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1976	Appel	and	Haken	prove	the	four-
color	theorem

• June	21,	1976	Wolfgang	Haken	and	Kenneth	
Appel,	with	the	aid	of	John	Koch,	completed	
their	proof	of	the	Four-Color	Theorem	(4CT).	
(Haken	turned	48	years	old	on	that	day.)	

• Their	proof	was	published	in	1977:	“Every	
planar	map	is	four	colorable,”	Parts	1	and	II,	
and	Supplements	I	and	II,		Illinois	Journal	of	
Mathematics,	XXI,	84,	September	1977
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1976	Appel	and	Haken	prove	the	four-
color	theorem

• At	one	place	in	the	proof	of	the	4CT,	Appel	and	
Haken	need	to	find	a	finite	list	of	reducible	
configurations	with	the	property	that	every	graph	
contains	at	least	one	configuration	in	the	list.	To	
do	this,	a	lemma	must	be	proved:	that	every	
configuration	in	an	unavoidable	set	is	reducible.	A	
computer	is	needed	to	prove	that	all	of	the	
configurations	are	reducible.	For	instance,	to	
show	that	one	kind	of	configuration	in	the	set	is	
reducible	requires	1,000,000	steps.
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1976	Appel	and	Haken	prove	the	four-
color	theorem

• Although	computers	had	already	been	used	to	
prove	theorems	in	mathematics	before	the	
Appel-Haken	proof,	the	importance	of	the	4CT	
brought	the	use	of	a	computer	in	proving	it	to	
the	forefront	of	attention	of	mathematicians,	
as	well	as	a	lay	public.	Moreover,	some	
mathematicians	did	not	believe	that	the	
theorem	had	been	proved,	since	the	computer	
proof	of	part	of	the	4CT	is	too	long	for	a	
human	being	to	survey.
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1976	Appel	and	Haken	prove	the	four-
color	theorem:	discord	in	the	ranks

• “In	the	analysis	of	each	case	the	computer	only	
announced	whether	or	not	the	procedure	terminated	
successfully.	The	entire	output	from	the	machine	was	a	
sequence	of	yeses.	This	must	be	distinguished	from	a	
program	which	produces	a	quantity	as	output	which	
can	subsequently	be	verified	by	humans	as	being	the	
correct	answer…	The	real	thrill	of	mathematics	is	to	
show	that	as	a	feat	of	pure	reasoning	it	can	be	
understood	why	four	colors	suffice.	Admitting	the	
computer	shenanigans	of	Appel	and	Haken	to	the	
realm	of	mathematics	would	only	leave	us	
intellectually	unfulfilled.”	Daniel	Cohen	“The	
superfluous	paradigm,”	1991
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1976	Appel	and	Haken	prove	the	four-
color	theorem:	discord	in	the	ranks

• “Nowhere	in	their	long	and	often	irrelevant	
account	do	they	provide	the	evidence	that	would	
enable	the	reader	to	check	what	they	say.	It	may	
or	may	not	be	‘possible’	to	prove	the	color	
theorem	the	way	they	claim.	What	is	more	
certain	is	that	they	did	not	do	so…	not	only	is	no	
proof	to	be	found	in	what	they	published,	but	
there	is	not	anything	that	even	begins	to	look	like	
a	proof.	It	is	the	most	ridiculous	case	of	‘The	
King’s	New	Clothes’	that	has	ever	disgraced	the	
history	of	mathematics.”	George	Spencer-Brown,	
appendix	to	German	edition	of	his	Laws	of	Form
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Their	proof	is	implicitly	recognized	as	
valid	by	the	United	States	Postal	

Authority
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Their	proof	is	implicitly	recognized	as	
valid	by	the	United	States	Postal	

Authority
• The	marking	‘FOUR	COLORS	SUFFICE’	was	
made	by	a	University	of	Illinois-Urbana	postal	
meter,	not	at	a	United	States	Post	Office.	But	
recognition	is	implicit,	since	anything	which	is	
illegal	cannot	be	marked	on	a	stamp	by	a	
university	postal	meter.	So	far,	however,	the	
United	States	Postal	Authority	does	not	take	
mistaken	mathematical	proofs	to	be	illegal.
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A	shorter	and	improved	proof

• Neil	Robertson,	Daniel	Sanders,	Paul	Seymour,	
and	Robin	Thomas	provide	a	new	proof	of	the	
four-color	theorem	in	1994.	An	outline	of	their	
proof	is	published	in	Proceedings	of	the	
International	Congress	of	mathematicians	in	
1995.
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1979	Tymoczko on	the	Four-Color	
Theorem

• The	first	paper	in	the	philosophy	of	
mathematics	on	the	philosophical	importance	
of	the	four-color	theorem	appeared	in	
February,	1979.	

• Thomas	Tymoczko “The	Four-Color	Problem	
and	Its	Philosophical	Significance,”	Journal	of	
Philosophy	Vol.	76,	No.	21,	pp.	57-83
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1979	Tymoczko on	the	Four-Color	
Theorem

• “What	reason	is	there	for	saying	that	the	4CT	is	
not	really	a	theorem	or	that	mathematicians	have	
not	really	produced	a	proof	of	it?	Just	this:	no	
mathematician	has	seen	a	proof	of	the	4CT,	nor	
has	any	seen	a	proof	that	it	has	a	proof.	
Moreover,	it	is	very	unlikely	that	any	
mathematician	will	ever	see	a	proof	of	the	4CT.”	
Tymoczko,	op.	cit.	p.	58

• Elementary	inference:	Appel	and	Haken	are	
mathematicians.	So	neither	has	ever	seen	a	proof	
of	the	4CT.	
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Tymoczko on	what	the	four-color	
theorem	shows

• “If	we	accept	the	4CT	as	a	theorem	we	are	
committed	to	changing	the	sense	of	the	
underlying	concept	of	‘proof.’”	

• “The	use	of	computers	in	mathematics,	as	in	
the	4CT,	introduces	empirical	experiments	into	
mathematics,	and	raises	again	for	philosophy	
the	problems	of	distinguishing	mathematics	
from	the	natural	sciences.”	Tymoczko op.	cit.	
p.	58
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Tymoczko on	the	four-color	theorem

• “The	answer	as	to	whether	the	4CT	has	been	proved	
turns	on	an	account	of	the	role	of	computers	in	
mathematics.”	op.	cit.	p.	58

• “The	4CT	is		substantial	piece	of	pure	mathematics	
which	can	be	known	by	mathematicians	only	a	
posteriori.	Our	knowledge	must	be	qualified	by	the	
uncertainty	of	our	instruments,	computer	and	
program...The	demonstration	of	the	4CY	includes	not	
only	symbol	manipulation,	but	the	manipulation	of	
sophisticated	experimental	equipment	as	well:	the	
four-color	problem	is	not	a	formal	question.”	
Tymoczko,	op.	cit.	pp.	77-78
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Tymoczko on	the	four-color	theorem

• “The	idea	that	a	proposition	of	pure	mathematics	can	be	
established	by	appealing	to	empirical	evidence	is	quite	
surprising.	It	entails	that	many	commonly	held	beliefs	
about	mathematics	must	be	abandoned	or	modified.	
Consider:	

• 1.	All	mathematical	theorems	are	known	a	priori	
• 2.	Mathematics,	as	opposed	to	natural	science,	has	no	

empirical	content.	
• 3.	Mathematics,	as	opposed	to	natural	science,	relies	only	

on	proofs,	whereas	natural	science	makes	use	of	
experiments.	

