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Gamification

Mathematics is a game:

We agree to a set of rules.

We decide on a “winning condition.”

Then play the game abiding by those rules.



Truths We Tell Our Students

That They Don’t Care About

A common topic in “math for liberal arts” courses is the existence of
irrational numbers.

Typically presented as
√

2 6= p
q for any whole numbers p, q.

Motivated by the incommensurability of the side and diagonal of a square.
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Lies We Tell Our Students

Pythagoras (fl. 550 BC) discovered that two strings whose lengths had a
ratio of small whole numbers would sound pleasant when played together.

In particular, there were three consonant ratios:

2 : 1 3 : 2 4 : 3

But other ratios like 9 : 8 would produce dissonances.

Anyone who plays piano or guitar knows this isn’t true.
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Frequencies

The most likely story about
Pythagoras is that he invented
the monochord.

This would allow for density,
thickness, and tension to be
fixed.

Leaving length as the only
variable.

We’ll use an online frequency
generator that allows you to
play multiple simultaneous
frequencies.



Warmup: Sounding Out

This is the warmup activity.

Pairs of students:

One student (the Composer) selects two frequencies: 240 and
something else (which might also be 240),

The play the two frequencies one after the other.

The other student (the Listener) has to decide whether the two
frequencies are the same or different.

Students should switch roles.

The Composer’s goal is to find the highest frequency that CAN’T be
distinguished from 240 by the Listener.
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Interlude

Two tones will be played.

Can you tell the difference?



We Got the Beat

Hearing sensitivity varies, but most students could detect a 5 cycle
difference.

Almost no one could detect a 1 cycle difference.

So what happens if the audibly identical 240 and 241 are played
simultaneously?

If the difference in frequencies is small, the two tones played together
produce an unpleasant “wa-wa.”
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Don’t Stand So Close To Me

Now consider a set of frequencies (“notes”) with a constant difference:

240 280 320 360 400

If two notes are selected and played simultaneously, the resulting mix is
either pleasant to listen to (consonant) or unpleasant (dissonant).

Is there a pattern?
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Consonances and Dissonances

Students pick pairs of frequencies (notes) and play them simultaneously.

(Implementation note: The higher frequency needs to be played at a lower
volume, otherwise it will overwhelm it.)

Then they decided whether the resulting sound combination is pleasant (a
consonance) or unpleasant (a dissonance).



Interlude

A pair of frequencies is played, first separately then simultaneously.

Decide whether the simultaneous notes form a consonance or a dissonance.



The Clash

Tastes vary, but:

Almost all students regarded the 360, 240 pair as consonant

Many students regarded the 320, 240 pair as consonant as well.

Most students also regarded pairs of consecutive notes (280, 240) as
producing a dissonance.

And in general, the dissonances were perceived as worse as the frequencies
increased:

280
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A Rationale for Ratios

We have two ways of comparing two quantities:

The difference (the greater minus the lesser),

The ratio (the greater to the lesser)

Since the frequency difference is the same, it can’t be responsible for the
increasing dissonance.

So let’s look at the ratios.
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Consonance . . .

Almost all students regarded the 360, 240 pair as consonant, and

360

240
=

3

2

Most also regarded the 320, 240 pair as consonant,

320

240
=

4

3



. . . and Dissonance

Meanwhile dissonance seemed associated with ratios of larger numbers, like

400

360
=

10

9

and the “wa-wa”
241

240
=

241

240

This gives Pythagoras’s observation:

Consonance corresponds to ratios of small numbers.



Scaling Up

A musical scale consists of a set of frequencies (“notes”).

Our goal is to select frequencies that give us the greatest number of
consonant pairs.

One way to do this is to choose a consonant frequency and produce higher
frequencies from it.

Starting at 240 and using the 3 : 2 ratio gives us

240 360 540 810 1215

This gives us the 3 : 2 consonance between adjacent notes.

But try to sing it!
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The Missing Consonance

If “consonances are ratios of small whole numbers,” the one ratio we’re
missing is 2 : 1.

Most musical cultures regard the two notes as forming a consonance.

Western music theory regardes the corresponding frequencies as “the
same” note: octave equivalence.

(We’ll get to why this is important)
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The Game of Tones

In the Game of Tones, we want to find a set of frequencies that produce as
many pairwise consonances as possible:

Choose a starting frequency: this will be the lowest note of our scale.

Double it: this will be the highest note of our scale.

Choose some consonances.

Choose additional frequencies between the lowest and highest notes,
so that pairs form as many consonances as possible.

The goal is to create a scale with the fewest notes but the most
consonances.
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Game Play

For convenience, we’ll limit the frequencies to be between 216 and
2× 216 = 432.

And we’ll limit our consonances to 3 : 2 and 4 : 3.

Any other ratio is regarded as dissonant.

(Remember the game nature: it doesn’t matter how a pair “sounds,” what
matters is the frequency ratio)
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Toned

Suppose we start at 216.

The frequency 324 forms a 3 : 2 consonance with 216.

It also forms a 4 : 3 consonance with 432.

Similarly, 288 gives us a 4 : 3 and a 3 : 2 consonance, so the four four notes

216 288 324 432

give us four consonances.
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Tone Deaf

If our scale consists of

216 288 324 432

then the ratio between consecutive notes is

288

216
=

4

3
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=

9
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324
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4

3

We can (and the Greeks did) regard the 9 : 8 as a fundamental internote
ratio.

Today this is called a tone.
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Impossibility

Can we subdivide the interval between notes into tones?

For example: Could we find n frequencies between 216 and 288, where
consecutive frequencies have a 9 : 8 ratio?

This corresponds to the equation(
9

8

)n

=
4

3

which we rearrange to
9n · 3 = 8n · 4

But the left side is a product of odd numbers, while the right side is a
product of even numbers.

So it’s impossible to solve!
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Also Impossible

Similarly, if we try to interpolate frequencies between 216 and 324, we have(
9

8

)n

=
3

2

Consequently
2 · 9n = 3 · 8n

But this reduces to
3 · 9n−1 = 4 · 8n−1

and again we have a product of odds equal to a product of events.



The First (?) Impossibility Theorem

Western music uses octave equivalence.

This leads to closing the circle of fifths:

If we ascend by 3 : 2 consonances, will we eventually reach our “starting”
note (when notes in a 2 : 1 consonance are regarded as the same).

Mathematically: (
3

2

)n

= 2m

But this means
3n = 2n+m

which is impossible.



Historical Postlude

The early history of irrational numbers is uncertain.

The geometric origin is plausible, but it presupposes geometrical
knowledge that can’t be traced earlier than the 5th century BC (100 years
after Pythagoras).

A minority view (Borzacchini [2007]) suggests a musical origin.

At the very least:

The impossibility inherent in the tuning problem was known to the
early Pythagoreans,

The proof of the impossibility comes from purely arithmetic
considerations.


