

Avoiding triples in the card game Spot it!

Lauren Rose, Bard College rose@bard.edu

With Jen Lara, Minshi Yang, Oliver Vanderploeg, Shay Spitzer, Josh Krienke, Tim Goldberg

SIGMAA- MCST and UR-SIGMAA: JMM 2024 Math Circle Activities as a Gateway into Research

Subtitle: How to use the card game Spot It! to learn about the Projective Plane and introduce students to fun combinatorial problems.

How do you play Spot it!?

1. Lay out 2 cards and look for the symbol in common.
2. The person who finds the symbol first takes the cards, and two new cards are dealt.
3. The player with the most cards at the end wins.

How do you play Spot it!?

1. Lay out 2 cards and look for the symbol in common.
2. The person who finds the symbol first takes the cards, and two new cards are dealt.
3. The player with the most cards at the end wins.
\star Pros: Any age can play, no reading required!
\star Cons: No obvious strategy or math.

Variation: Spot it Triplets

A triplet is three cards that share the same symbol.

Are there any triplets in these cards?

Variation: Spot it Triplets

A triplet is three cards that share the same symbol.

Are there any triplets in these cards?

Answer:
BCD: glasses
ADE: spiders

Variation: Spot it Triplets

A triplet is three cards that share the same symbol.
Are there any triplets in these cards?

Mathematical Questions?

Variation: Spot it Triplets

A triplet is three cards that share the same symbol.

Are there any triplets in these cards?

Mathematical Questions?

1. What is the probability that 3 cards contain a triplet?
2. How many cards must you lay out to guarantee a triplet?
3. What about quadruples, etc?

Avoiding Triples: Caps

A cap is a collection of cards that does not contain a triplet.

What is the largest cap in this layout?

Avoiding Triples: Caps

A cap is a collection of cards that does not contain a triplet.

What is the largest cap in this layout?
A,B,C,E,F

Complete Caps and Maximal Caps

* A cap is complete if adding any card results in a triple
* A maximal cap is the largest cap possible in a given deck
* Any maximal cap is complete
* Not all complete caps are maximal

Complete Caps and Maximal Caps

* A cap is complete if adding any card results in a triple
* A maximal cap is the largest cap possible in a given deck
* Any maximal cap is complete
* Not all complete caps are maximal

Q: How do we address finding caps in Spot It?

Complete Caps and Maximal Caps

* A cap is complete if adding any card results in a triple
* A maximal cap is the largest cap possible in a given deck
* Any maximal cap is complete
* Not all complete caps are maximal

Q: How do we address finding caps in Spot It?

1. Brute force: lay out cards and look for caps.
2. Find mathematical properties of the game.
3. Make the problem SMALLER (thank you Paul Zeitz and Japheth Wood).

1. Brute Force

2. Spot it! Math Facts

1. A deck of 57^{*} cards, 57 symbols
2. Each card has 8 symbols
3. Each symbol appears on exactly 8 cards.
4. Each pair of cards shares exactly one symbol.
5. Each pair of symbols appears on exactly one card.

* The official game only has 55
cards, which messes up the math!

Spot it Axioms

1. 57 cards
2. 57 symbols
3. Each card has 8 symbols
4. Each symbol lies on exactly 8 cards.
5. Each pair of cards shares exactly one symbol.
6. Each pair of symbols appears on exactly one card.

Spot it Axioms

Finite Projective Plane Axioms

1. 57 cards
2. 57 symbols
3. Each card has 8 symbols
4. Each symbol lies on exactly 8 cards.
5. Each pair of cards shares exactly one symbol.
6. Each pair of symbols appears on exactly one card.
7. $n^{2}+n+1$ lines
8. $n^{2}+n+1$ points
9. Each line has $n+1$ points
10. Each points lies on exactly $n+1$ lines.
11. Each pair of lines intersect in exactly one point.
12. Each pair of points lie on exactly one line.

2. Go Smaller: Set n=2

Spot it Axioms

1. 7 cards
2. 7 symbols
3. Each card has 3 symbols
4. Each symbol lies on exactly 3 cards.
5. Each pair of cards shares exactly one symbol.
6. Each pair of symbols appears on exactly one card.

Finite Projective Plane

 Axjor lines
2. 7 points

3. Each line has 3 points
4. Each points lies on exactly 3 lines.
5. Each pair of lines intersect in exactly one point.
6. Each pair of points lie on exactly one line.

