

Avoiding triples in the card game Spot it!

Lauren Rose, Bard College rose@bard.edu

With Jen Lara, Minshi Yang, Oliver Vanderploeg, Shay Spitzer, Josh Krienke, Tim Goldberg

SIGMAA- MCST and UR-SIGMAA: JMM 2024 *Math Circle Activities as a Gateway into Research*

Subtitle: How to use the card game Spot It! to learn about the Projective Plane and introduce students to fun combinatorial problems.

How do you play Spot it!?

- 1. Lay out 2 cards and look for the symbol in common.
- 2. The person who finds the symbol first takes the cards, and two new cards are dealt.
- 3. The player with the most cards at the end wins.

How do you play Spot it!?

- 1. Lay out 2 cards and look for the symbol in common.
- 2. The person who finds the symbol first takes the cards, and two new cards are dealt.
- 3. The player with the most cards at the end wins.
- ★ Pros: Any age can play, no reading required!
- ★ Cons: No obvious strategy or math.

- A **triplet** is three cards that share the same symbol.
- Are there any triplets in these cards?

- A **triplet** is three cards that share the same symbol.
- Are there any triplets in these cards?

Answer: BCD: glasses ADE: spiders

- A **triplet** is three cards that share the same symbol.
- Are there any triplets in these cards?
- **Mathematical Questions?**

- A **triplet** is three cards that share the same symbol.
- Are there any triplets in these cards?

Mathematical Questions?

- 1. What is the probability that 3 cards contain a triplet?
- 2. How many cards must you lay out to guarantee a triplet?
- 3. What about quadruples, etc?

Avoiding Triples: Caps

A **cap** is a collection of cards that does not contain a triplet.

What is the largest cap in this layout?

Avoiding Triples: Caps

A **cap** is a collection of cards that does not contain a triplet.

What is the largest cap in this layout?

A,B,C,E,F

Complete Caps and Maximal Caps

- ✤ A cap is **complete** if adding any card results in a triple
- ✤ A maximal cap is the largest cap possible in a given deck
- Any maximal cap is complete
- Not all complete caps are maximal

Complete Caps and Maximal Caps

- ✤ A cap is **complete** if adding any card results in a triple
- A maximal cap is the largest cap possible in a given deck
- Any maximal cap is complete
- ✤ Not all complete caps are maximal

Q: How do we address finding caps in Spot It?

Complete Caps and Maximal Caps

- ✤ A cap is **complete** if adding any card results in a triple
- A maximal cap is the largest cap possible in a given deck
- Any maximal cap is complete
- Not all complete caps are maximal

Q: How do we address finding caps in Spot It?

- 1. Brute force: lay out cards and look for caps.
- 2. Find mathematical properties of the game.
- 3. Make the problem **SMALLER** (thank you Paul Zeitz and Japheth Wood).

1. Brute Force

2. Spot it! Math Facts

- 1. A deck of 57* cards, 57 symbols
- 2. Each card has 8 symbols
- 3. Each symbol appears on exactly 8 cards.
- 4. Each pair of cards shares exactly one symbol.
- 5. Each pair of symbols appears on exactly one card.

* The official game only has 55 cards, which messes up the math!

Spot it Axioms

- 1. 57 cards
- 2. 57 symbols
- 3. Each card has 8 symbols
- 4. Each symbol lies on exactly 8 cards.
- 5. Each pair of cards shares exactly one symbol.
- 6. Each pair of symbols appears on exactly one card.

Spot it Axioms

- 1. 57 cards
- 2. 57 symbols
- 3. Each card has 8 symbols
- 4. Each symbol lies on exactly 8 cards.
- 5. Each pair of cards shares exactly one symbol.
- 6. Each pair of symbols appears on exactly one card.

Finite Projective Plane Axioms

- 1. n^2+n+1 lines
- 2. n²+n+1 points
- 3. Each line has n+1 points
- 4. Each points lies on exactly n+1 lines.
- 5. Each pair of lines intersect in exactly one point.
- 6. Each pair of points lie on exactly one line.

Spot it Axioms

- 1. 7 cards
- 2. 7 symbols
- 3. Each card has 3 symbols
- 4. Each symbol lies on exactly 3 cards.
- 5. Each pair of cards shares exactly one symbol.
- 6. Each pair of symbols appears on exactly one card.

Finite Projective Plane

- 2. 7 points
- 3. Each line has 3 points
- 4. Each points lies on exactly 3 lines.
- 5. Each pair of lines intersect in exactly one point.
- 6. Each pair of points lie on exactly one line.

