Impact of the Southwest Chicago Math Teachers’ Circle on the Disposition of Teachers Toward Mathematics and Toward the Teaching and Learning of Mathematics

Angela Antonou, University of St. Francis
About the SW Chicago Math Teacher Circle

› Started as a collaboration of faculty members from five Chicago-land college and universities along with two middle school math teachers

› Location rotates among several colleges and universities (Lewis University-Romeoville, Saint Xavier University-Chicago, Trinity Christian College-Palos Heights)

› Started in spring 2016 with initial launch event on May 12 (Lewis), summer immersion workshop August 1-3 (Trinity)

› Participants: Middle (and elementary and high) school teachers in the southwest Chicago suburbs
Study Purpose

To assess the effect of participation in a Math Teachers’ Circle on:

› the perceived importance of, confidence of, and implementation of teachers to use inquiry-based learning in their classroom

› the dispositions of teachers toward mathematics

› the disposition of teachers toward the teaching of mathematics
Three-Day Immersion Workshop (August 2016 at Trinity Christian College)

› Number of participants (excluding leadership team and guest leaders): August 1-22, August 2-17, August 3-17

› Melissa Loe and Brenda Kroschell (University of St. Thomas in St. Paul, Minnesota) served as national lead speakers
Three-Day Immersion Workshop

- A total of 8 sessions (1.5 to 2 hours each) over 3 days, with meals, snacks, time to reflect, etc.
 - Day 1: Problem Solving, Liar’s Bingo
 - Day 2: Twenty-five Point Affine Geometry, Fibonacci Fun, Coins in Two-Land, Exploding Dots
 - Day 3: Pascal’s Triangle, Classroom Scenarios

- Study administration:
 - Survey administered after Session 1 (Day 1)
 - Survey administered after Session 8 (Day 3)
 - Prompted reflections after each session
 - 13 participants completed both the pre-workshop and post-workshop survey
Participant Backgrounds

› Number of years taught
 › 1 year or less: 44.4%
 › 1 to 5 years: 22.2%
 › 5 to 10 years: 11.1%
 › more than ten years: 22.2%

› Grade levels
 › Fifth grade: 23%
 › Middle school: 54%
 › Middle and high school: 8%
 › High school: 15%

› Highest degree
 › Bachelors: 67%
 › Masters: 33%
Survey Design

› First part:
 – 28 items:
 › Encourage social interaction as a means of learning
 › Provide hands-on experiences before introducing new concepts
 › Create open-ended problems
 › Engage students in inquiry-oriented activities
 – How important do you feel it is for effective mathematics instruction (1 being not important to 6 being very important),
 – How confident do you feel in applying it in the classroom (1 being not confident to 6 being very confident)
 – How frequently do you implement it (1 being not frequent to 6 being very frequent)
Survey Design

› Second part (27 items):
 › A mathematician should be able to solve any mathematics problem or puzzle
 › Mathematics is an activity which is done alone, not with others
 › Solving mathematics problems requires patience
 › There are multiple means to discover a mathematical concept

› Third part (30 items):
 › I believe all students can understand mathematics through an investigative approach
 › Lecturing is the best way to teach mathematics

› Forced-choice 6-point Likert scale
 › 1 - Strongly Disagree, 2 - Disagree, 3 - Sometimes Disagree
 › 4 - Sometimes Agree, 5 - Agree, 6 - Strongly Agree
Survey Results - Confidence in Creating Opportunities to Develop Students' Conceptual Understanding of Mathematics

P-value: 0.023; 50% reported increased confidence with 50% reporting no change in confidence.
Survey Results - Creating Opportunities for Students to Communicate Mathematics Verbally

› Confidence in applying it:
 – P-value: 0.008; 58% reported increased confidence with 42% reporting no change in confidence.

› Frequency of implementing it:
 – P-value: 0.009; 67% reported increased frequency of implementation with 33% reporting no change.
Survey Results - I Feel Inventive When Solving an Unfamiliar Math Problem

> P-value: 0.026; 46% reporting stronger agreement, 54% reporting no change in agreement to this statement. Note that 2 out of 13 teachers changed their response from “Disagree” to “Strongly Agree”.

![Bar Chart](image.png)

Bar Chart
- **X-axis**:
 - Disagree
 - Sometimes Disagree
 - Sometimes Agree
 - Agree
 - Strongly Agree
- **Y-axis**:
 - Count
- **Legend**:
 - Pre-VsPost
 - Pre-WS
 - Post-WS
Survey Results - The Average Math Student Can, at Best, Memorize Math Procedures and Apply Formulas.