• 4.	Mathematical	theorems	are	certain	to	a	degree	that	no	
theorem	of	natural	science	can	match.		Tymoczko,	p.	63
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Tymoczko on	mathematical	proof
• “Proofs	are	convincing.	..[In]	Wittgenstein’s	
Remarks	on	the	Foundations	of	Mathematics,	this	
is	all	there	is	to	proofs:	they	are	convincing	to	
mathematicians.	This	is	to	be	taken	as	a	brute	
fact,	something	for	which	no	explanation	can	be	
given	and	none	is	necessary.	Most	philosophers	
are	unhappy	with	this	position	and	instead	feel	
that	there	must	be	some	deeper	
characterizations	of	mathematical	proofs	which	
explains,	at	least	to	some	extent,	why	they	are	
convincing.”	Tymoczko,	op.	cit.	p.	59
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Tymoczko on	mathematical	proof

• Why	are	mathematical	proofs	convincing?
• “That	proofs	are	surveyable and	that	they	are	
formalizable are	two	such	characterizations	
[J.B.	of	why	mathematical	proofs	are	
convincing].”	Tymoczko,	op.	cit.	p.	59
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Tymoczko on	mathematical	proof

• “We	often	say	that	a	proof	must	be	
perspicuous,	or	capable	of	being	checked	by	
hand.	It	is	an	exhibition,	a	derivation	of	the	
conclusion,	and	it	needs	nothing	outside	of	
itself	to	be	convincing.”	Tymockzo,	op.	cit.	p.	
59
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Tymoczko’s circle
• Unfortunately,	Tymoczko’s definition	of	surveyability
uses	the	idea	that	a	mathematical	proof	needs	nothing	
outside	itself	to	be	convincing.	So	one	must	already	
know	what	a	mathematical	proof	is	before	one	knows	
what	surveyability consists	in;	but	surveyability is	one	
criterion	of	being	a	mathematical	proof.

• “The	mathematician	surveys the	proof	in	its	entirety	
and	thereby	comes	to	know	the	conclusion.”	Tymoczko,	
op.	cit.,	p.	59

• “The	construction	that	we	surveyed	leaves	no	room	for	
doubt.”	Tymoczko,	op.	cit.	p.	60
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Paul	Teller	on	Tymoczko

• “Surveyability is	needed,	not	because	without	
it	a	proof	is	in	any	sense	not	a	proof,	but	
because	without	surveyability we	seem	not	to	
be	able	to	verify	that	a	proof	is	correct.	So	
surveyability is	not	part	of	what	it	is	to	be	a	
proof	in	our	accustomed	sense.”	Paul	Teller	
“Computer	Proof,”	Journal	of	Philosophy,	
December	1980,	pp.	797-803
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Paul	Teller	on	Tymoczko

• “…we	may	take	advantage	of	new	methods	of	
surveying	as	long	as	these	enable	us	to	meet	
sensible	demands	on	checking	proofs,	and	a	
shift	in	the	means	of	surveying	actually	used	
means	only	a	shift	in	methods	of	checking	
proofs,	not	a	shift	in	our	conceptions	of	the	
things	checked.”	Teller,	op.	cit.,	p.	798

• Not	a	shift	in	our	conceptions	of	the	things	
checked	=	not	a	shift	in	our	concept	of	proof
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The	dispute	between	Teller	and	
Tymoczko:	the	concept	of	

mathematical	proof

• Tymoczko:	surveyability is	an	essential	feature	
of	the	concept	of	a	mathematical	proof.

• Teller:	surveyability is	not	an	essential	feature	
of	the	concept	of	a	mathematical	proof.

• Who	is	right?	On	what	grounds	are	they	right?
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Quine’s	problem	for	concepts

• W.	V.	Quine	argued	in	his	epochal	paper	“Two	
Dogmas	of	Empiricism,”	that	there	is	no	hard	
and	fast	distinction	between	meaning-
constituting	beliefs	and	auxillary beliefs	
(beliefs	that	are	not	meaning-constituting).

• This	means	that	it	is	impossible	to	draw	a	
hard-and-fast	line	between	essential	(or	
necessary)	features	of	a	concept	and	non-
essential	(contingent)	features	of	a	concept.
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Quine’s	problem	for	concepts

• If	A	proposes	that	X	is	an	essential	feature	of	the	
concept	of	mathematical	proof,	and	B	proposes	
that	it	is	an	accidental	feature	of	the	concept	of	
mathematical	proof,	there	is	no	principled	way	of	
adjudicating	between	the	two	proposals.

• Adjudication	should	go	by	way	of	canons	of	
rationality	and	canons	of	scientific	inquiry,	such	
as	conservatism—upholding	as	many	currently	
established	beliefs	as	possible.	How	would	that	
work	for	the	concept	of	mathematical	proof?
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Quine’s	problem	for	concepts

• There	is	no	consensus	view	as	to	whether	
Quine	is	correct	or	not	on	this,	but	most	
philosophers	take	Quine	to	be	correct.

• Teller’s	claim	that	surveyability is	not	an	
essential	feature	of	the	concept	of	
mathematical	proof	could	be	upheld	if	it	
satisfied	more	canons	of	rationality	and	of	
scientific	inquiry	than	does	Tymoczko’s claim.
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Quine’s	problem	for	concepts

• However,	the	idea	of	surveyability surfaces	in	
the	context	of	using	computers	in	
mathematical	proofs.	

• There	was	not	much	data	(i.e.,	features	on	
which	there	is	common	agreement)	
concerning	the	use	of	computers	in	
mathematical	proof	in	the	period	1976-1980.

