1	1	
7,560	64	3	3	1	1	
10,080	72	5	2	1	1	
15,120	80	4	3	1	1	
20,160	84	6	2	1	1	
25,200	90	4	2	2	1	
27,720	96	3	2	1	1	1
45,360	100	4	4	1	1	
50,400	108	5	2	2	1	
55,440	120	4	2	1	1	1
83,160	128	3	3	1	1	1
110,880	144	5	2	1	1	1
166,320	160	4	3	1	1	1
221,760	168	6	2	1	1	1
277,200	180	4	2	2	1	1

n	d(n)	a b c d e f g h						
		2	3	5	7	11	13	17
332,640	192	5	3	1	1	1		
498,960	200	4	4	1	1	1		
554,400	216	5	2	2	1	1		
665,280	224	6	3	1	1	1		
720,720	240	4	2	1	1	1	1	
1,081,080	256	3	3	1	1	1	1	
1,441,440	288	5	2	1	1	1	1	
2,162,160	320	4	3	1	1	1	1	
2,882,880	336	6	2	1	1	1	1	
3,603,600	360	4	2	2	1	1	1	
4,324,320	384	5	3	1	1	1	1	
6,486,480	400	4	4	1	1	1	1	
7,207,200	432	5	2	2	1	1	1	
8,648,640	448	6	3	1	1	1	1	
10,810,800	480	4	3	2	1	1	1	
14,414,400	504	6	2	2	1	1	1	
17,297,280	512	7	3	1	1	1	1	
21,621,600	576	5	3	2	1	1	1	
32,432,400	600	4	4	2	1	1	1	
36,756,720	640	4	3	1	1	1	1	
43,243,200	672	6	3	2	1	1	1	
61,261,200	720	4	2	2	1	1	1	
73,513,440	768	5	3	1	1	1	1	
110,270,160	800	4	4	1	1	1	1	
122,522,400	864	5	2	2	1	1	1	
147,026,880	896	6	3	1	1	1	1	
183,783,600	960	4	3	2	1	1	1	
245,044,800	1008	6	2	2	1	1	1	
294,053,760	1024	7	3	1	1	1	1	
367,567,200	1152	5	3	2	1	1	1	
551,350,800	1200	4	4	2	1	1	1	
698,377,680	1280	4	3	1	1	1	1	1
735,134,400	1344	6	3	2	1	1	1	1

Calculating $d(n)$ using Divisor Charts

1 3

- If p is prime, $d(p) = 2$

$d(3) = 2$, since $\{1, 3\}$ only.

- If p is prime, $d(p^k) = k + 1$

$d(32) = d(2^5) = 5 + 1 = 6$.

1
2
4
8
16
32

Calculating $d(n)$ using Divisor Charts

1	3
---	---

1
2
4
8
16
32

- If p is prime, $d(p) = 2$

$d(3) = 2$, since $\{1, 3\}$ only.

- If p is prime, $d(p^k) = k + 1$

$d(32) = d(2^5) = 5 + 1 = 6$.

- If $\gcd(m, n) = 1$, then

$d(m \cdot n) = d(m) \cdot d(n)$

$$d(96) = d(32 \cdot 3)$$

$$= d(32) \cdot d(3)$$

$$= 6 \cdot 2 = 12$$

1	3
2	6
4	12
8	24
16	48
32	96

Calculating $d(n)$ using Divisor Charts

$$n = 2^a \cdot 3^b$$

1	3
---	---

1
2
4
8
16
32

- If p is prime, $d(p) = 2$

$d(3) = 2$, since $\{1, 3\}$ only.

- If p is prime, $d(p^k) = k + 1$

$d(32) = d(2^5) = 5 + 1 = 6$.

- If $\gcd(m, n) = 1$, then

$d(m \cdot n) = d(m) \cdot d(n)$

$$\begin{aligned}d(96) &= d(32 \cdot 3) &= d(2^5 \cdot 3^1) \\&= d(32) \cdot d(3) &= (5+1)(1+1) \\&= 6 \cdot 2 = 12 &= 6 \cdot 2 = 12\end{aligned}$$

1	3
2	6
4	12
8	24
16	48
32	96

In general if $n = p^a q^b r^c \dots$

then $d(n) = (a+1)(b+1)(c+1) \dots$

Calculating $d(n)$ using Divisor Charts

1 3

1
2
4
8
16
32

- If p is prime, $d(p) = 2$

$d(3) = 2$, since $\{1, 3\}$ only.

- If p is prime, $d(p^k) = k + 1$

$d(32) = d(2^5) = 5 + 1 = 6$.

- If $\gcd(m, n) = 1$, then

$d(m \cdot n) = d(m) \cdot d(n)$

$$\begin{aligned} d(96) &= d(32 \cdot 3) = d(2^5 \cdot 3^1) \\ &= d(32) \cdot d(3) = (5+1)(1+1) \\ &= 6 \cdot 2 = 12 = 6 \cdot 2 = 12 \end{aligned}$$

In general if $n = p^a q^b r^c \dots$

then $d(n) = (a+1)(b+1)(c+1) \dots$

$$n = 2^a \cdot 3^b$$

$a \backslash b$	0	1	2	3	4	5	6
0	1	3	9	27	81	243	729
1	2	6	18	54	162	486	1458
2	4	12	36	108	324	972	2916
3	8	24	72	216	648	1944	5832
4	16	48	144	432	1296	3888	11664
5	32	96	288	864	2592	7776	23328
6	64	192	576	1728	5184	15552	46656
7	128	384	1152	3456	10368	31104	93312
8	256	768	2304	6912	20736	62208	186624
9	512	1536	4608	13824	41472	124416	373248

For more primes, we need more dimensions!

Calculating $d(n)$ using Divisor Charts

The number $n = 16 = 2^4$ is not s.c. because it has 'too many' 2s.

See, $m = (3/4) \cdot n = 12 = 2^2 \cdot 3^1$ has at least as many divisors:
 $d(16) = (4+1) = 5$, while
 $d(12) = (2+1)(1+1) = 6$.

In general if $n = p^a q^b r^c \dots$

then $d(n) = (a+1)(b+1)(c+1) \dots$

$$n = 2^a \cdot 3^b$$

$a \backslash b$	0	1	2	3	4	5	6
0	1	3	9	27	81	243	729
1	2	6	18	54	162	486	1458
2	4	12	36	108	324	972	2916
3	8	24 <i>$\times 3/4$</i>	72	216	648	1944	5832
4	16	48	144	432	1296	3888	11664
5	32	96	288	864	2592	7776	23328
6	64	192	576	1728	5184	15552	46656
7	128	384	1152	3456	10368	31104	93312
8	256	768	2304	6912	20736	62208	186624
9	512	1536	4608	13824	41472	124416	373248

For more primes, we need more dimensions!

Calculating $d(n)$ using Divisor Charts

The number $n = 16 = 2^4$ is not s.c. because it has 'too many' 2s.

See, $m = (3/4) \cdot n = 12 = 2^2 \cdot 3^1$ has at least as many divisors:
 $d(16) = (4+1) = 5$, while
 $d(12) = (2+1)(1+1) = 6$.

Let $n = 2^a \cdot 3^b$
and $m = 3n / 4$
 $= 2^{a-2} \cdot 3^{b+1}$

Then $d(n) = (a+1)(b+1)$
and $d(m) = (a-1)(b+2)$

If n is supercomp then $d(m) < d(n)$, meaning
 $(a-1)(b+2) < (a+1)(b+1)$
 $ab+2a-b-2 < ab+a+b+1$
 $a < 2b + 3$; $a \leq 2b + 2$
is nec. if n is super!

$$n = 2^a \cdot 3^b$$

$a \backslash b$	0	1	2	3	4	5	6
0	1	3	9	27	81	243	729
1	2	6	18	54	162	486	1458
2	4	12	36	108	324	972	2916
3	8	24	72	216	648	1944	5832
4	16	48	144	432	1296	3888	11664
5	32	96	288	864	2592	7776	23328
6	64	192	576	1728	5184	15552	46656
7	128	384	1152	3456	10368	31104	93312
8	256	768	2304	6912	20736	62208	186624
9	512	1536	4608	13824	41472	124416	373248

Calculating $d(n)$ using Divisor Charts

The number $n = 16 = 2^4$ is not s.c. because it has 'too many' 2s.

See, $m = (3/4) \cdot n = 12 = 2^2 \cdot 3^1$ has at least as many divisors:
 $d(16) = (4+1) = 5$, while
 $d(12) = (2+1)(1+1) = 6$.

Let $n = 2^a \cdot 3^b$
and $m = 3n / 4$
 $= 2^{a-2} \cdot 3^{b+1}$

Then $d(n) = (a+1)(b+1)$
and $d(m) = (a-1)(b+2)$

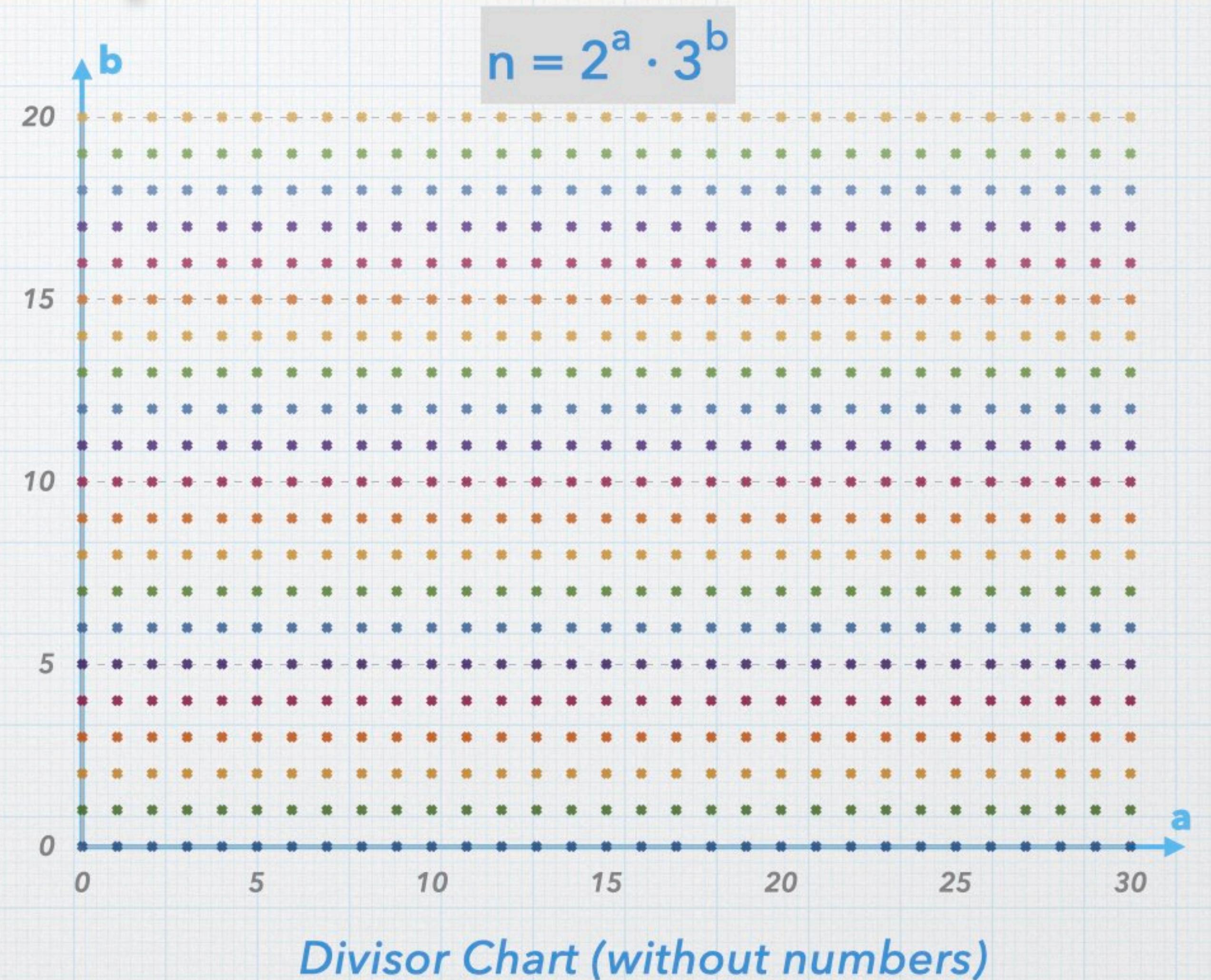
If n is supercomp then $d(m) < d(n)$, meaning
 $(a-1)(b+2) < (a+1)(b+1)$
 $ab+2a-b-2 < ab+a+b+1$
 $a < 2b + 3$; $a \leq 2b + 2$
is nec. if n is super!

$$n = 2^a \cdot 3^b$$

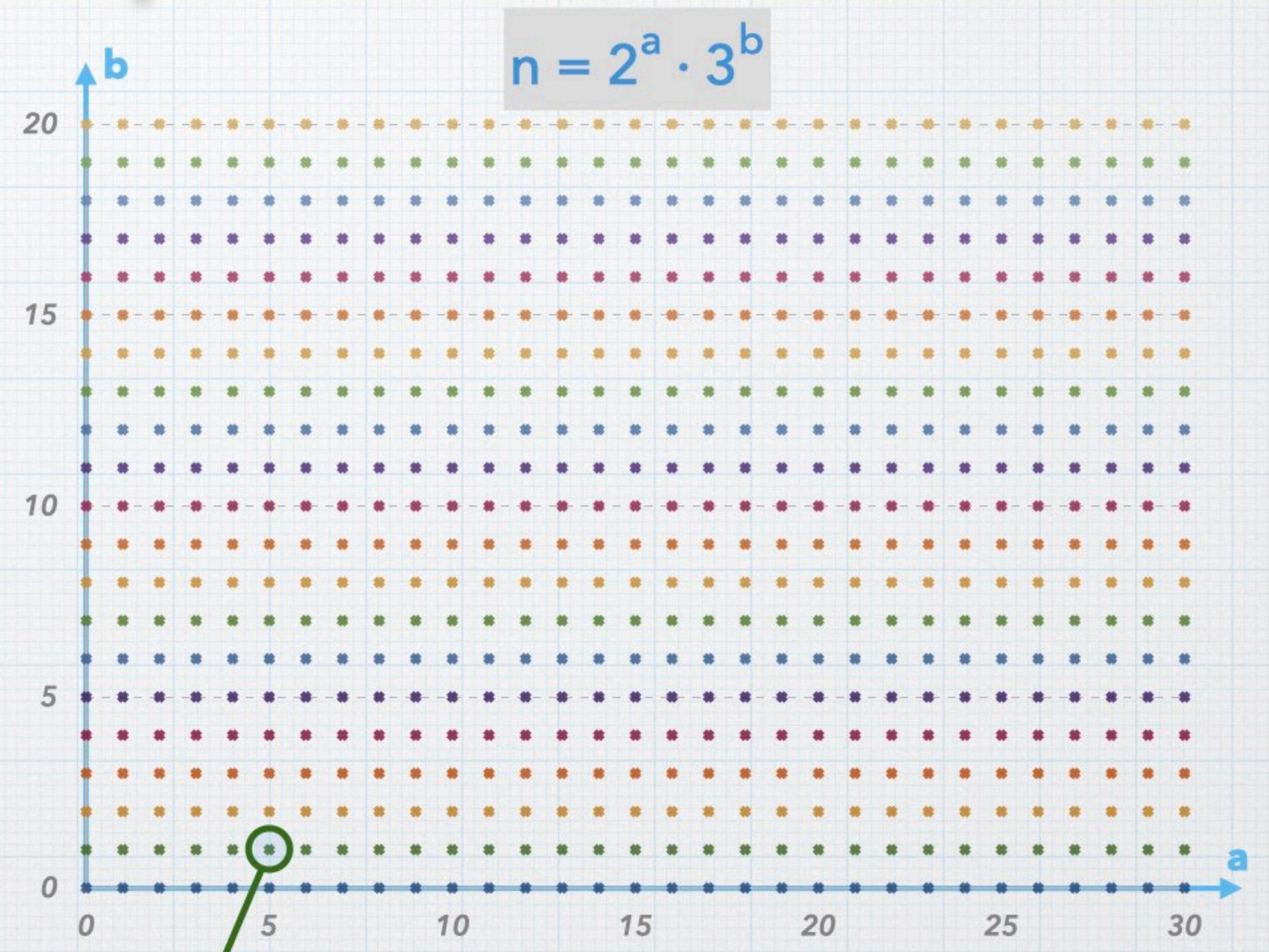
$a \backslash b$	0	1	2	3	4	5	6
0	1	3	9	27	81	243	729
1	2	6	18	54	162	486	1458
2	4	12	36	108	324	972	2916
3	8	24 <small>$\times 3/4$</small>	72	216	648	1944	5832
4	16	48	144	432	1296	3888	11664
5	32	96	288	864	2592	7776	23328
6	64	192	576	1728	5184	15552	46656
7	128	384	1152	3456	10368	31104	93312
8	256	768	2304	6912	20736	62208	186624
9	512	1536	4608	13824	41472	124416	373248

light blue cells
are eliminated

Exponent Lattice Rules and Inequalities

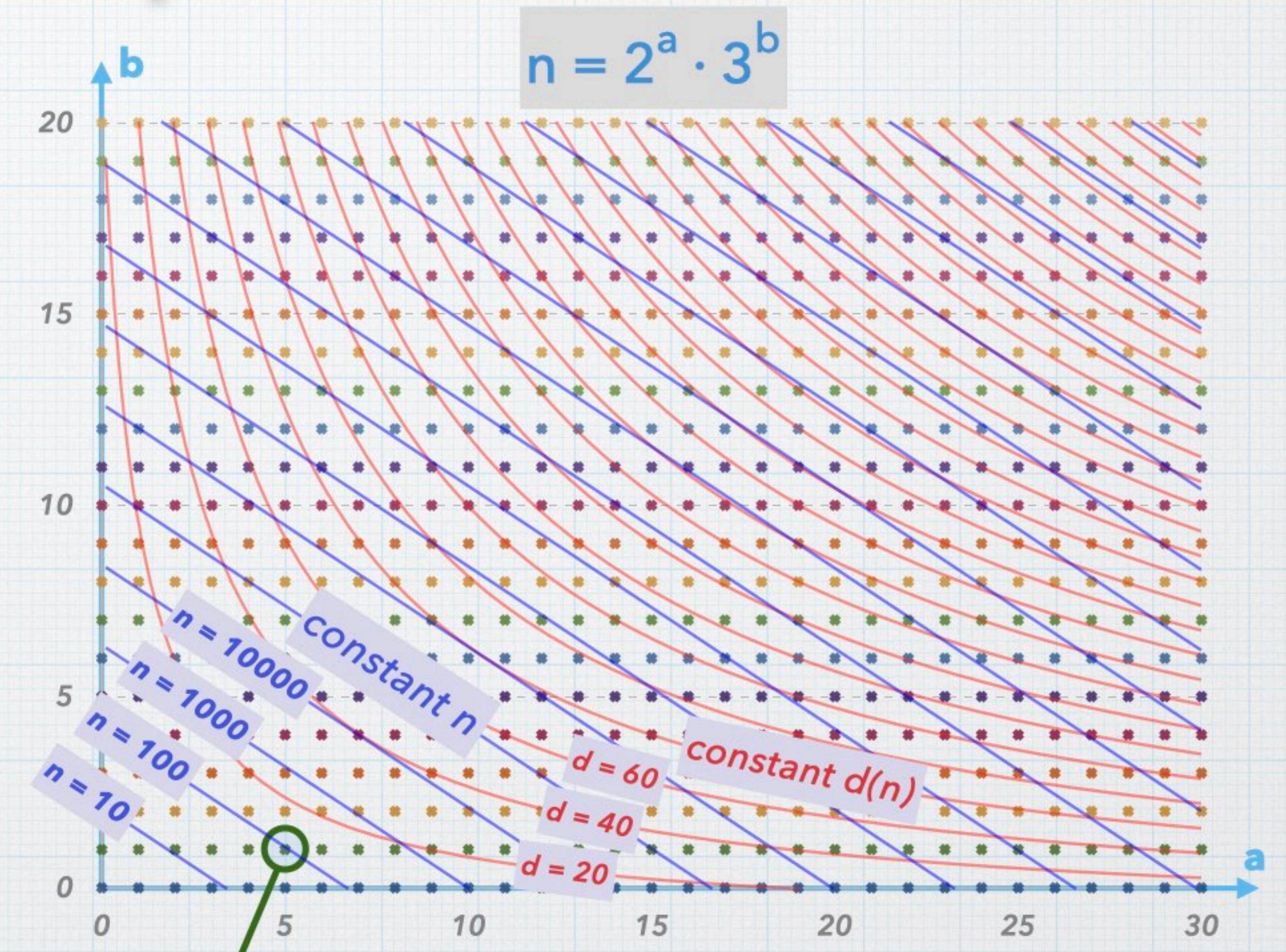


Exponent Lattice Rules and Inequalities



This is $(a, b) = (5, 1) = 2^5 \cdot 3^1 = 96$.

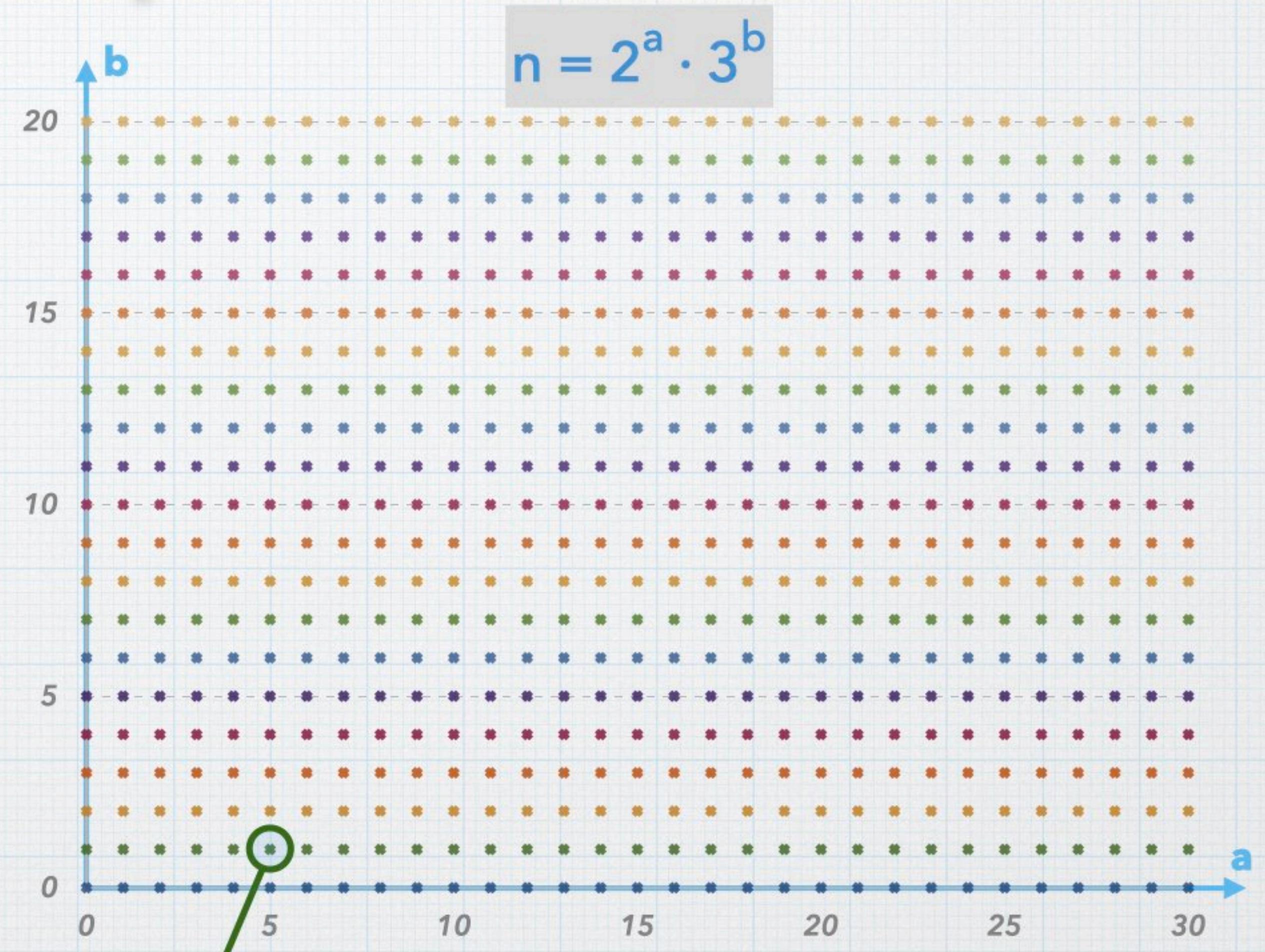
Exponent Lattice Rules and Inequalities



This is $(a, b) = (5, 1) = 2^5 3^1 = 96$.

Exponent Lattice Rules and Inequalities

We saw that for $n = 2^a 3^b$...
to be supercomposite, we need:



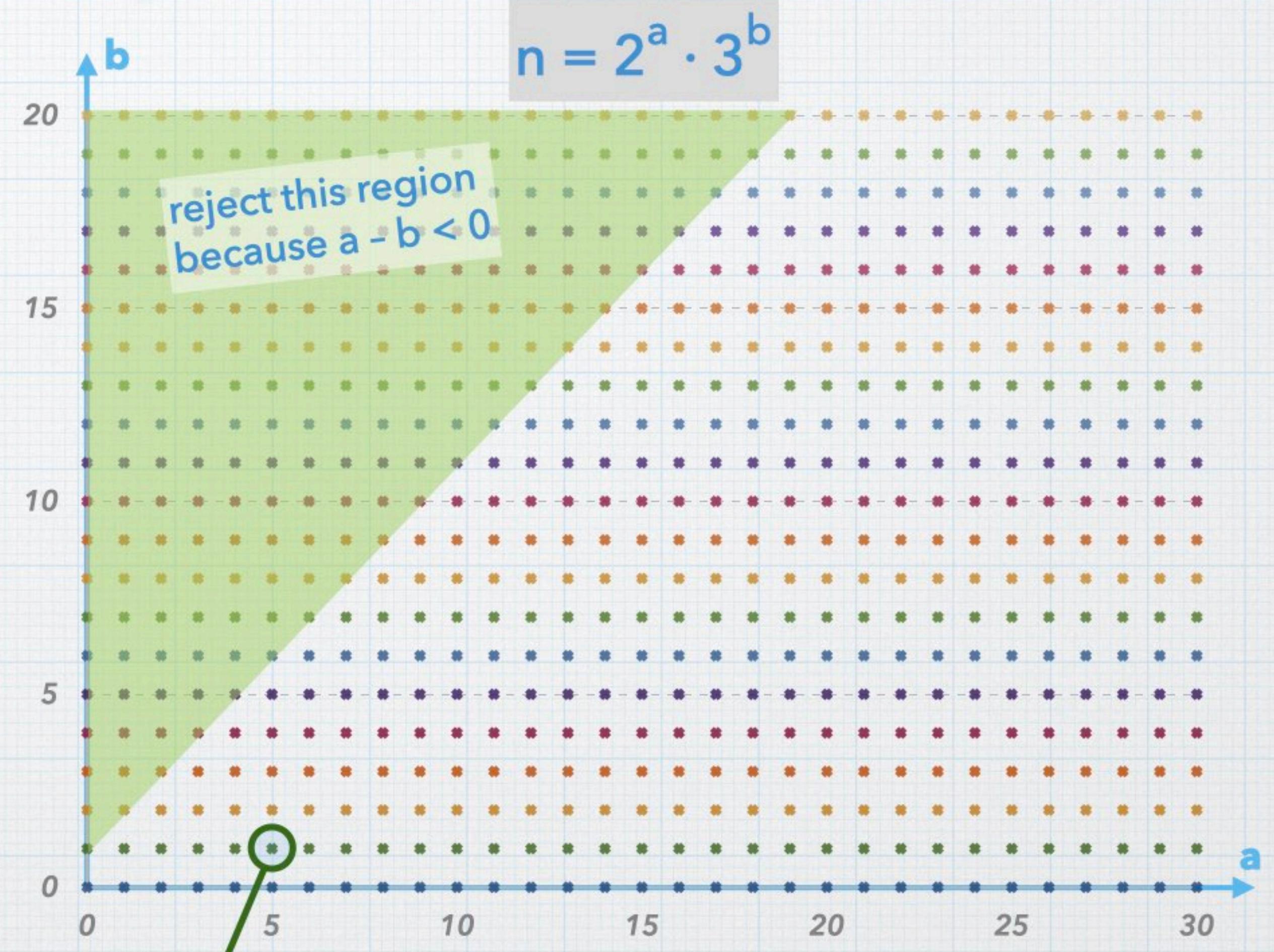
This is $(a, b) = (5, 1) = 2^5 3^1 = 96$.

Exponent Lattice Rules and Inequalities

We saw that for $n = 2^a 3^b \dots$

to be supercomposite, we need:

■ $a - b \geq 0$ (rule of 2/3, avoid incr exp)



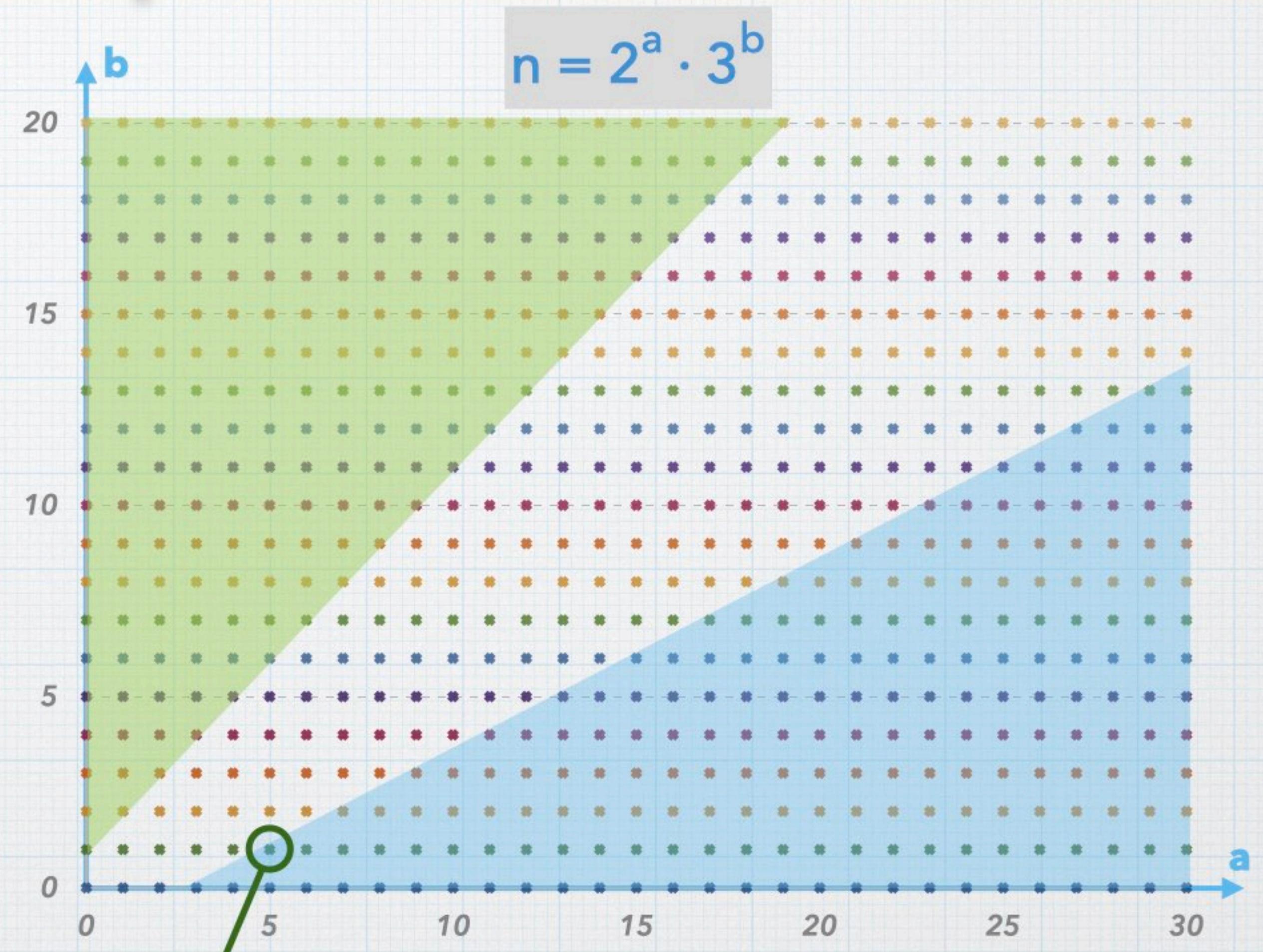
This is $(a, b) = (5, 1) = 2^5 3^1 = 96$.

Exponent Lattice Rules and Inequalities

We saw that for $n = 2^a 3^b \dots$

to be supercomposite, we need:

- $a - b \geq 0$ (rule of 2/3, avoid incr exp)
- $a - 2b \leq 2$ (rule of 3/4)



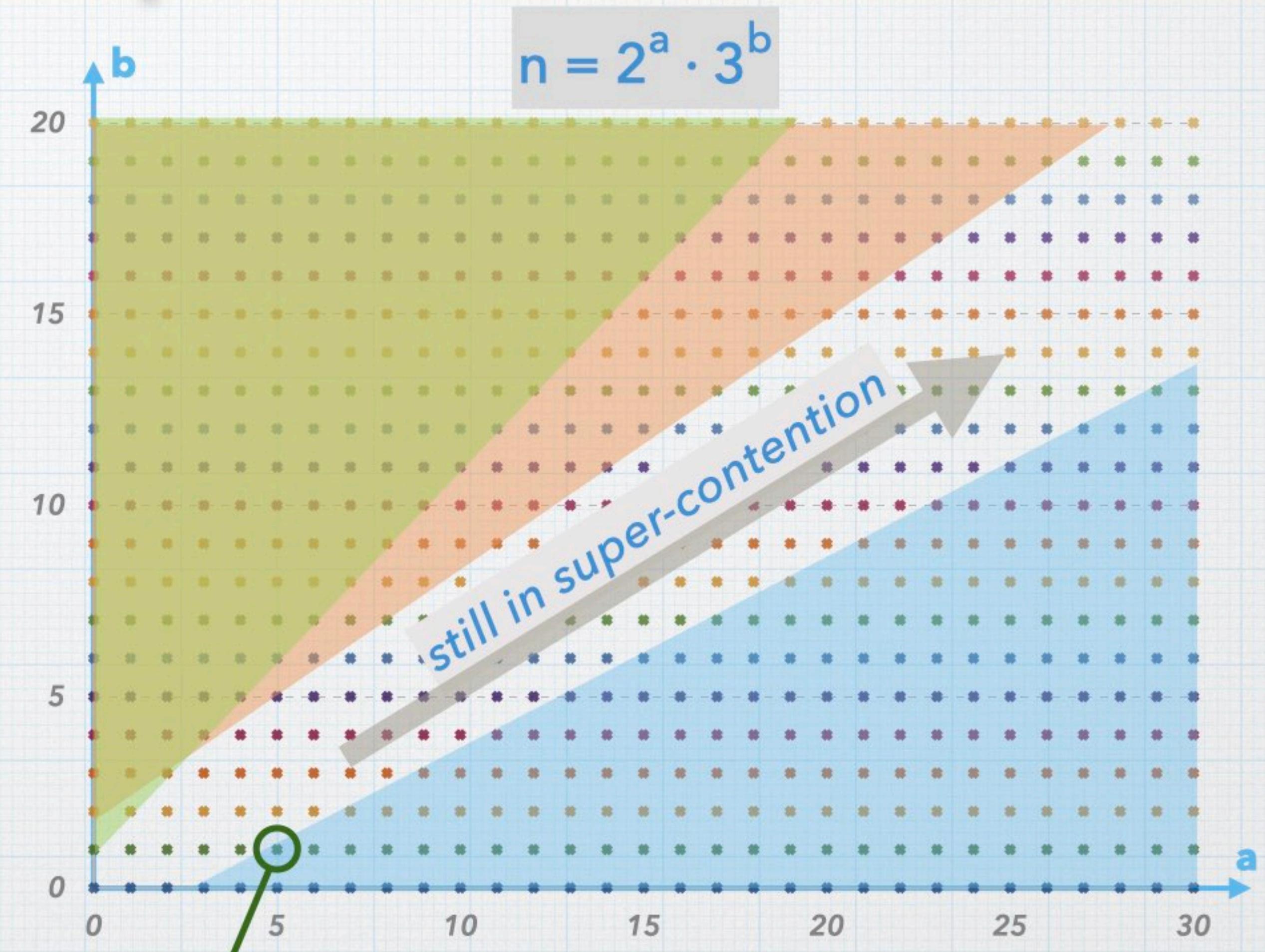
This is $(a, b) = (5, 1) = 2^5 3^1 = 96$.

