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Chapter 2 1

Wittgenstein’s Diagonal Argument: A Variation 2

on Cantor and Turing1
3

Juliet Floyd 4

2.1 Introduction 5

On 30 July 1947 Wittgenstein began writing what I call in what follows his “1947 6

remark”2: 7

Turing’s ‘machines’. These machines are humans who calculate. And one might express 8

what he says also in the form of games. And the interesting games would be such as brought 9

one via certain rules to nonsensical instructions. I am thinking of games like the “racing 10

game”.3 One has received the order “Go on in the same way” when this makes no sense, 11

1Thanks are due to Per Martin-Löf and the organizers of the Swedish Collegium for Advanced
Studies (SCAS) conference in his honor in Uppsala, May 2009. The audience, especially the editors
of the present volume, created a stimulating occasion without which this essay would not have been
written. Helpful remarks were given to me there by Göran Sundholm, Sören Stenlund, Anders
Öberg, Wilfried Sieg, Kim Solin, Simo Säätelä, and Gisela Bengtsson. My understanding of the
significance of Wittgenstein’s Diagonal Argument was enhanced during my stay as a fellow 2009–
2010 at the Lichtenberg-Kolleg, Georg August Universität Göttingen, especially in conversations
with Felix Mühlhölzer and Akihiro Kanamori. Wolfgang Kienzler offered helpful comments before
and during my presentation of some of these ideas at the Collegium Philosophicum, Friedrich
Schiller Universität, Jena, April 2010. The final draft was much improved in light of comments
provided by Sten Lindström, Sören Stenlund and William Tait.
2This part of the remark is printed as §1096 of Wittgenstein et al. (1980), hereafter abbreviated
RPP I. See footnote 21 below for the manuscript contexts.
3I have not been able to identify with certainty what this game is. I presume that Wittgenstein is
thinking of a board game in which cards are drawn, or dice thrown, and pieces are moved in a kind
of race. See below for specifics.
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or knobs and cranks turned so as to move pieces in a simulated horse race. 
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say because one has got into a circle. For that order makes sense only in certain positions. 12

(Watson.4) 13

The most sustained interpretation of this remark was offered some time ago by 14

Stewart Shanker, who argued (1987, 1998) that its primary focus is philosophy 15

of mind, and specifically the behaviorism embedded within the cognitivist revo- 16

lution that Turing spawned. Shanker maintains that Wittgenstein is committed to 17

denying Church’s thesis, viz., that all (humanly) computable functions are Turing 18

computable. In what follows I shall leave aside Church’s thesis: too many issues 19

about it arise for me to profitably canvas the associated problems here, and Shanker 20

is quite clear that he is reconstructing the implications of Wittgenstein’s remark and 21

not its specific, local, content. Nor shall I contest the idea – forwarded not only 22

by Shanker, but also by Kripke and Wright (among many others) – that there are 23

fundamental criticisms of functionalism, reductionism, and computationalism about 24

the mind that may be drawn out of Wittgenstein’s later thought.5 Shanker is surely 25

right to have stressed the broad context of Wittgenstein’s 1947 remark, which is a 26

lengthy exploration of psychological concepts. And Wittgenstein did investigate the 27

sense in which any model of computation such as Turing’s could be said to give us 28

a description of how humans (or human brains or all possible computing machines) 29

actually work, when calculating. Turing offers, not a definition of “state of mind”, 30

but what Wittgenstein thought of as a “language game”, a simplified model or 31

snapshot of a portion of human activity in language, an object of comparison 32

forwarded for a specific analytic purpose. 33

Turing sent Wittgenstein an offprint of his famous (1937a) paper “On Com- 34

putable Numbers, With an Application to the Entscheidungsproblem”.6 It contains 35

terminology of “processes”, “motions” “findings” “verdicts”, and so on. This talk 36

had the potential for conflating an analysis of Hilbert’s Entscheidungsproblem 37

and the purely logical notion of possibility encoded in a formal system with a 38

description of human computation. As Shanker argues, such conflations without due 39

attention to the idealizations involved were of concern to Wittgenstein. However, as 40

I am confident Shanker would allow, there are other issues at stake in Wittgenstein’s 41

remark than philosophy of mind or Church’s thesis. Turing could not have given a 42

negative resolution of the Entscheidungsproblem in his paper if his proof had turned 43

on a specific thesis in philosophy of mind. Thus it is of importance to stress that in 44

his 1947 remark Wittgenstein was directing his attention, not only to psychological 45

concepts, but to problems in the foundations of logic and mathematics, and to one 46

problem in particular that had long occupied him, viz., the Entscheidungsproblem. 47

In the above quoted 1947 remark Wittgenstein is indeed alluding to Turing’s 48

famous (1937a) paper. He discussed its contents and then recent undecidability 49

results with (Alister) Watson in the summer of 1937, when Turing returned to 50

4Alister Watson discussed the Cantor diagonal argument with Turing in 1935 and introduced
Wittgenstein to Turing. The three had a discussion of incompleteness results in the summer of
1937 that led to Watson (1938). See Hodges (1983), pp. 109, 136 and footnote 7 below.
5Kripke (1982), Wright (2001), Chapter 7. See also Gefwert (1998).
6See Hodges (1983), p. 136. Cf. Turing (1937c).
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Cambridge between years at Princeton.7 Since Wittgenstein had given an early 51

formulation of the problem of a decision procedure for all of logic,8 it is likely 52

that Turing’s (negative) resolution of the Entscheidungsproblem was of special 53

interest to him. These discussions preceded and, I believe, significantly stimulated 54

and shaped Wittgenstein’s focused work on the foundations of mathematics in the 55

period 1940–1944, especially his preoccupation with the idea that mathematics 56

might be conceived to be wholly experimental in nature: an idea he associated with 57

Turing. Moreover, so far as we know Wittgenstein never read Turing’s “Computing 58

Machinery and Intelligence” Turing (1950), the paper that injected the AI program, 59

and Church’s thesis, into philosophy of mind.9 Instead, in 1947 Wittgenstein was 60

recalling discussions he had had with Watson and Turing in 1937–1939 concerning 61

problems in the foundations of mathematics. 62

In general, therefore, I agree with Sieg’s interpretation of Turing’s model in 63

relation to Wittgenstein’s 1947 remark. Sieg cites it while arguing, both that Turing 64

was not the naive mechanist he is often taken to be, and also that Wittgenstein 65

picked up on a feature of Turing’s analysis that was indeed crucial for resolving the 66

