Snapology Origami

David Patrick (Art of Problem Solving)
Yana Mohanty (Imathgination LLC)
David Honda (Marshall Middle School)

San Diego MTC

Joint Mathematics Meetings
January 11, 2018
Co-located at UC San Diego and San Diego State Univ

Founded in 2011.
Monthly meetings of (mostly) middle-school teachers.
Professional communities centered on mathematics
We connect teachers and professors through shared mathematical discovery.

MTCs empower teachers’ voices and experiences
MTCs are highlighted as a “bright spot” in teacher professional development in a 2017 white paper published by 100K10.

MTCircular Magazine
Our popular semi-annual magazine shares stories and insights from Circles across the country. Subscribe here.

Start a Circle
Our Organizer Toolkit contains a wealth of materials to help you start a successful, self-sustaining MTC. Our seed grant program provides start-up funding to selected Circles.

What is Math Teachers’ Circle?

“Unparalleled professional development in
HOW THESE BECAME A MATH TEACHERS’ CIRCLE SESSION
What is snapology origami?

Created by Heinz Strobl, snapology origami uses only strips of paper to create shapes.
Partial list of teachers’ questions

1. How many pieces of paper to build?
2. What’s the area of the paper?
3. How does outer surface area compare to inner?
4. Can we swap out some shapes with others? What happens?
5. Are 12 pentagons (or multiple) needed to make these shapes?
6. Area of flat paper and surface area of shape relationship?
7. What gives shapes affective appeal?
8. Is the stress on the material uniform throughout shape?
9. Spherical = triangles and pentagons, ellipsoid needed different. Correlation between sphericity and shapes used?
10. The objects are unexpectedly heavy. What is the significance of their weight and its relationship to the shape?
Snapology origami and polyhedra

“faces”

“edges”

Two “faces” connected by an “edge”
Platonic and Archimedean Solids

Platonic
Made of \textit{identical} regular polygons; each vertex is symmetry equivalent to every other vertex.

Archimedean
Made of \textit{non-identical} regular polygons, all having sides of the same length; each vertex is symmetry equivalent to every other vertex.
Why are Platonic/Archimedean solids so well suited to snapology origami models?

1. Made of regular n-gons, so “faces” are 2n-unit long strips

2. Each vertex is symmetry equivalent to every other vertex; so there’s just one simple formula for making them! For example:

 - 6 unit long strips for making triangles
 - 5 triangles at every vertex
Now look at how many strips of paper we need.

Example: Icosahedron

20 triangular faces, so 20 of 3*2 units long strips

Calculate number of edges:

Each face is surrounded by 3 edges, and each edge is shared by two faces.

So the number of edges is \(\frac{20 \times 3}{2} = 30 \).

We will need 30 of the 4 unit long strips.

Natural extensions:

1. How many pieces of notebook paper?
2. What is the cost of the paper?
3. What is the weight of your finished solid (paper has known density)?
What about tori? Need to create saddle points.

Positive Curvature

Negative Curvature

Note the differences in the positions of the normal vectors along the paths.
Positive and negative curvature implemented in snapology origami

Angles sum to $330^\circ < 360^\circ$

Normals point “away from each other”.

Angles sum to $390^\circ > 360^\circ$

Normals point “toward each other” along other direction

Normals point “away from each other” along one direction
Saddles are necessary for making tori with any number of holes, Klein bottles, and any surfaces that contain areas of negative curvature.
Learn How!

Dave Honda has made a series of instructional videos teaching how to make an icosahedron:

http://tinyurl.com/snaporigami

Also, please go see Dave’s dodecahedral 11-hole torus as part of the Mathematical Art Exhibition in the exhibit hall!

Update (1/15/18): Dave’s entry won first place for “best textile, sculpture, or other medium” at the exhibition!
Visit Dave Honda’s website: snaporigami.weebly.com

San Diego Math Teachers’ Circle: sdmathteacherscircle.org