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Abstract: One objection mathematicians often have to the work of philosophers of 
mathematics is that they don't ever discuss “real” mathematics. Many philosophers don't 
know mathematics beyond the school level (arithmetic and geometry); or if they know 
any advanced mathematics, it's often logic or set theory, which one can argue are 
somewhat anomalous. I've been interested for many years in trying to answer “what is 
mathematics?” by looking at topics that are on the boundary -- some would say they're 
mathematics, others would say they're not really mathematics. So I'd like to consider one 
such topic: is school mathematics “real mathematics” (as in David Corfield's Towards a 
Philosophy of Real Mathematics, or as what each of us means by the term)? 

I’d like to thank the other officers of POMSIGMAA for inviting me to talk today; I’ll say more 
about POMSIGMAA as the talk continues. Here’s an outline of what I’ll be saying: I’ll give a bit 
of my own background, as well as of POMSIGMAA, then talk about the particular question I’m 
especially interested in and some approaches to the problem that have been considered so far. 
Then I’ll discuss briefly what I’m trying to do to approach this problem, and turn to the particular 
aspect  I’m considering today: school mathematics. 

I. Where I’m coming from 

I finished my Ph.D. in 1976. I knew a lot of mathematics (my thesis was in mathematical logic, 
but I loved point-set topology; algebra came naturally, though not category theory; analysis was 
not so natural), but was very influenced by a teacher of mine, Stan Tennenbaum, at the 
University of Rochester, to read Plato. So I started asking myself, how would I answer Socrates, 
if he asked me “What is mathematics?” I realized that all I could do is answer as many of his 
interlocutors did, with a list: “It’s algebra, and geometry, and topology, and analysis, and 
differential equations, and logic, and number theory” and so on. But like Socrates’ interlocutors, 
I didn’t know how to find the answer that got at the essence of what mathematics is.  

I started teaching at a small college, Wabash College, in the Midwest, and, once I got tenure and 
could work on whatever project interested me, I started turning more to the philosophy of 
mathematics. A leave of absence in 1984, accompanying my first husband to Belgium on 
sabbatical, allowed me to read work through the foundational period, up to the 1950s; and then a 
sabbatical of my own in 1991-92 allowed me to catch up on more recent work by a range of 
philosophers of mathematics: Philip Kitcher’s The Nature of Mathematical Knowledge, Stephan 
Körner’s The Philosophy of Mathematics: An Introductory Essay, Mark Steiner’s Mathematical 
Knowledge, John Burgess’ “Why I am not a nominalist”, Penelope Maddy, Stewart Shapiro, 
Charles Chihara (though I was much more attracted to platonism than to Chihara’s nominalist 
views).  
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I also read philosophical discussions of mathematics written by mathematicians – Davis and 
Hersh, for example. Three things stood out as I read work of the two communities: first, when 
mathematicians wrote about philosophy, they (we) were much more casual in their use of 
language than when they wrote about mathematics, whereas the philosophers were much more 
careful about the meanings of their words. Second, even for those philosophers who had some 
mathematical background, it tended to mostly be in logic or set theory, and so the examples used 
by philosophers tended to come mostly from either basic arithmetic, or from set theory, neither 
of which seem typical of mainstream mathematics. And the philosophers were not primarily 
addressing questions that really interested mathematicians – most mathematicians don’t care that 
much about what kind of thing a number is: rather we care about how they interrelate, and about 
why an idea in one field often turns out to be useful in a field where there had previously seemed 
to be no connection. Third, the two communities were almost completely disjoint: they didn’t 
appear to talk with (or possibly even be aware of) each other. 

It seemed to me that some of the questions that philosophers were considering were of interest to 
mathematicians, and that it would be helpful to get some of the carefulness of thinking about 
philosophical questions into the philosophical writings of mathematicians. So I wrote “What is 
the Philosophy of Mathematics, and What Should it Be” (the title was a paraphrase of 
Dedekind’s “Was Sind und Was Sollen die Zahlen?”) to suggest that there were questions that 
are not being addressed by philosophers but that need to be; but also that some questions 
mathematicians are interested in are being discussed by philosophers, and to point to that 
literature. 