Entscheidungsproblem.10 What was wanted to resolve Hilbert’s famous problem 67

was an analysis of the notion of a “definite method” in the relevant sense: a 68

“mechanical procedure” that can be carried out by human beings, i.e., computers, 69

with only limited cognitive steps (recognizing a symbolic configuration, seeing that 70

one of finitely many rules applies, shifting attention stepwise to a new symbolic 71

configuration, and so on).11 An analysis like Turing’s that could connect the notion 72

with (certain limited aspects of possible) human cognitive activity was, then, pre- 73

cisely what was wanted. The human aspect enters at one pivotal point, when Turing 74

claims that a human computer can recognize only a bounded number of different 75

discrete configurations “at a glance”, or “immediately”.12 Sieg’s conceptual analysis 76

explains what makes Turing’s analysis of computability more vivid, more pertinent 77

and (to use Gödel’s word) more epistemologically satisfying than Church’s or 78

7Hodges (1983), p. 135; cf. Floyd (2001).
8In a letter to Russell of later November or early December 1913; see R. 23 in McGuinness (2008)
or in Wittgenstein (2004). For a discussion of the history and the philosophical issues see Dreben
and Floyd (1991).
9Malcolm queried by letter (3 November 1950, now lost) whether Wittgenstein had read
“Computing Machinery and Intelligence”, asking whether the whole thing was a “leg pull”.
Wittgenstein answered (1 December 1950) that “I haven’t read it but I imagine it’s no leg-pull”.
(Wittgenstein (2004), McGuinness (2008), p. 469).
10Sieg (1994), p. 91; Sieg (2008), p. 529.
11The Entscheidungsproblem asks, e.g., for an algorithm that will take as input a description of
a formal language and a mathematical statement in the language and determine whether or not
the statement is provable in the system (or: whether or not a first-order formula of the predicate
calculus is or is not valid) in a finite number of steps. Turing 1937a offered a proof that there is no
such algorithm, as had, albeit with a different proof, the earlier Church (1936).
12As Turing writes (1937a, p. 231), “the justification lies in the fact that the human memory is
necessarily limited”; cf. §9 of the paper.
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Gödel’s extensionally equivalent demarcations of the class of recursive functions, 79

though without subscribing to Gödel’s and Church’s own accounts of that epistemic 80

advantage.13
81

It is often held (e.g., by Gödel14) that Turing’s analogy with a human computer, 82

drawing on the assumption that a (human) computer scans and works with only a 83

finite number of symbols and/or states, involves strong metaphysical, epistemolog- 84

ical and/or psychological assumptions that he intended to use to justify his analysis. 85

From the perspective adopted here, this is not so. Turing’s model only makes explicit 86

certain characteristic features earmarking the concept that is being analyzed in the 87

specific, Hilbertian context (that of a recognizeable step within a computation or 88

a formal system, a “definite procedure” in the relevant sense). It is not a thesis in 89

philosophy of mind or mathematics, but instead an assumption taken up in a spirit 90

analogous to Wittgenstein’s idea that a proof must be perspicuous (Übersichtlich, 91

Übersehbar), i.e., something that a human being can take in, reproduce, write down, 92

communicate, verify, and/or articulate in some systematic way or other.15
93

If we look carefully at the context of Wittgenstein’s 1947 remark, we see that it 94

is Turing’s argumentation as such that he is considering, Turing’s use of an abstract 95

model of human activity to make a diagonal argument, and not any issue concerning 96

the explanation or psychological description of human mental activity as such. This 97

may be seen, not only by emphasizing, as Sieg does, that Turing’s analysis requires 98

no such general description, but also by noticing that immediately after this 1947 99

remark Wittgenstein frames a novel “variant” of Cantor’s diagonal argument. 100

The purpose of this essay is to set forth what I shall hereafter call Wittgenstein’s 101

Diagonal Argument. Showing that it is a distinctive argument, that it is a variant 102

of Cantor’s and Turing’s arguments, and that it can be used to make a proof are 103

my primary aims here. Full analysis of the 1947 remarks’ significance within the 104

context of Wittgenstein’s philosophy awaits another occasion, though in the final 105

section I shall broach several interpretive issues. 106

As a contribution to the occasion of this volume, I dedicate my observations 107

to Per Martin-Löf. He is a unique mathematician and philosopher in having used 108

proof-theoretic semantics to frame a rigorous analysis of the notions of judgment 109

and proposition at work in logic, and in his influential constructive type theory.16
110

I like to think he would especially appreciate the kind of “variant” of the Cantor 111

proof that Wittgenstein sketches. 112

13See Sieg (2006a, b). Compare Gandy (1988). On Gödel’s attitude, see footnote 28 below.
14See the note Gödel added to his “Some remarks on the undecidability results” (1972a),
in Gödel (1990), p. 304, and Webb (1990). Gödel (somewhat unfairly) accuses Turing of a
“philosophical error” in failing to admit that “mind, in its use, is not static, but constantly
developing”, as if the appropriateness of Turing’s analysis turns on denying that mental states
might form a continuous series.
15Wittgenstein’s notion of perspicuousness has received much attention. Two works which argue,
as I would, that it does not involve a restrictive epistemological thesis or reductive anthropologism
are Marion (2011) and Mühlhölzer (2010).
16See, e.g., Martin-Löf (1984, 1996).
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In presenting Wittgenstein’s Diagonal Argument I proceed as follows. First (2.1), 113

I briefly rehearse the Halting Problem, informed by a well-known application of 114

diagonal argumentation. While that argument itself does not, strictly speaking, 115

appear in Turing’s (1937a) paper, a closely related one does, at the beginning 116

of its §8 (Sect. 2.2.2). However, Turing frames another, rather different argument 117

immediately afterward, an argument that appeals to the notion of computation by 118

machine in a more concrete way, through the construction of what I shall call 119

a Pointerless Machine (Sect. 2.2.3). Next (3) I present Wittgenstein’s Diagonal 120

Argument, arguing that it derives from his reading of Turing’s §8. And then (4) I 121

present a “positive” version of Russell’s paradox that is analogous to Wittgenstein’s 122

and Turing’s arguments and which raises interesting questions of its own. Finally 123

(5), I shall canvas a few of the philosophical and historical issues raised by 124

these proofs. 125

2.2 Three Diagonal Arguments 126

2.2.1 The Halting Problem 127

Though it does not, strictly speaking, occur in Turing (1937a), the so-called “Halting 128

Problem” is an accessible and well-known example of diagonal argumentation with 129

which we shall begin.17
130

The totality of Turing machines in one variable can be enumerated. In his 131

(1937a) Turing presented his machine model in terms of “skeleton tables” and 132

associated with each particular machine a unique “description number” (D.N.), thus 133