Exponent Lattice Rules and Inequalities

We saw that for $n = 2^a 3^b \dots$

to be supercomposite, we need:

- $a - b \geq 0$ (rule of 2/3, avoid incr exp)
- $a - 2b \leq 2$ (rule of 3/4)
- $2a - 3b \geq -4$ (rule of 8/9)



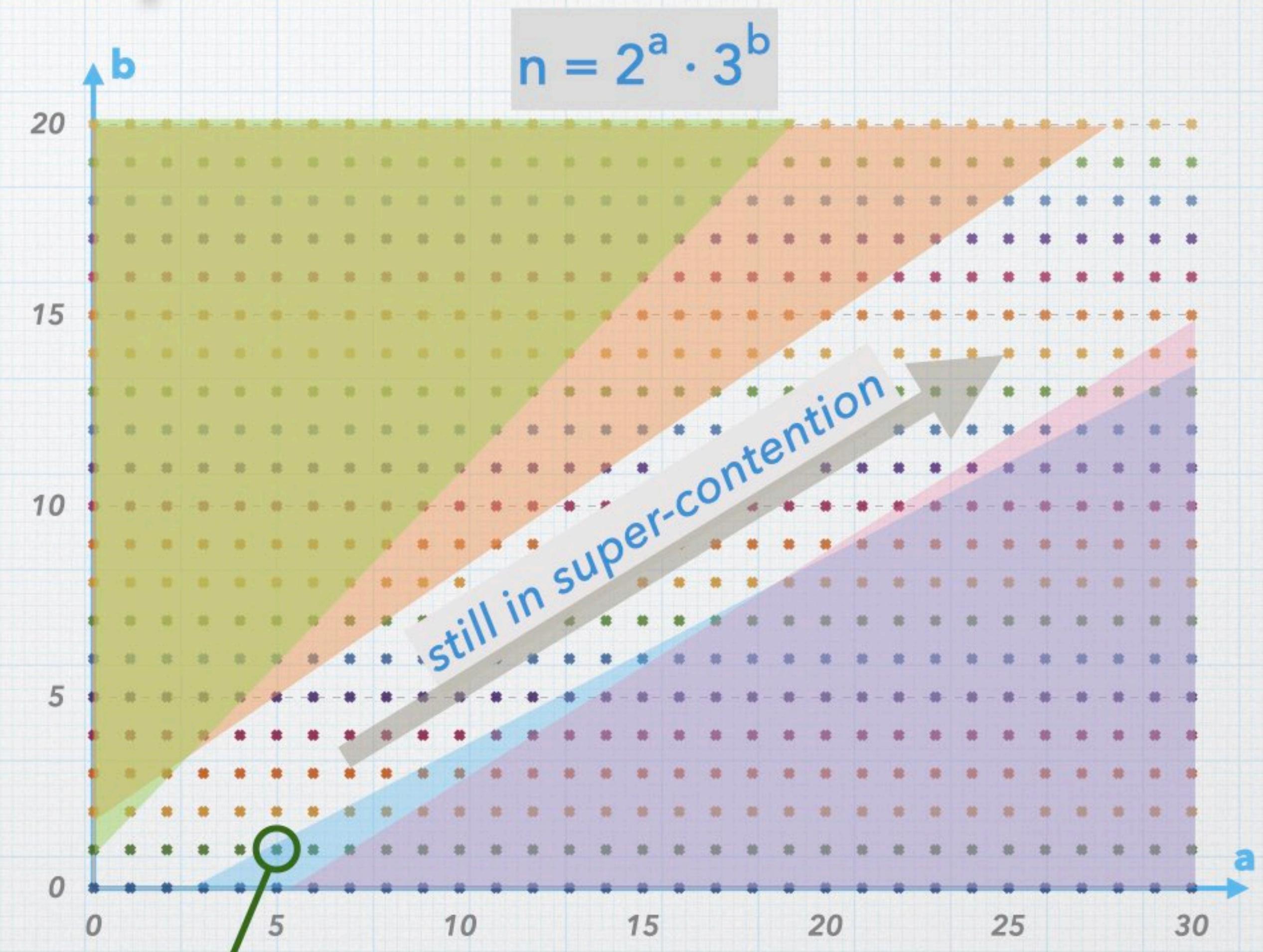
This is $(a, b) = (5, 1) = 2^5 3^1 = 96$.

Exponent Lattice Rules and Inequalities

We saw that for $n = 2^a 3^b \dots$

to be supercomposite, we need:

- $a - b \geq 0$ (rule of 2/3, avoid incr exp)
- $a - 2b \leq 2$ (rule of 3/4)
- $2a - 3b \geq -4$ (rule of 8/9)
- $3a - 5b \leq 16$ (rule of 27/32)



This is $(a, b) = (5, 1) = 2^5 3^1 = 96$.

Exponent Lattice Rules and Inequalities

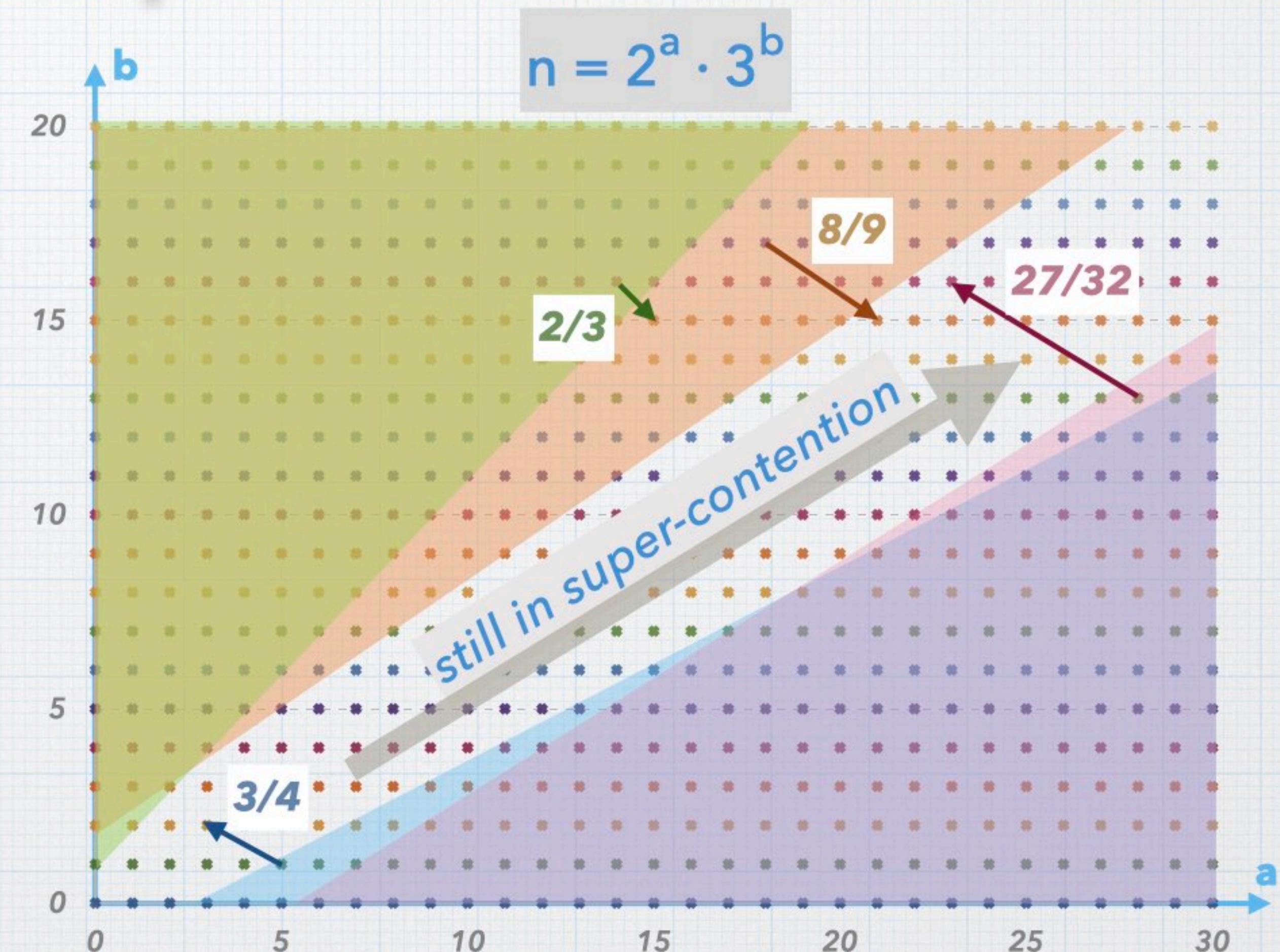
We saw that for $n = 2^a 3^b \dots$

to be supercomposite, we need:

- $a - b \geq 0$ (rule of 2/3, avoid incr exp)
- $a - 2b \leq 2$ (rule of 3/4)
- $2a - 3b \geq -4$ (rule of 8/9)
- $3a - 5b \leq 16$ (rule of 27/32)

Other rules can be applied
to eliminate more $n = (a, b)$
from contention.

(243/256, 2048/2187, etc.)

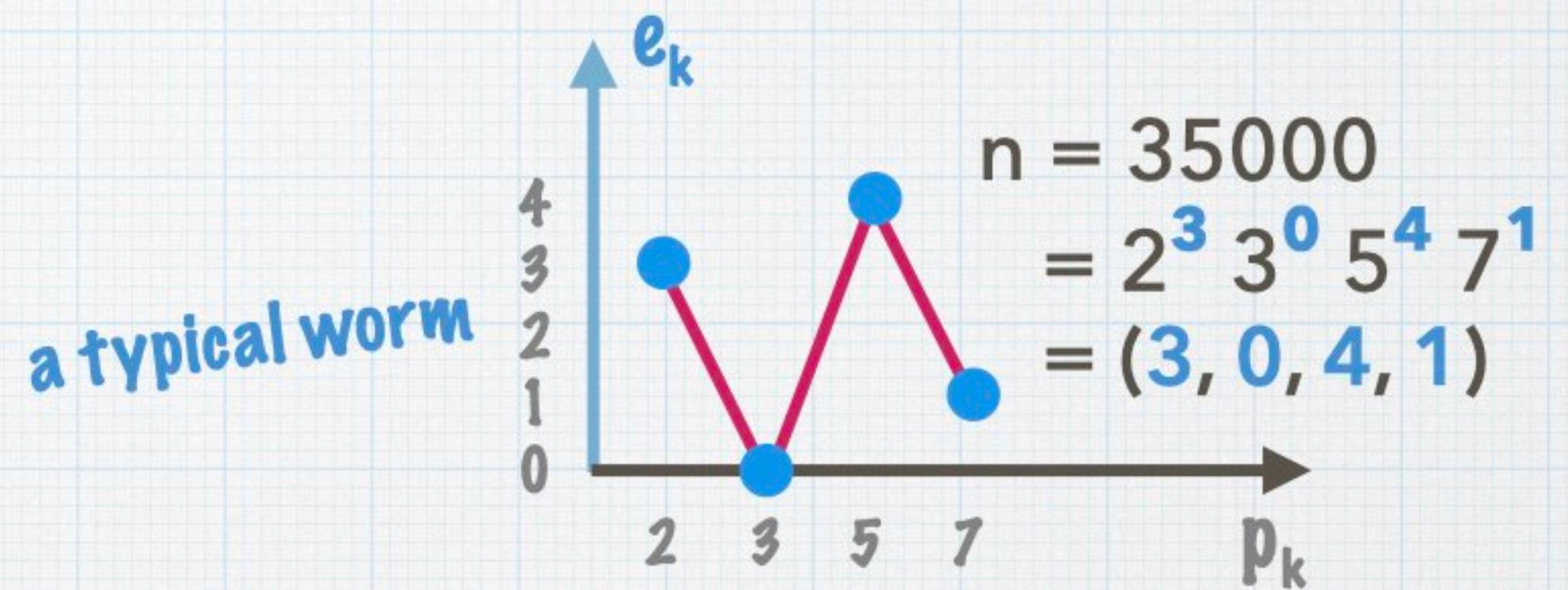


The slopes approach $\log 2 / \log 3$ as a limit.

Exponent Worms in Action

Each p (x-axis) is raised to its power (y-axis)

$$n = 2^a 3^b 5^c \dots = p_1^{e_1} p_2^{e_2} \dots$$

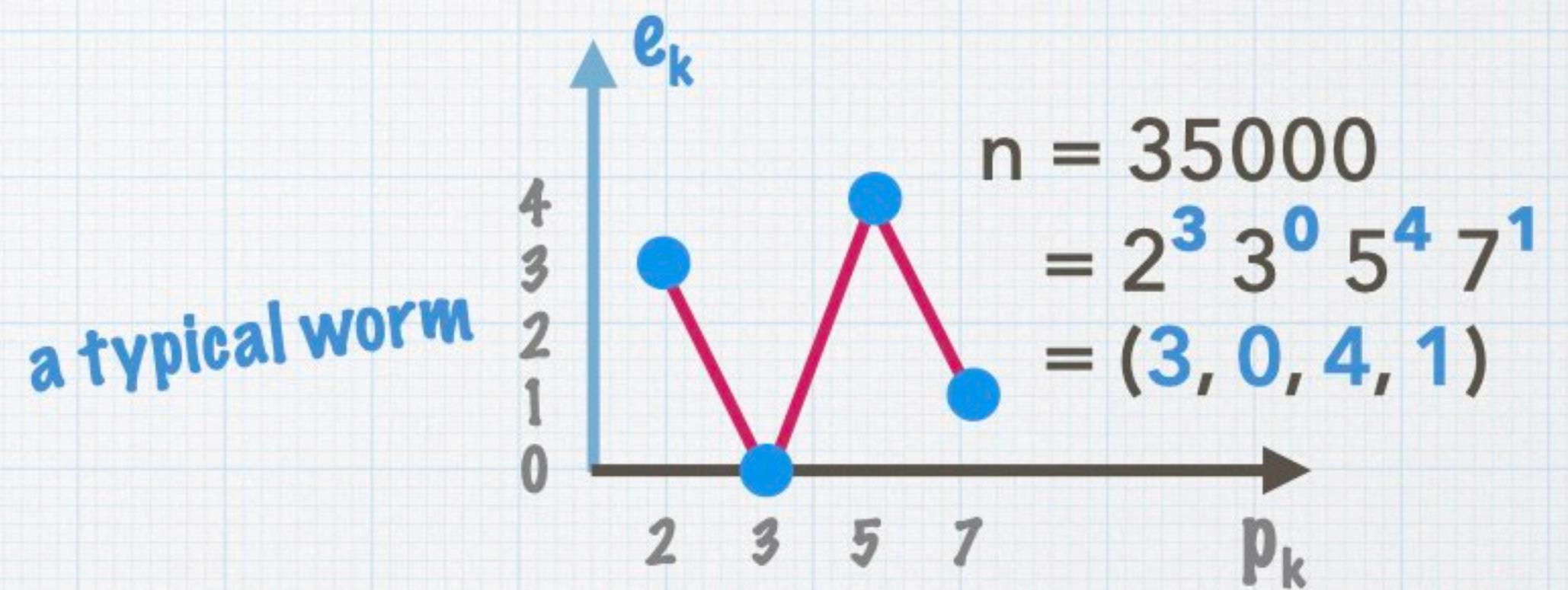


Exponent Worms in Action

Each p (x-axis) is raised to its power (y-axis)

$$n = 2^a 3^b 5^c \dots = p_1^{e_1} p_2^{e_2} \dots$$

Let's look at more exponent worms...

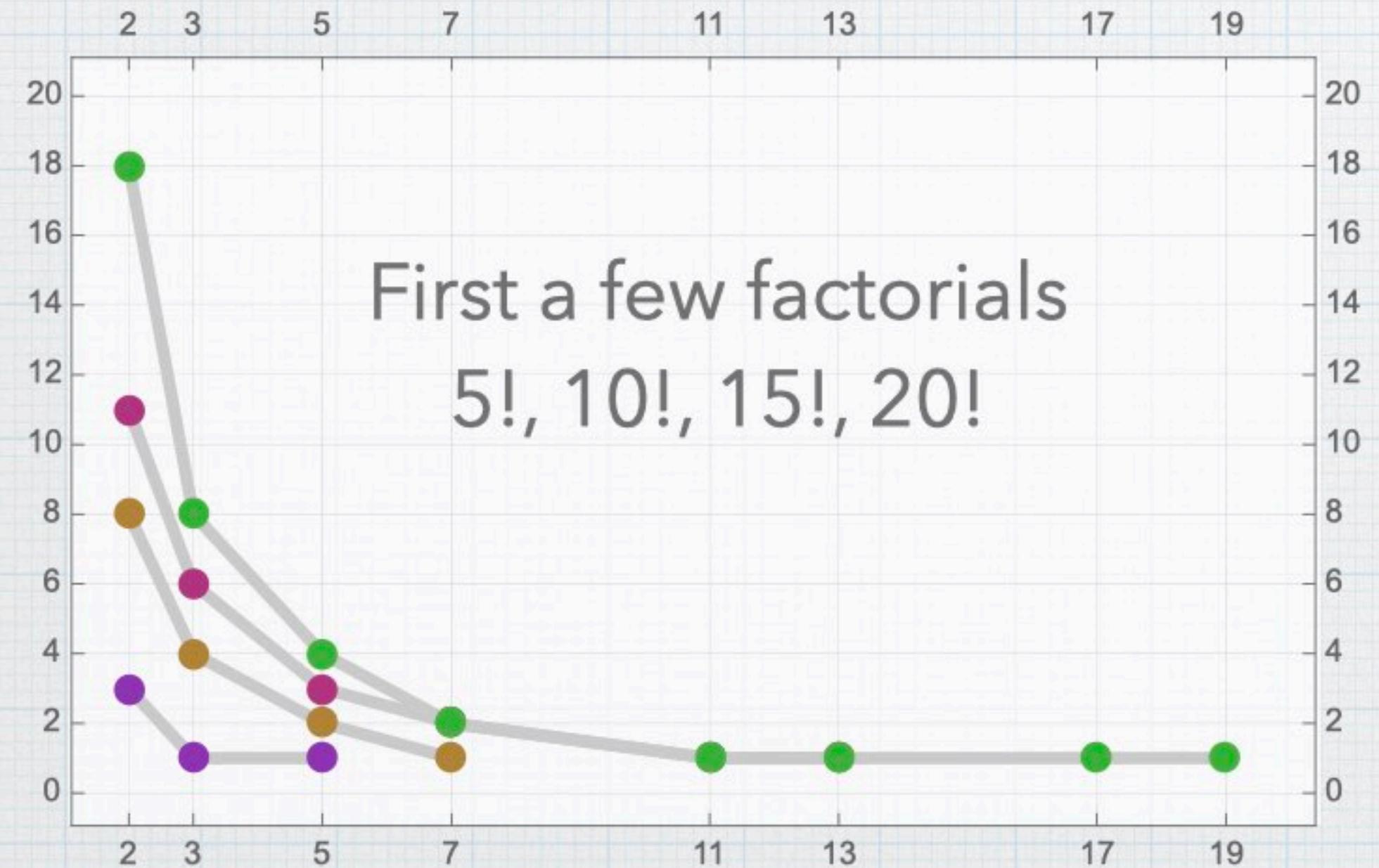
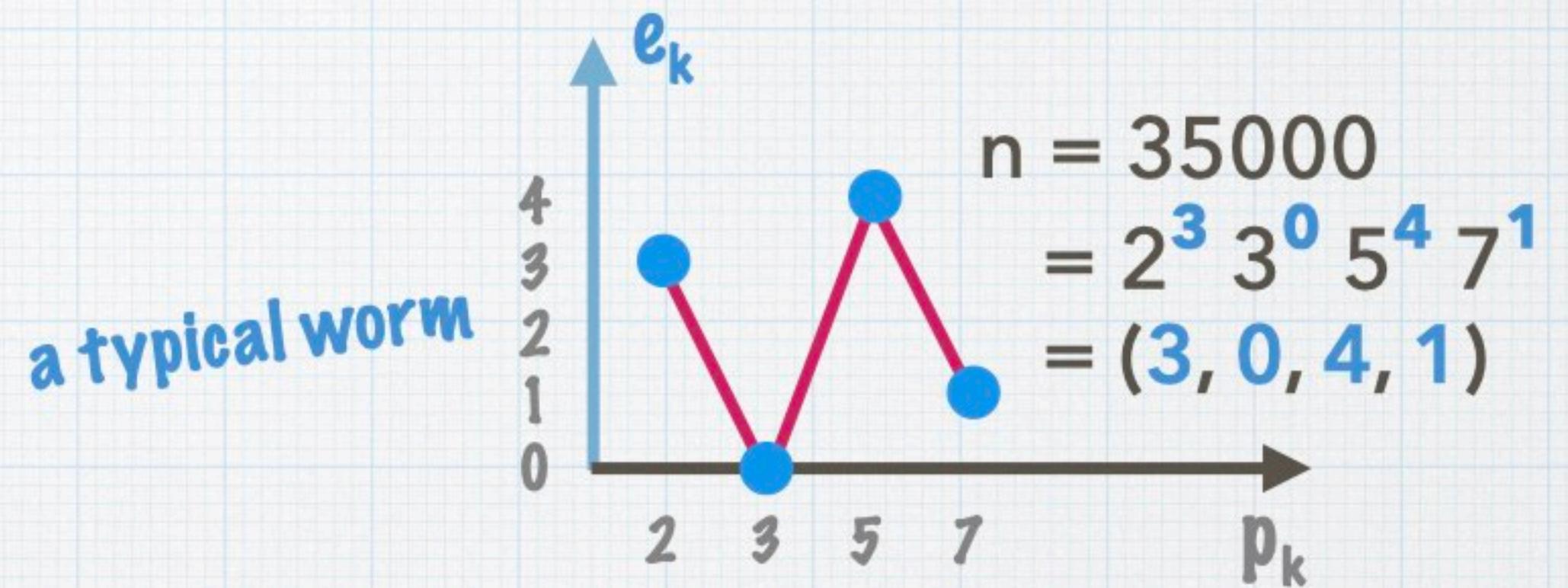


Exponent Worms in Action

Each p (x-axis) is raised to its power (y-axis)

$$n = 2^a 3^b 5^c \dots = p_1^{e_1} p_2^{e_2} \dots$$

Let's look at more exponent worms...

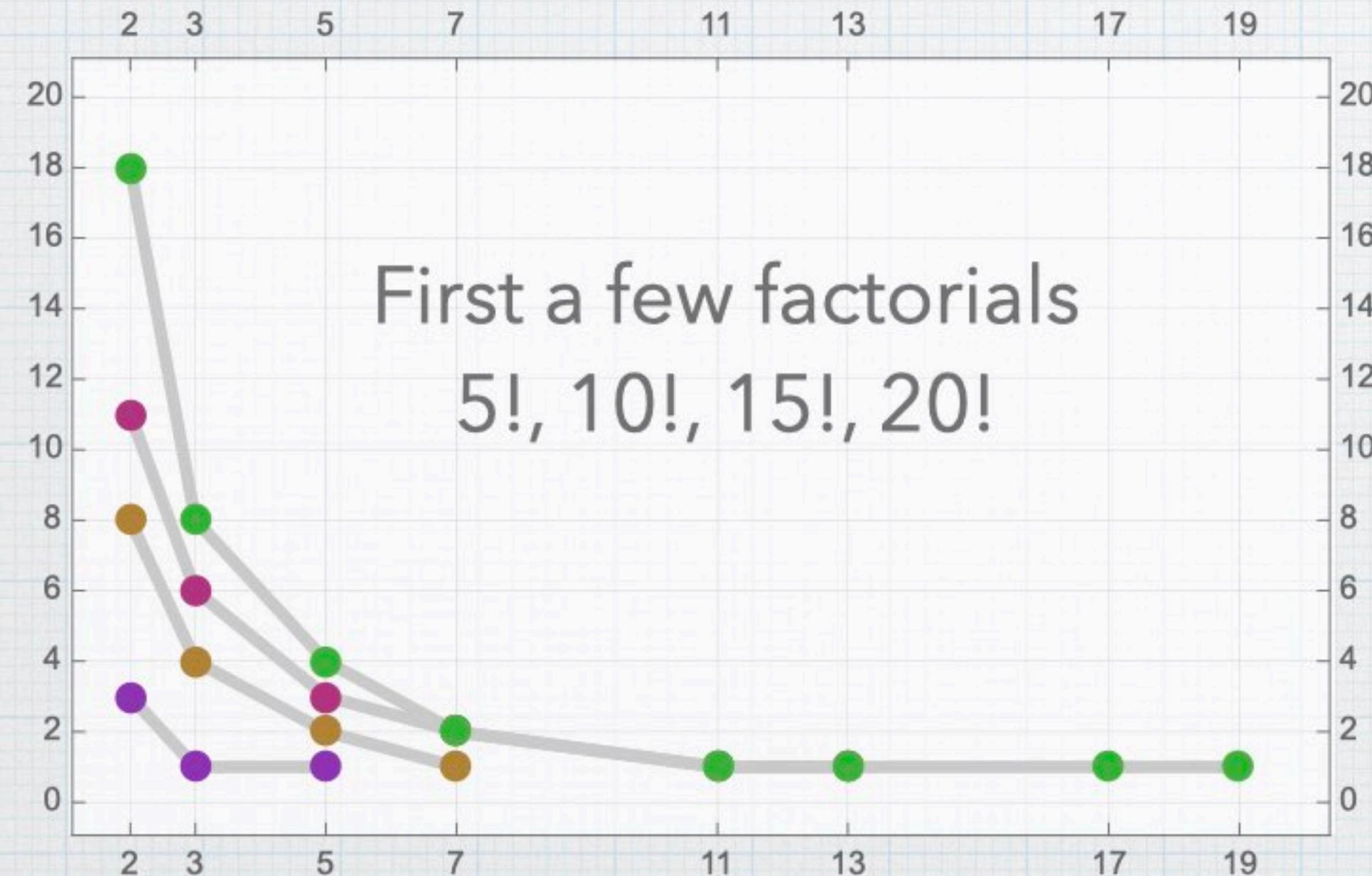
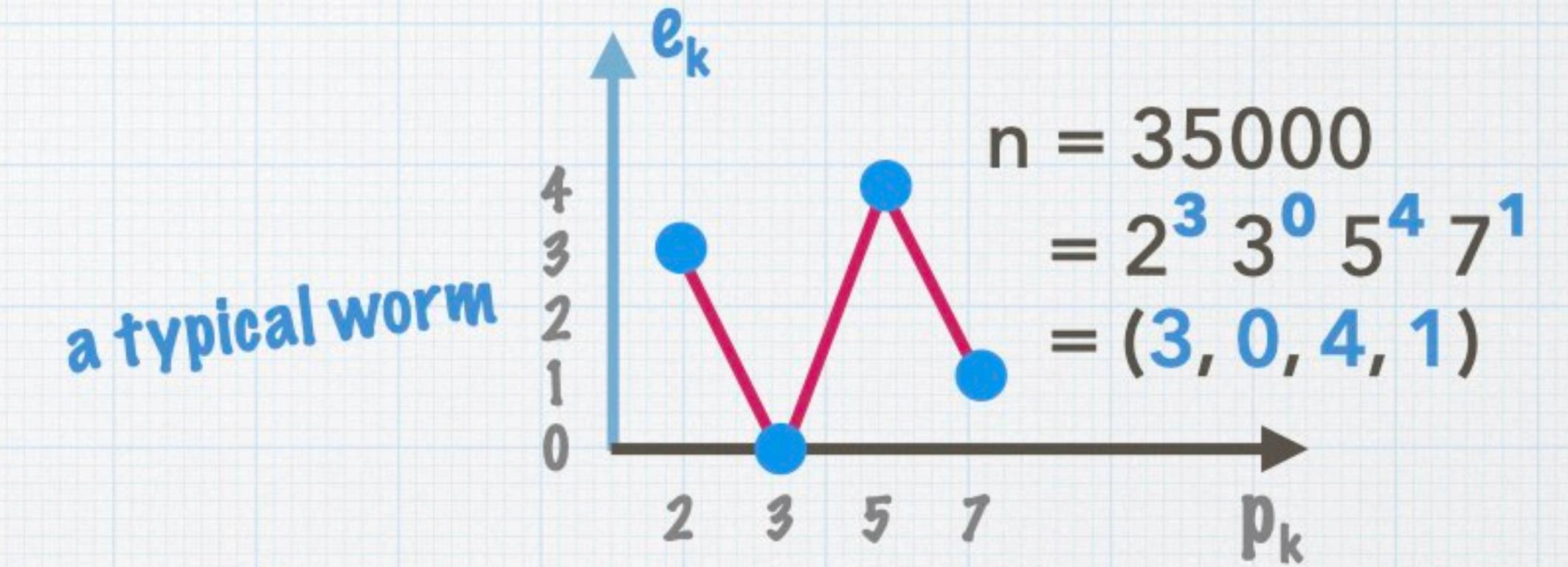
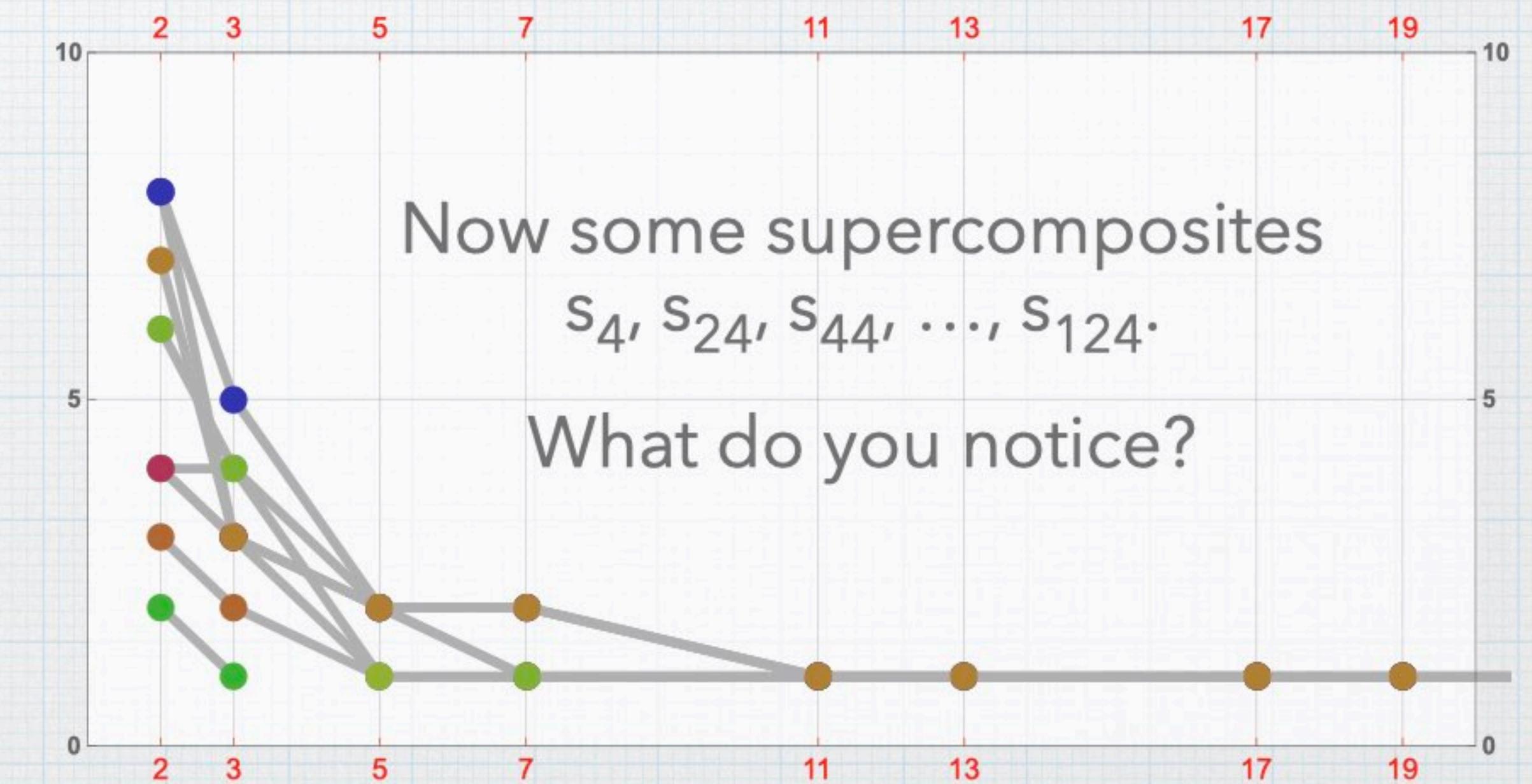


Exponent Worms in Action

Each p (x-axis) is raised to its power (y-axis)

$$n = 2^a 3^b 5^c \dots = p_1^{e_1} p_2^{e_2} \dots$$

Let's look at more exponent worms...

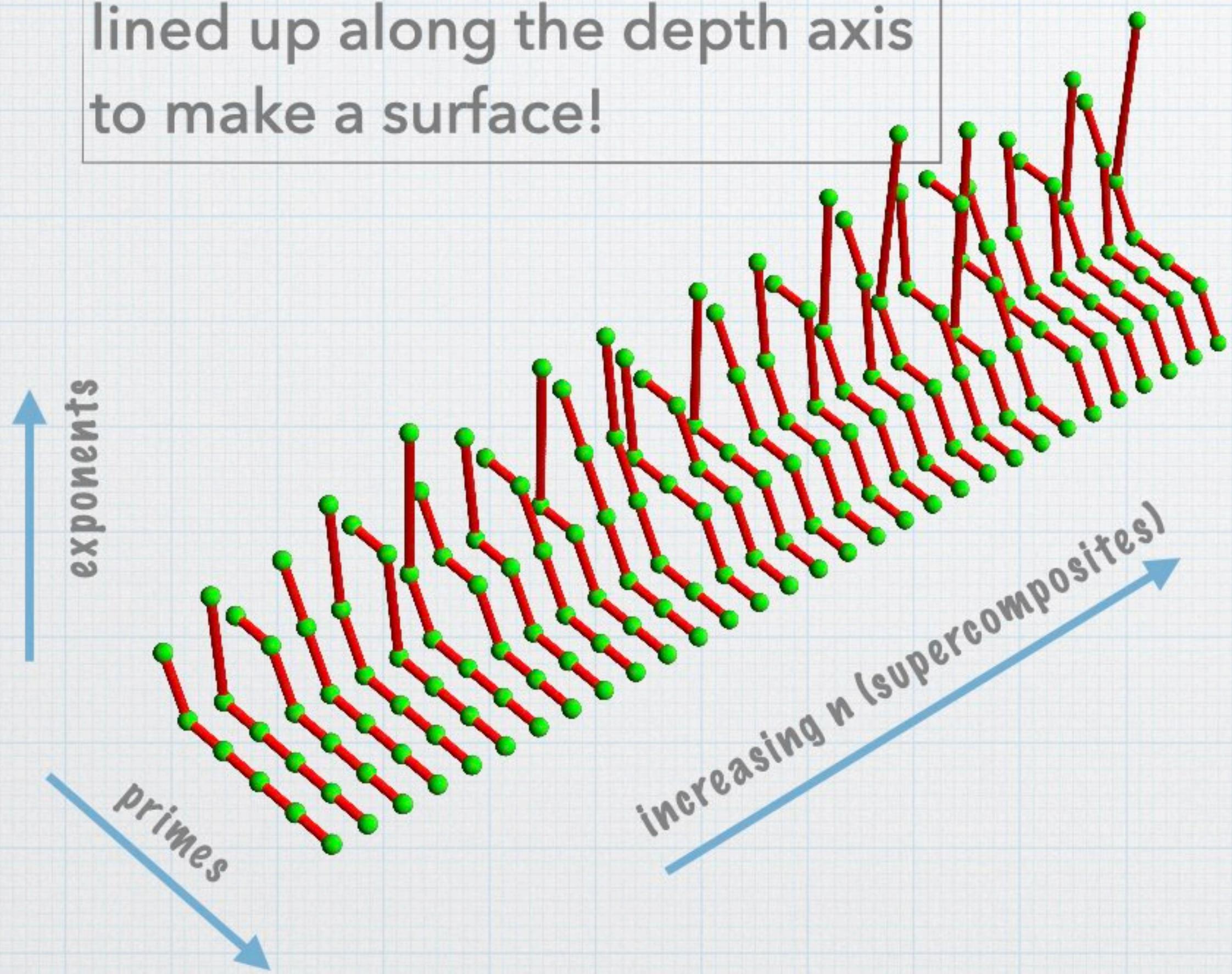


The Worms Crawl into 3D

The exponent worms can be lined up along the depth axis to make a surface!

