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Introduction. In one of his last published notes, Gödel claimed that Turing had 
committed a “philosophical error” in his paper “On computable numbers” when 
arguing that mental procedures cannot go beyond mechanical ones.  Gödel was in 
error, as Turing did not make such a claim there or anywhere else; however, his 
argument (intended to refute the alleged claim) is of deep interest.  Gödel points 
to a crucial feature of mind: it is dynamic in the sense that “we understand 
abstract terms more and more precisely, as we go on using them, and that more 
and more abstract terms enter the sphere of our understanding.”  Gödel 
illustrates this dynamic aspect of mind by considering the concept of set and the 
introduction of increasingly stronger axioms of infinity. 

I am not pursuing the goal of discovering the next step of what Gödel 
envisions as an effective non-mechanical procedure, but rather of finding a strategic 
mechanical one that helps to uncover the mind’s capacities as they are exhibited in 
mathematical practice.  Such a procedure will have in its background abstract 
concepts, in particular, of set (or system) and function introduced in the second 
half of the 19th century. They were used by Dedekind when investigating newly 
defined abstract concepts in algebraic number theory and, deeply connected, in 
his foundational essays 1872 and 1888.  The generality of his concepts and 
methods had a deep impact on the development of modern mathematics 
(Hilbert, Emmy Noether, and Bourbaki’s math. structuralism). However, the 
very same feature alienated many of his contemporaries, for example, Kronecker. 

Hilbert played a central “mediating” role in subsequent developments, 
having been influenced by Dedekind in the abstract ways just indicated, but also 
by Kronecker’s insistence on the constructive aspects of mathematical 
experience.  He forms the bridge between these two extraordinary 
mathematicians of the 19th century and two equally remarkable logicians of the 
20th, Gödel and Turing.  The character of that connection is determined by 
Hilbert’s focus on the axiomatic method, the associated consistency problem and the 
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fundamental idea that proofs should be objects of mathematical study. In his talk 
Axiomatisches Denken (Zürich, late 1917), he suggested: 
… we must - that is my conviction - take the concept of the specifically mathematical proof as an 
object of investigation, just as the astronomer has to consider the movement of his position, the 
physicist must study the theory of his apparatus, and the philosopher criticizes reason itself. 

Four years later, after remarkable logical developments in Göttingen, proof theory 
began to tackle the consistency problem for formal theories inspired by 
Dedekind, but using solely Kroneckerian finitist means.   

Some of Hilbert’s broader considerations have not yet been integrated into 
proof theoretic investigations; I am thinking of proof theory’s cognitive side that 
was expressed in a talk Hilbert gave in 1927. He emphasized the philosophical 
significance of the “formula game”, claiming that it is being pursued with rules 
“in which the technique of our thinking is expressed”; he continued: 
The fundamental idea of my proof theory is none other than to describe the activity of our under-
standing, to make a protocol of the rules according to which our thinking actually proceeds. 

It was clear to Hilbert, as it is to us, that mathematical thinking does not proceed 
in the strictly regimented ways of an austere formal theory.  But he hoped that the 
investigation of such theories might suffice for the solution of the consistency 
problem.  He had stated the consistency issue for the arithmetic of real numbers 
as the second problem of his Paris address of 1900 – in a dramatically different 
intellectual context. 
 
Part 1. Existential axiomatics.  Hilbert’s second problem raises the challenge 
…To prove that they [the axioms of arithmetic] are not contradictory, that is, that a finite number of 
logical steps based upon them can never lead to contradictory results.  

Those axioms had been stated in Hilbert’s paper Über den Zahlbegriff, written in 
1899.  Twelve years earlier, Kronecker had published a well-known paper with 
the same title and had sketched a treatment of irrational numbers without 
accepting the general notion.  It is to the general concept that Hilbert wants to 
give a proper foundation – using Dedekind’s axiomatic method, but also 
respecting Kronecker.  Let me describe central aspects of this methodologically 
striking way of formulating a mathematical theory or defining a structure type; 
Hilbert and Bernays called this way existential axiomatics.  
1.1. Abstract concepts.  E. A. is different from the axiomatic method as it evolved 
in the 20th century.  Dedekind and Hilbert both present the axiomatic core under 
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the heading “Erklärung”, standardly translated as “definition”, but meaning 
explanation, explication or also declaration.  They intend to provide a frame for 
discourse, here the discourse for irrational numbers, and it is provided by a 
structural definition that concerns systems and imposes relations between their 
elements. This approach shaped Dedekind’s mathematical and foundational 
work; in Hilbert’s 1899, the structural definition of real number systems starts 
out with, We think a system of things; we call these things numbers and denote them by 
a, b, c … We think these numbers in certain mutual relations, the precise and complete 
description of which is given by the following axioms. Then the conditions are listed 
for a complete ordered field as in Dedekind’s 1872, except that completeness is 
postulated differently.   Dedekind praised the introduction of concepts 
“rendered necessary by the frequent recurrence of complex phenomena, which 
could be controlled only with difficulty by the old ones” as the engine of 
progress in mathematics and other sciences.  Second important concept 
Dedekind introduced: simply infinite system; Peano axioms. 

