Mathematical Explorations with Swish

Dana Rowland

Merrimack College North Andover, MA

MathFest July 28, 2017

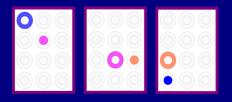
Dana Rowland (Merrimack College)

Outline

Overview of Swish

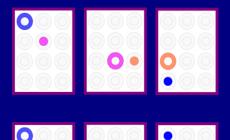
- How to Play
- Transformational geometry
- 2 Swish in the college classroom
 - Combinatorics and Group theory
 - Discrete Probability
 - Analogies to linear algebra
 - Open questions

What is Swish?



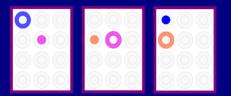
- Cards are transparent.
- Each card contains one hoop (annulus) and one ball (disk).

What is Swish?

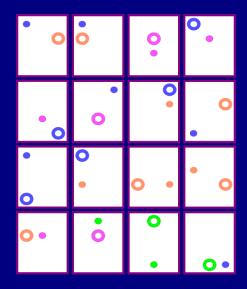


- Cards are transparent.
- Each card contains one hoop (annulus) and one ball (disk).
- Cards can be rotated or flipped over to align the balls and hoops.

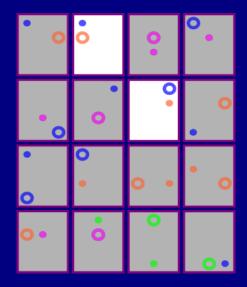
What is Swish?



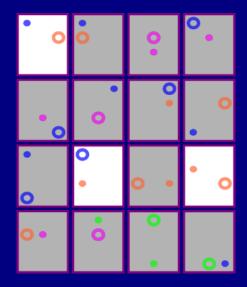
- Cards are transparent.
- Each card contains one hoop (annulus) and one ball (disk).
- Cards can be rotated or flipped over to align the balls and hoops.
- A swish occurs when a subset cards are stacked so every hoop is filled with a ball.



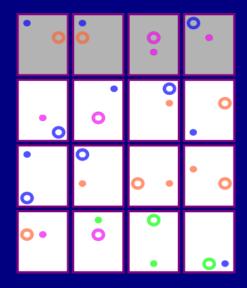
Dana Rowland (Merrimack College)



Dana Rowland (Merrimack College)



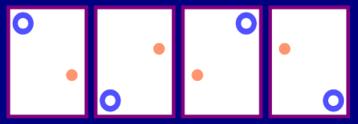
Dana Rowland (Merrimack College)



Dana Rowland (Merrimack College)

Why Swish?

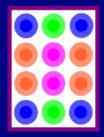
- Created by Gali Shimoni and Zvi Shalem (Israel Center for Excellence through Education) as a way to explore transformational geometry
- Each card can be transformed in four ways: identity *e*, vertical flip *v*, horizontal flip *h*, 180° rotation *r*



- Note that $v^2 = h^2 = r^2 = e$ and vh = hv = r.
- Reinforces visualization and introduces symmetry groups

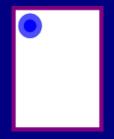
Let $G = \{e, h, v, r\}$ be the group of transformations, and label the positions:

[1	2	3]
4	5	6
7	8	9
10	11	3 6 9 12



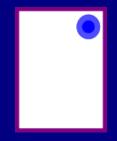
Let $G = \{e, h, v, r\}$ be the group of transformations, and label the positions:

The orbit is defined by $orb_G(s) = \{\phi(s) | \phi \in G\}$.



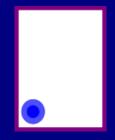
Let $G = \{e, h, v, r\}$ be the group of transformations, and label the positions:

The orbit is defined by $orb_G(s) = \{\phi(s) | \phi \in G\}$.



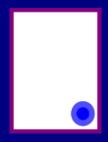
Let $G = \{e, h, v, r\}$ be the group of transformations, and label the positions:

The orbit is defined by $orb_G(s) = \{\phi(s) | \phi \in G\}$.



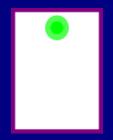
Let $G = \{e, h, v, r\}$ be the group of transformations, and label the positions:

The orbit is defined by $orb_G(s) = \{\phi(s) | \phi \in G\}$.



