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Mathematical foundations

Mathematics, as a proof-based discipline, has been around for

more than two millennia.

Formal, axiomatic foundations have been around since the late

nineteenth century.

How should we interpret the question, “which is the right

foundation?”
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Mathematical foundations

Questions:

1. How should we do mathematics? What makes for good

mathematics?

2. Which foundations are interesting for logicians to study?

3. What foundation should we implement in a formal proof

assistant?

4. Which foundation provides the best / most accurate / most

useful description of mathematics?

Ad 1: This is not a question about foundations.

Ad 2: Save this for a special session in logic.

Ad 3: This is a pragmatic question; see my Foundations.
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Mathematical foundations

Ad 4 (Which foundation provides the best description of

mathematics?): why limit ourselves to just one?

Different foundational systems are informative in different ways.

A better question: what can formal systems tell us about what it

means to do mathematics?

3



Thinking about mathematical language

Learning how to speak about mathematical objects properly is an

important part of learning to do mathematics.

The outward manifestations of mathematical thought are found in

the way we communicate mathematics to others.

It is worthwhile to think about mathematical language and how it

works.

4



Thinking about mathematical language

Formal languages and formal systems are helpful.

There are variations on:

� set theory

� simple type theory

� dependent type theory

� categorical foundations

There is a sense in which they specify too little, and there is a

sense in which they specify too much.
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Thinking about mathematical language

The fact that any conventional mathematical text can be expressed

in any of those systems shows that the level of axiomatic primitives

and rules is too fine-grained.

Formal axiomatic systems over too specific. They should be viewed

implementations of something more abstract.
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Thinking about mathematical language

There is also a sense in which formal systems specify too little.

Proof assistants have to:

� disambiguate notation

� manage libraries of theorems and definitions

� keep track of algebraic structures and relationships between

them

� provide convenient manners of expression

� support efficient inference

Conventional formal logic doesn’t say anything about how

mathematics does all that effectively.
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Thinking about mathematical language

Formal languages provide a low-level description.

Other approaches (e.g. Ganesalingam) approach mathematics from

the perspective of natural language.

Here we won’t be concerned with grammatical and stylistic

variation.

Question: what are the features of mathematical language that are

essential to supporting mathematical activity?

In other words, we’ll be interested in the specifically mathematical

features of mathematical language.
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Thinking about mathematical language

Mathematical language is:

� more expressive than conventional formal systems

� more regimented than natural language

Goal: provide a semiformal description.

� Clarify the design specifications that proof assistants ought to

meet.

� Idealize away the specifics of the implementation.
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Philosophical orientation

Logic and philosophy of mathematics have focused on justification,

clarifying what is allowed.

It is also important to understand what is desired:

� what makes for a good definition

� what makes for a natural question

� what makes for a promising inferential strategy

Mathematics requires us to carry out complex tasks, creatively,

efficiently, and reliably.

We should try to understand how mathematical language helps us

do that.
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Philosophical orientation

Another central thesis: it is helpful to view mathematical language

as a designed language.

The language has evolved to serve a purpose.

It provides a means for:

� managing information

� making data salient when it is needed

� suppressing it when it is a distraction

What are the design principles at play?
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Methodological orientation

Let’s try to be scientific about it.

How to we assess the success or accuracy of our description?

There are two sources of data.

The first is the mathematical literature.

That is a lot of data: textbooks, journal articles, etc.
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Methodological orientation

The second source of data: contemporary proof assistants.

Every proof assistant provides languages for defining objects,

stating theorems, and proving them.

These are designed to model ordinary mathematics.

The experience of designing and working with them can help us

make sense of the mathematical literature.

Reflection on the mathematical literature can help us design better

proof assistants.
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Sorts

A mathematical object is always an object of some sort.

Proposition 1. On a given straight line to construct an

equilateral triangle.

Let AB be the given finite straight line.

Thus it is required to construct an equilateral triangle on

the straight line AB.

