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Some History

1964, Stanisław Ulam introduced a sequence of integers that now carries his name. The
first two terms are 1, 2, and every subsequent term is the next smallest integer that can be
written as the sum of two distinct prior terms in exactly one way.

E.g. 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77, 82, 87, 97, 99 . . .
5 = 4 + 1 = 3 + 2, 7 = 6 + 1 = 4 + 3
Although the definition is fairly simple, this sequence is chaotic and difficult to predict.
Many basic questions are completely open.
Ever since then, people have been looking at various generalizations of this sequence,
making conjectures, and occasionally proving results.
Many of the known partial results are due to undergraduate students. Let me show you
some.
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Notation

We’ll write U(a, b) to mean the sequence of integers starting with a, b (where 0 < a < b),
such that every subsequent term is the next smallest integer that can be written as the
sum of two distinct prior terms in exactly one way.

So, U(1, 2) was Ulam’s original sequence.
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Growth

Question
How quickly does U(a, b) grow?

Any term can be no larger than the sum of the two previous terms. Therefore, U(a, b) is
bounded by the Fibonacci numbers, and it doesn’t grow faster than exponentially.
This is the best known result for almost all a, b.
Overwhelming numerical evidence suggests that U(a, b) grows linearly for all a, b! But
what do we know for sure?
Asymptotically, the number of terms in U(1, n) less than k must be less than n+1

3n k .
(Borys Kuca 2019)
Some specific sequences are known to grow linearly.
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Periodicity

Question
Is U(a, b) eventually structured? For example, is the sequence of consecutive differences
eventually periodic? (That is, U(a, b) is regular.)

Unknown for most a, b. (Conjectured to be true/false for roughly half.)

If there are finitely many even numbers in U(a, b), then it is regular (Finch 1992).
This is known to occur when

1 a = 2, b ≥ 5, (Schmerl and Spiegel, 1994)
2 a = 4, b = 1 mod 4 (Cassaigne and Finch 1995)
3 (a, b) in the following table (Joshua Hinman 2019)

(4, 11) (4, 19) (6, 7) (6, 11) (7, 8) (7, 10) (7, 12)
(7, 16) (7, 18) (7, 20) (8, 9) (8, 11) (9, 10) (9, 14)
(9, 16) (9, 20) (10, 11) (10, 13) (10, 17) (11, 12) (11, 14)
(11, 16) (11, 18) (11, 20) (12, 13) (12, 17) (13, 14)
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"Congruence" Restrictions

Question
Are there any congruence restrictions for Ulam sequences? Do some congruence classes appear
more frequently, or is it equidistributed?

Conjecturally, if U(a, b) is not regular, then it equidistributes in all congruence classes.
However, in 2015, Stefan Steinerberger discovered the existence of a "magic number" for
U(1, 2): λ1,2 ≈ 2.44344. If you take the first N elements of U(1, 2) modulo λ1,2 and take
a histogram, something odd happens.
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Patterns in the Data

N = 104
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Patterns in the Data

N ≈ 7.4 · 1010
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The Patterns Persist

Similar things occur for other Ulam sequences, for other “magic numbers."

0 2 4 6 8 10 12
0

500

1000

1500

2000

U(1, 4)
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The Patterns Persist

Similar things occur for other Ulam sequences, for other “magic numbers."

0 5 10 15
0
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U(1, 5)
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The Patterns Persist

Similar things occur for other Ulam sequences, for other “magic numbers."
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The Patterns Persist

Similar things occur for other Ulam sequences, for other “magic numbers."

0 5 10 15 20
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U(1, 7)
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The Patterns Persist

Similar things occur for other Ulam sequences, for other “magic numbers."

0 5 10 15 20
0

1000

2000

3000

4000

U(1, 8)

Senia Sheydvasser (Bates) Ulam Sequences 01/05/2024 8 / 22



The Patterns Persist

Similar things occur for other Ulam sequences, for other “magic numbers."

0 5 10 15 20 25
0

1000

2000

3000

4000

U(1, 9)
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A Hidden Signal

Evidently, there is some sort of hidden signal in the Ulam sequence.
We have no proof for this. We don’t even know what the heck this distribution is.

We do have a lot of numerical evidence, due to work by Judson and Gibbs in 2017.

Conjecture (Judson, Gibbs 2017)
There exists a real number λ1,2 ≈ 2.44344 such that for every ϵ > 0, the set{

u ∈ U(1, 2)
∣∣∣∣u mod λ1,2 /∈

(
λ1,2

3
− ϵ,

2λ1,2

3
+ ϵ

)}
is finite.