• The	disagreement	between	Teller	and	
Tymoczko is	a	stalemate.
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Detlefsen on	Tymoczko
• “The	need	for	the	appeal	to	empirical	evidence	is	brought	

about,	in	Tymoczko’s view,	by	the	fact	that	the	calculation	
performed	by	an	IBM	370-160A	in	order	to	determine	the	
reducibility	of	certain	configurations	is	too	long	to	be	
‘checked’	or	‘surveyed’	by	human	mathematicians.	Because	
of	this,	Tymoczko reasons,	whatever	evidence	we	have	for	
the	reliability	of	the	IBM	370-160A	in	determining	
reducibility	of	configurations	cannot	take	the	form	of	a	
‘surveyable’	proof	of	its	reliability.	And	so,	it	is	concluded,	
the	evidence	must	be	empirical	in	character.”	Michael	
Detlefsen and	Mark	Luker“The Four	Color	Theorem	and	
mathematical	Proof,”	Journal	of	Philosophy,	1980,	pp.	803-
820
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Detlefsen on	Tymoczko
• Detlefsen provides	several	examples	of	mathematical	
proofs	which	are	surveyable and	in	which	
computations	are	made.	He	argues	that	such	
computations	necessarily	utilize	empirical	premises	
(such	as:	the	computing	agent	correctly	executes	the	
program	required	to	make	the	computation).

• If	his	argument	is	sound,	Detlefsen has	shown	that	
unsurveyability is	not	necessary	for	the	presence	of	an	
empirical	element	in	mathematical	proofs.	This	refutes	
a	major	claim	in	Tymoczko’s paper.
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Detlefsen on	Tymoczko
• “This	creates	a	dilemma	for	Tymoczko.	For	either	
one	rejects	his	reasoning,	in	which	case	he	is	left	
without	an	argument	for	the	empirical	character	
of	the	proof	of	the	4CT	or	one	accepts	his	
reasoning,	but	is	then	forced	to	view	the	
presence	of	calculation	or	computation	in	a	proof	
as	injecting	an	empirical	element	into	that	proof.	
The	consequence	of	such	a	view	is	that	empirical	
proofs	are	more	widespread	than	Tymoczko
himself	indicates.”	Michael	Detlefsen,	op.	cit.,	p.	
809
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Detlefsen on	Tymoczko
• “This	creates	a	dilemma	for	Tymoczko.	For	either	
one	rejects	his	reasoning,	in	which	case	he	is	left	
without	an	argument	for	the	empirical	character	
of	the	proof	of	the	4CT	or	one	accepts	his	
reasoning,	but	is	then	forced	to	view	the	
presence	of	calculation	or	computation	in	a	proof	
as	injecting	an	empirical	element	into	that	proof.	
The	consequence	of	such	a	view	is	that	empirical	
proofs	are	more	widespread	than	Tymoczko
himself	indicates.”	Michael	Detlefsen,	op.	cit.,	p.	
809
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Background	to	Burge:	Descartes	on	
mathematical	proofs

• [In	long	deductions]	“the	last	link	is	connected	
with	the	first,	even	though	we	do	not	take	in	by	
means	of	one	and	the	same	act	of	vision	all	the	
intermediate	links	on	which	that	connection	
depends,	but	only	remember	that	we	have	taken	
them	successively	under	review…”	Descartes,	
Rules	for	the	Direction	of	Mind

• For	Descartes,	“if	that	knowledge	is	deduced	
from	evident	mathematical	premises,	it	is	certain	
and	demonstrative.”	Tyler	Burge,	Content	
Preservation,	Philosophical	Issues,	1995,	p.	271
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Background	to	Burge:	Chisholm	on	
mathematical	proofs

• “What	if	S	derives	a	proposition	from	a	set	of	
axioms,	not	by	means	of	one	or	two	simple	
steps,	but	as	a	result	of	a	complex	proof,	
involving	a	series	in	interrelated	steps?	If	the	
proof	is	formally	valid,	then	shouldn’t	we	say	
that	S	knows	the	proposition	a	priori?	I	think	
that	the	answer	is	no.”	Roderick	Chisholm,	
Theory	of	Knowledge,	2nd edition
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Background	to	Burge:	Chisholm	on	
mathematical	proofs

• “[I]f,	in	the	course	of	a	demonstration,	we	must	
rely	upon	memory	at	various	stages,	thus	using	as	
premises	contingent	propositions	about	what	we	
happen	to	remember,	then,	although	we	might	
be	said	to	have	‘demonstrative	knowledge’	of	our	
conclusion,	in	a	somewhat	broad	sense	of	the	
expression	‘demonstrative	knowledge,’	we	cannot	
be	said	to	have	a	a priori	demonstration	of	the	
conclusion.”	Roderick	Chisholm,	op.cit.,	
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Why	is	Chisholm’s	point	important?

• a posteriori	knowledge:	knowledge	which	is	arrived	at	
on	the	basis	of	sense	experiences	or	perceptual	beliefs.

• a	priori	knowledge:	knowledge	which	is	arrived	at	on	
the	basis	of	intellectual	processes	which	do	not	involve	
reference	to	or	reliance	upon	sense	experiences.

• a	posteriori	justification:	justification	which	relies	upon	
sense	experiences.

• a	priori	justification:	justification	which	employs	
intellectual	processes	which	do	not	involve	reference	
to	or	reliance	upon	sense	experiences.
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Why	is	Chisholm’s	point	important?

• If	Chisholm	is	right	that	long	mathematical	proofs	
require	a	premise	about	what	we	happen	to	
remember—and	thus	are	not	either	known	or	
justified	a	priori—then	it	easily	follows	that	those	
proofs	are	known	or	justified	empirically.	They	
rely	upon	or	refer	to	sense	experiences.	

• Tymoczko is	right	about	the	epistemological	
status	of	the	4CT	if	we	accept	Chisholm’s	point.	
But	he	is	wrong	that	only	unsurveyable
mathematical	proofs	require	(in	whole	or	in	part)	
empirical	justification.	
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Background	to	Burge:	Fallis on	
dispensing	with	empirical	evidence

• “…	there	is	a	sense	in	which	the	proof	of	the	four-
color	theorem	is	an	a	priori	justification.	It	need	
not	appeal	to	any	particular	empirical	data	and	in	
principle	need	not	appeal	to	empirical	data	at	all.	
For	instance,	the	relevant	computation	could	be	
performed	by	a	device	other	than	a	digital	
computer	and	in	principle	could	be	performed	in	
the	mathematician’s	mind.”		Don	Fallis,	
Mathematical	Proof	and	the	Reliability	of	DNA	
Evidence,	American	Mathematical	Monthly,	June-
July,	1996,	p.	496
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Background	to	Burge:	Fallis on	
dispensing	with	empirical	evidence

• Fallis thinks	that,	unless	it	is	necessary	that	a	
physical	machine	of	some	kind	perform	some	
computation,	then	the	computation	is		a	priori,	
because	it	is	possible	that	a	human	mind	could	
perform	the	computation.	

