More Adventures in the Game of SET ® -Transformations and Simulations

Mathfest 2021

Details available at:

- Developing Mathematical Reasoning Using Attribute Games: Mathematics Teacher, Vol 92 (9) December 1999, 768-775
- Paper available on the SET homepage:
 - https://www.playmonster.com/wp-content/uploads/2019/10/DEVELOPING-MATHEMATICAL-REASONING.pdf

Dr. Anne Quinn <u>quinna@edinboro.edu</u>

EU EDINBORO UNIVERSITY

1

Transformations and Simulations on the Game of SET®

- 1. Introduction to the game see setgame.com QUICK REVIEW
- 2. Types of sets -- Theorem
- 3. Minimum, maximum, and average number of sets
- 4. Suggestions for playing with novices -- NEW
- 5. Matrix transformations and modular arithmetic
 - Ways to make new groups of cards
- 6. Using Excel to error check
- 7. Simulations on new dice versions of the game -- NEW
 - Differences between the two types of Set games will be highlighted.

Part 1: Introduction to SET

2

Some ways to play <u>SET</u>

- Original Game
 - https://www.playmonster.com/product/set/
- Puzzle of the Day,
 - on <u>www.setgame.com/welcome</u>
 - or an app on the iPad

- Set Dice Game
 - https://www.youtube.com/watch?v=XLUvXIwrwpA
 - https://www.youtube.com/watch?v=bwcop\$XqEKY
 - Game does not appear to be currently available
- Online: setwithfriends.com

88

Part 1: Introduction to SET

Color: Red Green Purple

Number: 1 2 3

Shape: Oval Diamond Squiggle

Shading: Solid Stripe open

Part 1: Introduction to SET

3*3*3*3=81 cards

Part 1: Introduction to SET

5

Definition and Example

<u>Definition of SET</u>: A <u>SET</u> is a group of 3 cards where each attribute is ALL SAME or ALL DIFFERENT

Example of a SET:

color- DIFFERENT- 3 colorsnumber- SAME-all "1"sshape- DIFFERENT- 3 shapesshading- SAME- all stripes

When is it NOT a SET?

When there is TWO of a kind.

For example:

Part 1: Introduction to SET

,

SET Questions-- Mathematics Teacher article (1999)

How many cards must be in a deck?
How many SETs (including overlapping ones) are possible in the deck?
What is the best strategy for searching for SETs? Which "type" are you most likely to find?
What is the AVERAGE number of set among 12 cards?
What is the MAXIMUM number of red cards that contain 0 sets?
Find the MAXIMUM number of cards that contain 0 sets.
Can only 3 cards be left at the end of the game?

Part 1: Introduction to SET

7

Ex. #1: Find all SETs

0

Part 1: Introduction to SET

3

Ex #2: "Daily Puzzle" always has 6 SETS

Part 1: Introduction to SET

10

Theorem: Types of SETs (NCTM, 1999)

TYPE OF SET	WAYS TO PICK 1st CARD	WAYS TO PICK THE ATTRIBUTE THAT IS SAME ON THE 2nd CARD	WAYS TO PICK THE 2nd CARD	WAYS TO PICK THE 3rd CARD	NUMBER OF SETS OF THIS TYPE	LIKELIHOOD OF THIS TYPE OF SET
4 different/ 0 same	81	4 C 0 = 1	2 4 = 16	1	(81 * 16)/3! = 216	=[81* ₄ C ₀ * 2 ⁴ * 1]/3! =216/1080
3 different/ 1 same	81	4C1=4	23=8	1	(81 * 4 * 8) /3! = 432	=[81 * ₄ C ₁ * 2 ³ * 1]/3! =432/1080 = 40%
2 different/ 2 same	81	4 C 2 = 6	2 2 = 4	1	(81 * 6 * 4)/3! = 324	=[81 * ₄ C ₂ * 2 ² * 1]/3! =324/1080 *30%
1 different/ 3 same	81	4 C 3 = 4	21=2	1	(81 * 4 * 2)/3! = 108	=[81 * ₄ C ₃ * 2 ¹ * 1]/3! =108/1080 = 10%
TOTAL					1080	

- Hint: When playing, look for something in common among the cards.
- For details of proof, see www.setgame.com
 - https://www.playmonster.com/wp-content/uploads/2019/10/DEVELOPING-MATHEMATICAL-REASONING.pdf

Part 2: Theorem on Types of SETs

11

Ex. #3: Find all SETs

Part 3: Max, Min, Average

12

13

The Joy of SET (L. McMahon, G. Gordon, H. Gordon, R. Gordon, Princeton, 2017)