With centre A and distance AB let the circle BCD be

described;

again, with centre B and distance BA let the circle ACE

be described;

and from the point C , in which the circles cut one another,

to the points A, B let the straight lines CA, CB be joined.
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Sorts

Objects are introduced as objects of some sort.

“Let X be locally convex topological vector space and F a closed

convex subset.”

“Let p and q be odd primes.”

“Let k be a field, and let k[x ] = k[x1, . . . , xn] be a finitely

generated ring over k . Let ϕ : k → L be an embedding of k into

an algebraically closed field L.”

“Let M be a maximal ideal of k[x ]. Let σ be the canonical

homomorphism σ : k[x ]→ k[x ]/M.”

“Let τ2 = n; let t1 be the smallest k such that Xk ≥ α, if there is

one, and n otherwise.”
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Sorts

Variables generally range over some fundamental sort.

But it’s not always clear what is most fundamental:

� equilateral triangle vs. triangle.

� prime number vs. number.

� finite straight line vs. straight line.

� nonnegative integer vs. integer vs. number.

� maximal ideal of R vs. subset of R vs. set.

In axiomatic set theory, there is only one fundamental sort.
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Sorts

This is not unique to mathematics.

Aristotle distinguished between essential vs. accidental properties:

� Socrates is human.

� Socrates is short.

But the distinction has particular effects in mathematics.

18



Sorts

Specifically mathematical uses:

� To disambiguate notation (xy , x · y)

� To infer meaning (being maximal, surjective, continuous, a

homomorphism, essentially bounded)

� To justify an expression as meaningful (
√
x , 1/x)

� To support immediate inference (composition of functions

vs. composition of morphisms)

� To support higher-level inference and heuristics.
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Sorts

Note: this doesn’t speak directly to the superiority of any one

foundation over another.

It does speak in favor of:

� gaining clarity on how sortedness is introduced, tracked, and

used in ordinary mathematical texts, and

� implementing languages that support it.
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Numbers

We think of numbers like 0, 1, 2, . . . as being concrete.

In Euclid, number is a multiplicity of units. The smallest one is 2.

In Euclid, and throughout early algebra, mathematicians only

compared homogenous magnitudes.

In modern mathematics, we can multiply the number of planets by

the length of the Suez canal, and add the number of children I

have.

Let’s not forget that this is a substantial abstraction.
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Identifying objects

Consider the integer 2, the real number 2, and the complex

number 2.

Set theory tells us Z ⊆ R ⊆ C.

By there is also a 2 in the p-adics for each p and a 2 in the

quaternions. Are these the same 2?
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Identifying objects

In fact, there is a 2 in every ring.

The 2 in Z/2Z is 0.

That can’t be the integer 2, so maybe restrict to characteristic 0.

The 2 in M2(R) is (
2 0

0 2

)
.

Is this the same as the integer 2?
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Identifying structures

We also identify structures.

Consider the following argument.

� {0, 1} with addition modulo 2 is the two-element group.

� {1,−1} with multiplication is the two-element group.

� The identity of the two element group is the identity of the

two element group.

� 0 = 1.

It’s not that mysterious: we can treat things as being the same as

long as we

� only talk about things that respect the sameness, and

� don’t talk about the differences.
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The structural view of mathematics

When we talk about mathematical objects, we are talking about

elements of structures.

The slogan: mathematical objects are places in structures.

We only care about structures up to isomorphism.

But isomorphism requires having a particular signature in mind.

What counts as the signature depends on context.

For example, what is i in the complex numbers?

When we talk about i in C, we mean C with a fixed choice of i .
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Managing abstraction

That’s all well and good; but when we formalize mathematics, we

have to operationalize that.

In other words, we need to track when something we have

established in one context can be applied in another.

Strategies in formalization:

� Generalize.

� Use equality.

� Use algebra.

� Use coercions.
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Strategy 1: Generalize

Try not to prove things about one concrete structure.

For example, prove ∀x , y (x + y = y + x) generically.