• It	is	possible	that	a	human	mind	could	complete	
an	infinite	computational	process	(in,	say,	a	
Malament-Hogarth	universe).	Should	we	then	say	
that	such	computations	are	a	priori	knowable?	
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Burge	on	the	use	of	computers	in	
mathematical	proofs

• Tyler	Burge,	in	1998,	in	his	important	paper	
“Computer	Proof,	A	Priori	Knowledge,	and	Other	
Minds,”	The	Sixth	Philosophical	Perspectives	
Lecture	(pp.	1-38),	sidesteps	the	need	to	
understand	what	a	mathematical	proof	is	in	
asking	whether	the	use	of	computers	in	
mathematical	proofs	adds	an	empirical	element	
to	such	proofs.	Burge	will	argue	that	no	empirical	
element	need	be	added	when	computers	are	
used	in	mathematical	proofs,	such	as	the	proof	of	
the	4CT.	The	4CT	can	be	known	a	priori	(to	be	
true).
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Burge	on	mathematical	proofs

• Burge	uses	the	terms	‘epistemic	entitlement,’	
‘epistemic	warrant,’	and	‘epistemic	
justification’	(sometimes	without	the	qualifier	
‘epistemic’).	

• Unless	you	are	a	philosopher	working	in	
epistemology,	it	is	best	to	treat	all	of	them	as	
meaning	the	same—namely,	justification.	
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Burge	on	mathematical	proofs

• “I	conclude,	given	our	assumptions,	one	can	
be	in	a	position,	from	the	third	person	point	of	
view,	to	be	a	priori	warranted	in	believing,	in	
fact,	knowing,	on	defeasible	inductive	
grounds,	that	the	[4CT]	has	been	proved.	One	
can	know	this	even	if	one	cannot	replicate	the	
proof.”	Tyler	Burge	Computer	Proof,	A	Priori	
Knowledge,	and	Other	Minds,	p.	23
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Burge	on	mathematical	proofs
• “The	entitlement	for	relying	on	the	source	does	specify	
the	source	[the	computer].	But	it	need	not	specify	the	
object’s	empirically	discernible	characteristics,	or	the	
empirical	background	conditions	that	enable	the	
recipient	to	access	and	rely	on	the	source.	It	can	
specify	the	source	in	the	non-empirical	way	that	the	a	
priori	justification	does.”	Burge,	op.	cit.,	p.	29

• Work	on	proof	assistants	(e.g.,	by	Harvey	Friedman	and	
by	Jeremy	Avigad)	provides	an	entitlement	for	relying	
on	the	source	(the	IBM	370-160A	used	in	the	Appel-
Haken	proof	of	the	4CT).	
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Burge	on	mathematical	proofs
• “Perceptual	experience	of	the	words	or	of	the	body	of	
the	source	need	play	no	role	in	justifying	one’s	
understanding	of,	or	intellectual	uses	of,	the	content	of	
the	words	or	the	presentations	of	the	source.”	Notice	
that	this	point	would,	if	correct,	refute	Chisholm.

• “Perception	is	only	the	mode	of	access,	an	enabling	
condition	which	makes	no	contribution	to	the	
epistemic	force	of	the	warrant.”

• Perception	is	merely	a	condition	that	enables	one	to	
make	use	of	a	resource	for	reason	and	understanding.”		
Burge,	op.	cit.,	p.	30
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What	has	Burge	shown?

• If	his	arguments	are	sound,	Burge	has	shown	
that	the	unsurveyability of	mathematical	
proofs	is	not	sufficient	for	the	existence	of	an	
empirical	element	in	such	proofs.
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What	have	Detlefsen and	Burge	
shown?

• Recall	that	Detlefsen has	shown	that	the	
unsurveyability of	mathematical	proofs	is	not	
necessary	for	the	existence	of	an	empirical	
element	in	such	proofs.	Burge	has	shown	that	it	is	
not	sufficient.

• The	results	of	Burge	and	Detlefsen,	if	both	are	
correct,	show	there	is	no	conceptual	connection	
between	the	unsurveyability of	mathematical	
proofs	and	the	existence	of	an	empirical	element	
in	such	proofs.	However,	both	cannot	be	correct.
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What	have	Detlefsen and	Burge	
shown?

• If	there	is	no	conceptual	connection	between	the	
unsurveyability of	mathematical	proofs	and	the	
existence	of	an	empirical	element	in	such	proofs,	
it	easily	follows	that	unsurveyability has	nothing	
to	do	with	the	existence	of	an	empirical	element	
in	mathematical	proofs.

• Examining	the	arguments	of	both	Detlefsen and	
Burge,	this	is	not	shocking,	nor	even	surprising.	
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What	have	Detlefsen and	Burge	
shown?

• Detlefsen argued	that	whether	a	mathematical	proof	is	
surveyable or	unsurveyable,	there	might	be	empirical	
elements	in	it.	

• Burge	argued	that	whether	a	mathematical	proof	is	
surveyable or	unsurveyable,	there	need	not	be	
empirical	elements	in	it.

• Of	course,	neither	rule	out	that	there	might	be,	nor	
that	there	might	not	be,	empirical	elements	in	a	
mathematical	proof.	But	whether	there	are	or	are	not	
is	not	a	matter	of	what	the	concept	of	a	mathematical	
proof	consists	in.	It	is,	rather,	an	entirely	contingent	
matter.
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Four	Problems	for	Burge

• There	are	three	problems	for	Burge’s	account	
of	how	we	can	have	a	priori	knowledge	of	the	
output	of	a	computer.

• The	first	is	that	his	account	makes	it	too	easy	
to	have	gettiered knowledge.	Gettier
counterexamples	are	cases	in	which	a	subject	
S	has	a	true,	justified	belief	that	p,	but	in	
which	S	does	not	know	that	p.
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Four	Problems	for	Burge

• Here	is	how,	following	Burge’s	account	of	
epistemic	justification	in	the	context	of	
mathematical	truths,	one	can	have	a	true,	
justified	belief	in	the	4CT,	but	not	know	the	4CT.

• Suppose	that	the	4CT	is	true,	but	that	the	
computer	program	for	resolving	the	cases	is	
fallacious.	On	Burge’s	account,	a	subject	S	will	be	
justified	in	believing	the	4CT	to	be	true.	Since	it	is	
true	(by	assumption),	S	has	a	true,	justified	belief	
in	the	4CT.	But	S	does	not	know	the	4CT.		
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Four	Problems	for	Burge

• We	should	take	Gettier counterexamples	very	
seriously.	(David	Lewis	has	remarked	that	
there	are	only	two	results	that	all	philosophers	
take	to	be	definitive:	Gödel	and	Gettier.)