Part 3: Max, Min, Average

14

"Joy of SET" summary of 12 cards

- In a game with 12 cards:
 - Min number of SETs is 0
 - Average number of SETs is 2.79
 - Max number SETs is 14 (see later ex)
 - Probability of getting 6 SETs from 12 cards (like on the Puzzle of the Day): 2.3% of time
 - 81C12 \cong 7.07x10¹³ layouts of 12 cards

# SETs in 12 cards	% in simulation	Layouts out of 81C12	
0	3.2%	2.26*1012	
6	2.3%	1.6*10 ¹²	
14	0.000004%	2,828,973	

Part 3: Max, Min, Average

Tips for playing with novices

 Start with just 3 attributes. For example, just use the Red cards

- Have the experienced players play "SET SET", or even SET³.
 - Example on next slide

Part 4: Playing with Novices

16

Ex of "SET SET" from setgame.com

Non-overlapping

Part 4: Playing with Novices

17

...Tips for playing with novices

- Have the experienced players announce a SET and allowing the novice 2 seconds to find it before claiming it.
- Let the experienced players only claim certain types (ex: all different).
 - See theorem
 - See example on next slide

number of S	SETs in the	first layout (100,00	00,000 trials, random S
	# SETs	# Layouts	Percentage
	0	3,228,460	3.2%
	1	14,519,427	14.5%
	2	26,096,625	26%
	3	27,258,094	27%
	4	18,024,022	18%
	5	7,989,819	8%
	6	2,331,884	2.3%

TYPE OF	LIKELIHOOD OF
SET	THIS TYPE OF SET
4 different/ 0 same	=[81 * ₄ C ₀ * 2 ⁴ * 1]/3!
	=216/1080 =20%
3 different/	=[81 * ₄ C ₁ * 2 ³ * 1]/3!
1 same	=432/1080 = 40%
2 different/	=[81 * ₄ C ₂ * 2 ² * 1]/3!
2 same	
	=324/1080 =30%
1 different/	=[81 * ₄ C ₃ * 2 ¹ * 1]/3!
3 same	=108/1080 =10%

Part 4: Playing with Novices

Ex:

- -Expert can only claim from 2 sets
- -Novice can claim all 6 sets

19

...Tips for playing with novices

- If two novices don't see a SET (although an expert might), have them add 3 more cards. This will increase the numbers of sets.
 - Expected number of sets in first 12 cards is (1/79) * $_{12}C_3$ = (1/79)*220 \cong 2.78
 - Expected number of sets in first 15 cards is (1/79) * $_{15}$ C₃ =(1/79)*455 \cong 5.76
 - Tell them to focus on making SETs with the 3 new ones

Part 4: Playing with Novices

20

Transform to make a new group of 18 cards without a SET

Part 5: Matrix transformations

22

Creating and checking on Excel

- We will use Excel on some of the MAX and MIN examples:
 - Check for SETs using Excel
 - For 9 cards, there are 9C3=84 possibilities
 - For 12 cards, there are 12C3=220 possibilities

Part 6: Error check on Excel

3

...checking for SETs with Mods

Color: 0 green, 1 purple, 2 red; shade: 0 empty, 1 stripe, 2 solid; shape: 0 diamond, 1 oval, 2 squiggle;

2101

1100

1201

0000

number: 0 is 3, 1 is 1, 2 is 2

2001

1000

Non-SETs will be non-zero,

And they will have 2 of same

2001 (color has 2 same)

2101

1201

5303 is sum, 2000 2+0+0+0=2 non-SET

(color has 2 same, as does shade)

1100

0000

2100 is sum, 2100 2+1+0+0=3 non-SET

(note: important to take each digit mod3

25

instead of summing digits)

Part 6: Error check on Excel

New SET Dice Games

Box has 42 dice

- 28 choices:
 - 3 color* 3 shape* 3 number* 1 shade (solid)= 27
 - Plus 1 wild
- 28 choices * 9 occurrences = 252
- 252 / 6 sides of dice = 42 dice
 - So 9 of these 42 dice have a WILD side
- Questions
 - Average number of sets from 42
 - Probability of 0 sets from 12 dice...

How to Play SET Dice

Part 7: Simulations on new dice versions

27

Possible Coding: 000-222 number (0,1,2), Color (G, P, R), shape (D, O, S)

Sample toss of the 42 dice Frequently there were 0 or 3 left at end. Is it possible to make 0 sets?

Part 7: Simulations on new dice versions- 42 dice

28

Contact info

- ■Dr. Anne Quinn, Chair, Professor,
 - Math/CS, Edinboro University of PA
- Email: <u>quinna@edinboro.edu</u>
- ► LinkedIn: linkedin.com/in/drannequinn/
- ► Article on Google Scholar: "Anne Quinn Edinboro"
- ► Find 1999 Mathematics Teacher article in the Skill Connections/ Teacher's Corner of: www.setgame.com

30

30 of 30