I started reading more current work. Joe Auslander and I put together a panel for the joint winter 
meetings in 2001 on the philosophy of mathematics, with three mathematicians (Chandler Davis, 
Reuben Hersh, and Saunders Mac Lane) and two philosophers of mathematics (Kenneth 
Manders and Timothy Bays). I passed around a sign-up sheet for who would be interested in 
helping form a SIGMAA, and POMSIGMAA was born, approved by the MAA in 2002. I was 
the first Chair, Roger Simons was Chair-elect, Satish Bhatnagar was Program Director, Joe 
Auslander was Secretary, Charles Hampton was Newsletter editor/Webmaster, and Chuck 
Lindsey was Treasurer. POMSIGMAA has flourished, having contributed paper sessions at 
essentially every joint winter meeting since 2003, and having many major philosophers, and 
mathematicians interested in the philosophy of mathematics, give presentations at our meetings. 

In 2003 and 2005 I gave talks at POMSIGMAA contributed paper sessions, first on what I think 
the question “What is mathematics?” should mean, and then on a possible direction of an answer. 
I’ve gotten involved, meanwhile, in all sorts of other projects having nothing to do with 
philosophy of mathematics. (I’ve been involved in assessment in undergraduate mathematics and 
in the mathematical education of teachers, served on the MAA’s board of governors, started 
section versions of Project NExT in two MAA sections, and been very active in my MAA 
section), as well as in smaller issues within philosophy of mathematics. But now that I’m 
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planning to retire at the end of this academic year, I’m hoping to finally come to an acceptable 
answer to the question I’ve been wondering about since I finished graduate school. 

In recent years the parts of the philosophy of mathematics that interest me have flourished. (I’m 
not especially interested in foundational questions.) The Association for the Philosophy of 
Mathematical Practice was started in 2009 (with founding members Jean Paul van Bendegem, 
Jessica Carter, José Ferreirós, Marcus Giaquinto, Jeremy Gray, Abel Lassalle Casanave, Paolo 
Mancosu, Marco Panza, Jamie Tappenden). Issues in the philosophy of mathematical practice 
arose initially in work by Lakatos, and more recent work has come from many people, including 
Corfield’s Towards a Philosophy of Real Mathematics. (Jessica Carter, one of its founding 
members, told me that my “What is the Philosophy of Mathematics” article had been influential 
in her development.) More recently, in 2012, Mic Detlefsen and others formed the Philosophy of 
Mathematics Association. Both organizations have gotten more communication going between 
philosophers and mathematicians interested in the philosophy of mathematics. 

I think there are many interesting questions that are of interest to that group as a whole, and I’m 
now going to turn to the one that has been my own obsession. 

II. Current approaches to “What is mathematics?”, and (briefly) what I don’t like about 
them 

 A. What are mathematical objects? 

There are a lot of ways to interpret the question, “What is mathematics?” One natural 
interpretation is to turn it into the question, “What is the nature of mathematical objects?” This 
seems a natural approach, since mathematics is usually classified with the sciences, and that is 
how we approach questions such as “what is biology”, “what is physics”, “what is chemistry” – 
we look at the nature of the objects each studies.  (from Webster’s collegiate dictionary): Physics 
is the science that deals with matter and energy and their interactions; chemistry with 
composition, structure and properties of substances and of the transformations that they undergo; 
biology with living organisms and vital processes. But for mathematics, the same dictionary 
gives a list of areas of mathematics. Still, it would seem a reasonable approach that, if there were 
a good way to identify the nature of the objects of mathematical study in a coherent way that 
would be distinguishable from other types of objects people study, we could answer our question 
this way. 

