Math Wrangle Problems

American Mathematics Competitions

August 4, 2012

1. A circle centered at O has radius 1 and contains the point A. Segment AB is tangent to the circle at A and $\angle AOB = \theta$. If point C lies on \overline{OA} and \overline{BC} bisects $\angle ABO$, then express OC as simply as possible in terms of trigonometric functions of θ .

- 2. In triangle ABC, AB = 13, BC = 14, and AC = 15. Let D denote the midpoint of \overline{BC} and let E denote the intersection of \overline{BC} with the bisector of angle BAC. What is the area of the triangle ADE?
- 3. If circular arcs AC and BC have centers at B and A, respectively, then there exists a circle tangent to both AC and BC, and to \overline{AB} . If the length of BC is 12, then find the circumference of the smaller circle.
- 4. For any positive integer k, let $f_1(k)$ denote the square of the sum of the digits of k. For $n \ge 2$, let $f_n(k) = f_1(f_{n-1}(k))$. Find $f_{1988}(11)$.
- 5. Find $(\log_2 x)^2$ if $\log_2(\log_8 x) = \log_8(\log_2 x)$.
- 6. Suppose that $|x_i| < 1$ for i = 1, 2, ..., n. Suppose further that

$$|x_1| + |x_2| + \dots + |x_n| = 19 + |x_1 + x_2 + \dots + |x_n|.$$

What is the smallest possible value of n?

- 7. Let m/n, in lowest terms, be the probability that a randomly chosen positive divisor of 10^{99} is an integer multiple of 10^{88} . Find that probability m/n.
- 8. Call a real-valued function f very convex if

$$\frac{f(x) + f(y)}{2} \ge f\left(\frac{x+y}{2}\right) + |x-y|$$

holds for all real numbers x and y. Prove that no very convex function exists.