We are reasonably sure similar "magic numbers" λ1,n exist for all Ulam sequences U(1, n),
and probably for other families as well.
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Patterns within Families
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Patterns within Families

U(1, 2) : 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47 . . .
U(1, 3) : 1, 3, 4, 5, 6, 8, 10, 12, 17, 21, 23, 28, 32, 34, 39 . . .
U(1, 4) : 1, 4, 5, 6, 7, 8, 10, 16, 18, 19, 21, 31 32, 33, 42 . . .
U(1, 5) : 1, 5, 6, 7, 8, 9, 10, 12, 20, 22, 23, 24, 26, 38, 39 . . .
U(1, 6) : 1, 6, 7, 8, 9, 10, 11, 12, 14, 24, 26, 27, 28, 29, 31 . . .
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Patterns within Families

U(1, 2) : 1 , 2, 3, 4 , 6 , 8, 11, 13 . . .
U(1, 3) : 1 , 3, 4, 5, 6 , 8 , 10, 12, 17 . . .
U(1, 4) : 1 , 4, 5, 6, 7, 8 , 10 , 16 , 18, 19 , 21 . . .

U(1, 5) : 1 , 5, 6, 7, 8, 9, 10 , 12 , 20 , 22, 23, 24 , 26 . . .

U(1, 6) : 1 , 6, 7, 8, 9, 10, 11, 12 , 14 , 24 , 26, 27, 28, 29 , 31 . . .

U(1, 7) : 1 , 7, 8, 9, 10, 11, 12, 13, 14 , 16 , 28 , 30, 31, 32, 33, 34 , 36 . . .

U(1, 8) : 1 , 8, 9, 10, 11, 12, 13, 14, 15, 16 , 18 , 32 , 34, 35, 36, 37, 38, 39 , 41 . . .
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Patterns within Families

U(1, 4) : 1 , 4, . . . 8 , 10 , 16 , 18, 19 , 21 . . .

U(1, 5) : 1 , 5, . . . 10 , 12 , 20 , 22, . . . 24 , 26 . . .

U(1, 6) : 1 , 6, . . . 12 , 14 , 24 , 26, . . . 29 , 31 . . .

U(1, 7) : 1 , 7, . . . 14 , 16 , 28 , 30, . . . 34 , 36 . . .

U(1, 8) : 1 , 8, . . . 16 , 18 , 32 , 34, . . . 39 , 41 . . .

U(1, n) : 1 , n, . . . 2n , 2n + 2 , 4n , 4n + 2, . . . 5n − 1 , 5n + 1 . . .
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The Rigidity Conjecture

Conjecture (HKSS 2018)
There exists an N (probably 4) and integer coefficients {ai}∞i=0, {bi}∞i=0, {ci}∞i=0, {di}∞i=0 such
that for all n ≥ N,

U(1, n) =
∞⋃
i=0

[ain + bi , cin + di ] ,

where cin + di + 1 < ai+1n + bi+1 for all i .

This is currently open, but we do have some interesting partial results.
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The Rigidity Theorem

Theorem (HKSS 2019)
There exist integer coefficients {ai}∞i=0, {bi}∞i=0, {ci}∞i=0, {di}∞i=0 such that for any k , there
exists an Nk such that for any n ≥ Nk ,

U(1, n) ∩ [1, ckn + dk ] =
k⋃

i=0

[ain + bi , cin + di ] ,

where cin + di + 1 < ai+1n + bi+1 for all i .

If we could prove that Nk does not depend on k , we would prove the Rigidity Conjecture.
Our original proof used model theory; there is now a constructive proof using a
generalization of Ulam sequences.
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Generalizations with Vector Spaces

Instead of positive integers, we could use vectors in Rn with positive coefficients.

How to choose the next "largest" vector? L2 norm? L1 norm? What if there is a
"tie"—do you add points sequentially, or all at once?
The surprising answer: it doesn’t matter! You get the same Ulam set regardless. (Kravitz
and Steinerberger 2017)
Sometimes, these are apparently chaotic. Sometimes, they are eventually periodic.
(Alexander Schlesinger 2019)
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and Steinerberger 2017)
Sometimes, these are apparently chaotic. Sometimes, they are eventually periodic.
(Alexander Schlesinger 2019)
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Generalizations with Semigroups

More generally still, one could use a semigroup together with an appropriate function to
measure the "size" of elements.