Spot it Axioms

- 1. 7 cards
- 2. 7 symbols
- 3. Each card has 3 symbols
- 4. Each symbol lies on exactly 3 cards.
- 5. Each pair of cards shares exactly one symbol.
- 6. Each pair of symbols appears on exactly one

Finite Projective Plane Axiol7 lines

- 2. 7 points
- 3. 3 points
- 4. Each points lies on exactly 3 lines.
- 5. Each pair of lines intersect in exactly one point.
- 6. Each pair of points lie on exactly one line.

Spot it Axioms

- 1. 7 cards
- 2. 7 symbols
- 3. Each card has 3 symbols
- 4. Each symbol lies on exactly 3 cards.
- 5. Each pair of cards shares exactly one symbol.
- 6. Each pair of symbols appears on exactly one

Finite Projective Plane Axiol7 lines

- 2. 7 symbols
- 3. 3 points
- 4. Each points lies on exactly 3 lines.
- 5. Each pair of lines intersect in exactly one point.
- 6. Each pair of points lie on exactly one line.

Spot it Axioms

- 1. 7 cards
- 2. 7 symbols
- 3. Each card has 3 symbols
- 4. Each symbol lies on exactly 3 cards.
- 5. Each pair of cards shares exactly one symbol.
- 6. Each pair of symbols appears on exactly one

Finite Projective Plane Axiol7 lines

- 2. 7 symbols
- 3. 3 points
- 4. Each points lies on exactly 3 lines.
- 5. Each pair of lines intersect in exactly one point.
- 6. Each pair of points lie on exactly one line.

■2. Go Smaller: Set n=2

Spot it Deck of Order 2 Finite Projective Plane of Order 2

Q: What is the maximal cap size?

■2. Go Smaller: Set n=2

Spot it Deck of Order 3 Finite Projective Plane of Order 3

Q: What is the maximal cap size?

[0, 1, 2, 12]	[2, 3, 7, 10]
[0, 3, 6, 9]	[2, 4, 6, 11]
[0, 4, 8, 10]	[2, 5, 8, 9]
[0, 5, 7, 11]	
[1, 3, 8, 11]	[3, 4, 5, 12]
[1, 4, 7, 9]	[6, 7, 8, 12]
[1, 5, 6, 10]	[9, 10, 11, 12]

n=2	n=3	n=4	n=5	n=7
[0, 1, 6]	[0, 1, 2, 12]	[0, 1, 2, 3, 20]	[0, 1, 2, 3, 4, 30]	[0, 1, 2, 3, 4, 5, 6, 56]
[0, 2, 4]	[0, 3, 6, 9]	[0, 4, 8, 12, 16]	[0, 5, 10, 15, 20, 25]	[0, 7, 14, 21, 28, 35, 42, 49]
[0, 3, 5]	[0, 4, 8, 10]	[0, 5, 10, 15, 19]	[0, 6, 12, 18, 24, 26]	[0, 8, 16, 24, 32, 40, 48, 50]
[1, 2, 5]	[0, 5, 7, 11]	[0, 6, 11, 13, 17]	[0, 7, 14, 16, 23, 27]	[0, 9, 18, 27, 29, 38, 47, 51]
[1, 3, 4]	[1, 3, 8, 11]	[0, 7, 9, 14, 18]	[0, 8, 11, 19, 22, 28]	[0, 10, 20, 23, 33, 36, 46, 52]
[2, 3, 6]	[1, 4, 7, 9]	[1, 4, 11, 14, 19]	[0, 9, 13, 17, 21, 29]	[0, 11, 15, 26, 30, 41, 45, 53]
[4, 5, 6]	[1, 5, 6, 10]	[1, 5, 9, 13, 16]	[1, 5, 14, 18, 22, 29]	[0, 12, 17, 22, 34, 39, 44, 54]
	[2, 3, 7, 10]	[1, 6, 8, 15, 18]	[1, 6, 11, 16, 21, 25]	[0, 13, 19, 25, 31, 37, 43, 55]
	[2, 4, 6, 11]	[1, 7, 10, 12, 17]	[1, 7, 13, 19, 20, 26]	[1, 7, 20, 26, 32, 38, 44, 55]
	[2, 5, 8, 9]	[2, 4, 9, 15, 17]	[1, 8, 10, 17, 24, 27]	[1, 8, 15, 22, 29, 36, 43, 49]
	[3, 4, 5, 12]	[2, 5, 11, 12, 18]	[1, 9, 12, 15, 23, 28]	[1, 9, 17, 25, 33, 41, 42, 50]
	[6, 7, 8, 12]	[2, 6, 10, 14, 16]	[2, 5, 13, 16, 24, 28]	[1, 10, 19, 21, 30, 39, 48, 51]
	[9, 10, 11, 12]	[2, 7, 8, 13, 19]	[2, 6, 10, 19, 23, 29]	[1, 11, 14, 24, 34, 37, 47, 52]
		[3, 4, 10, 13, 18]	[2, 7, 12, 17, 22, 25]	[1, 12, 16, 27, 31, 35, 46, 53]
		[3, 5, 8, 14, 17]	[2, 8, 14, 15, 21, 26]	[1, 13, 18, 23, 28, 40, 45, 54]
		[3, 6, 9, 12, 19]	[2, 9, 11, 18, 20, 27]	[2, 7, 19, 24, 29, 41, 46, 54]
		[3, 7, 11, 15, 16]	[3, 5, 12, 19, 21, 27]	[2, 8, 14, 27, 33, 39, 45, 55]
		[4, 5, 6, 7, 20]	[3, 6, 14, 17, 20, 28]	[2, 9, 16, 23, 30, 37, 44, 49]
		[8, 9, 10, 11, 20]	[3, 7, 11, 15, 24, 29]	[2, 10, 18, 26, 34, 35, 43, 50]
		[12, 13, 14, 15, 20]	[3, 8, 13, 18, 23, 25]	[2, 11, 20, 22, 31, 40, 42, 51]
		[16, 17, 18, 19, 20]	[3, 9, 10, 16, 22, 26]	[2, 12, 15, 25, 28, 38, 48, 52]