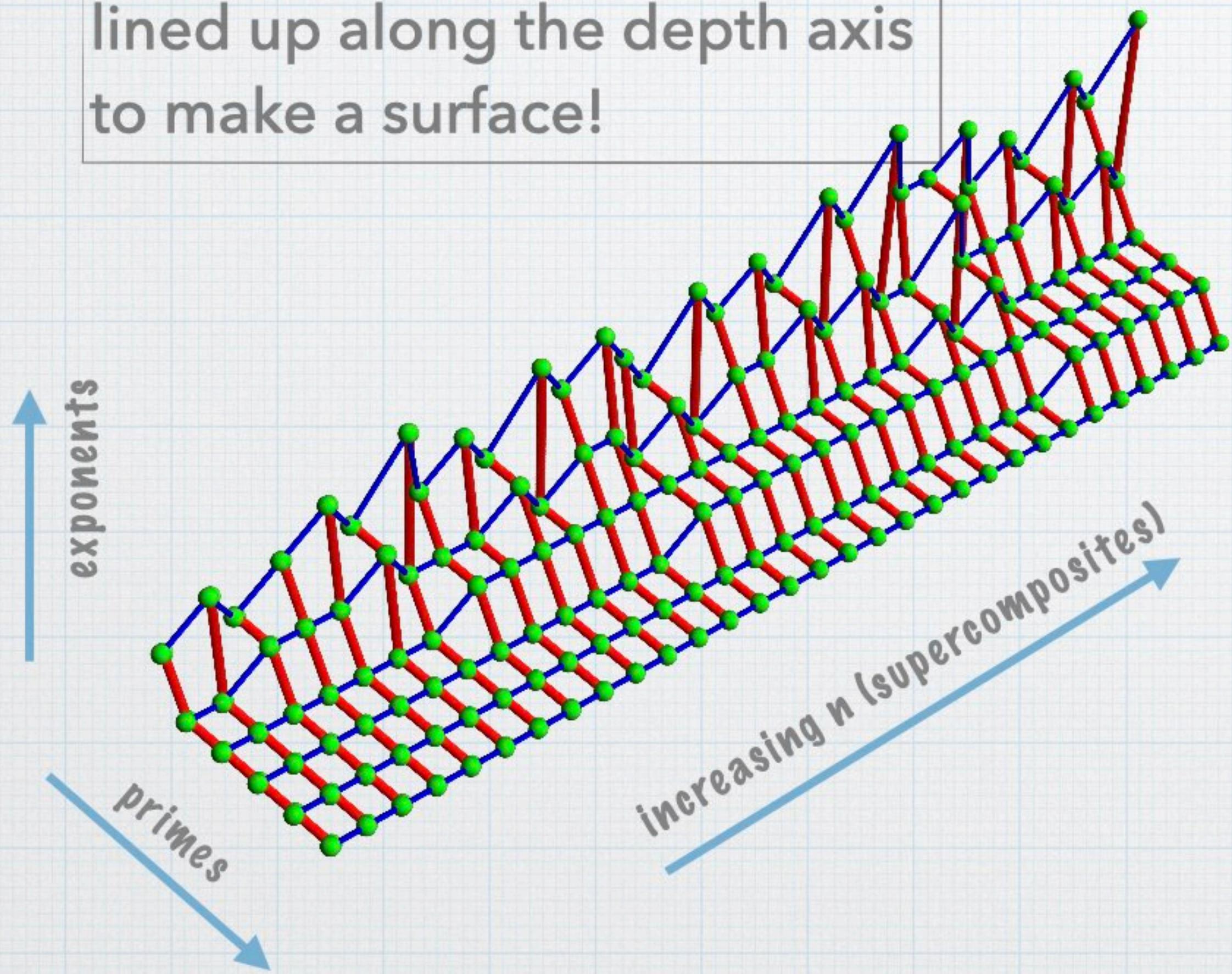
The Worms Crawl into 3D

The exponent worms can be lined up along the depth axis to make a surface!



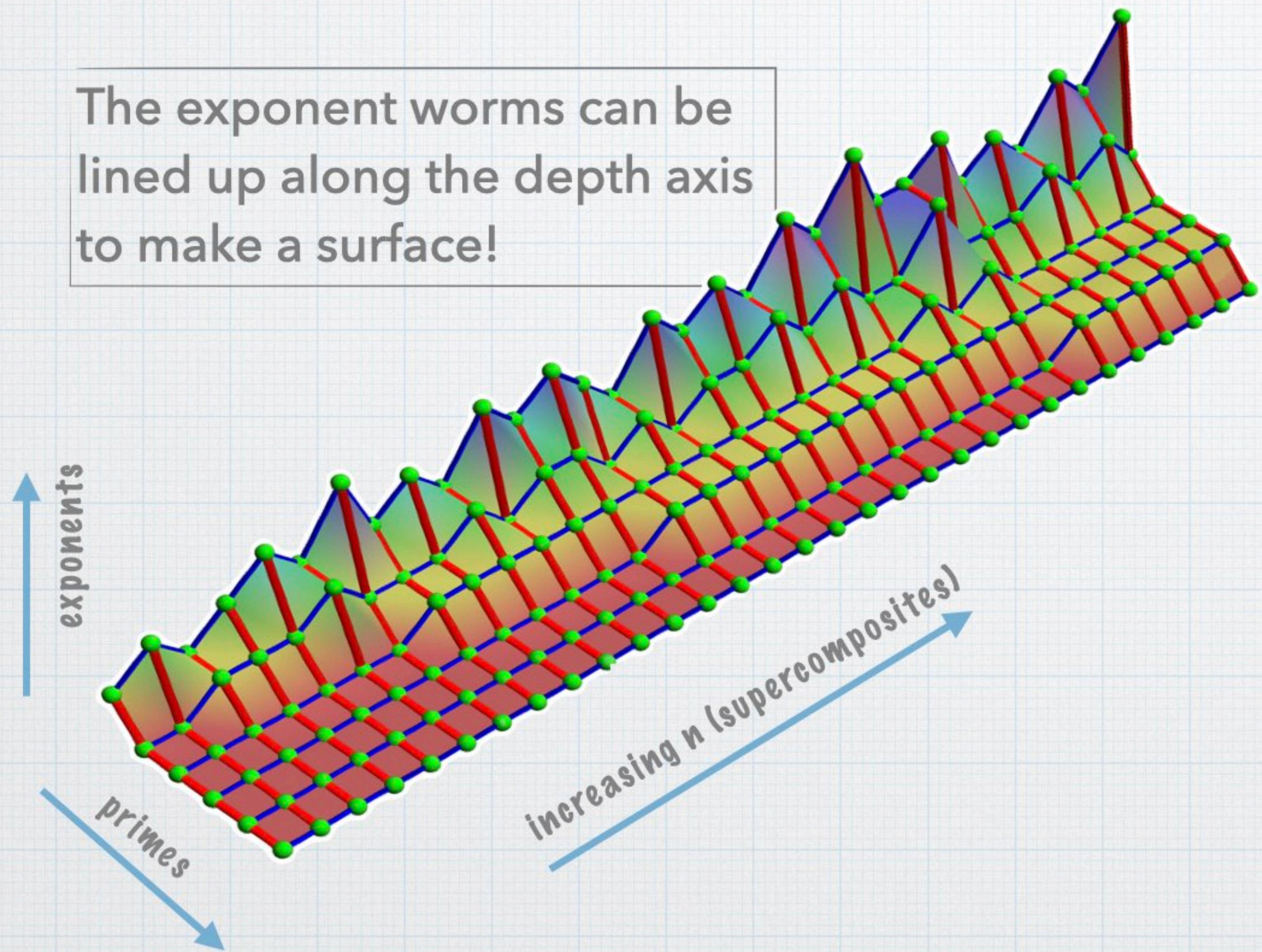
The Worms Crawl into 3D

The exponent worms can be lined up along the depth axis to make a surface!



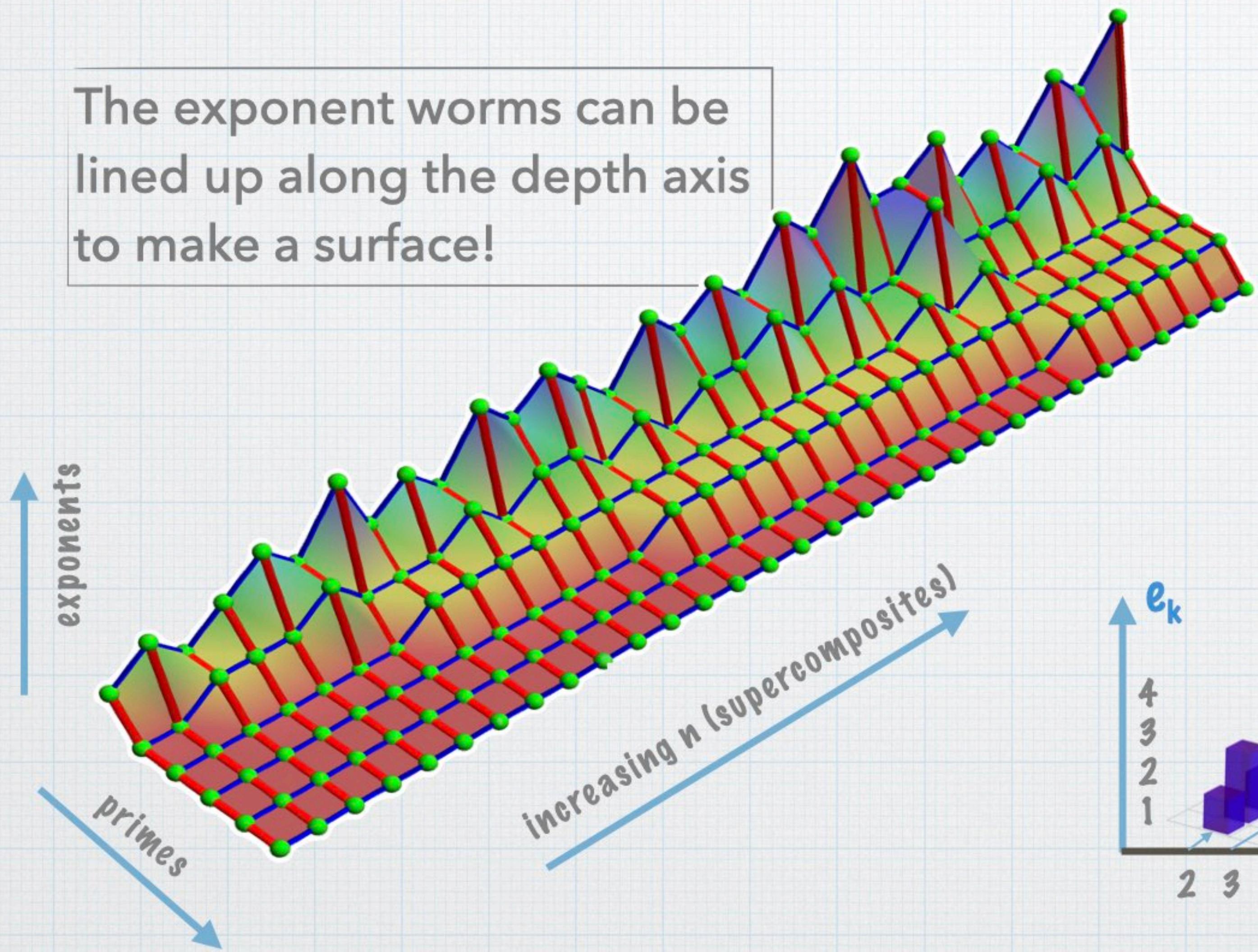
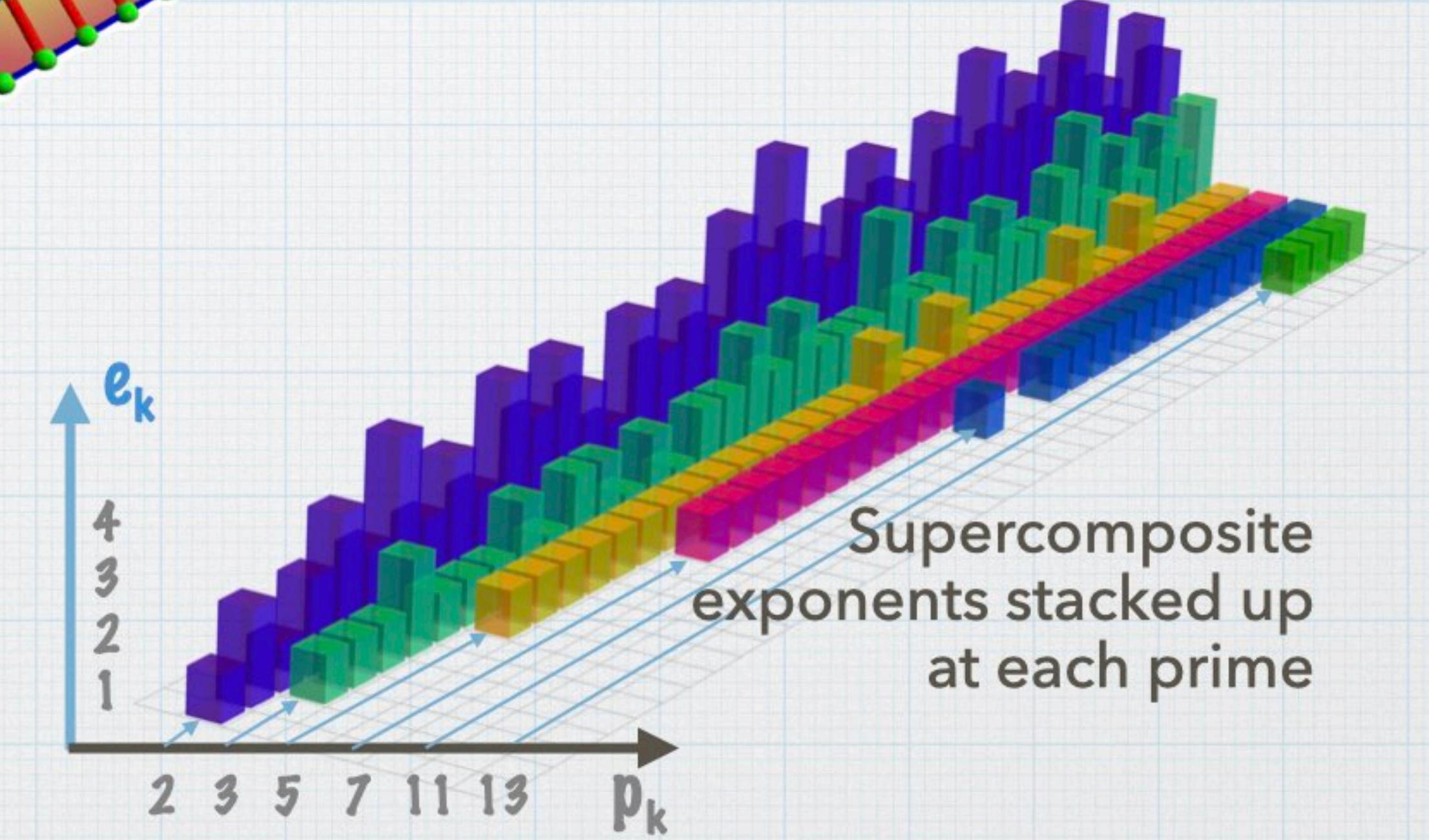
The Worms Crawl into 3D

The exponent worms can be lined up along the depth axis to make a surface!



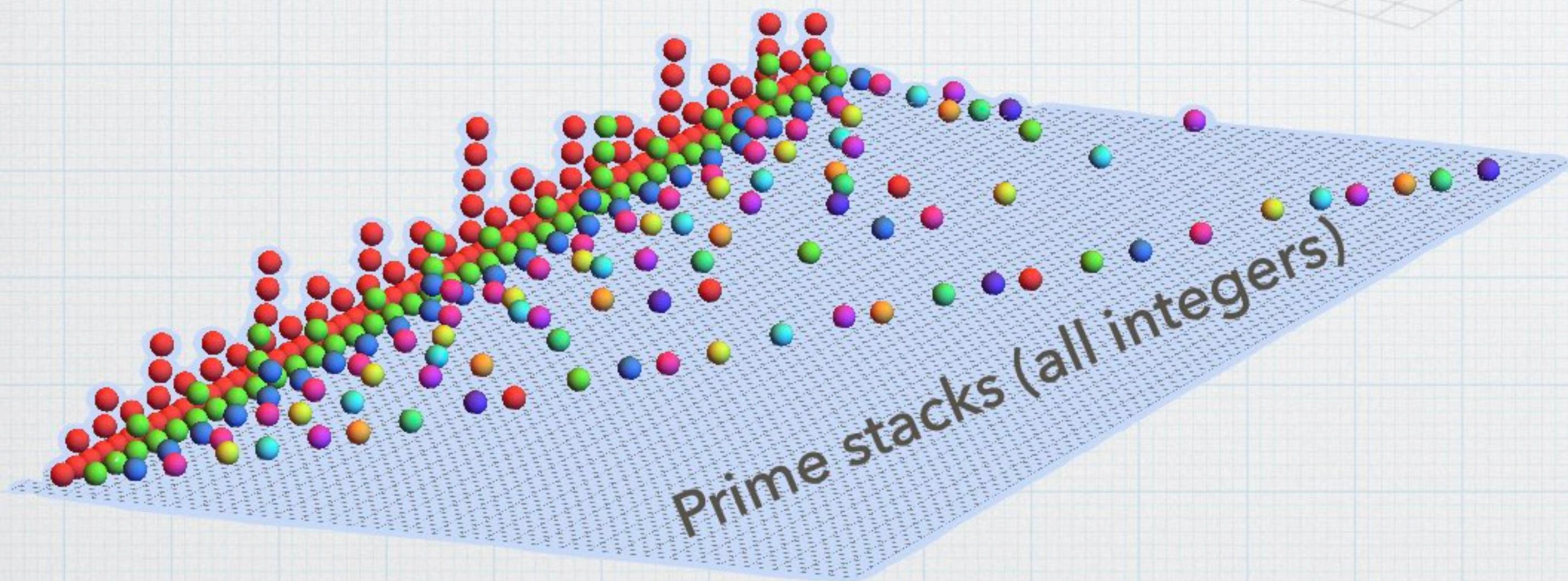
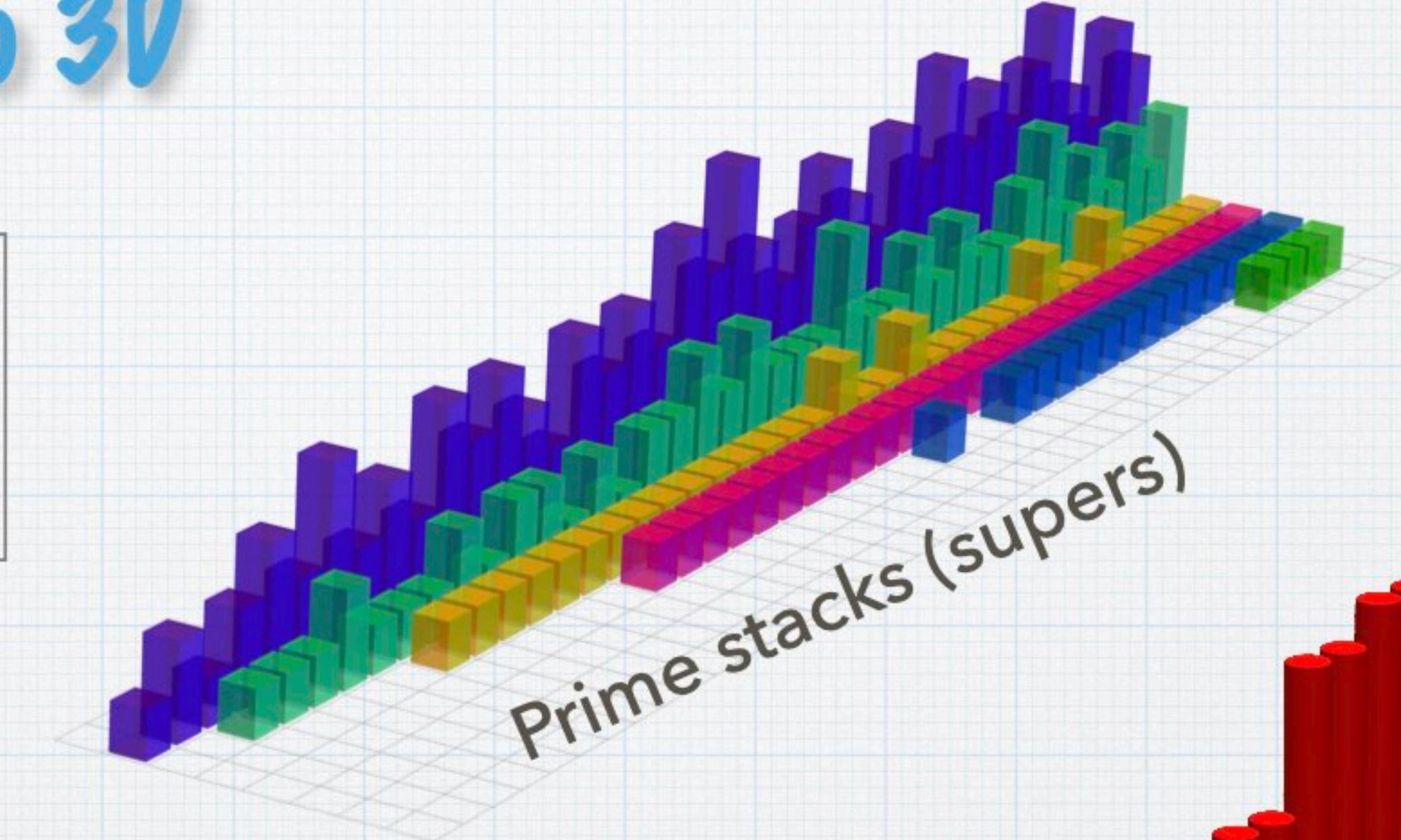
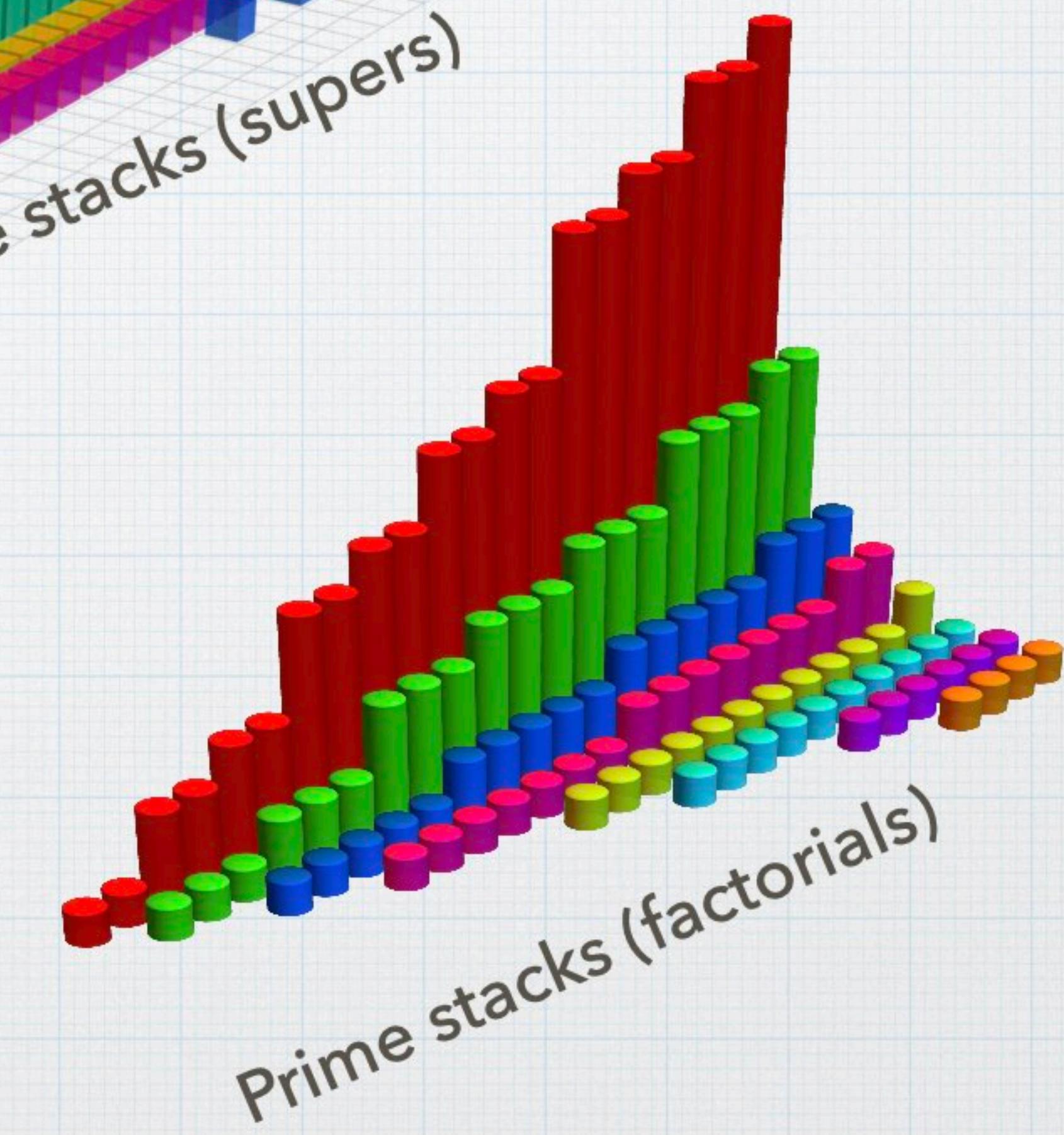
The Worms Crawl into 3D

The exponent worms can be lined up along the depth axis to make a surface!



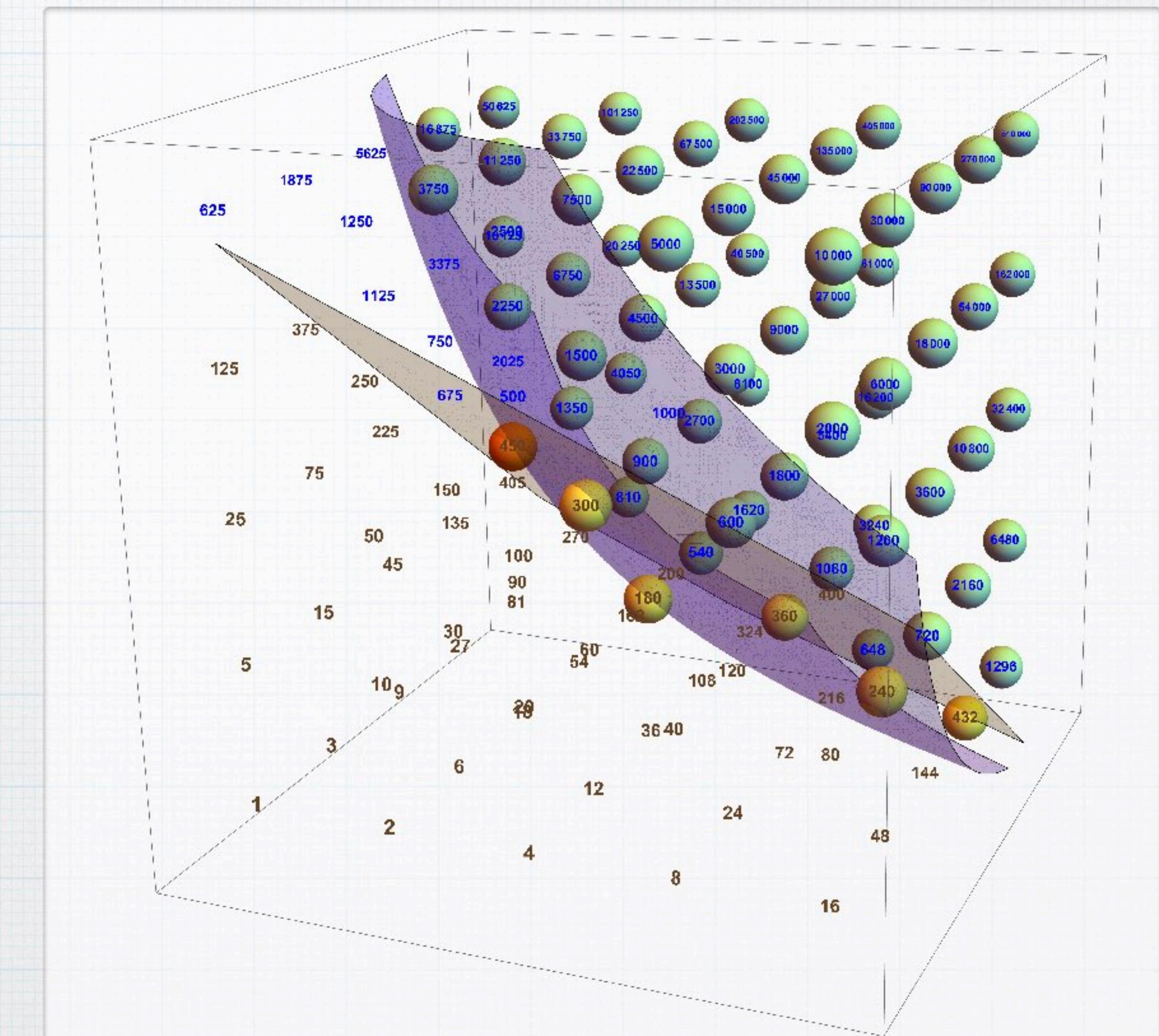
The Worms Crawl into 3D

The exponent worms can be lined up along the depth axis to make a surface!



3D Exponent Lattices and Contours

Think of $n = 2^a 3^b 5^c \dots$ plotted as (a, b, c) , an "exponentuple."
(Recall: $d(n) = (a+1)(b+1)(c+1)\dots$)



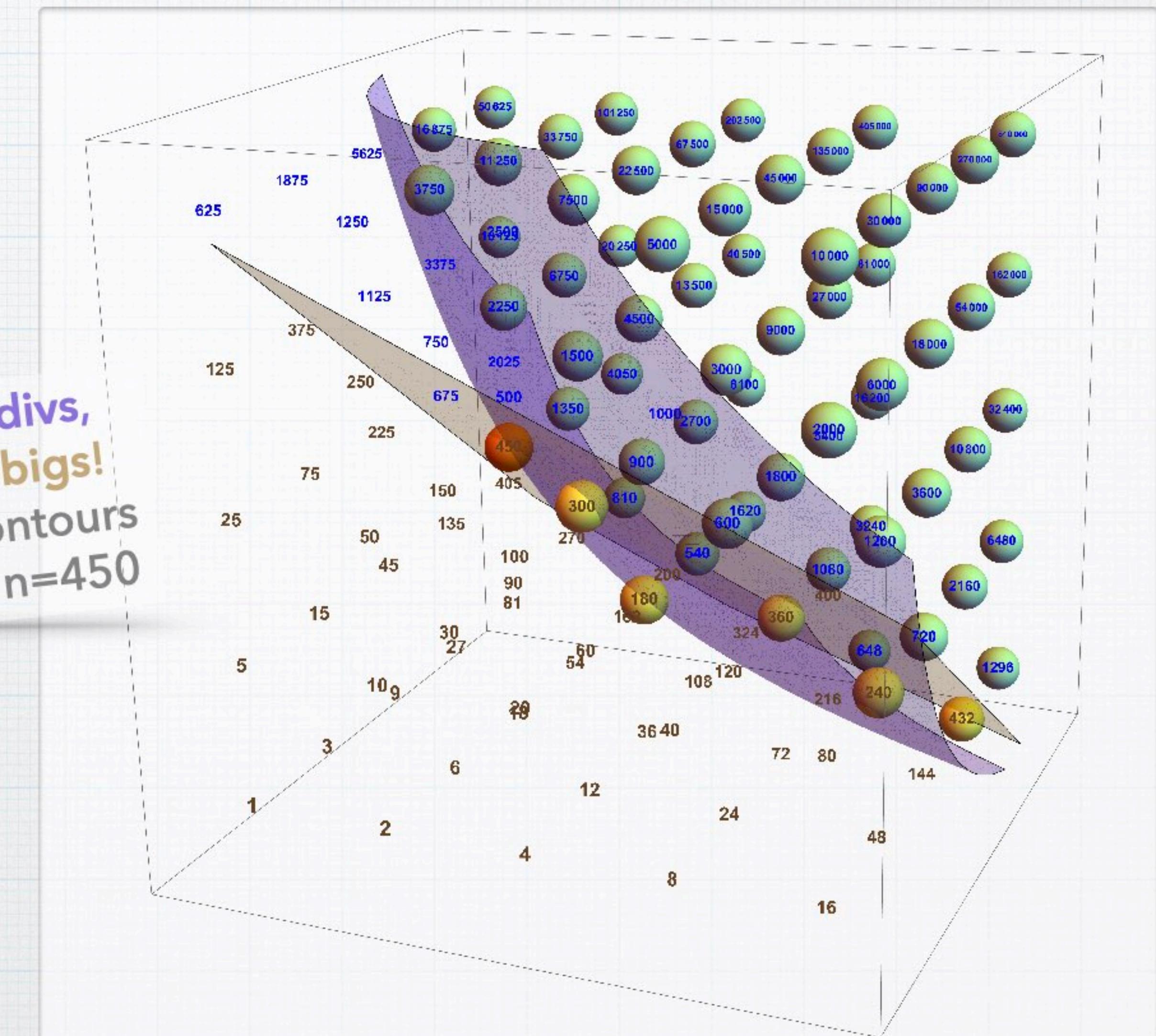
3D Exponent Lattices and Contours

Think of $n = 2^a 3^b 5^c \dots$ plotted as (a, b, c) , an "exponentuple."
(Recall: $d(n) = (a+1)(b+1)(c+1)\dots$)

Contours ($n = \text{const}$) are planes
 $a \log 2 + b \log 3 + c \log 5 = \log n$

Contours ($d(n) = \text{const}$) are hyperbolic sheets
 $(a+1)(b+1)(c+1) = d(n)$

Isodivs,
Isobigs!
Contours
at $n=450$



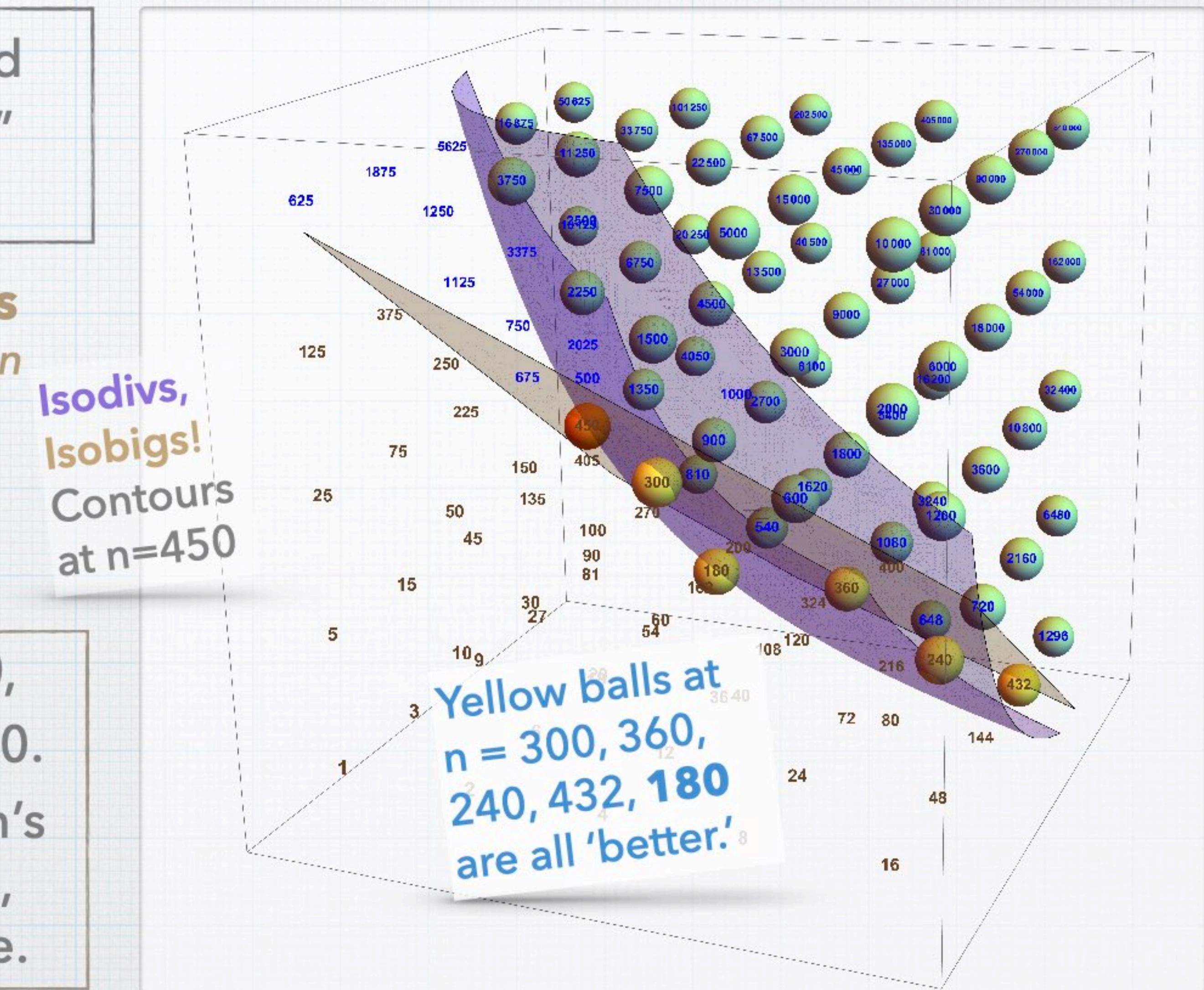
3D Exponent Lattices and Contours

Think of $n = 2^a 3^b 5^c \dots$ plotted as (a, b, c) , an "exponentuple."
(Recall: $d(n) = (a+1)(b+1)(c+1)\dots$)