For example, you could consider the free group on two generators—call them "0" and
"1"—and take word length to be the measure of size.
You get an Ulam set

{0, 1, 00, 01, 10, 11, 0000, 0001, . . .} ,

and you can prove various results about when words of special type appear in this set.
(Bade, Cui, Labelle, Li 2020) (Mandelshtam 2022)
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Generalizations with Polynomials

Let ⟨1,X ⟩ be the set of polynomials aX + b with integer coefficients.

We give ⟨1,X ⟩ the lexicographical ordering: i.e. aX + b > cX + d iff a > c or a = c and
b > d .

Definition (S. 2021)
Given 0 < a < b in ⟨1,X ⟩, an Ulam sequence starting with a, b is a set U ⊂ ⟨1,X ⟩ such that

1 U ∩ (−∞, b] = {a, b},
2 for all p < q ∈ ⟨1,X ⟩, U ∩ [p, q] has both a minimum and a maximum, and
3 for every p ∈ (b,∞), p ∈ U if and only if it is the smallest element in the set

{q ∈ ⟨1,X ⟩|q > U ∩ (−∞, p) and ∃!x ̸= y ∈ U, q = x + y} .

For any a, b, there always exists such a set, but it is not always unique.
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A Unique Ulam Sequence

X , X + 1, 2X + 1, 3X + 1, 3X + 2, 4X + 1, 4X + 3,
5X + 1, 5X + 4 6X + 1, 6X + 3, 6X + 5, 7X + 1, 7X + 6,
8X + 1, 8X + 3 8X + 5, 8X + 7, 9X + 1, 9X + 8, 10X + 1,
10X + 3, 10X + 5, 10X + 7, 10X + 9, 11X + 1, 11X + 10, 12X + 1,
12X + 3, 12X + 5, 12X + 7, 12X + 9 12X + 11, 13X + 1, 13X + 12
14X + 1, 14X + 3, 14X + 5, 14X + 7, 14X + 9 14X + 11, 14X + 13,
15X + 1, 15X + 14, 16X + 1, 16X + 3, 16X + 5, 16X + 7 16X + 9,
16X + 11, 16X + 13, 16X + 15, 17X + 1, 17X + 16, 18X + 1, 18X + 3,
18X + 5, 18X + 7, 18X + 9, 18X + 11, 18X + 13, 18X + 15, 18X + 17,
19X + 1, 19X + 18, 20X + 1, 20X + 3, 20X + 5, 20X + 7, 20X + 9 . . .
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The Ulam Sequence Starting with 1,X

{1} ∪ [X , 2X ] ∪ {2X + 2} ∪ {4X}
∪ [4X + 2, 5X − 1] ∪ {5X + 1} ∪ [7X + 3, 8X + 1]
∪ {10X + 2} ∪ {11X + 2} ∪ [13X + 4, 14X + 1]
∪ {16X + 2} ∪ {17X + 2} ∪ {19X + 3}
∪ {20X + 2} ∪ {22X + 3} ∪ {23X + 4}
∪ [25X + 4, 25X + 5] ∪ {26X + 3} ∪ {28X + 4}
∪ [31X + 5, 32X + 3] ∪ {34X + 5} ∪ {38X + 6}
∪ {40X + 5} ∪ [40X + 8, 41X + 4] ∪ [43X + 7, 44X + 4] . . .

By an easy induction argument, this is also uniquely determined and there exist integer
coefficients {ai}, {bi}, {ci}, {di} such that

U(1,X ) =
∞⋃
i=0

[aiX + bi , ciX + di ].
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Relating the Polynomial Set to the Integer Set

We can find a polynomial-time algorithm A that can compute the first k coefficients
{ai}, {bi}, {ci}, {di} such that

U(1,X ) =
∞⋃
i=0

[aiX + bi , ciX + di ].

Furthermore, this algorithm can output an integer Nk such that for all n ≥ Nk ,

U(1, n) ∩ [1, ckn + dk ] =
k⋃

i=0

[ain + bi , cin + di ].

How? Every time the algorithm makes a comparison aX + b < cX + d , it computes the
smallest n such that an+ b < cn+ d ; Nk is the maximum of all these n’s. If n ≥ Nk , then
all the comparisons are still valid even if we replace X by n everywhere.
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Finale

Thank you for the invitation!
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