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Abstract

A new approach to informal rigorous mathematical proof is offered. To this end,
algorithmic devices are characterized and their central role in mathematical proof
delineated. It is then shown how all the puzzling aspects of mathematical proof,
including its peculiar capacity to convince its practitioners, are explained by
algorithmic devices. Diagrammatic reasoning is also characterized in terms of
algorithmic devices, and the algorithmic device view of mathematical proof is
compared to alternative construals of informal proof to show its superiority.
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1 Mathematics Is Strange

A mere couple thousand years ago, mathematics seemed innocent enough. (At first
glance, anyway.) You sketched out some fairly simple diagrams, and you talked
them up in ancient Greek. You said things like, “look over here,” “look at that,” and
then you drew a conclusion or two (Plato 1963). Somehow, nevertheless, it all
amounted to something like nothing else we do – like nothing else we do on
Earth. The conclusions drawn had an exactness impossible even by careful mea-
surements (interior angles of triangles were proved to be exactly 180� – nothing
slightly more or less, which is what always happened if, instead, the angles of a
triangle were measured directly)1; furthermore, the results shown this way seemed to
be necessarily true (they couldn’t be otherwise), and so the process (“reasoning”) by
which these results were achieved seemed independent of our usual tools for
learning about things – our senses. Equally odd was that these conclusions were
often unexpected and sometimes undesirable. Many of them were results no one saw
coming; some of them were even results that no one liked after they arrived – for
example, the famous (and scandalous) fact that the length of the diagonal of a
triangle isn’t a ratio of the lengths of the adjacent sides of that triangle . . . from
which it can be shown that √2 isn’t rational.2 Call this the epistemic strangeness of
mathematical proof.

Philosophy was born, perhaps, from the desire to explain the weird and bizarre –
less melodramatically, from the need to explain odd cases. This used to be called
wonder, a “what on Earth is going on here?” Shortening a long descriptive history of
(very ingenious) explanations of the epistemology of mathematical proof, many of
them supernatural – such as mathematical proof being our recollection of eternal
entities that we perceived directly in a previous life, or as involving innate ideas that
have been stamped conveniently into our souls by God, or proofs being sequences of
thoughts true by virtue of their conceptual structure alone (syllogistic sequences,
“analytic truths”), or proofs as involving the addition of content from “intuition”
(“synthetic a priori truths”), or proofs being lists of sentences true by the meanings of
the words within them, etc. – a post-mid-twentieth-century conceptual revisiting of
the artificial (“formal”) languages that were invented by Frege (1879) at the end of

1Also very striking was that these exact results arise from methods applied to diagrams – compass
and straightedge – that themselves don’t intrinsically involve exact measurements: no ruler is used,
for example.
2A rumor passed down from ancient Greek times is that the person who discovered this was
murdered.
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the nineteenth century seemed to finally offer a conclusive explanation. Derivations
in such artificial languages are effectively recognizable patterns of reasoning.3

That is (and here’s one sort of explanation gestured at in the last sentence above),
if the many mathematical proofs in natural languages just are (disguised) derivations
in artificial languages – if they’re abbreviations of such derivations, for example –
then this can explain all the odd epistemic qualities mathematical proofs in natural
languages have. It can explain, for example, the impression of necessity: Our senses
play only as much of a role as they seem to with ancient Greek diagrams (only
enough to enable us to manipulate the language entities involved, and nothing more),
and the results aren’t necessary or eternal, but only as necessarily true as the premises
the proofs start from. If logical inference is to be characterized as formal derivation
in these artificial languages, then the epistemic qualities of mathematical proof
become purely matters of logic. In particular, the strange unchanging and perfect
eternal entities that Plato used to explain the apparent properties of mathematical
results (exactness and necessity) are no longer needed: If an argument that mathe-
matical entities exist is to be given, it can no longer arise via an inference to the best
explanation for the epistemic qualities of mathematical proof; instead, it must result
from the requirement, when applying mathematics to empirical science, that one
necessarily uses phrases like “there are numbers. . .,” coupled with the linguistic
claim that such a phrase commits us to the existence of numbers.4

Call a derivational account of informal rigorous mathematical proof, any account
that takes the epistemic qualities of ordinary mathematical proof to derive from a
relationship (of some sort) between ordinary mathematical proofs and formal deri-
vations in one or another (or a family) of artificial languages.

3I’m condensing some intellectual history here. “Effective recognizability” as relevant to an
explanation for the epistemic strangeness of ordinary mathematical proof emerged after the
discovery of formal languages (it emerged, perhaps, even some decades after the Church/Turing/
Kleene discovery of the mathematical characterization of effective recognizability). The possible
explanation Fregean languages initially seemed to offer for epistemic strangeness was instead a
development of a much earlier view (one already in, to some extent, Descartes, and certainly in
Leibniz) that mathematics is just “logic” once all the missing inferential steps are explicitly given
(“filled in”) in the corresponding derivations. There still is an issue, of course, about the episte-
mology of logical inference: how challenging this issue is corresponds to how much apparent
mathematical content has been pressed into the “logical” principles. In any case, the explanation
doesn’t work because it has the same problems faced by any explanation of the epistemic properties
of ordinary mathematical proofs in terms of their relations to derivations in artificial formalisms (see
Sect. 3 below).
4That is, I’m describing proponents of what have come to be called indispensability arguments.
There is a large contemporary literature on these arguments. For the version of them that influenced
their recent application to mathematics, see Quine (1953). See Azzouni (2009a) for an indispens-
ability argument with weak premises that establishes only the truth of applied mathematics and not
the existence of mathematical objects; see Panza and Sereni (2015) for a categorization of the whole
family of indispensability arguments according to the strength of the premises used in those
arguments, and for a survey of this literature as of that date.
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2 Effective Recognition Procedures

Before discussing the drawbacks of derivational accounts of mathematical proof, I
should first discuss in more detail why formal derivations of formal languages
seemed and continue to seem so illuminating about (or, at least relevant to) the
epistemic properties of informal rigorous mathematical proof. The key point is that
formal derivations come with effective syntactic recognition procedures. That is,
anyone (including computers or mechanical calculating devices) can acquire a set of
rules by which she or he or it can determine after a finite amount of time, whether or
not a sequence of strings of vocabulary items is a proof. In describing these
recognition procedures as “syntactic,” I’m pointing out that a person can execute
such a procedure successfully without knowing what the sentences “mean”; indeed,
such syntactic recognition procedures don’t require knowledge that what’s being
recognized are “sentences” of a language. So far, I’ve only mentioned well-known
truisms about formal languages. I now compare natural languages with formal
languages, and how they differ on the recognition procedures they come with.
What I say next isn’t quite as truistic; some of it is even controversial.

Natural languages also have recognition procedures. What’s required of every
language to begin with (ones we can use, anyway – one way or another) is that there
be recognition procedures that enable the sorting of vocabulary tokens (the “alpha-
bet”) into type-classes. Vocabulary types are sensorily accessible classes of physical
items, for example, the type of items, “e,” that include those that occur in the paper
you’re reading. These may be electronically composed of pixels or instead they may
be chemical stains on a background medium. We idealize these type-classes of
physical vocabulary items by assuming that there is a decision procedure (looking
“by eye”5) that determines what type-class any candidate physical item belongs
to. Implicitly excluded (call these exclusion idealizations), therefore, are all those
many physical tokens that can’t be decided by eye because (among other things),
they’re too blurry or badly shaped. The very coherence of physically executing any
algorithm (by humans, computers. . .) requires exclusion idealizations.6

Both natural languages and many formal languages – not all formal ones – have
recognition procedures for primitive vocabulary. Consider now the recognition pro-
cedures for syntactic classes of items other than primitive vocabulary items – in
particular, for sentences. The recognition procedures available for these syntactic
classes of items of formal languages go beyond those of natural languages in two

5“By eye” is metaphor; other human (or nonhuman) senses can be used instead of vision.
6This is true of physically real Turing machines: a written symbol in a cell that a Turing-machine
head “scans” can’t be so lightly printed that the Turing-machine head is unable to tell whether or not
the cell is blank. At least when it comes to humans, these recognition procedures are extremely
complex, neurophysiologically speaking. If one physically built such a thing, scanning could be
designed to be mechanically quite simple, as it isn’t for us. Even so, there would still be cases where
the physical device failed to scan a cell successfully; this is a fact about any Turing machine that
exists in space and time. Indeed, this is true of any actual calculating device whatsoever: there will
always be “mishaps.”
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ways. First, although we can assume that those competent in natural languages have
(and use) recognition procedures for the sentences of those languages, we can’t state
these procedures explicitly.7 We can state in mathematically precise ways the
recognition procedures for the sentences of many formal languages – in particular,
Frege’s original language, and the many formal languages currently studied, includ-
ing the first-order predicate calculus.8 We can describe and mathematically study, of
course, many formal languages – some with infinitely long sentences, but not those
alone – that don’t have recognition procedures for their sentences or even, say, for
their primitive vocabulary (because the set of types of primitive vocabulary in a
formal language can be infinite too).

Many formal languages have a second property that’s often treated as a constitu-
tive element of those languages. They can have syntactic-transition rules from
sentences (of such-and-such syntactic forms) to sentences (of so-and-so forms), as
well as axioms.9 Consider the set of finite sequences of sentences of a formal
language, where each sentence is either an axiom or follows from earlier sentences
in the sequence by the application of a syntactic-transition rule to those earlier
sentences. Call this a derivation. If there is a recognition procedure for the
syntactic-transition rules, and for sentences, then there is a recognition procedure
for the set of derivations. Call an interpretation of a formal language a function that
takes all the sentences of a language to truth values (true or false), where the axioms
are mapped to true, and so that the syntactic-transition rules take true sentences to
true sentences.10 A formal language (individuated to include axioms and syntactic-
transition rules) is consistent if it has an interpretation; the foregoing stipulates
soundness as a requirement of an interpretation.

The formal languages I’ve just finished describing are special insofar as the
derivations in them have been characterized purely syntactically. This isn’t the
only possibility. The “semantics” of such languages – what the sentences mean –
has been restricted to truth values that are assigned to sentences; but of course richer
semantic characterizations of the sentences (and syntactic characterizations of other
items of formal languages – predicates and names for example) can be given. The
now-traditional way of doing so for classical languages is to supply a Tarskian model
for a formal language, in which a domain of objects is assigned as the ranges of the

7It seems, and this is a typical assumption of Chomsky-influenced linguists, that competence in a
natural language simply is the possession of a recognition procedure for its grammatically correct
sentences. What such recognition procedures look like is a contested empirical question; it’s clear,
in any case, that we neither have conscious access to them – as individual users of natural languages
(but only to, at best, some of their results when candidate sentences are presented to us) – nor do we,
as a matter of linguistic science, know much about their properties (let alone what they are).
8Indeed, the grammars (syntax) of most of these languages are extremely simple – stated by a
handful of easily understood rules.
9It’s possible to drop axioms altogether; replace them with syntactic-transition rules from the empty
set to sentences.
10I momentarily consider interpretations that are richer than the mere assignment of truth values to
sentences – so this isn’t a definition of “interpretation.”

The Algorithmic-Device View of Informal Rigorous Mathematical Proof 5



quantifiers, individuals from that domain are assigned to individual constants
(names), and classes of n-tuples of objects from the domain are assigned to n-
place predicates (Tarski 1933).11 This isn’t, of course, the only way to assign
semantic properties to the sentences of formal languages. Regardless, semantic-
transition rules can be formulated for formal languages (given one or another
characterization of the semantic properties for the sentences of such a language),
and a resulting notion of a derivation can depend on semantic properties of sentences
instead of (or in addition to) the syntactic properties of such sentences. The resulting
set of derivations will have a recognition procedure (or not) depending in part on
whether there is a recognition procedure for the relevant semantic properties
assigned to sentences.

It seems, as I mentioned, that semantic properties (of some sort) are intrinsically
involved in informal rigorous mathematical proof. This empirical question is
entangled in part with the broader empirical question of whether reasoning in natural
languages is (purely) syntactic or not. Syllogisms are long-known examples of bits
of natural-language reasoning that can be characterized syntactically. Nevertheless,
it’s not obvious that when nonprofessionals reason syllogistically that they are
reasoning syntactically (i.e., independently of the perceived content of the sentences
in such syllogisms).12 It’s also not obvious that reasoning doesn’t occur purely
syntactically in cases where it doesn’t appear to: that depends on exactly what the
grammar of natural languages turns out to be –what aspects of what (pretheoretically
speaking) seem to be meaning properties of items of natural languages turn out to be
such and which don’t (anaphora, e.g., seems to be a syntactic matter in natural
languages; so seem aspects of noun/verb agreement). In this respect, informal
rigorous mathematical proof – inference steps in informal proofs – couched as
they are in natural language, may also (or not) turn out to be based (at least some
of the time) on meanings.

Regardless, we can now characterize the family of derivational accounts of
informal rigorous mathematical proof with a little more precision. The idea is this:
Informal rigorous mathematical proofs have the epistemic properties they have
because there is a family of formal languages, where each informal proof is associ-
ated with a derivation or (possibly) a class of derivations (which may be from more
than one formal language), and where the epistemic properties of informal rigorous
mathematical proofs are explained by this association. For example (and, again, this
crude example can’t be right, but it illustrates the idea), any informal rigorous
mathematical proof is an abbreviation of a particular derivation, and mathematicians
(subconsciously) appreciate this fact.

11In nonclassical settings – for example, paraconsistent ones – generalizations of the Tarskian
approach to model theory have been developed. So too, for intuitionism, multivalued logics, and
other “logics.”
12For reasons from the psychological literature to think otherwise, see Thompson et al. (2011).
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3 Why Derivational Accounts of Mathematical Proof
Don’t Work

Mathematical proofs were expressed for centuries in natural languages – long before
Frege’s invention of artificial ones. And, despite the fertile infusion of formal tools
into mathematics during the twentieth century – both as methods of proof but almost
more importantly, as subject matters of mathematical study – mathematical practice
continued and continues to occur in natural language.13 We can ask why; and one
straightforward answer places a heavy burden on derivational accounts of mathe-
matical proof. This is that it’s proofs, after all, in natural languages that convince
mathematicians of the theorems that are established by these proofs. Furthermore,
and this is an important datum too, it’s not that mathematicians are convinced
(finally) when these proofs are explicitly transliterated into their formal cousins.
That, pretty much, never happens: “Oh wow, now I see why this is true.” There
would be no issue if the word “abbreviation” that I used in Sect. 1 was literal – that
the version of the derivational account that worked was one where informal rigorous
mathematical proofs were abbreviations of formal items – but if that were the case,
then Frege’s invention would not have been the original and amazingly creative
invention it was.

It’s important to realize that when I describe Frege’s invention as that of an
artificial language, I’m not exaggerating: he didn’t (as a superficial glance might
imply) lift out a couple of ordinary-language words or phrases, the German words or
phrases for “and,” “or,” “there is,” for example, along with a couple of syntactic rules
of German and exhibit them as his invention. The syntax (and the semantics) of these
artificial languages (i.e., what currently passes for “logic” in contemporary studies)
is nothing like that of any natural language. Mathematical proof seems epistemically
strange; but we can’t explain that strangeness by treating mathematical practice as
actually occurring in languages that didn’t exist until (about) 1879. Explanations of
mathematical practice have long trafficked in inferences to the best explanation of it
being our sensitivity to supernatural entities of one sort of another – but perhaps this
is really taking things too far.

13There is no book, no article, of mathematics that’s entirely written in one or another formal
language – not one in first-order logic, not one in any higher-order logic, not one in any of the
numerous modal logics, etc. The proofs that occur in mathematical articles and books are rarely
completely or even partially formalized; even in logic books and textbooks, completely formalized
proofs occur only as examples. Frege, on the other hand, really intended his invention to replace
then current mathematical proof practices. He saw ordinary language as flawed in a way that he
took to create serious problems for mathematical proof. As the subsequent failure of mathematicians
to adopt his formalism, or anyway, to switch to one or another formal language when doing
mathematics shows, this is wrong. Exactly why it’s wrong is one topic of this chapter.

The Algorithmic-Device View of Informal Rigorous Mathematical Proof 7



Call Phenomenology the requirement that any derivational account explain why
formal transcriptions of informal rigorous mathematical proofs don’t ever have a
property that the original informal rigorous mathematical proofs sometimes have:
the property of inducing an experience of recognizing that this is a good proof –
based (partially or sometimes entirely) on what the sentences of the proof say. It’s
important not to overstate the datum Phenomenology labels. The experience of
(pretty much) any informal rigorous mathematical proof is that of heterogeneous
reasoning: some inferential steps involve an “aha”-epiphany (Feferman 2012) that’s
one probable source of early modern philosophical views about the a priori; some,
however, involve complex semantically obscure mechanical manipulations (“calcu-
lations”) that are recognized to be valid manipulations because they follow rules that
have been shown to be truth preserving (or that we’ve assumed are); some are taken
on the authority of the author or as understood-to-be-background assumptions in the
field; some involve significant and rich inferential moves (although this is often tacit,
unexplored, and sometimes unrecognized); some are, strictly speaking, meta-proof
considerations (e.g., “the other cases are the same”; “the indices on these operators
are countable”). A new notion is required to enable the analysis of the heterogeneous
nature of reasoning in ordinary rigorous mathematical proof – that of an algorithmic
device (see Sect. 6 and later sections for discussion).14

Leaving the option of abbreviation aside, it wouldn’t help if we instead hypoth-
esized that natural-language proofs function successfully as epistemic guides for
mathematicians by providing semantic or syntactic directions – “indications” of the
corresponding formal proof –where such guidance is posited to be the psychological
machinery (conscious or unconscious) by which mathematicians become convinced
of theorems by the informal proofs they give. For, unfortunately for derivational
accounts, nothing like this looks right either.15 The initially slow evolution of
specialized terminology in mathematics (the invention of place-holder Arabic
numerals, algebraic notation, scientific notation, etc.), simultaneously accompanied
with an evolving notion of “rigor,” can give the impression that mathematical
language slowly crawled over the eons toward an artificial-language endstate;
Frege’s “genius” was just to speed up the process by jump-starting the first of
subsequently many such artificial languages in which the heretofore buried structure
of mathematical proof could be finally fully exposed.

14A terminological conflict: Barwise (1993) uses the phrase “heterogeneous reasoning” to label
formal-reasoning systems with both language-based inference patterns and diagrammatic ones. This
usage has become influential in this literature. My usage (Azzouni 2017a, Sect. 9) describes
something different: the character of typical informal rigorous mathematical proofs, as I describe
them in the passage this footnote is appended to.
15What follows in the rest of this section is distilled from many discussions about mathematical
proof over the past 20 years or so. Among the relevant papers and books are: Hersh (1997), Rav
(1999), Azzouni (2006), Rav (2007), Azzouni (2009a, b), Lavor (2012), Tanswell (2015), and many
others. Avigad (2019) and Hamami (2019), however, are recent attempts to defend derivational
accounts. I discuss these a little in Sect. 15.
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Several considerations, however, undercut this view of the terminological evolu-
tion of mathematics. There is, most importantly, that the phenomenology of math-
ematical proof – our experience of validity – doesn’t accord with this picture.
Mathematicians, pretty uniformly, learn to become convinced of the validity of
mathematical proofs in ordinary language, by being trained to appreciate a certain
degree of rigor in these proofs – as they stand. Such training does involve acquiring a
facility with specialized terminology – a terminology that changes over time. Never-
theless, it’s clear that the recognition of the validity of proofs often (but not always)
involves the earlier mentioned “aha”-epiphany of recognizing that a certain result
follows from others. This experience, as I’ve mentioned, isn’t preserved when such
proofs are transliterated into their purely formal versions but it does occur outside of
mathematical practice; it’s one we all feel with certain items of valid reasoning – for
example, with (certain) instances of modus ponens, or when we see that from “All
dogs are good pets,” and “All good pets are creatures with large carbon footprints,” it
follows that “All dogs are creatures with large carbon footprints.”16

That is, this “aha”-epiphany – among all of us – seems to depend on the perceived
meanings of the sentences in question and not on the syntactic properties of those
sentences; it doesn’t occur when someone, applying rules, recognizes that a string of
symbols follows by those rules from an earlier set of strings of symbols. This is why
the formalization of an informal rigorous mathematical proof lacks the epistemic
qualities that such proofs (sometimes) possess in ordinary language.17 We no longer
rely on our appreciation – whatever it comes to – of the meanings of the words and
sentences we’re using. We’ve switched to the mechanical manipulation of strings
according to preassigned rules.

Phenomenology isn’t the only challenging aspect of informal rigorous mathemat-
ical proof that derivational accounts face. Tanswell (2015, 297–298) requires of any
derivational account that it explain (or at least be compatible with) five aspects of
informal rigorous mathematical proof as it occurs in natural languages – what he
calls Rigor, Correctness, Agreement, Content, and Techniques.

16This validity-experience, however, is frailer (at least in some cases) than many philosophers
realize. It can be interfered with by our appreciation of the content of sentences – for example, by
the conclusion striking us as implausible (see, e.g., Thompson et al. (2011), for studies that show
this). I hypothesize that we need to consciously learn to distinguish intuitions of validity from
intuitions of soundness – something that officially happens in classes on “critical thinking.” The
distinction, that is, isn’t naturally made when we evaluate (in real time) arguments in day-to-day
living: we’re usually just interested in whether we should believe the conclusion on the basis of
what we’ve heard.
17This will turn out to be an overstatement. More carefully: formalizations sometimes lack the
epistemic qualities of the informal proofs they correspond to. They don’t if they’re phenomenolog-
ically faithful. See Sect. 13.

The Algorithmic-Device View of Informal Rigorous Mathematical Proof 9



• Rigor: Informal mathematical proofs must meet conditions of rigor that (implicitly
and explicitly) hold of informal proofs. This “rigor” seems different from the rigor
exhibited by derivations (the latter is only that the derivation be fully written out
according to formal rules). Notably, informal conditions on rigor change over time.

• Correctness: Mathematicians, perusing informal proofs, recognize them to be
correct and incorrect intrinsically – “intrinsically” is understood here only in the
sense that mathematicians don’t recognize these properties of proofs by compar-
ing them to formal transliterations.

• Agreement: Mathematicians, upon perusing candidate informal rigorous proofs,
largely agree with one another about whether the proofs are suitably rigorous and
on whether these proofs are correct or incorrect. Strikingly, mathematicians from
different proof-practice backgrounds (e.g., classical as opposed to intuitionistic
ones), and who understand the respective proof practices, agree on this as well. As
noted earlier, this doesn’t seem to occur by a process of recognizing the deriva-
tions (valid or invalid) that these proofs are associated with.

• Content: Any derivational explanation must explain how the perceived content of
an informal rigorous mathematical proof – what the sentences of that proof are
experienced to say – determines which formal proof(s) it indicates.

• Techniques: Any derivational account must explain the role of informal techniques
of proof that aren’t obvious transcriptions of formally licensed inference steps in a
way that’s compatible with the posited epistemic role of formal derivations.

Coupled with Phenomenology, these legitimate demands on any derivational
explanation are a high bar to meet. I’m going to assume – within the framework of
this paper – that a derivational account that meets all of these demands adequately
isn’t possible.18 I’m hardly alone in drawing this conclusion, of course; most of those
philosophers who have studied informal rigorous mathematical proof agree. If so,
epistemically speaking, informal rigorous mathematical proof is sui generis in one
sense: we can’t explain its epistemic properties in terms of formal derivations in

18See Azzouni (2017a) for discussion of how well various derivational accounts fare in meeting
these demands – better than one might expect. I draw the conclusion, nevertheless, that (at the end
of the day) they can’t be met by such accounts. It’s here, however, that issues about the large size of
formal transcriptions (as compared to the original informal proofs) arise; this poses a challenge, for
example, to the derivational account being able to explain Agreement. It’s also here that issues arise
about the explicit rules governing derivations (including ones of logic) needing to be treated as only
tacitly available to ordinary mathematicians – and essentially tacit until the emergence of Frege’s
explicit characterization of logic.
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artificial languages that the informal proofs supposedly correspond to.19 We must
look elsewhere for an explanation. I’ll start my particular take on this by noting an
historical irony. If I’m right about what I claim in the rest of this paper, then Frege’s
invention is a garden path (or rabbit hole) – at least as far as the epistemology of
mathematical proof is concerned. Formal languages, it turns out, have nothing
directly to do with the epistemology of informal rigorous mathematical proof.
Formal derivations play no more of a role in explaining the properties of ordinary
mathematical proofs – implicitly or explicitly – than strange Platonic objects do.