Contours ($n = \text{const}$) are planes
 $a \log 2 + b \log 3 + c \log 5 = \log n$

Contours ($d(n) = \text{const}$) are hyperbolic sheets
 $(a+1)(b+1)(c+1) = d(n)$

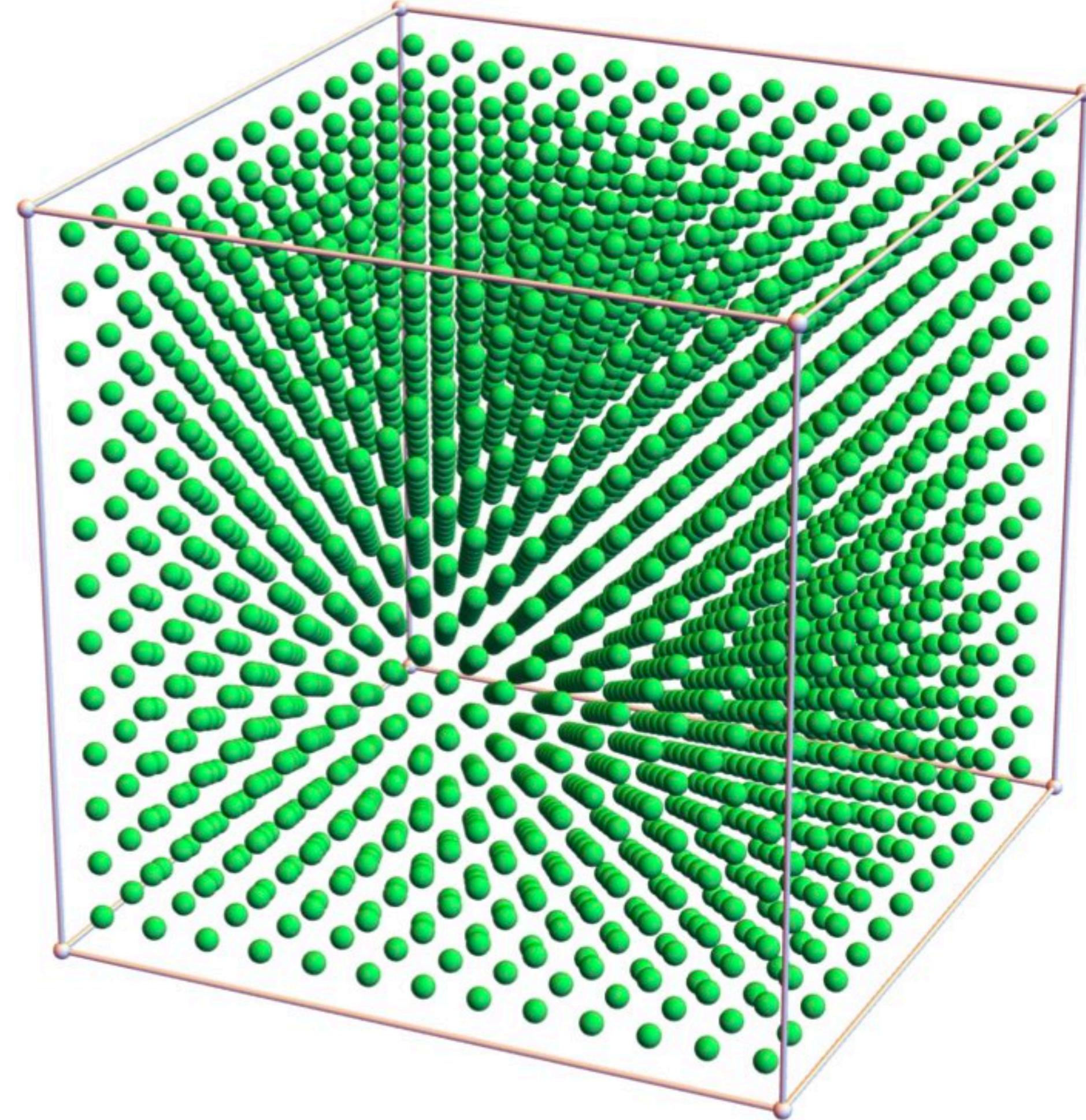
The **orange ball** is at $(1, 2, 2)$, that means $n = 2^1 3^2 5^2 = 450$. The yellow balls are smaller n 's with at least as many divisors, so 450 is **not** supercomposite.



Exponent Lattices and the “Super-Sector”

Start with all (a, b, c) in a cube with $0 \leq a, b, c \leq 12$, and get rid of any with $a < b$, $b < c$, $a < c$.

left
2197



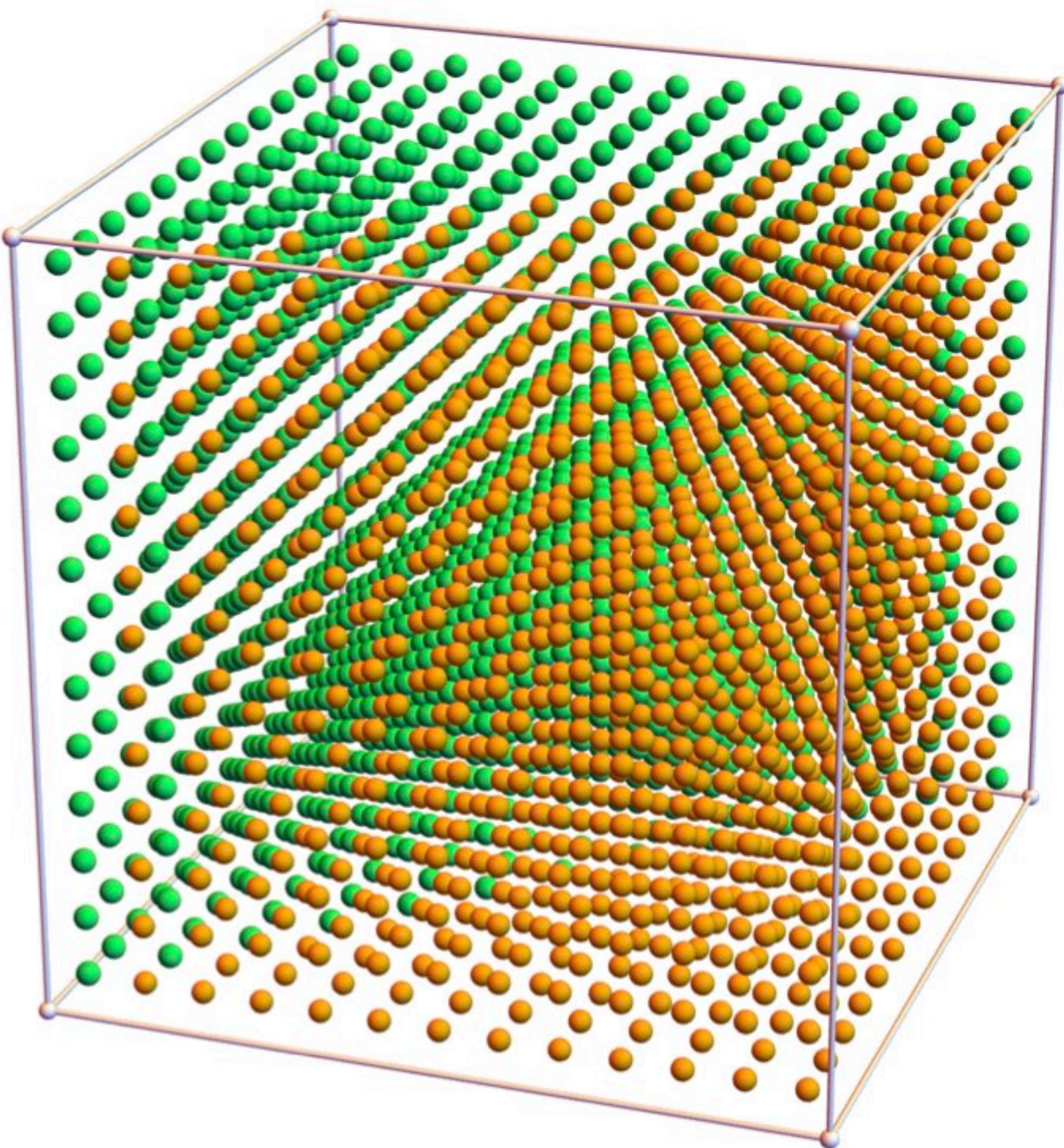
All $13^3 = \mathbf{2197}$ $(a, b, c) : 0 \leq a, b, c \leq 12$

Exponent Lattices and the “Super-Sector”

Start with all (a, b, c) in a cube with $0 \leq a, b, c \leq 12$, and get rid of any with $a < b$, $b < c$, $a < c$.

Let's watch these bad lattice points get shaved off and expose the super-sector:

left
2197



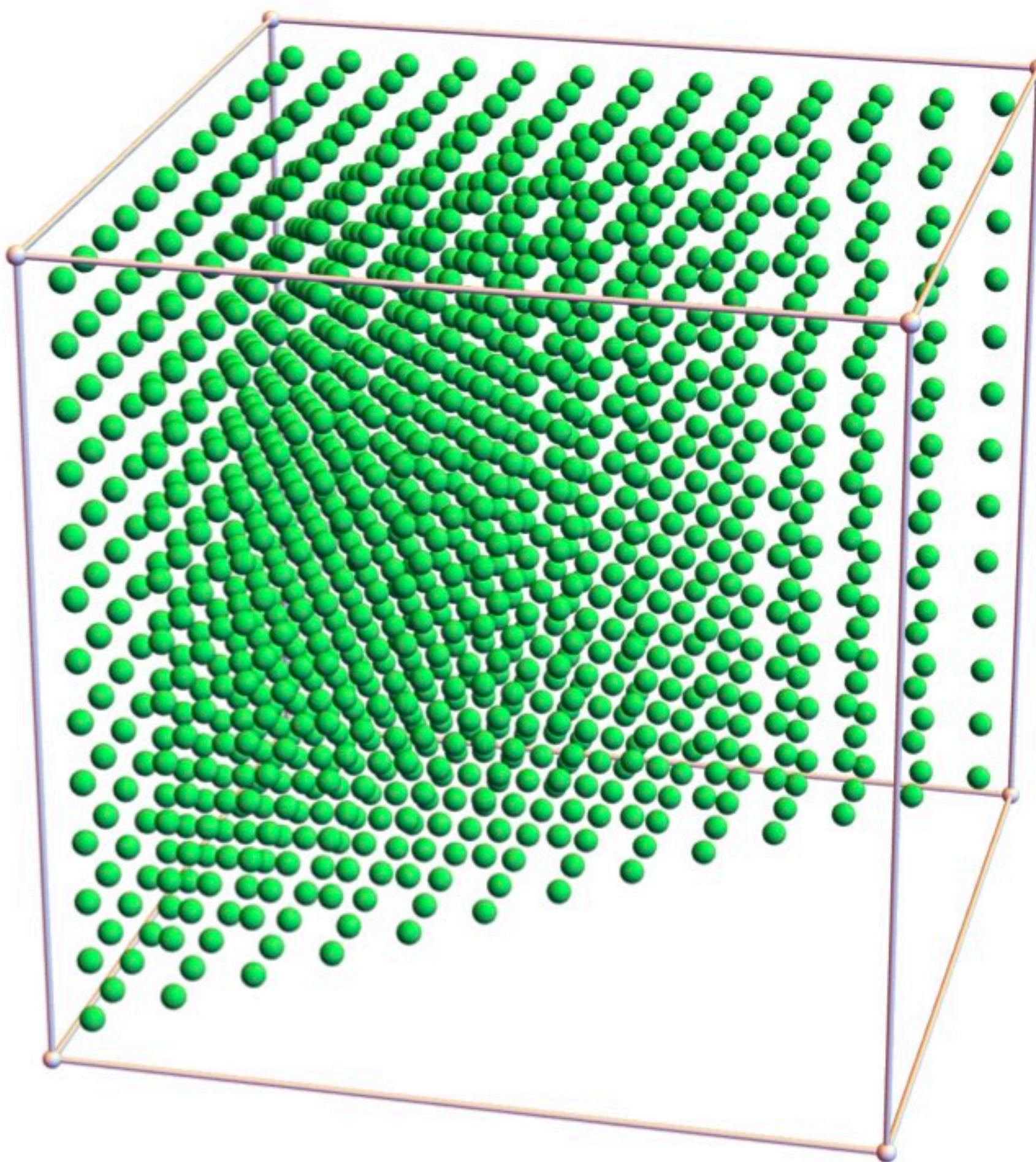
First get rid of all (a, b, c) with $a < b$

Exponent Lattices and the “Super-Sector”

Start with all (a, b, c) in a cube with $0 \leq a, b, c \leq 12$, and get rid of any with $a < b$, $b < c$, $a < c$.

Let's watch these bad lattice points get shaved off and expose the super-sector:

left
~~2197~~
1183



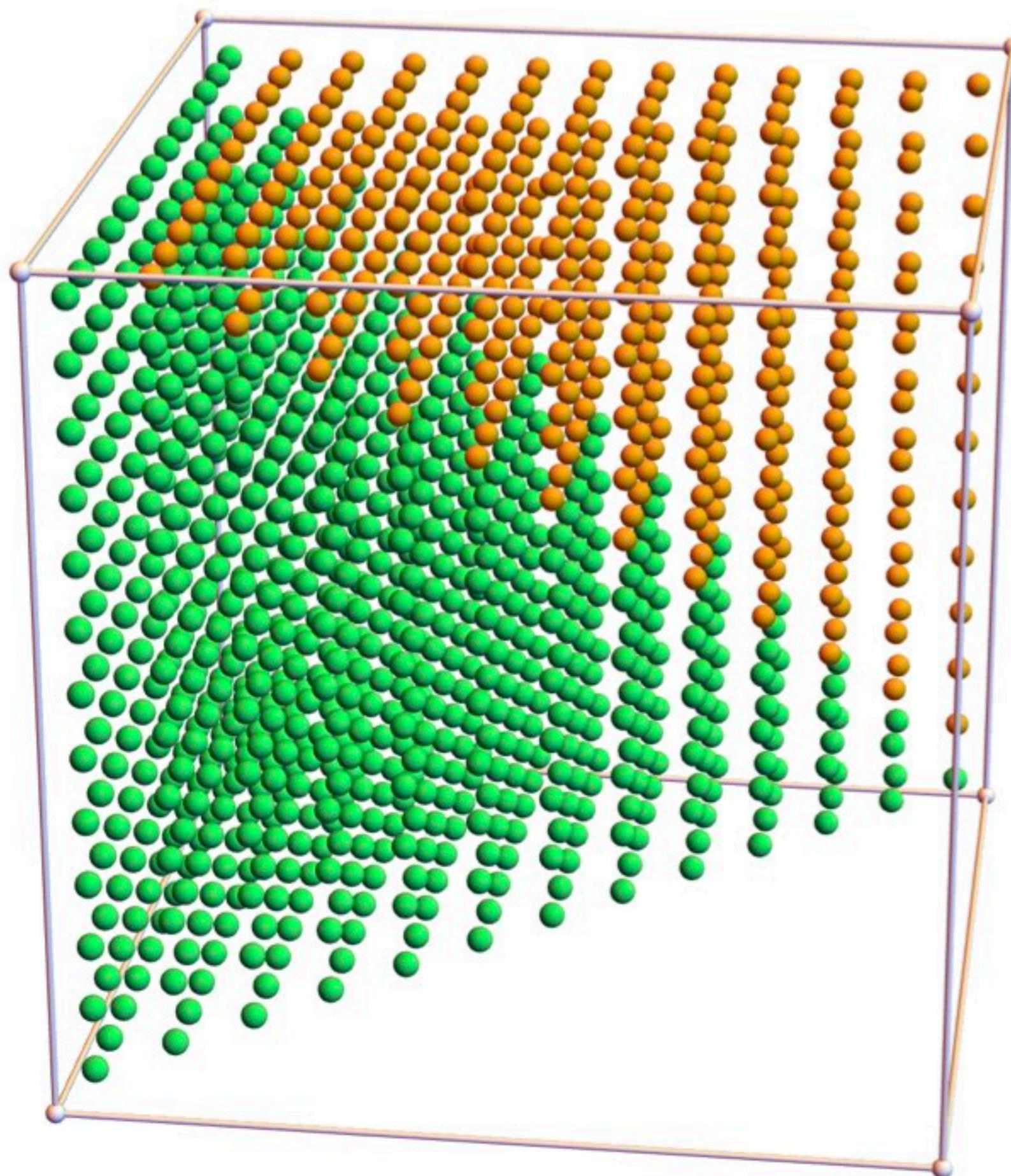
This leaves **1183** triples with $a \geq b \geq c$

Exponent Lattices and the “Super-Sector”

Start with all (a, b, c) in a cube with $0 \leq a, b, c \leq 12$, and get rid of any with $a < b$, $b < c$, $a < c$.

left
2197
1183

Let's watch these bad lattice points get shaved off and expose the super-sector:



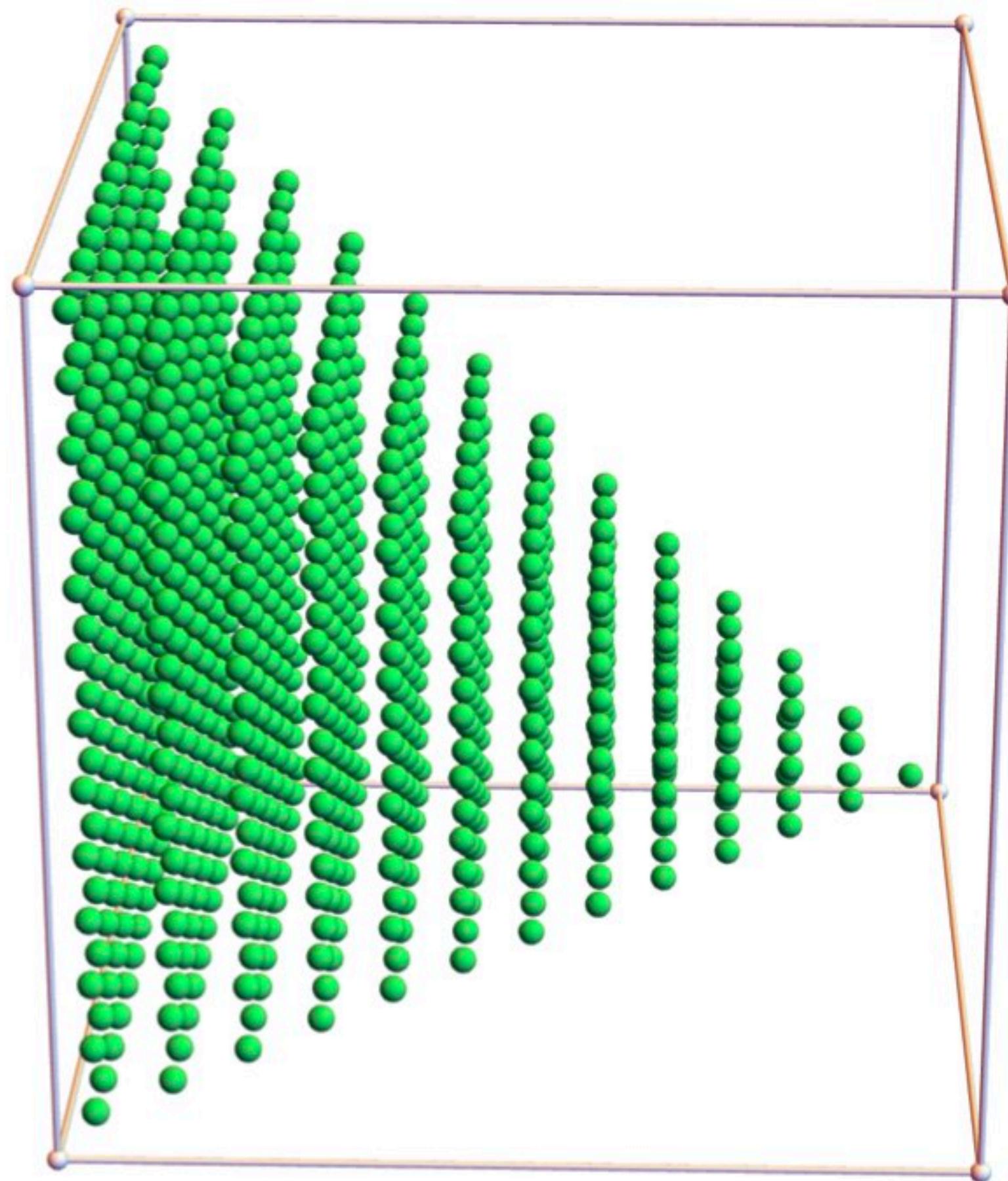
Now get rid of the (a, b, c) with $a < c$

Exponent Lattices and the “Super-Sector”

Start with all (a, b, c) in a cube with $0 \leq a, b, c \leq 12$, and get rid of any with $a < b$, $b < c$, $a < c$.

Let's watch these bad lattice points get shaved off and expose the super-sector:

left
~~2197~~
~~1183~~
819



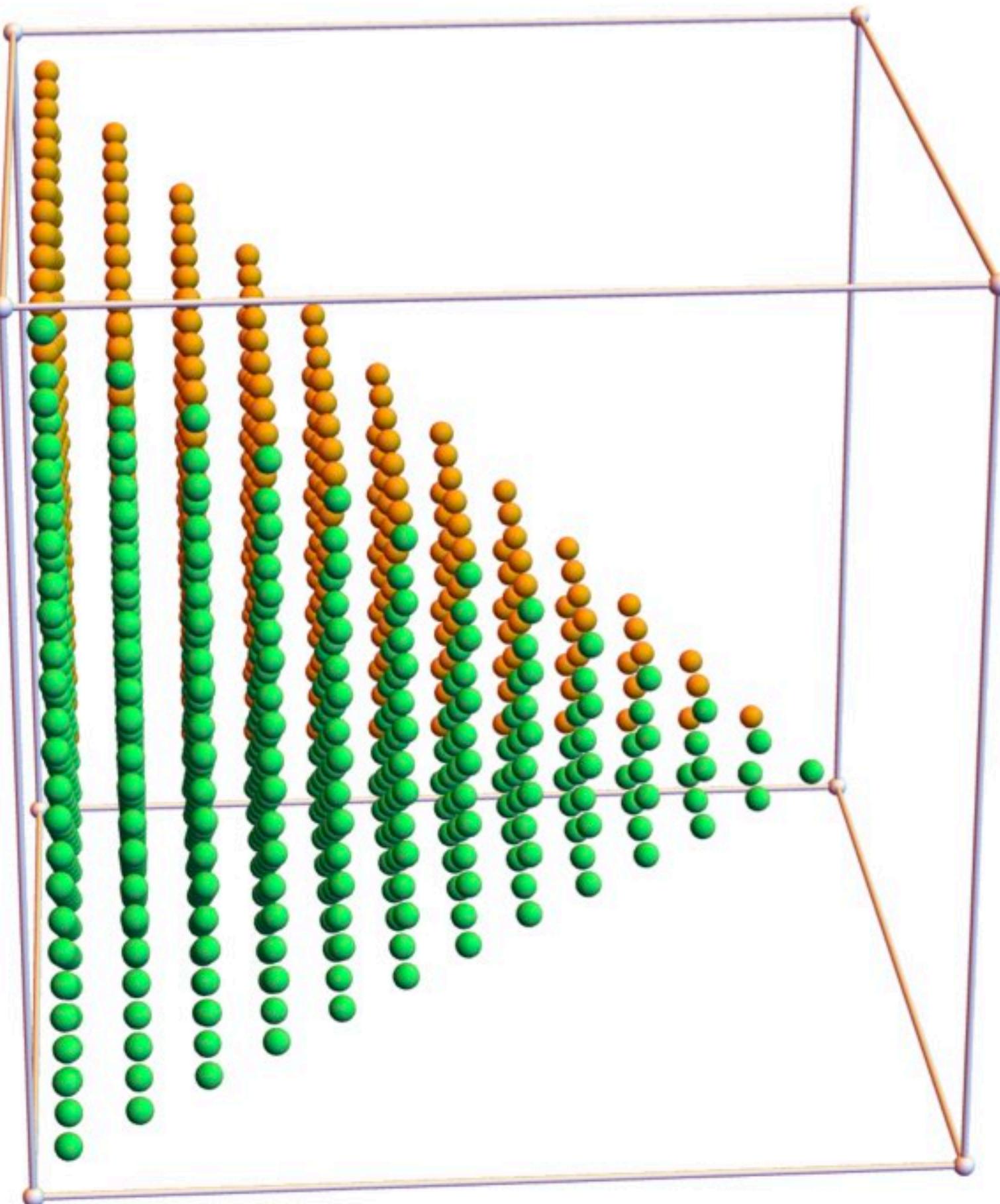
There are **819** triples: $a \geq b$ and $a \geq c$

Exponent Lattices and the “Super-Sector”

Start with all (a, b, c) in a cube with $0 \leq a, b, c \leq 12$, and get rid of any with $a < b$, $b < c$, $a < c$.

left
~~2197~~
~~1183~~
~~819~~
455

Let's watch these bad lattice points get shaved off and expose the super-sector:



Now lose those (a, b, c) with $b < c$

Exponent Lattices and the “Super-Sector”

Start with all (a, b, c) in a cube with $0 \leq a, b, c \leq 12$, and get rid of any with $a < b$, $b < c$, $a < c$.

left

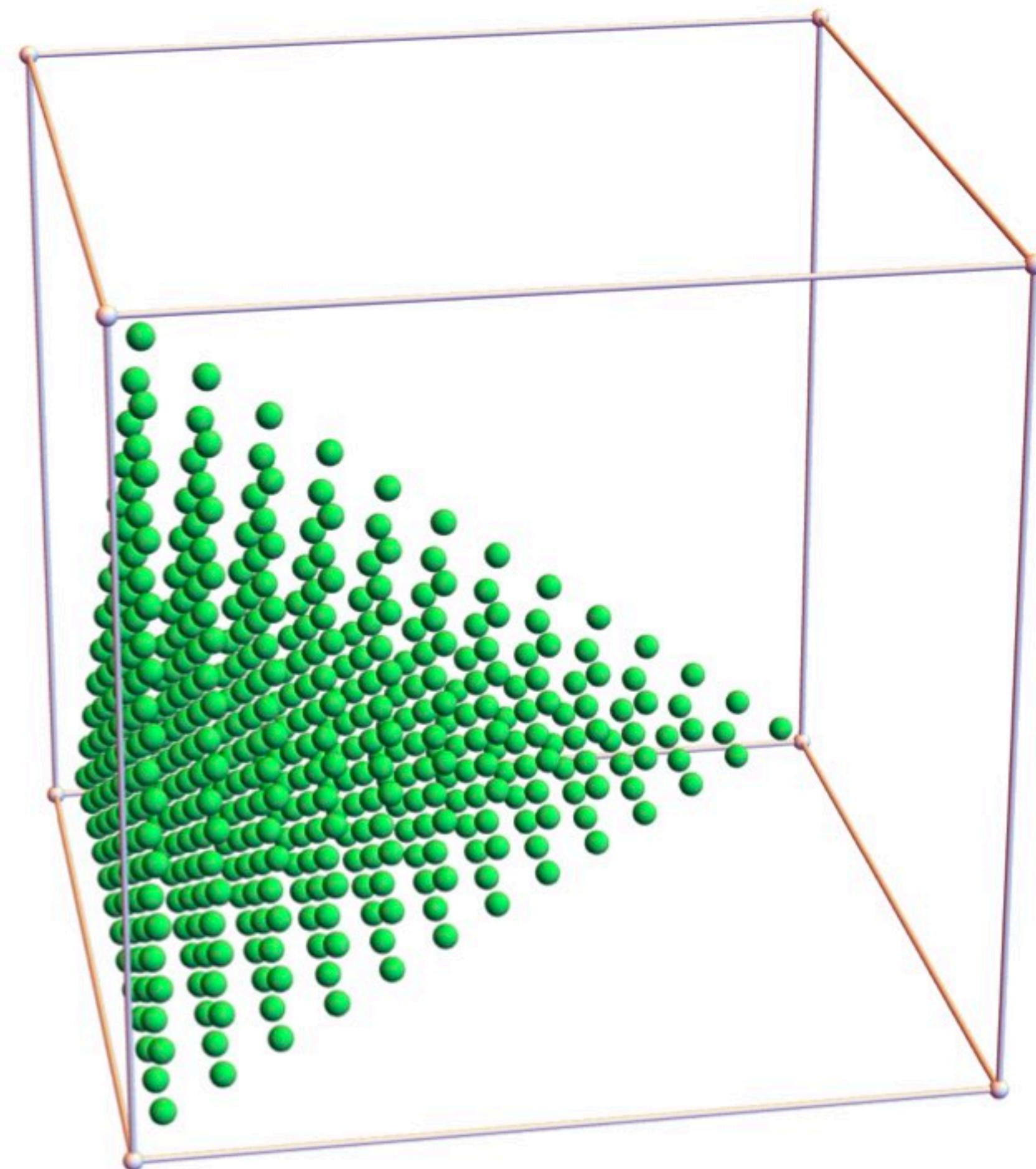
~~2197~~

~~1183~~

~~819~~

455

Let's watch these bad lattice points get shaved off and expose the super-sector:



Surviving **455** contenders, $a \geq b \geq c$

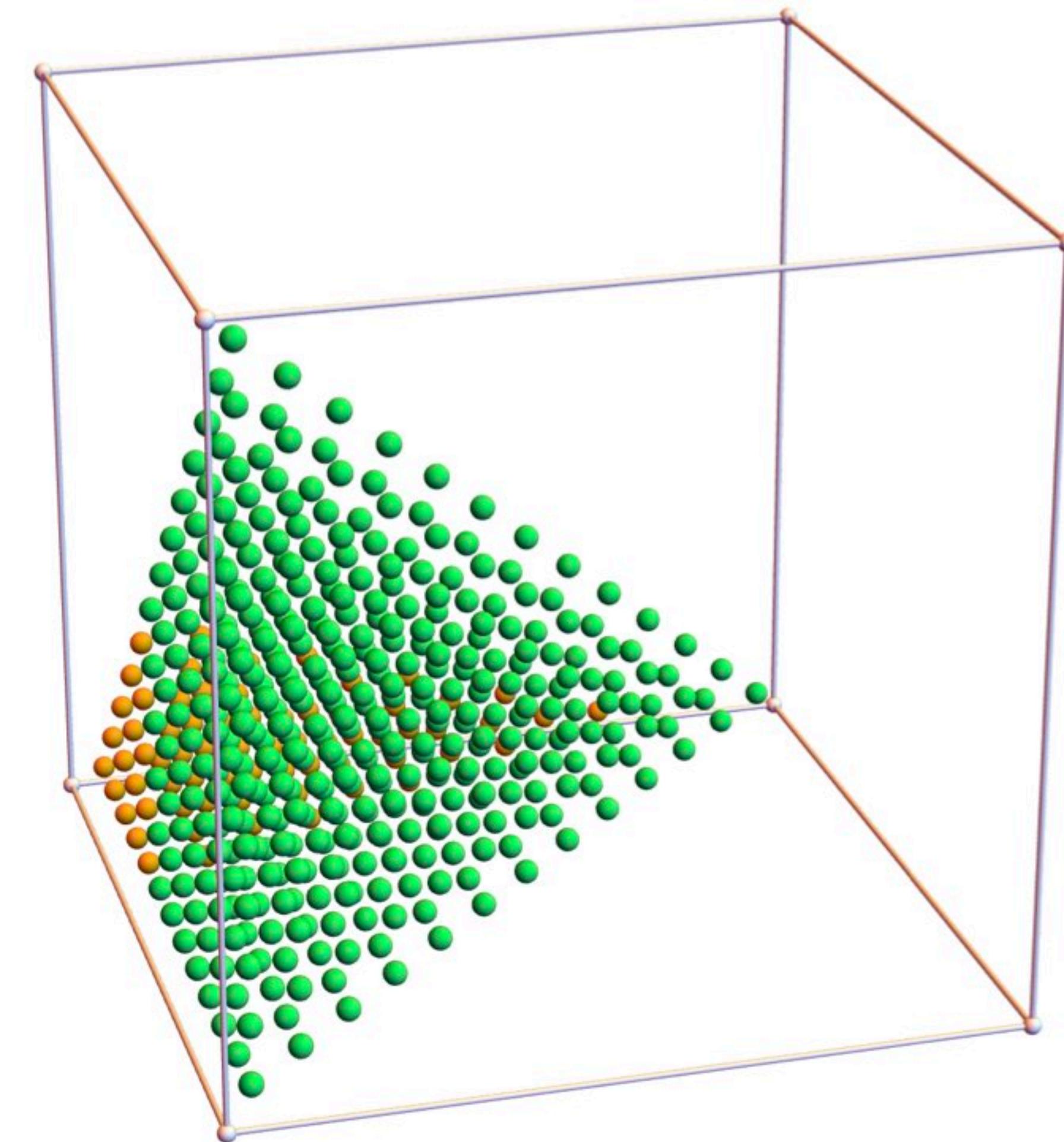
Exponent Lattices and the “Super-Sector”

Start with all (a, b, c) in a cube with $0 \leq a, b, c \leq 12$, and get rid of any with $a < b$, $b < c$, $a < c$.

left
~~2197~~
~~1183~~
~~819~~
455

Let's watch these bad lattice points get shaved off and expose the super-sector:

Now apply some rules involving just two primes, such as $3/4$ or $5/8$, to eliminate certain (a, b, c) triples from super-contention.