Gödelizing; nowadays it is usual to construe a Turing machine as a set of quadruples. 134

In the modern construal, a Turing machine t has as its input-output behavior a partial 135

function f :N ! N as ollows: t is presented with an initial configuration that codes 136

a natural number j according to a specified protocol, and t then proceeds through its 137

instructions. In the event that t goes into a specified halt state with a configuration 138

that codes a natural number k according to protocol, then f .j / D k and f is 139

said to converge at j, written “f .j /#”. Otherwise, f is said to diverge at j, written 140

“f .j /"”. In general, f is partial because of the latter possibility. 141

Enumerating Turing machines as ti , we have corresponding partial functions fi W 142

N ! N , and a partial function g W N ! N is said to be computable if it is an fi . 143

The set of Turing machines is thus definable and enumerable, but represents the set 144

of partial computable functions. Because of this, it is not possible to diagonalize out 145

17Turing’s argument in 1937a in §8 is not formulated as a halting problem; this was done later,
probably by Martin Davis in a lecture of 1952. For further details on historical priority, see http://
en.wikipedia.org/wiki/Halting_problem#History_of_the_halting_problem and Copeland (2004),
p. 40 n 61.

2.2.1

2.3
2.4

2.5
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of the list of computable functions, as it is from a list of, e.g., real numbers in binary 146

representation (as in Cantor’s 1891 argument). In other words, the altered diagonal 147

sequence, though it may be defined as a function, is not a computable function in 148

the Turing sense. 149

The last idea is what is to be proved. (Once the equivalence to formal systems 150

is made explicit, this result yields Turing’s negative resolution of the Entschei- 151

dungsproblem.) 152

To fix ideas, consider a binary array, conceived as indicating via “"” that Turing 153

machine ti diverges on input j , and via “#” that it converges on input j . Each ti 154

computes a partial function fi W N ! N on the natural numbers, construed as a 155

binary sequence. 156

t1 " " # # " : : :

t2 # # " " # : : :

t3 # # # " " : : :

t4 " " " " # : : :

t5 # " # " # : : :

: : :

157

Cantor’s method of diagonal argument applies as follows. As Turing showed in 158

§6 of his (1937a), there is a universal Turing machine UT1. It corresponds to 159

a partial function f .i; j / of two variables, yielding the output for ti on input 160

j , thereby simulating the input-output behavior of every ti on the list. Now we 161

construct D, the Diagonal Machine, with corresponding one-variable function which 162

on input icomputes UT1 (i; i ). D is well-defined, and corresponds to a well-defined 163

(computable, partial) function. 164

We suppose now that we can define a “Contrary” Turing machine C that reverses 165

the input-output behavior of D as follows: C, with the initial configuration coding 166

j , first proceeds through the computation of D(j / and then follows this rule: 167

.!/ If D.j /#; then C.j / D "I
If D .j /"; then C .j / D 1

In other words, if D(j / converges then proceed to instructions that never halt, and if 168

D(j / diverges, then output the code for 1 and enter the halting state. 169

But there is a contradiction with assuming that this rule can be followed, or 170

implemented by a machine that is somewhere on the list of Turing machines. Why? 171

If C were a Turing machine, it would be tk for some k. Then consider tk on input 172

k. By rule (!), if tk converges on k, then it diverges on k; but if it diverges on k, 173

then it converges on k. So tk converges on k if and only if it diverges on k. This 174

contradiction indicates that our supposition was false. 175

Rule (!) assumes Halting Knowledge, i.e., that machine C can reach a conclusion 176

about the behavior of D on any input j , and follow rule (!). But to have such 177
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knowledge requires going through all the (possibly) infinitely many steps of the 178

D machine. And that is not itself a procedure that we can express by a rule for 179

a one-variable Turing machine. In other words Halting Knowledge is not Turing 180

computable. 181

Classical philosophical issues about negation in infinite contexts – the worry 182

about what it means to treat a completed totality of steps as just another step – 183

emerge. Turing himself acknowledged as much. In (1937b) he published some 184

corrections to his (1937a) paper. The first fixed a flaw in a definition pointed out 185

by Bernays, thereby narrowing a reduction class he had framed for the Decision 186

Problem. The second, also stimulated by Bernays, made his analysis more general, 187

showing that his definition of “computable number” serves independently of a 188

choice of logic. Turing wrote to Bernays (22 May 1937) that when he wrote the 189

original paper of (1937a), “I was treating ‘computable’ too much as one might treat 190

‘algebraic’, with wholesale use of the principle of excluded middle. Even if this 191

sounds harmless, it would be as well to have it otherwise” (1937d). In his (1937b) 192

correction he modified the means by which computable numbers are associated with 193

computable sequences, citing Brouwer’s notion of an overlapping choice sequence, 194

as Bernays suggested he do.18 This avoids what Turing calls a “disagreeable 195

situation” arising in his initial arguments: although the law of the excluded middle 196

may be invoked to show that a Turing machine exists that will compute a function 197

(e.g., the Euler constant), we may not have the means to describe any such machine 198

(Turing 1937b, p. 546). The price of Turing’s generalization is that real numbers 199

no longer receive unique representations by means of sequences of figures. The 200

payoff is that his definition’s applicability no longer depends upon invoking the law 201

of the excluded middle in infinite contexts. The loss, he explains, “is of little 202

theoretical importance, since the [description numbers of Turing machines] are not 203

unique in any case” and the “totality of computable numbers [remains] unaltered” 204

(Turing 1937b, p. 546). In other words, his characterization of the computable 205

numbers is robust with respect to its representation by this or that formal system, 206

this or that choice of logic, or any specific analysis of what a real number really is. 207

Today we would say that the class of computable numbers is absolute with respect 208

to its representation in this or that formal system.19 And this too is connected with 209

18Cf. Bernays to Turing 24 September 1937 (Turing 1937d). The corrections using Brouwer’s
notion of an overlapping sequence are explained in Petzold (2008), pp. 310ff. Petzold conjectures
that conversations with Church at Princeton (or with Weyl) may have stimulated Turing’s interest
in recasting his proof, though he suspects that “Turing’s work and his conclusions are so unusual
that . . . he wasn’t working within anyone’s prescribed philosophical view of mathematics” (2008,
p. 308). I agree. But in terms of possible influences on Turing, Bernays should be mentioned, and
Wittgenstein should be added to the mix. The idea of expressing a rule as a table-cum-calculating
device read off by a human being was prevalent in Wittgenstein’s philosophy from the beginning,
forming part of the distinctive flavor in the air of Cambridge in the early 1930s, and discussed
explicitly in his Wittgenstein (1980).
19Gödel, concerned with his own notion of general recursiveness when formulating the abso-
luteness property (in 1936) later noted the importance of this notion in connection with the
independence of Turing’s analysis from any particular choice of formalism. He remarked that with
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the anthropomorphic quality of his model. For it is not part of the ordinary activity 210

of a human computer, or the general concept of a person working within a formal 211

system of the kind involved, to take a stance on the law of the excluded middle. 212

