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Don't be Greedy

There are 12 coins
> Players alternate moves.
» You win if you take the last coin (or coins).
> Take 1, 2 or 3 coins.
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Vary the Rules

There are 99 coins

» Players alternate moves.

» You win if you take the last coin (or coins).

» Take 1, 3, or 8 coins.
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Don’t be Greedier

There are 12 coins
> Normal Rules Apply.
» Players alternate moves.
> Take no more coins than your opponent just took.
> Don’t take all the coins on the first move.
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Don't be Greedier

can remove

number of coins remaining
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Don't be more than Twice as Greedy

Take no more than twice as many coins as your opponent.
number of coins remaining

can remove

[graphic: Walden Yan]
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NIM, A GAME WITH A COMPLETE MATHEMATICAL
THEO]

Y.
By Cmanues L. Bourox.

Tue gamo here discussed has interested the writer on nccount of its secm-
ing comploxity, and its extremely simple and complete mathematical theory.*
‘The wiiter has not been able to discover much concerning its history, although
cortain forms of it seem to be played at & number of American colleges, and
at some of the American fuirs. It has been called Fan-Tan, but as it s not
the Chinese gume of that name, the name in the title is proposed for it.

1. Description of the Game, The game is played by two players,
Aand B. Upon  table ure placed three piles of objects of any kind
say counters. The number in each pile is quite arbitrary, except that it is well
to agree thut no two piles shall he equal at the beginning. A play is made as
follows :—The player selects one of the piles, and from it takes as many coun-
ters as he chooses; one, two, . . ., or the whole pile. The ouly essential
things about a play are that the counters shall be taken from a single pile, and
that at lenst one shall be taken. The players play alternately, snd the player
who takes up the last counter or counters from the table wins

Itis the writer's purpose to prove that i one of the players, say A, can
leave one of a certain setof numbers upon the table, and after that plays
out mistake, the other player, B, cannot win. Such a set of pumbers will be
called & safe combination. In outline the proof consists in showing that if A4
leaves a. combination on the table, B at his next move cannot leave a safe
combination, and whatever B may draw, 4 at bis next move can again leave
safe combination. The piles aro then reduced, A always leaving s safe com-
bination, and B never doing o, and 4 must eventually take the last counter
(or counters).

2. Its Theory. A safe combination is determined as follows: Write
the number of the counters in each pile in the binary scale of notation, t snd

* The modification of the game given i §6 was described to the writer by Mr. Paul E.

More in October, 1899. Mr. More at the same time gave & method of play which,
exprossed 1n s diferent form, I realy the same as that used bere, bat. he could give 5o proaf
of bls rule.

+Porexsmple, b nomber . riln 2 i sotaton, wid
24020 402 17 = 1001

Chares L. Bouton, Nim, A Game with 3 Compite Mathematical Theory, The Annas of Mathematics Vel 3, No. 1/4 (1901 to 1902, 35-30
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+ For example, the number 9, written In 1 ™
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19402 4020 + 12 = 1001
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Thank You!
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