Then it applies to Z, Q, R, and we don’t have to worry about

sameness.

Mathematically, we often think of Rn as {0, . . . , n − 1} → R.

Then it becomes hard to identify Rm+n with Rm × Rn.

In Lean, we find it convenient to let n be any finite indexing type.
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Strategy 2: Use equality

Arranging Z ⊆ R ⊆ C can be convenient at times.

These are all the same as subsets (and hence subfields) of the

reals:

� Q[
√

2][
√

3]

� Q[
√

3][
√

2]

� Q[
√

2,
√

3]

The Mathematical components library in Coq/SSReflect favors

theorems about subgroups over theorems about groups, because

then you don’t have to identify elements with those of the ambient

group.
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Strategy 3: Use algebra

Build isomorphisms and embeddings into all your theorems.

� There is an action of Z on any abelian group.

� Instead of saying R is a subring of S , prove things about

R-algebras S .

� Equivalently, proving things about homomorphisms from R to

S .

� Instead of linear spaces, reason about linear mappings.

(Baanen, Dahmen, Narayanan, and Nuccio describe the last

strategy in a nice paper on class field theory in Lean.)

There is no need to identify elements if the theorems are about the

identifications.
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Strategy 4: Use coercions

Sometimes it is impossible to avoid identifying a structure with its

isomorphic image.

Theorem provers support coercions, e.g. silently inserting a

coercion from Z to R.

It can be a pain in the neck. Automation helps.
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Identification: an objection

Mathematicians identify structure all the time, effortlessly, without

thinking about it.

I have described an ad-hoc list of coping mechanisms.

Surely there must be a simpler story as to what is going on?
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Identification: a response

Learning to do mathematics is hard.

Learning to think mathematically requires learning how to mediate

between different views of structures.

It seems likely that we internalize various strategies like these,

without realizing it—to the point that, when pressed, it’s hard to

spell out the justification explicitly.

Let’s take the phenomenon seriously, and be scientific about it.
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Proofs

Proofs, in mathematics, are the coin of the realm.

In formal logic, a proof is sometimes a sequence of lines, where

each subsequent line follows from previous ones by a rule of

inference.

Sometimes logicians like to draw diagrams.

In real life, proofs are mostly linear.

Proof by cases is clearly marked.

A proof by induction involves a base case and an induction step;

the first is usually dispensed with quickly.
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Proofs

What’s the biggest difference between informal and formal proofs?

Example: let p be prime, suppose n > 0, and suppose p | n. Then

n ≥ 2.

example (p n : N) (prime_p : prime p)

(pos_n : n > 0) (p_div_n : p | n) : n ≥ 2 :=

le_trans prime_p.two_le $ le_of_dvd pos_n p_div_n

Informal proofs favor statements over reasons. Most reasons don’t

have names.
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Proofs

Coping mechanisms in proof assistants:

� Use automation where possible (ranging from explicit

automation to type class inference).

� Use naming schemes and tab completion.

� Use search engines.

� Use browser pages.

� Just learn the names of things in the damn library.

In informal mathematics, various devices are used to indicate

reasons, implicitly or explicitly.
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Proofs

“Hence the closure of S in E is Ē ∩ S .”

“By our previous results the first case obtains when p ≡ 1 mod 4

and p ≡ ±1 mod 12.”

“Because H is connected, the fiber F over γ(0) = γ(1) is

connected.”

“Now we can see that all the maps f∗ and f̄∗ in the commutative

diagram of transfer sequences are isomorphisms by induction on

dimension, using the evident fact that if three maps in a

commutative square are isomorphisms, so is the fourth.”
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Proofs

“From P[Y ∈ Df ] = µ(Df ) = 0 it follows that f (Yn)→ f (Y ) with

probability 1, and so by change of variable (see (21.1)) and the

bounded convergence theorem,∫
f dµn = E [f (Yn)]→ E [f (Y )]→

∫
f dµ.”