Most of the work by philosophers of mathematics on the question of what is mathematics has 
been in this direction. There has been a lot of work on the topic, primarily of the realist versus 
nominalist divide. If one is a realist (also called platonist), mathematical objects are mind-
independent, time-and-space-independent abstract objects. Most mathematicians tend to think of 
mathematical objects this way – they’re out there (somewhere) and we work with these objects 
with our minds – our minds don’t change the objects, but we mentally poke and prod them to see 
how they behave. For philosophical realists, the challenge is how physical objects – human 
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beings – can have access to these mind-independent objects – how we can perceive them, gain 
knowledge of them, even refer to them at all. More recent versions of this approach include 
structuralism, where mathematical objects are kinds of structures, and our knowledge of 
mathematical objects follows our knowledge of structures in the world. Nominalists deny the 
existence of mathematical objects, which takes care of that problem, but leaves the question of 
mathematical knowledge unaccounted for (sometimes they reduce it to logical knowledge), and 
certainly gives us no help whatsoever in describing mathematics in terms of the objects we study. 
Social constructivists (few philosophers classify themselves here, but a substantial number of 
mathematicians do) are somewhere between realists and nominalists. Mathematical objects are 
some kind of shared vision we have: one person defines an object and describes it well enough, 
to the rest of us, that we also can see it  and work with it. There are also issues here, such as why 
humans, who can’t seem to agree on virtually anything else – is there global warming? Is 
capitalism good or evil? – seem to be able to come to such uniform agreement about 
mathematical objects. But more importantly, from my perspective, I haven’t seen an adequate 
description from the social constructivists about specifically what kind of socially-constructed 
objects mathematical objects are. Most of our objects of physics are also socially constructed, a 
lot of objects of society are socially constructed – which of these are mathematical objects 
(besides the circular “they’re the socially-constructed objects mathematicians study”). 

I’m not sure that I have much to add to the debate among philosophers between nominalism and 
realism, and they’re very busy working on this issue. But my main objection to this approach is 
that, even if we come down on the side of either realism or social constructivism, we’ve found 
the general realm of objects within which mathematical objects reside, but we don’t have it 
narrowed down to the collection, or type of collection, of objects that are of interest specifically 
to mathematicians. New mathematical objects are discovered/described/developed/invented all 
the time: is there some way to describe what their general nature is (as distinct from a larger 
class)? If they’re structures, which structures? Of course, we could work on this, and possibly the 
direction I’m going to suggest might lead to that kind of description in the end. However, for 
now it’s not the main thrust of what I’m going to suggest. 

 B. What is mathematical methodology? 

Notice that, while the various sciences are often defined based on the types of objects studied, 
science itself is not. Science tends more often to be defined in terms of its approach, how we 
acquire scientific knowledge. This is the second most common approach to describing what 
mathematics is. This approach proposes that mathematics is that which can be derived via logic. 
This approach also has a fairly long and honorable history: to a large extent, both the logicist and 
formalist foundational schools take this approach. For the logicists, mathematics is simply a 
subset of logic; they’re sort of the realist side of this approach to defining mathematics. 
Formalism corresponds to the nominalist side: mathematical statements don’t have meaning in 
themselves, and there’s no inherent sense to the question of whether a mathematical statement is 
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true or not: rather, can it be deduced from a given set of premises? But then, what is 
mathematics? Is it all formal deductions?  