4 Algorithms

I slightly overstated things in the concluding paragraph of the last section. The study
of formal languages isn’t a garden path or rabbit hole – not with respect to resolving
the puzzles of informal rigorous mathematical proof (although it’s still true, I’ll
argue, that formal languages – directly – play no role in the epistemology of
mathematical proof). What turns out to be extremely important to resolving the
puzzle of the epistemic strangeness of ordinary mathematical proof is something that
the progenitors of formal logic (Frege, Russell, Hilbert,. . .) didn’t anticipate. This is
that the study of formal languages would directly lead, in the course of hardly more
than a half century, to Gödel’s incompleteness theorem (Gödel 1931), which, in turn,
would enable (provably equivalent) characterizations of the crucial notion of an
algorithm (Church 1936; Kleene 1936; Turing 1936). My claim: it’s algorithms –
and not formal languages (of any sort) – that are the key to understanding the

19I use a qualifier here (“in one sense”) and earlier when characterizing Tanswell’s correctness
condition (“only in the sense that . . .”) not to foreclose on the view, held by many of these
philosophers (but not me) that sociological vectors explain Agreement among mathematicians –
more generally, that what we may describe as conformity among mathematicians about mathemat-
ical proof is to be explained along the same lines that conformity in other areas (e.g., dietary
practices) is to be explained. Although I think such sociological vectors do play a role in what
mathematicians write down (for example) in giving an informal proof because what they assume as
known by their colleagues shifts over time, or because of inertial effects in styles of proof, I don’t
think these factors play a very large role otherwise. Indeed, the centuries-long perception that
mathematical reasoning is special in a way atypical of reasoning, generally, is a perception of its
evident stability vis-à-vis social factors in contrast to reasoning elsewhere. (Manders (2008, 67)
writes that “Euclid . . .Apollonius and Archimedes, are virtually without error: their every result has
a counterpart in modern mathematics, even if subsumed in patterns of claims and proofs recognized
much later.” Absence of “error” is code for: successfully resists sociological intrusions.) In the
course of this chapter I’ll invoke intuitively effective recognition procedures that are available for
(much of) informal rigorous mathematical proof to explain this. See what follows in the rest of this
chapter.
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epistemic strangeness of informal rigorous mathematical proof. Seeing exactly what
the role of algorithms is in that practice will solve this ancient philosophical
problem.20

I’ll start with a brief description of Turing’s well-known characterization of
algorithms via what have come to be called (deterministic) Turing machines.21

A Turing machine is an idealized rule-governed writing device – a Turing-machine
head – located on an infinitely long tape that’s divided into linearly ordered adjacent
cells. Each cell is either blank (“□”) or has a squiggle (“~”) written on it. The Turing-
machine head occupies one cell at a time; and it’s governed by a finite number of
rules which dictate all its possible actions and nonactions, depending on (a) what

20A lecture: Following the rhetorical lead of Lewis (1991, 57–59), many philosophers, for example,
Burgess and Rosen (1997, 34) glibly laugh (or otherwise engage in something that’s an approxi-
mation of laughter) at the idea that philosophers of mathematics can provide insights that might
have an impact on the practice of mathematics or even yield something of interest to mathemati-
cians. This purported laughter is silly. To make the first obvious point: philosophical concerns
needn’t be mathematical concerns. Sometimes, as with the philosophical puzzle of the epistemic
strangeness of mathematical proof, this is because the philosophical wonder is occasioned by a
specific practice, in this case, mathematical proof. What makes mathematical proof an occasion of
philosophical concern is a contrast fact: mathematical proofs seem different from arguments in
other areas of discourse as I indicated in the opening paragraphs of this chapter. Because the
professional mathematician needn’t be concerned with what arguments look like in other areas of
discourse, and because she needn’t be concerned with what it is that makes mathematical proofs
different, these concerns, strictly speaking, aren’t mathematical ones. So too, issues about mathe-
matical ontology are philosophical concerns, not because the mathematicians’ use of “there is” in
their own practice should be challenged in some way, but because (again) it’s a usage that offers
puzzles across all discourses. (It can turn out for purely linguistic reasons that the mathematicians’
use of “there is” is metaphor or a terminological extension of the ordinary phrase; discovering this
and publicizing it isn’t, by virtue of that, to necessarily recommend a revision in mathematical
practice.) Recognizing philosophical puzzles and what’s making them philosophical puzzles isn’t
easy – not even (apparently) for people who are officially philosophers.
But a rather more straightforward observation should be made, especially after noting one of

Lewis’ remarks, mentioned in the last paragraph (59) – italics his: “I’m moved to laughter at the
thought of how presumptuous it would be to reject mathematics for philosophical reasons. . . . If
[mathematicians] challenge [a philosopher’s] credentials, will you boast of philosophy’s other great
discoveries: [and now Lewis gives a list of purportedly bizarre claims made by one philosopher or
another]? Response to Lewis:” Classical physical theories of solar combustion were refutable in the
late nineteenth century on the basis of the fossil record and other geological evidence: the Earth was
clearly more long-lived – by a large magnitude of order – than the Sun could possibly be, given the
then contemporary physics. Imagine a Lewis-style physicist snobbily turning his nose up at an
argument (by a geologist, say) against classical physics solely because she’s some upstart from
outside a “genuine science” who dares challenge accepted physical theory. Alas (for such hierar-
chical views of knowledge gathering), that’s how confirmation works: evidence for something can
come from anywhere – even (dare I say it) from philosophy.
21Turing (1936, 118) uses the word “automatic.” I should note that my presentation of Turing
machines will be slightly eccentric in several ways – one of which is that I’ll use meaningless
symbols instead of the usual numerals “1” and/or “0.” I do this to accentuate certain philosophical
points about the interpretation of Turing formalisms that I subsequently make. Standard presenta-
tions of Turing machines, incidentally, are everywhere (especially in numerous textbooks) – if the
reader wants or needs a (standard) refresher course in Turing-machine formalisms.
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state Si the machine head is in, and (b) what’s written on the cell the machine head is
located at. The machine head is capable of triple-actions. First, it erases/writes-in
(or doesn’t) the cell it’s at, then it moves to the left/right (or doesn’t), and then it
shifts to a new state (or doesn’t); what it does at any cell is dictated by the “state” it’s
currently in. Call the finite list of rules that describe what a Turing-machine head
does, given the states S1, . . ., Sn it’s in, the machine table of that Turing-machine
head. Let R mean, “move right,” L mean “move left,” and B mean “stay in place.”
Here is a sample machine table for a Turing-machine head with three states:

This fully describes what this machine head will do, given its location on any cell,
and it’s being in any state. (I’ll now individuate machine heads by the machine tables
they obey.) The machine table reveals that if the machine head is in state S1, and it’s
on a cell which is blank, it will write a “~” on that cell, move the left adjacent cell,
and remain in S1.

22 If this machine head is in state S2 on a cell on which a “~” is
written, it will leave the “~” in place, not move, and change from the state, S2 to the
state, S3. There are no instructions for this machine head when it’s in S3; thus, the
machine head will, as it’s described, “halt.”

Call any tape with a distribution of “~”s in its cells a configuration. Given a
machine head located on a particular cell of that tape (what can be called a Turing-
head configuration), call an input the configuration before the machine head initiates
a finite sequence of actions; call the output the configuration that results after the
machine head has completed a finite sequence of actions. Consider a set of Turing-
head configurations, where the configurations are all different. Call this an algorith-
mic operation – that is, an algorithmic operation is a set of differing configurations,
each of which has a Turing-machine head (with the same machine table) located on
one cell of that configuration. Call the resulting modification by the actions of the
machine head after a finite set of steps an algorithmic calculation. If the machine
head halts, that’s an implementation of the algorithmic operation.

I’ve deliberately described the operations of Turing machines as manipulating
meaningless marks on tapes; consequently, the algorithmic operations (as just
defined) are meaningless as well. They’re open of course to being interpreted –
and it’s how widely they can be interpreted that makes the Turing-machine formal-
ism so fundamental to our notion of calculational/effective processes (and, in
particular, to the effective recognition procedures of formal languages that I
described in earlier sections of this chapter). Let’s make the (various) interpretations
of Turing machines explicit. Consider a set of Turing-head configurations (consider,
that is, an algorithmic operation). An interpretation of this algorithmic operation is a

22Sometimes, as I illustrated earlier, the machine head is described as “scanning” the cell it’s located
on. But this talk implicitly builds more machinery into the machine head than is needed.
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mapping of its configurations to configurations of objects along with a mapping of its
machine-head actions to corresponding actions on the corresponding configurations
of objects.

Example: Identify “~” as the numeral “1” (interpret “~” as standing for the
number 1). Next, single out a set of configurations that can, using this identification,
represent the counting numbers (e.g., “~~~” is 3; “~~~~~~” is 6); indeed, single out a
set of configurations that represent pairs of such counting numbers (e.g.,
“~~~□~~~~~~”). Consider the set of Turing-head configurations, where the
Turing-machine head is located on the blank cell between strings of “~”s that
represent these pairs of counting numbers. We can design a machine table (that
halts with respect to these pairs) that can be proven to generate a single representa-
tion of a counting number that’s the sum of any pair of numbers (represented by an
initial pair of represented numbers in this set of Turing-head configurations); we can
design a more complex machine table (that also halts with respect to these pairs) that
can be proven to generate a single representation of a counting number that’s the
product of a pair of counting numbers represented by a Turing-head configuration in
this set. These are typical exercises in any textbook on (or with chapters on) Turing
machines.

Second example: Now consider a mapping of the same set of Turing-head
configurations, not to numbers and operations on numbers (as just illustrated), but
instead to bead configurations on a physical abacus,23 and to (certain) physical
operations of moving those beads. This is an interpretation of that set of Turing-
head configurations too. For that matter, so is any mapping of that set of Turing-head
configurations to any numerical representation of numbers (and manipulations of
those representations). Interpretations of Turing-head configurations, that is, can be
to notational objects or to worldly objects; correspondingly, the actions of a Turing-
machine head can be interpreted as manipulations of Platonic abstracta, idealized
operations on notional objects, or as (also idealized) physical actions on real objects.

The Turing-machine formalism (along with all interpretations of it) is unexpect-
edly robust along several dimensions. I’ll discuss this in the rest of this section.

To begin with, describe as Turing-machine formalisms, a certain class of varia-
tions of the above description of Turing machines. For example, consider Turing-
machine heads that scan more than one cell at a time – finitely many, let’s say, or
ones that can recognize more than one symbol in a cell, finitely many, let’s say
(or even countably many).24 And now call mechanical procedures those sets of
operations (on any collection of objects) that (as above) a Turing-machine formalism
can be interpreted as. It has been proven, strikingly, that increasing the powers of a
Turing machine in the above ways doesn’t lead to an increase in the set of mechan-
ical procedures that Turing machines (under an interpretation) can execute: these
remain the same. It’s furthermore quite striking what kinds of powers machine heads

23I’m going to be fairly spotty in describing abacuses; it’s easy to find out about these things in
articles in print and on the web.
24Consider, in particular, Gandy machines (see Gandy 1980).

14 J. Azzouni



must be granted in order to enable the class of mechanical procedures to become
strictly larger than what can be managed by Turing machines. If, for example
(Abramson 1971), “extended Turing machines” are stipulated that are able to write
and read uncountably many symbols, the resulting class of mechanical procedures is
strictly larger than those executable by conventional Turing machines. The class of
mechanical procedures a “mechanical” device is capable of is strictly larger as well,
if, unlike Turing-machine heads, it can complete infinitely many actions in finite
amounts of time.25 It appears that the notion of Turing-machine computability isn’t
only an upper limit on human computation (as Turing originally meant it to be) but
also an upper limit on designed-machine (e.g., computer) computation – at least if
the physical processes of our universe are what they appear to be.26

To continue the discussion of the robustness of the Turing-machine formalism,
let’s now (temporarily) restrict ourselves to interpretations of Turing-machine algo-
rithms as computing operations on counting numbers. These numerical algorithms
can be characterized in other mathematical ways – in terms of being definable from
certain classes of functions for example.27 These various characterizations have been
proven to be equivalent to the set of Turing-machine algorithms (as defined above).
With a little bit of argument (turning partly on the fact that any interpretation of a set
of Turing-head configurations can be routed through an intermediate interpretation
in terms of numbers), the same set of mechanical procedures is picked out by all of
these characterizations.

Second, consider Church’s thesis. (Or, alternatively described, the Church-Turing
or the Turing-Church thesis.) A preliminary “intuitive” notion: call a function of the
natural numbers an intuitively effective function if it’s one that can be carried out by
human(s) using pencil and paper. Church’s thesis is: A function of the natural
numbers can be calculated by an intuitively effective method if and only if it is
computable by a Turing machine (subject to the above interpretations). “Intuitively
effective,” so described, really is an “intuitive” notion. The use of “intuitive” means
various things to various philosophers and logicians28 – but for current purposes it
can be taken to indicate a hand-waving (unanalyzed and nonmathematical) charac-
terization of an open-ended class of what strikes us as humanly possible calculations.

25See Copeland (2019) for further discussion and citations of the growing literature on this.
26All bets about this are off, of course, if the study of gravitational singularities and the like, where
time – in particular – seems to have unexpected properties, allows the design (at least in principle) of
devices that can complete infinitely many calculations in what amounts to finite amounts of time.
27In particular, the early publicized characterizations in terms of lambda-definable and recursive
functions have been joined by further (provably equivalent) characterizations in terms of register
machines, canonical and normal systems, combinatory definability, Markov algorithms, and others.
28Turing (1936, 135), notably, uses the word “intuition” in relation to his statement of the thesis,
writing, that “no attempt has yet been made to show that the ‘computable’ numbers include all
numbers which would naturally be regarded as computable. All arguments which can be given are
bound to be, fundamentally, appeals to intuition, and for this reason rather unsatisfactory mathe-
matically.” Warning: “intuition,” as used here – following Turing’s usage – can be misleading. See
the parenthetical remarks in footnote 114.
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In mathematical practice (specifically, in the study of recursive functions and
effective computability), Church’s thesis is often used as a proof-shortcut, to avoid
the tedium of exhibiting a Turing-computable function for an intuitively effectively
calculable numerical function, for example, in Rogers (1967) where a numerical
operation is described (or recognized) as humanly calculable and then via Church’s
thesis that operation is deduced to be Turing computable. The intuitive notion of an
effective procedure is idealized in various ways. In particular, we imagine the
humans doing these calculations as having sufficient time, tenacity, tools (pencils
and paper), and abilities to continue the task (without errors) as long as needed for
the particular algorithmic calculations involved. Call this a persistence
idealization.29

A way of attempting to prove – in the (informal rigorous mathematical sense)
Church’s thesis is to argue that the hand-waving (“intuitive”) description of an
intuitively effective procedure can be characterized by (is coextensive with) a
mathematical characterization (of some sort), and then use that characterization to
prove Church’s thesis. There are several versions of this strategy. Kripke’s (2013)
version relies on “Hilbert’s thesis”:

Every (human) computation can be formalized as a valid deduction couched in the language
of first-order predicate calculus with identity.

“Human computation,” however, as used here, is every bit an intuitive notion as
“intuitively effective method”; thus, crucially, Hilbert’s thesis relies (as Church’s
thesis does) on an identification of an “intuitive” notion with a mathematically
precise notion – namely (using my terminology) an identification of “humanly
computational” with “derivable in the language of the first-order predicate calculus
with identity.” The reason that these empirical theses are needed is because a branch
of (pure) mathematics, algorithm theory, is being applied empirically to human (and
machine) computation. It’s always an empirical question (a “thesis,” if you will)

29Here’s a generalization of “intuitively effective numerical function” – beyond cases of numerical
functions – to any method whatsoever (I’m borrowing this formulation from Copeland (2019)):
M is an intuitively effective method if:

1. M is set out in terms of a finite number of exact instructions (each instruction is expressed in a
finite number of symbols);

2. M will, if carried out without error, produce the desired result in a finite number of steps;
3. M can (in practice or in principle) be carried out by a human being unaided by any machinery

except pencil and paper;
4. M demands no insight, intuition, or ingenuity, on the part of the human being carrying out the

method.

I treat the above description as allowing that the instructions in question can be written in a
natural language. I also take it to be topic-neutral: M can be a method that’s applied to anything
whatsoever. (I’m not claiming this is intended – or not intended – by Copeland.) I’ll take up the
topic neutrality of the intuitive notion explicitly in Sect. 5.
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whether or not a branch of pure mathematics can be applied successfully to the
entirety of an empirical domain that we try to apply it to.30

In any case, there is a related family of equally intuitive theses sometimes
described as Church’s thesis, and sometimes distinguished from it (see Copeland
(2019) on this). Consider, in particular, the “maximality thesis”: All functions that
can be generated by machines (working in accordance with a finite program of
instructions) are computable by intuitively effective methods (Gandy 1980). An
argument deriving this thesis about “machines” is, in my view, possible along the
lines I indicated in the material footnote 26 is appended to; I won’t pursue this any
further now. In any case, evidence for Church’s thesis (and its relatives) continues to
accrue by the explicit exhibition of particular Turing algorithms (directly or through
equivalences) as able to execute specific intuitively effective procedures and those
that machines (of various sorts) carry out. This, as I indicated, is a different
dimension along which the applications of Turing-machine formalisms are robust.

There is yet a third dimension, along which Turing-machine formalisms, treated
as characterizations of mechanical calculability, have proven strikingly robust. It’s
one already indicated by a central aspect of the proof of Gödel’s incompleteness
theorem – that it turns on a reinterpretation of computable functions of number
theory as functions of the syntax of a language. This hints of the vast potentiality for
the interpretations of algorithmic operations – a vast potentiality that’s being exe-
cuted (as I write) by developments in computer technology. For intuitively effective
procedures are undertaken by humans on all sorts of objects (real and unreal) in all
sorts of ways that are only slowly being interpreted in what amounts to Turing-
machine formalisms – for example, a robotic hand picking up a paper cup without
crushing it, or all the numerous (and increasingly realistic) video and virtual-reality
games and films.

5 Recognition Procedures in Games

I turn now to developing a point I made in footnote 29 – that intuitively effective
methods can be stated in ordinary language. Indeed, this is why Hilbert’s and
Church’s theses are “intuitive” theses: ordinary reasoning and ordinary effective
methods are invariably couched in natural language – and transliterating such to a
formal setting is precisely to apply a branch of pure mathematics to these natural-
language activities (as I indicated at the end of the last section). Coupling this point
with the observations in the last section about interpreting algorithmic operations
allows us to see how ubiquitous intuitively effective methods are in our lives. Let’s
start with a discussion of games. Many games (although not all games) essentially
involve elements and configurations of elements with recognition procedures that
players (and observers) of those games rely on. Chess, and other board games, are

30I return to a discussion of Church’s thesis, generalizations of Hilbert’s thesis and formal systems,
in Sect. 15.
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obvious cases (and so are card games). Recognition procedures are required to
distinguish chess pieces, the squares on the board (and the spatial properties of
those squares, e.g., adjacency relations), and to recognize admissible moves. Other
games, despite involving “luck,” are similar. In many board games, the pieces are
moved along designed paths after throwing dice (to determine the acceptable number
of steps a piece can take). Without appropriately designed intuitively effective
recognition procedures, these games would be impossible to play – we’d be fighting
over whether an appropriate move had been made; we’d even be fighting over what
move, exactly, we were fighting over.31

Central to the Turing-machine formalism seems to be – to use a commonly used
distinction – that the algorithms it describes are digital and not analog. Mechanically
recognizable operations are required to be step-by-step ones, where each step is
clearly distinguishable from every other step. Turing (1936, 136) makes this point
explicitly:

We may suppose that there is a bound B to the number of symbols or squares which the
computer [human calculator] can observe at one moment. If he wishes to observe more, he
must use successive observations. We will also suppose that the number of states of mind
which need be taken into account is finite. The reasons for this are of the same character as
those which restrict the number of symbols. If we admitted an infinity of states of mind,
some of them will be “arbitrarily close” and will be confused.32

And yet, many games, unlike the board games I’ve just described, seem to be
intrinsically analog: they take place physically, and continuously, in space and
time. Such games, baseball for example, appear nevertheless to have intuitively
effective recognition procedures. One is inclined (at first glance) to say, of any set of
admissible moves in this game – hitting a pitcher’s throw appropriately with a bat –
that it’s an infinite set of possible moves. After all, the variations of possible
movements in space and time are infinite. How then can a game like baseball –
and any game that similarly takes place continuously in space and time – be
amenable to an application of the Turing formalism?

There are at least two mistakes involved in this line of thought. The first is that a
certain kind of idealization – central to all algorithms that humans actually carry out
but eliminated (usually) from presentations of such algorithms – is being

31It’s been claimed against me (more than once) that games are at best analogous to Turing-
definable algorithms because games have rules that are underspecified or even inconsistent.
Tanswell (forthcoming) thinks these defects “are ironed out by social features of game-playing.”
It’s, however, a ubiquitous feature of algorithms that there is no general test for “bugs” (there is no
general test for inconsistency): they must be spot-correctedwhen discovered. In no significant sense
does this introduce “social determinants” into practices, like games, that are governed by
algorithms.
32Notice that the generalizations of Turing’s apparatus (e.g., in Abramson 1971) mentioned in Sect.
3 are ones that shift to an essentially transhuman framework in exactly the ways that Turing rules
out. For example, that the purported human can distinguish uncountably many symbols or that the
purported human can complete an infinite number of discrete actions in a finite amount of time.
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misdescribed. Consider the symbol “~” that I characterized all Turing-machine heads
as using. Were an actual machine involved, the tokens of this symbol would be a
somewhat ill-defined set of physical items – ill-defined because no matter how we
designed Turing-machine heads, they will fail to sort every otherwise scannable
physical token into one or the other class. In the same way, a chess piece can be
placed on a chess board so that it’s unclear (to the humans playing the game) which
of two neighboring squares it’s on. For that matter, the borders between squares on a
chess board can be fuzzy, or badly designed chess pieces are possible where humans
easily confuse the pawns with kings. We idealize the items and configurations of the
items in a game (using what I called in Sect. 2 “exclusion idealization”) by simply
treating such confusing items as not occurring in the game. A last example is the
intuitively effective recognition procedures associated with the derivations of formal
languages: these too, when the derivations in such formal languages are actual ones
that people (or computers) are constructing, involve exclusion idealizations so that
by assumption there are no tokens so badly written that the recognition procedure for
those derivations can’t be executed.

The second mistake is to take the apparent analogness of our experience of space
and time (and, in particular, our actions and perceptions of such actions) at face
value. Given a finite amount of space and time, and a possible action across that
space (and in that time), such as waving a hand – despite the impression otherwise,
we cannot distinguish infinitely many variations of movements. What we are
capable of seeing, and distinguishing, are only finitely many such movements.
This is true of anything we can do in space and time. The analog appearance of
our own behavior (or its appearance in the behavior of others), consequently, is an
illusion.33

This shows that that the appearance of analog practices in such games doesn’t
belie an application of a generalized Church-Turing thesis to them: The intuitively
effective recognition procedures that such games exhibit can be taken to be ones
amenable to the Turing notion of algorithmic calculations.

The other crucial point that games illustrate in abundance are intuitively effective
recognition procedures that are written in natural languages. We can use Hilbert’s
thesis, if we wish, to draw the conclusion that these can be formalized – indeed, to
draw the conclusion that these games, in their entirety, can be formalized. And by
this, I mean, transliterations to language-based formal systems.34 Several connected
points must be made about this, however. Our grasp of the intuitively effective
recognition procedures used in such games – intuitively effective recognition pro-
cedures that children grasp – are ones grasped directly, and not via an implicit

33See Azzouni (2017a), especially Sect. 3, on this. To show the amenability of these games to
Turing formalisms, in my view, it must be shown that the intuitively effective recognition pro-
cedures at work in these cases involve an unseen grid-structure as the field against which the
admissible moves in these games are being evaluated. The details are in the article just cited.
34“Formal” systems, as I illustrate in Sect. 8, can be diagrammatic as well as language based.
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(psychological) application of Hilbert’s thesis. The neurophysiological/psychologi-
cal facts that underlie these capacities are ones to be explained (that are being
explained) in terms of visual-system capacities, saliencies, and the like. Our abilities
to physically navigate our world are what underwrite the intuitively effective
recognition procedures used in games. This is one reason, among others, why
these recognition procedures are only partially described by the “rules” that officially
govern such games. Usually taken for granted, and left unmentioned, are the
physical details of the elements of such games (e.g., baseballs) that are often only
partially specified in terms that explain the successful use of recognition procedures
during these games; usually, tokens of them are simply exhibited. The same is true of
the primitive alphabet for formal systems. These are, in practice, just listed – that is,
the intuitively effective recognition procedures are assumed – using tokens, for
example: the constants, a1, a2, a3. . ., the individual variables, x1, x2,. . ., etc. I’ll
label these, in Sect. 13, embodied algorithms, and say a bit more about them then.

When, however, such games are transliterated entirely to language-based sys-
tems, the idealized physical properties of the objects and configurations of them that
are used by the intuitively effective recognition procedures associated with those
games must be treated as part of the subject matter to be described; they must be
explicitly characterized and treated axiomatically. This is because language-based
formal systems use only intuitively effective recognition procedures for
distinguishing items of an alphabet: we’re required only to see (by “eye”) linear
concatenation relations between tokens, to be able to distinguish the distinct prim-
itive vocabulary tokens, one from another, and to be able to recognize which they
belong to.35 So, since the other intuitively effective recognition procedures, the ones
that enable us to recognize the relations among the chess-board squares, are set aside,
these relations must be explicitly described by terms that are axiomatized and treated
as governing the “pieces on squares.” (I’ll say more about this in the next section.)

I turn now to making points about ordinary rigorous mathematical proof that are
analogous to those that I’ve just made about games. Just like a certain subfamily of
games, ordinary rigorous mathematical proof involves numerous intuitively effec-
tive recognition procedures that mathematicians grasp directly and not via formal
transcriptions of those procedures into the medium of formal languages. This is why
the derivations occurring in the family of artificial languages that are studied by
logicians are irrelevant to the epistemic properties of ordinary mathematical proof. In
going forward, I assume a generalized version of the Church-Turing thesis: I assume
that all intuitively effective procedures are Turing computable.

35The other sorts of linear syntactic-relation patterns we – or some of us, anyway – “just see” are
helpful but not required by most linear alphabet formal systems we study.
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6 Language-Based Algorithmic Systems and Algorithmic
Devices

Straightforward examples of language-based algorithmic systems are axiom systems.
These have been studied extensively. A primitive vocabulary is given and syntactic
rules for constructing well-formed expressions, including sentences, are defined. On
this basis, in turn, a subset of the sentences are singled out as axioms, the finite
sequences of sentences that are acceptable derivations are defined, and finally, the
theorems (the sentences that appear on any line of an acceptable derivation) are
defined as well. All of these have intuitively effective recognition procedures in the
ways described earlier – the definitions I’ve just alluded to are designed to enable
these intuitively effective recognition procedures to piggyback on earlier ones (e.g.,
the intuitively effective recognition procedure for theorems is designed on the basis
of the one for acceptable derivations). Intuitively effective recognition procedures in
formal systems are nested on one another in the way that the intuitively effective
recognition procedures for primitive vocabulary, sentences, acceptable derivations,
and theorems are nested here.

Example (Church’s P1)
36: The primitive vocabulary are parentheses, (, ), a

two-place sentential connective, �, a one-place sentential connective, :, and an
infinite list of sentential variables, p, q, r, s, p1, q1, r1, s1, p2, q2, . . ..

