Bounds on Solvable Snake Cube Puzzle

Anthony Bosman with Adrian Negrea

August 5, 2021

Roeman I	Vegres
LIVELLATE I	VEPIEA

Bounds on Snake Cube

Snake Cube Puzzle

The snake cube puzzle is solved by folding a snake-like chain of connected pieces into an $n \times n \times n$ cube.

A 3 \times 3 \times 3 snake cube.

A great source of interesting mathematical questions! (eg. Undergraduate Research)

D			
Bosman	N	ieor	rea
		·~в.	

Bounds on Snake Cube

Standard Position

A snake puzzle can be unfolded into a standard position, moving only rightward and upward. This gives a way of encoding any puzzle.

The pattern **ESTTTSTTSTTSTSTSTSTSTSE** where

- E: denotes one of the two end pieces,
- **S**: denotes a straight piece, that is, a piece where the elastic cord exits through the face opposite to the face where it entered,
- **T**: denotes a twisted piece, that is, a piece where the elastic cord exits through a face adjacent to the face where it entered.

When can a snake be folded into a cube?

< □ > < 同 > < 回 > < 回 > < 回 >

When can a snake be folded into a cube?

No Solution

What are some strategies to determine when there is a solution?

Grid Graphs & Hamiltonian Paths

The snake cube has been studied as a Hamiltonian path in a grid graph

[Itai 1982; Zamfirescu 1992].

A 3 \times 3 \times 3 grid graph:

A Hamiltonian path hits every vertex in the graph exactly once:

Theorem [Abel, Demaine, et. al. 2012]

It is NP-complete to decide when a snake puzzle can be folded into an $n \times n \times n$ cube.

• • = • •

Theorem [Abel, Demaine, et. al. 2012]

It is NP-complete to decide when a snake puzzle can be folded into an $n \times n \times n$ cube.

Idea of Proof

Reduce the 3-partition problem (known to be NP-complete) to determining if there is a solution to a snake cube puzzle.

When can a set of 3n numbers be partitioned into n triplets that all have the same sum?

Reduction to 3-Partition Problem

Suppose we are given a set of integers $S = \{x_1, x_2, ..., x_{3n}\}$. From S we build a snake cube puzzle P(S) such that S has a 3-partition exactly when P(S) folds into a cube.

Reduction to 3-Partition Problem

Suppose we are given a set of integers $S = \{x_1, x_2, ..., x_{3n}\}$. From S we build a snake cube puzzle P(S) such that S has a 3-partition exactly when P(S) folds into a cube.

Building P(S): first part leaves "hub-and-slots", second comprises subpuzzles that can only fill slots if partitions, last fills the remainder of the hub.

Our Approach

An invariant is a feature of the puzzle that does not change as it is folded.

- The number of components of the puzzle: for it to fold into an $n \times n \times n$ cube, must begin with n^3 piece puzzle.
- The maximal number of straights in a row: a puzzle cannot fold into an n × n × n cube if it has more than n − 2 straight pieces in a row.

Question: Can we identify another invariant(s) that will help to determine when a snake cube puzzle is solvable?

Some Data

					Num	nber of S	traights					
		2	3	4	5	6	7	8	9	10	11	Total
	1	0	15	144	589	1053	1078	556	187	34	2	3658
Ν	2	0	26	145	502	862	770	325	65	9	0	2704
u	3	0	25	118	326	393	255	104	21	0	0	1242
m	4	1	14	98	242	340	203	89	14	1	0	1002
b	5	0	12	56	140	168	86	12	1	0	0	475
е	6	1	11	57	123	181	97	23	3	0	0	496
r	7	2	6	36	101	71	30	0	0	0	0	246
	8	0	8	35	89	83	43	22	7	1	0	288
ο	9	3	9	23	51	61	17	5	0	0	0	169
f	10	0	10	33	57	34	16	6	0	0	0	156
	11	0	6	28	39	22	11	1	1	0	0	108
S	12	2	4	30	39	35	17	9	1	0	0	137
0	13	2	2	20	31	9	5	1	0	0	0	70
I	14	0	6	23	25	24	10	0	0	0	0	88
u	15	0	2	16	28	12	3	0	0	0	0	61
t	16	0	3	15	24	11	7	5	3	1	0	69
~ b ~	17	1	9	14	16	9	3	0	0	0	0	52
0	18	1	3	9	6	10	7	1	0	0	0	37
n	19	0	6	12	16	6	2	0	0	0	0	42
S	20	0	1	11	18	11	1	0	0	0	0	42

Brute force analysis from Jaap's puzzle age (https://www.jaapsch.net/puzzles/snakecube.htm)

