

NIMBioS Activities Connecting Math and Science in Middle School

Kelly Sturner, Education & Outreach Coordinator Virginia Parkman, student, University of Tennessee Suzanne Lenhart, Associate Director for Education and Outreach

Teacher and Student Workshops

"Yes, this will be useful to you later in life."

Biology in a Box

- Hands-on, inquiry-based curriculum enrichment units for K-12
- Math and biology together

Undergraduate Programs

- Undergraduate Research
 Conference (annual in fall)
- Summer Research
 Experiences for
 Undergraduates and
 Teachers

The importance of random sampling

Goals:

- Demonstrate understanding of random and nonrandom sampling
- Discuss importance of random sampling
- Recall how to find mean/average, median, mode, range, and apply to data
- Use measures of central tendency to compare datasets

What is random sampling?

- Random sampling is a way to remove bias in a sample selection, and it tends to produce representative samples of a larger population.
- When is random sampling used?
- What happens when a personal or nonrandom selection happens instead of a random sample?

• Step 1: Number the circles from 1 to 80.

• Step 2: Take 15 seconds and select five circles to use to estimate the average diameter of the 80 circles.

- Step 3: Find the diameter (in cm) for each circle.
- Step 4: Find the average diameter. Make sure to show your work.
- Example:

```
2+1+2+3+3=11
11/5=2.2
Average Diameter: 2.2 cm
```


- Step 5: Find the average diameter for the class.
- Example:

John's average diameter: 1.6 cm Your average diameter: 2.2 cm Sheri's average diameter: 1.8 cm Sam's average diameter: 1.4 cm

Their average diameter: 1.75 cm

- Step 6: Use random number generator to pick 5 circles and find their diameters.
- Step 7: Find the average diameter of the random sample of circles.
- Step 8: Find the average diameter of the random sample of circles for the whole class.

- Step 9: Find the median, mode, and range of the class' choice of circles and the class' random sample of circles. Then compare the median, mode, range, and mean/average.
- Step 10: Describe and compare the class' mean diameter of their choice circles and the randomly selected circles.

- The true average diameter is 1.25cm.
- Step 11: How is the true average different than your personal selection and your random sample mean diameter? Why?
- Step 12: What is bias? How did it appear in your personal selection? How does random selection help eliminate bias?

Goals

- Be able to describe the area and distribution of forests in the United States
- Understand why it is important to measure and monitor forests
- Define terms: <u>biomass</u>, <u>crown</u>, <u>dendrologist</u>,
 <u>DBH</u>
- Find out what π has to do with measuring a tree
- Define and calculate <u>stand density</u>

Area of Forests in US

- In 2010, there were 304,022,000 ha of forest in the United States
- The United States is 982,667,500 ha
- What percent of the United States' area is forested?

 $\frac{Part}{Whole} \times 100\% = \frac{304,022,000}{982,667,500} \times 100\% =$

How do we measure something so big?

What is **DBH**?

Diameter at Breast Height

Diameter of the tree 4.5 feet above forest floor on the uphill side
Avoids the swell at the base of the trunk

How can you use circumference to find diameter?

Problem & Solution

- You are a forester collecting tree DBH data
- You'd rather not bring a calculator into the field with you
- Can you invent something that, if you use it to measure the circumference, it automatically gives you the diameter?
- Discuss DBH tape measure.

Make Your Own DBH Tape

Mark off every pi (3.14) inches
What is 0.14 of an inch?
Somewhere in between 1/8" and 3/16"
Test it out!

A Forest is Many Trees

Chequamegon National Forest, WI

Mendocino Pygmy Forest, CA

How to describe the difference with numbers?

Stand Density

Stand Density =

 $= \frac{\text{number of trees}}{\text{area of stand}}$

- Count the number of trees (10)
- 2. Find the area (L*W) of the stand (15 ft * 25 ft = 375 ft^2)
- 3. Divide the numerator by the denominator (10/375 = 0.03) trees/ft²)

A "Forest" of Humans

If the people in this classroom were trees, and this classroom were our plot ...

What would be our stand density?

Sources

- Franklin, F., Kader, G., Mewborn, D., Moreno, J., Reck, R., Perry, M., and Scheaffer, R., Guidelines for Assessment and Instruction in Statistics Education (GAISE) Report: A Pre-K-12 Curriculum Framework, American Statistical Association, 2007.
- K. Sturner, B. Golden, and S. Lenhart, Modeling the Forest, Science Scope, September 2013, 70-79.

Copies of this paper available now!

For this Module & More:

- Website:
 <u>www.nimbios.org</u>
- See what we're all about
- Sign up for our bimonthly email newsletter
- Check our blog