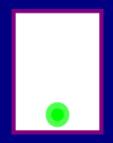
Let $G = \{e, h, v, r\}$ be the group of transformations, and label the positions:

- Blue: $orb_G(1) = \{1, 3, 10, 12\}$
- Green: $orb_G(2) = \{2, 11\}$



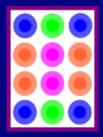
Let $G = \{e, h, v, r\}$ be the group of transformations, and label the positions:

- Blue: $orb_G(1) = \{1, 3, 10, 12\}$
- Green: $orb_G(2) = \{2, 11\}$



Let $G = \{e, h, v, r\}$ be the group of transformations, and label the positions:

- Blue: $orb_G(1) = \{1, 3, 10, 12\}$
- Green: $orb_G(2) = \{2, 11\}$
- Orange: $orb_G(4) = \{4, 6, 7, 9\}$
- Purple: $orb_G(5) = \{5, 8\}$



Let $G = \{e, h, v, r\}$ be the group of transformations, and label the positions:

The orbit is defined by $orb_G(s) = \{\phi(s) | \phi \in G\}.$

- Blue: $orb_G(1) = \{1, 3, 10, 12\}$
- Green: $orb_G(2) = \{2, 11\}$
- Orange: $orb_G(4) = \{4, 6, 7, 9\}$
- Purple: $orb_G(5) = \{5, 8\}$

Note that green and purple symbols are fixed by a horizontal flip.

- There are $12 \cdot 11 = 132$ ball-hoop configurations.
- Two cards are equivalent if and only if they are in the same orbit.

- There are $12 \cdot 11 = 132$ ball-hoop configurations.
- Two cards are equivalent if and only if they are in the same orbit.
- Define $fix(\phi)$ to be the set of ball-hoop configurations that are fixed when acted on by ϕ , for $\phi \in G = \{e, h, v, r\}$.

- There are $12 \cdot 11 = 132$ ball-hoop configurations.
- Two cards are equivalent if and only if they are in the same orbit.

Define $fix(\phi)$ to be the set of ball-hoop configurations that are fixed when acted on by ϕ , for $\phi \in G = \{e, h, v, r\}$.

Burnside's Theorem

The number of orbits is

$$\frac{1}{|G|}\sum_{\phi\in G}|\mathit{fix}(\phi)|$$

- There are $12 \cdot 11 = 132$ ball-hoop configurations.
- Two cards are equivalent if and only if they are in the same orbit.

Define $fix(\phi)$ to be the set of ball-hoop configurations that are fixed when acted on by ϕ , for $\phi \in G = \{e, h, v, r\}$.

Burnside's Theorem

The number of orbits is

$$\frac{1}{|G|}\sum_{\phi\in G}|\mathit{fix}(\phi)|$$

•
$$|fix(e)| = 12 \cdot 11 = 132$$

- There are $12 \cdot 11 = 132$ ball-hoop configurations.
- Two cards are equivalent if and only if they are in the same orbit.

Define $fix(\phi)$ to be the set of ball-hoop configurations that are fixed when acted on by ϕ , for $\phi \in G = \{e, h, v, r\}$.

Burnside's Theorem

The number of orbits is

$$\frac{1}{|G|}\sum_{\phi\in G}|\mathit{fix}(\phi)|$$

•
$$|fix(e)| = 12 \cdot 11 = 132$$

•
$$|fix(h)| = 4 \cdot 3 = 12$$

Dana Rowland (Merrimack College)

- There are $12 \cdot 11 = 132$ ball-hoop configurations.
- Two cards are equivalent if and only if they are in the same orbit.

Define $fix(\phi)$ to be the set of ball-hoop configurations that are fixed when acted on by ϕ , for $\phi \in G = \{e, h, v, r\}$.

Burnside's Theorem

The number of orbits is

$$\frac{1}{|G|}\sum_{\phi\in G}|\mathit{fix}(\phi)|$$

 $|fix(e)| = 12 \cdot 11 = 132$

•
$$|fix(h)| = 4 \cdot 3 = 12$$

• |fix(v)| = 0

- There are $12 \cdot 11 = 132$ ball-hoop configurations.
- Two cards are equivalent if and only if they are in the same orbit.

Define $fix(\phi)$ to be the set of ball-hoop configurations that are fixed when acted on by ϕ , for $\phi \in G = \{e, h, v, r\}$.

Burnside's Theorem

The number of orbits is

$$\frac{1}{|G|}\sum_{\phi\in G}|fix(\phi)|$$

$$|fix(e)| = 12 \cdot 11 = 132$$

• $|fix(h)| = 4 \cdot 3 = 12$

|fix(v)| = 0|fix(r)| = 0

- There are $12 \cdot 11 = 132$ ball-hoop configurations.
- Two cards are equivalent if and only if they are in the same orbit.

Define $fix(\phi)$ to be the set of ball-hoop configurations that are fixed when acted on by ϕ , for $\phi \in G = \{e, h, v, r\}$.

Burnside's Theorem

The number of orbits is

$$\frac{1}{|G|}\sum_{\phi\in G}|fix(\phi)|$$

$$=\frac{1}{4}(132+12+0+0)=36$$

• $|fix(e)| = 12 \cdot 11 = 132$

• $|fix(h)| = 4 \cdot 3 = 12$

|fix(v)| = 0|fix(r)| = 0There are 36 distinct cards in a Swish deck.

