On each of your tables you’ll find blocks which are formed by joining 4 or 5 squares together. Pick any of those shapes you like, and answer the following: How many copies of that shape can you fit on the following grid?

Flip the page over for an example.
If the piece you picked looked like the following:

You might try to fill up the grid in the following way:

This gives you 25 copies on the grid. Is that the best we can do? Is there a better configuration which can fit more than 25 copies?
On each of your tables you’ll find blocks which are formed by joining 4 or 5 squares together. Pick any of those shapes you like, and answer the following: How many copies of that shape can you fit on the following grid?

Flip the page over for an example.
If the piece you picked looked like the following:

You might try to fill up the grid in the following way:

This gives you 25 copies on the grid. Is that the best we can do? Is there a better configuration which can fit more than 25 copies?
Polyominoes

On each of your tables you’ll find blocks which are formed by joining 4 or 5 squares together. Pick any of those shapes you like, and answer the following: How many copies of that shape can you fit on the following grid?

Flip the page over for an example.
If the piece you picked looked like the following:

You might try to fill up the grid in the following way:

This gives you 25 copies on the grid. Is that the best we can do? Is there a better configuration which can fit more than 25 copies?
Emory Math Circle – Spring 2018

Polyominoes

On each of your tables you’ll find blocks which are formed by joining 4 or 5 squares together. Pick any of those shapes you like, and answer the following: How many copies of that shape can you fit on the following grid?

Flip the page over for an example.
If the piece you picked looked like the following:

You might try to fill up the grid in the following way:

This gives you 25 copies on the grid. Is that the best we can do? Is there a better configuration which can fit more than 25 copies?
On each of your tables you’ll find blocks which are formed by joining 4 or 5 squares together. Pick any of those shapes you like, and answer the following: How many copies of that shape can you fit on the following grid?

Flip the page over for an example.
If the piece you picked looked like the following:

You might try to fill up the grid in the following way:

This gives you 25 copies on the grid. Is that the best we can do? Is there a better configuration which can fit more than 25 copies?
Polyominoes

On each of your tables you’ll find blocks which are formed by joining 4 or 5 squares together. Pick any of those shapes you like, and answer the following: How many copies of that shape can you fit on the following grid?

Flip the page over for an example.
If the piece you picked looked like the following:

```

```

You might try to fill up the grid in the following way:

```
```

This gives you 25 copies on the grid. Is that the best we can do? Is there a better configuration which can fit more than 25 copies?
Polyominoes

On each of your tables you’ll find blocks which are formed by joining 4 or 5 squares together. Pick any of those shapes you like, and answer the following: How many copies of that shape can you fit on the following grid?

Flip the page over for an example.
If the piece you picked looked like the following:

![Image of a 4x4 grid with a polyomino filling it]

You might try to fill up the grid in the following way:

![Image of a larger grid filled with polyominos]

This gives you 25 copies on the grid. Is that the best we can do? Is there a better configuration which can fit more than 25 copies?
Emory Math Circle – Spring 2018

Polyominoes

On each of your tables you’ll find blocks which are formed by joining 4 or 5 squares together. Pick any of those shapes you like, and answer the following: How many copies of that shape can you fit on the following grid?

Flip the page over for an example.
If the piece you picked looked like the following:

You might try to fill up the grid in the following way:

This gives you 25 copies on the grid. Is that the best we can do? Is there a better configuration which can fit more than 25 copies?
Polyominoes

On each of your tables you'll find blocks which are formed by joining 4 or 5 squares together. Pick any of those shapes you like, and answer the following: How many copies of that shape can you fit on the following grid?

Flip the page over for an example.
If the piece you picked looked like the following:

You might try to fill up the grid in the following way:

This gives you 25 copies on the grid. Is that the best we can do? Is there a better configuration which can fit more than 25 copies?
On each of your tables you’ll find blocks which are formed by joining 4 or 5 squares together. Pick any of those shapes you like, and answer the following: How many copies of that shape can you fit on the following grid?

Flip the page over for an example.
If the piece you picked looked like the following:

You might try to fill up the grid in the following way:

This gives you 25 copies on the grid. Is that the best we can do? Is there a better configuration which can fit more than 25 copies?
Emory Math Circle – Spring 2018

Polyominoes

On each of your tables you’ll find blocks which are formed by joining 4 or 5 squares together. Pick any of those shapes you like, and answer the following: How many copies of that shape can you fit on the following grid?

Flip the page over for an example.
If the piece you picked looked like the following:

```
[grid with the given polyomino]
```

You might try to fill up the grid in the following way:

```
[grid filled with the polyominoes]
```

This gives you 25 copies on the grid. Is that the best we can do? Is there a better configuration which can fit more than 25 copies?
Polyominoes

On each of your tables you’ll find blocks which are formed by joining 4 or 5 squares together. Pick any of those shapes you like, and answer the following: How many copies of that shape can you fit on the following grid?

Flip the page over for an example.
If the piece you picked looked like the following:

![Polyomino Diagram]

You might try to fill up the grid in the following way:

![Filled Grid Diagram]

This gives you 25 copies on the grid. Is that the best we can do? Is there a better configuration which can fit more than 25 copies?
Emory Math Circle – Spring 2018

Polyominoes

On each of your tables you’ll find blocks which are formed by joining 4 or 5 squares together. Pick any of those shapes you like, and answer the following: How many copies of that shape can you fit on the following grid?

Flip the page over for an example.
If the piece you picked looked like the following:

![Diagram of a piece](image)

You might try to fill up the grid in the following way:

![Filled grid](image)

This gives you 25 copies on the grid. Is that the best we can do? Is there a better configuration which can fit more than 25 copies?
On each of your tables you’ll find blocks which are formed by joining 4 or 5 squares together. Pick any of those shapes you like, and answer the following: How many copies of that shape can you fit on the following grid?

Flip the page over for an example.
If the piece you picked looked like the following:

You might try to fill up the grid in the following way:

This gives you 25 copies on the grid. Is that the best we can do? Is there a better configuration which can fit more than 25 copies?