37 All and only
the sentences are defined like so: the sentential variables are sentences; if P and Q are
sentences, then :P and (P � Q) are sentences. The axioms are: ( p � (q � p)),
((s � ( p � q)) � ((s � p) � (s � q))), and (::p � p). The syntactic-transition rules
are two (I use the symbol “├” to indicate syntactic transitions): For all sentences, P
and Q, P, (P � Q) ├ Q; if b is a sentential variable that appears in P and if P* is the
sentence that results from the substitution everywhere in P by a sentence Q, then P ├
P*. A derivation is a finite sequence of sentences where each sentence is either an
axiom or follows from earlier sentences in the sequence by a syntactic-transition
rule.38

There are two ways to think about syntactic-transition rules. One is to think of
them as structuring every acceptable derivation: each sentence in an acceptable
derivation is either an axiom or follows from earlier sentences in that derivation by a
syntactic-transition rule. The other is to think of them as methods of generating
acceptable derivations from other acceptable derivations. Given any acceptable
derivation, we can generate a new (augmented) acceptable derivation by introducing
a new last sentence that is either an axiom or a sentence that follows from sentences
in the original derivation by a syntactic-transition rule.

36From Church (1956, 78), I’ve modified P1 by introducing an abbreviation that Church (1956, 78)
gives later.
37Notice that there is an implicit intuitively effective recognition procedure in place for these,
turning on an antecedent intuitively effective recognition procedure that’s available for numerals.
38This apparently austere system is equivalent (via definitions) to the full two-valued classical
sentential calculus with all definable (two-valued) connectives.
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The point I want to stress about the intuitively effective recognition procedure for
derivations in this example (and this is typical of many axiom systems) is that this
recognition procedure directly operates in terms of the intuitively effective recogni-
tion procedures for whole sentences and not via any intuitively effective recognition
procedures on the elements that such sentences are composed of. The intuitively
effective recognition procedure for whole sentences of course depends on intuitively
effective recognition procedures for the primitive alphabet – as I noted earlier. I’m
here stressing a different point, however: Syntactic-transition rules are possible that
rely not on whole sentences but instead directly rely on certain expressions in those
whole sentences. Consider the alternative algorithmic formal system in the next
example.

Second example: Same as the previous example, except that there are no axioms,
and in addition to the two syntactic-transition rules given in that example, we have
three additional syntactic-transition rules. For any sentences P and Q,

Q├ P � Qð Þ;
S � P � Qð Þð Þ├ S � Pð Þ � S � Qð Þð Þ
::P├P:

The first two syntactic-transition rules are focused on the connective, �; the third
focuses on the connective :; it’s the occurrence of these connectives in certain
syntactically indicated locations in sentences that license these syntactic transitions.
In this sense these syntactic-transition rules are centered on a particular syntactic
element and not on the sentence the element occurs in. For any expression e, call
such syntactic-transition rules e-centered syntactic-transition rules. This character-
ization can be generalized to families of expressions E. Consider, for example, those
Peano syntactic-transition rules that are E-centered on the constant 0 and the
successor function0.39

Now consider an expression e and a language (any language, natural or other-
wise) in which e appears. I call any set of e-centered syntactic-transition rules an
algorithmic device.

The individuation conditions on algorithmic devices are importantly weak. Apart
from the fact that the above definition allows algorithmic devices to be nested within
one another, it’s not required of an expression e governed by a set of e-centered
syntactic-transition rules that constitutes an algorithmic device A that it be fully
governed by those syntactic-transition rules. In the second example, just above, both
: and � are governed by the original two syntactic-transition rules as well as by the
new ones I then introduced. So too, an expression e, in a formal system, can be
governed both by e-centered syntactic-transition rules and other syntactic-transitions
rules (e.g., axioms) which aren’t e-centered.

39For that matter, consider Church’s P1. This is an E-centered algorithmic device, where E ¼ {�, :}.
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The conditions on something being an algorithmic device are weak in a second
sense. Although I’ve introduced the notion with respect to language-based formal
systems, such devices can (and do) occur elsewhere. They show up, specifically, in
natural languages and, indeed, they show up everywhere in mathematical practice, as
it occurs in natural languages (as I’ll indicate in the sections to follow). But, for the
moment, consider the old philosophical example, “bachelor,” where the meaning of
this word is stipulated to mean: unmarried male. We have, according to this aspect of
the meaning of the word, the following syntactic-transition rule P |- P*, where P*
results from P by zero or more replacements of “bachelor” with “unmarried male.”40

More generally, the meanings of words can be taken (in some cases) to license
syntactic-transition rules in arguments. This is compatible with those meanings
being governed by other conditions – sufficient-condition application rules of
some sort (for example) – which don’t involve syntactic-transition rules.

So notice: consider any expression that seems governed by a small set of
meaning-transitions (or meaning postulates) that enable the recognition of a class
of truths or inferences containing that expression. Such a set of meaning-transitions
is a kind of algorithmic device – not by any means the only kind of algorithmic
device, of course. And notice, as well, that any expression that’s so governed is
usually governed by all sorts of other conditions too – both generalizations that
involve many other words, and more restricted conditions that govern that expres-
sion along with others. The last point to stress is that it’s come to be recognized that
natural-language expressions – that we otherwise understand the meanings of – don’t
usually have definitions (necessary and sufficient conditions in terms of other
expressions). They have, at best, some necessary conditions and some sufficient
conditions. Some of these are encapsulated in the conditions of an algorithmic
device; but others may be an implicit (or explicit) understanding of patterns of
things we apply such expressions to (e.g., all blue things).

One thing – when studying logic – that makes “Gentzen” or “natural deduction”
rules more user-friendly than axiom systems is that in this respect they’re modeled
on our impression of the meanings of natural-language expressions. We experience
the natural-language meanings of expressions as localized to (and due to) those very
expressions. This is why, say, a characterization of the “meaning” of the truth-
function “&” like so:

p&q├p,

p, q├p&q,

seems to capture via the meaning of “&” the logical properties of “&” – as it operates
in derivations of sentences from other sentences.

40The syntactic rule must be finessed to avoid counterexamples involving expressions like “Bach-
elor Buttons,” which is the name of a flower. (Sadly, “Unmarried Male Buttons” isn’t the name of
that flower – or, I think, any flower.) I skip this.
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For current purposes, the importance of algorithmic devices is that such items –
focused on new expressions or, as it were, modifications of devices already governing
old expressions – can be added to any language (formal or otherwise, one that already
has one or another proof or derivation system, or one without) so long as the expres-
sions the added devices are focused on (still) syntactically fit in with that language. For
example, natural languages have noun phrases, verb phrases, and the like. If the new
terms an algorithmic device is focused on are actual noun phrases or verb phrases, all
that’s required of them is that they operate syntactically (outside the confines of the
application of the algorithmic device itself) like other noun or verb phrases already in
the language – in particular, as these occur in natural-language sentences.41

7 Some Observations About Algorithmic Devices,
Conceptual Engineering, Synchronistic Effects,
and Imperatives

Imagine a natural language in which we have in place intuitively effective pro-
cedures for recognizing some instances of “Q follows from P” facts. Or, imagine that
the methods we have aren’t intuitively effective. The introduction of algorithmic
devices can augment, make easier, or even introduce (to begin with, that is) an
intuitively effective recognition procedure for a class of “Q follows from P” facts.
Some algorithmic devices (or, sometimes, some transitions of configurations
licensed by the device – see Sect. 9) should be seen, essentially, as “black boxes”:
sentences P, Q, and R (say) are transformed (by an algorithmic procedure) into
notational or physical items that the device can operate on; after it does so, the
resulting item(s) are transformed (by another algorithmic procedure) back into a
sentence, S say. We then draw the conclusion, on the basis of this, that: “S follows
from P, Q and R.” In other cases, the connections between natural-language words –
nouns and verb phrases, etc. – and the inner workings of the algorithmic device are
more intimate (as it were). We can describe the transitions of the device in terms of
transitions between sentences. The algorithmic devices I’ll go on to discuss later will
exemplify these differences.

A familiar first illustration: consider the numeral expressions of a natural lan-
guage (“one,” “two,” . . ., “eleven,” “twelve,” . . .). These appear in natural-language
sentences as both noun phrases (“one is less than two”) and adjectivally (“There are
six apples in Granok’s basket”). Consider the introduction of a notational calcula-
tional device that provides shortcuts – indeed a method – for adding (Arabic notation

41This introduction of terminology into natural language – grafted from an algorithmic device –
needn’t be restricted to nouns and verb phrases. Whole sentences possessing what otherwise
amounts to an alien grammar are introduced as idioms – whole syntactically-unparseable blocks
with meanings. This is how – for example – those interpreted sentences of a formal language,
untranslatable into natural language, are nevertheless expressed there. (Consider, e.g., those first-
order sentences with long sequences of quantifiers that have no syntactic cousins in natural
language.) I can’t get any further into this now.
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and the tableau layout for addition that utilizes, e.g., the base 10 properties of that
notation). The inference of “There are seventeen apples in both Mordesh’s basket
and Granok’s basket” from “There are seven apples in Mordesh’s basket” and “There
are ten apples in Granok’s basket” is licensed by this calculational device.

In cases where there is already an antecedent proof or derivation practice,
augmenting that practice with an algorithmic device in this way can induce
far-reaching global effects on what can be proved or derived. A melodramatic example
is when the supplementation of an already in-place derivation system with a new
algorithmic device renders the augmented class of derivations trivial: everything can
then be shown. But, there are many less melodramatic, indeed routine, cases.

Describe the introduction of an algorithmic device A into a language – formal or
otherwise – with an already-present derivation/proof practice as syntactically con-
servative if, given an augmented derivation/proof D* of a sentence S, there is an
antecedent derivation/proof D of S.42 Often – very often – the addition of an
algorithmic device into an already-present proof practice isn’t syntactically conser-
vative.43 Failures of syntactic conservativeness – which, with regard to proof, are
successes not failures – are nevertheless surprising because of our (always in place)
local expectations about the noneffects of words (and the rules governing those
words) on sentences in which those words don’t appear. We don’t expect that the
introduction of a set of concepts that aren’t “about” a subject area can induce new
implications that are purely about that subject area.

An illustratively surprising result of this sort (Harris 1982) in a purely logical
setting is that if we have an antecedent formal language governed by intuitionistic
connectives, and we add classical negation (without placing syntactic restrictions on
where that negation can appear), so that the system now has both syntactically
unrestricted intuitionistic and classical negations, all the other connectives become
classical. In particular, results like ((( p � q) � p) � p) – Peirce’s law – and
(( p � q) _ (q � p)), as well as (in the predicate calculus – here, let “( p , q)”
stand for “( p� q)& (q� p)”), ((F_ 8 xGx), 8 x(F_Gx)) and ((F� ∃ xGx), ∃ x(-
F � Gx)) can now be shown. None of these are intuitionistically valid. This happens
precisely because these results can be shown via the newly introduced classical
negation and they suffice to render “�,” and the other heretofore intuitionistic
connectives, classical. This phenomenon is typical in mathematics – it’s one reason

42Notice that built into this definition is that the sentence S doesn’t contain any new terminology.
Not required (and in fact rarely available) is that, given a syntactically conservative augmented
derivation/proof of a result, a derivation/proof of that result using the original methods can be easily
shown. In practice, mathematicians are drawn to augmenting their methods when that enables them
to easily show new results – regardless of whether those results can be shown with great difficulty or
at all by methods they already have. (Indeed, the question of whether or not innovations are
conservative or not in the above sense was rarely entertained until modern times. I say “rarely”
because, actually, I know of no cases where it was entertained – but I hesitate to be definitive about
this. In the case of complex numbers or infinitesimals, the worries were ontological, not proof-
theoretical – for example, are these weird numbers real or imaginary?)
43Or, more commonly, no one knows.
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why pure mathematics is so interesting: new concepts introduced into a subject area
yield surprising and unexpected results about the antecedent concepts that don’t
(or don’t seem to) follow from reasoning about the antecedent concepts alone.44 The
phenomenon, I should stress, shows up in natural languages too – even in those cases
where our concepts are governed (rather weakly) by meaning conditions alone.45 Call
these synchronistic effects. Lesson: synchronistic effects are everywhere in mathemat-
ics, and, as well, everywhere in our inference practices outside mathematics.46

Algorithmic devices, as I’ve described them, are very flexible in two senses.
Consider a device that’s centered on a set of concepts (terms), c1, c2, etc. – for
example, a set of natural-language numerals (finite or not). The scope and effects of
any such algorithmic device centered on {c1, c2, . . .} can be changed by
(i) supplementing or changing its rules directly, and apart from this (ii) by introduc-
ing other algorithmic devices that are also centered on {c1, c2, . . .}, on different
terms, or both. The usual (informal) impression that there are specific concepts (e.g.,
the counting numbers) associated with these terms, and that they have certain fixed
meanings is usually unaffected by these supplementations of and to algorithmic
devices (again, consider the case of counting numbers) which aren’t seen as chang-
ing their meanings.47 Strikingly, as I mentioned earlier, the distinction between such

44See Azzouni (2000), where I discuss this phenomenon in relation to “relevance intuitions” and
recommend it as a crucial element of the intrinsic interestingness of (pure) mathematics.
45Example? Consider a natural language in which the set of natural-language numerals is finite.
46The label “synchronistic” in “synchronistic effects” is meant to stress not so much simultaneous
impact as (apparently) unrelated impact. Field-style nominalist programs, incidentally, are moti-
vated by the (false) belief that the impact of applied mathematics to empirical topic areas can be
shorn of synchronistic effects – and that, indeed, this is a virtue of mathematical applications. It’s
neither a virtue nor is it even possible. Because of synchronistic effects, the introduction of new
mathematics to an antecedent subject area (mathematical or otherwise) always yields surprises –
ones in the empirical case that are open to empirical refutation. That is, we can learn that a branch of
mathematics should not be so-applied empirically. See Detlefsen (2008) for a discussion of the
historically long and influential requirement – proponents include notables such as Aristotle and
Bolzano – that epistemically good mathematical proofs should be pure (not involve alien or
incongruous notions). See the discussion of the work of the mathematician Brunfiel, in Hafner
and Mancosu (2008), who insists on pure proofs, and the discussion of Hilbert’s analysis of
Desargue’s theorem in Hallett (2008). Notice what the purity requirement entails, with respect to
incomplete axiomatizations. We must replace the proofs using the “alien” vocabulary with ones
totally in the language of the unaugmented system. Why assume that the new axioms – in the
familiar vocabulary – will be easy to find or that the resulting proofs will be particularly attractive –
in any sense, other than in the sense of the sheer absence of alien vocabulary?
47One source (perhaps the source) of the relative insensitivity of meaning intuitions to changes in
what I shortly call inferential scope is that such intuitions – especially in the mathematical case – are
ontologically focused: the number words, for example, are experienced as referring to particular
objects with such and such properties. Therefore, the embedding of such number-words (and rules
governing them) into a context with other words (governed by different rules) is seen as simply the
putting of numbers – counting numbers, say – into a context with other objects (e.g., rational
numbers) which leaves the properties of the counting numbers unchanged. This (falsely – by means
of a kind of use/mention error coupled with some sort of intrinsic-property confusion) gives the
impression that doing so will be (inferentially) conservative.
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supplementations enabling easier and/or quicker proofs (e.g., calculations) and those
supplementations introducing new results that can’t be shown otherwise, wasn’t
made – until modern times – except insofar as it was recognized that a change to an
algorithmic device or the introduction of a new one into a practice could render the
whole thing inconsistent.

Call the inferential scope of an expression, or of the concept associated with that
expression, the set of truths intuitive-effectively determinable by the collection of
inferential tools available to practitioners at a time (by “inferential tools,” I mean, for
example, licenses to infer based on meanings, such as “B is a brown house” implies
“the outside of B is brown,” logical principles, if any, algorithmic devices, if any,
etc.).48

The heart and soul (as it were) of conceptual engineering in mathematics occurs
via the development and/or supplementation of informal rigorous algorithmic
devices. One important lesson: Most of the literature on conceptual engineering
focuses on meaning and meaning change, and on issues of definition.49 But “mean-
ing” so-called and definitions – even in mathematics – are (largely) red herrings. I’ve
already explained in the last few previous paragraphs why meaning is a red herring.
Here’s why definitions are too. Definitions are local in the following sense: they
provide necessary and sufficient conditions for an expression in terms of other
expressions.50 In this way the inferential scope of a defined expression is linked to
the inferential scopes of the other expressions occurring in the definition. But these,
as I’ve illustrated, are always directly open to shifts in referential scope – even by the
introduction of new expressions governed by new algorithmic devices, and so that’s
where the engineering action is.

Let me summarize this way: The contours of our concepts are always inferentially
specified by our actual (intuitively effective) inferential tools; that is, the scopes of
these concepts change as we change the tools we use to determine the truths that the
expressions corresponding to these concepts occur in. This is conceptual engineer-
ing. Much of it is invisible to us because we understand our concepts and
corresponding expressions not to change in their meanings even when the actual
contours of their inferential scopes shift drastically.

I turn now to an important symptom of the presence of algorithmic devices in
informal rigorous mathematical proof. Tanswell (forthcoming) has noticed that

48I do not mean, notably, intuitive-ineffective semantic determinations of classes of truths, such as
“intended models” or intuitively ineffective “tools” such as validity defined in second-order terms
using “standard semantics” – these truths are not intuitively effectively determinable.
49See, e.g., Cappellan (2018), Tanswell (2018). My work on this topic doesn’t so focus. See, e.g.,
Azzouni (2006).
50Thus, definitions can range from the apparently trivial (“a triangle is anything that’s a triangle”) to
the relatively “deep” –where the impression of depth arises from how significant or illuminating the
expressions being used in the definition appear to be: in every case, trivial or not, a definition gives
“necessary and sufficient conditions.”
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imperatives occur a lot in mathematics.51 Indeed, the form of many informal
rigorous mathematical proofs is that of recipe-instructions, of the form: Do U; do
V; notice W; and then notice X.52 Often, imperatives occur seamlessly with indica-
tives in a proof, as in the example of a proof from Rudin (1970, 357) that Tanswell
(forthcoming) quotes (I’ve changed some of the lettering in what follows):

Theorem: If A is a commutative complex algebra with unit, every proper ideal of A is
contained in a maximal ideal. If, in addition, A is a Banach algebra, every maximal ideal of
A is closed.

Proof: The first part is an almost immediate consequence of the Hausdorff maximality
principle (and holds in any commutative ring with unit). Let I be a proper ideal of A. Partially
order the collection ℜ of all proper ideals of A which contain I (by set inclusion), and let
M be the union of the ideals in some maximal linearly ordered subcollection ℘ of ℜ. Then
M is an ideal (being the union of a linearly ordered collection of ideals), I � M, and M 6¼ A,
since no member of ℜ contains the unit of A. The maximality of ℘ implies that M is a
maximal ideal of A.

Tanswell (forthcoming) suggests that the practice of using imperatives is so ubiqui-
tous – especially in the context of diagrammatic proofs – that it requires a view of
mathematics that centralizes imperatives. (He calls it the recipe model of proofs.) The
first point to make is that – syntactically speaking, at least – the presence of
imperatives is a relatively shallow matter. They can always be replaced with “if
. . . then” indicative-locutions. This can be seen already in the above quotation, in
which the imperatives may be naturally rewritten like so:

If the collection ℜ of all proper ideals of A which contain I (by set inclusion), is partially
ordered, and ifM is the union of the ideals in some maximal linearly ordered subcollection ℘
of ℜ, then M is an ideal (being the union of a linearly ordered collection of ideals), I � M,
and M 6¼ A, since no member of ℜ contains the unit of A.

I described imperative-to-indicative translations as relatively shallow (grammatical)
matters. Someone may resist this characterization for the following reason. Consider
a (cooking) recipe Tanswell (forthcoming) gives:

1. Preheat the oven to 170�/gas.
2. Peel the bananas and lay them in a snug-fitting heatproof dish. Finely grate the orange

zest and put aside, then halve and squeeze over the [bananas the] juice of 1½ oranges.
3. Drizzle with the honey and sprinkle over 2 teaspoons of the cinnamon, then roast in the

oven for around 20 minutes, or until golden and soft, then set aside to cool.
4. Place the bananas and their syrup in a blender, then blitz with the milk and yoghurt.

51Indeed, several philosophers of mathematics have noticed and stressed the use of action termi-
nology in mathematics. Larvor (2012) and De Toffoli and Giardino (2015) are three. They think its
presence is significant for philosophically understanding informal rigorous mathematical proof. I
disagree – what follows indicates why.
52Permissions seem to come up as well. See the discussion of the postulates of Euclidean geometry
forthcoming in Sect. 11.
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5. Add in a handful of the zest, the juice of the remaining orange half, a pinch of sea salt and
the rest of the cinnamon, then churn in an ice-cream machine. If you don’t have one,
freeze the mixture in a suitable container for about 3 hours; every hour, take it out, whip
with a whisk, then return to the freezer.

6. Serve in bowls with a scattering of orange zest and a fine grating of dark chocolate.

This can be rewritten, letting “(n)” stand for what follows each numeral n in the above list
of commands:

If you (1), you (2), you (3), you (4), you (5), then you can (6).

Or we can introduce a stylized list (corresponding to how recipes are given):
If you:

(1),
(2),
(3),
(4),
(5),
then you can (6).

Rewriting Tanswell’s recipe in indicatives, that is, reads as naturally as a list of
commands does, but comes across a bit long-winded because (grammatically speak-
ing), we can give (“bark out”) commands, one after the other, in single sentences,
just as in recipes; but we can’t do the same with the list of “if” conditions followed by
a “then” conclusion. The use of commands in recipes, however, is a mere stylistic
fact about how recipes are given in cookbooks; it may even be due to the fact that a
complex set of conditions are more easily surveyable if they’re broken up into single
sentences, and so one naturally puts them into command-form even though in no real
sense is a recipe a list of commands. One can certainly imagine a different recipe-
tradition, where recipes are instead given as predictions of what will happen under
certain circumstances. In such cases, “if” conditions would be written, stylistically,
as single sentences. Indeed, it can be argued, as I just have, that – semantically –
that’s what recipes actually are: they’re predictions. (Consider the old organized-
crime joke: B: Do this or a horse’s head in your bed tomorrow morning. C: You’re
telling me what to do. B: No, I’m not; I’m predicting the future here.)

This point aside, algorithms (as I indicated in Sect. 4) are very naturally couched in
terms of commands; machine tables look like lists of commands. It should be no
surprise, therefore, that if an algorithmic device is (implicitly or explicitly) present,
that presence will be usually – if not invariably – syntactically marked by imperatives.53

53That said, as Transwell’s quotation from Rudin (1970) shows, and as many of the examples from
De Toffoli and Giardino (2015) also illustrate, sometimes instructions on how to manipulate
notation are ontologically disguised as descriptions of actions on abstracta. Again, a motivation
for this may be that it’s easier to understand single sentences (in command form) than it is to
understand long “if, if, . . . if, then” sentences. In addition, it should be noted, this is an illustration of
the ubiquitous use/mention conflations that occur everywhere in mathematics – right from Euclid’s
work on, as I illustrate in Sect. 11.
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We do many things with the sentences of the natural languages we speak; in
particular (and perhaps fundamentally), we express our thoughts and describe states
of affairs; neither of these uses of language directly involve inference or inferential
devices. The focus in this chapter is what we do with language entities by the
machinery of intuitively effective inferential tools: these license the expression
(speaking, writing) of certain language entities given the expression of other lan-
guage entities – often sentences from sentences, but this isn’t just a matter of
sentences. In any case, we carry out such inferences in ways that (sometimes)
phenomenologically appear rule-governed. Central examples – the ones under
study here – are some of the cases where the process of inferring one sentence
from another is seen as the antecedents semantically implying the consequents.
These goings from one item of language to others are syntactic functions (their
domains are pieces of language which they map to other pieces of language – what’s
described as their ranges). There are, of course, many ways we go from one sentence
(or piece of language, words, for example) to others – other than by inference. In any
case, in the foregoing, I’ve been focusing on syntactic functions – and in particular,
on syntactic functions from sentences to sentences that have intuitively effective
recognition procedures. Call these syntactic algorithmic functions; call the particular
syntactic algorithmic functions that (at least in part) govern inference inferential
algorithmic functions.

It should be obvious by this point in the paper that an inferential algorithmic
function can occur in a language or context that hasn’t (or doesn’t appear to have)
other inferential algorithmic functions. Indeed, it’s possible for there to be an
E-centered algorithmic device in a language that has no other inferential algorithmic
functions. Return, for example, to the case of categorical syllogisms, and consider
the expressions, “all,” “no,” “not,” etc. that occur in such syllogisms; let these
expressions be our family E, and let the syntactic method(s) of recognizing valid
syllogisms be the algorithmic device in question. Recall that I mentioned (in Sect. 2,
footnote 12) that – empirically speaking – we don’t know whether natural-language
reasoners actually use the intuitively effective syntactic recognition procedures (that
are in principle) available to determine when they’re faced with a valid syllogism.
Imagine, however, natural-language reasoners who do use an intuitively effective
recognition procedure for categorical syllogisms, but who are otherwise unable to
reason effectively. Imagine, that is, that these language users have no intuitively
effective recognition procedures for inference patterns other than the one they use
for categorical syllogisms. Such language-users – even if they have languages that
otherwise are as rich as natural languages – can’t reason except via categorical
syllogisms. I hypothesize that such reasoners would strike us as strangely unable to
grasp certain things that strike the rest of us as “obvious.”54

54This is because, as we now understand, syllogistic reasoning is quite restricted in its inferential
scope. However, an important cost in understanding “logic” more broadly is the loss of something
that was (tacitly) assumed about reasoning until modern times – that there are decision procedures
for recognizing validities and contradictions, and indeed (this was believed by Hume), except for
issues of length, they’re trivial ones.