Colors are distributed as follows:

	Blue ball	Orange ball	Purple ball	Green ball	
Blue hoop	6	6	3	3	18
Orange hoop	6	6	3	3	18
Purple hoop	3	3	2	4	12
Green hoop	3	3	4	2	12
	18	18	12	12	60

Colors are distributed as follows:

	Blue ball	Orange ball	Purple ball	Green ball	
Blue hoop	6	6	3	3	18
Orange hoop	6	6	3	3	18
Purple hoop	3	3	2	4	12
Green hoop	3	3	4	2	12
	18	18	12	12	60

• What is the probability that a card contains at least one blue symbol?

Colors are distributed as follows:

	Blue ball	Orange ball	Purple ball	Green ball	
Blue hoop	6	6	3	3	18
Orange hoop	6	6	3	3	18
Purple hoop	3	3	2	4	12
Green hoop	3	3	4	2	12
	18	18	12	12	60

- What is the probability that a card contains at least one blue symbol?
- What is the probability that a card contains a blue symbol and a orange symbol?

Colors are distributed as follows:

	Blue ball	Orange ball	Purple ball	Green ball	
Blue hoop	6	6	3	3	18
Orange hoop	6	6	3	3	18
Purple hoop	3	3	2	4	12
Green hoop	3	3	4	2	12
	18	18	12	12	60

- What is the probability that a card contains at least one blue symbol?
- What is the probability that a card contains a blue symbol and a orange symbol?
- If a card contains a blue hoop, what is the probability it contains an orange ball? Are these events independent?

What is the probability of a 2-Swish?

- A Swish deck contains 60 cards total.
- Exactly 46 of the possible $\binom{60}{2}$ pairs are swishes.
- If two cards are randomly selected:

$$P(2 \text{ swish}) = \frac{46}{\binom{60}{2}} = \frac{23}{885} \approx 0.026$$

What is the probability of a 2-Swish?

- A Swish deck contains 60 cards total.
- Exactly 46 of the possible $\binom{60}{2}$ pairs are swishes.
- If two cards are randomly selected:

$$P(2 \text{ swish}) = \frac{46}{\binom{60}{2}} = \frac{23}{885} \approx 0.026$$

If 16 cards are randomly selected:

 $P(2 \text{ swish}) \approx 0.982$

What is the probability of a 2-Swish?

- A Swish deck contains 60 cards total.
- Exactly 46 of the possible $\binom{60}{2}$ pairs are swishes.
- If two cards are randomly selected:

$$P(2 \text{ swish}) = \frac{46}{\binom{60}{2}} = \frac{23}{885} \approx 0.026$$

If 16 cards are randomly selected:

 $P(2 \text{ swish}) \approx 0.982$

In 16 cards, the expected number of 2-swishes is

$$\binom{16}{2}\cdot\frac{23}{885}\approx 3.12$$

• Each card corresponds to a matrix: 1 for a ball, -1 for a hoop, 0 else

$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Sets of matrices which sum to 0 correspond to swishes.

• Each card corresponds to a matrix: 1 for a ball, -1 for a hoop, 0 else

$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

• Sets of matrices which sum to 0 correspond to swishes. Linear dependence

Each card corresponds to a matrix: 1 for a ball, -1 for a hoop, 0 else

$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- Sets of matrices which sum to 0 correspond to swishes. Linear dependence
- Theorem: A swish can be formed using any card together with a subset of the following six cards:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Each card corresponds to a matrix: 1 for a ball, -1 for a hoop, 0 else

$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- Sets of matrices which sum to 0 correspond to swishes. Linear dependence
- Theorem: A swish can be formed using any card together with a subset of the following six cards:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Any vector can be written as a linear combination of basis vectors.

Swish provides a fun way to explore mathematical ideas, including:

- Reinforcing transformational geometry
- Introducing symmetry groups
- Identifying patterns
- Making conjectures
- Illustrating Orbit-Stabilizer and Burnside's Theorems
- Calculating discrete probabilities
- Connecting to linear algebra concepts

Opportunities for further explorations:

- How can the game to generalized
 - To higher dimensions?
 - To differently shaped cards?
- How can the game be simulated efficiently?
- How many different k-card Swishes contain a given card?
- In an initial layout of 16 cards,
 - What is the probability of a *k*-card Swish, for $3 \le k \le 12$?
 - What is the probability there are no swishes with three or more cards?
 - What is the expected number of swishes?
- ... and more!

Opportunities for further explorations:

- How can the game to generalized
 - To higher dimensions?
 - To differently shaped cards?
- How can the game be simulated efficiently?
- How many different k-card Swishes contain a given card?
- In an initial layout of 16 cards,
 - What is the probability of a *k*-card Swish, for $3 \le k \le 12$?
 - What is the probability there are no swishes with three or more cards?
 - What is the expected number of swishes?
- … and more!

Thank you! RowlandD@merrimack.edu