Start applying rules: $3/4$ kills $a > 2b + 2$

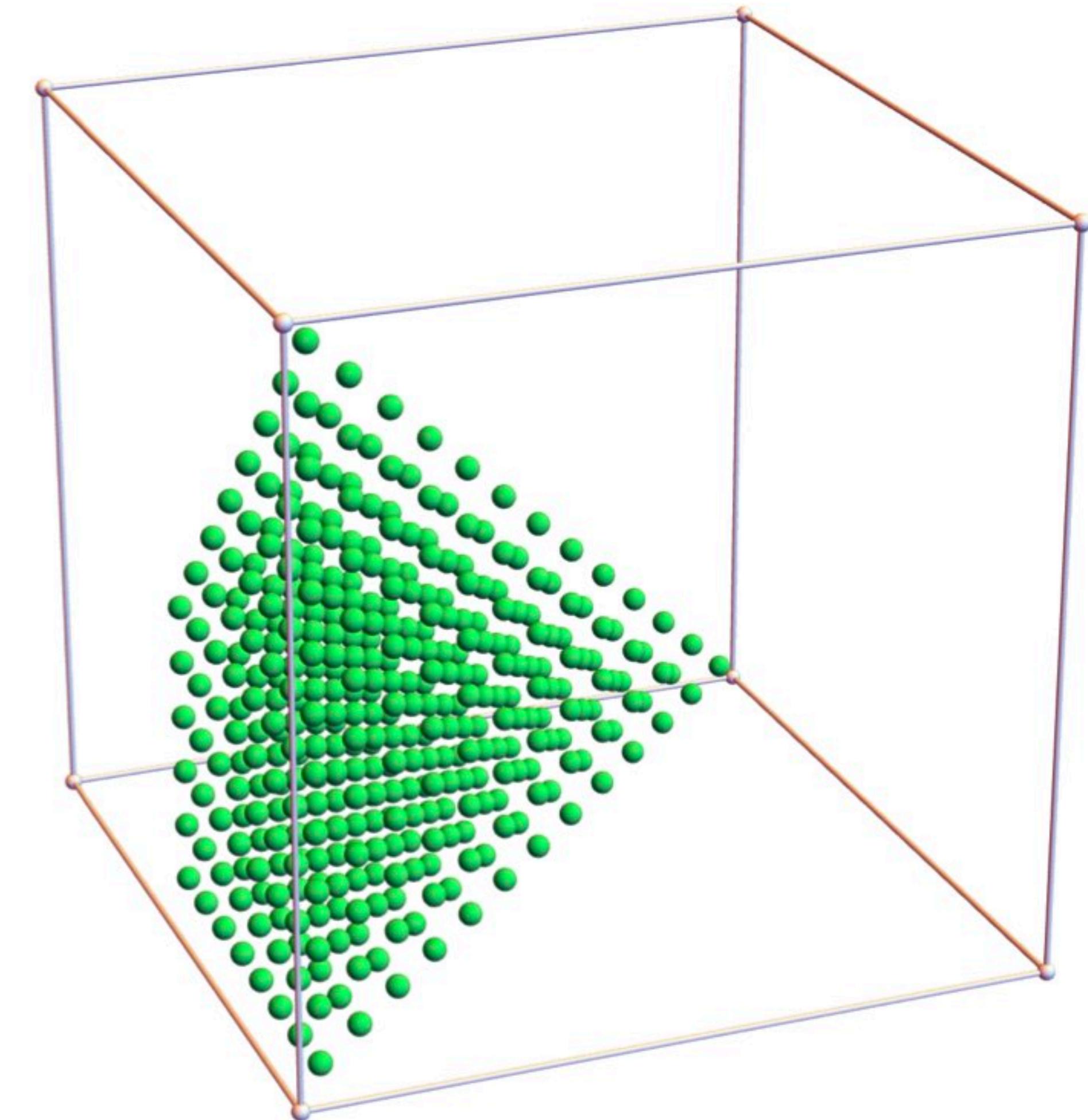
Exponent Lattices and the “Super-Sector”

Start with all (a, b, c) in a cube with $0 \leq a, b, c \leq 12$, and get rid of any with $a < b$, $b < c$, $a < c$.

left
~~2197~~
~~1183~~
~~819~~
~~455~~
385

Let's watch these bad lattice points get shaved off and expose the super-sector:

Now apply some rules involving just two primes, such as 3/4 or 5/8, to eliminate certain (a, b, c) triples from super-contention.



Down to **385** contenders, $a \leq 2b + 2$

Exponent Lattices and the “Super-Sector”

Start with all (a, b, c) in a cube with $0 \leq a, b, c \leq 12$, and get rid of any with $a < b$, $b < c$, $a < c$.

left

~~2197~~

~~1183~~

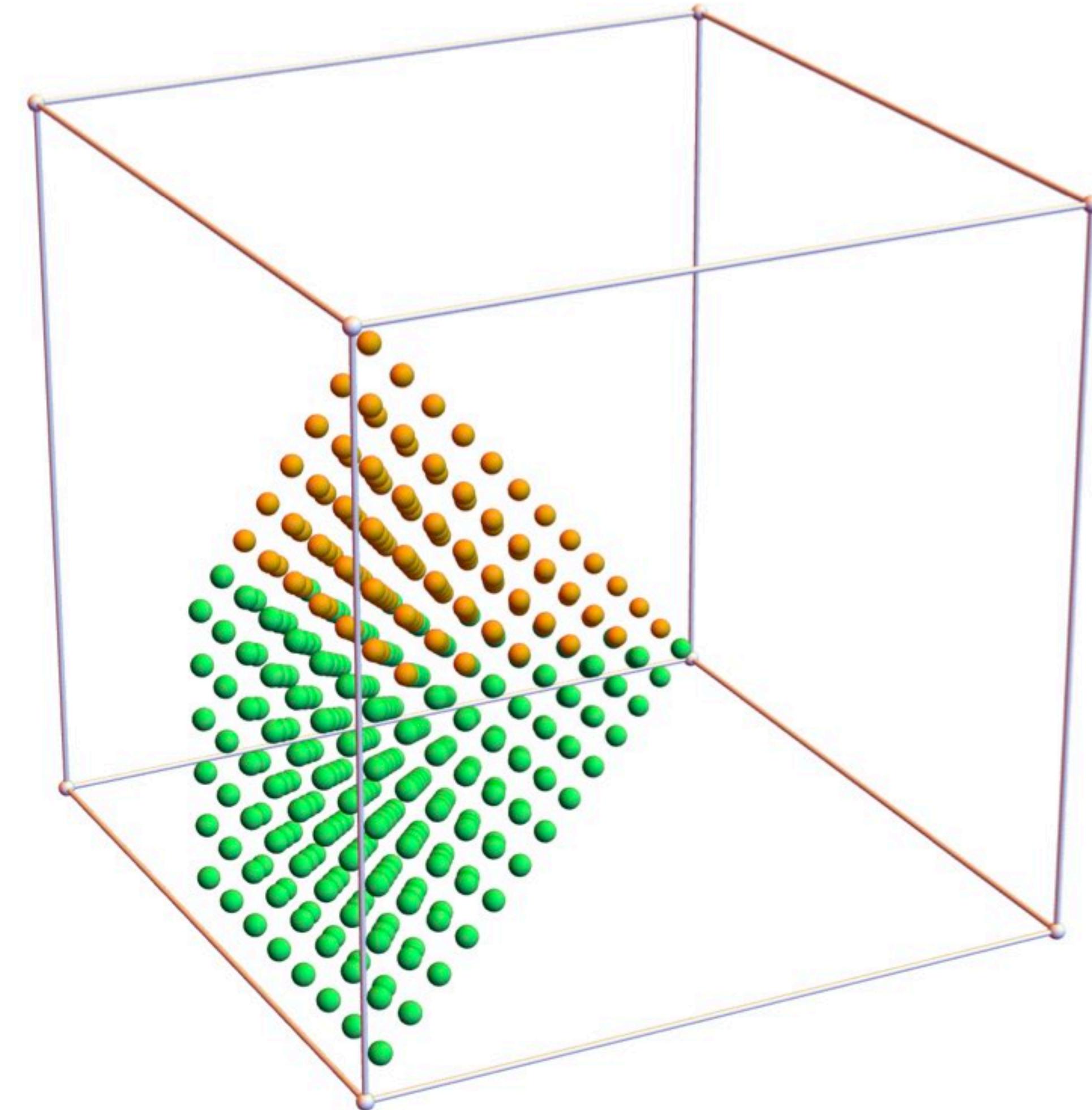
~~819~~

~~455~~

385

Let's watch these bad lattice points get shaved off and expose the super-sector:

Now apply some rules involving just two primes, such as $3/4$ or $5/8$, to eliminate certain (a, b, c) triples from super-contention.



The $4/5$ rule makes all $a < 2c$ go away

Exponent Lattices and the “Super-Sector”

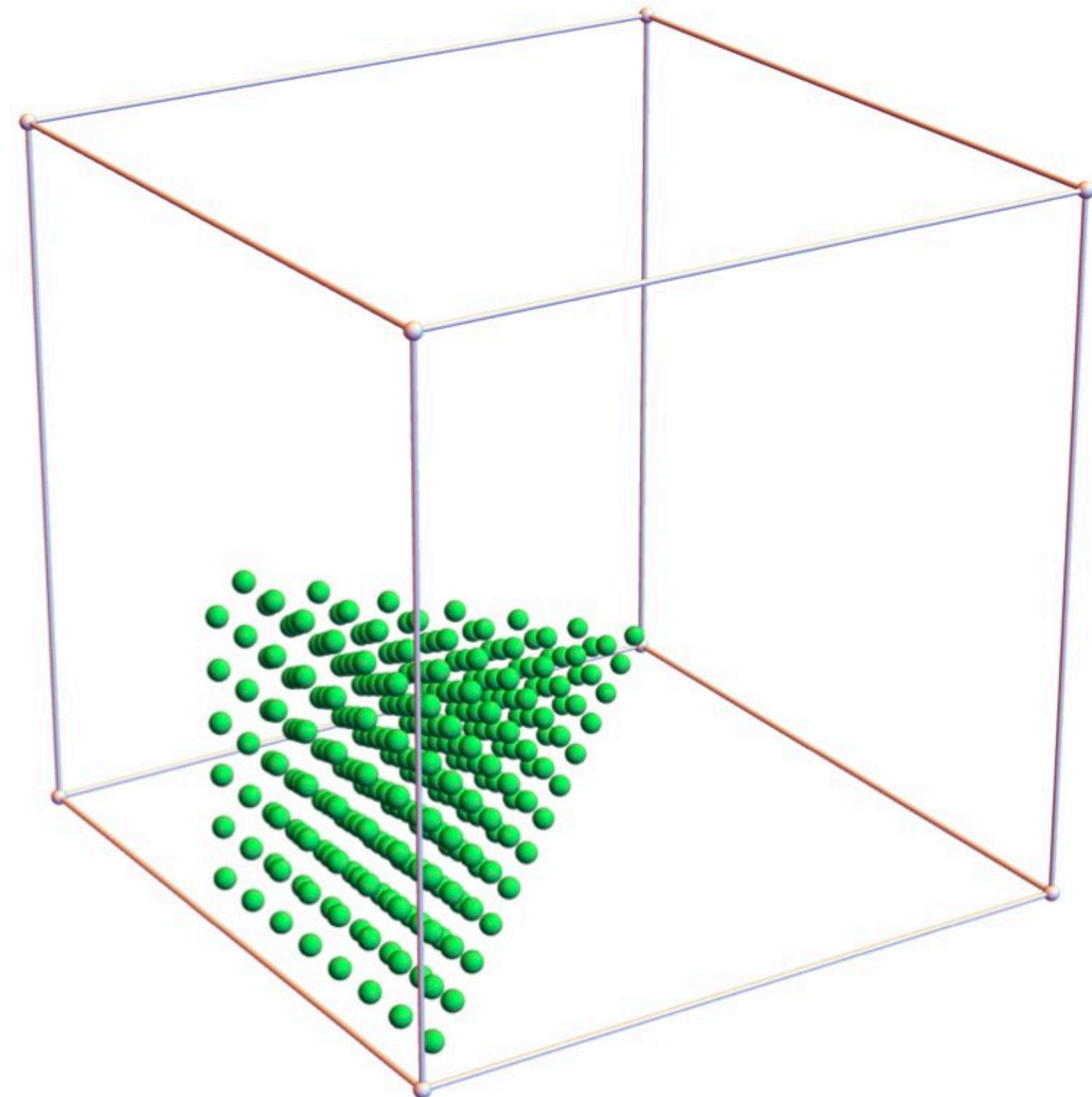
Start with all (a, b, c) in a cube with $0 \leq a, b, c \leq 12$, and get rid of any with $a < b$, $b < c$, $a < c$.

Let's watch these bad lattice points get shaved off and expose the super-sector:

Now apply some rules involving just two primes, such as 3/4 or 5/8, to eliminate certain (a, b, c) triples from super-contention.

left

~~2197~~
~~1183~~
~~819~~
~~455~~
~~385~~
273



Exponent Lattices and the “Super-Sector”

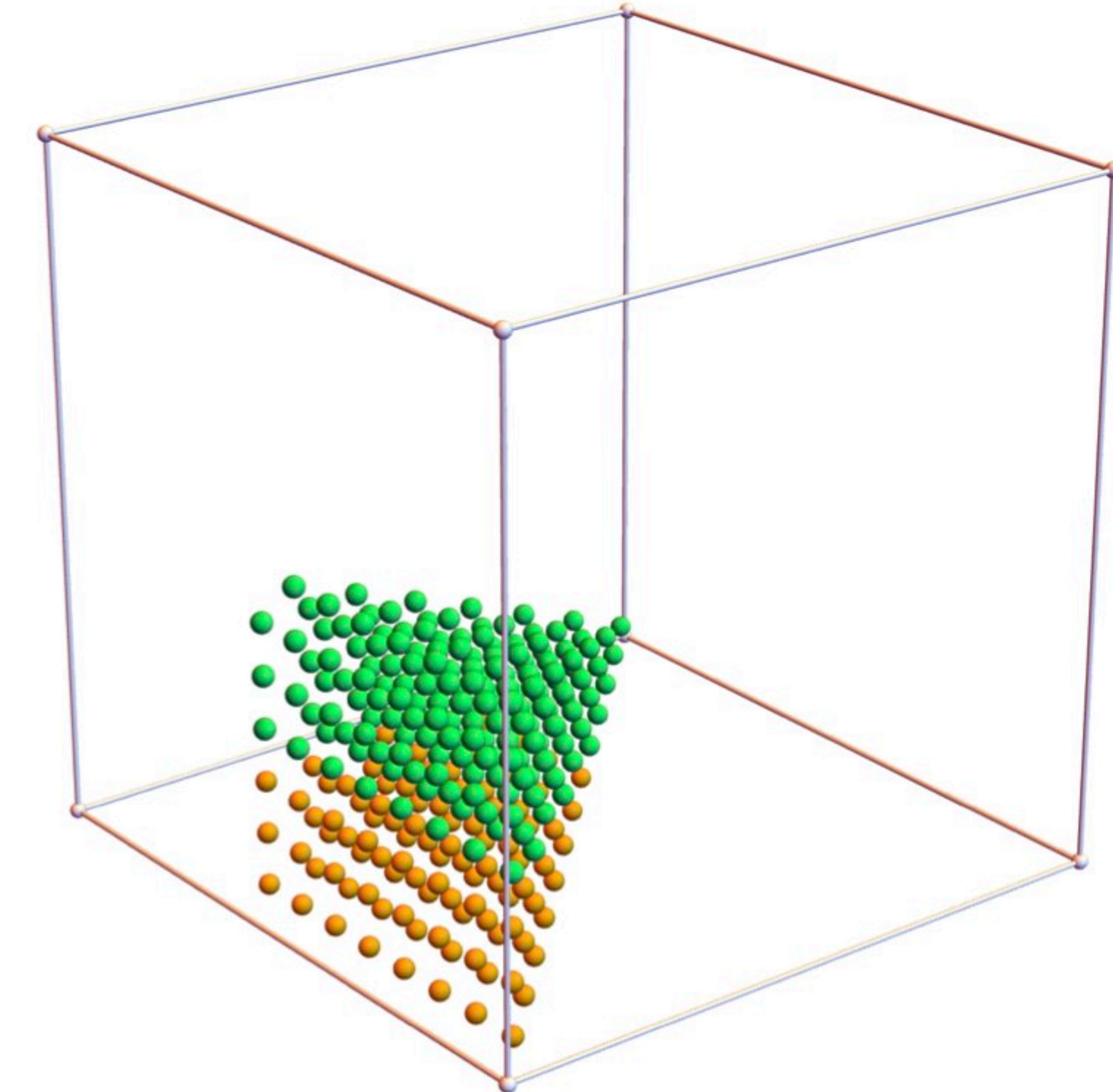
Start with all (a, b, c) in a cube with $0 \leq a, b, c \leq 12$, and get rid of any with $a < b$, $b < c$, $a < c$.

Let's watch these bad lattice points get shaved off and expose the super-sector:

Now apply some rules involving just two primes, such as $3/4$ or $5/8$, to eliminate certain (a, b, c) triples from super-contention.

left

2197
1183
819
455
385
273



The $5/8$ rule requires $a \leq 3c + 4$

Exponent Lattices and the “Super-Sector”

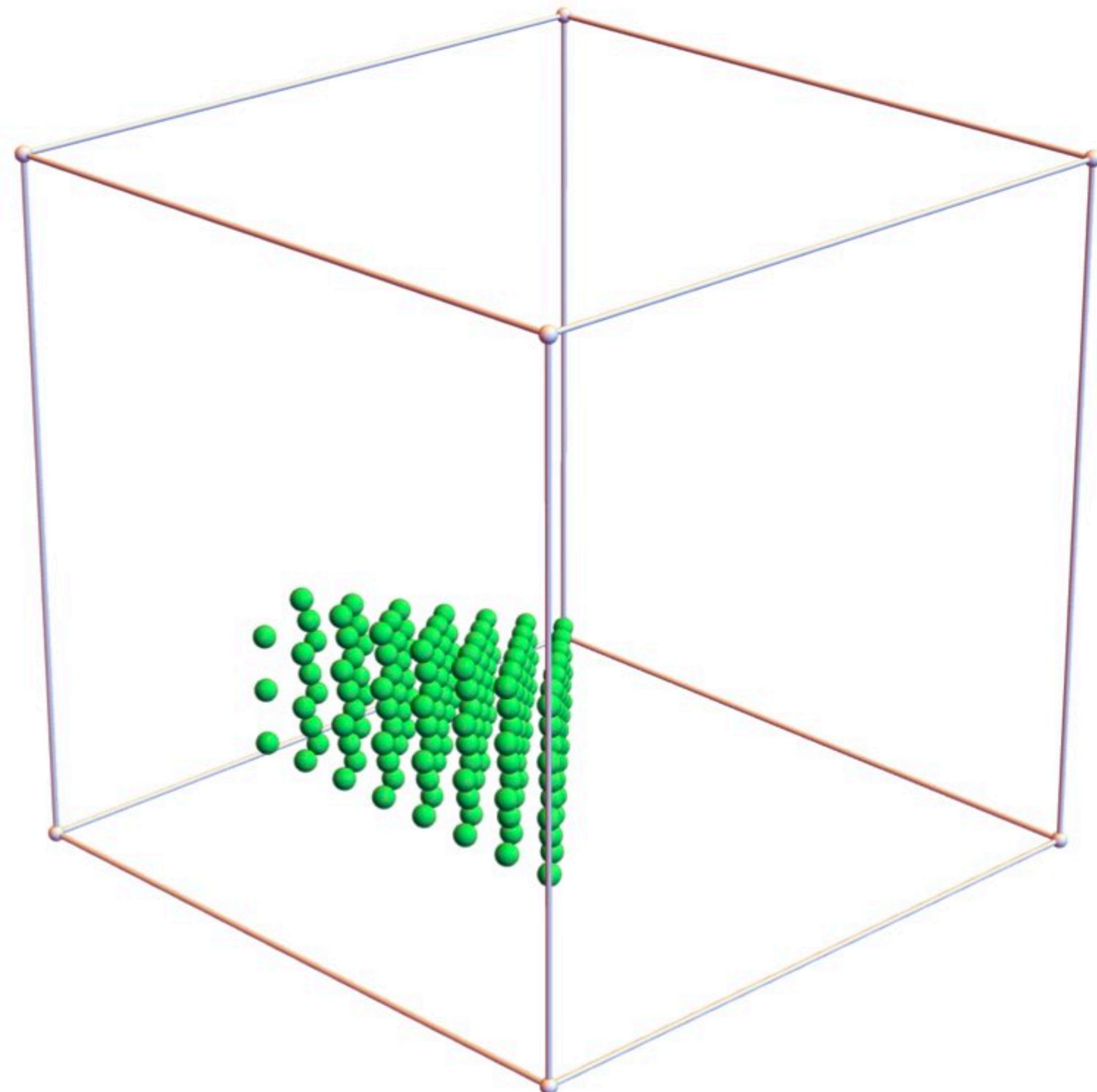
Start with all (a, b, c) in a cube with $0 \leq a, b, c \leq 12$, and get rid of any with $a < b$, $b < c$, $a < c$.

Let's watch these bad lattice points get shaved off and expose the super-sector:

Now apply some rules involving just two primes, such as 3/4 or 5/8, to eliminate certain (a, b, c) triples from super-contention.

left

2197
1183
819
455
385
273
176



Just **176** (a, b, c) with $a \leq 3c + 4$

Exponent Lattices and the “Super-Sector”

Start with all (a, b, c) in a cube with $0 \leq a, b, c \leq 12$, and get rid of any with $a < b, b < c, a < c$.

Let's watch these bad lattice points get shaved off and expose the super-sector:

Now apply some rules involving just two primes, such as $3/4$ or $5/8$, to eliminate certain (a, b, c) triples from super-contention.

left

2197

1183

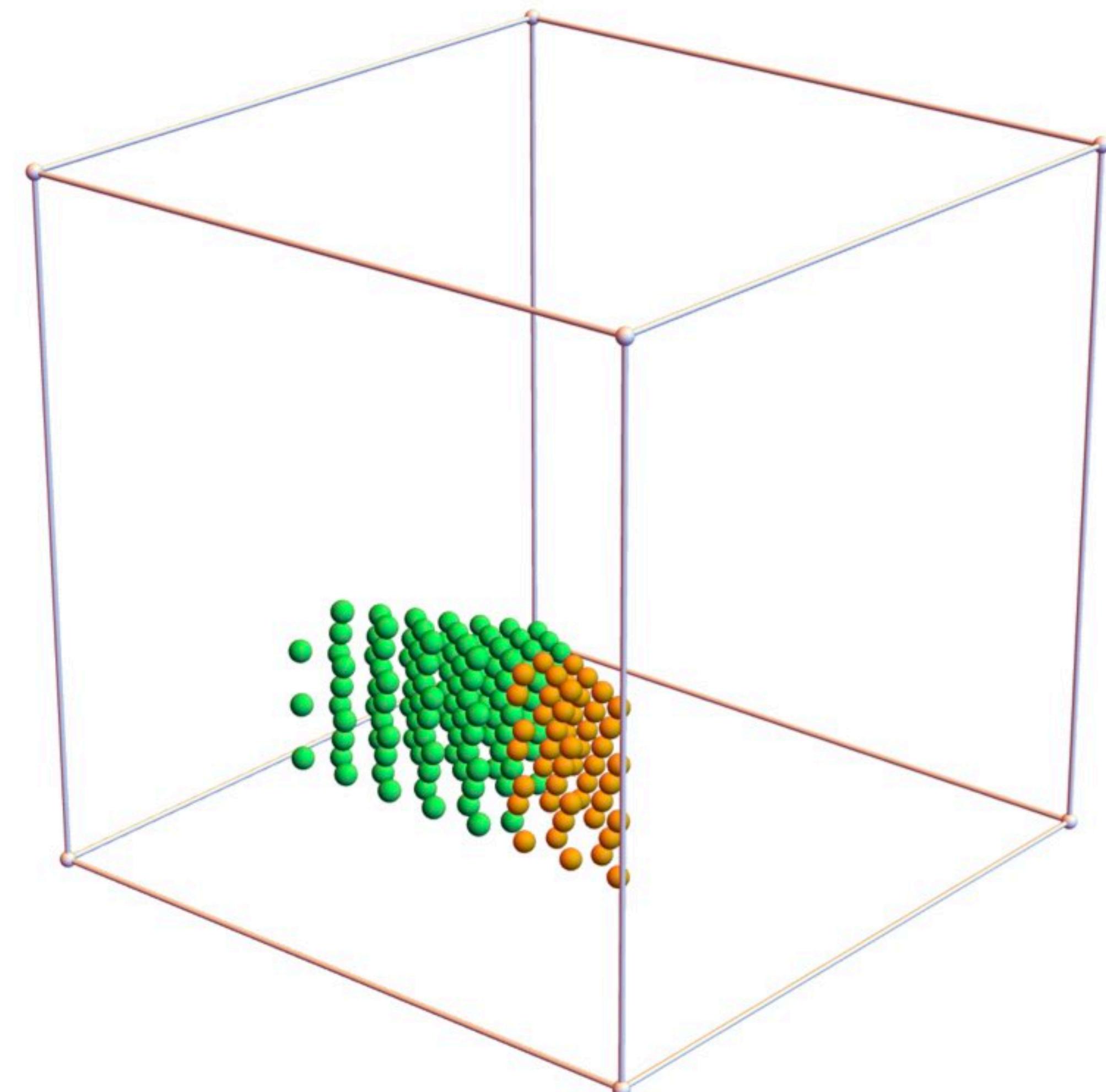
819

455

385

273

176



On to the $8/9$ rule, need $2a \geq 3b - 4$

Exponent Lattices and the “Super-Sector”

Start with all (a, b, c) in a cube with $0 \leq a, b, c \leq 12$, and get rid of any with $a < b$, $b < c$, $a < c$.

Let's watch these bad lattice points get shaved off and expose the super-sector:

Now apply some rules involving just two primes, such as 3/4 or 5/8, to eliminate certain (a, b, c) triples from super-contention.

left

2197

1183

819

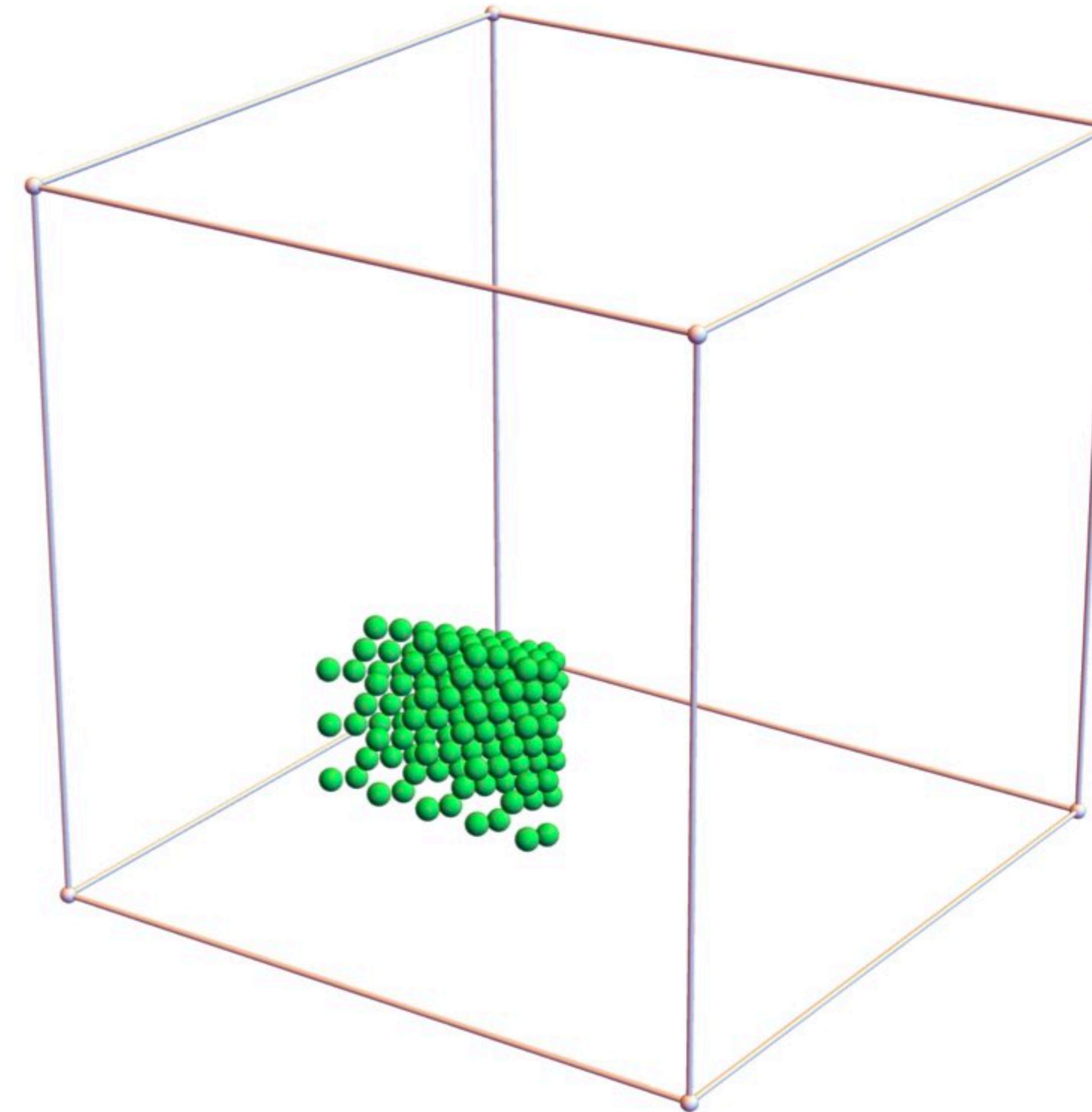
455

385

273

176

127



Down to **127** triples with $2a \leq 3c + 4$

Exponent Lattices and the “Super-Sector”

Start with all (a, b, c) in a cube with $0 \leq a, b, c \leq 12$, and get rid of any with $a < b, b < c, a < c$.

Let's watch these bad lattice points get shaved off and expose the super-sector:

Now apply some rules involving just two primes, such as $3/4$ or $5/8$, to eliminate certain (a, b, c) triples from super-contention.

left

2197

1183

819

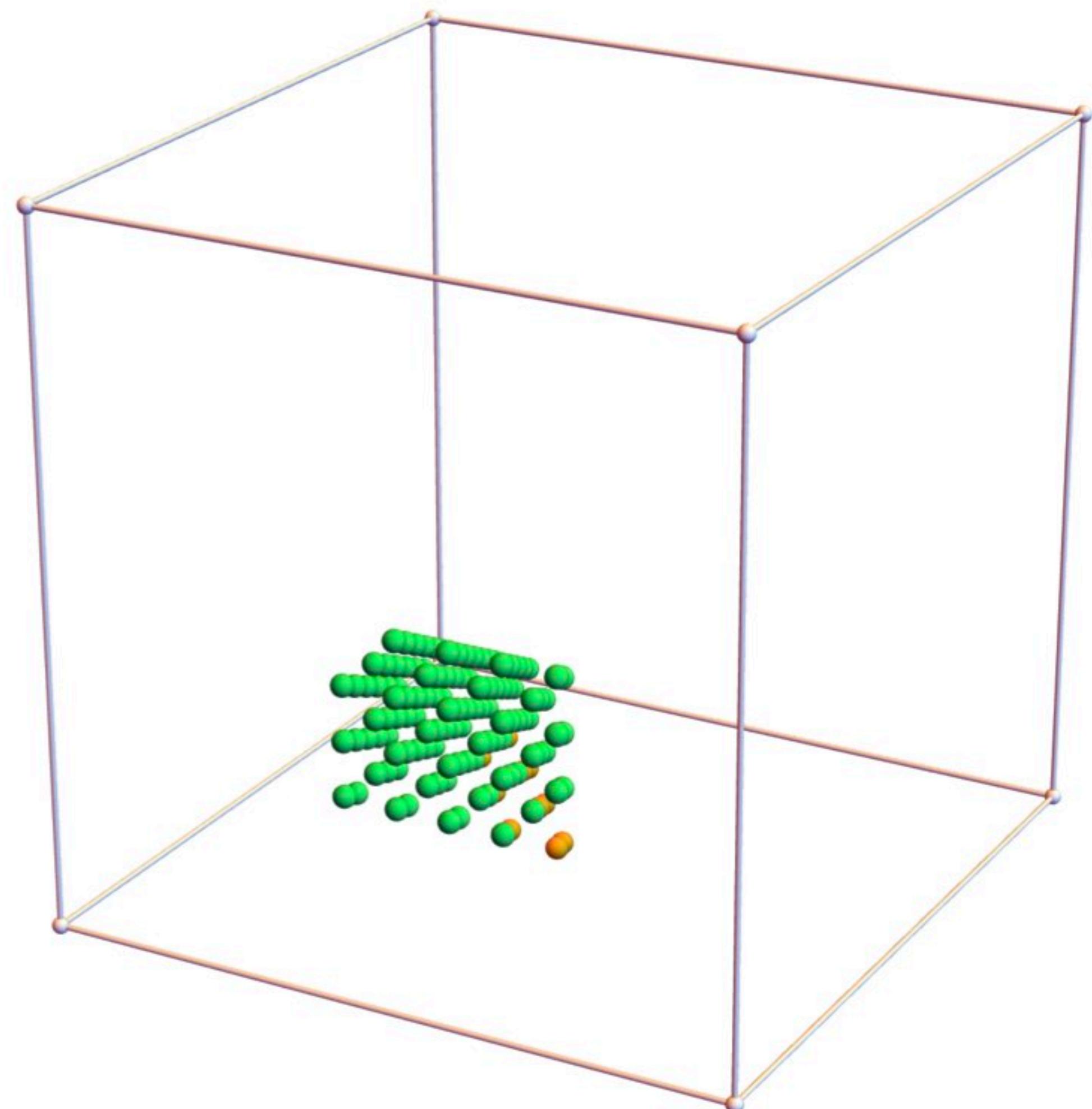
455

385

273

176

127



The $5/9$ rule, a few $b > 2c + 2$ exit

Exponent Lattices and the “Super-Sector”

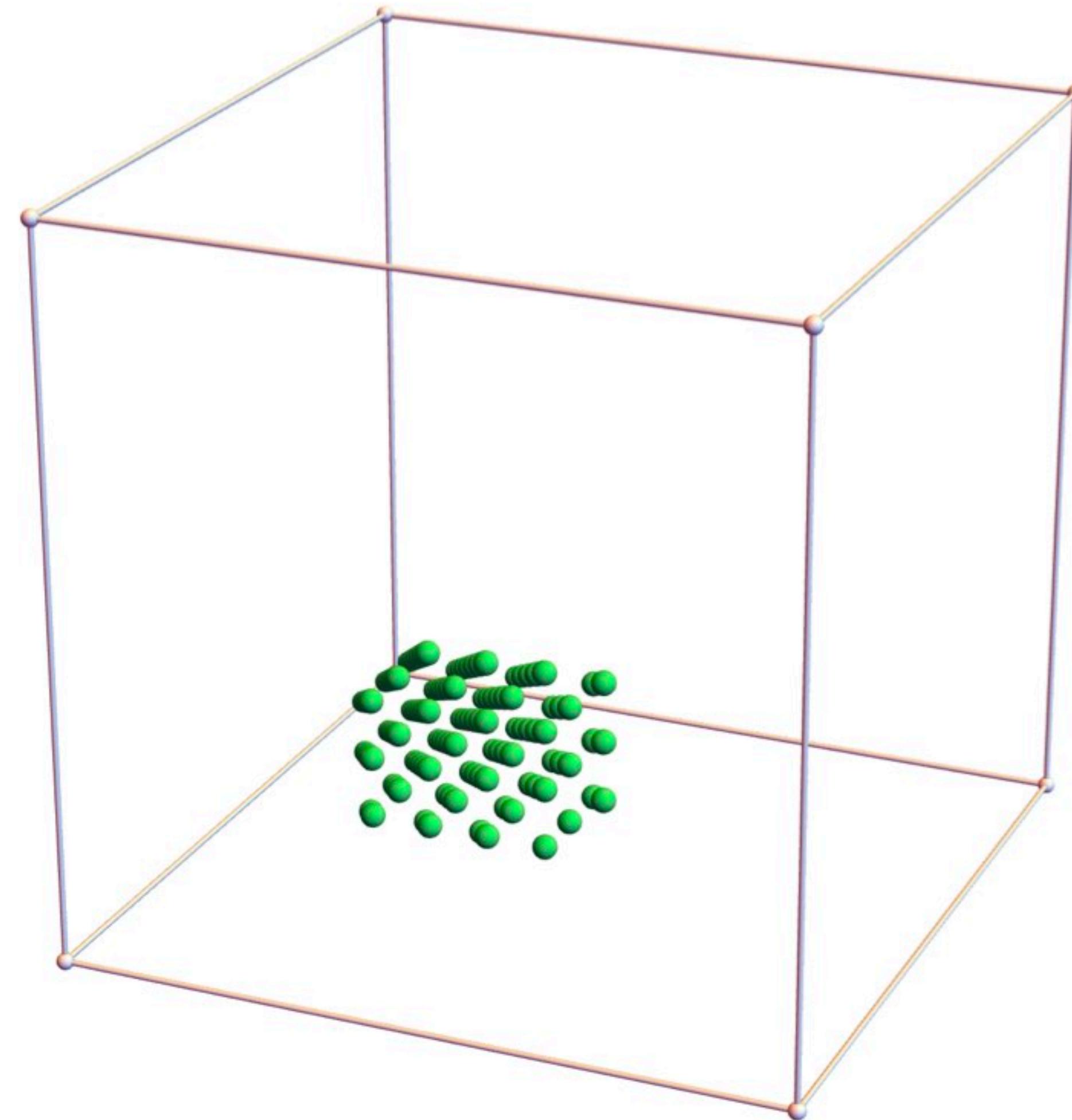
Start with all (a, b, c) in a cube with $0 \leq a, b, c \leq 12$, and get rid of any with $a < b, b < c, a < c$.

Let's watch these bad lattice points get shaved off and expose the super-sector:

Now apply some rules involving just two primes, such as 3/4 or 5/8, to eliminate certain (a, b, c) triples from super-contention.

left

2197
1183
819
455
385
273
176
127
117



Down to 117 triples with $b \leq 2c + 2$

Exponent Lattices and the “Super-Sector”

Start with all (a, b, c) in a cube with $0 \leq a, b, c \leq 12$, and get rid of any with $a < b, b < c, a < c$.