2.2.2 Turing’s First Argument 213

Turing’s (1937a) definitions are as follows. A circle-free machine is one that, placed 214

in a particular initial configuration, prints an infinite sequence of 0’s and 1’s (blank 215

spaces and other symbols are regarded by Turing as aids to memory, analogous to 216

scratch paper; only these scratch symbols are ever erased). A circular machine fails 217

to do this, never writing down more than a finite number of 0s and 1s. (Unlike a 218

contemporary Turing Machine, then, for Turing the satisfactory machines print out 219

infinite sequences of 0’s and 1’s, whereas the unsatisfactory ones “get stuck” (see 220

footnote 26).) A computable number is a real number differing by an integer from 221

a number computed by a circle-free machine (i.e., its decimal (binary) expansion 222

will, in the non-integer part, coincide with an infinite series of 0’s and 1’s printed by 223

some circle-free machine); this is a real number whose decimal (binary) expression 224

is said to be calculable by finite means. A computable sequence is one that can be 225

represented (computed) by a circle-free machine. 226

The First Argument begins §8. Turing draws a distinction between the application 227

of Cantor’s original diagonal argument and the version of it he will apply in his 228

paper: 229

It may be thought that arguments which prove that the real numbers are not enumerable 230

would also prove that the computable numbers and sequences cannot be enumerable. [n. 231

Cf. Hobson, Theory of functions of a real variable (2nd ed., 1921), 87, 88]. It might, 232

for instance, be thought that the limit of a sequence of computable numbers must be 233

computable. This is clearly only true if the sequence of computable numbers is defined 234

by some rule. 235

Or we might apply the diagonal process. “If the computable sequences are enumerable, let 236

’n be the n-th computable sequence, and let !n.m/ be the m-th figure in ’n. Let “ be the 237

sequence with 1" !n.n/ as its n-th figure. Since “ is computable, there exists a number K 238

such that 1"!n.n/ D !K.n/ all n. Putting n D K , we have 1 D 2!K.K/, i:e. 1 is even. 239

This is impossible. The computable sequences are therefore not enumerable”. 240

The argument Turing offers in quotation marks purports to show that the 241

computable numbers are not enumerable in just the same way as the real numbers 242

are not, according to Cantor’s original diagonal argument. (We should notice that 243

Turing’s analysis of computability “one has for the first time succeeded in giving an absolute
definition of an interesting epistemological notion, i.e., one not depending on the formalism
chosen” (Gödel here means a formal system of the relevant (recursively axiomatizeable, finitary
language) kind). See Gödel’s 1946 “Remarks before the Princeton bicentennial conference on
problems in mathematics”, in Gödel (1990), pp. 150–153; Compare his Postscriptum to his 1936a
essay “On the Length of Proofs”, Ibid., p. 399. See footnote 28, and Sieg (2006a, b), especially
pp. 472ff.
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its structure is reminiscent of the Contrary Machine, framed in the Halting Problem 244

above, which switches one kind of binary digit to another, “negating” all the steps 245

along the diagonal.) However, Turing responds: 246

The fallacy in this argument lies in the assumption that “ is computable. It would be true 247

if we could enumerate the computable sequences by finite means [JF: i.e., by means of a 248

circle-free machine], but the problem of enumerating computable sequences is equivalent to 249

the problem of finding out whether a given number is the D.N of a circle-free machine, and 250

we have no general process for doing this in a finite number of steps. In fact, by applying 251

the diagonal process argument correctly, we can show that there cannot be any such general 252

process. 253

This “correct” application of the diagonal argument is, globally, a semantic one 254

in the computer scientist’s sense: it deals with sequences (e.g. “/ and the nature 255

of their possible characterizations. The “fallacy” in thinking that Cantor’s diagonal 256

argument can apply to show that the computable numbers are not enumerable (i.e., 257

in the original, Cantorian sense of enumerable as “countable”) is that we will, as 258

it turns out, be able to reject the claim that the sequence “ is computable. So there 259

is no diagonalizing out. The assumption that ˛n, the enumeration of computable 260

sequences, is enumerable by finite means is false. Turing’s First Argument rejects 261

that claim (much as in the Halting Argument above) by producing the contradiction 262

he describes: it follows from treating the problem of enumerating all the computable 263

sequences by finite means (i.e., by a circle-free machine) as “equivalent” to the 264

problem of finding a general process for determining whether a given arbitrary 265

number is or is not the description number of a circle-free machine. This, Turing 266

writes – initially without argument – we cannot carry out in every case in a finite 267

number of steps. 268

However, Turing immediately writes that this First Argument, “though perfectly 269

sound”, has a “disadvantage”, namely, it may nevertheless “leave the reader with 270

a feeling that ‘there must be something wrong”’. Turing has remained so far little 271

more than intuitive about our inability to construct a circle-free machine that will 272

determine whether or not a number is the description number of a circle-free 273

machine, and he has not actually shown how to reduce the original problem to that 274

one. At best he has leaned on the idea that an infinite tape cannot be gone through in 275

a finite number of steps. While this is fine so far as it goes, Turing asks for something 276

else, something more rigorous. 277

2.2.3 The Argument from the Pointerless Machine 278

Turing immediately offers a second argument, one which, as he says, “gives a 279

certain insight into the significance of the idea “circle-free””. I shall call it the 280

Argument from the Pointerless Machine to indicate a connection with Wittgenstein’s 281

idea of logic as comprised, at least in part, of tautologies, i.e., apparently sensical 282

sentences which are, upon further reflection, sinnlos, directionless, like two vectors 283

which when added yield nothing but a directionless point with “zero” directional 284
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information.20 Since Turing’s is the first in print ever to construct a machine model 285

to argue over computability in principle, it is of great historic importance, and so 286

worth rehearsing in its own right. More importantly for my purposes here, it is the 287

argument that Wittgenstein’s 1947 diagonal argument phrased in terms of games. 288

Turing’s second argument is intended to isolate more perspicuously the difficulty 289

indicated in his First Argument. It works by considering how to define a machine H, 290

using an enumeration of all Turing machines, to directly compute a certain sequence, 291