30 J. Azzouni



I define an algorithmic inferential system as one in which all the inferential
functions have intuitively effective syntactic recognition procedures. A first-order
language which is Gödel-complete is one where the semantic implication function
for the sentences of that language is coextensive with an intuitively effective
syntactic recognition inference procedure. A higher-order language, with a model
theory (an interpretation), according to which its syntactic deduction rules are Gödel-
complete (Henkin models, as they’re called), also has a semantic implication func-
tion that’s coextensive with an intuitively effective syntactic recognition procedure.
A higher-order language, however, which (relative to what’s described as “standard
model theory”) is Gödel-incomplete, is one where the implication relation lacks any
intuitively effective recognition procedure, let alone a syntactic one.55

8 Diagram-Based Formal Systems; Shin’s Venn-II

As the discussion of games in Sect. 5 illustrated, just as we manipulate pieces of
language (using intuitively effective recognition procedures), we can manipulate
pieces of anything using intuitively effective recognition procedures. And similarly,
there are functions, and indeed algorithmic functions, with domains (and ranges)
governing some of the ways that we manipulate things – be those things baseballs,
chess pieces, robotic hand-movements, items of notation, etc. Call a context the set of
objects (and configurations of objects) that a set of algorithmic functions is defined
on. A context can be the context of an algorithmic system or of an algorithmic device.

Diagram-tokens are a kind of object and so diagrammatic algorithmic systems
and diagrammatic algorithmic devices are subcollections of object-based algorithmic
systems and object-based algorithmic devices.56 Examples of diagrammatic devices
are Euler and Venn diagrams (as introduced originally by Euler and Venn), Euclid-
ean diagrams, as practiced by ancient Greek mathematicians, and so on; examples of
object-based algorithmic devices are physical tools like abacuses, various mechan-
ical calculating devices, etc.

The “formal” in “formal language-based algorithmic system” conveys that the
system in question is mathematically fully-explicit – in particular, the primitive vocab-
ulary is given, and the rest of its syntax is explicitly defined on that basis (regardless of

55See Van Benthem and Doets (1983) for details. Notice that the absence of intuitively effective
recognition procedures for sentence-functions turns on those functions being characterized in some
other manner – as I suggested, for example, semantically. This will be significant for the later
discussion of mathematics because, unlike games, the items in mathematics – ordinary-language
sentences, sentences containing specialized terminology, and algorithmic devices (diagrammatic
and otherwise) – are usually (explicitly and implicitly) interpreted. See what follows on this, but
especially Sect. 10.
56Actually, all notation-tokens are, in this sense, objects (or, in the case of utterances, events).
Nevertheless, I’ll continue to distinguish between algorithmic devices using what I call objects –
and here I’ll be alluding to devices like abacuses (but also computers) – and those based in notation
that we manipulate, such as diagrams.
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whether certain kinds of syntactic items, like sentences, are, as a result, intuitive-
effectively recognizable). Call a language-based formal system one that defines all
syntactic objects in terms of the primitive vocabulary and (one-dimensional) concate-
nation alone. Nothing, in principle, prevents equally formal systems being based on
syntactic constructions other than one-dimensional concatenation, for example, adja-
cency constructions in two or three dimensions (what wemight call “higher-dimensional
concatenation”).57 Call such systems formal diagrammatic systems. As with language-
based formal systems, some of these formal diagrammatic systems are algorithmic and
some aren’t. 58

My use of the distinction between one and higher-dimensional syntactic (concat-
enation) relations to distinguish non-diagrammatic from diagrammatic formal systems
may seem obviously wrong – especially to those who are familiar with Shin’s (1994,
chap. 6) discussion of the distinction between diagrammatic and non-diagrammatic
representation, as well as Giaquinto’s (2007) discussion of this. Giaquinto focuses on
whether conventions or resemblances are being utilized to determine interpretations –
and to what degree; Shin focuses on whether new syntactic devices are introduced by a
system of representation – ones that require conventions to use.

Apart from this, it may seem clear (to the reader) that a representation of
individuals sitting between one another in space by locating their names
one-dimensionally on a line, so as to imitate their relative spatial locations, is
diagrammatic (Shin (1994, 156) – despite being one-dimensional – and it may
seem, by contrast that the integral notation of the calculus, for example:

57I claim, but won’t argue here – see Azzouni (2017a) – that if the resulting syntactic classes of
items (sentences or admissible diagrams, and syntactically defined parts of these) are to be intuitive-
effectively recognizable then there must be an implicit grid – in one, two or three dimensions – that
the primitive items appear in; the syntactically defined items must be various (intuitive-effectively
recognizable) classes of distributions of the primitive vocabulary across the grid. One approach to
this places a lower-limit on the size of the areas of the cells of the grid; in one-dimensional
concatenation systems (the ones we are most familiar with – alphabet systems), this is done,
typically, by choosing a specific font for (all of) the primitive vocabulary items that appear in the
(implicitly present and implicitly sized) cells. Underlying grid-frameworks aren’t always explicit –
they’re not in Miller’s (2007) Euclidean diagrammatic system FG, but they’re made explicit in
Mumma’s Euclidean system Eu by means of arrays, which are the official backgrounds against
which diagrams appear (see, e.g., Mumma 2010). I discuss these two formal diagrammatic systems
in more detail in Sect. 11.
58I claim (see my comments on Feferman (2012) in Sect. 5 of Azzouni 2017a) that there are two
diagrammatic systems in play in the proof of the Schröder-Bernstein theorem. One isn’t algorithmic
because one diagram that’s alluded to in the proof is actually infinite. This diagram isn’t used by
mathematicians but only referred to. There is another diagram – a series of diagrams, actually – that
are unbounded in size (although none of them are actually infinite). A finite number of these are
used in the proof, and the pertinent properties of these diagrams are intuitive-effectively recogniz-
able. There are many such examples of what should be called two-tiered diagrammatic proofs (the
proof used to show what’s called “Koch’s snowflake” is another), ones which induce a structured
semantics where the diagrams actually used by mathematicians belong to an algorithmic system but
such diagrams are interpreted as referring to actually infinite diagrams in a system that isn’t
algorithmic; in turn, these actually infinite diagrams are interpreted as standing for functions (and
sets) of various sorts. I can’t get any further into this now.
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isn’t diagrammatic, despite being two-dimensional (neither, one might think, is
Frege’s two-dimensional notation diagrammatic).59 I’m tabling further discussion of
this until Sects. 13 and 14 because it involves subtle complications involving the
interpretation of diagrams; both Shin and Giaquinto’s approaches to the
diagrammatic/language-based distinction, that is, involve interpretations of diagrams
and sentences. Restricting myself solely to dimensional considerations as they play out
syntactically yields a rough-and-ready distinction between notations it’s important to
explore. (Whether it tracks the actual intuitive distinction between diagrams and items
that aren’t diagrams is relatively unimportant.) I’ll consider – at the end of Sect. 14 –
whether a principled distinction is available that’s more in accord with intuitions about
when a representational system is diagrammatic or not diagrammatic. I’ll there suggest
that the question isn’t semantic as it, perhaps, appears to be, but is best taken to be a
psychological one that requires empirical study to resolve.

In the rest of this section, meanwhile, I’ll illustrate a fully-explicit formal dia-
grammatic algorithmic system: Shin’s (1994) algorithmic system Venn-II. “Fully-
explicit” means here that the diagrammatic system is as syntactically explicit
(as mathematically explicit) as any typical interpreted language-based formal lan-
guage. In the section that follows, I’ll consider what stands in (in informal settings)
for the semantic apparatus that’s used to characterize formal systems – for example,
model theory. After that, I’ll consider some specific cases of algorithmic devices that
don’t occur in formal algorithmic systems – although they can be embedded in them
(this is described in Sect. 12); included among these cases are those where algorith-
mic devices occur in natural languages; this is what happens in ordinary mathemat-
ical practice. One important case is the (ancient) use of Euclidean diagrams – where
the details of the practice are somewhat controversial and complicated.

Venn-II, as Shin’s choice of nomenclature partially indicates, is a formalization of
Euler/Venn/Pierce diagrams.60 The primitive vocabulary (Shin (1994, 115) calls
them “primitive objects”) are closed curves, rectangles, complete shadings of

59Interestingly, Giaquinto (2008a, 39) suggests matrices provide “a significant example of visual
operations on symbol displays. . ..” These strike me, on the contrary, as involving “visual opera-
tions” to exactly the same extent that one-dimensional catenation systems do – that is, only
adjacency is involved and nothing more (e.g., part/whole spatial perceptions aren’t involved, nor
do other perceptual powers for recognizing two-dimensional visual patterns – that don’t directly
involve adjacency – seem involved: recall how one multiplies and add matrices). In any case, the
difference between one and two dimensions looks significant to other philosophers even if
(according to me) they misdescribe its import.
60Shin (1994) presents two formal diagram systems. Venn-I corresponds to categorical-syllogism
reasoning; Venn-II is an expansion of Venn-I to a formal diagrammatic system that she proves is
equivalent in expressive strength to a version of first-order monadic logic (one in which the empty
set can be a model). There are other formalizations of these diagrams and various formalizations of
extensions of them as well. One interesting extension are “spider diagrams” – see Howse et al.
(2005) and, more recently, Stapleton et al. (2013), where there are references to earlier work.
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(certain) spatial regions, and the diagrammatic elements,
N

and —, that appear
within those regions. Well-formed diagrams are defined in terms of these elements
(116), and persistence and exclusion idealizations are introduced so that we’re
presumed able to intuitive-effectively recognize (distinguish between) distinct dia-
grams containing any finite number of closed curves C1, . . ., Cn contained properly
within any number of rectangles (connected by lines), where, for any rectangle,
containing a subset of these curves, Ci+1, . . ., Ci+m, their intersections in the dia-
grams, and whether or not the symbols,

N
and —, appear in the regions defined by

these curves, are also intuitive-effectively recognizable.61

The next step is to provide intuitive-effectively recognizable diagram-transfor-
mations (121–124): these are acceptable (intuitive-effectively recognizable) trans-
formations of diagrams into other diagrams. The intuitively effective recognition
procedure for diagram-transformations is based on the well-formed-diagram condi-
tions, which in turn are based on the recognition procedures for the primitive
vocabulary. The “obtainability” relation of a diagram from a set of diagrams (“├”)
is defined via diagram-transformations (125). This obtaining relation is an intuitively
effective syntactic one; it corresponds to the derivation-relationship of sentences
from other sentences definable in formal language-based algorithmic systems.

As I mentioned before, unlike games (or most games, anyway), diagrammatic
algorithmic systems and diagrammatic algorithmic devices usually have interpreta-
tions. This is one aspect of such diagrams that enable them to have such a significant
role in mathematical practice. In the case of Shin’s Venn-II, one particular interpre-
tation is pretty natural.62 It’s a model theory where sets are assigned to rectangles,
and subsets of those sets are assigned to the closed curves in the rectangles.63 Using

61Shin (1994, 60, footnote 7) here relies on Polythress and Sun (1972) for the result that, given any
arbitrary number of closed curves, a configuration exists (an “atomic diagram”) in which for every
subset of these closed curves, there is a visible region generated by the intersection of all and only
the curves in that subset. Assuming a lower bound on the (tacit) cells that such curves are drawn
across, this means that such configurations (and the curves themselves) are arbitrarily large. The
evident implausibility of these diagrams being intuitive-effectively recognizable (we surely can’t
“recognize” such diagrams of arbitrary complexity – not even those containing only a small number
of such closed curves) involves exactly the same sort of persistence idealizations that are invoked to
allow that people, with pencils and paper, can continue a computation in time as long as needed. We
are, in this case, idealizing the intuitively effective recognition procedures by allowing arbitrarily
large diagrams that a person “scans” progressively (while retaining in her memory what she has
seen). Exclusion idealizations are also at work when, for example, Shin (1994, 82) rejects diagrams
containing partial shadings as “ill-formed.”
62Interpretations for algorithmic systems, however, are never uniquely determined – no matter how
“natural” any specific interpretation may be. This is equally true of diagrammatic systems; and so
this can be confusing (especially where certain interpretations seem natural because of “resem-
blances,” e.g., the supposed resemblances between drawn triangles and real triangles). I’ll discuss
this later, in Sect. 13, when I turn to debates about the “rigor” of diagrams in mathematical practice.
63I’m omitting niceties in describing how Shin uses this model theory to interpret the diagrams and
their elements of Venn-I and Venn-II; among such niceties are ones that involve identifications of
the sets that a model assigns to rectangles and curves in different atomic diagrams that are connected
to one another by lines; this is needed, for example, to enable to Venn-II to express (some)
disjunctive expressions.
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this model theory, a notion of a diagram “being true in a model,” can be defined, and
via that, a notion of implication (╞) between diagrams can be defined as well (one
collection of diagrams implies another diagram if every model that every diagram in
the collection is true in, is one that the second diagram is true in as well); in terms of
these notions of implication and obtainability, soundness and completeness are
shown (i.e., for all diagrams D1 and D2, D1 ╞ D2 iff D1 ├ D2).

64

As the above model theory indicates, the diagrams of Venn-II can be associated
one-to-one with the sentences in a formal language, specifically a first-order monadic
language L.65 In particular, the formal language-based system L and the formal
diagrammatic system Venn-II have exactly the same metalogical properties with
respect to the model theory they share.66 Furthermore, as I indicated, this isomor-
phism between the diagrams of Venn-I and Venn-II and the sentences of L is
intuitively effective. That is, we have an intuitively effective (decision) procedure
for reading off from any diagram of Venn-I or Venn-II a sentence of one or another
(interpreted) formal language L which “says” (in terms of the interpretations of both
the language and the diagrammatic system) what the diagram “says.” We can
similarly depict what any sentence of the formal language L says with a diagram
that captures its “content” exactly.

The model theory for L – traditionally understood – provides interpretations for
all the sentences of L. That is, the model theory for L indicates what the sentences of
L say. Further, given a specific model M of L, we can speak of the sentences of L
being true or false relative to M. The same is true for the diagrams of Venn-II. Each
diagram, using the same model theory, says something, and what it says (relative to a
specified model M) is either true or false. The model theory for Venn-II and for

64See Shin (1994, chap. 5). The fully-general result, in terms of infinite collections of diagrams, that
enables a compactness result for the implication relation of models, is given by Hammer and Danner
(1996).
65Again, avoiding certain niceties, that the procedure of associating sentences with diagrams is
intuitively effective turns on how the interpretation for a diagram (in terms of sets) is given – this
yields a normal-form theorem: each atomic diagram corresponds to a conjunction of existential and
negations of existential sentences describing the (finite) intersections of the sets corresponding to all
the closed curves in a diagram, and a diagram (composed of atomic diagrams connected by lines)
corresponds to a disjunction of these conjunctions. The reverse procedure turns on giving an
intuitively effective method of transforming any sentence of the language to its normal-form
equivalent. I stress that these procedures are decidable.
66On this, see Shin (1994, specifically Chap. 5), Hammer (1994), and Hammer and Danner (1996).
One metalogical property the two systems (naturally) share: the theorems of both systems are
decidable and not merely effectively enumerable.
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Venn-I (for that matter) thus provides interpretations for the elements of the diagrams
that also, as I indicated, yields a notion of truth-in-a-model for the diagrams.67

Relations between sentences and diagrams when formal systems like the above
are in play are not only decidable, but involve metalogical properties such as
completeness. Relations between sentences and diagrams are useful in mathematical
contexts – and generally – even when such metalogical properties are missing, as
they usually are when algorithmic devices are employed in natural-language con-
texts. Here, usually, model theory is absent as well – and so model theory isn’t the
tool by which mathematicians interpret diagrams. Nevertheless, we can (and do)
legitimately speak of interpreted diagrams or, more generally, of interpreted configu-
rations of objects (a certain sequence of executed movements on an abacus, say) as
being true or false – or as being implied by later interpreted configurations. The
interpretations in question, however, are ones given by specified sentences of natural
language – or sentences in a natural language augmented with (technical and special-
ized) vocabulary items that nevertheless respect the natural-language syntax this
vocabulary occurs in. I turn to developing this important point in the next section.

If we combine Shin’s diagrammatic formal system together with a language-
based formal system, the result is an example of a formal system of “heterogeneous
reasoning” in Barwise’s (1993) sense (Shin 1994, 188–189; Hammer 1994): a
formal algorithmic system that has both diagrammatic and language-based elements.
Although this kind of combination of systems – diagrammatic tokens along with
language-based tokens – is atypical of most formal systems currently studied, the
heterogeneity it exhibits is endemic in informal rigorous mathematics. I turn to
attempting a description of how similarly “heterogeneous reasoning” works in
informal settings.68

9 Informal Reasoning by Means of Algorithmic Devices

Consider the use of an algorithmic device A in a natural language context. As I
indicated above, informal versions of the semantic/syntactic tools in play in formal
systems like Venn-I and Venn-II arise here too, although notably they don’t have all

67For example, Shin (1994, 118) gives a definition of a set assignment (a mapping of sets to the
rectangles and closed curves of a diagram) satisfying a well-formed diagram. Well-formed dia-
grams, however, correspond to sentences; there is nothing in her definition of satisfaction involving
variables as they occur in the formal language-based systems (e.g., those studied in Tarski (1933)).
Atomic diagrams are given interpretations by mapping the curves to subsets of the domain of the
model, and mapping the elements to the sets in question being empty or nonempty (see Shin 1994,
Sect. 3.31). These correspond to sentential relations between sets, for example, The intersection of A
and B is empty; the intersection of A and B is nonempty. The additional compositional facts – about
diagrams – that Shin’s definition of the satisfaction relation turns on involves the linking of atomic
diagrams by lines (which corresponds to the disjunction of what the atomic diagrams represent).
68See Sects. 8 and 9 of Azzouni (2017a). I there described algorithmic reasoning as occurring on the
“surface” of informal rigorous mathematical practice. This is a metaphor that I’m explicating here in
terms of algorithmic devices.
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the properties that their formal cousins have. I here sketch out what things look like
in the informal setting.

Start with the observation that a natural-language algorithmic device A, as in
formal settings, allows the intuitively effectively recognition of well-formed dia-
grams Di.

69 As before, there is an intuitively effective, recognizable obtainability
relation, ├, that A licenses between its diagrams. In addition, there are intuitively
effective recognition methods of reading ordinary sentences off of the diagrams ofA,
Di ⇉ Sj, and reading sentences into diagrams of A, Sj ! Di. Specifically, given a
diagram Di and a sentence Sj (from a certain set of designated sentences), we can
often change that diagram into another Dj, where for all sentences Sn, we can
recognize that if Di ⇉ Sn, then Dj ⇉ Sn, and furthermore, we can recognize that
Dj⇉ Sj. I’ll call ⇉ and!, respectively, “reading-out” and “reading-into” procedures.

These procedures may help themselves to language-elements that are contained in
diagrams (e.g., letters that appear in the diagrams and that label diagrammatic
elements of it) but they needn’t. It also needn’t be the case that, generally, one can
mechanically generate all the sentences that can be read off of a diagram – although
that’s true of a lot of algorithmic devices (e.g., Shin’s Venn-I and Venn-II, and, I
think, the informal Euclidean-diagram practice). What’s assumed here is just that it’s
mechanically recognizable for any sentence Si and diagramDj, whether or not Di⇉ Sj
or Sj ! Di.

70

Here is the first important contrast with Shin’s formal diagrammatic system – and
with formal diagrammatic systems generally: there is no assumption of uniqueness
in the reading-off and reading-into relations – nor need there be “normal-form”
sentences that can be described as what captures (uniquely) what the diagrams of an
algorithmic system A “say.” That is, given a diagram Di, there can be many different
sentences, Sj, Sk, . . ., with appreciatively different (although compatible) contents,
such that Di ⇉ Sj, Di ⇉ Sk,. . .. Similarly, given a sentence Si, there can be many
diagrams Dj, Dk, . . . (also with appreciatively different contents), where Si ! Dj,
Si ! Dk, . . .. All that’s assumed is that the reading-into and reading-off relations
have intuitively effective procedures. In many cases, these reading-into and reading-
off relations are additional decision procedures available to diagram users: given Si
and Dj, it can be determined whether, or not, Si ! Dj or Dj ⇉ Si.

69For ease of exposition, I’m describing all algorithmic devices as if they’re diagrammatic, rather
than more general object-based devices. What I say here can be applied easily to the broader case,
although I won’t (systematically) do that explicitly.
70Notice that we can often intuitive-effectively recognize, of two diagrams, Di and Dj that if Di⇉ Sn,
then Dj ⇉ Sn, without necessarily being able to recognize all the sentences Sj of which it’s true that
Di ⇉ Sn and Dj ⇉ Sn. For example, Dj might result from Di by the addition of a single diagrammatic
element to Di (e.g., a line or cross) so that it’s easy to tell how Di and Dj differ in their sentential
contents.
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Define the content of a diagram to be all the sentences Sn such that Di ⇉ Sn. (I’ll
notationally indicate the content of a diagram Di as Content (Di).) As noted already,
that a given sentence is in the content of a given diagram is intuitively effectively
recognizable.71

The content of a diagram, importantly, can sometimes look empty. In certain
standard language-based formal derivation systems, for example, this happens
because syntactic-transition rules allow transitions of formal sentences to well-
formed expressions with free variables – that don’t strictly speaking, say anything
– and back again. In the case of mechanical devices that enable calculations, this can
happen because certain machine-state transitions can be to and from states that don’t
nicely correspond to sentences (natural-language or otherwise). Diagrammatic algo-
rithmic devices can operate similarly. Call such syntactic-transitions between dia-
grams semantically null transitions. The algorithmic systems we’ll be concerned
with will be ones in which any such diagram has, nevertheless, an interpretation – a
content; this will be imposed on it by syntactic-transition rules that generate such
diagrams from earlier ones. (See the description of soundness results, immediately
below.)

The content of a diagram is treated as the interpretation of a diagram. This is
usually taken to be due to antecedent interpretations of the elements of the diagram,
for example, that diagrams of triangles represent triangles, closed curves represent
sets, and the interpretation of their syntactic locations in the diagram – for example,
that a point-element within a triangle-element represents the presence of a point
topologically within a triangle. That is, the interpretation of the diagram is taken to
result compositionally from the syntactic placing of these elements in the diagram.
There is much more to say about this which I can’t do here.

In any case, we usually have the following important soundness results that hold
of algorithmic devices A that are under study in this chapter:

For all diagrams Di and Dj in A, Di, ├ Dj only if

(a) For all Sn � Content (Di), Sn � Content (Dj),
(b) For all Sn � Content (Dj), Content (Di) ╞ Sn,
(c) for any semantically null transition from Di to Dj (Di,├Dj), Content (Di)¼ Con-

tent (Dj).

71Contents of diagrams here are sets of sentences. This isn’t the only option. We may want to treat
the contents instead as “what the sentences say”: in other words, the sets of configurations of
elements that the sentences are about. Doing it this way or my way doesn’t matter, except insofar as
the approach indicated in this footnote generalizes straightforwardly to model-theory – whereas my
approach involves extra steps. The reader who impatiently wants to get past sentences to items that
the sentences are about can substitute configurations of elements for sentences in my above
definition of content. This is fine except that it introduces extra expository steps in my forthcoming
discussion of how practitioners shift from diagrams to natural-language results that such diagrams
are taken to show, for example, in the case of Euclidean geometry, Proposition 1 in Book I, that an
equilateral triangle exists that has a given straight line as one of its sides.
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Some comments about the algorithmic devices these soundness results hold of.
First, as I said, this is a soundness result for the proofs generated by the

algorithmic device A, coupled with the reading-into and reading-off procedures.
Unsurprisingly, for algorithmic devices in informal rigorous mathematical contexts
generally, we don’t have completeness results. These come up – when they’re
available – when such devices and the informal mathematics they occur in are
embedded in one or another formal algorithmic system that’s formally interpreted
as well (e.g., in relation to a model theory).72 I’ll say more about this in Sect. 12.

Second, I don’t think (and so I don’t assume) that such soundness results were
shown in informal settings before modern times. Rather, they were empirically
established (or, perhaps more accurately, assumed). In addition (but related to
this), practitioners tacitly employed reading-into and reading-off procedures without
recognizing much about the properties of these procedures. They recognized that
there were potential issues with these procedures only insofar as they grappled with
unwarranted-generalization problems. These amount to (ancient and modern) ques-
tions about what the elements in a diagram can be taken for stand for (which, exactly,
mathematical triangles diagrammatic triangles in a Euclidean diagram can be taken
to stand for; what mathematical functions diagrammatic curves can be taken to stand
for; etc.); related to this, what the reasoning with specific diagrams can be taken to
have shown, generally. (I discuss this in further detail in Sect. 10.) Apart from this,
with physically instantiated algorithmic devices, empirical assumptions are needed
to show soundness results. This is because persistence and exclusion idealizations
must be assumed as successfully operative when these devices are used.

Third (as I’ve already implicated in the second remark just made), the reading-in
and reading-off procedures are crucial to the use of algorithmic devices in informal
rigorous mathematical proof. This is because the theorems shown by any execution
of an algorithmic device A, is read off of the “final state” of that device. In general,
any theorem yielded from a diagram by a reading-off procedure is of the form, S1,
. . ., Sm ╞ Sn, where S1, . . ., Sm have been read-into the sequence of diagrams at
various earlier points; and Sn is read-out from the final diagram.

Fourth (as I indicated in the discussion in Sect. 7, and especially in footnote 41),
the natural-language that the reading-in and -out procedures rely on is invariably
terminology-enriched.

This is already obvious in the later Euclidean tradition where “triangle,” “line,”
and so on refer to abstracta, and not to irregularly shaped physical items, that the
original Greek words surely referred to. The sentences read off of a diagram can also
be, syntactically speaking, “whole cloth” items: alien jargon that functions idiomat-
ically vis-à-vis natural language (i.e., items that are unparceable as far as natural
language is concerned).

72Of course, completeness results – relative to certain given model theories – may not be possible,
as Miller (2012, 34–35) indicates is the case with Euclidean diagrammatic formal systems and
certain (intended) models.
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Because of the crucial role of reading-into and reading-out procedures in these
proofs, there is an important generalization of the notion of “heterogeneous reasoning”
beyond cases of formal systems to cases where algorithmic devices occur in informal
rigorous mathematics proof (to cases of mathematics, that is, that occur in natural
languages). I’ll call this informal heterogeneous reasoning.73 The idea is straightfor-
ward. Suppose we have an algorithmic system A that licenses transitions among
diagrams Di; suppose also that we have ways of recognizing implications (╞) between
sentences of natural language (be those sentences natural-language ones or sentences
composed – in part – of supplementary and specialized mathematical vocabulary). A
proof (relying in part on an algorithmic device) can look something like this:

Si╞S j, S j ! Dk, Dk├Dl, Dl⇉Sm, Sm╞Sn,

where we take, as a result, Si ╞ Sn.
74 This is justified by a soundness result, of the

above form, for A.
Example: Suppose the relevant sentences of a natural language are ones like “ten

plus seventeen is twenty-seven.” Let Di be the configurations of an object-based or
language-based algorithm A, such as an abacus, or an (Arabic) numeral system for
addition or multiplication. The elements of Di are interpreted in natural language, say
by the assignment of the elements of a diagram, “1,” “2,” etc. to the natural-language
numerals, “one,” “two,” etc. or instead, by, say, configurations of the elements of a
physical algorithmic device (bead patterns in an abacus, for example) being assigned to
natural-language numerals. And we (consequently) interpret the diagrams, and (possi-
bly) certain subconfigurations of those diagrams, as having truth values as a result.