Let's watch these bad lattice points get shaved off and expose the super-sector:

Now apply some rules involving just two primes, such as 3/4 or 5/8, to eliminate certain (a, b, c) triples from super-contention.

left

2197

1183

819

455

385

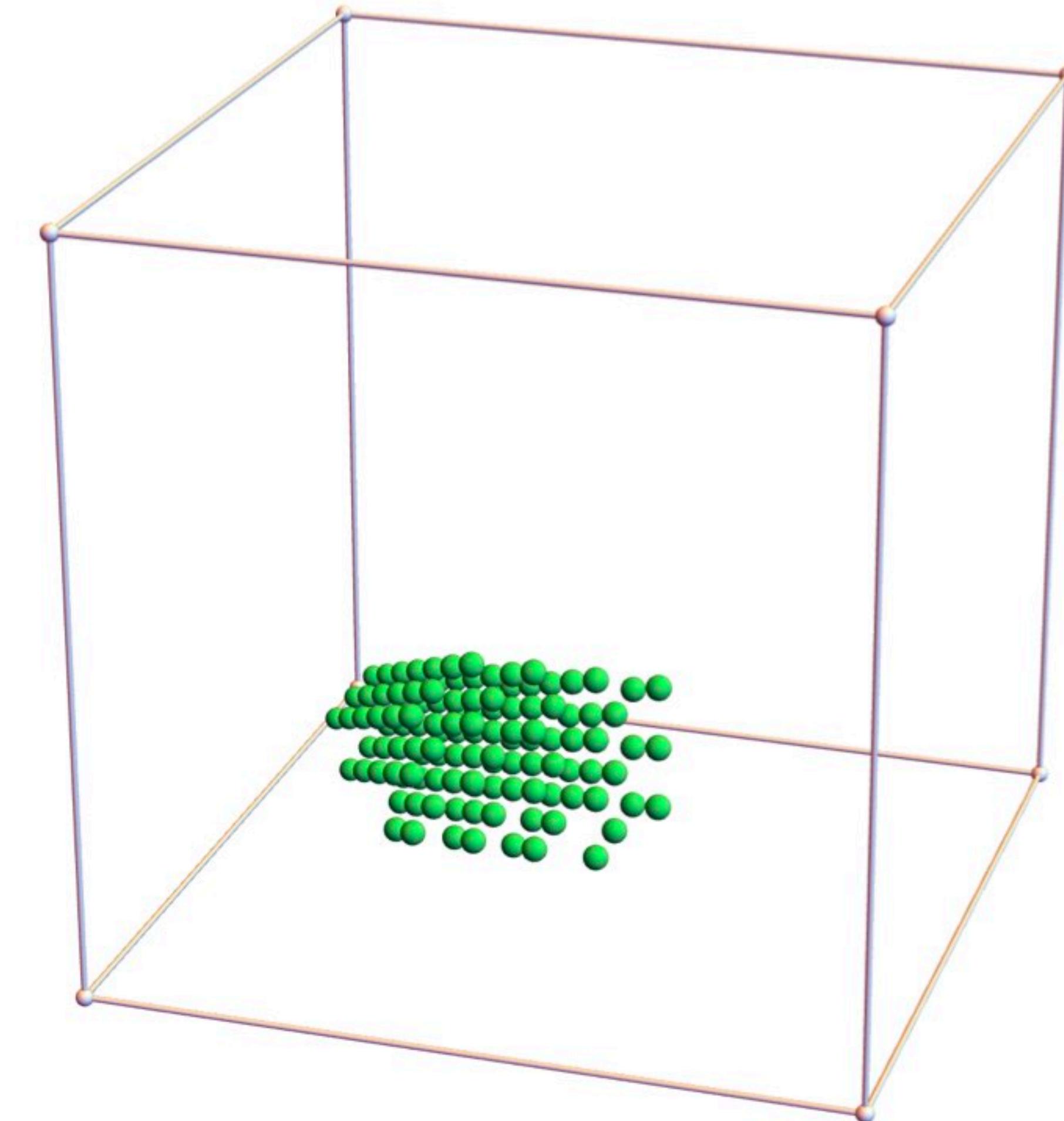
273

176

127

117

117



The 81/125 rule, no small triples leave.

Exponent Lattices and the “Super-Sector”

Start with all (a, b, c) in a cube with $0 \leq a, b, c \leq 12$, and get rid of any with $a < b$, $b < c$, $a < c$.

Let's watch these bad lattice points get shaved off and expose the super-sector:

Now apply some rules involving just two primes, such as 3/4 or 5/8, to eliminate certain (a, b, c) triples from super-contention.

left

2197

1183

819

455

385

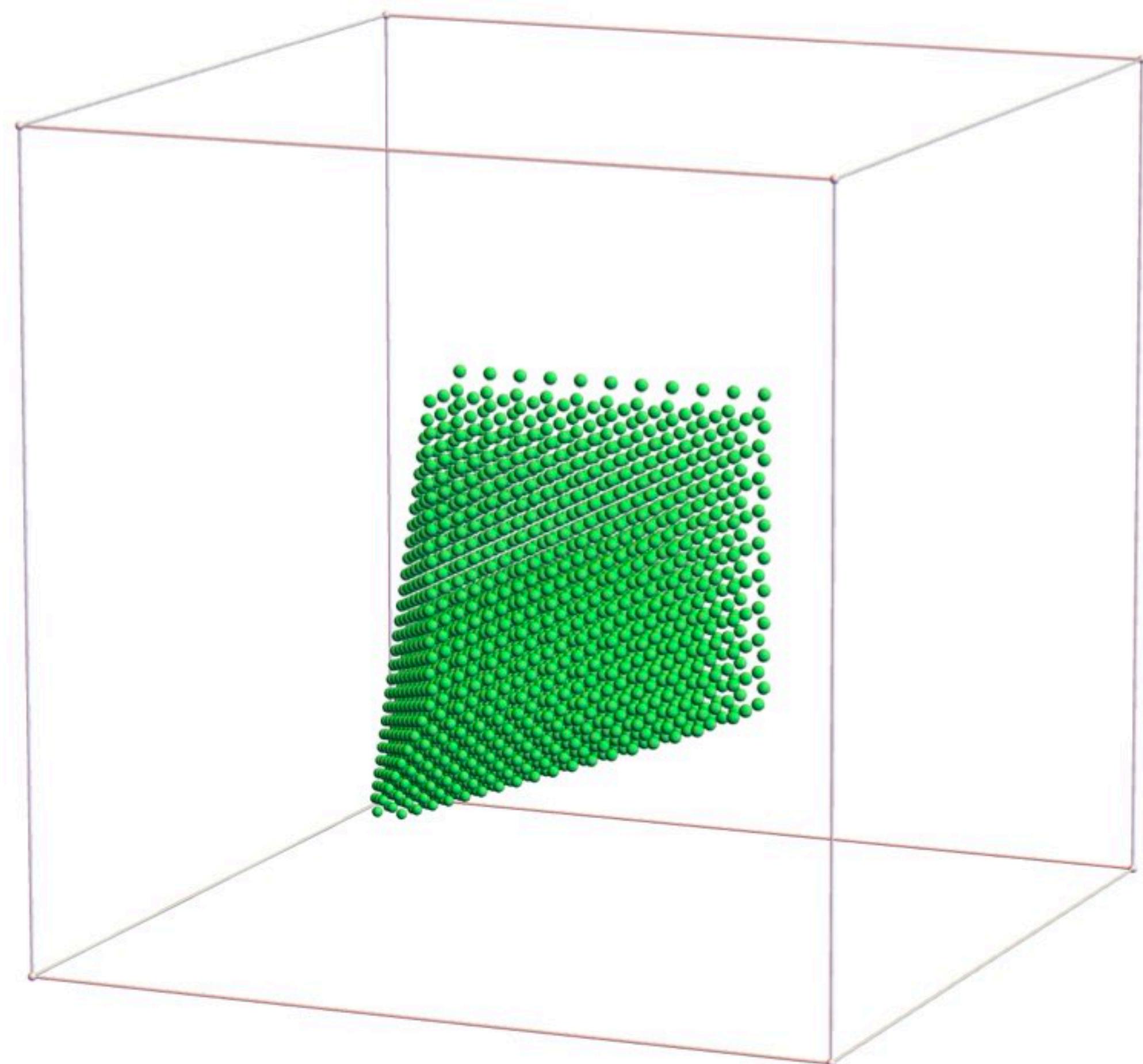
273

176

127

117

117



Let's use lots more dots, 55 each way

Exponent Lattices and the “Super-Sector”

Start with all (a, b, c) in a cube with $0 \leq a, b, c \leq 12$, and get rid of any with $a < b$, $b < c$, $a < c$.

Let's watch these bad lattice points get shaved off and expose the super-sector:

Now apply some rules involving just two primes, such as 3/4 or 5/8, to eliminate certain (a, b, c) triples from super-contention.

left

2197

1183

819

455

385

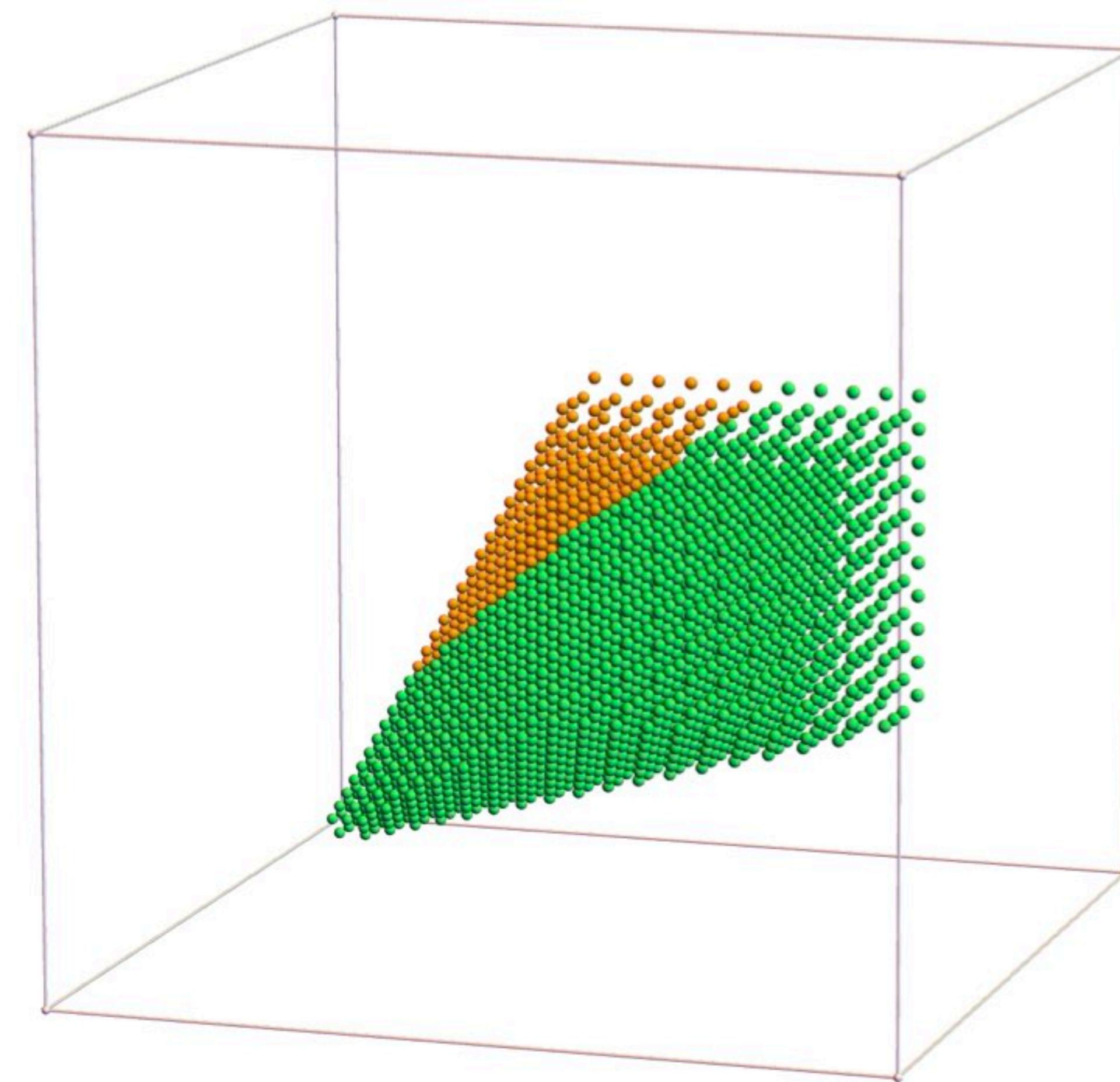
273

176

127

117

117



Now the 81/125 rules out a bunch

Exponent Lattices and the “Super-Sector”

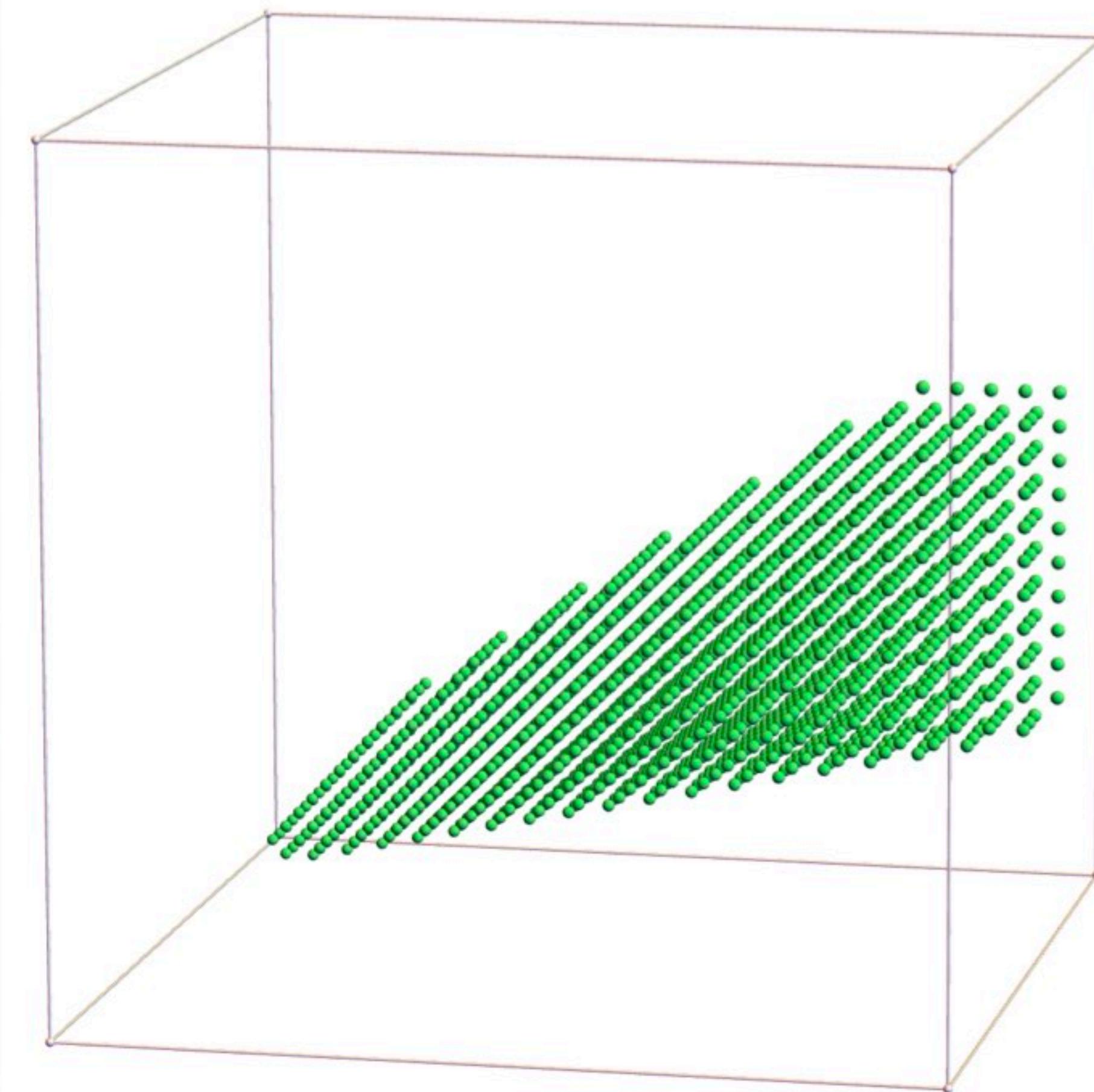
Start with all (a, b, c) in a cube with $0 \leq a, b, c \leq 12$, and get rid of any with $a < b$, $b < c$, $a < c$.

Let's watch these bad lattice points get shaved off and expose the super-sector:

Now apply some rules involving just two primes, such as 3/4 or 5/8, to eliminate certain (a, b, c) triples from super-contention.

left

2197
1183
819
455
385
273
176
127
117
117



The survivors, after “linear shaving”

Exponent Lattices and the “Super-Sector”

For $n = 2^a 3^b 5^c \dots$ to be super-composite, we have new rules that use all of a, b, and c:

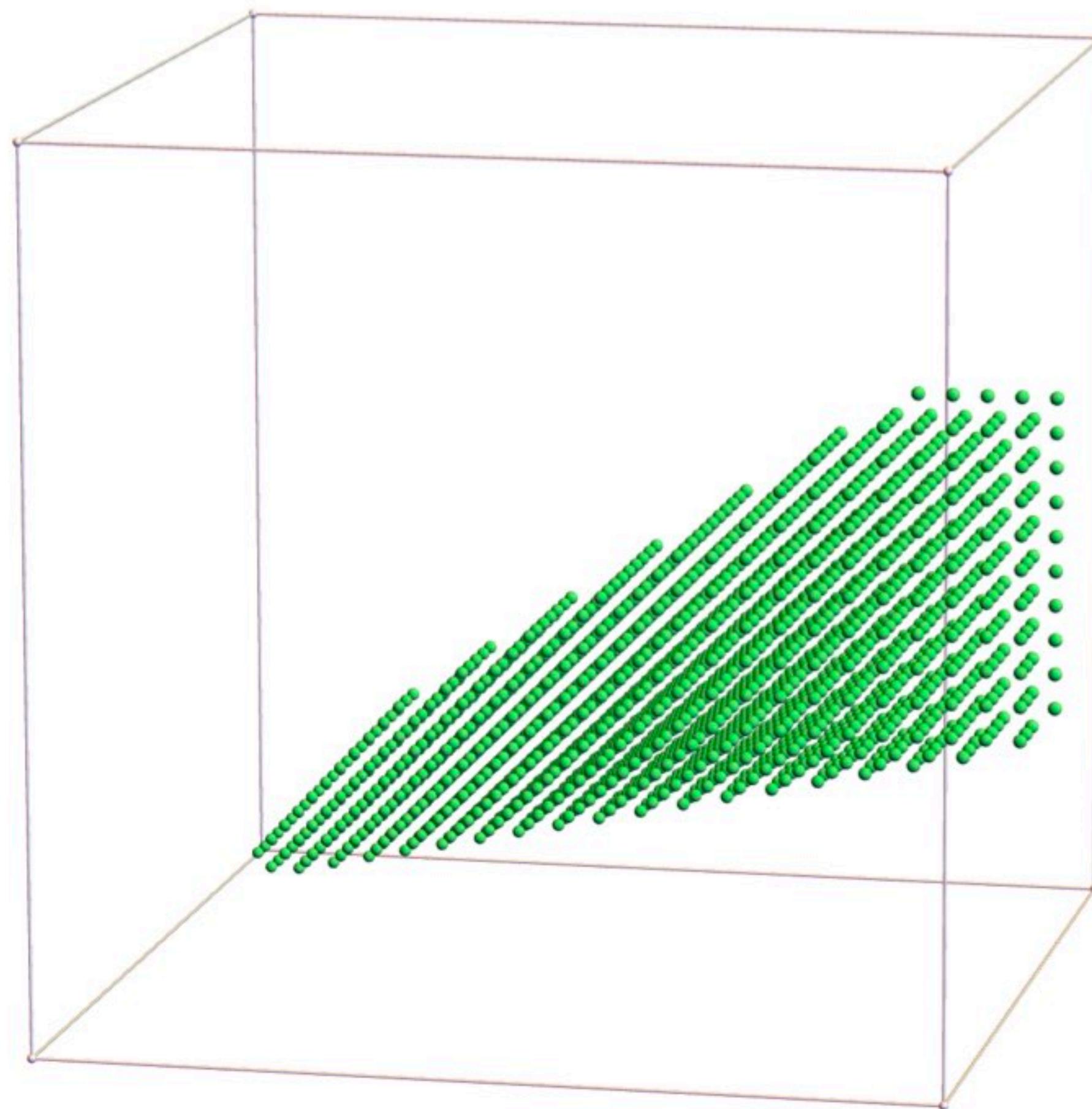
$$ab - ac - bc \leq a + b + c \quad (\text{using rule of 5/6})$$

$$2ac - ab - bc \leq a + b + c \quad (\text{using rule of 9/10})$$

$$ab + ac - 4bc \leq -3a + 7b + 7c + 12 \quad (\text{r.15/16})$$

$$-2ab + ac + 3bc \leq 3a + 5b - 7c + 8 \quad (\text{r.24/25})$$

$$-2ab + 2ac + bc \leq 4a + 3b - 5c + 6 \quad (\text{r.18/25})$$



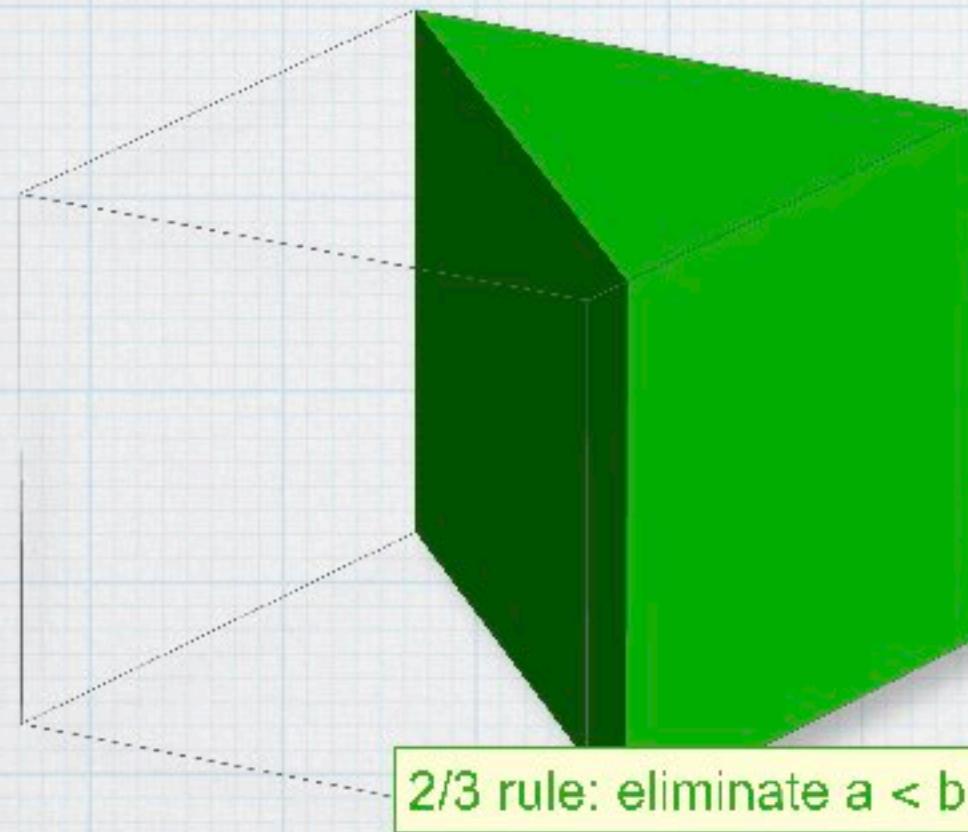
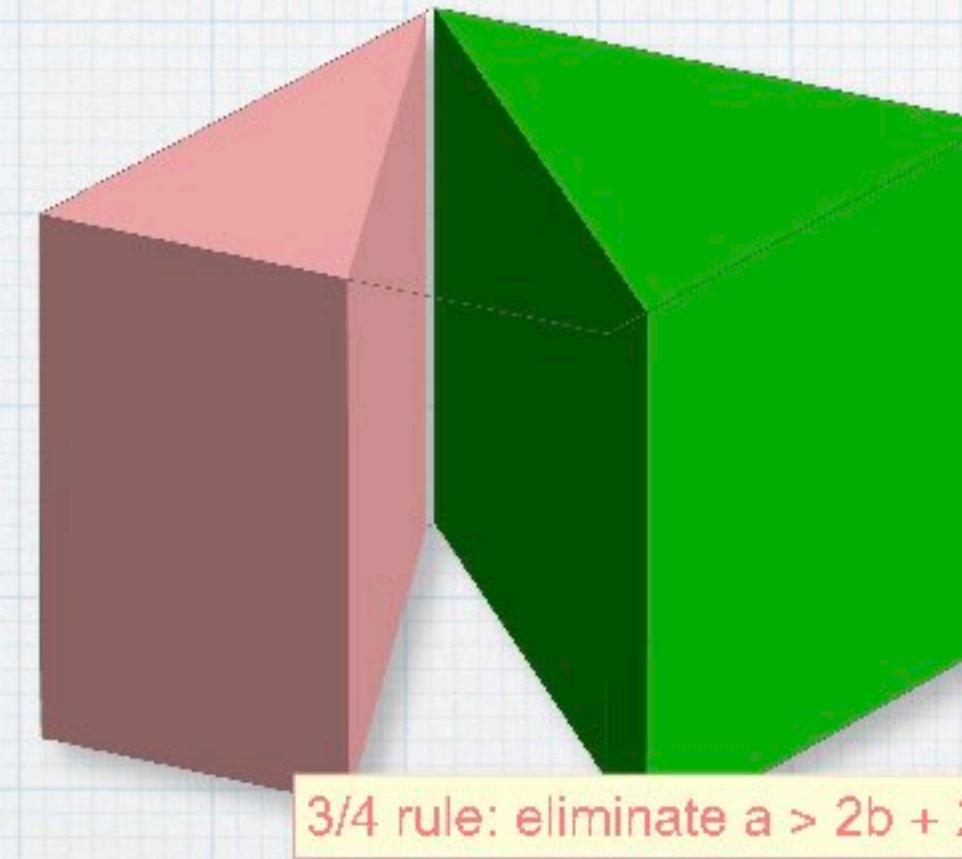
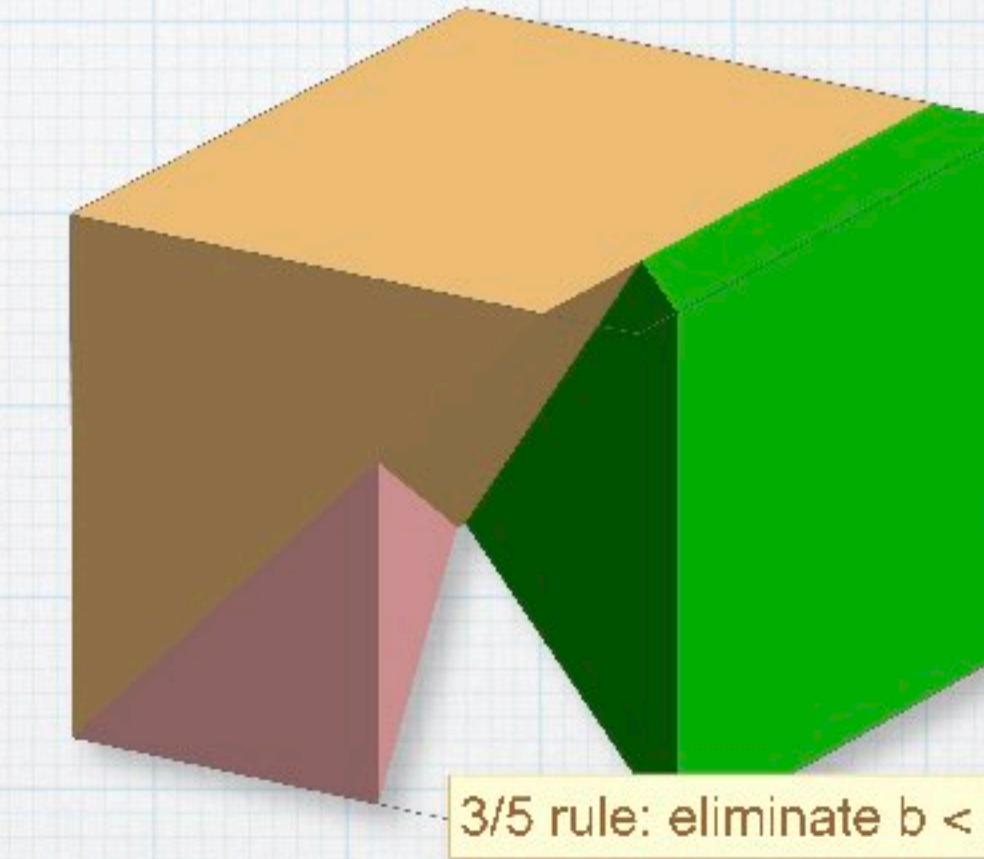
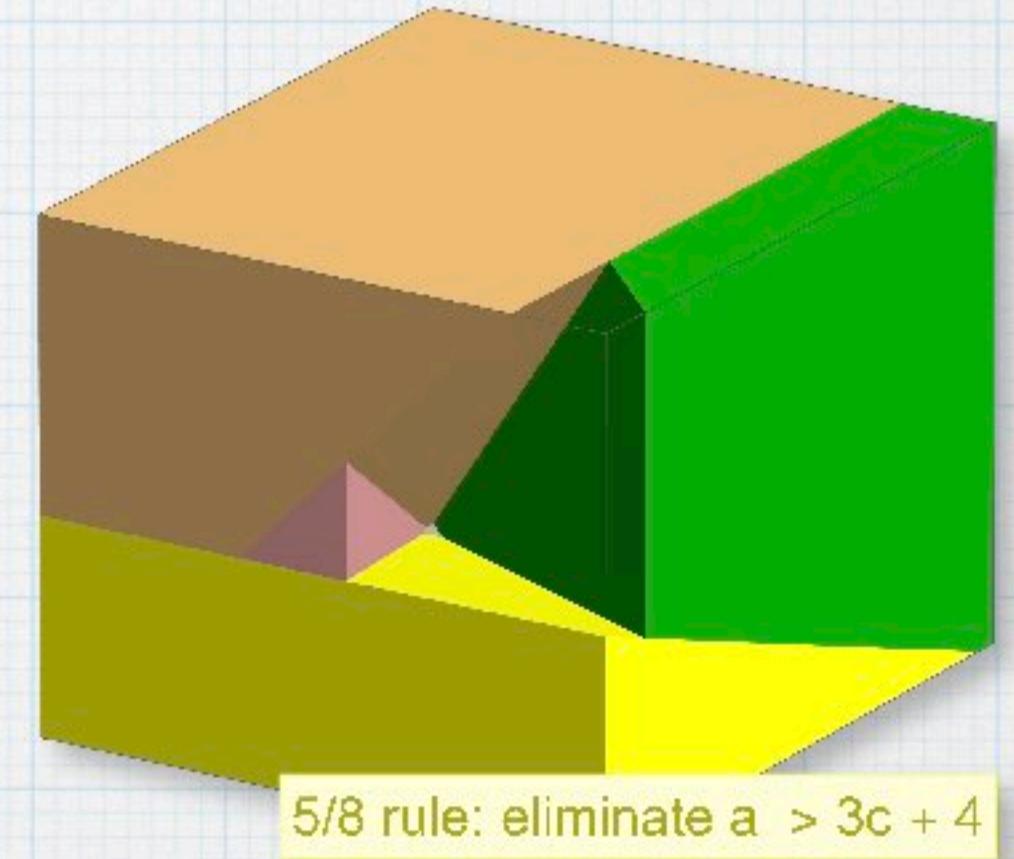
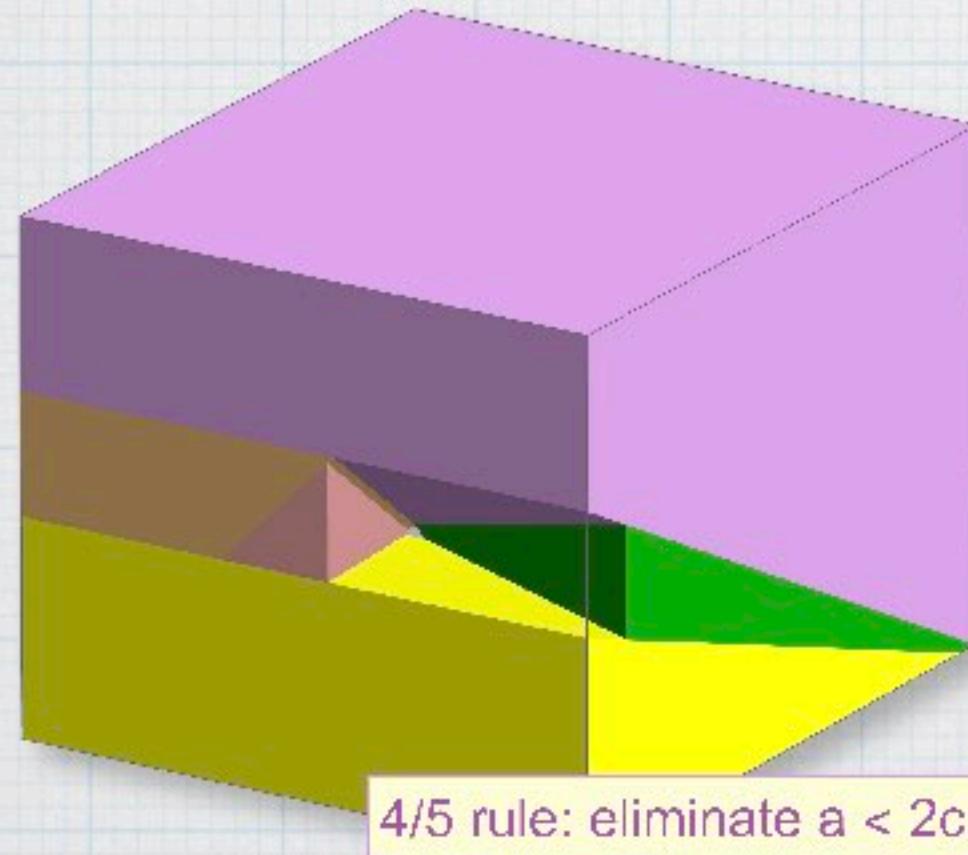
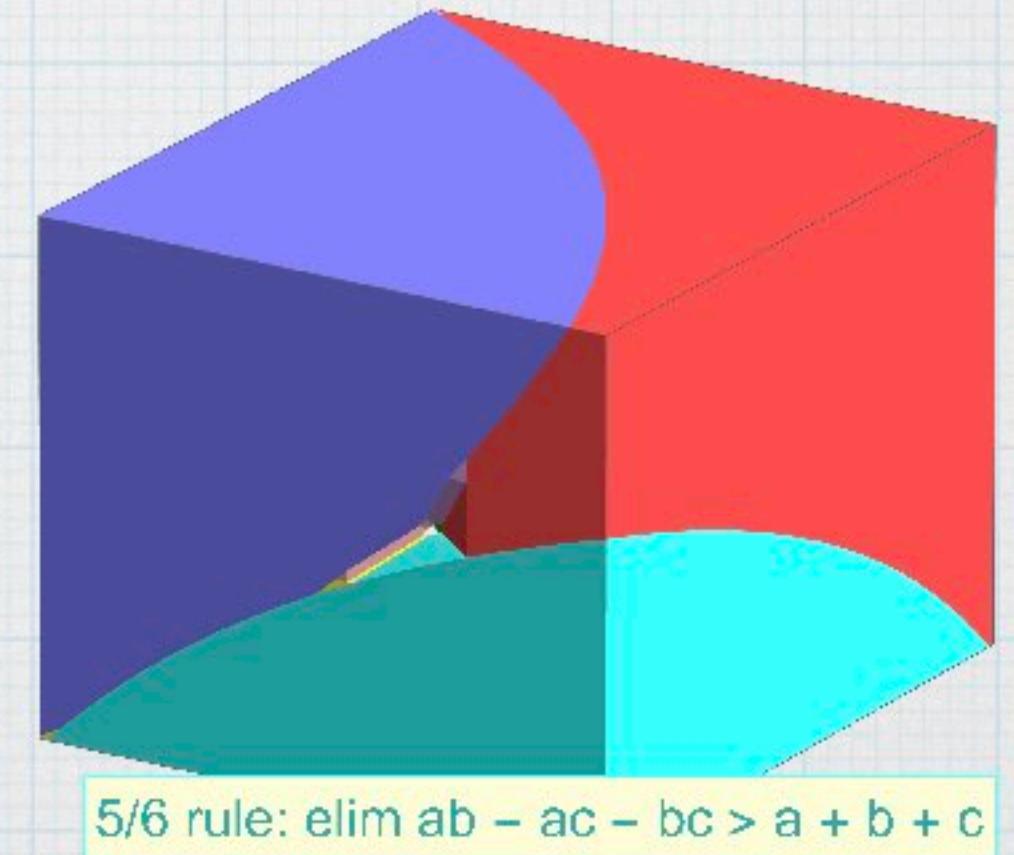
The survivors, after “linear shaving”

Inequalities Expose the Super-Sector

Each picture eliminates another
'bad' part of the cube, leaving
the eligible supersector empty.