• If	an	account	of	epistemic	justification	makes	
it	too	easy	for	Gettier counterexamples	(and	
not	just	possible	for	them	to	arise)	to	arise,	
that	is	a	reason	to	reject	such	an	account.
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Four	Problems	for	Burge

• The	second	problem	for	Burge	concerns	his	
claim	that	the	mode	of	access	to	some	
epistemically	warranted	set	of	propositions	is	
not	necessary	for	being	epistemically	justified	
in	believing	those	propositions:		“[t]he	
entitlement	for	relying	on	the	source	…	need	
not	specify	the	empirical	background	
conditions	that	enable	the	recipient	to	access	
and	rely	on	the	source.”	Burge,	op.	cit.,	p.	29
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Four	Problems	for	Burge
• That	is	why	we	can	discount	the	role	of	memory	in	
determining	whether	we	are	epistemically	justified	in	
believing	a	theorem	of	mathematics	on	the	basis	of	the	
proof	of	that	theorem.	Memory	is	a	mere	mode	of	
access	to	the	proof.	

• For	Burge,	the	same	is	true	of	computer	proofs—we	
can	discount	the	mode	of	access	to	the	theorem	and	its	
proof	(the	computer	program)	which	is	the	computer.	

• If	memory	is	faulty,	that	does	not	show	that	the	proof	
is	faulty.	Indeed,	a	faulty	memory	has	nothing	to	do	
with	a	proof—which	is	an	abstract	object.	Can	we	say	
the	same	of	a	computer?	Burge	thinks	we	can.	
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Four	Problems	for	Burge
• I	say	we	cannot.	Here	is	why.	Unlike	memory,	a	
computer	is	not	an	organic	intrinsic	part	of	a	
human	being.	It	is	the	unique	mode	of	access	to	
the	computer	program	and	the	computations	of	
that	program—all	of	which	are	abstract	objects.	

• But	it	is	more.	It	is	the	means	by	which	the	
abstract	objects	are	physically	realized.	Memory,	
on	the	other	hand,	need	not	be	the	means	by	
which	a	proof	is	physically	realized.	Rather,	a	
proof	can	be	physically	realized	on	a	piece	of	
paper	using	ink	to	make	inscriptions.		
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Four	Problems	for	Burge
• Imagine	a	culture	in	which	there	is	no	paper,	no	writing	

instruments,	and	no	concepts	of	writing	(on	paper,	using	writing	
instruments).	However,	there	is	the	concept	of	a	proof.	All	proofs	
are	in	human	memory.

• In	such	a	case,	we	should	say	that	a	problem	with	human	memory	
would	create	a	problem	in	epistemic	entitlement	to	the	proof.	
Why?	Because	human	memory	is	the	only	means	by	which	the	
proof	is	physically	realized,	as	well	as	the	mode	of	access	to	the	
proof.	

• Without	memory,	we	do	not	have	a	proof,	since	we	do	not	have	any	
mode	of	access	to	the	abstract	object	which	is	the	proof.	(Compare	
with	a	proof	which	is	so	difficult	that	no	mathematical	concepts	
available	to	the	human	mind	are	adequate	for	representing	the	
proof.	In	such	a	case,	even	though	the	proof	has	an	abstract	
existence,	we	should	say	that	we	cannot	be	epistemically	entitled	to	
it	since	we	have	no	means	by	which	to	access	it.)
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Four	Problems	for	Burge
• The	third	problem	for	Burge	concerns	four	assumptions	
that	Burge	makes	in	his	argument.	One	assumption	is	
that	“individual’s	knowledge	of	pure	mathematics,	
resting	on	specifically	mathematical	understanding	or	
reasoning,	is	ordinarily	a	priori.”	(Burge,	op.	cit.,	p.	4)

• This	contradicts	Detlefsen’s claim—which	depends	on	
Tymoczko’s definition	of	mathematical	proof—that	
empirical	premises	are	used	in	mathematical	proofs	
that	are	surveyable (as	well	as	those	which	are	
unsurveyable).

• We	defer	our	exposition	of	the	fourth	problem	for	
Burge.
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The	dialectics	of	how	things	stand
• Tymoczko and	Teller:	stalemate
• Tymoczko and	Detlefsen:	If	Detlefsen is	correct,	
empirical	premises	occur	in	mathematical	proofs	that	
are	both	surveyable and	unsurveyable.	This	puts	
pressure	on	getting	clear	on	what	we	mean	by	a	
mathematical	proof.

• Tymoczko and	Burge:	If	Burge	is	correct,	then	the	use	
of	computers	in	mathematical	proofs	does	not	
introduce	an	empirical	element	into	those	proofs	(nor	
does	the	use	of	computations	in	mathematical	proofs).	
Tymoczko and	Detlefsen are	both	refuted.	
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The	dialectics	of	how	things	stand
• But	we	have	presented	reasons	for	thinking	that	
Burge’s	argument	fails.

• It	is	clear	that	much	philosophical	work	still	needs	
to	be	done	in	explicating	the	concept	of	a	
mathematical	proof.

• But	no	matter	what	that	explication	eventually	
consists	in,	it	must	be	compatible	with	our	views	
about	the	nature	of	computers	and	the	nature	of	
the	human	mind.	That	this	(perhaps	startling	
view)	is	so	will	be	argued	in	the	remainder	of	this	
talk.
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A	line	of	thought	not	taken
• We	will	now	discuss	a	line	of	thought	that	is	broached	
by	Teller,	Detlefsen,	Davis,	and	Tymoczko,	but	not	taken	
up	by	any	of	them.

• In	his	paper,	Teller	writes:	“The	alleged	
nonsurveyability also	underlies	Tymoczko’s second	
conclusion:	the	computer	proof	of	the	combinatorial	
lemma	is	subject	to	error—computers	can	make	
mistakes.	We	cannot	guard	against	this	possibility	of	
mechanical	failure	or	error	in	programming	in	the	
traditional	way	because	we	cannot	survey	the	proof.”	
Teller,	op.	cit.,	p.	798
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A	line	of	thought	not	taken

• “What	if	the	programming	was	erroneous?	What	
if	the	initial	data	were	fake?	What	if	there	was	a	
machine	malfunction?”	

