
JMM 2017 MATH WRANGLE SOLUTIONS

1 Let g(x) = ex + e−x. Define real numbers a and k so that g(a) = k. Determine k so that for
each natural number n, g(na) is constant.

Solution: If it is always the case that g(na) = ena + e−na = k, then

k2 = g(a)g(na) =
(
ea + e−a)(ena + e−na)= e(n+1)a + e−(n+1)a + e(n−1)a + e−(n−1)a

= g(na)+g((n−1)a).

If n = 1, this implies k2 = k + 2. For n > 1, we get k2 = 2k. The only possibilities are

k = 0,−1,2, but since exponentials are always positive, k = 2 is the only solution.

2 A group of airplanes is based on a small island. The tank of each plane holds just enough
fuel to take it halfway around the world. Any desired amount of fuel can be transferred
from the tank of one plane to the tank of another while the planes are in flight. The only
source of fuel is on the island, and we assume that there is no time lost in refueling either in
the air or on the ground. What is the smallest number of planes that will ensure the flight
of one plane around the world on a great circle, assuming that the planes have the same
constant ground speed and rate of fuel consumption and that all planes return safely to the
island base?

Solution: Three planes can accomplish this. The following distance-time graph explains

it. The horizontal axis is time, divided into 8 units, where each plane can fly for 4 units

of time. The vertical axis is also in 8 units, but note that the top and bottom are the same

position—the island—and that each plane can travel for 4 units (halfway around the world).

Here is the algorithm. Call the planes 1, 2, 3. We will get plane 1 around the world, using

the other planes for refueling.
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A Planes 1,2,3 take off together from island.

B Plane 3 gives one unit of fuel to each of 2 and 1. So 1 and 2 now have full tanks, and 3

has one unit left.

C Plane 3 returns to island to refuel and wait.

D Plane 2 gives one unit to plane 1, and heads back to island (E) to refuel. Now plane 1

has a full tank, and can travel all the way to G.

F–J Planes 2 and 3 do what they did earlier, but in reverse. As soon as 2 arrives at E, it

refuels and takes off, to meet plane 1 at G and give it one unit of fuel. Meanwhile,

plane 3 leaves the island at H, arriving at I just in time to give both 1 and 2 each one

unit of fuel. Now all three planes have one unit left, enough to all get back to the

island at J.

Question: You still need to show that two planes will not suffice! How can you argue this?

3 Define a size-n tromino to be the shape you get when you remove one quadrant from a
2n× 2n square. In the figure below, a size-1 tromino is on the left and a size-2 tromino is
on the right.

We say that a shape can be tiled with size-1 trominos if we can cover the entire area of the
shape—and no excess area—with non-overlapping size-1 trominos. For example, it is easy
to see that a 2×3 rectangle can be tiled with size-1 trominos, but a 3×3 square cannot be
tiled with size-1 trominos. Can a size-2017 tromino be tiled by size-1 trominos?

Solution: For any n, we can tile an size-n tromino with size-1 trominos. We can prove this

by induction. First, note that you can do this for n = 1,2,3:

Next, note that if k is even, then it is possible to tile any 3×k rectangle with size-1 trominos:
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Finally, we show that it is possible, giving a tiling of a size-n tromino, to go to size-(n+3).
There are two cases, depending on whether n is even or odd.

4 A system of 13 bridges, shown below, connects the north shore of a river to the south shore.
For each bridge, there is a 50% probability that a protest march will block traffic across
that bridge, and these probabilities are independent (imagine that each bridge flips a coin).
What is the probability that it is possible to cross from one shore to the other?

Solution: Look at a "dual" problem: imagine that the bridges are each drawbridges, and

there is a boat waiting to the west of the bridges, and it is too tall to pass under a bridge

unless the drawbridge is open. We would like to get the boat to get past all the bridges so

that it gets to the east of the bridges. Suppose the probability that any drawbridge is open is

1/2. Draw a picture, and you will see that the probability that the boat can pass from west

to east is equivalent to the original problem! But if the boat can pass from east to west,

then it is impossible to travel from north to south, and conversely, if it is possible to travel

from north to south, the boat cannot pass from west to east. In other words, if we substitute

"open drawbridge" for "protest march" we see that whenever the bridges forbid north-south

pedestrian travel, they allow west-east boat travel, and conversely, whenever the bridges

allow north-south pedestrian travel, boats cannot go west-east. So the probabilities are

both equal to 1/2!

