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Introduction

Stirling approximation says n! ≈
√

2πn (n
e )

n as n→∞ in the
asymptotic sense that the ratio has limit 1.
Nice topic for lots of reasons: challenging but reachable;
important; useful in calculus (power series) and in computer
science / discrete optimization (complexity of brute force search);
backwards thinking – approximating sum by integral; leave a bit to
be done – extends
In this short presentation, will try to give flavor of class – done with
GMU honors and regular calculus 2; BC at magnet school as
special appearance; in higher level TJ courses as an aside. Done
interactively in class.
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Start of class discussion

How big is n!?

Say for n = 1000?

We’ll do this in computer algebra.
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Fun begins

From Mathematica: input is Factorial[1000] which outputs as
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Crazy output

40238726007709377354370243392300398571937486421071463254379991042993851239862902059204420848696940480047

99886101971960586316668729948085589013238296699445909974245040870737599188236277271887325197795059509952

76120874975462497043601418278094646496291056393887437886487337119181045825783647849977012476632889835955

73543251318532395846307555740911426241747434934755342864657661166779739666882029120737914385371958824980

81268678383745597317461360853795345242215865932019280908782973084313928444032812315586110369768013573042

16168747609675871348312025478589320767169132448426236131412508780208000261683151027341827977704784635868

17016436502415369139828126481021309276124489635992870511496497541990934222156683257208082133318611681155

36158365469840467089756029009505376164758477284218896796462449451607653534081989013854424879849599533191

01723355556602139450399736280750137837615307127761926849034352625200015888535147331611702103968175921510

90778801939317811419454525722386554146106289218796022383897147608850627686296714667469756291123408243920

81601537808898939645182632436716167621791689097799119037540312746222899880051954444142820121873617459926

42956581746628302955570299024324153181617210465832036786906117260158783520751516284225540265170483304226

14397428693306169089796848259012545832716822645806652676995865268227280707578139185817888965220816434834

48259932660433676601769996128318607883861502794659551311565520360939881806121385586003014356945272242063

44631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720

55965422874977401141334696271542284586237738753823048386568897646192738381490014076731044664025989949022

R. Sachs (GMU) Stirling Approximation, Approximately August 2011 5 / 19



Crazy output – Continued

22217659043399018860185665264850617997023561938970178600408118897299183110211712298459016419210688843871

21855646124960798722908519296819372388642614839657382291123125024186649353143970137428531926649875337218

94069428143411852015801412334482801505139969429015348307764456909907315243327828826986460278986432113908

35062170950025973898635542771967428222487575867657523442202075736305694988250879689281627538488633969099

59826280956121450994871701244516461260379029309120889086942028510640182154399457156805941872748998094254

74217358240106367740459574178516082923013535808184009699637252423056085590370062427124341690900415369010

59339838357779394109700277534720000000000000000000000000000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000000000000
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Laughter subsides, now floating point version

From Mathematica: input is N[Factorial[1000]] which outputs as

4.023872600770938 × 102567

Try to explain this – often get something like 1000 terms, average
value 500, so roughly

5001000

This is 9.33263618503219 × 102698 (spared you the total output)

Only off by about 2 × 10131 – not too bad?!
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Further exploration begins

Soon get discussion to ask about n! and its definition as repeated
multiplication

Consider the summation idea using ln(n!)

ln(n!) =
n∑

k=1

ln(k)

and now compare sum to integral using left and right endpoints (and
soon midpoint).
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Graphical view

Here is a graph, using 10 instead of 1000 so we can see things.
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More graphics

Here is the graph, using 1000 steps where we can’t see as well.
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More graphics still

Here is the tail of the graph, using 1000 steps, showing last ten.
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Some analysis

As a first attempt, consider the integral of ln(x), compared to the
Riemann left and right sums:

∫ n

1
ln(x)dx = x ln(x)− x |x=n

x=1 = n ln(n)− n + 1

Graph increases, so left endpoint sum is lower, right endpoint is higher.
This yields some estimates:

ln(n!)− ln(n) =
n−1∑
k=1

ln(k) <
∫ n

1
ln(x)dx <

n∑
k=2

ln(k) = ln(n!)
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Analysis continued

The inequalities we obtain for ln(n!) are not fabulous (yet):

n ln(n)− n + 1 < ln(n!) < n ln(n)− n + 1 + ln(n)

This yields the initial estimates:

(n/e)n e < n! < (n/e)n n e
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Trapezoid approximation

Using the trapezoid approximation rather than endpoints does a better
job (average of left and right)∫ n

1
ln x dx ≈

n∑
k=2

( ln(k − 1) + ln(k)
2

)
= ln(n!)− 1

2
ln(n)

This unrolls to the approximation (note: arithmetic mean of logs is
geometric mean without logs):

n! ≈ (n/e)ne
√

n

Correct except numerical factor: e vs.
√

2π.
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Frosting on the cake

Numerical values are as follows

e ≈ 2.718281828459045

√
2π ≈ 2.5066282746310002

Correct except numerical factor of about 10%.

Full expansion can be had with some extra effort (Euler-Maclaurin
formula).
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Fancy script writing on the frosting on the cake

From graphs it is clear most of the error is in the early terms. Using the
discrete sum for a few steps and then using the integral cuts the
numerical discrepancy. Here are some easy first few steps:

((e ∗ 2)/3)
3
2 ≈ 2.4395225351414593

2 ∗ (2 ∗ e/5)
5
2 ≈ 2.465563423812403

2 ∗ 3 ∗ (2 ∗ e/7)
7
2 ≈ 2.477101383175650

Recall √
2π ≈ 2.5066282746310002

Correct except numerical factor of about 1%.
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Using this result in teaching series

When teaching power series, I use this result a lot to help students
guess (intelligently) about radius of convergence.

From Taylor (or Maclaurin) – another naming issue – we want to
understand the sums:

∞∑
n=0

f (n)(a) (x − a)n

n!

and Stirling says n! is much larger than the exponential term (x − a)n,
so it boils down to the growth rate (in n) of the derivatives.

For exponentials and basic trig (sine and cosine) the factorial wins and
the radius is infinite, while for fractional and negative powers, and their
integrals or derivatives, there is a balance and a finite radius.
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The exact value for the leading constant term

The leading term (and more) can be obtained with some effort using
Laplace’s method for asymptotic expansions, which I suggest to
students that they take more math.
History is also pretty interesting: Stirling got this constant but deMoivre
did most of the work, but not the honor of the naming. Used Wallis’
product formula.
Came in the context of probability for repeated Bernoulli trials, fair coin.
2n tries, exactly n of heads, tails. Need the central binomial coefficient:(

2n
n

)
(
1
2
)2n

which Stirling’s formula will approximate well and give the important
factor of n−

1
2 . DeMoivre got the Gaussian (bell curve) out of the

approximation.
The full asymptotic expansion can be done by Laplace’s method,
starting from the formula n! =

∫∞
0 tn e−t dt .
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Concluding remarks

This is both a pretty and a useful result.

The mathematics is not deep, but there is considerable thought
involved.

Lots of pieces came into play: integration by parts, integral related to
discrete sum, crux move in problem solving.

Thank you for your attention and I welcome your
comments and/or questions.
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