“0, whose digits are drawn from the !n.n/ along the diagonal sequence issuing from 292

the enumeration of all computable sequences ˛n. Recall from 1.2 above that ˛n 293

is the nth computable sequence in the enumeration of computable sequences (i.e., 294

those sequences computable by a circle-free machine); !n.m/ is the mth figure in 295

˛n. “, used in the First Argument, is the “contrary” sequence consisting of a series 296

of 0’s and 1’s issuing from a switch of 0 to 1 and vice versa along the diagonal 297

sequence, !n.n/. By contrast “0 is the sequence whose nth figure is the output of the 298

nth circle-free machine on input n: it corresponds to !n.n/, which we may think of 299

as the positive diagonal sequence. Its construction will make clear how it is the way 300

in which one conceives of the enumeration of ’n (by finite means or not by finite 301

means) that matters. 302

The Turing machines may be enumerated, for each has a “standard” description 303

number k. Now suppose that there is a definite process for deciding whether an 304

arbitrary number is that of a circle-free machine, i.e., that there is a machine D 305

which, given the standard description number k of an arbitrary Turing machine M, 306

will test to see whether k is the number of a circular machine or not. If M is circular, 307

D outputs on input k “u” (for “unsatisfactory”), and if M is circle-free, D outputs 308

on k “s” (for “satisfactory”). D enumerates ˛n by finite means. Combining D with 309

the universal machine U , we may construct a machine H. H is designed to compute 310

the sequence “0. But it turns out to be (what I call) a Pointerless Machine, as we may 311

see from its characterization. 312

H proceeds as follows to compute “0. Its motion is divided into sections. In 313

the first N"1 sections the integers 1; 2; : : :N"1 have been tested by D. A certain 314

number of these, say R.N"1/, have been marked “s”, i.e., are description numbers 315

of circle-free machines. In the N th section the machine D tests the numberN . If N 316

is satisfactory, thenR.N/ D 1CR.N"1/ and the firstR.N/ figures of the sequence 317

whose description number is N are calculated. H writes down the R.N/th figure 318

of this sequence. This figure will be a figure of ˇ0, for it is the output on n of the 319

nth circle-free Turing machine in the enumeration of ˛n by finite means that D is 320

assumed to provide. Otherwise, ifN is not satisfactory, thenR.N/ D R.N"1/ and 321

the machine goes on to the (N C 1/th section of its motion. 322

H is circle-free, by the assumption that D exists. Now let K be the D.N. of H. 323

What does H do on input K? Since K is the description number of H, and H is 324

circle-free, the verdict delivered by D cannot be “u”. But the verdict also cannot be 325

20Compare the discussion in Dreben and Floyd (1991).
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“s”. For if it were, H would write down as the Kth digit of ˇ0 the Kth digit of the 326

sequence computed by the Kth circle-free machine in ˛n, namely by H itself. But 327

the instruction for H on inputK would be “calculate the first R.K/ D R.K"1/C1 328

figures computed by the machine with description numberK (that is, H) and write 329

down the R.K/th”. The computation of the first R.K/" 1 figures would be carried 330

out without trouble. But the instructions for calculating the R.K/th figure would 331

amount to “calculate the first R.K/ figures computed by H and write down the 332

R.K/th”. This digit “would never be found”, as Turing says. For at the Kth step, it 333

would be “circular”, contrary to the verdict “s” and the original assumption that D 334

exists ((1937a), p. 247). For its instructions at the Kth step amount to the “circular” 335

order “do what you do”. 336

The First Argument and Turing’s Argument from the Pointerless Machine 337

are constructive arguments in the classical sense: neither invokes the law of the 338

excluded middle to reason about infinite objects. Moreover, as Turing’s (1937b) 339

correction showed, each may be set forth without presuming that standard machine 340

descriptions are associated uniquely with real numbers, i.e., without presupposing 341

the application of the law of excluded middle here either. Finally, both are, like the 342

Halting argument, computability arguments: applications of the diagonal process in 343

the context of Turing Machines. 344

But the Argument from the Pointerless Machine is more concrete than either 345

the First Argument or the Halting Argument. And it is distinctive in not asking 346

us to build the application of negation into the machine. The Pointerless Machine 347

is one we construct, and then watch and trace out. The difficulty it points to is 348

not that H gives rise to the possibility of constructing another contrary sequence 349

which generates a contradiction. Instead, the argument is semantic in another 350

way. The Pointerless Machine H gives rise to a command structure which is 351

empty, tautologous, senseless. It produces, not a contradiction, but an empty circle, 352

something like the order “Do what you are told to do”. In the context at hand, this 353

means that H cannot do anything. As Wittgenstein wrote in 1947, a command line 354

“makes sense only in a certain positions”. 355

2.3 Wittgenstein’s Diagonal Argument 356

Immediately after his 1947 about Turing’s “Machines” being “humans who cal- 357

culate”, Wittgenstein frames a diagonal argument of his own. This “expresses” 358

Turing’s argument “in the form of games”, and should be counted as a part of that 359

first remark. 360

A variant of Cantor’s diagonal proof: 361

Let N=F (k, n) be the form of the law for the development of decimal fractions. N is the nth 362

decimal place of the kth development. The diagonal law then is: N=F (n,n) = Def F0 (n). 363

To prove that F0(n) cannot be one of the rules F (k, n). 364

Assume it is the 100th. Then the formation rule of F0 (1) runs F (1, 1), of F0(2) F (2, 2) etc. 365
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But the rule for the formation of the 100th place of F0(n) will run F (100, 100); that is, it 366

tells us only that the hundredth place is supposed to be equal to itself, and so for n = 100 it 367

is not a rule. 368

[I have namely always had the feeling that the Cantor proof did two things, while appearing 369

to do only one.] 370

The rule of the game runs “Do the same as. . . ” – and in the special case it becomes “Do the 371

same as you are doing”.21 372

As we see, it is the Argument from the Pointerless Machine which Wittgenstein is 373

translating into the vocabulary of language games in 1947. The reference to Turing 374

and Watson is not extraneous. Moreover, the argument had a legacy. Wittgenstein 375

was later credited by Kreisel with “a very neat way of putting the point” of Gödel’s 376

use of the diagonal argument to prove the incompleteness of arithmetic, in terms of 377

the empty command, “Write what you write” (1950, p. 281n).22
378

Let us rehearse Wittgenstein’s argument, to show that it constitutes a genuine 379

proof. Wittgenstein begins by imagining a “form” of law for enumerating the 380

“decimal fractions” (Dezimalbrüchen). We may presume that Wittgenstein has 381

the rational numbers in mind, and in the case of the rational numbers, we know 382

that such a law or rule (e.g., a listing) can exhaustively enumerate the totality. As 383

