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Transferable 

Heuristics 

● Change representations 

● Look for a quantity that is nonincreasing or nondecreasing 

Objectives: 
● Students can identify fixed points and n-cycles of iterative processes 

 

Teacher 

Overview 

 

 

 

Narrative 

Time/Description Activity (include links to any handouts) Teacher Notes 

1:00-1:10 

Each pair of students gets 15 M&M’s in a cup. They divide the M&M’s 

into several piles and then follow this rule: on each turn, take one M&M 

from each pile, and form a new pile with the gathered M&M’s. 

 

Eventually all configurations result in the 
collection (5,4,3,2,1). Questions to ask: 
 

- Is there a good way to represent this 
situation? 

https://arxiv.org/pdf/1503.00885.pdf
https://drive.google.com/open?id=0BzPcuRooOO4kRkZsUi1hejU4a2s
https://drive.google.com/open?id=0BzPcuRooOO4kRkZsUi1hejU4a2s
https://drive.google.com/open?id=0BzPcuRooOO4kMjg3LWszY05fMVU
https://drive.google.com/open?id=0BzPcuRooOO4kMjg3LWszY05fMVU
https://drive.google.com/open?id=0BzPcuRooOO4kZW55SjFLOU4ybzA
https://drive.google.com/open?id=0BzPcuRooOO4kZW55SjFLOU4ybzA


What happens? - Does it matter where you start out? 
- Are there simpler cases you can try? 

1:15-1:25 

Bring group together and develop some notation and terminology: 

 

- Represent each pile ​P ​with a number ​k​ of M&M’s in that pile. 

- Represent the entire collection of piles with a nonincreasing 

sequence of integers that sum to ​n,​ the total number of M&M’s. 

- Call the transformation that maps one collection to another via 

harvesting ​H​. Then ​H​2​ (C) = ​H​ (​H​ (​C​)), etc. 

- A ​fixed point​ of ​H​ is a collection whose relative sizes are 

unchanged. 

 

So our claim is that ​C​* = (5,4,3,2,1) is a fixed point of ​H​, and that for any 

other collection ​C​ of size 15, there exists an ​n​ such that ​H​n​ (C)  = C* 

 

What are some ways we can attack this problem? What are some 

weaker conjectures we can make? 

Help students develop the notation: 
- What do we care about in each pile? 
- Does the order of the piles matter? 

(No.) Is there a convenient way to 
represent the situations so that 
equivalent collections look the same? 

- If we have a function H and a value x 
such that H(x) = x, what is x called? 

 
 
 
 
 
 
 
Students may suggest exhaustion, but it’s 
probably helpful to get them to focus on 
smaller cases. 
 
Students may suggest that ​H​ is always periodic 
for any ​C​, because the space of possible ​C​’s is 
finite for any given ​n​. Don’t force this proof 
now. 

1:25-1:45 

Students explore cases where ​n​ < 15 in pairs or small groups. Do all collections of size ​n​ fall into a single fixed 
point?  
 
Encourage students to draw flowcharts 
showing which configurations lead to which 
other configurations 

1:45-1:55 

Students present conjectures and proofs. These might include the 

following (only the first is important) 

 

Students may be able to prove the main 
theorem for ​n​ = 6, 10 by exhaustion using 
flowcharts. At this point, if students haven’t 



- If ​n​ is triangular, then all collections are eventually harvested to 

(​n, n​ – 1, …  ,​ ​2, 1) 

- If ​n​ is not triangular, then every collection falls into a cycle. In 

particular, if ​T​k​ < ​n​ < ​T​k​+1​, then every collection of size ​n​ falls into a 

cycle of length ​k​. 

articulated it, develop the theorem that ​H​ is 
always periodic. 

1:55-2:05  Break  

2:05-2:15 

Represent the situation geometrically as a rotated Young tableau: 
 

 
Represents (6,4,2,2,1). 
 
Then we are looking for a way to represent the operation of taking one box 
from each column and adding a new column with the removed boxes: 
 

              
Moved down= harvested    Make room for new column 

Get the students to see that shifting down is 
better than “skimming off the top”: “How can 
we represent harvesting as an operation that 
affects the entire tableau, not just the top 
boxes”? 
 
Once you get the boxes moved down, it’s easy 
to suggest “How do we make room for another 
column?” 
 
 



2:15-2:30 

Identify a quantity that is monovariant (changes if at all in only one direction) 
when harvesting occurs. 