It is certainly true that, for our formal presentations of mathematics, most mathematicians 
believe that logical reasoning is central to our means of justification. But most mathematicians 
also know that, while one cannot work inconsistently, the logical structure is just a shell within 
which we work: as Bourbaki has written, it’s just the “hygiene” of mathematics, that which 
keeps mathematics from becoming ill and corrupt. When we think about a mathematical 
problem, we are virtually never doing formal deductions: we’re examining the concepts involved 
in the problem and how they fit together, how they behave, how they interact – somewhat like 
the descriptions of physics and chemistry given earlier. (For example, when considering how 
many real roots the polynomial x5 + x + 1 has, we might first try to factor it but then we realize 
that since it’s of odd degree, it’s positive for large positive x, and negative for large negative x, 
and so it must have at least one root; and since its derivative is always positive, it’s an increasing 
function, and so it has at most one root. Do you see any syllogisms being used here?) Some at 
the extremes (such as Zeilberger) suggest doing away with deductive mathematics entirely. 
Those slightly less extreme suggest that experimental mathematics will lead the way in the 
future. But for everyday working mathematicians, the logical or semi-logical deductions that we 
give when writing up our results for publication are only a shadow of the conceptual arguments 
that are how we got to those results, and the descriptions we give when we give a mathematics 
talk on the topic are somewhere in between. Lakatos was perhaps the first philosopher to 
describe that methodology in his Proofs and Refutations. 

However, our actual methodology when we’re discovering new mathematics, or even working 
on a standard college-level mathematical problem, is much wilder than logical deduction, and yet 
that kind of work has more of the flavor of real mathematics. There is work to be done 
describing this, and folks such as Corfield, in his Towards a Philosophy of Real Mathematics, is 
just beginning that work. In any case, for now we do not have a sufficient description of how 
mathematics proceeds that will let us use it as our answer to “What is mathematics?” 

III. My proposed approach 

So what I’m proposing to do is to look at the assorted subjects that make up modern 
mathematics, and ask what is common to all of them, by virtue of which we classify them as 
mathematics. And, along with this, for things that we decide not to classify as mathematics (but 
as mathematically-related fields, or fields that use mathematics), why don’t we call them 
mathematics? I think this is a particularly good time in the history of mathematics to do this, 
because a range of fields of mathematics were developed during the 20th century (topology, 
algebraic geometry, mathematical logic, combinatorics, for example, each of which had roots in 
earlier mathematical questions or activities, but were primarily developed in the last century). At 
the same time, several fields that we would say either are not quite mathematics, or for which 
only some aspects are within mathematics, were also developed then, such as computer science 
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and operations research. My suggestion is that we look at why we count some of these as 
mathematics and others as fields that use mathematics, but not as mathematics itself. 

In particular, today I’m examining school mathematics. Obviously, in some sense we would call 
that the center of all mathematics. But there are other senses in which school mathematics 
doesn’t quite make it. We all worry about the fact that students (especially if they haven’t taken 
calculus in high school, but often even if they have) come to college thinking they want to major 
in mathematics, and then when they get here, and start taking our upper level courses, realize that 
this isn’t the subject they thought it was. And yet, they’ve been studying “mathematics” for 
twelve or more years by then. So is school mathematics real mathematics? Can examining it help 
us think about what mathematics is, really? 

IV. School mathematics So let’s turn to school mathematics. I’m going to consider four 
different topics within this. 

 A. Traditional elementary-school arithmetic  

So when I say “traditional elementary-school arithmetic”, I mean what I learned in elementary 
school, which was largely arithmetic manipulations. When I was in school, back in the 1950s, we 
learned to count in kindergarten, to add in first grade, subtract in second grade, multiply in third 
grade, divide in fourth grade (I was fortunate enough to skip fourth grade; I learned long division 
on the first day of fifth grade), fractions in fifth grade, decimals and percents in sixth grade. 
(Seventh and eighth grades were review; algebra came in ninth grade.) 

The emphasis was on the manipulations:  

Compute 5364 ÷ 78 – here is most of it, in several steps: 

