The Broad Impact of Math Teachers’ Circles: Results from the First Decade

Brianna Donaldson

American Institute of Mathematics
Brief History of Math Teachers’ Circles

• 2006: First MTC founded at the American Institute of Mathematics (AIM)
• 2007: AIM began disseminating the MTC model
• Today:
  – 90 MTCs in 38 states
  – 1,500 teachers
  – 300 mathematicians
Core Features

• Regular meetings
• Involvement of both K-12 teachers and mathematicians
• Focus on non-routine, mathematically rich, low-threshold, high-ceiling problems
• Substantial time for collaborative mathematical exploration
Impact

• Anecdotally, effects on teachers and mathematicians are profound
• Research has mostly focused on teachers
Acknowledgments

• NSF DRL-1119342 to the American Institute of Mathematics
  – Collaborators: Brian Conrey, Catherine Good, Michael Nakamaye, Kristin Umland, Diana White

• Math Teachers’ Circle leaders and members from across the U.S.
Overview of Results

• Mathematical Knowledge for Teaching
• Professional Engagement
• High-Quality Instructional Practices
• Healthy Mindsets
Mathematical Knowledge for Teaching
Mathematical Knowledge for Teaching

• Mathematical Knowledge for Teaching (MKT) is the knowledge about mathematics needed to teach it
• Significant increase in MTC participants’ MKT scores after participating in a 4- to 5-day intensive summer workshop (White, Donaldson, Hodge, & Ruff, 2013; Donaldson et al., in preparation)
• Previous research by Hill and her colleagues established an association between higher Mathematical Knowledge for Teaching and higher student achievement (Hill, Rowan, & Ball, 2005).
Mathematical Knowledge for Teaching

• National MTC Surveys:
  – 63% of respondents identified improved understanding of mathematical practices (e.g., problem solving and constructing and critiquing mathematical arguments)
  – 33% identified improvements in their content knowledge about topics such as fractions, geometry, and probability
  – Teachers also reported a strong connection between their MTC experiences and the Common Core State Standards for Mathematical Practice.
Professional Engagement
Professional Engagement

• National MTC Surveys: 57% of respondents reported that their experience with MTCs had increased their participation in professional activities outside the classroom:
  – Collaborating more with other teachers
  – Participating in decisions about curriculum for their school or district
  – Attending professional conferences
  – Leading extracurricular math activities for students
Professional Engagement

• In-depth case studies of 9 MTC participants over a two-year period (Donaldson, Nakamaye, Umland, & White, in preparation)
Professional Engagement

• Sharon
  – Relatively weak math background prior to MTC participation
  – “I felt like the dumbest person in the room, but I learned so much. I felt like a light bulb went on.... In the past, I identified as a language arts kind of person. Now I’m passionate about math.”
  – By the end of the study, Sharon had become the math resource teacher for her elementary school
Professional Engagement

• Lisa
  – Stronger mathematical background prior to MTC participation
  – By the end of the study, she had taken on multiple leadership roles, at her school, for her district, and nationally
  – She reports that one reason she has had these opportunities is a 200% growth (two times expected) in her students’ achievement scores since she began teaching using a conceptually and inquiry-oriented style that she says was inspired by MTC participation
  – “I owe my success to MTC—my only source of content-related PD. Anything I do I feel comes from my math circle.”
High-Quality Instructional Practices
High-Quality Instructional Practices

• National MTC Surveys: 79% of respondents self-reported at least one specific change to their classroom teaching
  – More than half of these listed instructional practices such as improved questioning techniques and supporting students in struggling with problems
  – Approximately 40% cited specific problems, activities, or new approaches to content
High-Quality Instructional Practices

- Video classroom observations suggested a relationship between higher levels of MTC participation and:
  - consistent use of precise mathematical language in the classroom (cf. Hill et al., 2007)
  - more frequent use of non-routine problems, as evaluated by mathematician coders (cf. Woodward et al., 2012)
High-Quality Instructional Practices

• Marle et al. (2012):
  – Observations and surveys of new MTC participants over the course of one year
  – Increased teaching self-efficacy
  – Increased reform-oriented teaching practices
  – Teaching self-efficacy and reform-oriented practices have both been previously linked with improved student motivation, attitudes, learning, and achievement (cf. Stipek et al., 1998; Tschannen-Moran, Woolfolk Hoy, & Hoy, 1998).
Healthy Mindsets
Healthy Mindsets: 
Nature of Mathematical Intelligence