• “These	considerations	lead	us	to	a	position—
which	is	rarely	discussed	in	works	on	the	
philosophy	of	mathematics	and	which	is	very	
unpopular—that	a	mathematical	proof	has	much	
in	common	with	a	physical	experiment.”	
P.	Davis,	“Formac Meets	Pappus,”	American	

mathematical	Monthly,	1969,	pp.	903-904.
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John	Horton	Conway	on	computers

• A	well-known	mathematician,	John	H.	
Conway,	has	been	quoted	as	saying:	“I	don’t	
like	them	[computers],	because	you	sort	of	
don’t	feel	you	understand	what’s	going	on.”	
New	York	Times,	April	6,	2004	Kenneth	Chang	
“In	math,	computers	don’t	lie.	Or	do	they?”	an	
article	on	the	use	of	computers	in	
mathematical	proofs
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Wittgenstein	on	machine	computation

• “If	we	know	the	machine,	everything	else	…	seem[s]	to	
be	already	completely	determined.	We	talk	as	if	these	
parts	could	only	move	in	this	way,	as	if	they	could	not	
do	anything	else.	Is	this	how	it	is?	Do	we	forget	the	
possibility	of	their	bending,	breaking	off,	melting,	and	
so	on?	Yes,	in	many	cases	we	don’t	think	of	that	at	all.	
We	use	a	machine,	or	a	picture	of	a	machine,	as	a	
symbol	of	a	particular	mode	of	operation.	For	instance,	
we	give	someone	such	a	picture,	and	assume	that	he	
will	derive	the	successive	movements	of	the	parts	from	
it.”	Ludwig	Wittgenstein	Philosophical	Investigations,	
§ 193
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Kripke on	Wittgenstein

• “Wittgenstein	himself	draws	the	distinction	
between	the	machine	as	an	abstract	program	
(‘der	Machine	als Symbol,’	PI	193)	and	the	
actual	physical	machine,	which	is	subject	to	
breakdown	(‘Do	we	forget	the	possibility	of	
their	bending,	breaking	off,	melting,	and	so	
on?’	PI	193)”	Saul	Kripke,	Wittgenstein	on	
Rules	and	Private	Language,	p.	35,	fn.	24	
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Naive	computer	view	of	the	mind

• “A	machine	can	follow	this	rule;	whence	does	
a	human	being	gain	a	freedom	of	choice	in	
this	matter	which	a	machine	does	not	
possess?”

Sir	Michael	Dummett “Wittgenstein’s	
Philosophy	of	Mathematics,”	Philosophical	
Review	Vol.	68	(1959),	pp.	324-348,	at	p.	351
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The	basic	idea

• Since	physical	computing	machines	can	break	
down	in	various	ways,	how	do	we	really	know	
what	function	F	a	given	PCM	computes?

• One	might	think	that	is	not	a	serious	problem.	
If	F	is	the	square	function,	and	the	PCM	
computes	F(2)	=	4,	the	PCM	is	operating	
normally.	IF	the	PCM	computes	F(2)	=	8,	then	
it	has	suffered	a	breakdown.
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The	basic	idea
• The	basic	idea	is	not	that	of	the	under-determination	
of	theory	by	data.	For	instance,	both	the	square	
function	and	the	doubling	function	output	‘4’	when	
their	input	is	‘2.’	Indeed,	there	are	many	infinitely	
many	functions	whose	initial	segment	consists	of	the	
integer	‘4.’	As	more	and	more	values	of	F	are	computed	
(say	n),	functions	whose	initial	segment	consist	of	the	
sequence	of	n-1	values	will	no	longer	share	n	values.	

• But	this	is	not	a	matter	of	underdetermination of	
theory	by	data.	It	is	something	quite	different.	
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The	basic	idea

• That	view	is	too	naïve.	There	are	many	other	
functions	(say,	G)	that	PCM	might	be	
computing.	Perhaps	the	output	‘4’	is	when	
PCM	suffers	a	breakdown	in	computing	G.	
Perhaps	the	output	‘8’	is	when	PCM	operates	
normally	in	computing	G.

• Unless	it	is	KNOWN	that	the	PCM	computes,	
say,	F,	it	cannot	be	ruled	out	that,	based	on	its	
behavior,	it	is	computing,	say,	G.
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The	basic	idea
• In	short,	we	have	to	idealize	the	physical	behavior	of	
the	PCM	as	computing,	say,	F,	if	we	are	to	understand	
just	what	a	PCM	computes	and	what	it	does	not	
compute.

• But	to	idealize	the	physical	behavior	of	the	computing	
machine	as	computing,	say,	F,	we	must	already	know	
that	it	does	compute	F.	

• Where	did	we	acquire	this	knowledge?	Certainly,	not	
from	the	physical	behavior	of	the	PCM	(which	physical	
behavior	includes	what	PCM	outputs),	since	we	have	
idealized	that	physical	behavior	on	the	assumption	that	
PCM	computes	F.
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The	basic	idea

• We	can’t	identify	the	function	a	PCM	computes	
by	observing	that	it	is	operating	normally,	or	is	
suffering	a	breakdown.

• We	cannot	do	that	because	we	cannot	know	
whether	PCM	is	operating	normally	or	suffering	a	
breakdown	unless	we	already	know	what	
function	PCM	is	computing.

• By	idealizing	the	physical	behavior	of	a	PCM,	we	
implicitly	stipulate	whether	conditions	are	normal	
or	breakdown.
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The	basic	idea

• We	cannot	appeal	to	the	intentions	of	the	
designers	of	the	PCM	to	determine	what	function	
the	PCM	computes	unless	we	already	know	that	
they	intend	the	PCM	to	compute,	say,	F.

• If	we	make	such	an	appeal,	then	we	can	say	
whether	the	PCM	is	operating	normally,	or	is	in	
breakdown	mode,	only	if	we	already	know	that	
the	code	for	the	PCM	is	the	code	for	correctly	
computing,	say,	F.
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How	many	distinct	designers	of	the	
IBM		370-160A	might	there	be?

• Construct	a	Boolean	tree,	where	for	any	node,	
the	top-most	branch	leaving	it	represents	
normal	conditions	and	the	bottom-most	
branches	leaving	it	represent	malfunction	
conditions.

• Feed	the	successive	nodes	in	the	tree	
successive	digits	in	the	sequence	of	output	
digits	of	some	F.		
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How	many	distinct	designers	of	the	
IBM		370-160A	might	there	be?

…9677784…..

…677784….

…77784…

…77784…

…677784…

…77784…

…77784…
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A	disturbing	conclusion

• At	any	given	stage	in	the	computation	of	F,	it	is	
must	be	assumed	that	the	computing	machine	is	
computing	F,	and	not	some	other	function,	such	
as	G.	Even	after	the	computation	ends,	and	one	
can	see	(by	observation)	that	the	computing	
machine	outputs	the	digits	in	the	computation	of	
F(n),	it	must	still	be	assumed	that	F	has	been	
computed,	and	not	some	other	function,	such	as	
G	(because	for	each	digit	in	F(n),	it	could	have	
been	computed	by	G,	….	)
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Kripke’s argument	is	not	an	
underdetermination argument

• An	underdetermination argument:	given	
evidence	e,	there	are	n	hypotheses	
compatible	with	e.	Where	e	is	the	output	m	=	
F(n),	there	are	infinitely	many	recursive	
functions	which	agree	with	that	output	for	
that	domain	value.	As	other	values	of	F	are	
computed,	the	number	of	hypotheses	
compatible	with	e	decreases.
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Kripke’s argument	is	not	an	
underdetermination argument

• As	more	and	more	values	of	either	F	or	of	the	
digits	of	F(n)	are	computed,	more	and	more	
possible	functions	arise	that	the	computing	
machine	might	be	computing.	This	is	how	the	
phenomenon	of	machine	malfunction	is	
importantly	different	from	the	phenomenon	
of	the	underdetermination of	theory	by	
evidence.
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Kripke’s argument	is	not	an	
underdetermination argument

• In	underdetermination arguments,	we	can	
meaningfully	speak	of	how	likely	it	is	that	
some	function	F	has	been	computed,	since	we	
have	data	concerning	all	of	the	functions	
which	the	computer	might	have	computed.