- Sum of coordinates of upper-right corner of each square 
- Sum of coordinates of center of the square (i.e. center of mass) 

Whatever it is, call it the “magic Sum” of the tableau 
 
Can anyone finish the proof? 

“What technique have we used when we want 
to demonstrate something about a repeated 
process?” [Find a quantity that is invariant or 
changes in only one direction.] 
 
“Going to the right, what does that do the 
coordinates of points on the square? What 
about going down? What quantity ​doesn’t 
change when we do that?” 

2:30-?? 

If nobody has finished the proof, “What happens when the bottom is rotated 
back to the upper-left side? How does that affect the tableau’s magic sum? 
 

- What happens to the sum after we rotate? 
 

- What if the leftmost column isn’t tallest? 
 

- If the sum doesn’t change, what does that tell you about the leftmost 
column after harvesting and restacking? (That it ​is​ the tallest) 

Suppose there are ​k​ squares below the axis, 
with upper right coordinates (2,0), (3,0),... (​k​ + 
1,0). Then the magic sum is (k+1)(k+2)/2 - 1= 
(k​2​ + 3k)/2. When rotated, their upper right 
corners are at (1,1), (1,2), (1,3), … , (1,k) with 
magic sum k + (1 + 2 + 3 + … + k) = (k​2​ + 3k)/2. 
 
However, if the leftmost column is not the 
tallest, then we can imagine the topmost 
squares of the next rightmost column all 
moving left 1, which ​decreases​ the magic sum 
because the x-coordinates of all those squares 
decrease. 

2:40 

So how can we finish the proof? 
 

- Take a configuration ​C​ of ​T​k​ M&M’s that never leads to (​k, k​-1, … , 1) 
and that has minimal magic sum. 
 
The ideal (k, k-1, … , 1) tableau has upper right corners along the line ​y 
= ​k​ + 1 - ​x,​ i.e. ​x​ + ​y​ = ​k​ + 1. If ​C​ is not this tableau, then it has at least 
one square directly above this line, i.e. ​x​ + ​y​ = ​k​ + 2, and at least one 
“hole” along this line, i.e. ​x​ + ​y​ = ​k​ + 1. But then the square cycles with 
length ​k​ + 2 and the hole cycles with length ​k​ + 1, so eventually the 
cycles coincide and the square winds up on top of the hole. 

 

What does it mean to have a minimal magic 
sum? What does that tell you is happening 
whenever we harvest? 
(​So whenever we harvest, the leftmost column is 
already tallest; all squares simply move down and 
to the right, until they reappear along the ​y​-axis.) 
 
How long does it take to make a cycle? (The length 
of the diagonal, of course.) 

Suggested Extension Questions 
● The proof towards the end might involve too much lifting, so I’d encourage groups to generate more questions, for example: 



○ Does every configuration wind up in a single cycle? (Does the graph of the game separate out into distinct connected components?) 
○ How long is(are) the cycles for a given starting number of M&M’s? 
○ Do the numbers in the configurations that are part of a cycle have any special patterns or properties? 
○ Are there certain configurations that ​can’t​ be reached “late in the game”? How can you tell? 

 
 
 
Teacher Reflections 

● Lots of good stuff in Payton Euler. As expected, the hands-on start gave everyone access, and we periodically returned to test conjectures 
and try out different scenarios, which was important. It turned out that having students practice the notation by working through an example 
was pretty important. 

● Students automatically started referring to configurations by ordered n-tuples, so all we had to do as a group was clean it up by specifying 
largest to smallest. 

● I gave students graph paper, and students automatically started making Young tableaux, so again all we had to do was clean up by 
specifying “largest to smallest” and putting it on a coordinate plane. With nudging “How can we describe what happens to the entire 
configuration?” and “where will we put the new column?” students came up with the graphical representation. 

● The question “What do we do when we have a repeated process -- what are some techniques we’ve used?” turned out to be very powerful. 
Students came quickly to “Find a quantity that is preserved or changes in only one direction,” and from there, they generated “add the 
coordinates of a point to get a number representing each square on the diagram” and “add the numbers of all the squares to get a magic 
number for the diagram.” 

● Took full two hours but very worthwhile with many questions remaining for further investigation. Students discovered empirically that if T​k-1​ < 
n < T​k​, then the cycle has k elements. 

● In our lesson, we came up with our own name for the game. Students suggested “Willpower” (because it takes willpower not to eat the 
M&M’s while you’re playing) and then we changed it to “Millpomer” (m’s pronounced like W’s). We also called configurations “Mm-Piles”. 

 
 
 
 