< □ > < □ > < □ > < □ > < □ >

Some Data

					Num	nber of S	traights					
		2	3	4	5	6	7	8	9	10	11	Total
	1	0	15	144	589	1053	1078	556	187	34	2	3658
N	2	0	26	145	502	862	770	325	65	9	0	2704
u	3	0	25	118	326	393	255	104	21	0	0	1242
m	4	1	14	98	242	340	203	89	14	1	0	1002
b	5	0	12	56	140	168	86	12	1	0	0	475
е	6	1	11	57	123	181	97	23	3	0	0	496
r	7	2	6	36	101	71	30	0	0	0	0	246
	8	0	8	35	89	83	43	22	7	1	0	288
0	9	3	9	23	51	61	17	5	0	0	0	169
f	10	0	10	33	57	34	16	6	0	0	0	156
	11	0	6	28	39	22	11	1	1	0	0	108
S	12	2	4	30	39	35	17	9	1	0	0	137
0	13	2	2	20	31	9	5	1	0	0	0	70
1	14	0	6	23	25	24	10	0	0	0	0	88
u	15	0	2	16	28	12	3	0	0	0	0	61
t	16	0	3	15	24	11	7	5	3	1	0	69
~	17	1	9	14	16	9	3	0	0	0	0	52
0	18	1	3	9	6	10	7	1	0	0	0	37
n	19	0	6	12	16	6	2	0	0	0	0	42
S	20	0	1	11	18	11	1	0	0	0	0	42

Brute force analysis from Jaap's puzzle age (https://www.jaapsch.net/puzzles/snakecube.htm)

Question: Can we give a proof for why the maximal number of straights is 11 in a solvable $3 \times 3 \times 3$ cube and generalize to $n \times n \times n$?

Bosman, Negrea

< □ > < 同 > < 回 > < 回 > < 回 >

Counting Non-Straights

Bosman, Negrea

We observe:

- Each face must have at least 2n non-straight pieces (two per row/column),
- But this triple counts the 8 corner pieces since each corner belongs to three faces,
- And this double counts n-2 edge pieces on each edge,
- Note there are at most four non-adjacent edges in cube.

Therefore, we have that the number of non-straight pieces is at least

$$\underbrace{12n}_{\text{total}} - \underbrace{8(2)}_{\text{corners}} - \underbrace{4(n-2)}_{\text{edges}} = 8n-8.$$
Bounds on Snake Cube August 5, 2021 10/15

Let $S_{max}(n)$ denote the maximum number of straight components in an $n \times n \times n$ solvable snake cube puzzle. Then we have shown:

$$S_{max}(n) \le n^3 - (8n - 8) = n^3 - 8n + 8.$$

In particular, we have:

$$\begin{array}{rcl} {\sf S}_{max}(3) & \leq & 11 \ {\sf S}_{max}(4) & \leq & 40 \ {\sf S}_{max}(5) & \leq & 93 \end{array}$$

Lower Bound on Maximal Straights

Generalizing the above pattern, there exists a snake of n^3 pieces that has

$$\underbrace{n(n-2)}_{\text{top layer}} + \underbrace{(n-2)[(n-1)(n-2)+n]}_{\text{middle }(n-2) \text{ layers}} + \underbrace{n(n-2)}_{\text{bottom layer}} = n^3 - 2n^2 + 2n - 4$$

straight pieces, giving a lower bound on the maximal number of straights.

Thus, we have shown:

	$n^3 - 2n^2 + 2n - 4$	\leq s _{max} \leq	$n^{3} - 8n + 8$	n ³
<i>n</i> = 3	11	\leq s _{max} \leq	11	27
<i>n</i> = 4	36	\leq s _{max} \leq	40	64
<i>n</i> = 5	81	\leq s _{max} \leq	93	125
<i>n</i> = 6	152	\leq s _{max} \leq	176	216

Notice the size of the gap is quadratic: $2n^2 - 10n + 12$.

Some Related Questions

- Can we precisely determine $S_{max}(n)$ for n > 3 rather than have a range,
- Investigate $S_{min}(n)$, the minimal number of straights in an $n \times n \times n$ snake cube (known to be zero for *n* even).

Other Snake Research

• Rusky and Sawada (2003): Generalized setting to puzzles filling $n_1 \times n_2 \times n_3$ box, as well to *d* dimensions and toridial space.

Theorem (Rusky, Sawada)

If $d \ge 3$ and at least one n_i is even then there is a bent Hamiltonian cycle that fills $n_1 \times n_2 \times \cdots \times n_d$.

• McDonough (2009, Undergrad Honors Project, Smith): Analyzed cube Hamilitonian paths that formed knots. Which knots can be formed in this way? What is the smallest cube needed to achieve a given knot (or link)?

Thank You!

Anthony Bosman bosman@andrews.edu

Bounds on Snake Cube

э

→ < Ξ →</p>