Inequalities Expose the Super-Sector

Each picture eliminates another 'bad' part of the cube, leaving the eligible supersector empty.

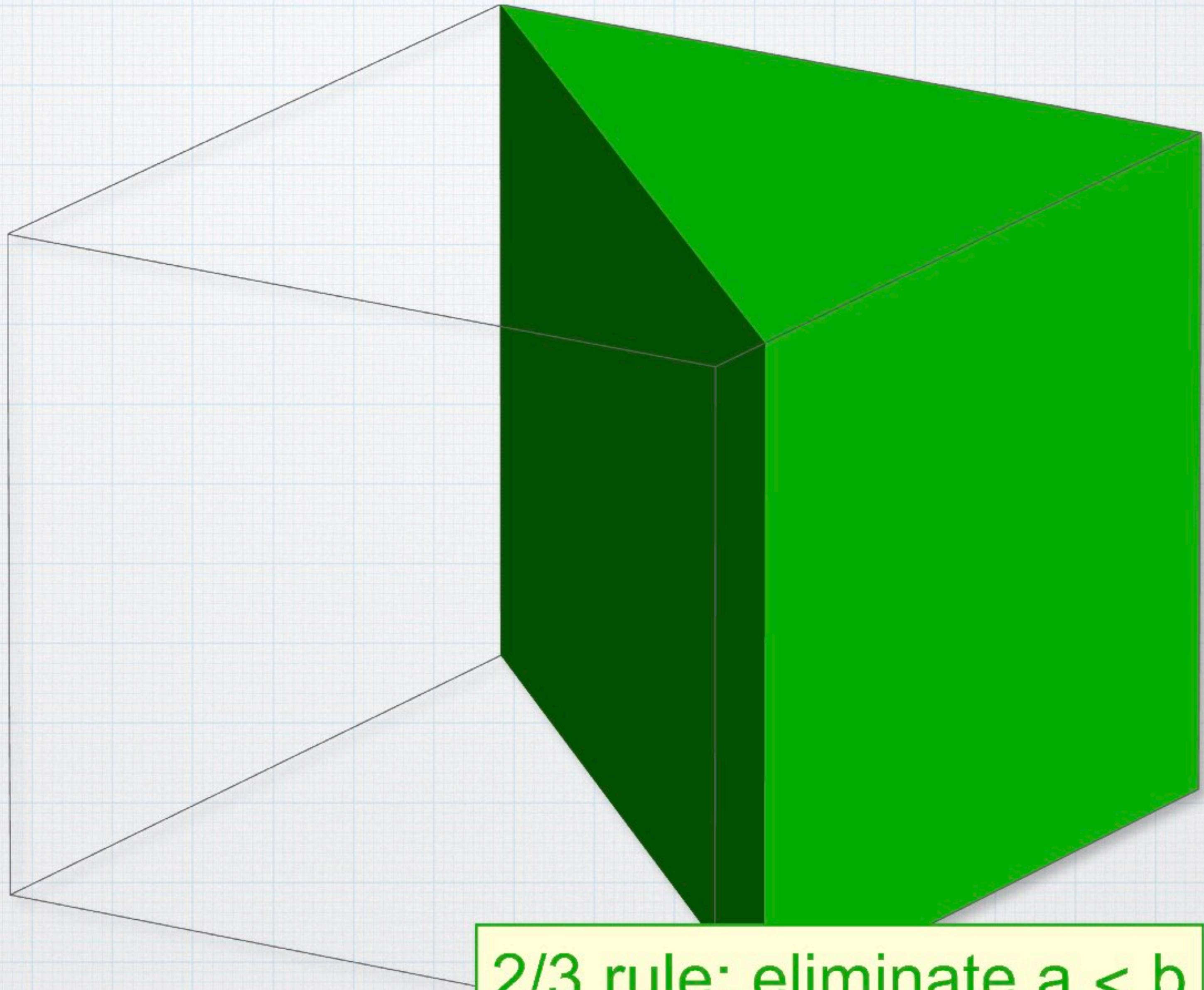


A Bigger Box for the Super-Sector

Each new picture eliminates another 'bad' part of the cube, leaving the super-sector empty.

A Bigger Box for the Super-Sector

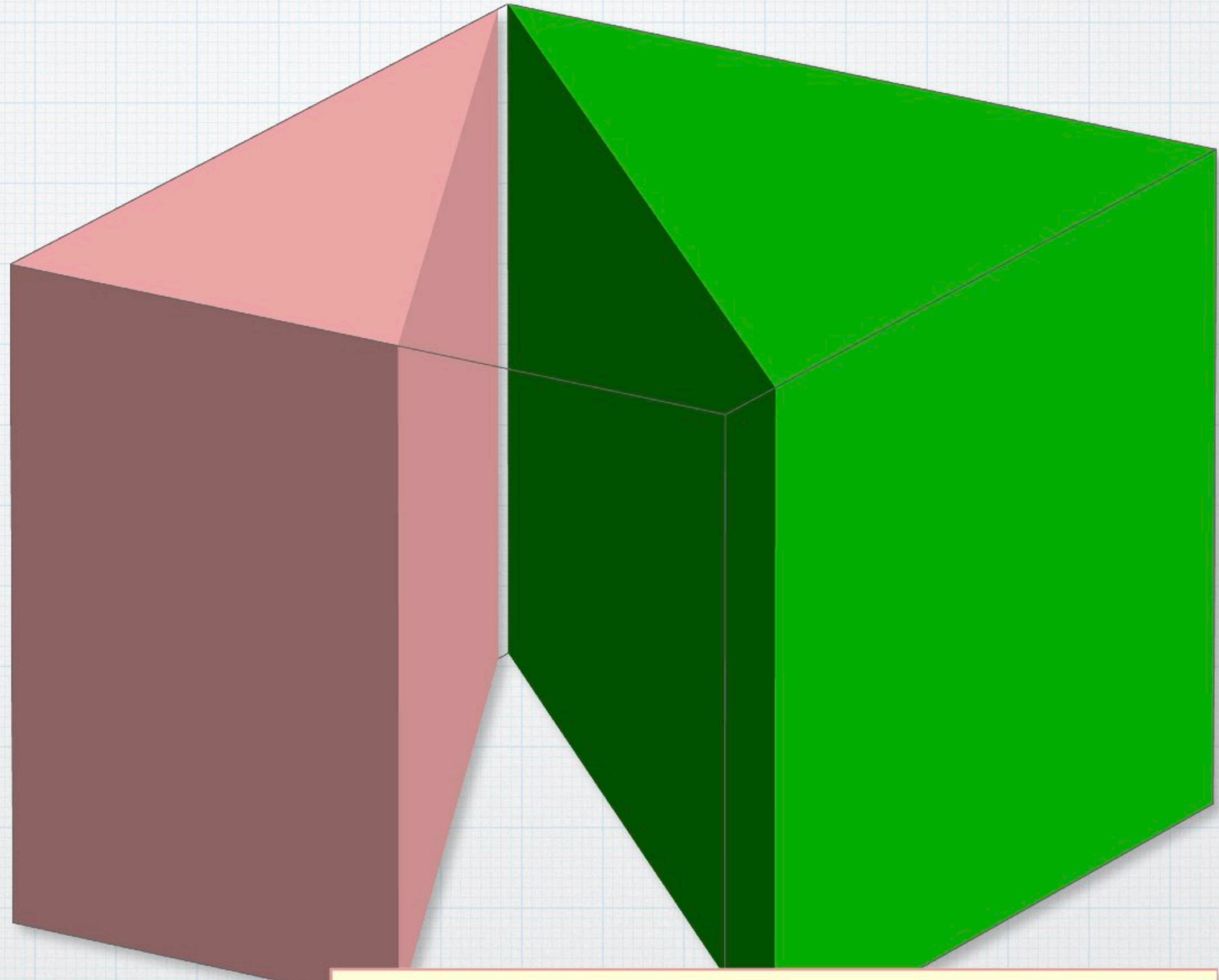
Each new picture eliminates another 'bad' part of the cube, leaving the super-sector empty.



2/3 rule: eliminate $a < b$

A Bigger Box for the Super-Sector

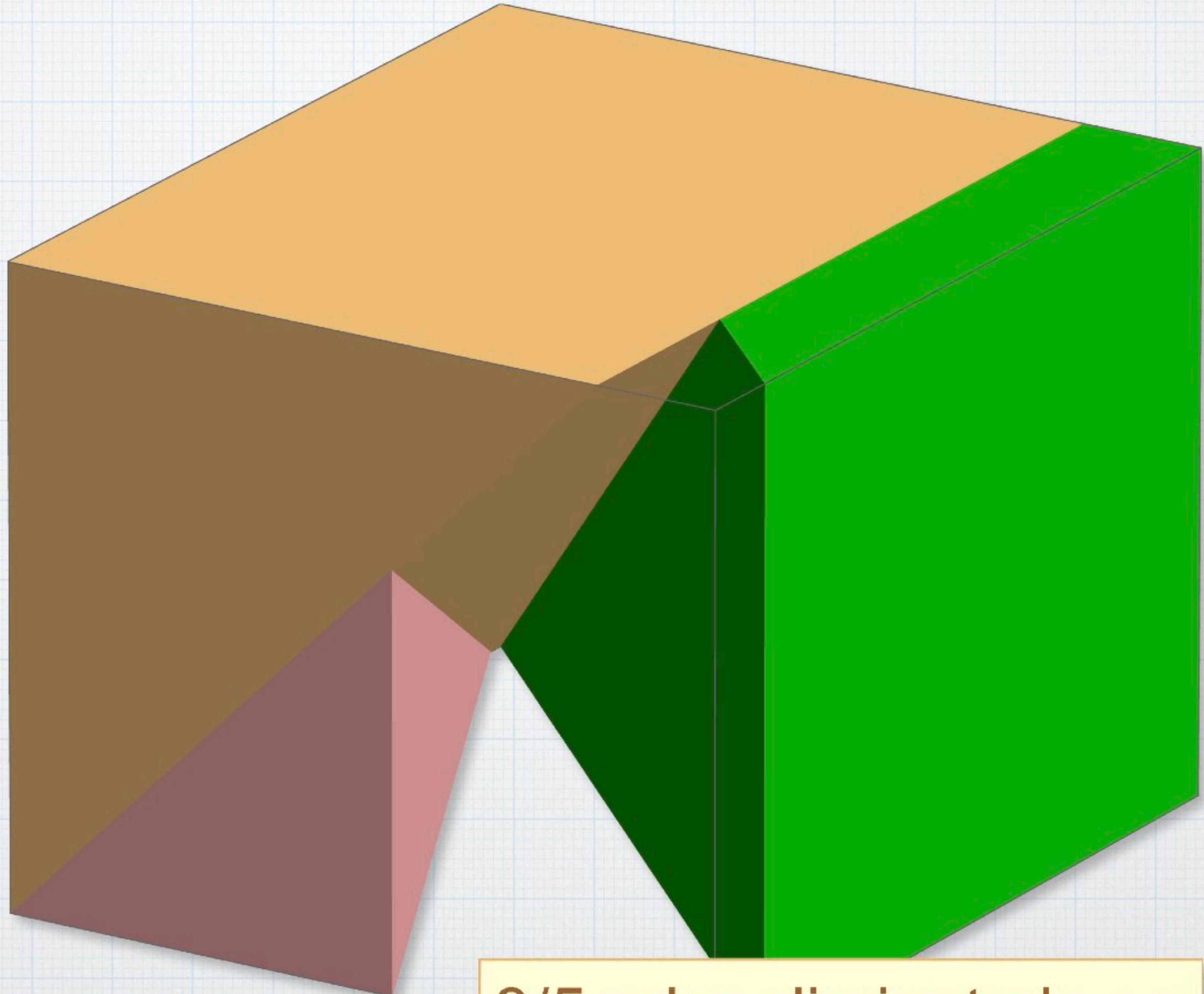
Each new picture eliminates another 'bad' part of the cube, leaving the super-sector empty.



3/4 rule: eliminate $a > 2b + 2$

A Bigger Box for the Super-Sector

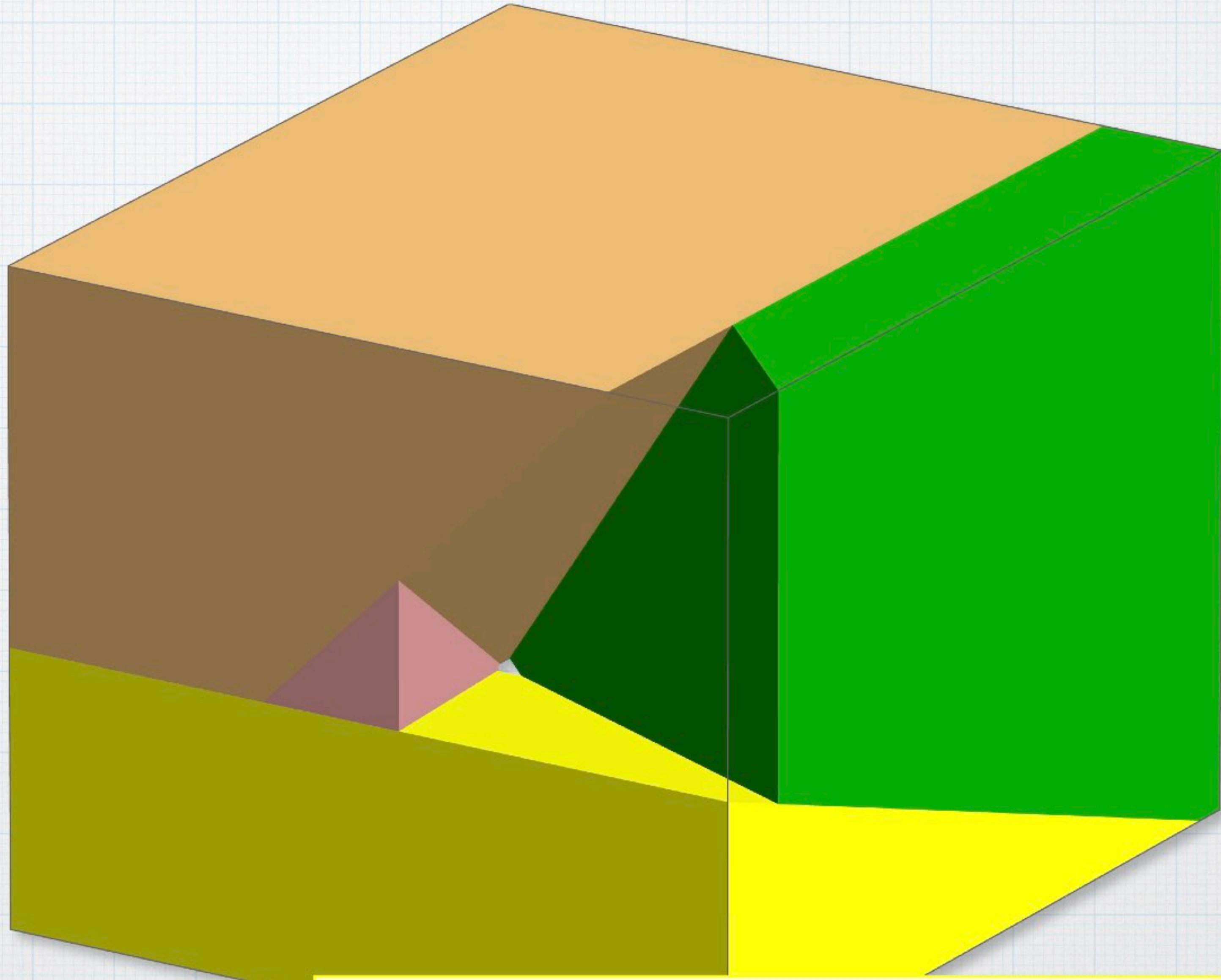
Each new picture eliminates another 'bad' part of the cube, leaving the super-sector empty.



3/5 rule: eliminate $b < c$

A Bigger Box for the Super-Sector

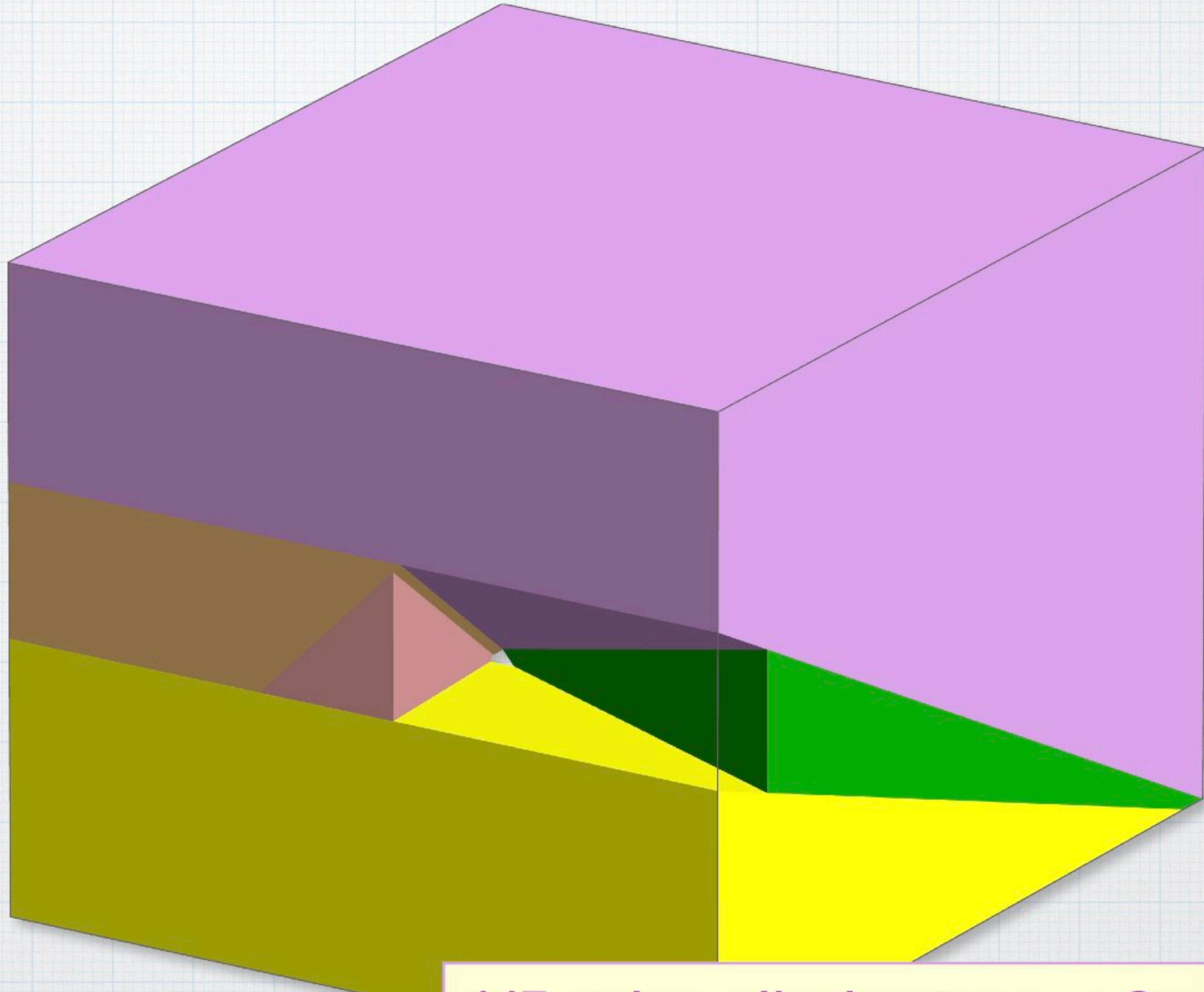
Each new picture eliminates another 'bad' part of the cube, leaving the super-sector empty.



5/8 rule: eliminate $a > 3c + 4$

A Bigger Box for the Super-Sector

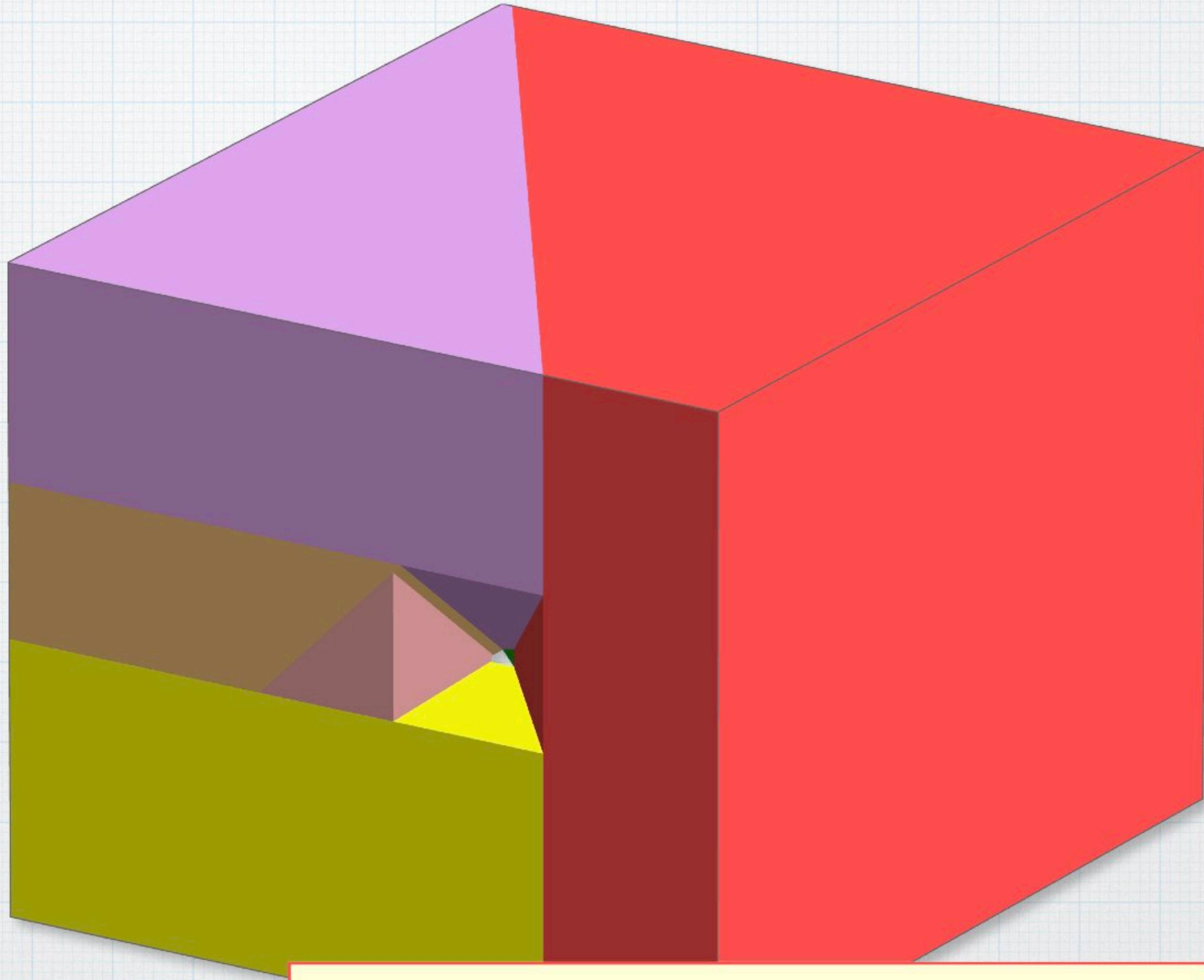
Each new picture eliminates another 'bad' part of the cube, leaving the super-sector empty.



4/5 rule: eliminate $a < 2c$

A Bigger Box for the Super-Sector

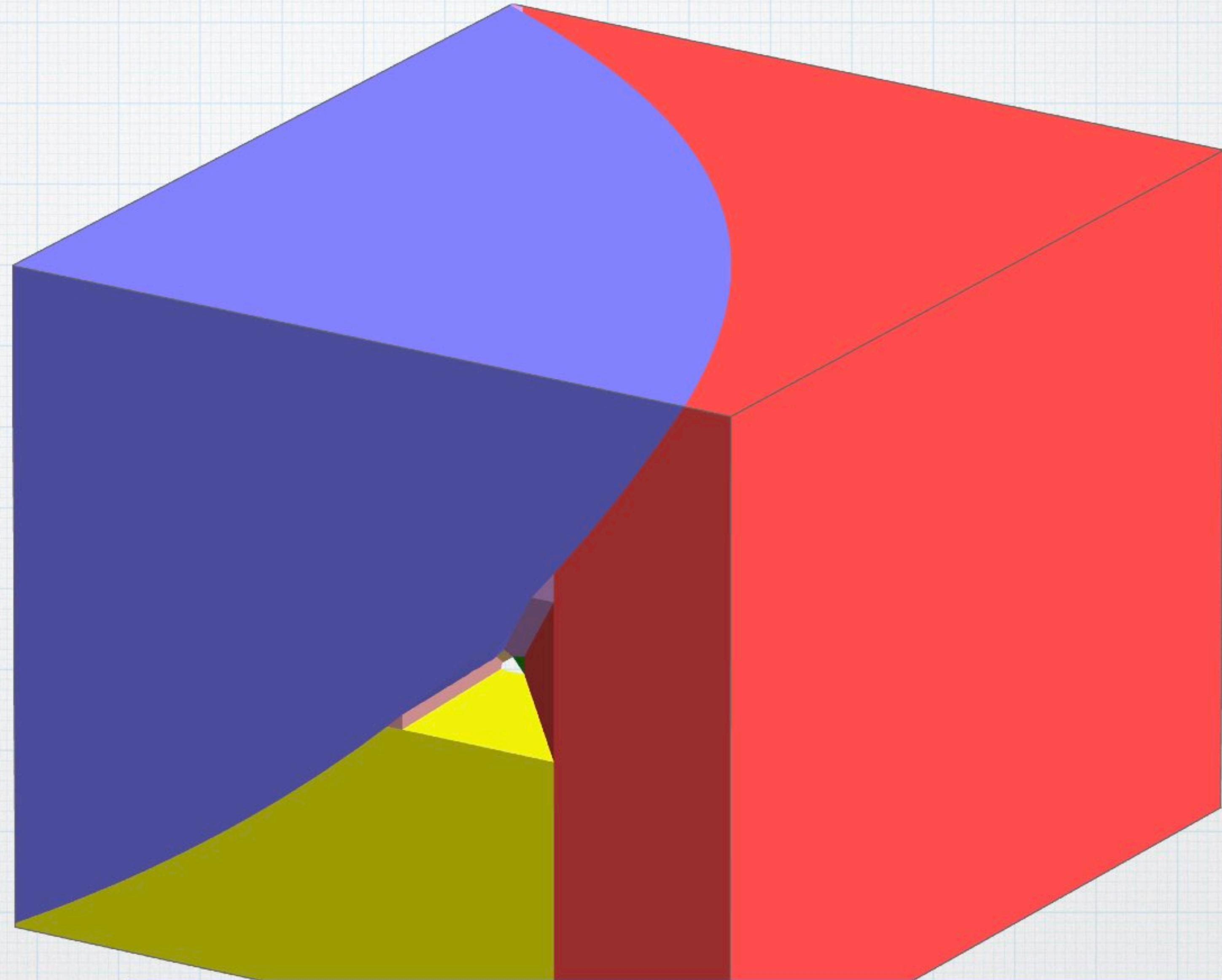
Each new picture eliminates another 'bad' part of the cube, leaving the super-sector empty.



8/9 rule: eliminate $2a < 3b - 4$

A Bigger Box for the Super-Sector

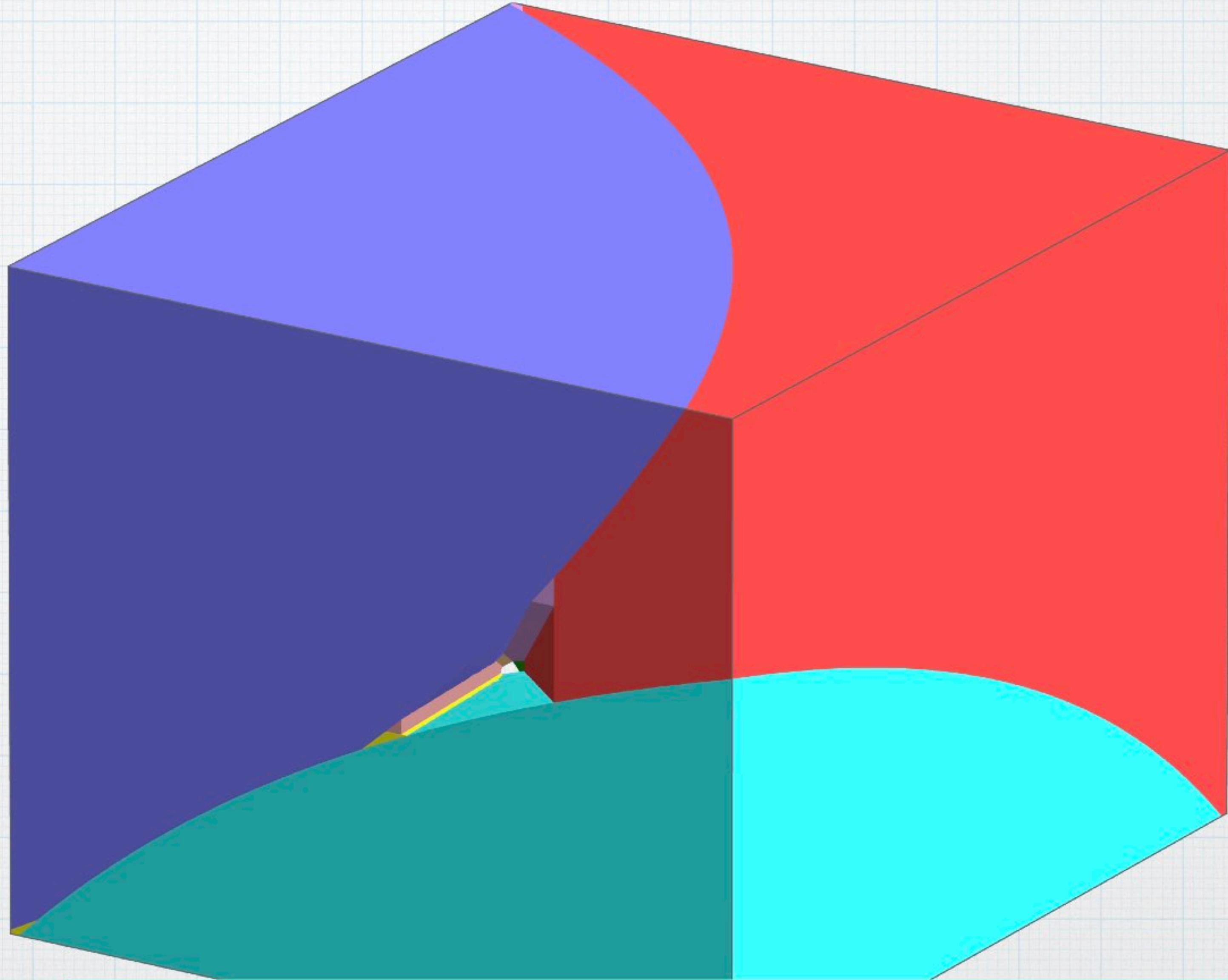
Each new picture eliminates another 'bad' part of the cube, leaving the super-sector empty.



9/10 rule: $2ac - ab - bc > a + b + c$

A Bigger Box for the Super-Sector

Each new picture eliminates another 'bad' part of the cube, leaving the super-sector empty.

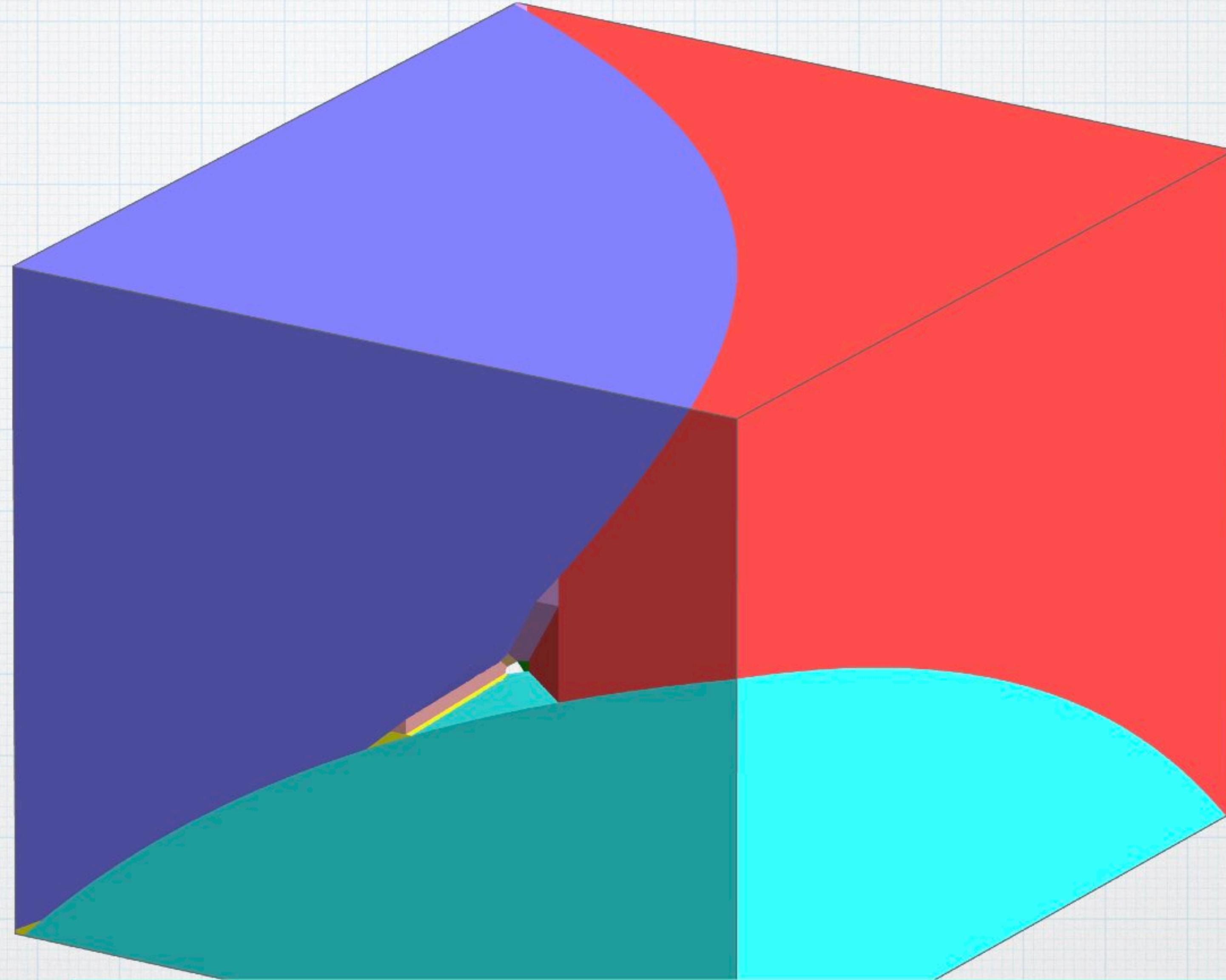


5/6 rule: $\text{elim } ab - ac - bc > a + b + c$

A Bigger Box for the Super-Sector

Each new picture eliminates another 'bad' part of the cube, leaving the super-sector empty.

The cube represents all exponents of $2^a 3^b 5^c$ with
 $0 \leq a \leq 100$,
 $0 \leq b \leq 90$,
 $0 \leq c \leq 75$.



5/6 rule: $\text{elim } ab - ac - bc > a + b + c$

Even More Superiority

Supercomposite numbers are at *local* maxima on the $d(n)$ graph, but the graph can be *distorted* by dividing by n to a power.