2. Go Smaller: Set n=2

Spot it Axioms

1. 7 cards
2. 7 symbols
3. Each card has 3 symbols
4. Each symbol lies on exactly 3 cards.
5. Each pair of cards shares exactly one symbol.
6. Each pair of symbols appears on exactly one

Finite Projective Plane

 Axiofīines2. 7 points
3. 3 points
4. Each points lies on exactly 3 lines.
5. Each pair of lines intersect in exactly one point.
6. Each pair of points lie on exactly one line.

2. Go Smaller: Set n=2

Spot it Axioms

1. 7 cards
2. 7 symbols
3. Each card has 3 symbols
4. Each symbol lies on exactly 3 cards.
5. Each pair of cards shares exactly one symbol.
6. Each pair of symbols appears on exactly one

Finite Projective Plane

 Axioßiñes2. 7 symbols
3. 3 points
4. Each points lies on exactly 3 lines.
5. Each pair of lines intersect in exactly one point.
6. Each pair of points lie on exactly one line.

2. Go Smaller: Set n=2

Spot it Axioms

1. 7 cards
2. 7 symbols
3. Each card has 3 symbols
4. Each symbol lies on exactly 3 cards.
5. Each pair of cards shares exactly one symbol.
6. Each pair of symbols appears on exactly one

Finite Projective Plane

Axioß̄iñes

2. 7 symbols
3. 3 points
4. Each points lies on exactly 3 lines.
5. Each pair of lines intersect in exactly one point.
6. Each pair of points lie on exactly one line.

7. Go Smaller: Set n=2

Spot it Deck of Order 2
Finite Projective Plane of Order 2

Q: What is the maximal cap size?

Spot it Deck of Order 3
Finite Projective Plane of Order 3

Q: What is the maximal cap size?

$[0,1,2,12]$	
$[0,3,6,9]$	
$[0,4,8,10]$	
$[0,5,7,11]$	
$[1,3,8,11]$	
$[1,4,7,9]$	
$[1,5,6,10]$	$\left[\begin{array}{l}{[2,3,7,10]} \\ {[2,4,6,11]} \\ {[2,5,8,9]} \\ {[3,4,5,12]} \\ {[6,7,8,12]} \\ {[9,10,11,12]}\end{array}\right.$

$n=2$	$n=3$	$n=4$	$n=5$	$n=7$
$[0,1,6]$	$[0,1,2,12]$	$[0,1,2,3,20]$	$[0,1,2,3,4,30]$	$[0,1,2,3,4,5,6,56]$
$[0,2,4]$	$[0,3,6,9]$	$[0,4,8,12,16]$	$[0,5,10,15,20,25]$	$[0,7,14,21,28,35,42,49]$
$[0,3,5]$	$[0,4,8,10]$	$[0,5,10,15,19]$	$[0,6,12,18,24,26]$	$[0,8,16,24,32,40,48,50]$
$[1,2,5]$	$[0,5,7,11]$	$[0,6,11,13,17]$	$[0,7,14,16,23,27]$	$[0,9,18,27,29,38,47,51]$
$[1,3,4]$	$[1,3,8,11]$	$[0,7,9,14,18]$	$[0,8,11,19,22,28]$	$[0,10,20,23,33,36,46,52]$
$[2,3,6]$	$[1,4,7,9]$	$[1,4,11,14,19]$	$[0,9,13,17,21,29]$	$[0,11,15,26,30,41,45,53]$
$[4,5,6]$	$[1,5,6,10]$	$[1,5,9,13,16]$	$[1,5,14,18,22,29]$	$[0,12,17,22,34,39,44,54]$
	$[2,3,7,10]$	$[1,6,8,15,18]$	$[1,6,11,16,21,25]$	$[0,13,19,25,31,37,43,55]$
	$[2,4,6,11]$	$[1,7,10,12,17]$	$[1,7,13,19,20,26]$	$[1,7,20,26,32,38,44,55]$
	$[2,5,8,9]$	$[2,4,9,15,17]$	$[1,8,10,17,24,27]$	$[1,8,15,22,29,36,43,49]$
	$[3,4,5,12]$	$[2,5,11,12,18]$	$[1,9,12,15,23,28]$	$[1,9,17,25,33,41,42,50]$
	$[6,7,8,12]$	$[2,6,10,14,16]$	$[2,5,13,16,24,28]$	$[1,10,19,21,30,39,48,51]$
	$[9,10,11,12]$	$[2,7,8,13,19]$	$[2,6,10,19,23,29]$	$[1,11,14,24,34,37,47,52]$
		$[3,4,10,13,18]$	$[2,7,12,17,22,25]$	$[1,12,16,27,31,35,46,53]$
		$[3,5,8,14,17]$	$[2,8,14,15,21,26]$	$[1,13,18,23,28,40,45,54]$
		$[3,6,9,12,19]$	$[2,9,11,18,20,27]$	$[2,7,19,24,29,41,46,54]$
		$[3,7,11,15,16]$	$[3,5,12,19,21,27]$	$[2,8,14,27,33,39,45,55]$
		$[4,5,6,7,20]$	$[3,6,14,17,20,28]$	$[2,9,16,23,30,37,44,49]$
		$[8,9,10,11,20]$	$[3,7,11,15,24,29]$	$[2,10,18,26,34,35,43,50]$
		$[12,13,14,15,20]$	$[3,8,13,18,23,25]$	$[2,11,20,22,31,40,42,51]$

