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From problem solving to problem writing
and research

* Inquiry-based explorations.

 Concrete observations and data collection.

* Pattern identification and formulation of conjectures.
* Counter-examples and refutations.

* Approximations and proofs.

* Articulating effective questions.



RLC ladders with non-trivial topology

* Existence and uniqueness of period.
* Dependence of period on number of loops.

* Dependence of period on topology of loops.
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RLC ladders with non-trivial topology
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Exploring the trefoil knot and its variants
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Exploring the trefoil knot and its variants
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Exploring the trefoil knot and its variants
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* Locate the extrema of the velocity vector and its radial and tangential
components.

 Use curvature and torsion to determine the number of crossings.



Exploring the trefoil knot and its variants




Exploring the trefoil knot and its variants




Exploring the trefoil knot and its variants




Exploring the trefoil knot and its variants

JMM, New Orleans, 1/8/11



Exploring the trefoil knot and its variants

JMM, New Orleans, 1/8/11



Exploring the trefoil knot and its variants
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Iterated functions on the complex plane

F(w,z) =W

F(z)(w,z) F(w,F(w,z)) —w"

F("”)(w,z) = F(W,F(”)(w,z))

£(c) = limF" (ic,i)

n —>0

* When does f(c) exist?
* When is f(c) unique?
* What is f(c) equal to?

* How is f(c) approached?
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Iterated functions on the complex plane
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Iterated functions on the complex plane
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Configurations of points and lines
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Configurations of points and lines

* Are there 100 lines on the plane that cross at exactly 1985 points?
* Are there 17 lines on the plane that cross at exactly 101 points?
* Are there k lines on the plane that cross at exactly n points?

* How many distinct such configurations are there?
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Configurations of points and lines

ooz 2

The shortfall in points is accounted for by the points lost to coincident
lines plus the points lost to parallel lines.

k=Y im+ Y jk,+f-q

The shortfall in lines is accounted for by free lines and overlaps.
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Configurations of points and lines
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Multiplicity from the number of constrained “valence” graphs.



The reality game

* N players bet money out of their initial endowment on a coin toss.
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* Winners split the pot equally among themselves, irrespective of their bets.

* The game is repeated with each player retaining their gains/losses.
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The reality game

* N players bet money out of their initial endowment on a coin toss.

* The probability of HEADS is equal to the proportion of money bet on HEADS.
* Winners split the pot equally among themselves, irrespective of their bets.

* The game is repeated with each player retaining their gains/losses.

* Will one player always dominate in the long run?

* How long does it take before the winner is determined?

* What event instigates this choice?