The crucial methodological problem concerning such axiomatically 
characterized concepts is articulated forcefully in Dedekind’s 1890-letter to 
Keferstein.  In it he asks, whether simply infinite systems “exist at all in the realm 
of our thoughts”.  His affirmative answer is given by a logical existence proof 
without which, he explains, “it would remain doubtful, whether the concept of 
such a system does not perhaps contain internal contradictions.”  Dedekind’s 
realm of thoughts, “the totality S of all things that can be object of my [Dedekind’s] 
thinking”, was crucial for obtaining an infinite system.  In 1897, Cantor wrote to 
Hilbert that this totality is actually inconsistent.  Thus, when Hilbert discussed 
the arithmetic axioms, he replaced the existence issue by a quasi-syntactic 
problem: no contradiction is provable from the axiomatic conditions in a finite 
number of logical steps!  
1.2. Proofs.   In the first sentence of the Preface to his 1888, Dedekind emphasizes 
programmatically, “in science nothing capable of proof should be accepted 
without proof”; at the same time he claims that only common sense is needed to 
understand his essay.  That comes at a cost: readers are asked to prove seemingly 
obvious truths by “the long sequence of simple inferences that corresponds to the 
nature of our step-by-step understanding”.   Though Hilbert’s exposition of 
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geometry in his Grundlagen der Geometrie is not a modern axiomatic presentation, 
it is novel: it is conceptually structured in the sense that the defining conditions 
for Euclidean space are grouped by concepts so that it is easy to investigate by 
mathematical proof “what rests on what”. 
 But what is Dedekind and Hilbert’s conception of proof?  They explicate 
arithmetic and analysis in similar ways as starting from the defining conditions for 
simply infinite systems, resp. complete ordered fields. For Dedekind the object of 
arithmetic is formed by 
…the relations or laws, which are derived exclusively from the conditions [for a simply infinite 
system] and are therefore always the same in all ordered simply infinite systems, …   

Neither Dedekind nor Hilbert formulate what steps are allowed in proofs, but 
they have an absolutely clear sense of their formal, subject-independent character.  
Hilbert stated in 1891 during a stop at a Berlin railway station that in a proper 
axiomatization of geometry “one must always be able to say ‘tables, chairs, beer 
mugs’ instead of ‘points, straight lines, planes’.”  This remark is best understood 
if it is put side by side with a remark of Dedekind’s written 15 years earlier: “All 
technical expressions [can be] replaced by arbitrary, newly invented (up to now 
meaningless) words; the edifice must not collapse if it is correctly constructed, 
and I claim, for example, that my theory of real numbers withstands this test.”  
Thus, proofs leading from principles to theorems do not depend on aspects of the 
meaning of the technical expressions that have not been explicitly formulated or, 
to put it differently, they cannot be severed by a re-interpretation of the technical 
expressions (no counterexamples). The question, what are Dedekind’s simple 
inferences and Hilbert’s logical steps, remains unanswered, however. 
 
Part 2. Formal proofs.  In the Introduction to Grundgesetze der Arithmetik, Frege 
distinguishes his systematic development from Euclid’s by pointing to the list of 
explicit inference principles for obtaining gapless proofs.  The inferences have to 
satisfy normative demands, as broad insights are aimed for when tracing the 
gapless proof of a theorem to the principles ultimately appealed to: the latter 
determine the “epistemological nature of the theorem”!  Frege insists that the 
inferences are to be conducted “like a calculation” and explains:  
I do not mean that in a narrow sense, as if it were subject to an algorithm the same as … ordinary 
addition or multiplication, but only in the sense that there is an algorithm at all, i.e., a totality of 
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rules which governs the transition from one sentence or from two sentences to a new one in such 
a way that nothing happens except in conformity with these rules. 