Consider an abacus. Here are some typical “word problems” we can solve using it:

The auditorium has 75 normal chairs and 20 high chairs. How many chairs does the
auditorium have in total?

A bricklayer stacks bricks in two rows with ten bricks in each row. On top of each
row, there is a stack of six bricks. How many bricks are there in total?

Serena buys two packs of tennis balls for $12 in total. All together there are six tennis
balls. How much does a pack of tennis balls cost? How much does one tennis ball
cost?

In each case, we extract an implicit arithmetical question that the word problem
poses, and then, using a reading-in procedure, we generate a (finite) sequence of
configurations of abacus beads; in the first word problem, for example, the arith-
metical statement to be shown is: “Seventy-five chairs plus twenty chairs is X
chairs,” where X answers the question, and thus the word problem. Call the

73I’m here generalizing Barwise’s (1993) use of the phrase to algorithmic devices in natural
language. See footnote 14 above.
74In general, of course, many sentences occur, both as antecedents, and in the stages where
sentences are read into diagrams.
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antecedent description the calculation, and call the substitution of a natural-language
numeral for “X” in “X chairs,” “X bricks,” etc. the result.75 The calculation is coded
into the algorithmic device as a sequence of configurations of abacus beads, and the
result is read off from the final configuration. Introducing the usual exclusion and
persistence idealizations, we imagine that abacus devices can be arbitrarily large in
size (and yet humans can still execute operations on them). There is an intuitively
effective recognizable class of arithmetical statements (involving the ordinary-
language addition, subtraction, multiplication, and division), where the calculation
can be intuitive-effectively coded as a sequence of configurations of an abacus, and
where the last configuration corresponds to the result. This, therefore, is an example
of heterogeneous informal reasoning, where there are both language-based infer-
ences (of, for example, word-problem statements into arithmetical statements) and
abacus inferences. The abacus results, in this way, are returned to an ordinary-
language arithmetic practice (such as it is).

We can imagine, instead, that the algorithmic devices in question are notational
(short division, multiplication, etc.). Notice the result: Via the reading-in and reading-
off procedures, algorithmic devices of all sorts can easily augment a sentence-based
informal mathematical practice. In particular, the invention of a new notation (that
provides an algorithmic device – or several) can be easily added to an already existing
mathematical practice in natural language with preexisting algorithmic devices. It’s
then empirically established that the new algorithmic devices both enable the proofs of
apparent new results or they introduce ease in yielding theorems that are already
accessible otherwise. That the algorithmic device doesn’t render the practice trivial
by yielding inconsistent results (either internally or in relation to results established by
other means) is also – and must be – empirically established.76

I need a label for the characterization I’ve just given: that informal rigorous
mathematical practice involves the use of algorithmic devices (either language-
based or not) along with reading-in and reading-out procedures. Call this the
“algorithmic-device interpretation of informal rigorous mathematical proof,” or
(for short) the device view.

10 The Generality Problem

The diagrams we make, look at, and study are tokens of syntactic objects (of types) –
that is, they’re tokens of types of physical items (sketches on paper, in sand, fleeting
utterance-events, etc.). Call the generality problem the question what interpretation

75Often, natural language is supplemented, for example, in this case with new numerals, so that the
reading-out procedures are still ones into natural language – although now supplemented.
76I mean “empirically established,” not in the sense that a mathematical proof can’t be given for this; I
mean it in the sense that we don’t have a decision procedure for discovering things like this: not
having unearthed an inconsistency so far doesn’t mean an inconsistency isn’t there to be unearthed.
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is to be given to the elements of the diagram, and thus, compositionally, to the
diagram itself. In the case of formal algorithmic systems, this is the question of what
model or set of models the diagrammatic or language-based formal system is to be
interpreted in terms of. The straightforward solution to the generality problem in the
formal context takes Gödel completeness results to be the guide to answering this:
Choose a model theory to interpret a formal system A where the validities and the
theorems match.

This, when philosophers study formal languages, usually isn’t taken to be an
acceptable solution to the generality problem. On the one hand, there is the unique-
ness problem. There are many “unintended” models for any formal theory – models
of “nonstandard arithmetic” for first-order Peano arithmetic or the many unintended
models for first-order ZFC, for example. It’s felt by many practitioners that, despite
our having no syntactic grip on any specific model in these cases, there nevertheless
is an intended model – that is, there is a unique model that we (somehow) intend the
axioms we write down to capture.77 But, not only do the syntactic consequences of
first-order Peano arithmetic fall short of extending over all the validities (theorems)
of this intended model, any augmentation of Peano arithmetic that has an effective
syntactically characterizable consequence relation falls short the same way (Gödel’s
incompleteness theorem).78 Relatedly, it’s felt by many proponents of certain logical
systems – for example, higher-order logics – that a model theory vis-à-vis which
their syntactically specified theorems are complete doesn’t capture the intended
meanings of the terms in those systems. According to the “intended” meanings of
the quantifiers of such systems, for example, any effectively specified set of syntac-
tically characterized theorems are incomplete.79

77This model, in the case of Peano arithmetic, is called “the standard model” – for example, by Kaye
(1991).
78For the record, I’m skeptical there is genuine content to “intended model” in any case in which
characterizing it outruns our syntactic resources. I can’t get further into this now; see, instead,
Azzouni (2018) for discussion of the case of arithmetic – which is a case where intended-model
intuitions are especially strong. Notice what the problem is. We feel we understand – grasp the
meaning of – the intended extension of a notion when it’s given by negating a term whose extension
we do grasp, for example, the consistent formulas of first-order logic (which are all those which
aren’t first-order validities or contradictions). On the other hand, there is certainly a sense in which
we don’t understand – don’t grasp the meaning of – the extension of a notion if it isn’t recursively
enumerable. I omit further discussion of this very delicate matter except to observe that it’s
connected to the discussion – in Sect. 7 – of how our intuitions of meaning are insensitive to
what I there called inferential scope.
79Nomenclature: I think, for the reasons just given, that the generality problem should be called,
instead, the intended-model problem. The latter label more sharply focuses what’s at issue, both in
formal and informal settings. But the “generality problem” is the label Mumma and other philos-
ophers in this literature use – so I’m sticking with it instead.
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I intend to focus on that version of the generality problem faced by a specific
informal diagrammatic system: the generality problem of ancient Euclidean dia-
grammatic practice. This version of the generality problem gets a lot of attention,
both now and over the centuries. But it’s important to indicate first that it’s something
of an illusion that a rather different form of interpretation is at work in formal settings
– where models are supposed to be used to interpret formal languages – than in the
case of informal mathematical practices with algorithmic devices, where, according
to my characterization of them, reading-in and reading-off procedures into natural
language are used instead.

The reason is one that was made clear long ago by Davidson’s (1986) character-
ization of how Tarski’s theory of truth is supposed to be used in interpreting
languages: The semantics for any language – logical or otherwise (i.e., one in
which there is a nonlogical vocabulary that’s allowed to vary across models, or
one in which there isn’t any such nonlogical vocabulary) – occurs in an interpreted
metalanguage.80 That means that the meanings of the elements of sentences and
diagrams, and the meanings of the syntactically composed sentences and diagrams
occur via transliterations of them into the antecedently meaningful language of the
metalanguage. And thatmeans that an interpretation of a formal algorithmic system,
specifically, a formal diagrammatic system, is – strictly speaking – a formalization of
what I described in the last section as the reading-in and reading-off procedures that
are applied to algorithmic devices.

More precisely, the formalization in question is accompanied by an interpretation
of the algorithmic system that’s a transliteration of a bit of informal mathematics –
diagrammatic or otherwise – and including some algorithmic devices, reading-in and
reading-off procedures, as well as (usually) some accompanying informal natural-
language reasoning. The algorithmic system and its interpretation is specified in
ordinary language (as always happens in informal rigorous mathematics) that has

80That the interpreting language be, strictly speaking, a distinct language – a “metalanguage” – isn’t
required. That’s just the traditional way of doing it. For example, it’s possible to have one language
in which the interpretation of a part of that language take place in another part, and where the two
parts are syntactically isolated from one another. I should add that in classical settings the
background interpreted metalanguage is usually (a version of) set theory – that is, a mathematical
subject matter that’s ordinary informal rigorous mathematics (in a natural language). See what
follows.
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been supplemented with specialized vocabulary – in standard cases, with set-theoretic
vocabulary.81 If the metalanguage – in which this mathematical specification of the
syntax and semantics of the algorithmic system takes place – is, in turn, formalized
then the same process (of interpretation) can be repeated.

In a purely informal setting, the generality problem coalesces onto the reading-in
and reading-off procedures; and this version of the problem has troubled mathema-
ticians (with respect to diagrams) right from ancient times until the present. The
Euclidean version of the problem is this: how is a diagram to be understood – to what
do the elements of the diagram refer? Consider a drawing of a triangle, for example.
One (natural) interpretation of it is that it represents a class of triangles that (roughly)
match the drawing’s angular properties: the acute triangles are referred to by
drawings of acute triangles; oblique triangles are referred to by drawings of oblique
triangles; and certain properties of other drawn figures – and not others – play
similar scope-indicating roles. Call these resemblance interpretations of the dia-
grams in a diagrammatic practice.82 Euclid’s proofs don’t seem to respect any
obvious resemblance interpretation systematically: sometimes certain properties of
a figure seem involved; sometimes other ones do. The generality problem (in the
Euclidean setting) is made complicated by the fact that what determines the scope of

81Model-theoretic approaches to interpretation (and Davidsonian approaches to interpretation,
therefore) cannot, contrary to Davidsonian claims (Davidson 1986), be taken as providing the
theoretical framework for explanations of how we understand languages and of how the meanings
and references of these languages are facilitated – that is, what the machinery is by which the terms
of a language acquire the referential scopes that they have (e.g., that “everything” refers to
everything; that “gold” has the extension it has). Call the latter language-world questions; call the
former language-mind questions. The reason Davidsonian approaches don’t answer language-world
and language-mind questions is that, as I’ve just mentioned, the mechanism by which Tarskian-
inspired model theories interpret languages is by providing compositional-element-to-element
correlations between target-language elements and metalanguage elements that provide the inter-
pretations for targeted elements by simply giving them the referential and meaning properties of the
correlated metalanguage elements. Doing this can’t answer language- world and language-mind
questions unless we already have answers to those questions with respect to the metalanguage
elements. That is, it defers answers to these questions for a targeted language to whatever answers
we have for the metalanguage – none as far as the Davidsonian approach is concerned since that
approach bizarrely takes the targeted language questions as answered by these correlations. Notice
the objection isn’t the truistic complaint that, if a theory of how language elements refer to the world
is given, such a theory needs to be given in a language which embodies (or has) language-world
connections and is one that we understand. The point, rather, is that no illumination of language-
world and language-mind questions is given by “explaining” that how “pomme”manages to refer to
all and only the pommes is that it happens in just the same way that “apple” manages to refer to all
and only the apples. An analogous point holds of the question of how Capucine understands
“pomme”; it doesn’t help to say that she understands it in just the way that I understand “apple.”
See Azzouni (2017b) for an attempt to spell out what’s required for a genuine attempt to answer
language-world and language-mind questions. I’ll also note that to complain this way about truth-
conditional semantic theories isn’t to complain about their ability to capture the compositionality of
languages: they successfully capture compositionality phenomena.
82Philosophically refined versions of resemblance interpretations are still taken seriously – by for
example, Shin and Giaquinto. I discuss them in Sect. 12.
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a diagram are the reading-in and reading-out procedures; but they’re implicit.83 The
result is centuries-long controversies over whether Euclid provides sufficient dia-
grams to cover all the relevant cases that seem to fall within the scope of his
established results – whether, in fact additional diagrams are needed for particular
diagrammatic proofs to successfully prove results that he seems to understand as
having a certain generality (e.g., as about all triangles, as opposed to some obeying
such and such specific conditions – for example, acuteness)84.

The generality problem for informal diagrammatic practices seems to have a
different flavor than the one faced by language-based systems. This is because there
are additional properties that we’re visually sensitive to above and beyond those
visually available in one-dimensional concatenation systems. In addition to adja-
cency, for example, there are topological properties (containedness) that it seems that
reading-in and reading-off procedures in some diagrammatic traditions can (and do)
exploit. In those diagrammatic practices, additionally, mathematicians “just see”
visually available relations that are often interpretationally correlated with properties
of the mathematical items the diagrams are about.85 This “just seeing” is (largely)
why the reading-in and -off procedures exploiting what’s “just seen” are tacit.
Nevertheless, the generality problem is the same one that’s faced by language-
based systems; this is because nothing requires the visual properties of a diagram-
matic system to be exploited by the reading-in and reading-off procedures: it’s a
convention to so-interpret syntactic properties – diagrammatic or otherwise –
regardless of whether the procedures, that exhibit these conventions and that provide
the interpretations, exploit resemblances or not.

When an informal diagrammatic practice is formalized, one explicitly “solves”
the specific version of the generality problem that diagrammatic practice faces – for
example, the Euclidean diagrammatic practice – via two moves, versions of both of
which are used when formalizing any informal inferential practice. The first move is
to mathematize the (physical) diagrams themselves by identifying them with one or
another kind of mathematical object. Shin (1994), for example – recall Sect. 8 –
mathematizes Venn-diagram drawings by characterizing them as closed curves

83Mumma (2010, 256–257) states the generality problem for the informal rigorous Euclidean
practice this way: “The generality problem arises with Euclid’s proofs because the diagram used
for a proof is always a particular diagram. Euclid clearly did not intend his propositions to concern
just the figure on display beside the proposition. They are applied in subsequent proofs to other
figures, which are not exact duplicates of the original. And so, for Euclid, consultation of the
original diagram, with all its particular features, is somehow supposed to license a generalization.
But Euclid leaves the process by which this is done obscure.”
84See Heath 1956, 245–246.
85These have come to be called “free rides” – a phrase introduced by Barwise and Shimojima
(1995). I’ll eventually characterize these in terms of what I’ll call “embodied algorithms.” See Sect.
13 below. Also see Azzouni (2013a), where I discuss the free-ride phenomenon, although without
using that nomenclature.
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within rectangles (that can be connected by lines) with certain mathematical prop-
erties.86 This corresponds to our making metamathematically explicit the syntax of a
formal language – as when the sentences of a language we speak are identified with
certain abstract objects. As I described it (in Sect. 8), well-formed syntactic items are
characterized, the syntactic-transition rules are given, and so on. The second move is
to provide a model theory (a semantics) for the resulting language-based or dia-
grammatic formal system. Although the diagrams are recognizably identified with
well-formed syntactic items, the reading-in and reading-out procedures are (rela-
tively invisibly) encapsulated into the interpretations given by the correlations of the
mathematical objects standing in for the actual diagrammatic devices (drawn circles,
etc.) to model-theoretic items.

I now turn to a closer discussion of the formalization of the Euclidean diagram-
matic practice.

11 An Algorithmic Device in Natural-Language Mathematics:
Euclidean Diagrams

Everyone admits that Euclidean geometry, the Elements, is the most influential
reasoning practice in human history.87 Consider Book I of Euclid’s the Elements.
A post-Fregean temptation – one that’s still alive among contemporaries – is to think
of Euclid’s approach as the earliest axiom system: a pioneer version of the formal
language-based systems that emerged with Frege, but occurring in natural language,
and in which diagrams play a purely heuristic role.88 Views about exactly how the

86This is often implicit, but important: The abstracta that in the formalization replace the physical
items we actually use in the informal practice – for example, the actual drawings – are chosen to
preserve (at least in principle) the intuitive-effectiveness of the recognition procedures of the
informal rigorous mathematical practice. Preservation of certain properties of the phenomenon
being mathematicized is a typical precondition on the application of branches of mathematics; in
general relativity, for example, we choose a mathematical object (a manifold) that replicates – at
least up to current observational thresholds – the properties of spacetime.
87Mumma (2008b, 256, italics his) puts it nicely: “[The Elements] represented the limit of
mathematical explicitness. It served as the paradigm for careful and exact reasoning.” This is
seen by Manders (1995), Mumma, and others studying the practice, to pose an historical puzzle:
why the relatively widespread repudiation as being obviously inadequate of the Euclidean proof-
practice by later nineteenth-century mathematicians? I provide my answer to this question in what
follows.
88Note the suggestion: diagrams play a purely heuristic role in the informal rigorous Euclidean
practice. That the practice can be formalized one way or another in a pure language-based system
(e.g., in the formal system of Avigad et al. (2009)) is irrelevant because it follows from Hilbert’s
thesis that this can always be done.
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reasoning with this system works – in particular, what role the diagrams have – has
shifted over time. Plato’s early characterization treats the diagrammatic elements as
crucial to reminding us what the proof elements (words and diagrams) refer to, and
therefore why the results diagrammatically shown are true.89 Later views of reason-
ing treat a perfect item of reasoning – a proof – as a completely explicit series of
inferences without gaps (no “missing steps”); this view is present in Descartes90 but
remained programmatic until Frege. Frege, however, sustained the picture by
assuming, naturally enough that the (artificial) language that proofs occur in is one
with a fixed semantic interpretation, and where each step follows immediately
(by rules) from earlier ones. Once the uniqueness of the possible interpretations of
artificial languages (or of the introduced terminology in natural languages) is
stripped from the picture, what remains (indicated by the phrase “by rules”) are
intuitively effective recognition procedures for proofs. The internal syntactic struc-
ture of the language and the interpretations of the logical operators across models
that it embodies are all that remain to fix the interpretations of its sentences and that
of the other language elements.91

Until it was recognized that diagrammatic proofs – specifically, the transitions
between diagrams in a diagrammatic proof – utilize intuitively effective recognition
procedures just as language-based proofs do (and thus are equally open to formal-
ization), the temptation remained to treat our recognition of the inferential properties
of proofs as matters of “intuition” to be eliminated. So, I’m hypothesizing that a
certain picture of proof (gaplessness) and the impression that gap-free proofs are

89My interpretation of Plato’s view of reasoning is that it’s akin to perception: “seeing” in the sense
of understanding and “seeing” in the sense of visually perceiving aren’t ambiguously different
meanings of “see” as they appear to be. (This is how I’m stating Plato’s position in English; I’m
certainly not making any sort of claim about the corresponding Greek words.) This shortly mutated
into a view where reasoning was seen as a matter of deducing particulars from universals, although,
I think, this deducing continued to be regarded as a kind of “seeing” – the universals, in particular.
90Descartes (1931, 19) writes of deductions that they must be “scrutinized by a movement of
thought which is continuous and nowhere interrupted. . ..” I’m tempted to credit Descartes with
originating this view of proof, but this is a matter for historians to determine, not me: I don’t know
whether there were earlier expressions of the claim or (as important) whether Descartes knew of and
was influenced by them. The idea, of course, may originate in the impression that inferring is like
seeing.
91Thus: the emergence of unintended interpretations.
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only possible in language-based media were decisive in turning mathematicians
against the use of diagrams.92

There are several contemporary formalizations of Euclidean geometry. In this
section, I’ll focus on two: Miller’s FG and Mumma’s Eu.93 I’ll first give a short
overview of how I regard the original Euclidean practice – this involves a bit of
speculation, of course.94 Then I’ll turn to sketching how Miller and Mumma
formalize the Euclidean practice; this naturally raises issues about which properties

92Mumma (2010, 257–259) suggests that what instead turned mathematicians against diagrams,
and, specifically, Euclidean diagrams, was the generality problem.
A different challenge to my historical hypothesis is posed by something Frege (1879, 5) writes of

his own version of mathematical proof: “To prevent anything intuitive [Anschauliches] from
penetrating here unnoticed, I had to bend every effort to keep the chain free of gaps.” This makes
it sound like the gapless ideal for proof was introduced by Frege to avoid “intuition,” and not that
the programmatic gapless model of proof was appealing (and motivating him) in its own right, and
thus was what was undermining the acceptability of “intuition.” My interpretation is saved,
however, if Frege’s use of “anschauliches,” is read – as I think it should be – not as only a label
for pictures but as standing for anything unarticulated that enables a mathematician to “see” his way
from p to q without using the intermediate steps that are presumed present in a “fully-explicit”
canonical proof. “Intuition,” when used to describe the mathematical insights that diagrams enable
involves several elements that weren’t clearly distinguished. One is the historically unrecognized
role of intuitively effective recognition procedures directly involved in informal diagrammatic
proof; but a second element (that I discuss in further detail later) is the implicit interpretations of
diagrams via the reading-in and reading-off procedures.
Still another apparent challenge to my historical interpretation of Frege being primarily focused

on gapless proof is that he also seems to explicitly commit himself to purity views of mathematical
proof, as Detlefsen (2008, 187) illustrates with a quotation. Frege’s purity condition, however, is
specifically focused on the exclusion of “geometrical elements” from arithmetic. And, further, it
also seems that Frege is thinking that the “geometrical elements” are ones that aren’t logical – he
writes, in the quotation that Detlefsen gives, “the task of deriving what was arithmetical by purely
arithmetical means, i.e. purely logically, could not be put off.” This quotation, therefore, is
compatible with the gapless logical ideal of proof still being Frege’s central motivation, since he
doesn’t commit himself to a more general form of purity of mathematical subject-matter. See
footnote 46 for examples of philosophers and mathematicians who extoll purity goals in mathe-
matical proofs, where those goals are driven by subject-area considerations and not logic.
93See Miller (2007, 2012), Mumma (2008a, b, 2010, 2019). There is ongoing controversy about Eu,
and so this system is, as a result, still somewhat in flux. Miller (2012) shows that the earlier version
of Eu (Mumma (2010) – and elsewhere) is inconsistent, unsound, and has several other infelicities
as well. Mumma (2019) addresses the issues Miller raises by substantially modifying the system.
(Although Mumma has not done so, the two systems should really be distinguished by different
names.)
94This discussion further supplements the picture I gave of the Euclidean practice in Azzouni
(2004). I wrote that paper in 1998, for the New Trends in the History and Philosophy of Mathe-
matics Conference held at the University of Roskilde, Denmark, August 6–8, 1998; the conference
papers, however, weren’t published until 2004 – thus my neutrality vis-à-vis mathematical ontology
in the paper (which is the same version I gave at the conference) instead of my by-2004 adopted
nominalism. I should add that both in this chapter, and back in 1998, I’m not and wasn’t attempting
a suitably careful historical analysis of the Euclidean practice. See, instead, for this, Manders (1995)
and Manders (2008). I’m avoiding, for example, the complex question of diagrammatic proofs-by-
contradiction that he (1995) discusses with such care.
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of informal rigorous proofs can be successfully transferred to their formalized
cousins, and which can’t – in particular if and when such formalizations replicate
the phenomenological properties of the original proof practice.

There is an implicit (and sometimes explicit) assumption by those who formalize
informal rigorous diagrammatic practices (e.g., Miller, Mumma, Shin, and others)
that the informal reasoning practice is captured by these formalizations – that the
formalizations reveal the reasoning implicit in the informal practice. Mumma
(2008b, 256, footnote 1) writes, for example: “One should keep in mind that my
criticisms [of Miller (2008)] are closely connected to my views on how my work and
Miller’s compare with respect to capturing Euclid’s reasoning.” At least insofar as
the implicit reading-in and reading-off procedures are concerned, this is wrong: these
informal procedures are invariably indeterminate in various respects that cannot be
captured by any formalization – simply because formalizations decide interpreta-
tional issues that are indeterminate as far as the informal rigorous practice is
concerned. Apart from this, both Millers’ and Mumma’s formalizations fail to
replicate the informal practice as I’ll indicate in what follows: specifically, these
formalizations don’t capture the case-structure of the original Euclidean geometry
because they substitute different diagrammatic cases for Euclid’s; more dramatically,
they substitute a mathematical basis that diagrams are constructed from that’s
phenomenologically alien to our experience of the physical diagrams themselves.
I’m not making a point about the interpretations of the Euclidean diagrams and those
that Mumma and Miller give; I’m making a point about their metamathematics: how
they characterize the syntax of the diagrams.95 I now illustrate this.

Consider a preliminary observation about Mumma’s approach. Mumma (2010)
adopts Manders’ (1995) distinction between exact and co-exact properties of dia-
grams. This (roughly) is a distinction between the metrical properties – the “exact”
properties – of the figures in a diagram (the lengths of lines, the areas of triangles, the
relative sizes of corresponding figures, etc.) and their topological properties, the “co-
exact” properties (what regions are defined by figures, what elements are within and
without figures, etc.).96 Mumma claims – following Manders (1995) – that the
original practice involved two proof systems, a diagrammatic one and a language-
based one; both philosophers claim that only the co-exact properties of diagrams are
used in the (strictly) diagrammatic Euclidean proof-system; the exact properties are
either stipulated of the figures or proven in language-based proofs. (Mumma (2008a,

95Shin’s approach, described in Sect. 8, is much closer to the original informal Venn-diagram
practice, and retains much of the phenomenological qualities of the original informal diagrams –
despite the fact that she introduces closed curves for circles (not all of her diagrams retain the
relevant phenomenological qualities, but some do; I discuss this further in Sect. 12).
96See Manders (2008, 69) for a nice description of his exact/co-exact distinction. He adopts the term
“appearance” for the set of co-exact conditions on a diagram. I’ll suggest later in this section, at least
as far as the experience of these diagrams is concerned, that this is misleading terminology. Even if
the proof-machinery operates solely via the co-exact conditions of a Euclidean diagram, our
appreciation of what it shows – including how much its results hold of diagrams different from
the one being seen, turns on our perception of how it appears: its geometry.
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italics his) writes: “The key observation is that Euclid’s diagrams contribute to
proofs only through their co-exact properties.”) I’ve not determined whether this
claim is true of the original proofs in Euclid – it certainly looks like it might be – but,
in any case, the informal rigorous Euclidean practice isn’t obviously divisible into
two proof procedures in this way. Manders’ observation about co-exactness, if right,
is a substantial discovery about Euclidean proof-practice.97

Mumma (2010) also takes Eu to “solve” the generality problem (the question of
what the diagrammatic elements in Euclidean proofs refer to), and criticizes Miller’s
earlier approach on the grounds that its solution to the generality problem increases
the number of diagrams that any diagrammatic proof requires; he denies that the
original practice could have operated in this way since Euclid never considers so
many cases – and more importantly, couldn’t do so (Mumma (2010), 263–264,
footnote 4) because of their “staggering” number and because most of them “are not
physically realizable.”