“Using Hilbert’s theorem 90 again, together with the fact that

|σα| = |α| for all α ∈ K ∗, we see that H = K ∗1−σ.”
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Proofs

Sometimes a justification

� . . . is an explicitly named theorem.

� . . . is a named property.

� . . . is a statement that has been numbered or starred.

� . . . involves repeating a fact previously established.

� . . . involves a few words of explanation.

It is often just left implicit.
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Proofs

Sometimes justification is flagged in advance.

“Note that adjoining a copy of Z induces an injection on π1. . . ”

“Note that each set U ′n is open, being the difference of an open set

Un and a closed set
⋃n

i=1 V i .”

What sort of cognitive fact is noting?

Think about the other cognitive acts we are called on to perform.
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Proofs

“Expressing each generator as a sum of homogeneous elements,

. . . ”

“We can choose the indices i in such a way that σiA1 = Ai .”

“Now identify g with R3 by means of an orthonormal basis with

respect to the AdG -invariant inner product on g.”

“. . . consider the n simplex [ν0, · · · , νn] with ν0 at the origin and

νk the unit vector along the kth coordinate axis for k > 0.”

“We now apply the bilinear form of Parseval’s identity (Lemma

1.5, Chapter 3) to the integral defining A.”
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Proofs

We are called on to:

� express things

� choose things

� identify things

� consider things

� apply things

In each case, what are we called on to do?

How does this translate to formal terms?
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Plans

Consider also the temporal, narrative devices.

“Now let c be a connected component of treg.”

“To show that ψ is onto, it is sufficient to show that . . . ”

“Having shown that ψ is onto, we now investigate the kernel.

Clearly, kerψ = A1 ∩ A2 ∩ · · · ∩ Ag . We must show that under the

hypotheses the intersection is equal to the kernel.”

“Thus it only remains to show that (ii) ⇒ (iii). To do this. . . ”
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Plans

“We are now in a position to state the main theorem of this

chapter. The proof will be spread out over the next three sections.”

“There would be no difficulty if we could write B = A[α] for some

α. This is true only locally. Hence we shall use the approximation

theorem to reduce our problem to the local case.”
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Plans

The philosopher of mathematics Rebecca Morris has explored the

notion of what it means for a step in a proof to be motivated.

She and Yacin Hamami have tried to understand proofs in terms of

rational plans, drawing on the philosophy of planning and agency.

We have mathematical languages to express:

� definitions

� theorems

� proofs

Why not languages to express mathematical plans?
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Conclusions

Understanding the nuances of language used in proofs may take us

beyond conventional formal logic.

On the other hand, it isn’t like understanding literature and poetry.

There are common protocols, idioms, and strategies.

Classifying them is a study unto itself.
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Conclusions

Understanding specifically mathematical uses of language is

important for:

� formalizing mathematics

� supporting (and automating) mathematical inference

� learning from or mining mathematical texts

It’s also interesting, and helps us appreciate the mathematics.

A good proof is a work of art. But it is also well designed.
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Parting thought

Niklaus Wirth recently wrote (CACM 3/21):

“The principal purpose of a higher-level language is to raise the

level of abstraction from that of machine instructions. Examples

are data structures vs. word arrays in memory, or conditional and

repetitive statements vs. jump instructions. A perfect language

should be defined in terms of mathematical logic, of axioms and

rules of inference. No reference to any computer or mechanism

should be necessary to understand it. This is the basis of

portability.”

Note: we implement an algorithm in a programming language,

which, in turn, must be implemented by a machine model.
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Parting thought

Here is my take:

“The principal purpose of mathematical language is to raise the

level of abstraction from that of formulas and axioms. Examples

are sets and functions vs. their formal representations, or algebraic

structures vs. their set-theoretic definitions. A perfect language

should be defined in terms of mathematical ideas, of concepts and

methods of reasoning. No reference to any formal system should

be necessary to understand it. This is the basis of communication.”

Idea: we implement a piece of mathematics in a mathematical

language, which, in turn, must be implemented by a formal

foundation.
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