Hilbert moved only slowly toward a presentation of proofs in logical calculi.  
2.1. Natural reasoning. Hilbert and his students started only in 1913 to learn 
modern logic …  from Principia Mathematica.  In 1917-18, he gave the first course 
in mathematical logic and sketched, at the end, how analysis can be developed in 
ramified type theory with the axiom of reducibility.  But he aimed for a 
framework allowing a natural and direct formalization of mathematics.  The 
calculus of PM did not lend itself to that task.  In 1921-22 he presented a calculus 
that is especially interesting for sentential logic.i  He points to the parallelism 
with his axiomatization of geometry: groups of axioms are introduced for each 
concept there and for each logical connective here. Let me formulate the axioms 
for disjunction; the sole rule is modus ponens:  
 (A→C) → ((B→C) →((AvB)→C))   
A→(AvB) and B→(AvB) 
In all the proof theoretic investigations of the 1920s, linear derivations from these 
axioms were transformed for good reasons into proof trees.   

Using Hilbert’s axiomatic calculus as starting point, Gentzen formulated 
his rule-based calculi of natural deduction; making and discharging assumptions 
were viewed as their distinctive features.  His 1936-paper presents detailed, 
extensive mathematical developments; it has the explicit goal of showing the 
“naturalness” of nd calculi.  Here are the E- and I-rules for & and v; the 
configurations that are derived with their help are sequents of the form Γ ⊃ ψ 
with Γ containing all the assumptions on which the proof of ψ depends:  
Γ ⊃ AvB Γ, A ⊃ C Γ, B ⊃ C 

Γ ⊃ C 

Γ ⊃ A       Γ ⊃ B  
Γ ⊃ AvB  Γ ⊃ AvB 
I reformulated nd calculi as intercalation calculi.  One proves structured sequents, 
applying E-rules on the lhs and I-rules on the rhs: (The E-rules take for granted 
that the major premise is an element of Γ, Δ.) 

Γ, A; Δ ⊃ G  Γ, B; Δ ⊃ G 
Γ; Δ ⊃ G 
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Γ; Δ ⊃ A  Γ; Δ ⊃ B   
Γ; Δ ⊃ AvB  Γ; Δ ⊃ AvB 

One fact is important for thinking that IC calculi provide the theoretical basis to a 
systematic search for normal proofs: they are complete in a refined sense: if ψ is a 
logical consequence of Γ, then there is a normal proof of ψ from Γ (subformula 
property).  

Such a search procedure cannot be replaced by a decision procedure.  In 
the 1920s the decision problem was viewed as one of the most important 
problems in mathematical logic, and some thought that a positive solution was 
utterly implausible. E.g., von Neumann took in 1924 the position that there is no 
way of deciding whether a statement is provable or not:  
…the undecidability is even the conditio sine qua non for the contemporary practice of 
mathematics, using as it does heuristic methods, to make any sense. The very day on which the 
undecidability does not obtain any more, mathematics as we now understand it would cease to 
exist; it would be replaced by an absolutely mechanical prescription, by means of which anyone 
could decide the provability or unprovability of any given sentence. 

However, he also asserted, “we have no idea how to prove the undecidability.”  
It was only twelve years later that Turing provided the idea by answering the 
question, what is mechanical procedure! 
2.2. Local axiomatics. Turing’s question was really, what effective operations on 
symbolic configurations can humans carry out mechanically, without thinking?  
As basic steps Turing isolated rule-governed operations on finite strings.  The 
number of finite strings on which to operate is bounded, and the operations are 
localii; thus, his machines can simulate them.  Finally he proved: There is no 
Turing machine that solves the decision problem.   

Our issue can now be paraphrased: How can we structure the mechanical 
generation of proofs for particular statements? We can do so, by a natural 
systematization and logical deepening of properly bidirectional reasoning.  That is 
precisely what the IC calculi are designed to do. Recall that the E-rules are 
applied to premises in a goal-directed forward way, and that the I-rules are 
applied to a goal in a backward way.  This approach has been implemented in 
the proof search system AProS with suitable strategies. The IC-approach has 
been extended to elementary set theory, where it involves now also the use of 
definitions and lemmata.  
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Hilbert’s grouping of the axioms for geometry had the express purpose of 
organizing proofs and the whole subject in a conceptual way: his development 
contains marvelous instances of local axiomatics, analyzing which notions and 
principles are needed for which theorems.  This technique is invoked in later 
metamathematical investigations, famously in the proof of Gödel’s 2nd theorem.  
To illustrate this point, I consider Gödel’s incompleteness theorems and Löb’s 
theorem.  The proofs of these theorems make use of the connection between the 
metamathematics in which a formal theory is presented and the mathematics 
that can be formally developed in the theory.  Three components are crucial for 
their abstract, i.e., locally axiomatic proofs:   
1. Local axioms: representability of the core syntactic notions, the diagonal 

lemma, and Hilbert & Bernays’s derivability conditions. 
2. Proof-specific definitions: instances of existential claims, for example, the 

Gödel sentence for the first incompleteness theorem.  
3. Leading idea: moving between object- and meta-theory, expressed by 

appropriate E- and I-rules for the theorem predicate.iii 
The above components go beyond the logical strategies and have been used to 
expand them: AProS finds the proofs directly. A second, human point of interest: 
von Neumann discovered a proof of Gödel’s 2nd theorem in 1931, independently, 
and used essentially the local axioms. 
 