The first point to make is to object to a mutually held assumption of Mumma and
Miller. Formalizations of any informal rigorous mathematical practice always
involve well-defined interpretations (models are given), and so they always
“solve” the generality problem one way or another. But any such “solution” invari-
ably deviates from the original practice because there is no solution (in the informal
rigorous practice itself) to the generality problem that original practice faces: the
scope of a diagram – the particular theorem it establishes – and, relatedly, the
references of its elements are given by the reading-in and reading-out procedures,
and (since the interpretations these give occur only tacitly in the practice, and even
tacitly in the natural-language sentences that supply the interpretations) the informal
practice is necessarily indeterminate in referential scope. I’ll discuss this further in
Sect. 13. I’ll add now, however, that a similar generality problem occurs with respect
to language-based informal rigorous mathematical proofs – when specialized termi-
nology is involved. This is because specialized mathematical terminology can (and
usually does) referentially mutate over time: consider the notorious case of the
notion of a “function,” during the course of several centuries.

The original Euclidean practice, of course, doesn’t explicitly exhibit the neat
distinctions I drew in the last section either – between diagrammatic transitions, on

97Although the insight is based on an observation commonly made through the centuries: Euclidean
proofs avoid exact measurements (marked rulers) of the figures that are diagrammatically manip-
ulated. One supporting consideration in favor of Mander’s two-proof-procedure suggestion –
diagrammatic and language-based – is that slash-marks (which are diagrammatic) seem to be a
nineteenth-century innovation (Manders 1995, 97, footnote 14). On the other hand, another
interpretational possibility is the conventionalist construal of the diagrams (see the definition of
the “conventional option” shortly below) coupled with a meta-diagrammatic language in which all
the proofs take place. According to this interpretation, there are no “diagrammatic proofs”: rather, in
the meta-diagrammatic language, one has the resources to “point to” aspects of diagrams – both
exact and co-exact features. (Diagrams are, as it were, “quoted” in the metalanguage.) I entertain
this interpretational hypothesis in Azzouni (2004); I claim that it wasn’t available to ancient Greeks
as a possible interpretation of their Euclidean practice – even if it was true of that practice – because
of their implicit philosophical views about (correspondence) truth.)
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the one hand, and the reading-in and reading-off recognition procedures, on the
other. This is hardly surprising since, in my description above, the reading-in and
reading-off procedures (which supply interpretations for the diagrams and their
elements) are sharply distinguished from the syntactic obtainability relations
among diagrams; by contrast, talk of diagrammatic elements and talk of the inter-
pretations of those elements are, generally, not distinguished in Euclid’s Elements –
less charitably put, they’re systematically confused. Consider the following
definitions:

1. A point is that which has no part.
2. A line is breadthless length.
3. The extremities of a line are points.
4. A straight line is a line which lies evenly with the points on itself.
5. A surface is that which has length and breadth only.98

These (with the exception of (3)) purportedly describe the mathematical objects
of study. Items which have no parts, or are breadthless, or have length and breadth
only, can’t be the actual diagrammatic items we draw and so they’re abstracta. Call
this the Platonic option. This option, that is, treats diagrammatic elements as
referring to abstracta, and it treats the definitions as attempting to determinately fix
the referents of these pictorial elements, drawn points, lines, etc. that appear in
diagrams. For those who take diagrams to refer to Platonic entities, these definitions
must fail as a result (worse, they’re pointless): one cannot in this way provide
interpretations; one can, at best, restrict the interpretations of primitive terms via
axioms, which interlock those interpretations to one another in various ways.

This problem is quite general. The primitive terms – and now I use the phrase
“primitive term” broadly to cover both the words in language-based sentences and
the pictorial elements in diagrams – cannot be defined in this way, as we now know.
Where referents are physically available, they can be indicated by language-exit
rules (gestures and the like); when they aren’t, these referents can only be fixed by
axioms and inference rules (diagrammatic or otherwise) that constrain – but gener-
ally can’t determine uniquely – possible interpretations. And this exhausts what can
be done within a language. Within the confines of another language
(a “metalanguage”) a model can be given – this includes explicit interpretations of
the primitive terms, which are given with the model. The generality problem, in the
context of an informal rigorous mathematical practice, is the problem of how the
primitive terms of that practice are given interpretations.

A second option for characterizing the role of these definitions takes them to be
meant to describe diagrammatic items in a way that indicates some of the conven-
tions governing the drawing of diagrams; and how, as a result, we’re to understand
such items. In this case the subsequent proofs involve claims – in natural languages –
about the conventionalized diagrams themselves. I’ll call this the conventional

98Heath (1956, 153); his numbering, his boldface.
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option.99 On this view, diagrammatic elements are (exactly) like chess pieces; it’s
understood, that when a chess piece is moved, it’s subsequently located in one and
only one square even if it’s been placed sloppily on the board (or even if the board is
designed so badly that it can be hard to tell where a piece is). This involves
understanding physical chess pieces conventionally – by imposing laws of move-
ment on them via stipulations: these are laws of movement they’ll otherwise violate.
It isn’t – notice – a matter of treating chess pieces as standing in for (or referring to)
chess-piece abstracta that actually have the properties that chess pieces are conven-
tionally treated as having (that’s a version of the Platonic option – again).

In any case, the Elements both describes diagrammatic syntactic-transitions of
diagrams in terms of what can be done to a diagram with respect to the above visual
points, lines, etc. but runs this together with assumptions or claims about the interpre-
tations of those visual items when they appear in diagrams, as in the postulates:

1. To draw a straight line from any point to any point
2. To produce a finite straight line continuously in a straight line
3. To describe a circle with any center and distance.100

Although naked infinitives are hard to interpret (and although I’m relying on
Heath’s translation when I say this and interpret the words as I do in the next few
lines – assuming, that is, that what I say is true of the ancient Greek), the postulates
(1) and (2) seem to describe permissions for possible actions that can be taken on
diagrams; they don’t seem to be characterizations of what the diagrammatic items,
points and lines, refer to (i.e., to the mathematical objects: points and lines); they
aren’t, to put it another way, existence claims about what the elements of the
diagrams depict. This “action-interpretation” of these postulates follows from the
use of the phrases “to draw” and “to produce.” On the other hand, (3), because of the
word, “describe,” seems, in addition to apparently describing an admissible action
that may be taken to construct a diagram, to be offering an interpretation of what that
diagram (of a drawn circle with a particular center and distance) is to stand for.
According to the Platonic option, these definitions together with the postulates
exhibit various use/mention confusions; according to the conventional option,
there aren’t such confusions (except insofar as interpretational issues are intruding
in what otherwise would be a pure description of the syntactic conventions of a
diagrammatic practice, and the nature of the syntactic idealizations it involves).

Recalibrating the informal Euclidean practice so that it accords with the device
view (as it was described in Sect. 9) entails very little by way of changes to the look

99Leibniz writes: “[Geometrical] figures must also be regarded as characters, for the circle described
on paper is not a true circle and need not be; it is enough that we take it for a circle” (quoted by
Manders (1995, 80). See Azzouni (2004) for further discussion of these two options and the
evidence for why the Platonic option was eventually universally adopted despite the Elements
retaining aspects of a conventional diagrammatic-practice, for example, in the statements of some
postulates, as I indicate shortly.
100Heath (1956, 154); his numbering, his spelling.
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of the actual practice. One needs to, first, distinguish the diagrammatic/notational
elements from the interpretations of those elements, second, to describe (in an
interpretation-free way) the syntactic-transitions embodied in that practice, and
third, to indicate the interpretations of the elements of the diagrammatic/notational
elements. That’s not changing much.

I claim this is generally the case with the device view – in contrast to current
formalizations of informal mathematical proofs, especially those of the Euclidean
practice. I feel safe, thus, in regarding the device view as providing a theoretical
schematic that enables descriptions of ordinary informal mathematical practices –
diagrammatic and otherwise – despite its drawing a sharp distinction between
actions on elements (of diagrams or languages) and how those elements are
interpreted, a distinction which isn’t exhibited directly in those practices themselves
(as the discussion of the Euclidean case indicates). Reformulating an informal
mathematical practice according to the device view should leave all the proof-
theoretic flaws (if any) in the practice intact. For example, if (as many have
illustrated) Euclidean diagrams can be ambiguous or misleading, the presence of
these ambiguous or misleading diagrams should survive the practice being recast
according to the device view. Second, it should also leave intact interpretational
flaws – for example, failures to (fully) solve the generality problem. In this sense, if
only because formalizations are consistent and determinate, they impose normative
constraints on the informal practice that the practice itself needn’t exhibit.101

The upshot: Attempts to formalize informal rigorous mathematical proof practices
pose challenges that go quite beyond what’s required to frame that practice correctly
and according to the device view. In particular, with respect to diagrammatic reason-
ing, since (almost invariably) there is relevant reasoning occurring in the natural
language apart from the syntactic transitions from diagram to diagram, that reasoning
must be formalized as well. In addition, the reading-in and reading-out procedures
must be treated both as supplying interpretations – so they are implicit guides (for
example) of the model theory that is to be used to interpret the formal system – and as
providing crucial inferential structure between the mathematical content expressed by
ordinary-language sentences and that expressed by the diagrams licensed by the
algorithmic devices.

101I’m not saying, of course, that an informal mathematical practice need be flawed in various ways;
but whether it is or not is usually clear to practitioners at the time that the practice is living, and not
because they’re aware of one or another formalization that they’re comparing the informal practice
with. This is true, for example, of the ancient debates over how many diagrams should appear in a
diagrammatic proof, and whether some diagrams are “ambiguous.” This is similarly true of the
debates over the acceptable manipulations of the notation for infinite series in the eighteenth and
nineteenth centuries. It’s important to realize that these debates are (often) resolved in the informal
practice itself by notational reforms of various sorts along with changes in the rules for manipulating
the syntax of an algorithmic device: these changes can be characterized in ways that don’t require
discussions of formalizations. (There is an exception, of course, once formalizations themselves
become part of the mathematical toolkit among ordinary mathematicians; then a formalization may
itself replace the previous informal rigorous mathematical practice – at least in some respects.)
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Miller and Mumma formalize the Euclid’s diagrammatic practice in (quite
distinct) formal diagrammatic systems. That means, to begin with (as I indicated
earlier), that in both cases the physical diagrams themselves are identified with
certain kinds of mathematical objects – certain kinds of two-dimensional abstracta
– that can be (intuitive-effectively) recognized as having certain properties and not
others. Right at this point both formalizations deviate in a significant way from the
Euclidean (book I) practice; this – all by itself – faults claims that either resulting
formal system “captures” the reasoning embodied in the original practice.

First, recall that the figures in the original Euclidean practice are constructed only
by using straightedge and compass.102 Actual physical drawings – I stress again –
can be identified (preliminarily to representing an informal practice formally) with
mathematical objects of any sort; the mathematical objects chosen will vary, of
course, in how adequately they capture the original practice. But to identify physical
drawings with any particular set of abstracta involves decisions of certain sorts that
bear directly both on the question of how the figures in the drawings are being
interpreted, and specifically, on how those figures are being interpreted to pick out
certain items in the formal domain and not others. The geometrical properties of the
actually drawn figures don’t all by themselves dictate an answer to what abstracta
they should be identified with. For example, we may choose to identify the physi-
cally drawn lines with various nonlinear curves of all sorts – not just straight lines –
on the grounds that such physically drawn lines (especially when drawn badly, as
they can be) really do approximate nonlinear curves of various sorts more closely
than straight lines.103 The same point can be made about the curves generated using a
compass – they needn’t be literally circular but only approximately circular, and we
may take them to better approximate something noncircular. Miller’s FA and
Mumma Eu are formal systems based on an interpretation of Euclid’s figures that
identifies them syntactically with what at first glance appear to be quite broad classes
of mathematical objects.

Miller, for example, defines the notion of a “nicely well-formed diagram” in terms
of four primitive symbols (compare this to Shin (1994) – the strategy is the same
one): frames, dots, unbroken lines, dash-lines, and slash-marks.104 Any diagram

102In addition, points can be placed into the diagram – pretty much anywhere you want to drop them
(subject, of course, to resolution considerations that prevent points from being too close to one
another). This doesn’t falsify the claim I just made about figures. In the Euclidean context, you can’t
drop a bunch of points in succession and use them to design a nonlinear/noncircular curve (that goes
through all of them). The automatic existence of various (infinitely many) one-dimensional curves
going through a set of points goes quite beyond the Euclidean system. Any one-dimensional curve
that connects any two points must result from the operation of straightedge or compass.
103Miller (2007, 3) stresses right at the beginning of his study, that the “different kinds of line
segments” that appear in Euclidean diagrams “do not have to really be straight.”
104“Dash lines,” are broken lines, for example, -----, as opposed to unbroken lines, for example,
——. I’m taking a few expository shortcut liberties in my description of Miller’s approach, for
example, “marked diagrams” are defined, not by the introduction of slash-marks as part of the
primitives for diagrams, but as an extension of diagram equivalence to “marked diagrams” (see
Miller 2007, 31).

54 J. Azzouni

jazzou01
Cross-Out

jazzou01
Inserted Text
Please remove the striked out work "the"



occurs within a frame and it’s composed of a finite number of dots, unbroken lines,
and dash-lines – the unbroken lines represent Euclidean lines (although they needn’t
be straight) and the dash-lines represent arcs of circles (although they needn’t be
circular arcs). The definition of nicely well-formed diagrams includes a list of
conditions that force unbroken lines and dotted lines to behave roughly (that is,
topologically) like Euclidean lines and circles. (For example, one condition is that
two “circles” intersect no more than twice.) To replicate Euclidean reasoning, these
diagrams need these and additional characterizations. The result is that, again
roughly, Miller’s “nicely well-formed” diagrams can be associated with the original
Euclidean diagrams. Miller then designs the actual proof-system in terms of topo-
logically equivalent diagrams.105

Mumma’s Eu, on the other hand, proceeds in a strikingly different way.106 Instead
of correlating Euclid’s physical diagrams with a domain of rectangles containing
arbitrarily nonlinear curves (except for obeying certain conditions, as mentioned
above) and dashed curves (also, generally, noncircular, except for obeying certain
conditions), etc., Mumma’s domains are finite rectangles defined by square arrays of
evenly spaced hollow (“○”) and solid (“●”) dots. The dots can be connected by
lines, and some of those lines represent Euclidean lines; the finite lines, however, that
are part of various convex polygons (together) represent circles. Like Miller,
Mumma starts with an initial characterization of diagrams (call them “pre-dia-
grams”) but then, like Miller does with his pre-diagrams, Mumma places an equiv-
alence relation on them. A completion (nonunique) of a diagram D is one, D*, that’s
like D except that it has additional evenly spaced hollow and solid dots – enough so
that every intersection point between the drawn lines and rays occurs as a dot. A
definition of equivalent diagrams in terms of completions of them is then given by
Mumma.

The result still deviates greatly from the informal rigorous diagrammatic practice
– the experience of working in Mumma’s system, specifically, deviates phenome-
nologically from Euclid’s original diagrammatic practice. Why? For two reasons.
The first is relatively insignificant: the diagrams we work with in Mumma’s system
involve visually recognized lines and polygons – not circles. Circles are conven-
tionally represented by polygons. But the important difference should be visible,
even given my rather sketchy description of the approach: the visibility of the array
of hollow (and solid) dots that diagrams occur on. This transforms proofs in the
Euclidean context – where diagrams are built upon one another by dropping points
arbitrarily into what appears to be a manifold, and by drawing lines between points,

105This equivalence relation is technically involved – using a mapping between nicely well-formed
diagrams and planar graphs. In terms of this mapping, two diagrams are defined as equivalent if they
have the same corresponding graph structure. The different cases that must be considered in one of
Miller’s proofs then correspond to how many diagrams with differing graph structures become
involved. It’s worth pointing out, when comparing the reasoning in Miller’s system with that of the
original Euclid that the computer (which carries out the reasoning in Miller’s system) works not
with diagrams but instead with planar graphs. I make something of this shortly.
106I’m here following Mumma’s (2019), where he lays out the modified system nicely.
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and otherwise, by drawing lines arbitrarily and by drawing circles arbitrarily as well
– into something experientially very different. The array-structure of the Euclidean
context – in ordinary Euclidean proofs – as I said, isn’t directly visible; it’s required
only by virtue of the incapacity of the practitioners to resolve arbitrarily small
differences between drawn figures.

This suggests that Miller’s identification of Euclidean figures with curves results
in something phenomenologically much closer to the informal Euclidean approach
than Mumma’s is: it’s one, recall, where figures are (apart from certain conditions)
are arbitrarily nonlinear and noncircular – despite being “lines” and “circles.” The
manifold-flavor, that is, of the original diagrammatic proofs seems preserved. Nev-
ertheless, Miller’s approach isn’t phenomenologically closer to Euclid’s original
practice than Mumma’s reincarnation of it is. One reason (there are several) is
because of something about the original Euclidean practice that’s right on the
surface. As Mumma (2008b, 259) points out in his review of Miller (2007), rather
strange – from the Euclidean perspective – diagrams can appear in Millers’ system.
Mumma’s example (his Fig. 3) – of “two ways to represent an equilateral triangle in
FG” – follows:

Mumma (2008b, 262), further criticizing Millers’ approach, writes (italics and
boldface his):

. . . when a case-heavy FG formalization is laid beside Euclid’s original version, the original
does not appear deficient. Rather, the multitude of cases generated by the rules of FG appear
excessive. The geometric differences recorded by a case-branching often do not seem
material to the issue the proof decides.

This criticism, however, largely misses the point. It primarily focuses on the sheer
number of cases; but a formalization captures the phenomenology of an informal
rigorous mathematical practice not by (even somewhat closely) matching the num-
ber of cases that appear informally; what’s important is what kind of cases are
involved: do the cases that are required by a formalization of Euclid’s approach
track the spirit of why the particular diagrams in the original practice come up? More
important is this consideration: does the phenomenology of the original diagram-
matic practice match (at least to some extent) the phenomenology of the formalized
practice?

Mumma’s criticism focuses on the fact that Millers’ approach multiplies the
number of cases that a Euclidean proof requires in a way that goes beyond the
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cases that the Euclidean approach seems to consider – even when that approach is
supplemented with additional diagrams, as occurred later in the geometrical tradi-
tion. But the way that Millers’ approach deviates from the Euclidean approach,
although indicated by Mumma’s Fig. 3, isn’t stressed by him. This is that it treats the
geometric information a diagram supplies as irrelevant to the proofs. It may be true
that the geometric information a diagram supplies is irrelevant to the proof pro-
cedures that Euclidean geometry licenses but it’s surely not irrelevant to how we
come to understand these proofs because of how the diagrams look. Miller’s
approach is designed to facilitate a certain computer implementation, CDEG.107

But the computer doesn’t manipulate Miller’s diagrams; it manipulates the graphs
that the diagrams determine nonuniquely. Thus, the proof-practice Miller’s formal-
ization licenses amounts to this. A Euclidean diagram D is represented by a Miller
diagram, M –more accurately, D is represented by a finite set of Miller diagrams. M,
in turn, isn’t itself manipulated according to a proof procedure; rather, M is used to
generate a graph G, and it’s G that’s manipulated proof-theoretically. In turn, then, G
is either transformed into programming code (which can be printed out), or into a
canonical Miller diagram M*. This, it should be clear, is very far from the original
Euclidean practice. In particular, Miller’s approach cannot be used to explain what it
is about Euclidean diagrams that makes the results they license so “intuitively”
comprehensible.

In fact, neither Miller’s nor Mumma’s approach has even a hope of managing the
replication of the understanding/insight that the Euclidean practice provides to its
practitioners; this is because of the initial way both approaches mathematicize
Euclidean diagrams. Return to the original practice for a moment. Three and only
three sorts of primitive diagrammatic elements show up: points, lines, and arcs of
circles. That’s it. Diagrammatically speaking, there are no other entities that appear
in diagrams. Of course it’s true that what’s drawn (physically) can unpleasantly
deviate from what we (conventionally) take points, lines, and circles to resemble.
But the expected (and allowable) response, if the intention is to formalize the
practice in a way that captures the original reasoning, isn’t to formalize the original
proof-processes where badly drawn figures that deviate from what looks like circles
and lines become crucial to the cases that a proof must accommodate. Rather, the
response is: “that’s drawn badly; I can’t see what’s going on; can you make a better
one?”108

This means that, in a formalization of the syntax of a formal Euclidean diagram-
matic system, the appropriate domain (the appropriate alphabet, as it were) should
be one in which only circles, lines, rays, and points appear, and where these items are
restricted in their sizes (and how they interact with one another) so that they are

107I’m here relying on Miller (2007, Sect. 3.5).
108See Manders (2008, 71) on how the original Euclidean practice tried to avoid “sensitive situa-
tions.” This dovetails with what I’ve earlier called exclusion idealizations (defined in Sect. 2).
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(by eye) surveyable.109 The formalization approach I’m sketching treats deviations
from circularity and linearity not as diagrammatic phenomena to be captured or
replicated in the syntax of the resulting formalization but instead, as it was in the
original practice, as items to be excluded.110 The cost of not doing this – as I’ve
indicated – is to “replicate” the informal practice by a formalization that doesn’t
respect the phenomenological qualities of the original practice – this matters because
those phenomenological qualities are what underlie our experiences of understand-
ing proofs, specifically the “aha”-epiphany. I now turn to an explicit discussion of
this and its relation to the generality problem.

12 Phenomenologically Faithful Embeddings of Algorithmic
Devices in Formal Algorithmic Systems

The phenomenological flavor of a proof is a somewhat elusive matter (and so it’s
dangerous to venture saying anything about it). Nevertheless, it’s, importantly, what
I think philosophers are tracking when they describe certain proofs as explanatory
and others as unexplanatory; the same phenomena – the phenomenology of a proof
(how the proof is experienced) – is also being tracked by mathematicians when they
describe certain proofs (or, as commonly, certain subject areas – with their typical
proofs) as beautiful or ugly. I’m not going to dwell on issues about explanation in
mathematical proof – this is too tangled and complex to take up even in a paper this
big. But I do want to describe the phenomenological aspects of informal proofs
enough to give a rough characterization of how – and to what extent – formalizations
capture these qualities of informal proof practices.

Recall the initial discussion of the “aha”-epiphany described by Feferman (2012)
in Sect. 3. Recall, for that matter, the constraint on derivational accounts, Phenom-
enology, that such accounts must explain why formal transcriptions of informal

109This characterization of the syntactic domain is, of course, subject to the persistence and
exclusion idealizations given in Sects. 2 and 4, and later. Despite appearances (i.e., the phrase
“by eye”), I’m describing a purely mathematical exclusion condition on circles, lines, rays, and
points: that is, we translate an empirical fact about average-resolution capacities into numerical
lower-limit conditions on admissible circles, lines, and rays.
110I don’t know of, at the moment, any formalization of the original Euclidean practice that
approaches it the way I’m suggesting here. I don’t see any reason, however (offhand), to rule it
out. I’m gambling in saying this, however, because an approach to formalization can always be
ruled out by unexpected technical obstacles. Illustration: The original Venn diagrammatic practice
used overlapping circles. In order to generalize the approach to finite collections of sets (recall Sect.
8, specifically footnote 61), Shin – relying on a result due to Polythress and Sun (1972) – replaces
the circles of the original practice with closed curves. I should add that I don’t claim that the
resulting formal system I’m sketching an approach to won’t be heterogeneous, rather than purely
diagrammatic. It might be, and it might respect some descendant or other of Manders’ exact/co-
exact distinction. But the informal practice underdetermines exactly what belongs to the language-
based part of the formal system and what belongs to the diagrammatic part – for example, exact-
numerical identifications between figures and their parts might be indicated diagrammatically by
slash-mark notation or by language-based characterizations accompanying the diagrams.
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rigorous mathematical proofs don’t replicate that experience. The first point is that,
although formalizations are often described as lacking the epistemic “aha, now I see
why this is true” epiphany that’s sometimes experienced with an informal proof, this
simply isn’t true of formalizations, in general: they needn’t be so lacking. Other
philosophers who contrast informal rigorous mathematical proof with formal deri-
vation disagree with me.

Giaquinto (2008a, 27) writes, for example, “. . .there is a reason to avoid going
formal: in a formalized version of a proof, the original intuitive line of thought is
liable to be obscured by a multitude of minute steps.” It should be clear from the
foregoing that, even though it’s a requirement on a formal system that its syntax be
completely given, it’s not a requirement that the syntactic transitions licensed by the
formal system involve minutia.111

Rav (2007, 315, and elsewhere) suggests that formalizations must fall short in
relation to their informal cousins because built into the appreciation of informal
rigorous proofs and not their formalized cousins are the meanings of the terms used
in the sentences of that sort of proof. He writes: “I hold that mathematicians’manner
of reasoning and inferences are based on meanings and an informal notion of truth
that a formal deduction calculus cannot capture” (italics his).112 Rav (1999, 12) some
years earlier puts his claim about the experiential distance between informal proofs
and formalizations of them far more melodramatically (italics and spelling his):

Once we have crossed the Hilbert Bridge into the land of meaningless symbols, we find
ourselves on the shuffleboard of symbol manipulations, and as these symbols do not encode
meanings, we cannot return via the Hilbert Bridge and restore meanings on the basis of a
sequence of symbols representing formal derivations. After all, it is the very purpose of
formalisation to squeeze out the sap of meanings in order not to blur focusing only on the
logico-structural properties of proofs. Meanings are now shifted to the metalanguage, as is
well known.