My students made cards for up to n=7 and looked for patterns.

Theorem: In order *n*, the upper bound on maximal cap size is n + 2.

n	Max cap size
2	4
3	4
4	6
5	6
7	8
8	10
16	18

n	Max cap size
2	4
3	4
4	6
5	6
7	8
8	10
16	18

Conjecture:

- 1. When n is odd, max cap size = n+1
- 1. When n is even, max cap size = n+2

n	Max cap size
2	4
3	4
4	6
5	6
7	8
8	10
16	18

Conjecture:

1. When n is odd, max cap size = n+1

2. When n is even, max cap size = n+2

First:

My students proved this for n= 2, 3, 5, 8, 16.

n	Max cap size
2	4
3	4
4	6
5	6
7	8
8	10
16	18

Conjecture:

1. When n is odd, max cap size = n+1

2. When n is even, max cap size = n+2

First:

My students proved this for n = 2, 3, 5, 8, 16.

Second: We found a proof in a 1947 paper.1. It was difficult to read.

n	Max cap size
2	4
3	4
4	6
5	6
7	8
8	10
16	18

Conjecture:

1. When n is odd, max cap size = n+1

2. When n is even, max cap size = n+2

First:

My students proved this for n = 2, 3, 5, 8, 16.

Second: We found a proof in a 1947 paper.

- 1. It was difficult to read.
- 2. It proved it for the dual case (points <-> lines)

n	Max cap size
2	4
3	4
4	6
5	6
7	8
8	10
16	18

Conjecture:

1. When n is odd, max cap size = n+1

2. When n is even, max cap size = n+2

First:

My students proved this for n = 2, 3, 5, 8, 16.

Second: We found a proof in a 1947 paper.

- 1. It was difficult to read.
- 2. It proved it for the dual case
- 3. We found a more recent exposition.

Table 6: Max Cap in Order n

n	Max cap size
2	4
3	4
4	6
5	6
7	8
8	10
16	18

Conjecture:

- 1. When n is odd, max cap size = n+1
- 2. When n is even, max cap size = n+2

First:

My students proved this for n = 2, 3, 5, 8, 16.

Second: We found a proof in a 1947 paper.

- 1. It was difficult to read.
- 2. It proved it for the dual case
- 3. We found a more recent exposition.
- 4. We translated it from the dual to our setting.

Table 8: Found Complete Caps in Order n

$\mid n$	sizes of complete caps
2	4
3	4
4	6
5	6
7	6, 8
8	6, 10
9	6, 7, 8, 10
11	7, 8, 9, 10, 12
13	8, 9, 10, 12, 14
16	9, 10, 11, 12, 13, 18
17	10, 11, 12, 13, 14, 18
19	10, 11, 12, 13, 14, 20
23	12, 13, 14, 15, 16, 17
29	14, 15, 16, 17, 18
31	15, 16, 17, 18, 19

Open Questions/Future Work

- How many max caps are there?
- Possible sizes of complete caps
- Avoiding Quadruples
- Partitioning a deck into caps?
- Create a game in higher dimensional projective space.

Thanks for listening!

Lauren Rose

rose@bard.edu

