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The taxman game was developed by Diane Resek around 1970 and
published as a computer game by the Minnesota Educational Consor-
tium. It is a single-player game that starts with all the integers from 1
to some integer N . The player can take a number m from the list only
if there exists proper divisors of m on the list. When the player takes
a number m, the taxman collects all the remaining divisors of m, the
“tax.” Thus, the player is not allowed to take any number that results
in no tax. When no legal moves remain, the taxman collects the rest of
numbers on the list. Whoever has the largest sum of numbers wins.
As an example of how to play the game, suppose N = 6. A greedy

strategy takes the largest number, 6, from the list 1, 2, 3, 4, 5, 6. The
taxman then gets 1, 2, and 3 as proper divisors. The taxman then gets 4
and 5 since these have no proper divisors left on the list, i.e., no more
legal moves are possible. This means that the taxman wins 15 to 6.

An Optimal Strategy
An optimal strategy for the taxman game is a strategy that always

yields the largest possible score. The player’s optimal first move is to
take the largest prime on the list because it limits the taxman’s take to
one since prime numbers are only divisible by one and themselves. In
[1], Moniot shows the largest square of a prime is the optimal second
pick for all N ≤ 49 other than N = 8 and N = 20.
In [3], Chess presents an algorithm and uses it to find the optimal se-

quence of moves for N = 1 to N = 1000, which shows that the largest
square of a prime is the optimal second move for all N ≤ 1000 other
than 8, 20, and 120. We illustrate Chess’s algorithm for N = 21.
Step 1: Create a graph where each number connects to its maximal

factors. A number f is a maximal factor of n if n/f is prime. If n itself
is prime, then 1 is its maximal factor.
Step 2: Associate numbers with no composites (“source nodes”) with

their maximal factors. These are called frames.

Step 3: Each frame from A to D is a mini-game. Eliminate source
nodes that should not be selected within each frame. In Frame A we
take the largest prime, 19.

Step 4: Ignore Frames A and D because they have exactly as many
factors as they need for all the source nodes to be selected.
Step 5: A “donating” frame must be able to use all its remaining source

nodes without needing the “promoted” source. Meanwhile, the “receiv-
ing” frame must be able to use all its existing sources and also include
the newly promoted source. In this example, Frame C can give up any
of its factors, but 9 is optimal because B can not accept 10 and still se-
lect all its source nodes. After promoting 9 from Frame C to Frame B,
all the frames close.
Step 6: We create a solution by solving each frame from front (A) to

back (D). In this example we get the optimal sequence of pick of 19, 9,
21, 15, 14, 18, 12, 20, and 16, which yields the optimal score of 144 to
the taxman’s 87.

If N = 8, Chess’s algorithm shows that the largest square of the prime,
4, is a receiver in Frame C that is not promoted. Instead 6 is the only
source node that can be selected in Frame B and thus is the optimal
second move despite not being the largest square of a prime.

If N = 20 the same process applies where 9, the largest square of a
prime, is a receiver while 10 is the optimal second move since it is a
source node that gets promoted to Frame B.
Likewise, if N = 120, 49 is a receiver while 25 is the optimal second

move since it is a source node that gets promoted to Frame B.

The Optimal Second Move
We now show that the largest square of a prime is the optimal second

move for all N ≥ 121 by proving the following theorem.

Theorem If N ≥ 121, then the largest square of a prime ≤ N is in the
upper half of the list and thus cannot be a receiver.

Proof. If N ≥ 121 and p2 is the largest square of a prime ≤ N , then
p ≥ 11. If 11 ≤ p ≤ 25 and q is the next largest prime, then
we can verify directly that p2 < q2 < 2p2, so if p2 ≤ N/2, then
p2 < q2 < 2p2 ≤ N , meaning that the largest square of a prime cannot
be in the lower half of the list.
By [2], if p ≥ 25, there is a prime q such that p < q < p

√
2, so if

p2 ≤ N/2, then p2 < q2 < 2p2 ≤ N , meaning that the largest square of
a prime cannot be in the lower half of the list.
Thus, the largest square of a prime ≤ N must be in the upper half of

the list and thus cannot be a receiver.

Future Research
We will analyze Chess’s algorithm to determine an optimal strategy.

In Frame X , the receivers are products n of X − 1 primes such that
2n ≤ N and the sources are products m of X primes such that 2m > N .
Each receiver n has as many sources as there are primes p such that
N < 2pn ≤ 2N and contributes as many receivers as there are primes
p such that 2pn ≤ N to the next frame. For a receiver to be promoted,
both the donating and receiving frames must have have more receivers
than sources; determining which receiver is optimal to promote is our
next step.
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