111This is an impression many have from a familiarity with formal language-based systems that
involve, say, a lot of parentheses, or where the transitivity and symmetry of “&,” and other
connectives aren’t built into the syntactic recognition procedures. All that’s required of a formal
system, however, is that its syntactic transitions be effectively recognizable. Thus, a formal system
can be substantially modified by “shortcuts” and abbreviations,” that make it far more user-friendly
– as long as these are open to intuitively effective recognition procedures. I should add that in past
work I’ve also contrasted formal and informal proof in just this way (mea culpa).
112A position in the same neighborhood is expressed by Larvor (2012, 723) when he writes: “The
benefit of viewing inference as action is that we can see how the subject-matter of informal
arguments shapes and contributes to inferences” (italics mine), and by De Toffoli and Giardino
(2015, 332–333) who explicitly follow Larvor in this, writing: “In Rolfsen’s proof, we saw that
among the permissible actions on the pictures are continuous transformations. These are part of the
background material in the sense that any topologist knows immediately that these transformations
can be interpreted in terms of homeomorphisms. The validity is thus based on the ‘practice’ . . .”
(again, italics mine). Notice that De Toffoli and Giardino describe “continuous transformations” as
permissible actions on pictures. This is a confusion.
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This misleads how much informal phenomenology – specifically the experience of
meanings – can occur in a formal setting. First point: meanings aren’t, in any case,
shifted to the metalanguage, as Rav writes – rather the meanings of the object
language expressions are given in terms of the metalanguage (recall the discussion
of this in Sect. 10). Second: In any case, our ability to psychologically invest formal
terms with meanings should already be obvious from the centuries-long practice
mathematicians have had with the routine introduction of new terminology into
mathematical settings. Indeed, the point should be clear from the ubiquitous practice
already in place with ordinary words – we (collectively) both modify the meanings
of words and phrases already in public possession and routinely introduce new terms
and phrases by indicating their meanings. What’s striking, in addition, is that we can
have the experience that a meaningful expression has been introduced (and that we
grasp it) without being given a definition but just an illustration or two – typically all
that’s presented in dictionaries. Many of us continue to learn what we experience as
new meaningful expressions all our lives.113 Nothing prevents us doing the same
thing to new terminology that’s been introduced in a formal setting. (Indeed, we
regularly do this; Rav’s remark, quoted above about Hilbert’s Bridge is especially
surprising in light of the fact that, even when focusing on syntax, it’s rather hard not
to interpret certain logical expressions – notably “&” and “∃x,” among others – as
having fixed meanings derived from natural language.)

At this juncture, it’s natural to attempt a preliminary characterization of the
phenomenological closeness of a formal system to an informal practice that it’s taken
to formalize. Consider an algorithmic device A (diagrammatic or language-based)
that’s employed in an informal rigorous mathematical practice. Describe that device
as embedded in a formalization F if

(i) There is one-to-one mappingM of the elements of A to the syntactic elements of
F. (M doesn’t have to be “onto” – F can, and usually does, have additional
elements.)

(ii) Given any two elements D1 and D2, of A, given an intuitively effective-
recognizable obtainability relation ├A, for that practice, and given that syntactic
transitions ├F for F are defined, then if D1 ├A D2, we have M(D1) ├F M(D2).

113I discuss our experience of meaning, in natural languages in Azzouni (2013b). Especially
pertinent is a common experience that we have – with respect to certain expressions – of their
being meaningful even though we don’t know what their meanings are (Azzouni (2013b), 93). It’s
true that there are cases where we cannot experientially dislodge a meaning that we experience a
word to have and replace it with another (e.g., “cold” for “hot”) as I there discuss (Azzouni (2013b,
Sect. 1.4). Nevertheless, we’re quite good at introducing new words and, in specific contexts, like
mathematical ones, of even setting aside the meanings that words apparently have – for example,
stripping away the impression that “and” has a temporal dimension (e.g., “John brushed his teeth
and got out of bed”), as we routinely do in mathematics.
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So, given a formalization F and an algorithmic device A, call the mappingM that
obeys (i) and (ii) an embedding of A into F. We say, further, that M is phenomeno-
logically faithful to A if the experience of the inference, accompanying a syntactic
transition D1 ├A D2, is relatively similar to the experience of the inference accom-
panying the syntactic transition M(D1) ├F M(D2).

Why have I introduced the qualification “relatively similar” into the definition of
“phenomenologically faithful”? Because (I take it) if we change the notation an
inference is couched in – even minimally – we, as a result, change the experience at
least somewhat: A ¼ B, therefore, B ¼ A is an experience of an inference that feels
(slightly) different from x ¼ y, therefore, y ¼ x. There is, however, a bit more to say
about the experience of inference – and the psychological mechanisms – that will
give more content to the above characterization of “phenomenologically faithful.”
I’ll turn to that in the next section.

I do need, at the outset, to stress two important aspects of phenomenological-
faithful embeddings of algorithmic devices into formalizations. One is that the
process of so embedding these devices invariably involves the inclusion of addi-
tional proof procedures (in the formalization) that don’t possess the phenomenology
of the original practice. This is the case no matter how carefully we choose the
diagrammatic abstracta to match the original physical diagrams; and this is because
the phenomenology itself is often fragmentary in its reach (our “aha”-epiphany, e.g.,
occurs only with fragmentary aspects of any informal proof-practice – let alone the
extension of such a practice that results from formalization). A second point is that
because we sometimes have free-ride experiences with respect to an informal
rigorous proof, the actual algorithmic device involved in such a proof isn’t itself –
even informally – characterized. The algorithmic devices involved in such visual
proofs remain tacit even in the informal mathematical practice. I’ll round out this
section by giving examples of both of these cases.

Start by recalling the original Venn diagrams, and comparing them to Shin’s
(1994) formalizations. Our “aha”-epiphany with the original diagrams – immedi-
ately seeing (“free riding”) certain implications only occurs when a small number of
circles are involved (about three). Furthermore, the experience is sensitive to circu-
larity: change the figures involved into different (weirdly shaped) closed curves and
the experience vanishes (one has to work out the implication visually – take a few
moments to “see it”). That is, the immediate-recognition property doesn’t work with
other sorts of figures, as the reader can easily determine. As I’ll discuss in the next
section, this is because the particular “inference packages” we employ to recognize
the implications of Venn diagrams are (perceptually) content-sensitive: they work
only with certain sorts of figures, and visual patterns, and not others. Thus, any
formalization – especially an ambitious formalization (e.g., one, like Shin’s, which is
designed to capture, say, full monadic reasoning) – and even one that’s otherwise

The Algorithmic-Device View of Informal Rigorous Mathematical Proof 61



diagrammatic, will replicate the phenomenological experience we have with the
original diagrams only with a few of the formalized diagrams.114

I’ll now illustrate the second kind of case with the diagrammatic proof of the
“mutilated chessboard.” Here’s a description of it due to Black (1946, 157) that I’ve
borrowed from Tanswell (2015, 305):

An ordinary chess board has had two squares – one at each end of a diagonal – removed.
There is on hand a supply of 31 dominos, each of which is large enough to cover exactly two
adjacent squares of the board. Is it possible to lay the dominos on the mutilated chess board
in such a manner as to cover it completely?

And here’s the solution, quoted from Gardner (1988) – but I’m again taking the
quote from Tanswell (2015, 305):

It is impossible . . . and the proof is easy. The two diagonally opposite corners are the same
color. Therefore their removal leaves a board with two more squares of one color than of the
other. Each domino covers two squares of opposite color, since only opposite colors are
adjacent. After you have covered 60 squares with 30 dominos, you are left with two
uncovered squares of the same color. These two cannot be adjacent, therefore they cannot
be covered by the last domino.

This proof and many other diagrammatic proofs115 do not occur against an informal
proof-theoretic background the way, for example, that the ancient Euclidean dia-
grammatic practice (and the Aristotelian syllogistic tradition) do. But it’s not difficult
to see what such an informal proof procedure would look like – it’s not difficult to
create one. An informal rigorous mathematical two-color-domino practice (on an
ordinary chess board) would involve the placing of domino pieces on the board. The
results – some immediately seen and others shown – would be various generaliza-
tions about what sorts of patterns of domino placements on the chess board are
possible, and which aren’t. Another family of results – some immediately seen and
some not – is about which initial placements (of a few dominos) can be “completed,”
into a full covering of the board with dominos (with certain color patterns) and which
can’t. Lastly, one can consider results of domino-tiling various mutilated chess
boards, as in Black’s posed problem. In turn, these just-described informal practices
can be embedded in one or another formal diagrammatic system that’s phenomeno-
logically faithful to these posited informal-proof practices. These can – Hilbert’s

114The problem is already visible in informal practices. That certain proof procedures can be
characterized quite broadly using persistence idealizations runs well beyond when such proofs
are convincing and understandable. (So my use of “intuitive,” in Sect. 4 and elsewhere throughout
this paper, in, for example, “intuitively effective function” has to be understood as a somewhat
specialized usage of the word – introduced because of Turing’s own use of the word (see footnote
28).) Part of the phenomena here is described by Manders (1995, 107, and elsewhere) as “appear-
ance control.”
115for example, the proof in footnote 118
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thesis tells us this – be otherwise formalized in various language-based
formalizations.116

13 Inference Packages (Embodied Algorithms)
and Phenomenological Faithfulness

It’s undeniable that the use of certain diagrams enormously facilitates our abilities to
reason to and from various mathematical results these diagrams are taken to depict.
Related to this is that diagrams also seem to enable us to understand the reasoning
involved, and often to provide an understanding of the content of the results and
assumptions (that the results follow from) that language-based formal transcriptions
of that reasoning fail to provide. One approach to explaining this focuses on the
apparent similarity between the elements of certain diagrams and what they’re dia-
grams of –what I earlier called a “resemblance interpretation.” If A pictures B, then we
can use A to understand aspects of B. A photograph, for example, or a drawing,
replicates certain aspects of the thing photographed or drawn, and by directly consid-
ering the photograph and the drawing, we can understand (or realize) something about
the things themselves.

Despite the temptation to centralize visual similarity – resemblance – in an
explanation of the just-described value of diagrammatic proof, pressing a resem-
blance interpretation looks bizarre almost on the surface; and it has led to serious
mistakes among professional mathematicians when evaluating the value of diagram-
matic proofs; these mistakes continue to affect contemporary philosophical discus-
sions of diagrams. To start with, consider the case of Euclidean figures: points and
lines. Given what these are supposed to be, it isn’t even sensible to describe them as
“resembling” physically drawn points and lines. Apart from the fact that no physi-
cally drawn figure lacks the dimensions that the mathematical objects, points and
lines, officially lack, there is the related problem that the physical items have –
geometrically speaking – the wrong “shapes.” Notice the point. This isn’t a criticism
of one or another theory of “abstraction” as a theory of understanding – that we

116Tanswell (2015) and Tanswell (forthcoming) press against derivation accounts of informal
rigorous mathematical proof (Sect. 1) his “underdetermination” problem – that such accounts
have the problem that attempts to capture the epistemic properties of informal proof via formaliza-
tions face the fact that there are equally good (equally close) formalizations that nevertheless
involve drastically different mathematical ideology. Although derivational accounts (Sects. 1 and
3) have been rejected here, Tanswell (forthcoming) frames the underdetermination problem in a way
that threatens a different claim that I’ve made in this paper – that in general, phenomenologically
faithful formalizations for informal rigorous mathematical practices exist. He writes of the mutilated
chess board proof, in particular, that it “is not obviously algorithmically checkable, so if it is claimed
to be then we would like to see the algorithm that does so given explicitly . . ..”His suggestion is that
if it isn’t, then any embedding of the proof in an algorithmic system will face underdetermination.
The remark that a system of recognizing patterns of two-color dominos on what amounts to a finite
array isn’t “obviously algorithmic” is puzzling: it looks exactly like other cases of intuitively
effective procedures that – via Church’s thesis – are Turing computable.
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understand what a line is, say, by abstracting a certain approximate aspect of drawn
lines: pure “straight-line directionality,” or whatever. It isn’t even to criticize a view
of understanding that claims we understand mathematical straight lines via “approx-
imations” of them by visually thin lines. Some theory or other like this about how we
understand points and lines might be true. The point, rather, is the resulting objects –
abstracta – even if we can understand what they are supposed to be, aren’t seeable.
Despite whatever value a theory of abstraction has as a theory of understanding, it
has none as an explanation of the value of diagrams of lines and points taken as
“visually resembling” actual points and lines.

Similar complaints can be made about the diagrams that appear in other diagram-
matic practices. Shin’s diagrams don’t visually resemble (in any sense) classes or
their relationships to one another: two circles that overlap don’t visually resemble the
relationships two sets have when they have elements in common – this isn’t even
true if the overlapping region is shaded. Finally, recall (footnote 112, Sect. 12) that
De Toffoli and Giardino (2015, 332–333) treat pictures and what’s pictured as so
similar that they feel they can describe diagrammatic actions on pictures as contin-
uous transformations.

Mistaken resemblance interpretations are very old ones, and their implicit oper-
ation is one of the central factors behind the late nineteenth-century repudiation of
visual methods of proof. Unaware of the diagrammatic constraints on Euclidean
diagrams that were necessary to making Euclidean diagrammatic proof coherent,
pictures of functions – printed drawings of curves in books and articles (let’s be
accurate about what the diagrams in question were) were treated as depicting
functions, of any sort, by sheer visual resemblance. More accurately, drawings of
functions – ink on paper – were treated as yielding “intuitions.” Intuitions, so called,
can only be understood in this case as visual imaginings of the curves in question –
the scope of those visual imaginings supposedly telling us what sorts of curves are
and aren’t possible. The implicit idea was this: diagrams elicit our visual faculties.
But when we so-visualize functions, we can get it very wrong. This, however, is the
wrong picture of diagrams of functions (or the diagrams of any mathematical object,
really). We cannot “visualize” functions any more than we can “visualize” lines –
and for the same reason. Functions – if characterized geometrically – are
one-dimensional117: that means we can’t and don’t visualize them.

Giaquinto (2008a, 35) channels this nineteenth-century mistake about the role of
visualization in mathematics. He writes:

When it comes to analysis mathematicians of the nineteenth and twentieth centuries were
right to hold that visual thinking rarely delivers knowledge Visualizing cannot reveal what
happens in the tail of an infinite process. So visual thinking is unreliable for situations in
which limits are involved, and so it is not a means of discovery in those situations, let alone a
means of proof.

117Even “space-filling” curves are, nevertheless, one-dimensional!
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The letter of this remark is correct: We cannot design a diagrammatic proof proce-
dure that will handle the tails of infinite processes.118

But this remark occurs nested (as was also true of nineteenth- and twentieth-
century objections to diagrammatic proofs by mathematicians) among misapprehen-
sions about (informal) diagrammatic proof. Consider this well-known informal
diagrammatic proof of the intermediate zero value theorem:

f(a)

a b

f(b)

0

Giaquinto (2008a, 35) criticizes Brown (1999) for suggesting that “reflection on
the diagram [above] suffices to prove the Intermediate Zero Theorem.” Giaquinto
(2008a, 36) notes there are many functions visually indistinguishable from a con-
tinuous smooth function defined on the reals, as above, of which this theorem is
false.

But speaking this way of “visual thinking” (it should be clear) overlooks that an
informal rigorous diagrammatic practice that treats diagrams of functions, as above,
as referring to (and only referring to) smooth continuous curves, does show the
intermediate zero theorem for that class of curves.119 Diagrammatic practices must
be curtailed sharply in what mathematical items are to be treated as the referents of
their elements, and thus, what generalizations they can be taken to have shown. This

118Actually, no. Giaquinto’s remark, about the inability of diagrammatic reasoning to capture “the
tails of infinite processes,” is false, as the following proof that ½ + ¼ + . . . ¼ 1, indicates:
Proof:

Proof :

1/8

1/16

1/4

1/2

What’s true is that no diagrammatic proof-procedure can be designed that adequately handles all
the tails of infinite processes –more accurately, that handles all possible functions – as “function” is
understood in the contemporary mathematical setting.
119The informal proof, of course, can be successfully extended to smooth curves with a finite
number of discontinuities, and other classes of functions. I omit further discussion of this.
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can’t be done on the basis of vague impressions of “resemblances” between dia-
grams and mathematical abstracta.

The same point can be made against Giaquinto (2008a, 31) when he writes:

Missing an untypical case is a common hazard in attempts at visual proving. Awell-known
example is the proof of Euler’s formula V – E + F¼ 2 for polyhedra by ‘removing triangles’
of a triangulated planar projection of a polyhedron. One is easily convinced by the thinking,
but only because the polyhedra we normally think of are convex, while the exceptions are
not convex. But it is also easy to miss to miss a case which is not untypical or extreme when
thinking visually. An example is Cauchy’s attempted proof (Cauchy 1813) of the claim that
if a convex polygon is transformed into another polygon keeping all but one of the sides
constant, then if some or all of the internal angles at the vertices increase, the remaining side
increases. . .. The frequency of such mistakes indicates that visual arguments often lack the
transparency required for proof; even when a visual argument is in fact sound, its soundness
may not be clear, in which case the argument is better thought of as a way of discovering
rather than proving the truth of the conclusion.

This, as earlier, is to use the generality problem – which, recall, is a problem all
proof-procedures face, diagrammatic and language based – against a diagrammatic
proof procedure which, otherwise, can be syntactically characterized coherently.
There is nothing wrong with taking above diagrammatic proof-procedure to show
Euler’s result for convex polygons. What follows from the frequency of such mis-
takes isn’t that “visual arguments often lack the transparency required for proof” – in
particular, that it isn’t obvious that they’re sound. Soundness turns crucially on
interpretation – and what this shows is that interpretations must be chosen with
care; this is especially the case when an informal practice is being embedded in a
formal practice. One thing these failures do show is that diagrammatic proofs often
have restricted domains of soundness that are narrower than the range of abstracta
that mathematicians are concerned to show results about.120 But there is nothing
obvious, about diagrammatic proofs, that shows this will always be a problem, when
comparing such proofs to language-based proof procedures.

My point is that Giaquinto’s analysis presupposes (something nineteenth-century
mathematicians presupposed as well) resemblance interpretations at work: visual
proofs represent functions by drawings that resemble these functions. But this is
wrong, and as a result the wrong interpretations are imposed on diagrammatic
practices – sometimes (as with the case of functions), the drawings of curves on a
page are being confused with the functions they’re being taken to depict, with the
result that visualization-proof methods are saddled with the expectation that they’re
responsible for depicting functions for which no syntactic diagrammatic system has
ever been characterized, even informally. At root, as I’ve mentioned, are confusions
between the diagrams themselves (in this case, drawings on paper) and functions that
can’t be seen. The use of the word “intuition,” as used in “it’s intuitive that a function
can’t be everywhere continuous but not differentiable anywhere” enables a

120This is especially the case with the notion of a function, which from the eighteenth century to the
nineteenth century, drastically changed in what it was (implicitly and explicitly) taken to refer to.
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confusion between pictorial methods of proof and the items being studied. Lesson:
Vague intimations of visual resemblance don’t show that a cogent diagrammatic
practice has been established; worse, such vague intimations don’t sensibly provide
interpretations when a diagrammatic practice is cogent.

I’ve complained about one error that the visual-resemblance views make: con-
fusing a method of understanding abstracta with a method of visualizing abstracta.
This is a failure to realize that a visual process can be used to understand something
without it supplying a visualization of that something.121 But there is a second way
that focusing on visual resemblances – as the machinery that governs the implicit
interpretations for diagrammatic elements – goes wrong. This is that there is an
implicit suggestion falsi that a diagram works its magic by capturing structural
resemblances between pictorial elements and the abstracta they depict.122

This second important mistake goes far beyond diagrammatic proofs; it infects
views of (scientific) modeling generally. Although there is a narrow class of models
that can be described as ones that capture aspects of what they model purely by
virtue of the models embodying structural resemblances to the items modeled, this is
generally not the case.

Consider a computer simulation of a certain dynamical process – the flow of
water through a pipe, for example. It would be a mistake to think that we can rely on
the simulation to predict certain aspects of that process – when we can – because
what happens “in” the computer “resembles” the flow of water through a pipe.
That’s, frankly, pretty absurd – although this absurd suggestion is made natural by
the misleading label: simulation. What happens with a successful computer simula-
tion is quite different: the computer simulation has been designed with certain
aspects of water flow in mind – more specifically, it has been designed by taking
into consideration certain events that occur in (or during) the flow of water through a
pipe, and by ignoring many other ones. Water flow, in particular, is an extremely
complex (and badly understood) process where a great deal is going on. It would be a
naïve analysis to divide – as it were – water flow into levels: the quantum level, a
higher level (where the water flow is approximated by continuum-fluid idealiza-
tions), etc. What’s actually going on is that certain effects in and to the water are
being taken account of and other ones are being ignored, where these effects cross

121See Azzouni (2020) for further discussion of this distinction between imagining and conceiving.
122See Giaquinto (2008b). It’s perhaps no surprise that Giaquinto takes the cognition of abstracta-
structure seriously as an explanation of the value of diagrammatic proof: it’s a natural move for
someone who, to begin with, thinks that resemblance to abstracta is how diagrammatic elements
refer to those abstracta. See Resnik (1997), for an earlier book-length argument for this kind of
epistemic position vis-à-vis abstracta. Notice that a nominalist must reject this picture of the
understanding of proof in any case: I’m not presupposing my nominalism, however, in raising
any of the objections of this paper.
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“levels” in intricate and subtle ways.123 The hope, sometimes dashed and sometimes
fulfilled, is that the aspects of a phenomenon (water flow) that are being taken
account of – by approximations, usually – are ones that will enable the model to
capture certain causal effects of that phenomenon (e.g., in the case of water flow the
average pressure on the inner pipe surface) while ignoring other ones (e.g., in the
case of water flow, changes in temperature of the inner pipe surface). As I said, it
would be naïve to impose a structure-picture on such models and what they model –
although this is, imaginatively, extremely natural to do. Unfortunately for what’s
psychologically natural here, the actual interaction (causal and otherwise) between
what’s being ignored by a model and what’s being taken account of is too compli-
cated for that. The process can be imagined – misleadingly, to repeat – as one in
which the water, in the case of water flow is, at a certain “level” being structurally
modeled by the computer simulation. But this, it must be stressed again, isn’t
accurate to what’s being retained and what’s being ignored by the model – for
example, what’s being ignored aren’t simply the quantum-mechanical, discrete,
elements of the water-flow phenomenon.

Instead, and this alternative characterization of the computer simulation directly
applies to diagrammatic proof as well, there is a body of statements – “predictions,”
in the case of water flowing through a pipe. And the model is a piece of computer
machinery (that yields statements of the same form as the predictions) that we hope
will replicate those predictions that are true.124

Summary: presumed visual resemblances between diagrammatic elements and the
abstracta they supposedly resemble fool mathematicians and philosophers into think-
ing, in the case of drawing curves, that these resemblances are the proof-theoretic and
interpretational machinery of diagrammatic proof – that is, that visual resemblances
supply both intuitively effective recognition procedures and visually determined
(by resemblance) interpretations for diagrammatic elements. These are mistakes.

14 Inference Packages and Shin on Perceptual Inference

Sun-Joo Shin (1994, Chap. 6) offers a more sophisticated theory of diagrammatic
reasoning than resemblance interpretations do. Central to her view are the roles of
perceptual inference and convention which she uses to explain in what ways, and to
what extent, any specific formal system is diagrammatic and in what ways and to

123Consider the fact that gravity is relatively weak if you’re small enough. Your biological
mechanisms for handling your recognition of “up” and “down” can’t turn on gravity as it can for
bigger things. Similarly, in engineering design, certain effects, wind, torque, etc. can be ignored
when the items (bridges, shoulders) are certain sizes, and not otherwise. How, and to what degree,
causal effects can be ignored or minimized by a model is badly captured by thinking in terms of
“levels.”
124Exactly how inferential practices capture the supposed properties of mathematical entities will be
described in terms of our capacity to “simulate algorithms” – where I’m using “simulate” in the
same misleading way it’s used above. See Sect. 14.
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what extent it isn’t. The difference between the use of perceptual inference and the
use of convention (when looking at something), on her view, is that conventions
need to be learnt; on the other hand, when we use perceptual inference, we exploit
aspects of a diagram that we don’t have to learn how to use. Importantly, she thinks,
the respective amounts (as it were) of conventionality and perceptual inference
involved in our ability to navigate linguistic texts, diagrams, and pictures comes in
degrees. A photograph has no conventional elements, nearly enough: we use and
only use perceptual inference to recognize what visual elements in a picture refer to
(and, therefore, how a photograph depicts things to be). A pure language-based piece
of text, using symbols, is entirely conventional. Diagrams are in-between – usually
involving both conventional elements and perceptual inferences.

The examples Shin explicitly gives, and others that we can easily apply her
distinction to, make that distinction tolerably clear. A depiction of the seating
arrangements of Tom, Susan, and Mary like so:

Tom Susan Mary,

involves convention insofar as “Tom” refers to Tom, “Susan” to Susan, and “Mary”
to Mary; it involves perceptual inference insofar as the side-by-side seating arrange-
ment of Tom, Susan, and Mary is recognized to be as depicted above.

Similarly, in Venn-I, it’s a convention that the closed curves and rectangles
represent sets, and – specifically – that their interiors represent the interiors of
those sets.125 It’s equally conventional, in a language-based setting, to introduce
capital letters, A, B, . . . for names of sets, lower-case letters, a, b, . . ., for names of
elements in sets, and to introduce a symbol, � , for membership. Shin takes the
distinctive roles for perceptual inference and for convention in Venn-I, as opposed to
a language-based class system to contrastively emerge when we consider relations
between sets. In the language-based case, we need to introduce a new syntactic
device to conventionally represent intersection: \, so that “A \ B” thus can represent
the intersection of A and B. In the case of Venn diagrams, we don’t need to do this.
Consider, for example, the following figure:

A B

125Shin (1994, 169) writes: “In Venn-I we adopt a convention that assigns a set to a basic region.”
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Shin claims that, given the previous conventions, the interpretation of the com-
mon spatial area of the circle associated with A and the one associated with B must
be the intersection of the sets A and B. This isn’t, therefore, the introduction of a new
syntactic convention; instead, we use perceptual inference, along with the earlier-
mentioned conventions, to see what spatial area in the diagram represents the inter-
section of the sets.