• In	Kripke’s argument	against	functionalism,	we	
cannot	meaningfully	speak	of	likelihoods.

73



Why	likelihoods	are	ruled	out

• Which	function	F	a	given	computer	computes	
might	be	any	one	of	2n different	functions.	

• But	unless	one	idealizes	as	to	which	function	F	
a	given	computer	computes,	it	won’t	be	any	of	
those	2n functions.	
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Why	likelihoods	are	ruled	out

• It	would	appear	to	make	sense	to	ask:	“How	
likely	is	it	that	F	is	computed?”

• Given	that	2n functions	could	be	computed,	
we	answer:	“It	is	1/2n likely	that	F	is	
computed.”

• But	this	makes	sense	only	if	there	is	a	fact-of-
the-matter	as	to	which	F	is	computed.	
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Why	likelihoods	are	ruled	out

• However,	in	the	absence	of	making	an	
idealization	as	to	which	F	a	computer	
computes,	there	is	no fact-of-the-matter	as	to	
which	F	it	computes.

• And	once	the	idealization	is	made,	the	fact-of-
the-matter	is	that	only	one	function	F	is	
computed.	So	it	is	certain	that	F	is	computed	
under	the	idealization.
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What	could	we	conclude	from	an	
underdetermination argument?

• Let’s	briefly	look	at	what	we	would	say	about	
a	given	physical	computer	physically	
computing	some	function	F	where	we	employ	
an	underdetermination argument.

• This	is	useful	to	do,	since	one	might	confuse	
Kripke’s argument	against	functionalism	with	
an	underdetrmination argument.
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What	could	we	conclude	from	an	
underdetermination argument?

• No	mathematician	is	ever	justified	that	a	
computing	machine	is	computing	F	because	the	
probability	that	the	machine	is	computing	F	is	
less	than	or	equal	to	.5	

• Indeed,	for	all	computations	of	any	function,	the	
probability	the	machine	is	computing	that	
function	is	less	than	or	equal	to	.5	

• We	have	no	more	reason	to	believe	the	
computing	machine	is	computing	F	than	we	have	
reason	to	believe	that	a	fair	flip	of	a	fair	coin	will	
come	up	heads.
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What	could	we	conclude	from	an	
underdetermination argument?

• Since	there	are	2n different	functions	
computed	that	are	compatible	with	a	given	
output	of	a	computing	machine,	the	
probability	that	the	computing	machine	
computes	F	is	1/2n.	

• The	more	digits	in	F(n)	that	are	computed,	the	
more	likely	it	is	that	F(n)	has	been	computed	
by	the	computing	machine.
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What	could	we	conclude	from	an	
underdetermination argument?

• Suppose	that	a	computing	machine	outputs	m,	
which	happens	to	be	the	value	of	the	recursive	
function	F(n).	It	also	happens	to	be	the	value	of	
G(k),	…	

• Suppose	that	there	are	infinitely	many	recursive	
functions	that	output	m	for	a	given	input	value	n.	
(There	are	infinitely	many	recursive	functions	that	
agree	with	F(n)	for	domain	value	n.)

• It	would	then	follow	that	the	probability	that	the	
computing	machine	computes	F	is	1/∞	=	0	(as	a	
limit,	but	of	what	function)	or	indeterminate
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What	could	we	conclude	from	an	
underdetermination argument?

• Underdetermination of	theory	by	evidence	is	
not	what	is	the	case	where	it	is	the	computing	
machine	which	may	or	may	not	be	exhibiting	a	
breakdown.	What	function	it	is	computing	
determines	whether	it	is	in	breakdown	mode	
or	is	operating	normally.	But	one	cannot	know	
what	function	it	is	computing	without	
knowing	whether	it	is	operating	normally	or	is	
in	breakdown	mode.
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Why	computers	are	unreliable

• We	have	belabored	the	difference	between	
Kripke’s argument	against	functionalism	and	
underdetermination claims	so	that	one	can	see	
fairly	easily	that	underdetermination claims	do	
not	show	computers	are	unreliable.

• However,	Kripke’s argument	against	functionalism	
does	show	computers	are	unreliable,	since	in	the	
absence	of	making	an	idealization	as	to	which	F	a	
computer	computes,	there	is	no fact-of-the-
matter	as	to	which	F	it	computes.
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Why	computers	are	unreliable
• That	there	is	no	fact-of-the-matter	as	to	which	F	a	
given	computer	computes	and	that	someone	who	
uses	the	computer	must	stipulate	which	F	it	does	
compute	shows	they	are	unreliable.	

• Reliability	of	a	physical	device	is	established	by	
showing	the	extent	to	which	the	outputs	of	the	
device	correspond	to	what	we	take	the	device	to	
be	registering,	computing,	measuring,	etc.	But	if	
there	is	no	fact-of-the-matter	at	to	what	the	
device	registers,	computes,	measures,	etc.,	then	
it	cannot,	by	definition,	be	reliable.	
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Being	right	and	saying	a	computer	is	
right	in	what	it	computes

• In	idealizing	a	computer	as	computing	F,	one	is	
stipulating	that	the	computer	computes	F.	In	
the	absence	of	such	an	idealization—or	
stipulation—there	is	no	fact-of-the-matter	as	
to	what	the	computer	computes—indeed,	as	
to	what	it	does.	

• The	distinction	being	the	computer	being	right	
in	what	it	computes	and	our	saying	it	is	right	
in	what	it	computes	vanishes.
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Being	right	and	saying	a	computer	is	
right	in	what	it	computes

• If	Wanda	idealizes	a	given	computing	machine	
as	computing	F,	then	that	is	what	it	
computes—viz.,	F.

• If	Greg	idealizes	the	very	same	computing	
machine	as	computing	G,	then	that	is	what	is	
computes—viz.,	G.

• There	is	no	fact-of-the-matter	as	to	which	
idealization	is	correct.	So	we	cannot	speak	in	
these	cases	of	‘correctness.’
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Being	right	and	saying	a	computer	is	
right	in	what	it	computes

• Where	we	cannot	speak	of	a	fact-of-the-matter	
about	which	one	is	either	correct	or	not	correct,	
we	have	relativism.

• Truth-relativism	is	the	doctrine	that	truth	is	
relative	to	a	speaker.	It	is	an	insidious	doctrine	
that	philosophers	have	done	their	best	to	refute.

