POLYOMINOES AND BLOKUS

Sarah Trebat-Leder

AoPS + *Emory Math Circle*

In the actual game a players pieces must be connected to one another but only by a corner from one piece to the next. You loose if you cannot play.

LOTS OF QUESTIONS TO ASK!

► How should we define a polyomino?

► When should we consider two polyominoes to be the same?

LOTS OF QUESTIONS TO ASK!

How many different n-ominoes are there for the first few n's? Is there a pattern? Are any missing from Blokus?

Can a particular polyomino be used to tile a plane? What about a prescribed region of the plane?

LOTS OF QUESTIONS TO ASK!

If the players cooperated, would they be able to fit all the pieces on the board while following the rules of the game?

WHAT WE ACTUALLY DID IN MATH CIRCLE

- 75 minute session with ~20 students in grades 5 - 7.
- When they arrived, there were a handful of Blokus pieces at each table.
- Warmup: Pick a shape. How many copies of it can you fit on an 11x11 grid?

If the piece you picked looked like the following:

You might try to fill up the grid in the following way:

This gives you 25 copies on the grid. Is that the best we can do? Is there a better configuration which can fit more than 25 copies?

WHAT WE ACTUALLY DID IN MATH CIRCLE

- Class discussion: How to define a polyomino? When are two the same? How many n-ominoes are there for n = 1, 2, 3?
- Main activity: How many n-ominoes are there for n = 4, 5?
- Wrapup: Give a few more numbers in chart. What do you notice?

n	# of n- ominoes
1	1
2	1
3	2
4	5
5	12
6	35
7	108
8	369
9	1285
10	4655