Shin (1994, 161–162) similarly argues that if we already have in place a conven-
tion that (two-dimensional) boxes represent sets and dots represent individuals, then
to represent the set-theoretic membership relation, one need only place a dot in a
box. She adds, “Putting down an object in another object does not involve any new
syntactic device. A spatial arrangement between a dot and a box represents a
nonspatial relation, ‘being a member of’” (italics hers).126

There’s an important subtlety that Shin’s remarks – as quoted – overlook. If we
interpret dots and rectangles (and closed curves) – the lines of the figures, that is – as
Shin suggests, then we need an additional convention that dictates that the interiors
of squares and circles represent where the members of the corresponding sets are
located. Even if we represent area-filling rectangles (as opposed to the borders alone)
as sets, it’s still open to us to conventionally dictate an item as a member of a set only
if it appears outside the interior of the figure rather than inside.127 Putting a figural
element inside another figural element is a piece of (two-dimensional) syntax that
needs to be interpreted, and the interpretation of which goes beyond the sheer
convention that a two-dimensional figure (area-filling or otherwise) represents a
set. We can see the point I’m making if we consider the typical language-based
notation, Pa, in which a piece of syntax (concatenation) is interpreted as predication.
The situation is exactly the same one.

Nevertheless, I think Shin’s approach to diagrammatic reasoning is largely
correct, insofar as she recognizes the role of what she calls perceptual inference. I
now introduce some alternative terminology and make a few other changes to her
approach. Perceptual inference involves a number of cognitively embodied algo-
rithms, what I call inference packages.128 Inference packages are modularized and

126She continues:

An isomorphism between this spatial arrangement and the relation “being a member of” is
not as perceptually obvious as an isomorphism between a spatial arrangement in a diagram
[as in the Tom, Sally, Mary example above] and the relation “being to the right of.”However,
this isomorphism is more perceptually obvious than any linguistic symbol that a linguistic
representation adopts, since no extra convention involving syntactic devices is required.

In adapting elements of her position, I’ll remove talk of isomorphisms.
127For manageability, the shadings and dots, etc. to be placed outside squares could be convention-
ally quite close to the outsides of the figures.
128I borrow, in part, this discussion of “inference packages,” and other aspects of visualization, from
Azzouni (2005).
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content-specific.129 A nice illustration of one, however, is our capacity to imagine
triangles on a plane or a sphere. We recognize that if we move the triangles rigidly
about on a plane that doesn’t change their areas or change the magnitudes of their
interior angles. If we imagine an equiangular triangle growing in area in a way that
preserves its equiangularity, the sum of its angles won’t change. This isn’t true, we
immediately recognize, if we instead imagine a triangle on a sphere. In this case,
moving the triangle about rigidly won’t change the magnitude of its interior angles,
or the areas of those triangles. But if we grow an equiangular triangle in a way that
(again) respects its equiangularity, the magnitudes of those angles change: It gets
“more curved” and its angles gain magnitude. One can also imagine blowing up the
sphere – like a balloon – uniformly, although keeping the triangle the same in its
area; in this case its angles flatten and lose magnitude. Triangles moving around on
an ellipsoid act differently still: if we imagine moving a triangle from the flattest part
of the ellipsoid to one of its ends, we can see how the magnitudes of the interior
angles of the triangle will increase and decrease.

Involved here are various “perceptual inferences”: we can see some facts about
the angles, lines and areas of the triangles immediately (they’re “free rides”); others
we see quickly, or we can work them out with a step or two. I call these inference
packages because, from an axiomatic point of view, a number of different relations
between the properties of these figures (that can be distinguished axiomatically) are
bundled together. I stress again that these packages are content-specific: the infer-
ences govern exactly what we imaginatively experience them as governing: certain
sorts of visual phenomena. I hypothesize that there is more than one inference
package that we can apply to two-dimensional visualizations; this is a matter to be
determined empirically. Included among them, however, are the part/whole infer-
ences about spatial regions that we see at a glance: for example, when a spatial area is
part of another area, and when they’re disjoint. It’s important to realize that we have
inference packages with respect to one-dimensional figures as well as with respect to
three-dimensional figures, and that these aren’t the same. (Some of them, at best,
overlap.) We effortlessly recognize a number of relations alphabetic items have when
in concatenated strings. Certain patterns “leap out” at us; others don’t. The same is
true of the inference packages with respect to three-dimensional objects located in
space. These differ from two-dimensional ones simply because we can imagine
two-dimensional objects as on surfaces, and as inheriting their properties from
those surfaces. Three-dimensional objects are “in” space, and not experienced as
“on” anything. This affects what kinds of inference packages are available with such
space-filling figures.

129Exactly how inference packages are modularized is a subtle empirical matter that I have to avoid
saying much more about. There is more than one visual mechanism at work in visual perception – the
evidence for this is that we naturally recognize some visual patterns and not others, and that these
recognitional abilities differ greatly between individuals. Exactly what neurophysiological resources
are at work, and how they operate in tandem is undergoing (currently) intense study. I don’t assume
one-to-one relationships between inference packages and visual-perception capacities.
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Diagrammatic conventions can be chosen in ways that run in parallel with our
inference packages or in ways that work against them – even though the diagram-
matic conventions in both cases can be equally coherent. Imagine, for example, a
systematic diagrammatic Venn system, involving rectangles, closed curves, dia-
grammatic elements,

N
, —, and shadings, such as Shin’s, but where the represen-

tation conventions for regions are inverted: for example, to indicate that a region R
has no members, we must shade all the regions outside R.130 This, coupled with the
appropriate conventions for the other elements, yields a perfectly consistent system;
it’s – logically speaking – impeccable. It will, however, be a very user-unfriendly
system because it works against our inference packages which operate naturally via
spatial wholes and their spatial parts. This isn’t to say we couldn’t get used to such an
alternative diagrammatic practice – and that some of us would even find ourselves as
able to work with it with some comfort; it’s to say there would be a learning curve.131

In describing this imagined alternative to Shin’s Venn-I as user-unfriendly, I’m
making a phenomenological point: to use such a diagrammatic system for proofs
feels differently from so-using Venn-I (at least with respect to those diagrams in
Venn-I that phenomenologically resemble the diagrams in the original Venn prac-
tice). When we engage in a proof-procedure that, relatively directly, uses our
cognitively embodied inference packages we feel we understand what’s going on:
we get it. That’s true with all cognitively embodied inference packages: the infer-
entially packaged reasoning we engage in is one we always feel we understand: we
feel we recognize why it must be right.

A simple phenomenological rule for proof procedures – formal and otherwise:
The more closely we can use our cognitive-embodied inference patterns to simulate
the processes involved in carrying out a proof, the more we experience that proof as
one we understand or “get.” To illustrate, consider sets. Sets, recall, are supposed to
be abstract objects that have members. We can imagine a set as a kind of box in
which its members are contained – but that’s a spatial metaphor that only goes so far.
Sets aren’t in space and, in particular, they aren’t located where their members are.
The set containing the six umbrellas, the one that I have in my possession now, and
the five that I lost last week, isn’t located at (or where) the umbrellas it contains are.
There is a sense in which “sets,” therefore, make no sense. What sorts of things can
these be? But the reasoning about sets can be imitated – up to a point – by reasoning
instead about objects in boxes. More pertinently to Venn diagrams, reasoning with
sets can be imitated – up to a point – by reasoning about regions and their interiors.
And so, reasoning about sets can be executed by a notational device that exploits our
ease with reasoning about regions and their interiors.

130Again, with a convention, as described in footnote 127, to make markings outside squares
manageable.
131Consider Polish notation. Ordinary alphabetic formal systems, using parentheses and the like,
operate in parallel with our one-dimensional containment inference packages. The result is that we
can read that notation easily, and learn it quickly. Polish notation flouts these inference packages –
and so is “intuitively unappealing.”
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To stress again: inference packages (cognitively embodied algorithms) always
come with content; they are always interpreted – and indeed, the interpretations are
always sensory.132 But when mathematicians use these inference packages they
invariably reinterpret them. I’ve just illustrated one way that this is done: by using
them to manipulate diagrammatic notation that our cognitively embodied algorithms
are at ease with, although those diagrammatic elements (officially) refer to
something else.

Let me return briefly to the question, raised in Sect. 8, about the distinction
between when notation is diagrammatic and when it’s not. The foregoing implies, I
think, the following result. There are distinctive visual capacities that enable dis-
tinctive inference packages with respect to one-, two-, and three-dimensional visual
experience. When a two-dimensional notation doesn’t take advantage of the distinc-
tive inference packages available with two-dimensional notation (but not
one-dimensional notation), but only relies on, say, adjacency, that notation isn’t
diagrammatic. Thus, I suggest, matrices and integral notation aren’t diagrammatic
notation. When notations rely on distinctively two-dimensional inference packages,
as Euclidean and Venn notation do, they are diagrammatic. This distinction requires
an empirical underpinning, which I can hope will be supplied in the future; it doesn’t
turn – notice – on semantic considerations, that is, it doesn’t turn on interpretation.
(I think this is an advantage of it.)

15 Ideology and Formal Systems

Before (finally) concluding this chapter, I’d like to revisit the interrelationships
between Church’s thesis, Hilbert’s thesis, formal systems, and informal rigorous
mathematics, while at the same time discussing some recent work by Avigad and
Hamami that defends a particular version of the derivational account.

Twentieth- and twenty-first-century mathematics is extremely rich – and in large
part a lot of that richness is a result of mathematical developments subsequent (and in
contrast) to the logic that emerged with Frege and was joined with set theory by
Russell and Whitehead, and others. In particular, major parts of contemporary
mathematics are the alternative axiom systems that have emerged in contrast to
Zermelo-Frankel set theory with the axiom of choice (ZFC) that’s couched in the
language of classical first-order predicate logic. Intuitionism is well-known: it has
generated a great deal of informal rigorousmathematics – in (intuitionistic) analysis,
in particular. But, of course, there are also numerous “alternative logics” and some of
these alternatives – paraconsistent approaches, among others – are actively pursued
not just as logical disciplines but in terms of the mathematics they also enable. There
are also explicit alternatives to ZFC, including ZF + the axiom of indeterminacy.
Again, these have led to additional pursuits in bread-and-butter mathematics, for
example, alternatives to standard measure theory.

132Although: they’re not always visual.
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There is no choice, I would have thought, but to be a pluralist as far as
contemporary pure mathematics is concerned. It’s simply a fact of the contemporary
mathematics that these numerous alternatives – alternative to classical logical frame-
works, alternatives to standard Zermelo-Frankel set theory with the axiom of choice
– exist. Call the formalized pursuit of these alternatives axiomatic pluralism.133

Much – if not most – of this mathematics isn’t restricted to the deduction of
theorems within formal systems, as I’ve already indicated; rather, it’s bread-and-
butter informal rigorous mathematics. That’s the context, actually, in which such
axiomatic systems are studied. More obviously, it’s in the context of informal
rigorous mathematics that the knock-off studies I described above, in one or another
nonstandard framework, a particular logic and/or set-theoretic framework, or some-
thing else (e.g., category theory) occur. Understanding informal rigorous mathematical
proof as a matter of mechanical recognizability – either according to the algorithmic-
device view or some other – enables an accommodation of this pluralism, which I’ll
call informal mathematical pluralism. This also accommodates the datum that math-
ematicians can recognize good proofs across mathematical traditions.

Informal mathematical pluralism is why, however, that the derivational accounts
I’ve been concerned with in this chapter, and in earlier work, have been ideology-
neutral accounts. The formalizations in question that are supposed to explain the
epistemic properties of informal rigorous mathematics can’t be restricted to frame-
works governed by standard classical logic and ZFC. Indeed, foundational projects
for mathematics – ones dedicated to transcribing all mathematics into one or another
specified formal system (e.g., ZFC, Russell-Whitehead type theory), haven’t been in
focus at all.134 A formalization of arithmetic with an ideology of numbers
(an intended model of numbers) suffices to provide the formalization needed for
an informal rigorous arithmetical practice – on the derivational views I’ve been
concerned with. Church’s thesis (going beyond functions of natural numbers via
reinterpretations of numbers) accommodates axiomatic pluralism. The version of
Hilbert’s thesis I borrowed from Kripke (2013) in Sect. 4, however, requires changes
to enable its application beyond the language of first-order predicate calculus with
identity. Notice: Although any Turing machine formalism can be represented in the
language of first-order predicate calculus with identity – that’s a mathematical result
about Turing machines – this result doesn’t straightaway yield a first-order-predi-
cate-calculus-with-identity version of Hilbert’s thesis.

These preliminaries aside, recent work by Hamami (2019) defends what he
describes as “orthodoxy,” or “the standard view,” and he traces it (historically)
back to Mac Lane and Bourbaki. This is that “a mathematical proof P is rigorous
if and only if P can be routinely translated into a formal proof,” where such a proof

133I committed myself to axiomatic pluralism (without using that label) in Azzouni (1994, Part II).
134One may well doubt, in light of the richness of contemporary mathematics, whether any
straightforward ideologically nonneutral foundational project is possible. Such can’t be ruled out,
of course, because there can always be rather unexpected approaches – based on relative consis-
tency proofs – to embedding branches of mathematics in one another, and therefore grounding such
in specified axiomatic systems.
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“is (or could be) written out in the first order predicate language L(� ) as a sequence
of inferences from the axioms ZFC, each inference made according to one of the
stated rules.”135 As I’ve just indicated, I think this version of a derivational account
cannot accommodate contemporary mathematics because it isn’t ideologically neu-
tral. Let us, accordingly, broaden it. Further, let us distinguish (as Hamami (2019)
and Avigad (2019) both do) an epistemic/descriptive version of the derivational
account from a normative version of that account. The epistemic/descriptive account
is required to use the existence of formalizations to explain the epistemic properties
of informal rigorous mathematical proof. The normative version instead defines a
mathematical proof as “rigorous” if it can be routinely translated to a formal proof.
No explanation of the epistemic qualities of informal mathematical proof is
required.136

Consider the descriptive version of the derivational approach, and recall
Tanswell’s condition Content (Sect. 3). The task Content poses to descriptive
derivational approaches, pretty much, is to require them to show how the materials,
already present in informal proofs, indicate their formal transcriptions. I attempted,
in Azzouni (2004) and Azzouni (2006), to defend this approach by giving an open-
ended set of informal-mathematical tools – inferential abbreviations and shortcuts,
meta-proof considerations, etc. –many of which mathematicians have learned, that I
hoped would provide sufficient content to informal proofs to show how they indicate
the relevant derivations.137 It strikes me that, insofar as Hamami (2019) considers the
descriptive strategy, this is what he offers as available for this – although he stresses
more strongly than I did the idea that mathematicians come to the task with certain
background competences.

Here is Avigad’s (2019) excellent (and approving) description of Hamami’s
account of informal proof:

According to Hamami, we accumulate not just theorems but inferential patterns and pro-
cedures throughout our mathematical education, and we put them to good use towards
understanding an informal proof. When a competent practitioner reads such a proof, the
inferential cues and context trigger algorithmic processes that expand the inferential steps to
smaller ones. These, in turn, are recognized as applications of prior theorems or lemmas, or
at least patterns in memory that have been previous justified.

135The first quote is from Hamami (2019); the second is his approving quotation of Mac Lane
(1986, 377). “Rigorous,” here is specialized terminology; it doesn’t mean what it means in the
phrase, commonly used (and used by me throughout this chapter), “informal rigorous mathematical
proof.”
136Hamami (2019) writes: “[A] descriptive account of mathematical rigor provides a characteriza-
tion of the mechanisms by which mathematical proofs are judged to be rigorous in mathematical
practice; a normative account of mathematical rigor stipulates one or more conditions that a
mathematical proof ought to satisfy in order to qualify as rigorous” (italics his).
137Strikingly, the meta-proof considerations include those where shifts occur during the course of a
proof to explicitly notational considerations – for example, that the indexes on such operators have
such-and-such properties. These notational considerations are ones, of course, about notation
occurring in the informal rigorous proof.
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The algorithmic-device view agrees that “inferential cues and context trigger algo-
rithmic processes,” but these needn’t (and often don’t) lead to expansions of
inferential steps; they often lead to just seeing the result. More important, they
usually don’t point past informal proving to a formal transcription.138 That’s because
algorithmic competence is at back of all of this, but algorithmic competence, as I’ve
been stressing throughout this paper, doesn’t epistemically require formalization.
Church’s thesis, coupled with the mathematical result that any Turing-machine
computation, can be represented formally in a first-order predicate language does
not translate to an epistemic requirement of a formalization of this sort explaining
our grasp of any intuitively effective bit of reasoning.

Avigad (2019), on the other hand, although officially accepting Hamami’s
approach, attempts to give the normative version of the derivational account some
teeth. He tries to show, that is, that a number of the virtues that good informal
mathematical proofs (and proof practices) have – for example, being based on sound
analogies, reasonable generalizations, and a wide collection of examples – supply
good guarantees that an informal proof will have a formal correspondent. Avigad
means to show that the existence of corresponding formal derivations is thus an
appropriate standard for informal proof practices: the gap between formal deriva-
tions and informal proofs isn’t a reason to reject derivations-as-standards precisely
because good informal proof-practices raise the likelihood that an informal proof has
a formal correspondent.

I worry (as I have for a long time), however, that “good guarantees” – raising
likelihoods in these ways – aren’t good enough to explain the epistemic strangeness
of informal rigorous mathematical proof. That is, informal mathematical proof
practices are too good to be explained this way. Recall the quotation from Manders
(1995) in footnote 19; for that matter, here’s a quotation from MacKenzie (2001,
322–323)139:

. . .many rigorous arguments in ordinary mathematics have been replaced successfully by
formal proofs, using automated theorem provers and proof checkers, especially the AUTO-
MATH andMIZAR systems . . .. What is most remarkable about these many replacements of
rigorous arguments of mathematics with formal, mechanized proofs . . . [is that] it is a
conservative process. Applied to programs, hardware designs, and system designs, efforts
at formal, mechanical proof frequently find faults and deficiencies that have not been
detected by other means . . .. Applied to rigorous arguments within mathematics, however,
efforts at mechanized proof nearly always suggest at most the need to remedy matters that a
mathematician would regard as basically trivial, such as typographic errors or failures to
state the full range of conditions necessary for a theory to hold.

138They certainly don’t point past informal rigorous mathematical proofs with one kind of content –
arithmetic, say – by virtue of being “decomposable” (Hamami’s phrase) into proofs with a strikingly
different ideology, that is, that of ZFC.
139I’m under the impression that, vis-à-vis various formalization projects, and their impact on
informal rigorous mathematics, nothing has changed in the intervening years.
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But Avigad’s general-virtue approach to mathematical proof should yield the same
result for programs, hardware designs and system designs that Avigad hypothesizes
it yields with respect to informal rigorous mathematical proof. It clearly doesn’t.140

I’ve suggested in earlier work (Azzouni 2009b) – in a way related to Avigad’s
(2019) approach to a normative role for formal derivations – that transcribability to a
formal derivation has, in the contemporary setting, become a norm for informal
rigorous proof. I want to end this section by revisiting considerations that cut against
that idea.141 The problem is that there are informal rigorous mathematical proofs that
are counterexamples to the normativity thesis. Consider, for example, the proof in
footnote 118. (Visual proofs like that one are the best counterexamples, but there are
many similar ordinary-language-based ones.) Phenomenologically – notice – this
proof is utterly convincing as it stands. Furthermore, there is no sense in which it
looks like it needs to be completed or filled in. It’s true of many informal rigorous
mathematical proofs that they look like they’re missing steps; but this is not one of
those.142 That is, neither epistemically nor normatively does this proof and many
other informal rigorous proofs (those in the Euclidean tradition, e.g., Venn diagram-
matic proofs – but many other informal rigorous mathematical proofs as well) need
supplementation of any sort. Further, although Hilbert’s thesis indicates that these
proofs can all be formalized (and indeed, as I’ve illustrated by citation from the
literature, many of them have been), they themselves don’t indicate the existence of
formalizations that, in turn, justify why they’re true: their content, that is, does
nothing of this sort.143

The epistemic process, rather, is the exact reverse of what normative and descrip-
tive derivational accounts hypothesize. The intuitively effective procedures such
proofs exhibit right on their surfaces, when preserved formally, simultaneously
preserve the epistemic qualities (the phenomenology) of those informal proofs.
The formalization inherits, that is, what it is about the informal proof that convinces
us – what justifies our being convinced of the result of the proof. It’s not, that is, that
the formalization reveals what’s convincing about that proof or that the formalization
justifies that proof. This is enough to show that – at least with respect to many
informal rigorous mathematical proofs – derivation accounts are intrinsically
misleading.

Nevertheless, compatibly with how I’ve just described the phenomenology of
some proofs that formal derivations correspond to informal proofs might still be a
(general and newly acquired) norm. Whether such a correspondence is a norm is,

140Compare this response to Avigad with my earlier (Azzouni 2009b, 16, footnote 12) response to
Rav (2007, 317).
141I first raised this objection to my earlier norm view in Azzouni (2013c) – but this discussion goes
beyond that one.
142That to formalize this proof would involve something like translating visually seen spatial areas
into complex axioms about areas isn’t to “fill in” the original proof. It’s not even to “make explicit”
what’s tacit in the proof, as it stands. That’s an interpretation that treats, by fiat, a language-based
transcription of something we see visually, as therefore (on those grounds alone), “more explicit.”
143The fact that other proofs of the same form may be misleading is irrelevant.
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ultimately, a sociological matter. Consider, however, the possibility of a flourishing
diagrammatic tradition that – contrary to Hilbert’s thesis – can’t be transcribed to a
language-based formalization. More dramatically, consider a flourishing informal
diagrammatic tradition (involving proofs, say, as phenomenologically compelling as
the one in footnote 118) that can’t be formalized at all – diagrammatically or
otherwise. Rather than there being a norm that would fault this proof-tradition, it
seems, rather, that generalized versions of Hilbert’s thesis, and, in fact, Church’s
thesis, would be overthrown. Indeed, that these are regarded as theses is, in fact, the
sociological evidence that formalizability of any sort isn’t a norm of informal
rigorous mathematical proof.

16 Conclusion

I’ve covered far too much territory for an article. I’ll nevertheless try to summarize
(some of) what I’ve done here in a couple of concluding paragraphs. The problem
this chapter opened with is the epistemic strangeness of mathematical proof. This is a
(psychological/sociological) claim about informal rigorous mathematical proof –
that there is a widely shared experience of “it must be this way” that proofs in
mathematics sometimes have (and that long proofs exhibit, usually, only in part) as
well as “aha – I see why this must be” epiphanies. That is, mathematical proof, in
full, is a complex heterogeneous experience, and that experience (involving short-
cuts, invocations of authority, “aha”-epiphanies, and so on) is hardly a seamless
impression of a priori inference. The algorithmic-device view explains this phenom-
enology: algorithmic devices – diagrammatic and language-based – exploit our
ability to execute some intuitively effective recognition procedures – ones that are
cognitively embodied in us and that we can apply to mathematical problems.

I’ll put the point more picturesquely: A mathematical proof is like a stew with
chunks of reasoning governed by algorithmic devices plus lots of other – and some
looser – stuff. Usually, but not always, algorithmic devices are derived from recog-
nition procedures we normally use (to navigate our world visually, for example) and
then we feel the “aha”-epiphany when we apply them. But we don’t otherwise – for
example, if we use an abacus for certain calculations, or engage in a difficult
computational maneuver with integrals.

We cognitively embody many kinds of algorithms. When applying these to the
topics they naturally apply to, we effortlessly experience inference processes, often
as immediate inferential insights about things. Successful diagrammatic practices
notationally hijack these processes and thus enable us to apply these inference
packages to subject areas that such inference packages wouldn’t otherwise apply to.

The algorithmic-device view of mathematical proof, unlike derivational
approaches, explains the epistemic properties of informal rigorous mathematical
proof in terms of the mathematical machinery that’s visible in informal rigorous
mathematical proof itself. It doesn’t explain these properties via a transmutation of
informal rigorous mathematical proof to formal algorithmic systems – diagrammatic
or otherwise. In turn, other properties of informal rigorous mathematical proof (e.g.,
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Tanswell’s “agreement,” “correctness”) are explained by the fact that the phenom-
enology of informal rigorous mathematical proof is based on inference packages and
various conventions that are held in common and applied in common by appropri-
ately trained mathematicians.

Nevertheless, transmutations of informal rigorous mathematics into one or
another formal system are always possible, via generalizations of Hilbert’s thesis.
In particular, any natural-language reasoning with diagrammatic algorithmic devices
can be formalized in a heterogeneous formal system. Any such formal heteroge-
neous system, in turn, can always be recast as a language-based formal system
because all diagrammatic operations on higher-dimensional grid systems can be
recast in one-dimensional concatenation systems – and indeed, as Turing machine
calculations. Phenomenologically faithful embeddings of informal rigorous mathe-
matical proof into formal systems retain the apparent content of the mathematical
statements – at least insofar as there remains an intended model for the formal
systems in question. Respecting this apparent content also explains why the formal
systems in question are always based on something in the neighborhood of classical
bivalent logic. That classical mathematics is couched in a logic in the neighborhood
of the classical first-order predicate logic despite its taking place in natural language
which is not governed by such a logic is the result of a complex historical process.144

That means the process is contingent: we could (in the future) find ourselves –
collectively – deserting classical logic, as we, in effect, have already with respect to
pure mathematics. So too, we might desert ZFC as we, in effect, also have with
respect to pure mathematics. This latter possibility turns, largely, on the empirical-
science needs that mathematics meets. But discussion of that involves a different set
of considerations I can’t pursue now; my only point – again – is to stress that our
philosophical understanding of ordinary rigorous mathematical proof, certainly as it
is and has been pursued in this and the last century, requires axiomatic and informal
mathematical pluralism.
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