If an s.c. number is a *global* max of $f(n) = d(n)/(n^k)$ for some k , then it's called a ***superior*** supercomposite.

Even More Superiority

Supercomposite numbers are at *local* maxima on the $d(n)$ graph, but the graph can be *distorted* by dividing by n to a power.

If an s.c. number is a *global* max of $f(n) = d(n)/(n^k)$ for some k , then it's called a ***superior*** supercomposite.

Note: $d(n) \sim \log(n)$ in the best case, so dividing by any n^k is excessive in the long run, meaning $f(n)$ will approach 0.

Even More Superiority

The effect of dividing $d(n)$ by various n^k

Supercomposite numbers are at *local* maxima on the $d(n)$ graph, but the graph can be *distorted* by dividing by n to a power.

If an s.c. number is a *global* max of $f(n) = d(n)/(n^k)$ for some k , then it's called a ***superior*** supercomposite.

Note: $d(n) \sim \log(n)$ in the best case, so dividing by any n^k is excessive in the long run, meaning $f(n)$ will approach 0.

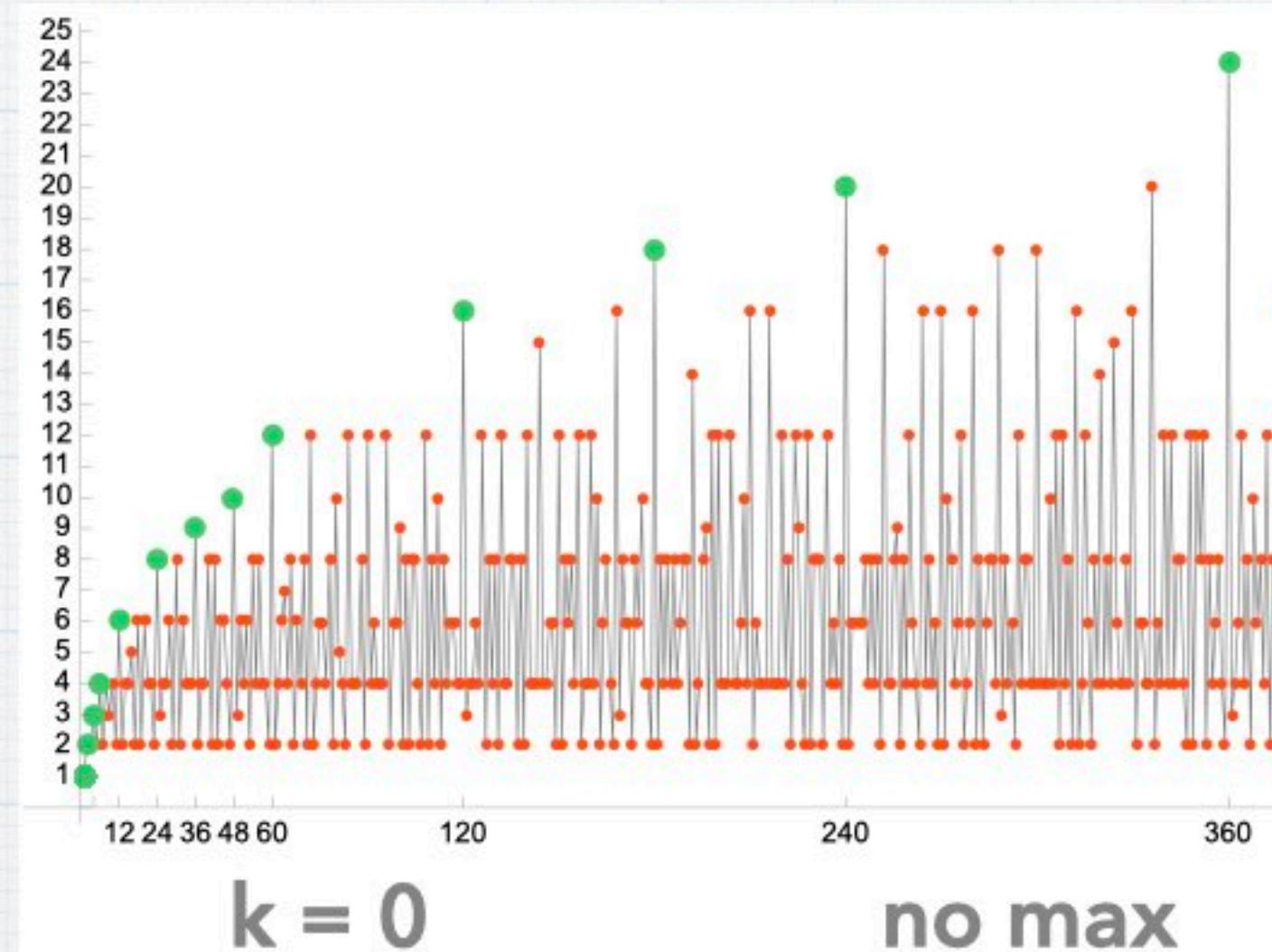
Even More Superiority

The effect of dividing $d(n)$ by various n^k

Supercomposite numbers are at *local* maxima on the $d(n)$ graph, but the graph can be *distorted* by dividing by n to a power.

If an s.c. number is a *global* max of $f(n) = d(n)/(n^k)$ for some k , then it's called a *superior* supercomposite.

Note: $d(n) \sim \log(n)$ in the best case, so dividing by any n^k is excessive in the long run, meaning $f(n)$ will approach 0.

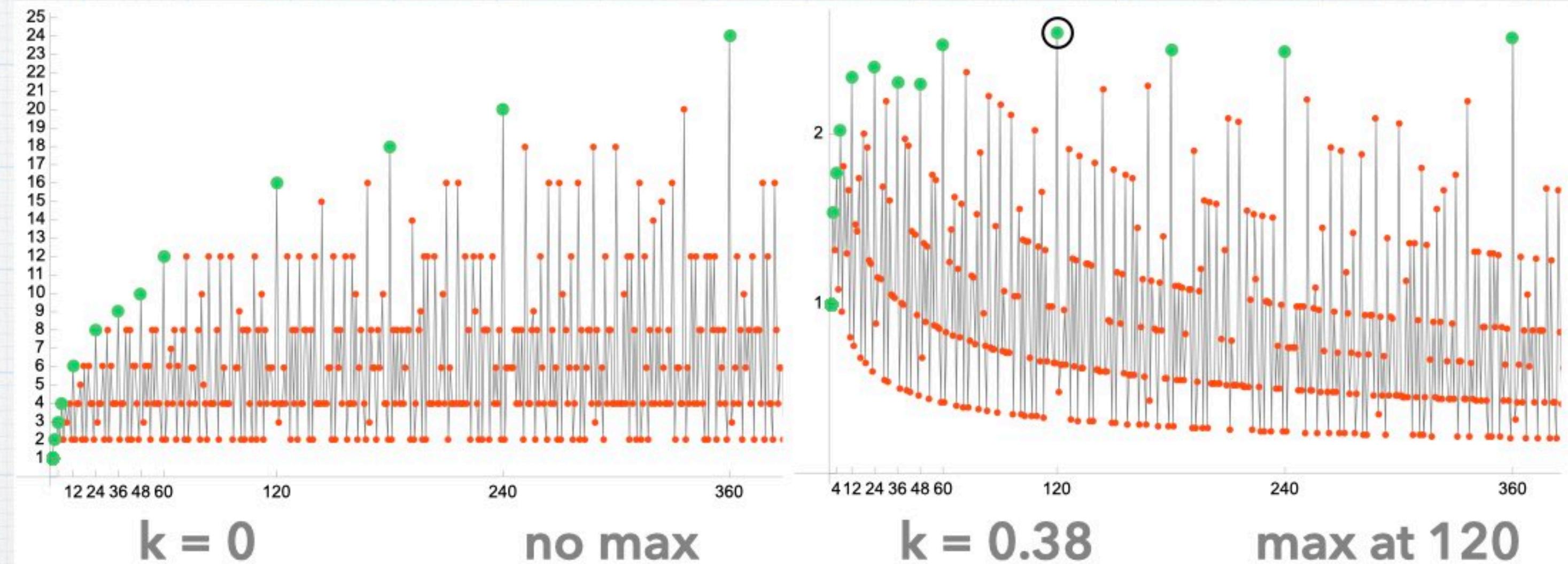


Even More Superiority

Supercomposite numbers are at *local* maxima on the $d(n)$ graph, but the graph can be *distorted* by dividing by n to a power.

If an s.c. number is a *global* max of $f(n) = d(n)/(n^k)$ for some k , then it's called a *superior* supercomposite.

The effect of dividing $d(n)$ by various n^k



Note: $d(n) \sim \log(n)$ in the best case, so dividing by any n^k is excessive in the long run, meaning $f(n)$ will approach 0.

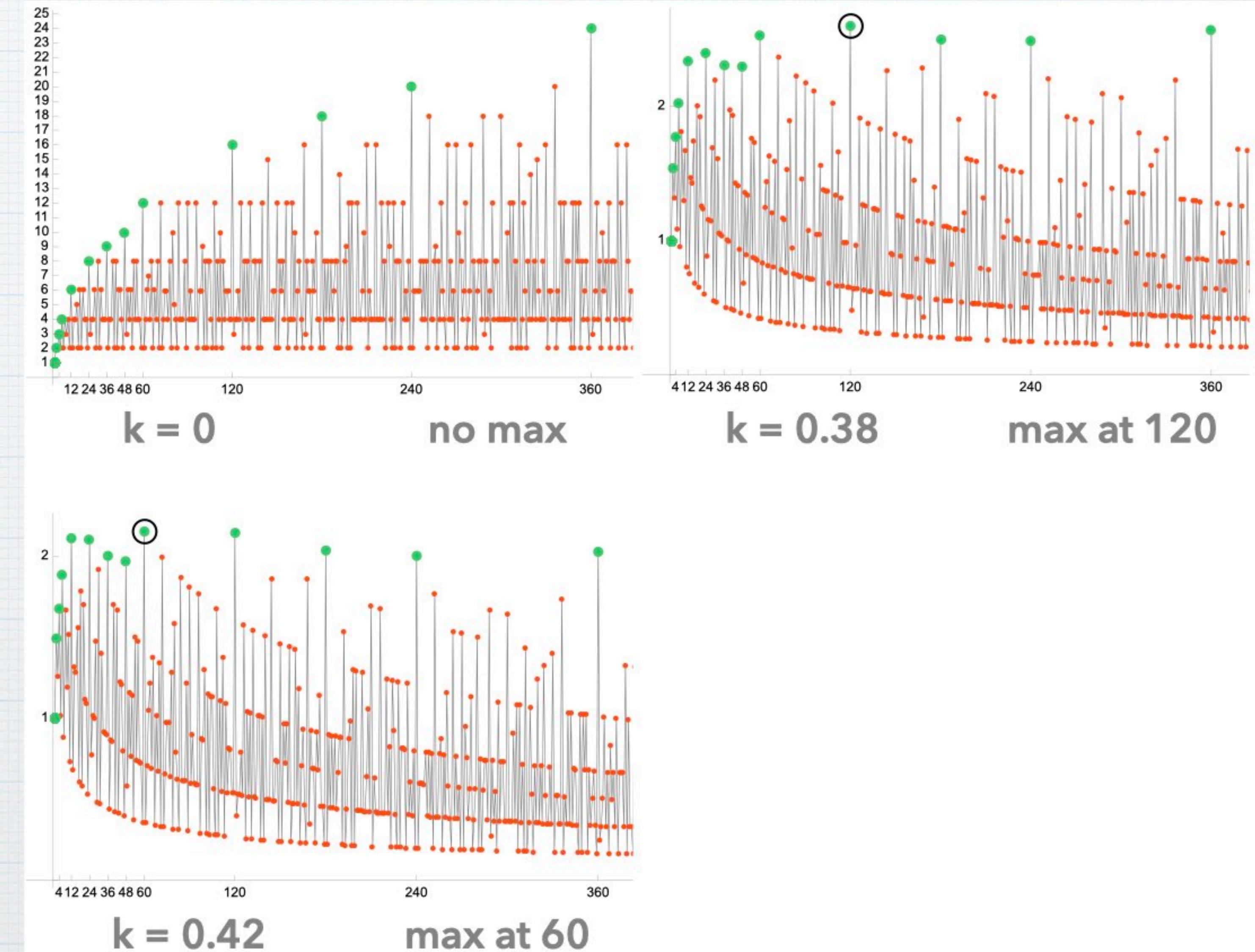
Even More Superiority

Supercomposite numbers are at *local* maxima on the $d(n)$ graph, but the graph can be *distorted* by dividing by n to a power.

If an s.c. number is a *global* max of $f(n) = d(n)/(n^k)$ for some k , then it's called a ***superior*** supercomposite.

Note: $d(n) \sim \log(n)$ in the best case, so dividing by any n^k is excessive in the long run, meaning $f(n)$ will approach 0.

The effect of dividing $d(n)$ by various n^k



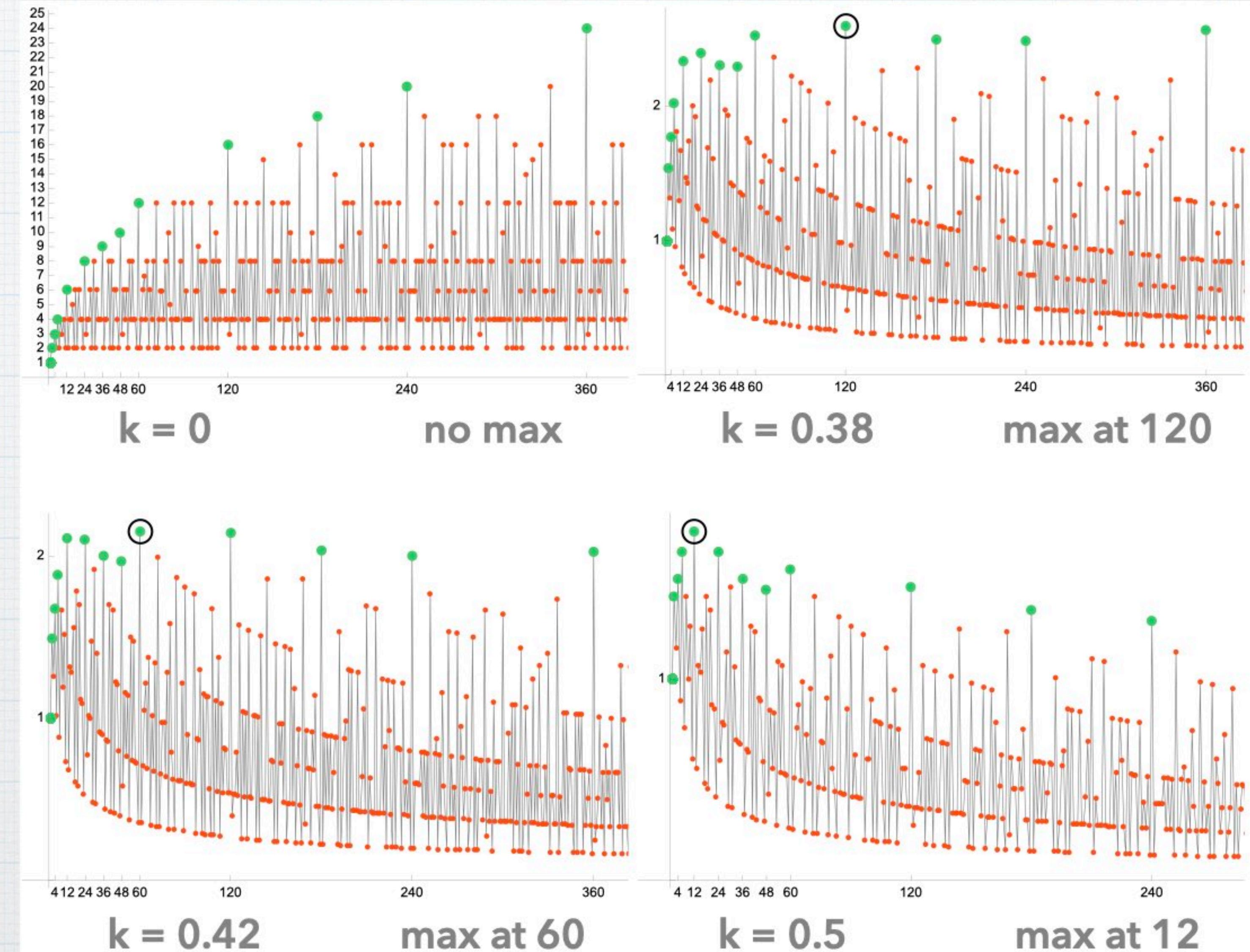
Even More Superiority

Supercomposite numbers are at *local* maxima on the $d(n)$ graph, but the graph can be *distorted* by dividing by n to a power.

If an s.c. number is a *global* max of $f(n) = d(n)/(n^k)$ for some k , then it's called a ***superior*** supercomposite.

Note: $d(n) \sim \log(n)$ in the best case, so dividing by any n^k is excessive in the long run, meaning $f(n)$ will approach 0.

The effect of dividing $d(n)$ by various n^k

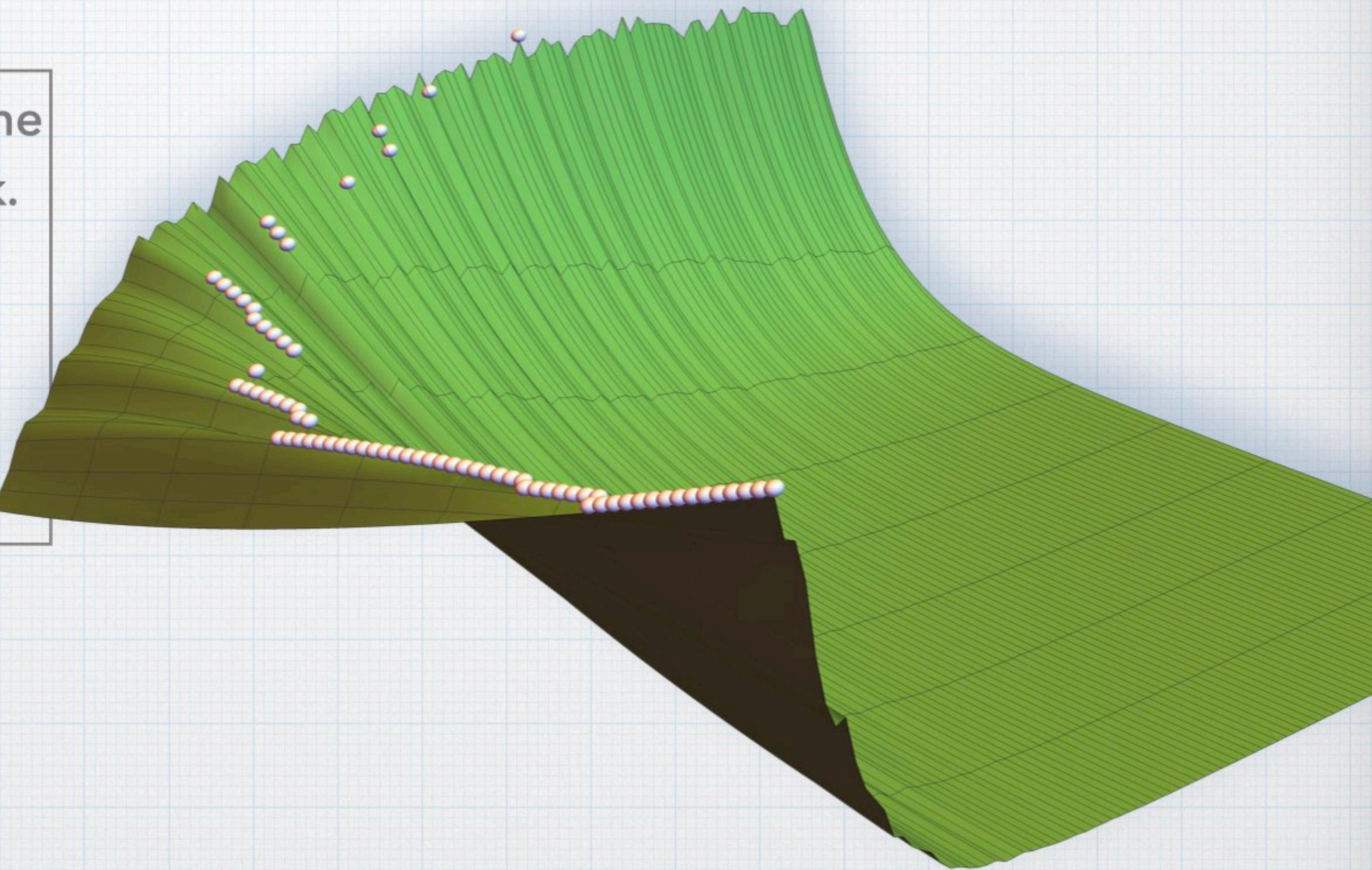


Superior Super-Eggs

Looking at $d(n)/n^k$ we spot the global max superior at each k .

Lay an egg there, and then move on to the next k .

Once in a while, the global max changes.

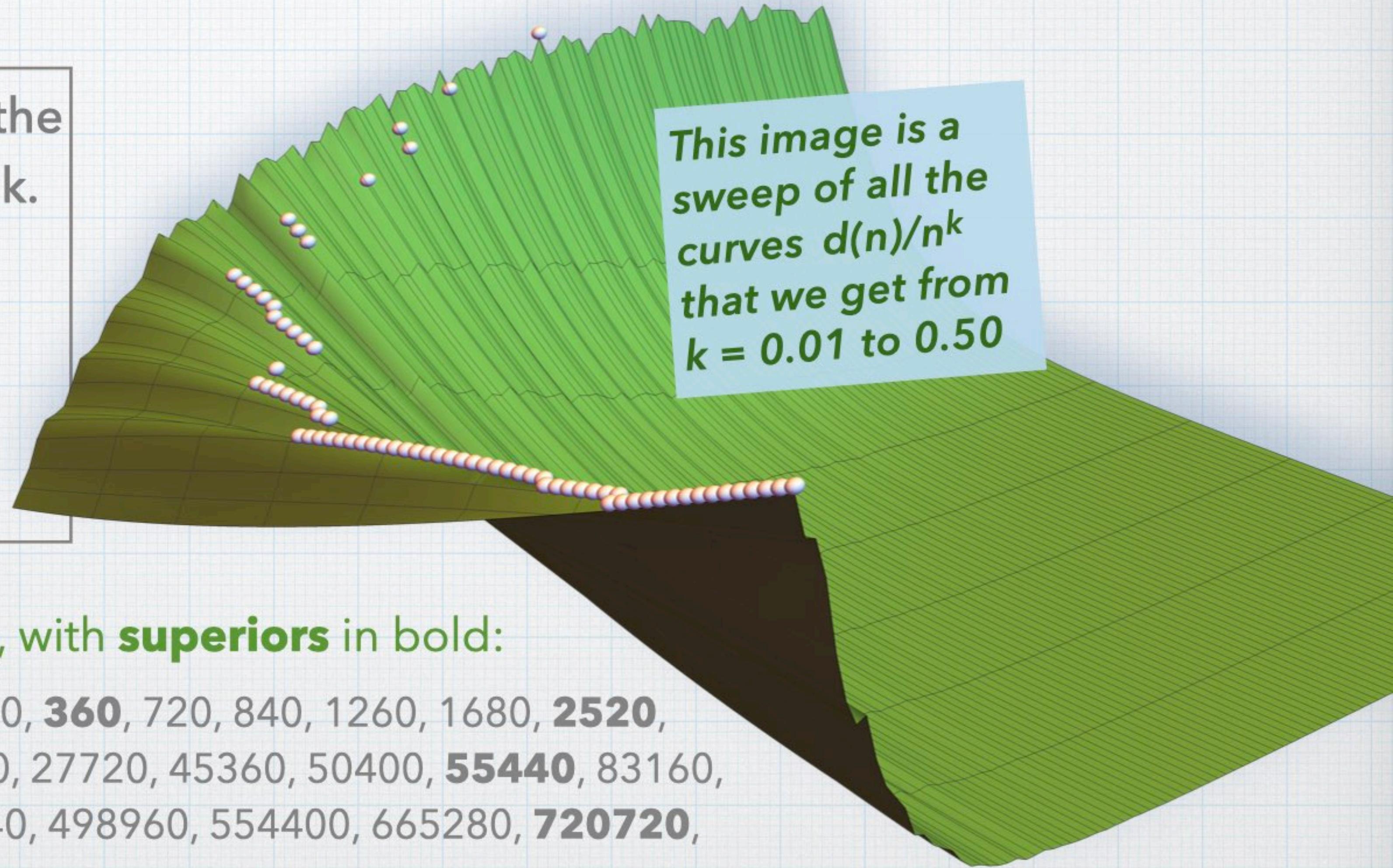


Superior Super-Eggs

Looking at $d(n)/n^k$ we spot the global max superior at each k .

Lay an egg there, and then move on to the next k .

Once in a while, the global max changes.



Supercomposites under a million, with **superiors** in bold:

1, **2**, 4, **6**, **12**, 24, 36, 48, **60**, **120**, 180, 240, **360**, 720, 840, 1260, 1680, **2520**, **5040**, 7560, 10080, 15120, 20160, 25200, 27720, 45360, 50400, **55440**, 83160, 110880, 166320, 221760, 277200, 332640, 498960, 554400, 665280, **720720**,

That's **10 superiors** out of the first 38 supers.

What about complex numbers?

Yes, Gaussian Integers
do factor uniquely into
their own little primes.

$$5 = (2 + i)(2 - i)$$

$$14 - 5i = (3 - 2i)(4 + i)$$

What about complex numbers?

Yes, Gaussian Integers do factor uniquely into their own little primes.

$$5 = (2 + i)(2 - i)$$

$$14 - 5i = (3 - 2i)(4 + i)$$

Each Gaussian integer has its list of divisors:

Divisors of 10 :

$$\{1, 1 + i, 1 + 2i, 1 + 3i, 2, 2 + i, 2 + 4i, 3 + i, 4 + 2i, 5, 5 + 5i, 10\}$$

$$d(10) = 4$$

$$dg(10) = 12$$

What about complex numbers?

Yes, Gaussian Integers do factor uniquely into their own little primes.

$$5 = (2 + i)(2 - i)$$

$$14 - 5i = (3 - 2i)(4 + i)$$

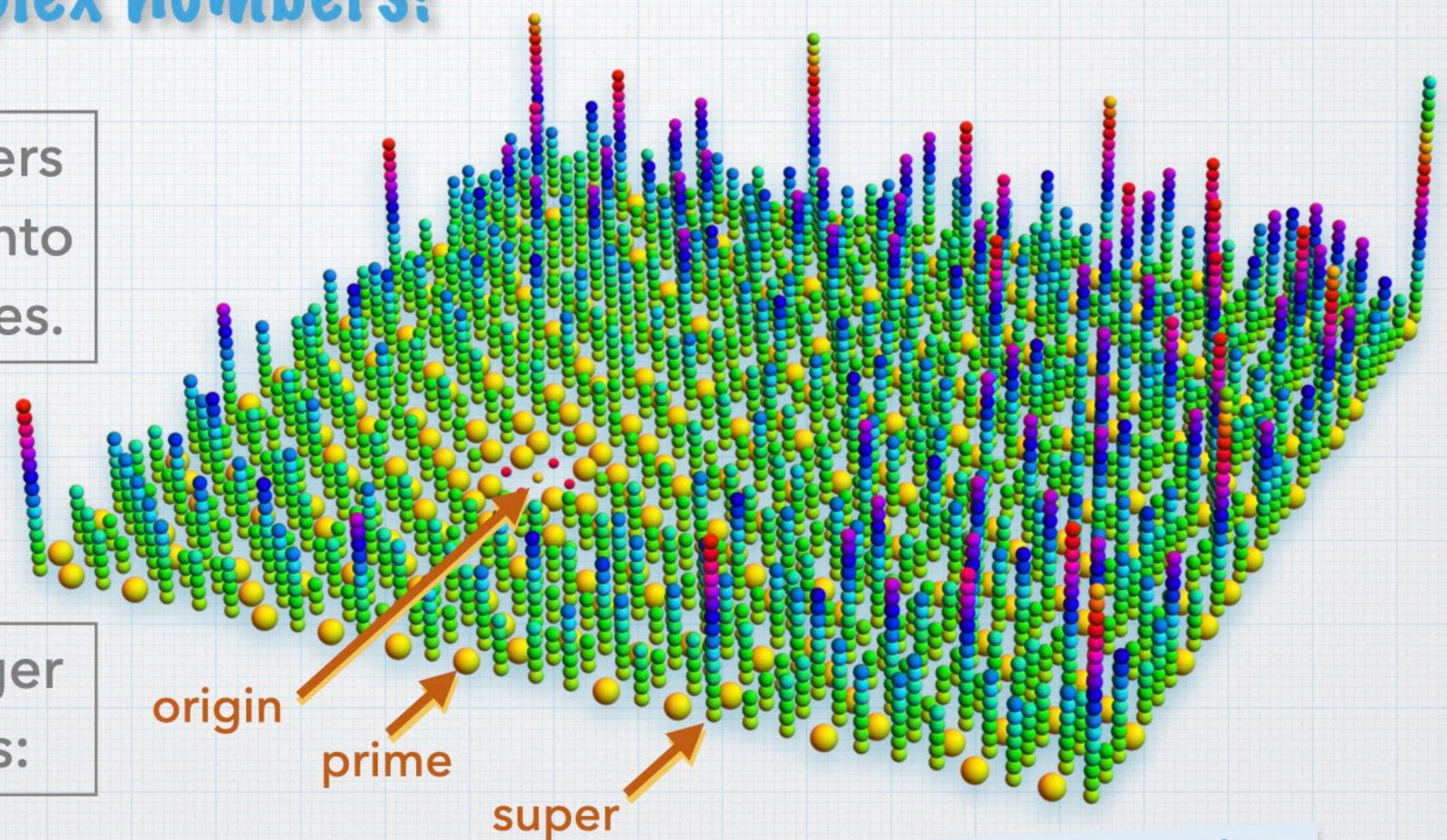
Each Gaussian integer has its list of divisors:

Divisors of 10 :

{**1**, **1 + i**, **1 + 2i**, **1 + 3i**, **2**, **2 + i**,
2 + 4i, **3 + i**, **4 + 2i**, **5**, **5 + 5i**, **10**}

$$d(10) = 4$$

$$dg(10) = 12$$



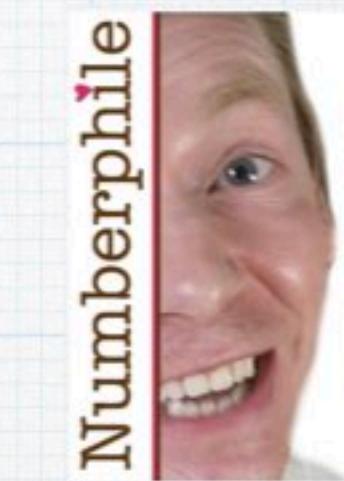
The yellow balls are the Gaussian primes; the tallest stacks are supercomposite!

A Super Quartet...

A Super Quartet...

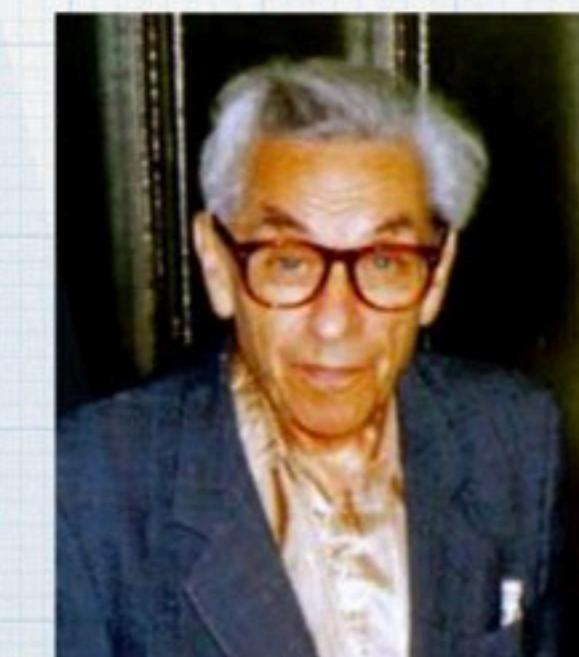
Somewhere I have a HyperCard stack of applying various 'r/s' rules to check for supercompositivity

Srini Ramanujan also invented the super-composite numbers, and over 70 years before I did



5040
ANTI-PRIME

James Grime and Brady Haran went over the basics of "Anti-Primes" (2016)



The great Paul Erdős proved that

$$\lim_{n \rightarrow \infty} \frac{s_{n+1}}{s_n} = 1$$

On Highly Composite Numbers (1944)

MathArt at MathFest

2025 Art Catalog!

This catalog available for sale online at:
lulu.com - bookstore - search "dan bach"

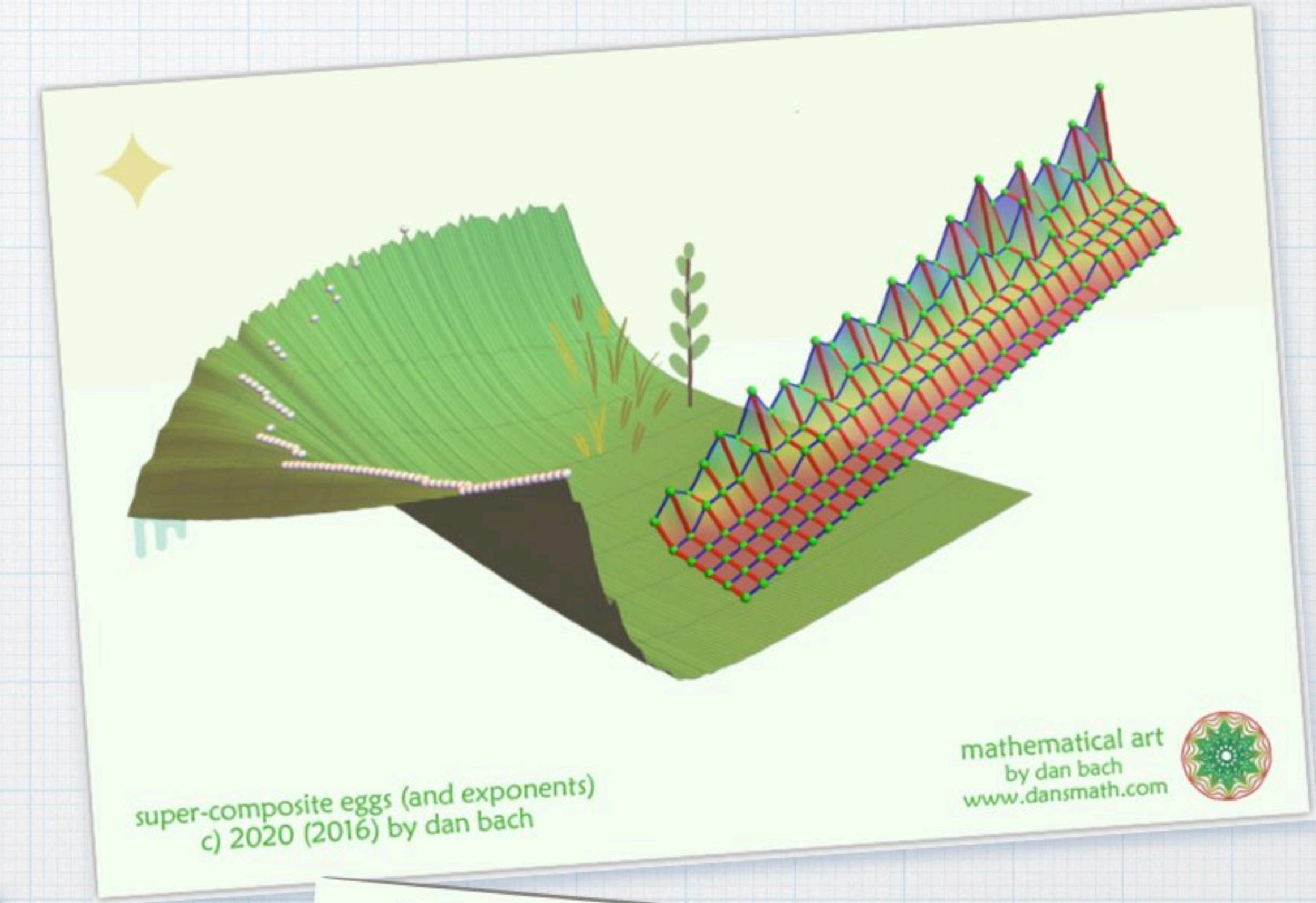
MAA - MathArt at MathFest - 2025

Thank you!

MathArt at MathFest
(from Aug 7 2025)

Thank you!

MathArt at MathFest
(from Aug 7 2025)



Did everybody get a
dansmathart postcard?