Knotted Mathematics for Elementary-Aged Students

Mark Hughes

Knots

Knots: Embeddings of S^1 into \mathbb{R}^3 , considered up to isotopy.

Knots are fun to study, and are useful in

- ♪ Molecular biology (DNA)
- Polymer chemistry
- Physics
- Geometry

Knots

Knots: Embeddings of S^1 into \mathbb{R}^3 , considered up to isotopy.

Purpose: Use knots to introduce students to the concepts of equivalence between mathematical objects, and how to use invariants to distinguish inequivalent objects.

Audience: Elementary-aged students (topics can be scaled-up to older students).

Both the Same and Different

Similarities: birds, feathers, beaks, can fly, etc.

Differences: white head vs. green head, talons vs. webbed feet, hooked beak vs. flat bill, etc.

Your Friendly Neighborhood Knots

How is the unknot different from the trefoil?

How does the trefoil differ from the figure 8 knot?

Does your answer depend on the way that we've drawn the knots?

When Are Two Knots "The Same"?

Tricky Knots

https://www.youtube.com/watch?v=UmF0-Tz1oWc

How Do We Tell Knots Apart?

Suppose we have a knot diagram.

Suppose we have a knot diagram.

Suppose we have a knot diagram.

We'd like to color each arc of the diagram red, blue, or green, satisfying the following coloring rules.

Suppose we have a knot diagram.

We'd like to color each arc of the diagram red, blue, or green, satisfying the following coloring rules.

COLORING RULES:

1. Each color must be used at least once.

Suppose we have a knot diagram.

We'd like to color each arc of the diagram red, blue, or green, satisfying the following coloring rules.

- 1. Each color must be used at least once.
- 2. At every crossing X

Suppose we have a knot diagram.

We'd like to color each arc of the diagram red, blue, or green, satisfying the following coloring rules.

- 1. Each color must be used at least once.
- 2. At every crossing \times , each arc must either be colored a different color, i.e. \times

Suppose we have a knot diagram.

We'd like to color each arc of the diagram red, blue, or green, satisfying the following coloring rules.

- 1. Each color must be used at least once.
- 2. At every crossing \times , each arc must either be colored a different color, i.e. \times , or the same color, i.e. \times

Suppose we have a knot diagram.

We'd like to color each arc of the diagram red, blue, or green, satisfying the following coloring rules.

- 1. Each color must be used at least once.
- 2. At every crossing \times , each arc must either be colored a different color, i.e. \times , or the same color, i.e. \times .

Suppose we have a knot diagram.

We'd like to color each arc of the diagram red, blue, or green, satisfying the following coloring rules.

- 1. Each color must be used at least once.
- 2. At every crossing \times , each arc must either be colored a different color, i.e. \times , or the same color, i.e. \times

Suppose we have a knot diagram.

We'd like to color each arc of the diagram red, blue, or green, satisfying the following coloring rules.

- 1. Each color must be used at least once.
- 2. At every crossing \times , each arc must either be colored a different color, i.e. \times , or the same color, i.e. \times .

Since the trefoil knot can be colored according to these rules, we say that it is 3-colorable.

Since the trefoil knot can be colored according to these rules, we say that it is 3-colorable.

Is this a special property of the trefoil? Or can we do it with any knot diagram?

Since the trefoil knot can be colored according to these rules, we say that it is 3-colorable.

Is this a special property of the trefoil? Or can we do it with any knot diagram?

Since the trefoil knot can be colored according to these rules, we say that it is 3-colorable.

Is this a special property of the trefoil? Or can we do it with any knot diagram?

Since the trefoil knot can be colored according to these rules, we say that it is 3-colorable.

Is this a special property of the trefoil? Or can we do it with any knot diagram?

Since the trefoil knot can be colored according to these rules, we say that it is 3-colorable.

Is this a special property of the trefoil? Or can we do it with any knot diagram?

Since the trefoil knot can be colored according to these rules, we say that it is 3-colorable.

Is this a special property of the trefoil? Or can we do it with any knot diagram?

Since the trefoil knot can be colored according to these rules, we say that it is 3-colorable.

Is this a special property of the trefoil? Or can we do it with any knot diagram?

Since the trefoil knot can be colored according to these rules, we say that it is 3-colorable.

Is this a special property of the trefoil? Or can we do it with any knot diagram?

Since the trefoil knot can be colored according to these rules, we say that it is 3-colorable.

Is this a special property of the trefoil? Or can we do it with any knot diagram?

Since the trefoil knot can be colored according to these rules, we say that it is 3-colorable.

Is this a special property of the trefoil? Or can we do it with any knot diagram?

Since the trefoil knot can be colored according to these rules, we say that it is 3-colorable.

Is this a special property of the trefoil? Or can we do it with any knot diagram?

Since the trefoil knot can be colored according to these rules, we say that it is 3-colorable.

Is this a special property of the trefoil? Or can we do it with any knot diagram?

Since the trefoil knot can be colored according to these rules, we say that it is 3-colorable.

Is this a special property of the trefoil? Or can we do it with any knot diagram?

Since the trefoil knot can be colored according to these rules, we say that it is 3-colorable.

Is this a special property of the trefoil? Or can we do it with any knot diagram?

Since the trefoil knot can be colored according to these rules, we say that it is 3-colorable.

Is this a special property of the trefoil? Or can we do it with any knot diagram?

Let's try the figure-eight knot:

The figure-eight knot is not 3-colorable.

Did we just make a lucky choice of diagram for the trefoil? Were we unlucky with our choice of diagram for the figure-eight knot?

Trefoil:

Did we just make a lucky choice of diagram for the trefoil? Were we unlucky with our choice of diagram for the figure-eight knot?

Trefoil:

Did we just make a lucky choice of diagram for the trefoil? Were we unlucky with our choice of diagram for the figure-eight knot?

Trefoil:

Did we just make a lucky choice of diagram for the trefoil? Were we unlucky with our choice of diagram for the figure-eight knot?

Trefoil:

Did we just make a lucky choice of diagram for the trefoil? Were we unlucky with our choice of diagram for the figure-eight knot?

Trefoil:

Did we just make a lucky choice of diagram for the trefoil? Were we unlucky with our choice of diagram for the figure-eight knot?

Trefoil:

3-Colorability Theorem

Theorem

Let K be a knot. Then either every diagram of K can be 3-colored, or none of them can be 3-colored.

This tells us that 3-colorability only depends on the knot K, and not on the diagram we've drawn.

Thus the trefoil and the figure-eight knot are genuinely different knots (and not just different pictures of the same knot).

3-colorability is a knot invariant.

Proof.

Proof.

Proof.

Proof.

Proof.

Proof.

Proof.

Other Knot Invariants

Knot invariants provide information about knots, and help distinguish different knots.

Invariants can be numbers, polynomials, or other algebraic objects.

Thank You!!!