Cantor showed, this is not true for the totality of real numbers. But the argumentation 384

Wittgenstein sets forth applies whether the presentation of the list exhausts a set 385

or not: all it assumes is that the presentation utilizes the expression of rules for 386

the development of decimal fractions, a way of “developing” or writing them out 387

that utilizes a countable mode of expression. Moreover, Wittgenstein’s German 388

speaks of decimal expansion development (Entwicklung von Dezimalbrüchen), and 389

ordinarily in German this terminology (Dezimalbruchentwicklung) is taken to cover 390

expansions of real numbers as well.23 So Wittgenstein may well have had (a subset 391

of) the real numbers, e.g., the computable real numbers, in mind as well. “Form” 392

here assumes a space of possible representations: it means that we may imagine an 393

enumeration in any way we like, and Wittgenstein does not restrict its presentation. 394

He is articulating, in other words, a generalized form of diagonal argumentation. 395

The argument is thus generally applicable, not only to decimal expansions, but 396

to any purported listing or rule-governed expression of them; it does not rely 397

on any particular notational device or preferred spatial arrangements of signs. In 398

that sense, Wittgenstein’s argument appeals to no picture, and it is not essentially 399

21Wittgenstein (1999), MS 135 p. 118; the square brackets indicate a passage later deleted when
the remark made its way into Wittgenstein (1999), TS 229 §1764, published at RPP I §1097. (At
Zettel §695 only this second remark concerning the proof is published, thereby separating it from
the mention of Turing and Watson, hereafter Z). The argument as written here occurs here with
“F” replacing the original “!”, following the typescript.
22See also Stenius (1970) for another general approach to the antinomies distinguishing between
contradictory rules (that cannot be followed) and contradictory concepts (e.g., “the round square”)
that is explicitly based on a reading of Wittgenstein (in this case, the Tractatus).
23On the German see http://de.wikipedia.org/wiki/Dezimalbruch and http://de.wikipedia.org/wiki/
Dezimalsystem#Dezimalbruchentwicklung.

(Wittgenstein (1970),
694
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diagrammatical or representational, though it may be diagrammed (and of course, 400

insofar as it is a logical argument, its logic may be represented formally).24 Like 401

Turing’s arguments, it is free of a direct tie to any particular formalism. Unlike 402

Turing’s arguments, it explicitly invokes the notion of a language-game and applies 403

to (and presupposes) an everyday conception of the notions of rules and the humans 404

who follow them.25 Every line in the diagonal presentation above is conceived as an 405

instruction or command, analogous to an order given to a human being. 406

To fix ideas, let us imagine an enumeration of decimal fractions in the unit 407

interval in binary decimal form. Now let N D F.n; n/ D Def F0.n/, whose graph is 408

given by the diagonal line in the picture below.

409

The rule for computing F0.n/ is clear: go down the diagonal of this list, picking 410

off the value of rn on input n. This rule appears to be perfectly comprehensible and is 411

in that sense well defined. But it is not determined, in the sense that at each and every 412

step we know what to do with it. Why? Wittgenstein’s “variant” of Cantor’s Diago- 413

nal argument – that is, of Turing’s Argument from the Pointerless Machine – is this. 414

Assume that the function F0 is a development of one decimal fraction on the list, 415

say, the 100th. The “rule for the formation” here, as Wittgenstein writes, “will run 416

F(100, 100).” But this 417

24Recall that in his earlier 1938 remarks on the Cantor diagonal argument Wittgenstein was
preoccupied with the idea that the proof might be thought to depend upon interpreting a particular
kind of picture or diagram in a certain way. Wittgenstein (1978) Part II. There are many problematic
parts of these remarks, and I hope to discuss them in another essay. For now I remark only that
they are much earlier than the 1947 remarks I am discussing here, written down in the immediate
wake of his summer 1937 discussions with Watson and Turing.
25Though Turing himself would write that “these [limitative] results, and some other results of
mathematical logic, may be regarded as going some way towards a demonstration, within mathe-
matics itself, of the inadequacy of ‘reason’ unsupported by common sense”. Turing (1954), p. 23.
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. . . tells us only that the hundredth place is supposed to be equal to itself, and so for n D 100 418

it is not a rule. The rule of the game runs “Do the same as. . . ” – and in the special case it 419

becomes “Do the same as you are doing”. (RPP I §1097, quoted above). 420

We have here an order that, like Turing’s H machine, “has got into a circle” (cf. RPP 421

I §1096, quoted above).26 If one imagines drawing a card in a board game that says 422

“Do what this card tells you to do”, or “Do what you are doing”, I think we have 423

a fair everyday representation of the kind of phenomenon upon which Wittgenstein 424

draws. 425

Wittgenstein’s form of circle is, unlike Turing’s, explicitly expressed in terms 426

of a tautology. And Turing’s argument is distinctive, upon reflection, precisely in 427

producing a tautology of a certain sort. In a sense, Wittgenstein is literalizing 428

Turing’s model, bringing it back down to the everyday, and drawing out the 429

anthropomorphic, command-aspect of Turing’s metaphors. 430

I have said that Wittgenstein presents a genuine proof in his 1947 remark, and 431

I have been willing to regard it as a “variant” of Cantor’s diagonal argumentation. 432

But a qualification is in order. The argument cannot survive construal in terms of 433

a purely extensional way of thinking, and that way of thinking is required for the 434

context in which Cantor’s argument is forwarded, a context in which infinite objects 435

are reasoned about and with. What is shown in Wittgenstein’s argument is that on the 436

assumption, F0(100) cannot be computed. But not because of the task being infinite. 437

Instead, we are given a rule, that, as Wittgenstein writes, “is not a rule” in the same 438

sense. There is, extensionally speaking, something which is the value of F(100,100) 439

in itself, and it is either 0 or 1. But if we ask which digit it is, we end up with the 440

answer, “F(100,100)”, which doesn’t say one way or the other what it is, because 441

that will depend upon the assumption that this sequence is the value of F0(100) at 442

100. The diagonal rule, in other words, cannot be applied at this step. And we have 443

no other means of referring to the it that is either 0 or 1 by means of any other rule 444

or articulation on the list that we can follow. 445

One outcome of both Turing’s and Wittgenstein’s proofs is that the extensional 446

point of view is not or exclusive as a perspective in the foundations of mathematics. 447