Part 3. Conceptually structured search.  In his report on Intelligent Machinery, 
Turing suggested having machines search for proofs of theorems in formal 
systems.  It was clear to him that one cannot just specify axioms and logical rules, 
then state a theorem and expect a machine to demonstrate it. To exhibit such 
intelligence, he claims, a machine must “acquire both discipline and initiative”.  
Discipline can be acquired by becoming a universal computer; but “discipline is 
certainly not enough in itself to produce intelligence” and he continues: 
That which is required in addition we call initiative. This statement will have to serve as a 
definition.  Our task is to discover the nature of this residue as it occurs in man, and try and copy 
it in machines.  

The dynamic character of logical strategies constitutes but a partial, very limited 
copy of human initiative in the mathematical context or, in Gödel’s terms, of the 
dynamic nature of mind; the introduction of suitable concepts associated with 
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local axioms and leading ideas is crucial. I want to sketch two examples; we can 
discuss details after my presentation. 
3.1. Axiomatics, modern.  Local axiomatic developments can be integrated into a 
broader framework via a hierarchical organization; that has been part and parcel 
of mathematical practice.  With a group of students I have been working on 
obtaining an automated proof of the Cantor-Bernstein theorem. The theorem 
claims, as you know, that there is a bijection between two sets, in case there are 
injections from the first to the second and from the second to the first.  We are 
finishing the formal development following AProS’s logical strategies and 
starting from Zermelo’s axioms.  Three layers are used for the organization of the 
proof: i) Construction of sets, e.g. empty set, power set, union, and pairs; ii) 
Definition of functions as sets; facts on compositions, restrictions etc.; iii) The 
abstract proof.  

The abstract proof is completely independent of the set theoretic definition 
of functions.  It is divided in roughly the same way as that of Gödel’s theorems.  
The local axioms here are lemmata for injective, surjective, and bijective functions; 
the crucial proof-specific definition is that of the bijection claimed to exist in the 
theorem; the leading idea is to obtain a 2-partition of domain and co-domain in 
such a way that the parts are related by bijections.  

Shaping a field and its proofs by concepts is classical; so is the deepening 
of its foundations.  That can be illustrated by the developments in the first two 
books of Euclid’s Elements.  Proposition I.47, the Pythagorean theorem, is at their 
center.  The mathematical context is given by the quadrature problem, i.e., the issue 
of determining the size of geometric figures in terms of squares.  That problem is 
discussed in Book II for polygons.  Polygons can be partitioned into triangles that 
can be transformed individually first into equal rectangles and then into equal 
squares. The question is, how can we join these squares to obtain one single 
square that is equal to the polygon we started out with?   
3.2. Axiomatics, classical.  It is precisely here that the Pythagorean theorem 
comes in and provides the most direct way of determining the larger square.  
Byrne’s colorful diagram captures the construction and depicts the memorable 
idea of one proof of the theorem, Euclid’s favorite proof.  Euclid constructs the 
squares on the triangle’s sides and observes that the extensions of the sides of the 
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smaller squares by the contiguous sides of the original triangle are straight lines.  
In the next step a crucial auxiliary line is drawn, namely, the line that is 
perpendicular to the hypotenuse and passes through the vertex opposite the 
hypotenuse.  This line partitions the big square into the blue and yellow 
rectangle. Two claims are considered: i) the blue rectangle is equal to the black 
square, and ii) the yellow rectangle is equal to the red square.   

Euclid uses three facts that are readily obtained from earlier propositions: 
(α) Triangles are equal when they have two equal sides and when the enclosed 
angles are equal; (β) Triangles are equal when they have the same base and when 
their third vertex lies on the same parallel to that base; (γ) A diagonal divides a 
rectangle into two equal triangles.  With (α) through (γ), there is an easy proof 
that the red square and the yellow rectangle are the same and, analogously, that 
the black square and the blue rectangle are equal.  