- P-value: 0.053; 46% report weaker agreement.
- Pre-workshop: 46% disagree or strongly disagree
- Post-workshop: 67% disagree or strongly disagree
Survey Results – **Incorporate Multiple Representations** (e.g., computational, graphical, geometric, algebraic, etc.) when introducing a concept.

- P-value: 0.009; 67% report increased implementation
- Pre-workshop median: 4
- Post-workshop median: 5.5
Survey Results – Allow Students to Work at Their Own Pace.

› P-value: 0.007; 67% report increased implementation
› Pre-workshop median: 4
› Post-workshop median: 5
Survey Results – Journal Reflections

- “Each activity continues to open possibilities I hadn’t considered doing with my students.” (Coins in Two-Land)
- “I’ve noticed that I’m becoming less afraid to try different things.” (Pascal’s Triangle)
- “I learned that you not only have to problem solve to get to the answer but also to get to a response to your students.” (Classroom Scenarios)
- It made me understand the vast usefulness of productive struggle. My students need to engage in this type of problem weekly! It would help them learn to persevere!! (25-Point Affine Geometry)
Future Considerations

› Include other Math Teachers’ Circles
› Data from one-day participants
› Investigate those items which did not show significant change:
 › It is important to immediately assist struggling students (5.5/5.5)
 › Confidence in incorporating student-led discussions (4/4)
Thank you!

› Angela Antonou (University of St. Francis), co-principal investigator: aantonou@stfrancis.edu

› Rita Patel (College of DuPage), principal investigator ritapatelmath@gmail.com

› Southwest Chicago Teacher Circle Website: https://southwestchicagomathcircle.wordpress.com/

› National Math Teacher Circle Website (and resources): http://www.mathteacherscircle.org/
Survey Results - Creating Open-ended Problems

› Confidence in applying it:
 – P-value: 0.053; 50% reported increased confidence with 42% reporting no change in confidence, 8% reporting slight decrease in confidence.

› Frequency of implementing it:
 – P-value: 0.034; 42% reported increased frequency of implementation with 58% reporting no change.
Significant Changes

› Use multiple instructional strategies for one topic (implementation) – 0.034
› Create opportunities to develop students’ conceptual understanding of mathematics: Confidence – 0.023; Implementation – 0.014
› Encourage students to discuss their reasoning with each other (implementation) – 0.014
› Incorporate activities which students find enjoyable (implementation) – 0.02
› Create problems so that students can practice routine computations. – 0.012
› Allow students to work at their own pace: Confidence – 0.038; Implementation – 0.007
› Create opportunities for students to communicate mathematics verbally: Confidence – 0.008; Implementation – 0.009
› Create open-ended problems (implementation) – 0.034
Significant Changes

› Incorporate multiple representations (e.g., computational, graphical, geometric, algebraic, etc.) when introducing a concept: Confidence (0.035); Implementation (0.009)

› Help students see connections between mathematics and other disciplines (Importance) – 0.008

› Provide hands-on experiences before introducing new concepts (implementation) – 0.034

› I feel inventive when solving an unfamiliar math problem. – 0.026

› If I don’t fully understand a mathematics concept, I avoid using it in the classroom. – 0.014

› I avoid using instructional techniques if I am unfamiliar with it – 0.035

› The average math student can, at best, memorize math procedures and apply formulas. – 0.053
Survey Results – Confidence in Encouraging Students to Persevere in Solving Problems

- P-value: 0.059; 50% report stronger agreement.
- Journal Reflection on Perseverance:
 › Struggle is good even if you don’t get there in the time provided.
 › It made me understand the vast usefulness of productive struggle. My students need to engage in this type of problem weekly! It would help them learn to persevere!!
 › I learned and was immersed in the example of a master teacher helping us when we needed a boost, but at the same time I was respected as a learner because she didn’t show me a step-by-step procedure on how to solve the problem.
Survey Results – Journal Reflections

– Response from the same individual during the workshop:
 › Day 1: “My problem solving strategies begin with a little “panic” trying to decide where to start. Then I usually do not finish.”
 › Day 2: “I liked the challenges of looking at and working with a twist on my geometry. I learned that I can still (after many years removed from college) find success in an unfamiliar (setting).”
 › Day 3: “I’m feeling more confident about the importance of struggle and cooperation.”