My students made cards for up to $\mathrm{n}=7$ and looked for patterns.

Their Results:

Theorem: In order n, the upper bound on maximal cap size is $n+2$.

Table 6: Max Cap in Order n

n	Max cap size
2	4
3	4
4	6
5	6
7	8
8	10
16	18

Table 6: Max Cap in Order n

n	Max cap size
2	4
3	4
4	6
5	6
7	8
8	10
16	18

Conjecture:

1. When n is odd, max cap size $=\mathrm{n}+1$
2. When n is even, max cap size $=\mathrm{n}+2$

Table 6: Max Cap in Order n

n	Max cap size
2	4
3	4
4	6
5	6
7	8
8	10
16	18

Conjecture:

1. When \mathbf{n} is odd, max cap size $=\mathbf{n}+1$
2. When n is even, max cap size $=\mathrm{n}+2$

First:
My students proved this for $n=2,3,5,8,16$.

Table 6: Max Cap in Order n

n	Max cap size
2	4
3	4
4	6
5	6
7	8
8	10
16	18

Conjecture:

1. When \mathbf{n} is odd, max cap size $=\mathbf{n}+1$
2. When n is even, \max cap size $=\mathrm{n}+2$

First:

My students proved this for $\mathrm{n}=2,3,5,8,16$.

Second: We found a proof in a 1947 paper.

1. It was difficult to read.

Table 6: Max Cap in Order n

n	Max cap size
2	4
3	4
4	6
5	6
7	8
8	10
16	18

Conjecture:

1. When \mathbf{n} is odd, max cap size $=\mathrm{n}+1$
2. When n is even, max cap size $=\mathrm{n}+2$

First:

My students proved this for $\mathrm{n}=2,3,5,8,16$.
Second: We found a proof in a 1947 paper.

1. It was difficult to read.
2. It proved it for the dual case (points <-> lines)
Table 6: Max Cap in Orde

n	Max cap size
2	4
3	4
4	6
5	6
7	8
8	10
16	18

Conjecture:

1. When n is odd, max cap size $=n+1$
2. When n is even, max cap size $=\mathrm{n}+2$

First:

My students proved this for $\mathrm{n}=2,3,5,8,16$.

Second: We found a proof in a 1947 paper.

1. It was difficult to read.
2. It proved it for the dual case
3. We found a more recent exposition.

Table 6: Max Cap in Order n

n	Max cap size
2	4
3	4
4	6
5	6
7	8
8	10
16	18

Conjecture:

1. When n is odd, max cap size $=\mathrm{n}+1$
2. When n is even, max cap size $=\mathrm{n}+2$

First:

My students proved this for $\mathrm{n}=2,3,5,8,16$.
Second: We found a proof in a 1947 paper.

1. It was difficult to read.
2. It proved it for the dual case
3. We found a more recent exposition.
4. We translated it from the dual to our setting.

Table 8: Found Complete Caps in Order n

n	sizes of complete caps
2	4
3	4
4	6
5	6
7	6,8
8	6,10
9	$6,7,8,10$
11	$7,8,9,10,12$
13	$8,9,10,12,14$
16	$9,10,11,12,13,18$
17	$10,11,12,13,14,18$
19	$10,11,12,13,14,20$
23	$12,13,14,15,16,17$
29	$14,15,16,17,18$
31	$15,16,17,18,19$

Open Questions/Future Work

* How many max caps are there?
* Possible sizes of complete caps
* Avoiding Quadruples
* Partitioning a deck into caps?
* Create a game in higher dimensional projective space.

Thanks for listening!

Lauren Rose

rose@bard.edu