The structure of this argument is “similar” to that of the abstract proofs of 
the incompleteness theorems and the Cantor-Bernstein theorem: (α) through (γ) 
are the local axioms.  What corresponds to the central proof-specific definition? 
Euclid’s formulation of the theorem!  That is obvious when the underlying 
problem is recalled and the theorem formulated as:  Given two squares A and B 
find a square C, such that C equals A and B.  (Remark: geometric computation; 
Euclid’s proof verifies correctness!)  The leading idea is the partitioning of squares 
and establishing that corresponding parts are equal.  This idea of dissecting 
figures is pervasive: here is a diagram “showing” a Chinese proof from the 
second century BC; Paul Mahlo investigated in his 1905-thesis dissection proofs 
of the Pythagorean theorem from a topological perspective.  Deepening: Euclid’s 
and Zermelo’s axioms! 
 
4. Cognitive aspects.  In 1888 Dedekind refers to his Habilitationsrede, in which he 
claimed that the need to introduce appropriate notions arises from the fact that 
human intellectual powers are imperfect.  Their limitation leads us to frame the 
object of a science in different forms, and introducing a concept means, in a 
certain sense, formulating a hypothesis on the inner nature of the science.  How 
well the concept captures that inner nature is determined by its usefulness for the 
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development of the science, in mathematics mainly by its usefulness for 
constructing proofs.  Thus, Dedekind viewed abstract concepts and general 
forms of arguments as tools to overcome, at least partially, the imperfection of 
our intellectual powers.  He remarked: 
Essentially there would be no more science for a man gifted with an unbounded understanding – 
a man for whom the final conclusions, which we obtain through a long chain of inferences, 
would be immediately evident truths; and this would be so even if he stood in exactly the same 
relation to the objects of science as we do. (Ewald, pp. 755-6) 

The theme of a particular form of human understanding is sounded in a 
remark of Bernays in 1950, where he writes: “Though for differently built beings 
there might be a different kind of evidence, it is nevertheless our concern to find 
out what is evident for us, not for some differently built being.” In his later writings 
Bernays emphasized that mathematical evidence is acquired by intellectual 
experience and through experimentation:  
In this way we recognize something like intelligence and reason that should not be regarded as a 
container of [items of] a priori knowledge, but as a mental activity that consists in reacting to 
given situations with the formation of experimentally applied categories. (Bernays 1946) 

Such intellectual experimentation supports in particular the introduction of 
abstract concepts, and the proofs of central theorems using these concepts are at 
the heart of such experimentation.   Even for Gödel, each step in the process of 
formulating stronger axioms of infinity is based on further mathematical 
experience requiring “a substantial advance in our understanding of the basic 
concepts of mathematics”.  In a note published in Wang’s 1974, Gödel offers a 
different reason for not yet having a precise definition of that process: it “would 
require a substantial deepening of our understanding of the basic operations of 
the mind”. 

Explicitly, I wanted to turn attention to capacities of the mind that are 
central, if we want to connect reasoning and mathematical understanding, i.e., if 
we want to see the role of leading ideas in guiding proofs and that of concepts in 
structuring proofs. When we focus on formal methods and carry out proof search 
experiments, we isolate creative elements in proofs and come to a deeper 
understanding of the technique of our mathematical thinking.  Implicitly, I 
argued for an expansion of proof theory: let’s move toward a theory that articulates 
principles for organizing proofs and for finding them dynamically!  A good start 
is a thorough reconstruction of parts of the rich body of mathematical knowledge 
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that is systematic, but is also structured for intelligibility and discovery.  Such an 
expanded proof theory can be called structural for two reasons: on the one hand 
it exploits the internal structure of formal proofs and uses, on the other hand, the 
notions and principles for mathematical structures in a well-integrated way.  

Let me end with remarks by a mathematician who completed his thesis 
with the title “Abgekürzte Beweise im Logikkalkul” in Göttingen, in 1933.  Two years 
later when commenting on it, he remarked that proofs are not “mere collections 
of atomic processes, but rather complex combinations with a highly rational 
structure”; forty-four years after that, he ended a review of his early logical work 
by saying: “There remains the real question of the actual structure of 
mathematical proofs and their strategy. It is a topic long given up by 
mathematical logicians, but one which still – properly handled – might give us 
some real insight.”  The mathematician was a close friend of Gentzen; his name: 
Saunders MacLane. 

                                                        
i In 1931b, Hilbert formulates what he calls “definitional rules” for the quantifiers (essentially the standard 
natural deduction rules); those formulations were of course of no interest in the earlier proof theoretic 
investigations, as quantifiers were eliminated for the sake of the epsilon-substitution method. 
ii That is actually the way of Turing’s analysis in 1936 and leads essentially to Post production systems; this 
line is taken up in 1954 when Turing argues that puzzles are reducible to substitution puzzles. 
iii For example, if a proof of A has been obtained in the object-theory, then one is allowed to introduce the 
claim ‘A is provable’ in the meta-theory. 