Wittgenstein’s version of the Argument from the Pointerless Machine shows that the 448

particular rule, F0.n/, cannot be identified with any of the rules on the list, because 449

it cannot be applied if we try to think of it as a particular member of the list. The 450

26Watson uses the metaphor that the machine “gets stuck” (Watson 1937, p. 445), but I have
not found that metaphor either in Wittgenstein or Turing: it is rather ambiguous, and does not
distinguish Turing’s First Argument from that of the Pointerless Machine. Both Watson and Turing
attended Wittgenstein’s 1939 lectures at Cambridge; see (Wittgenstein 1989) where the metaphor
of a contradiction “jamming” or “getting stuck” is criticized. I assume this is in response to a worry
about the way of expressing things found in Watson 1937. He worries that the machine metaphor
may bring out a perspective on logic that is either too psychologistic, or too experimental. He
emphasizes, characteristically, that instead what matters if we face a contradiction is that we do
not recognize any action to be the fulfillment of a particular order, we say, e.g., that it “makes no
sense”. As he writes in the 1947 remarks considered here, “an order only makes sense in certain
positions”. Recall Z §689: “Why is a contradiction to be more feared than a tautology”?
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argument shows a “crossing of pictures” or concepts which yields something new. 451

If one likes, it proves that there is a number which is not a number given on the 452

list, for it shows how to construct a rule for a sequence of 0s and 1s which cannot 453

be a rule on the list like the others. The argument would apply, moreover, in any 454

context in which the rule-articulable (“computable”) real numbers were asserted 455

to be listed or enumerated in any way according to a rule – including, of course, 456

any context in which, more controversially, one assumed that only rule-articulable 457

real numbers are real numbers. But this particular assumption is not essential, 458

either to Turing’s or to Wittgenstein’s arguments, which involve no such necessarily 459

revisionary constructivist or finitistic implications or assumptions. 460

To recapitulate. Unlike the Halting Problem or the First Argument presented 461

above, Wittgenstein’s argument does not apply the law of the excluded middle, or 462

any explicit contradiction or negation by the machine. It is not propositional, but 463

in a sense purely conceptual or performative, turning on the idea of a coherently 464

expressed command that turns out, upon reflection, to be empty, thereby generating 465

a rule that we see cannot be applied in the same way as other rules are applied. There 466

is of course no direct appeal to community-wide standards of agreement or any 467

explicit stipulation used to drawn the conclusion, so, it is not a purely “conventional” 468

argument, though we see that the order could not be followed by anyone. Oddly, 469

because it turns on a tautology, its conclusion is “positive”: it “constructs” a 470

formulable rule that cannot be literally identified with any of the rule-commands 471

on the list of rules supposed to be given. The diagonal then gives one a positive way 472

of creating something new, i.e., a directive that cannot be sensibly followed. 473

Before commenting further on this version of the proof, I want to underscore that 474

as I have construed it there is no rejection of the results of Turing or Cantor involved 475

in accepting Wittgenstein’s Diagonal Argument. To make this clear, I shall briefly 476

rehearse an analogous argument. 477

2.4 The Positive Russell Paradox 478

Consider the binary array of 0’s and 1’s anew, but this time as a membership chart 479

for an arbitrary set S. 480
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Let the array be a diagram of membership relations. At the point (i ,j / if we see 481

a “0”, this indicates that xi … xj ; if we see “1”, it means xi 2 xj: 482

Now let S D fxi jxi 2 xi g. This is the exact complement, so to speak, of the 483

usual Russell set of all sets that are not members of themselves: I think of it as the 484

positive Russell set. Whenever there is a “1” at a point (i; i / along the diagonal, this 485

means that xi 2 S. In a certain sense, S “comes before” Russell’s set, for there is no 486

use of negation in its definition. 487

Is S D xj for some j? Well there is a difficulty here. For xj 2 xj iff xj 2 S. But 488

xj 2 S iff xj 2 xj . So we are caught in a circle of the form “it is what it is”. This 489

cannot be implemented. 490

An apparently unproblematic way of thinking is applied here, but two different 491

ways of thinking about S are involved. They are at first blush buried, just as in 492

Russell’s usual form of the paradox, but they are there, and they are separable, viz., 493

there is the thinking of S as an object or element that is a member of other sets, and 494

the thinking of S as a concept, or defining condition. 495

We have here what might be regarded, following Turing and Wittgenstein, as a 496

kind of performative or empty rule. You are told to do something depending upon 497

what the rule tells you to do, but you cannot do anything, because you get into a loop 498

or tautological circle. This set membership question cannot be a question on the list 499

which you can apply, because you cannot apply the set’s defining condition at every 500

point. (An analogous line of reasoning may be applied to, e.g., “autological” in the 501

Grelling paradox. Without negation, one does not get a contradiction, but one may 502

generate a question that may be sensibly answered with a either Yes or No question, 503

i.e., with a question that is unanswerable in that sense.) 504

Is the Positive Russell argument “constructive”? In a sense Yes. It does not have 505

to be seen to apply to actually infinite objects and name them directly, or invoke any 506

axioms of set theory involving the infinite, though of course it might.27 So, in this 507

other sense, No. Its outcome is that there is an essential lack of uniformity marking 508

the notion of a rule that can be applied. It involves no use of negation in the rule 509

itself. So what is essentially constructive here is the implication: If you write the 510

list as a totality, then you will be able to formulate a new rule. And it will yield a 511

question one cannot answer without further ado, i.e., that rule will not be applicable 512

in the same sense. 513

The Positive Russell argument refers to an extensional context, that of sets. 514

But there is a creative, “positive” aspect of the argument that emerges, just as it 515

does in Turing’s and Wittgenstein’s Pointerless Arguments. One must appreciate 516

something or see something about what does not direct (any)one to do a particular 517

thing, or assert the existence of a particular solution – rather than being forced to 518

admit the existence of something. Cantor’s diagonal argument is often presented as 519

doing the latter, and not the former. But, as Turing and Wittgenstein’s proofs make 520

clear, Cantor’s argumentation is actually furnishing the materials for more than one 521

27S is empty by the axiom of foundation. Quine worked with Urelemente of the form x={x}, sets
whose only members are themselves. (Quine (1937), Reprinted in Quine (1953, 1980)).
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kind of argument. Such, I suggest, is Wittgenstein’s point in writing in the above- 522

quoted remark of 1947 that Cantor did two different things. This is not to deny that 523

Wittgenstein’s argument is insufficient for Cantor’s wider purposes, just as Turing’s 524

is, and for the same reason. These later “variants” of Cantor’s argument are proofs 525

with and about rules, not proofs utilizing or applying to actually infinite totalities. 526