5 Consider a deck of cards with the numbers #1 through #20 on them. 3 cards are picked at
random. Find the probability that at least one of the following is true of the hand chosen:
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(A) All 3 Cards are odd.

(B) All 3 Cards are prime numbers.

(C) None of the cards is divisible by 3.

Solution: Let’s first determine the sizes of the underlying sets and their intersections:

• A = {1,3,5,7,9,11,13,15,17,19}=⇒ |A|= 10 =⇒ (
10
3

)
= 120

• B = {2,3,5,7,11,13,17,19}=⇒ |B|= 8 =⇒ (
8
3

)
= 56

• C = {1,2,4,5,7,8,10,11,13,14,16,17,19,20}=⇒ |C|= 14 =⇒ (
14
3

)
= 364

• A∩B = {3,5,7,11,13,17,19}=⇒ |A∩B|= 7 =⇒ (
7
3

)
= 35

• A∩C = {1,5,7,11,13,17,19}=⇒ |A∩C|= 7 =⇒ (
7
3

)
= 35

• B∩C = {2,5,7,11,13,17,19}=⇒ |B∩C|= 7 =⇒ (
7
3

)
= 35

• A∩B∩C = {5,7,11,13,17,19}=⇒ |A∩B∩C|= 6 =⇒ (
6
3

)
= 20.

The last number in each case is the number of 3 card hands in these sets. Since the total

number of hands is
(

20
3

)
= 1140 our probability using inclusion/exclusion is

P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C)

=
120+56+364−35−35−35+20

1140
=

455

1140
=

91

228
≈ 0.3991

6 Colorings of the edges of two congruent regular tetrahedra are said to be equivalent if
it is possible to perform a rotation that turns one coloring into the other. For example, if
we color edges with two colors (depicted by thick or thin lines below), the two leftmost
tetrahedra have equivalent colorings, but the third tetrahedron’s coloring is not equivalent
to the first two.

In how many different (non-equivalent) ways can one color the edges of a regular tetrahe-
dron so that two edges are red, two are black, and two are green?

Solution: There are nine non-equivalent colorings where two edges are red, two are black,

and two are green. In the illustrations below, we will indicate the three colors by drawing
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edges thick, thin, or dashed. We will partition the colorings into three cases, determined

by the number of pairs of edges that are colored the same: three, one, or zero (two is

impossible). For each case, without loss of generality, we fix the position of the two thick

edges and carefully examine all possible colorings, and determine which are equivalent.

• Each pair of opposite edges is colored the same. Fixing the two thick edges, there are

two possible configurations shown below.

These two colorings are non-equivalent. To see why, note that the only rotations

available are 2-fold (180-degree) rotations about axes joining midpoints of opposite

sides, or 3-fold (120-degree) rotations about axes joining a vertex with the center of

the opposite face. The 2-fold rotations leave both pictures alone (none of them turns

one picture into the other), and the 3-fold rotations do not keep the thick lines in place.

• Exactly one pair of opposite sides is the same color. For example, suppose that the

two opposite sides are colored with thick lines. Keeping this pair in place, there are

only two configurations.

Note that these two colorings are in fact equivalent, since you can turn one into the

other by performing a 2-fold rotation about the axis joining the midpoint of the two

thick edges. Since there are three choices of colors we can use for the pair, this case

has a total of 3 non-equivalent colorings.

• No pairs of opposite edges have the same color. Again, we will fix two thick edges

and carefully count the possibilities.
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These are the only possible choices, once we fix the thick edges, and they are all non-

equivalent, since no rotation will keep the two thick edges in place. Furthermore, the

first two tetrahedra each have a thick-thick-thin face, but the first one has a face with

edges colored thick-thin-dashed (going clockwise), whereas the second has a thick-

thin-dashed face (going counterclockwise). For the next two tetrahedra, both have

thick-thick-dashed faces, but the first has a thick-dashed-thin clockwise face, but the

last has a thick-dashed-thin counterclockwise face.