• Computation-relativism	is	the	doctrine	that	which	
computation	a	given	computer	makes	is	relative	
to	the	idealization	a	given	person	makes.	It	is	a	
consequence	of	Kripke’s argument	against	
functionalism.
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Wittgenstein	on	being	right	and	saying	
one	is	right

• “And	now	it	seems	quite	indifferent	whether	I	
have	recognized	the	sensation	right or	not.	Let	
us	suppose	I	regularly	identify	it	as	wrong,	it	
does	not	matter	in	the	least.	And	that	also	
shows	that	the	hypothesis	that	I	make	a	
mistake	is	mere	show.”	Ludwig	Wittgenstein,	
Philosophical	Investigations,	paragraph	270.
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Putnam	on	being	right	and	saying	one	
is	right

• “the	relativist	cannot	…	make	any	sense	of	the	
distinction	between	being	right and	thinking	
he	is	right;	and	that	means	there	is	…	no	
difference	between	asserting	or	thinking,	on	
the	one	hand,	and	making	noises	…	on	the	
other.	…	To	hold	such	a	view	is	to	commit	a	
sort	of	mental	suicide.”	Hilary	Putnam,	
Reason,	Truth,	and	History,	p.	122		
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Truth	relativism	and	computation	
relativism

• Computation	relativism	appears	to	be	such	an	
absurd	view	(like	truth	relativism),	that	one	
naturally	takes	it	to	be	a	reductio of	Kripke’s
argument	against	functionalism.

• However,	although	there	are	compelling	
arguments	which	refute	truth—relativism,	
there	are	no	compelling	arguments	(thus	far)	
which	refute	Kripke’s argument	against	
functionalism.
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Fourth	Problem	for	Burge

• “It	is	a	delicate	and	unresolved	matter	how	to	
distinguish	the	cases	in	which	warrant	for	
continuing	reliance	on	a	source	Q	requires	an	
empirical	induction,	or	even	an	empirical	
entitlement,	from	the	cases	in	which	empirical	
recognition	can	be	submerged	into	knowing	
how	to	access	a	rational	resource.”	Burge,	op.	
cit.,	p.	29
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Fourth	Problem	for	Burge
• “[Cases	in	which	empirical	recognition	can	be	
submerged]	require	that	the	perceivable	
properties	of	a	computer	or	person	that	one	uses	
as	a	rational	resource	be	relatively	simple.	I	think	
that	they	must	be	incorporated	into	a	nearly	
automatic	routine.	It	is	important	that	the	
recipient	need	not	engage	in	context-dependent	
empirical	(or	non-empirical)	tracking	exercises,	or	
complex	theorizing,	to	reidentify the	resource	…	
through	its	possibly	changing	physical	
characteristics.”	Burge	op.	cit.,	p.	29
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Fourth	Problem	for	Burge

• In	order	to	track	the	state	of	the	system	
making	the	computations,	the	recipient	will	
need	to	idealize	the	behavior	of	that	system.	
Why?	Because	in	the	absence	of	an	
idealization,	the	recipient	cannot	say	what	the	
system	is	computing:	whether	it	is	computing	
the	function	the	recipient	takes	it	to	be	
computing,	or	whether	it	is	computing	
another	function
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Fourth	Problem	for	Burge

• Without	making	the	idealization,	the	recipient	
cannot	know	whether	the	machine	is	
computing	the	function	she	takes	it	to	be	
computing,	under	normal	conditions	of	
operation,	or	computing	another	function	she	
does	not	take	it	to	be	computing,	under	
abnormal	conditions	of	operation.
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Fourth	Problem	for	Burge

• Without	making	such	an	idealization,	the	
recipient	cannot	know	whether	the	machine	is	
operating	under	normal	conditions,	or	
operating	under	abnormal	conditions.	

• If	the	machine	is	idealized	as	operating	under	
normal	conditions,	and	it	outputs	what	the	
recipient	thinks	it	should	output,	then	the	
machine	is	computing	the	function	the	
recipient	takes	it	to	be	computing.
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Fourth	Problem	for	Burge

• Making	such	an	idealization	is	a	necessary	part	
of	understanding	what	function	the	machine	
is	computing.	Notice	that	even	if	the	recipient	
has	established	the	mathematical	powers	of	
the	machine	by	a	priori	reasoning,	that	does	
not	establish	her	epistemic	entitlement	that	
she	is	warranted	in	believing	the	machine	will	
correctly	compute	the	functions	she	takes	it	to	
be	computing.
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Fourth	Problem	for	Burge

• But	making	such	an	idealization	is	to	engage	in	
“complex	theorizing	to	re-identify	the	resource	
through	its	possibly	changing	physical	
characteristics.”	

• We	need	to	refer	to	empirical	constancy	not	just	
for	access,	but	also	refer	to	it	in	our	warrant.	
(Burge:	“We	rely	on	empirical	constancy	for	
access,	without	having	to	refer	to	it	in	our	
warrant,”	[J.B.	unless	the	recipient	engages	in	
complex	theorizing.]
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Where	do	we	go	from	here?

• There	is	much	work	to	be	done	on	developing	
a	concept	of	mathematical	proof	and	on	proof	
assistants.	But	no	matter	what	the	
development	of	these	areas	looks	like	in	the	
future,	unless	we	come	to	terms	with	the	
philosophical	questions	concerning	the	nature	
of	the	human	mind,	we	will	not	be	in	a	
position	to	say	whether	a	mathematical	proof	
that	uses	computers	(in	the	way	the	4CT	does)	
is	a	genuine	mathematical	proof.	
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Where	do	we	go	from	here?
• Both	the	human	brain	and	a	physical	computer	are	
physical	objects,	subject	to	breakdown	and	
malfunction.	

• Modeling	the	human	mind	as	a	computational	device	
works	at	the	abstract	level,	but	computational	devices	
must	be	physically	realized,	and	it	is	in	their	physical	
realization	that	problems	arise.

• Could	we	re-think	how	a	computer	works	by	analogy	
with	a	non-computational	model	of	the	human	mind?	
Would	that	get	around	the	problems	that	arise	with	
physical	realizations?
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Where	do	we	go	from	here?
• Speculation:	we	will	not	have	an	adequate	
concept	of	machine	computations	until	we	have	
an	adequate	set	of	concepts	on	the	nature	of	the	
human	mind.

• Whether	these	concepts	must	respect	the	
mathematical	work	on	computation	is	an	open	
question.	It	might	be	that,	e.g.,	a	new	concept	of	
computational	complexity	will	be	needed.

• This	seems	strange;	indeed,	it	IS	strange.	But	the	
arguments	I	have	presented	here	today	show	
that,	although	strange,	it	is	(perhaps)	necessary.
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The	End

• Thanks	to	Bonnie	Gold	for	much	helpful	
editorial	advice	and	discussion.
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