Nevertheless, we can distinguish Cantor’s argumentation from his proof and from 527

its applications, and regard what Turing and Wittgenstein do as “variants” of what 528

Cantor did. 529

2.5 Interpreting Wittgenstein 530

The “pointerless” proofs I have considered are down-to-earth in the way Wittgen- 531

stein and Turing liked: the “entanglement” in the idea of an exhaustive listing of 532

rules is exhibited in the form of a recipe for a further rule, and the diagonal argument 533

is conceived as a kind of process of conceptualization that generates a new kind of 534

rule. The reasoning in both cases, is, moreover, presented in a way unentangled with 535

any expression in a particular formalism. This does not mean that the arguments 536

are unformalizeable, of course: certainly they apply, as Turing taught us, to formal 537

systems of a certain kind. And a Turing Machine may well be conceived of as a 538

formal system, its activities encodable in, e.g., a system of equations. But Turing’s 539

Machines, being framed in a way that is unentangled with a specific formal system, 540

also offer an analysis of the very notion of a formal system itself. This allows them 541

to make general sense of the range of application of the incompleteness theorems, 542

just as Gödel noted.28
543

Turing’s and Wittgenstein’s arguments from pointerless commands evidently do 544

an end run around arguments over the application of the law of the excluded middle 545

in infinite contexts, as other diagonal arguments do not. In this sense, they make 546

logic (the question of a choice of logic) disappear. But I hope that my reconstruction 547

of Wittgenstein’s Diagonal Argument will go some distance toward in responding 548

to the feeling some readers have had, namely, that Wittgenstein takes Cantor’s 549

proof to have no deductive content at all. It has been held that Wittgenstein took 550

Cantor to provide only a picture or piece of applied mathematics warning against 551

needless efforts to write down all the real numbers.29 And it is true that Turing’s and 552

Wittgenstein’s arguments require us to conceive of functions as presented through a 553

collection of commands, rules, directives, in an intensional fashion. But they leave 554

28In a note added in 1963 to a reprinting of his famous 1931 incompleteness paper, Gödel called
Turing’s analysis “a precise and unquestionably adequate definition of the general notion of formal
system”, allowing a “completely general version” of his theorems to be proved. See Gödel (1986),
p. 195. On the subject of “formalism freeness” in relation to Gödel see Kennedy (unpublished).
Compare footnote 19.
29Hodges (1998).
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open in what sense this notion, or the notion of a rule, is meant (i.e., the digits of 0s 555

and 1s are a mere façon de parler in the way I have presented the arguments here). 556

A critique of the idea that the extensionalist attitude is the only legitimate attitude 557

is implied, though, as I have argued, no refutation of extensionalism, Cantor’s 558

Diagonal Proof, or set theory follows. 559

Of course, Wittgenstein’s remarks criticizing extensionalism as an exclusively 560

correct point of view are well known. So are his suggestions to look upon 561

mathematical statements as commands. However, though I shall not argue the point 562

here, it seems to me that taking Wittgenstein’s Diagonal Argument seriously, at 563

its word, should call into question the idea that he is either dogmatic or skeptical 564

about the notion of following a rule and the “intensional” point of view – unless 565

one means that the notion of a rule and the following of a rule in general are 566

something to be uniformly understood in terms of a special kind of fact or intuitive 567

insight. Neither Wittgenstein nor Turing believed this. Wittgenstein’s Diagonal 568

Argument serves, instead, to call into question forms of constructivism that take 569

the notion of rule-following as clear or uniform. (I hope to discuss elsewhere the 570

interpretations of Fogelin,30 Kripke and Wright in light of the diagonal arguments I 571

have discussed here.) His “everyday” version of the Argument from the Pointerless 572

Machine, even more than Turing’s, shows that there is a way of carrying out Cantor’s 573

argumentation that involves and applies to an “everyday” appeal to our sense of our 574

ordinary activities when we compute or follow rules. In this sense, it makes the 575

argumentation intelligible. One might want to say that it is more deeply or broadly 576

anthropomorphicand intensional than Turing’s. But that would be misleading. There 577

is no scale involved here. 578

Thus it seems to me that one of the most important things to learn from 579

Wittgenstein’s argument is that the very idea of a single “intensional” approach is 580

not clear off the bat – any more than are the ideas that perception, understanding, 581

and/or thought are intensional. Wittgenstein’s “game” argumentation involves, not 582

merely the notion of a rule, recipe, representation or feasible procedure, but some 583

kind of understanding of us, that is, those who are reading through the proof: we 584

must see that we can do nothing with the rule that is formulated. Not all rules 585

are alike, and we have to sometimes look and see how to operate or use a rule 586

before we see it aright. 587

This last point is what Wittgenstein stressed just before the 1947 remarks I have 588

discussed in this paper. He wrote, 589

That we calculate with some concepts and with other do not, merely shows how different in 590

kind conceptual tools are (how little reason we have ever to assume uniformity here). (RPP 591

I §1095; cf. Z §347) 592

One of the most important themes in Wittgenstein’s later philosophy starts from 593

just this point. The difficulty in the grammar of the verb “to see” (or: “to follow a 594

rule”) is not so much disagreement (over a particular step, or a way of talking about 595

all the steps), but instead that we often can get what we call “agreement” much 596

30Fogelin (1987).
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too quickly, too easily. And thus we may be much too quickly inclined to think 597

that we understand what is signified by (what we conceive of as) “agreement” and 598

“disagreement” (or “rule of computation”). Quietism is one thing, unclear apparent 599

agreement is another. Apparent agreement may well hide and mask the very basis 600

and nature of that agreement itself, and an agreement may well turn out to rest upon 601

a misunderstanding of what we share. Just as we may get someone much too quickly 602

to agree that “Yes, of course the shape and colors are part of what I see”, we may 603

get someone much too quickly to agree that “Yes, of course it is not possible to 604

list all the real numbers” (cf. RPP I §1107). The difficulty is not, in such a case, 605

to decide on general grounds whether to revise the principles of logic or not, or 606

whether to resolve an argument by taking sides Yes or No, e.g., with Hilbert or 607

Brouwer. The difficulty is to probe wherein agreement does and does not lie, by 608

drawing conceptual boundaries in a new way and paying attention to the details of 609

a proof. Wittgenstein’s and Turing’s arguments as I have presented them here are 610

neither revisionary nor anti-revisionary in a global way. What they do is to shift our 611

understanding of what such global positions do and do not offer us. 612
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