In sum, there are 2+3+4 = 9 non-equivalent colorings.

7 Consider the five shapes below, consisting of an isosceles right triangle, an isosceles
trapezoid, an isosceles triangle, and two congruent quadrilaterals that contain one right
angle (marked). The lengths of these shapes are a = 1,b =

√
2,c = 2,d =

√
5,e =

√
8.

Find the volume of the polyhedron formed when these five shapes are fitted together.

Solution: The volume is 11/6. When the polyhedron is constructed, it fits nicely in the

corner of a cube with side length 2 as shown. The trapezoid is EFDC, with CD joining the

midpoints of diagonally opposite edges of the cube. The isosceles right triangle is AFE,

lying on the top face of the cube, and ABDF is one of the two congruent quadrilaterals

(the other is ECBA). And CBD is the isosceles triangle, which lies above the base the cube

(sharing vertex B with a vertex of the cube).
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In order to compute the volume, we extend three lines and make a parallel slice to break it

up into two pyramids as shown.

Point G is the midpoint of AB; hence triangle CGD is an isosceles right triangle that is

parallel to the base of the cube, with area 2 · 2/2 = 2. Now we use the formula for the

volume of a pyramid: V = Bh/3, where B is the base area and h is the height. Let [·] denote

the volume of a shape. Then the volume of our polyhedron is equal to the

[HGDC]− [HAFE]+ [BGDC].

The first and last of these are pyramids whose base is triangle CDG, with heights of 2 and

1, respectively. Hence [HGDC] = 4/3 and [BGDC] = 2/3. The middle term is a pyramid

with base AFE and height 1, with volume of 1/6. Thus the volume of our polyhedron is

11/6.

8 Let F1,F2,F3, . . . be the Fibonacci sequence, the sequence of positive integers satisfying

F1 = F2 = 1 and Fn+2 = Fn+1 +Fn for all n≥ 1.

Does there exist an n≥ 1 for which Fn is divisible by 2017?

Solution: The answer is yes. To see why, we write the sequence (mod 2017): our goal is to

show that it equals zero eventually. Although conventionally, the Fibonacci sequence starts

with F1 = F2 = 1, we can extend it backwards—this is the crux idea—with F0 = 0.

Next, we can show that the sequence is eventually periodic: There are only 2017 different

values (mod 2017), and thus 20172 possible distinct consecutive pairs of numbers. By the

pigeonhole principle, eventually, after at most 20172 + 1 steps, we will see the same con-

secutive pair repeated, and this will then determine the rest of the sequence, with repeating

blocks of the same numbers, ad infinitum.

We will be done if the periodic block begins with F0 = 0, since this would imply infinitely

many zeros. But perhaps the periodic block didn’t start at the beginning. We will use the

"extending backwards" idea to show that, in fact, periodicity must start at the beginning of

the sequence (F0).
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Suppose that a periodic block starts at FM = a,FM+1 = b, and has length L, in other words,

ends at FM+L−1, and suppose that M > 0. Notice that by going backwards, we can compute

FM+L−1 = b− a, since the next periodic block starts at index M + L, and FM+L = a and

FM+L+1 = b. Likewise, we can keep going backwards from FM to deduce that FM−1 =
FM+L−1 and FM−2 = FM+L−2, etc., so eventually we will get F0 = FM−M = FM+L−M = FL.

So the periodicity starts at F0 and we are guaranteed to see zeros every L steps.

Remark: This proof shows that the length of the period is at most 20172 +1, but in fact it

is much smaller. It can be proven (using quadratic reciprocity and the Binet formula for

the Fibonacci numbers) that for a prime p, the maximum period for divisibility (mod p) is

p+1. In fact, F1009 ≈ 3.3040302×10210 is the first Fibonacci number that is a multiple of

of 2017, and every 1009th Fibonacci number thereafter will be a multiple of 2017.


