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What is Swish?

Cards are transparent.
Each card contains one hoop
(annulus) and one ball (disk).

Cards can be rotated or flipped
over to align the balls and hoops.
A swish occurs when a subset
cards are stacked so every hoop
is filled with a ball.
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How many swishes can you find?
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Why Swish?

Created by Gali Shimoni and Zvi Shalem (Israel Center for Excellence
through Education) as a way to explore transformational geometry
Each card can be transformed in four ways: identity e, vertical flip v ,
horizontal flip h, 180◦ rotation r

Note that v2 = h2 = r2 = e and vh = hv = r .
Reinforces visualization and introduces symmetry groups
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Orbits: The meaning behind the colors

Let G = {e,h, v , r} be the group of
transformations, and label the positions:

1 2 3
4 5 6
7 8 9
10 11 12


The orbit is defined by orbG(s) = {φ(s)|φ ∈ G}.

Blue: orbG(1) = {1,3,10,12}
Green: orbG(2) = {2,11}
Orange: orbG(4) = {4,6,7,9}
Purple: orbG(5) = {5,8}

Note that green and purple symbols are fixed by a horizontal flip.
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How many distinct cards are in a Swish deck?

There are 12 · 11 = 132 ball-hoop configurations.
Two cards are equivalent if and only if they are in the
same orbit.

Define fix(φ) to be the set of ball-hoop configurations that are
fixed when acted on by φ, for φ ∈ G = {e,h, v , r}.

Burnside’s Theorem
The number of orbits is

1
|G|

∑
φ∈G

|fix(φ)|

=
1
4
(132 + 12 + 0 + 0) = 36

|fix(e)| = 12 · 11 = 132
|fix(h)| = 4 · 3 = 12

|fix(v)| = 0
|fix(r)| = 0
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Probability: Not all colors are created equally!

Colors are distributed as follows:

Blue ball Orange ball Purple ball Green ball
Blue hoop 6 6 3 3 18

Orange hoop 6 6 3 3 18
Purple hoop 3 3 2 4 12
Green hoop 3 3 4 2 12

18 18 12 12 60

What is the probability that a card contains at least one blue symbol?
What is the probability that a card contains a blue symbol and a orange
symbol?
If a card contains a blue hoop, what is the probability it contains an
orange ball? Are these events independent?
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What is the probability of a 2-Swish?

A Swish deck contains 60 cards total.
Exactly 46 of the possible

(60
2

)
pairs are swishes.

If two cards are randomly selected:

P(2 swish) =
46(60
2

) =
23
885

≈ 0.026

If 16 cards are randomly selected:

P(2 swish) ≈ 0.982

In 16 cards, the expected number of 2-swishes is(
16
2

)
· 23

885
≈ 3.12
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Connections to linear algebra

Each card corresponds to a matrix: 1 for a ball, -1 for a hoop, 0 else
1 0 0
−1 0 0
0 0 0
0 0 0


Sets of matrices which sum to 0 correspond to swishes.

Linear dependence
Theorem: A swish can be formed using any card together with a subset
of the following six cards:

1 0 0
0 −1 0
0 0 0
0 0 0




0 0 0
0 1 0
0 0 0
−1 0 0




0 0 0
1 −1 0
0 0 0
0 0 0




0 0 0
0 1 0
−1 0 0
0 0 0




0 1 0
0 −1 0
0 0 0
0 0 0




0 0 0
0 1 0
0 0 0
0 −1 0


Any vector can be written as a linear combination of basis vectors.
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Summary

Swish provides a fun way to explore mathematical ideas, including:
Reinforcing transformational geometry
Introducing symmetry groups
Identifying patterns
Making conjectures
Illustrating Orbit-Stabilizer and Burnside’s Theorems
Calculating discrete probabilities
Connecting to linear algebra concepts
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Opportunities for further explorations:

How can the game to generalized
To higher dimensions?
To differently shaped cards?

How can the game be simulated efficiently?
How many different k -card Swishes contain a given card?
In an initial layout of 16 cards,

What is the probability of a k -card Swish, for 3 ≤ k ≤ 12?
What is the probability there are no swishes with three or more cards?
What is the expected number of swishes?

... and more!

Thank you!
RowlandD@merrimack.edu
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