• Fixed (entity theory) vs. malleable/growth (incremental theory)
• Students who hold an entity theory:
  – are highly concerned about performances that reveal their “true” abilities (Blackwell et al., 2007; Dweck & Leggett, 1988; Grant & Dweck, 2003; Mangels et al., 2006)
  – tend to avoid real challenges for fear that poor performance will demonstrate low ability (Hong et al., 1999; Mueller & Dweck, 1998)
  – become unmotivated in the face of difficulty (Blackwell, et al., 2007; Marocchio, 1994; Wood, 1989).
• Students who hold an incremental theory:
  – are less focused on measuring and proving their abilities, and more focused on learning, i.e., improving their abilities (Blackwell et al., 2007; Dweck & Leggett, 1988; Mangels et al., 2006).
Healthy Mindsets:
Nature of Mathematical Intelligence

• Teachers’ beliefs about mathematical intelligence impact their pedagogical practices (Anderman, et al., 2001) and classroom culture in a way that conveys their underlying mindsets and affects students’ motivation, interest, and investment in the class (Rattan, Good, & Dweck, 2012).

• “It has been neat to see such high level math become ‘reachable’ and ‘doable’ for me. It has made me feel that, maybe I really CAN do it!”
Healthy Mindsets: Sense of Belonging to Mathematics

- Linked with achievement, learning, and intrinsic motivation (Good, Rattan, & Dweck, 2012)
- 58% of all survey respondents identified belonging to a professional math community as a major motivation for participating
- “Math Teachers’ Circle moved me from being a math teacher to feeling like I am a mathematician”
Healthy Mindsets: Role of Grit and Persistence

• Students who have “grit” and are able to persist through difficult tasks have higher learning outcomes than their less “gritty” peers (Duckworth et al., 2010)

• “I have increased my level of expectations for all students”

• “I feel much more confident letting my students struggle and take time to solve problems. I use this concept with most lessons and my students have grown because of it.”
Healthy Mindsets:
Conceptions of Mathematics

• 20-item Conceptions of Mathematics scale under development by Good and Donaldson
• Two views of mathematics described in the literature (Beswick, 2012; Beswick & Callingham, 2014; Burton, 2002; Ernest, 1989; Thompson, 1984): professional mathematician vs. traditional school math or instrumentalist
• Subscales indexing the “mathematician” and “instrumental” approaches had high internal reliability (Cronbach’s alpha = .81 and .77, respectively)
Healthy Mindsets

• Pilot study with 275 participants who had varying levels of experience with MTCs
• The more MTC meetings teachers reported attending, the more likely they were to see math “like a mathematician” ($p = .045$)
• The more teachers participated in MTCs, the more they incorporated mathematics as part of their identity ($p = .046$)
• Seeing math like a mathematician was strongly predictive of other healthy mindsets, including:
  – More incremental theories of intelligence ($p < .02$)
  – Higher sense of belonging ($p < .02$)
  – More grit ($p <.01$)
• This view of math also predicted desirable pedagogical practices like endorsing mastery of content ($p < 0.04$) and normalizing mistake-making in the classroom ($p < .001$).
What is the impact of MTCs?
What is the impact of MTCs?

- MTC Participation
- Mathematical Knowledge for Teaching
- High-Quality Instructional Practices
- Professional Engagement
- Healthy Mindsets

The diagram shows the relationships between these aspects.
Discussion

• MTCs are not a comprehensive model of teacher professional development, but they can be a catalyst for change for those who are ready

• Fostering healthy mindsets about mathematics, while at the same time increasing teachers’ mathematical knowledge for teaching and their professional engagement, could have a truly broad impact on mathematics in the U.S.
Thank you!

Brianna Donaldson
American Institute of Mathematics
brianna@aimath.org
Which teachers participate?

- Average of 15-20 teachers per session
- Grades taught:
  - Elementary school (ES): 10-20%
  - Middle school (MS): 50-60%
  - High school (HS): 10-20%
- Educational background: degree in math or math ed
  - 15% of ES teacher participants (vs. 4% nationally; Banilower et al., 2013)
  - 55% of MS teacher participants (vs. 35% nationally)
  - 49% of HS teacher participants (vs. 73% nationally)
- Approximately half report teaching in a high-needs school
- 39% of 275 participants in Good and Donaldson (in preparation) reported that the majority of students at their school were not meeting grade-level expectations in math
  - 14% said that most students were exceeding expectations