       __6_         __6_ 
78 ) 5364            78 ) 5364 
        -468 

       __68 
78 ) 5364 
     - 468_ 
         684 
       - 624 

 To divide 5364 by 78, you observe that since 78 > 53, you must try to divide 536 by 78; that is, 
what is the largest single-digit multiple of 78 that is no larger than 536. You place that digit 
(which is a 6) above the 6 in 5364, multiply it by 78, place that result below the 536 and subtract 
it from 536. Then you bring down the 4, and repeat the process, putting the 8 above the 4. If 
you’re at the stage of dealing with decimals, you might then put a decimal point to the right of 
the 4 in 5364, and some zeroes after it, and put a decimal point after the 8 in the quotient, bring 
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down a 0 and continue for a while; if you’re not at that stage, you’d subtract 8*78 and what is 
left is called the remainder. There was no discussion, or very little, of the meaning of all this 
manipulation. Since the only calculators at the time were about twice the mass of a typewriter 
(for you younger folks, that’s a mechanical word processor in which the printer is combined with 
a keyboard, with the CPU being the human operating it), most people needed to do addition and 
subtraction by hand or mentally on a fairly regular basis, and many needed to be fairly proficient 
at multiplication and division – hence the year spent practicing each. We also learned methods to 
check our work, since it was important to consistently get the answers right, but there was very 
little, if any, explanation of why these algorithms worked, or what they meant. 

Now, I’m not putting down this activity: in a time before widespread availability of electronic 
calculating machines (much less computers), there was a need for this. And it took humanity 
several thousand years to develop relatively efficient algorithms for these calculations – imagine 
trying to do the division problem I just mentioned in roman numerals. 

But I would argue that this sort of activity is not mathematics, any more than predicting the 
coming of the messiah by giving numerical values to the various letters of the Hebrew alphabet 
and doing some computations with the Bible is doing mathematics. It’s using mathematical 
developments for some human purpose, but it isn’t doing mathematics. Why do I say this? What 
makes it seem not mathematics, to me, is that it lacks ideas, concepts, understandings, 
interrelations among meanings. In fact, slogans were developed to tell folks, “don’t worry about 
any meaning: just do it” – “Yours is not to reason why: just invert and multiply” for division of 
fractions, for example. I don’t think the word “mathematics” was used for this: we didn’t have 
mathematics books; they were “arithmetic books.” And I think those of us who are engaged in 
mathematics, whether professionally or even as amateurs, feel that meaning and understanding 
are central to doing mathematics. 

Indeed, this view even trickled down to school teachers involved in teaching the “New Math” in 
the ‘60s, as exemplified by this quote from an eighth grade teacher [1, p. 470]: “Teaching the 
SMSG materials has made me realize that before using these texts, I was not teaching 
mathematics at all; I was simply teaching manipulative skills. Now I feel that I have been 
teaching at least some mathematics.”  

Not that I’m saying that inherently elementary-school arithmetic isn’t mathematics – I’ll come 
back to it in a little while – but I think that a certain approach to it isn’t. A little while after I had 
moved to junior high school, the “New Math” came in. This movement began in many 
universities around the country; its aim was to put meaning into mathematics. The New Math 
began soon after the end of World War II, but became supported nationally and moved to the 
forefront after the launch of Sputnik in 1957.  It tried to put meaning into school mathematics in 
some peculiar ways, partly motivated, I think, by the foundational difficulties mathematics itself 
had run into, and by the success of the Bourbaki-style formalist approach, together with 
axiomatic set theory. The proponents of the New Math proposed to put meaning into school 
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mathematics by starting with a set theoretical and functions approach – counting consisted of 
one-to-one correspondences between sets, for example – as well as working in different number 
bases to give an understanding of arithmetic manipulations. But many proponents of the New 
Math also advocated a pedagogy of active learning, which I will discuss more later. Another 
eighth-grade teacher, teaching the New Math: “Most of the students of above-average ability 
reacted well to the material, obviously being glad to have something besides pages of problems 
on which to use their minds. Some of the most striking cases of success, however, came from the 
ranks of students of low ability who made progress because they understood why they were 
performing certain operations.” (italics added) A much more serious attempt was made with the 
New Math, than is currently being made with the Common Core State Standards, to bring 
teachers to the point that they were able to teach this material (there were many summer 
institutes for teachers, largely sponsored by the NSF). But its very alien, formal, from the 
intellectuals-to-the-masses French approach was totally rejected by the parents, leading to a 
“back-to-basics” movement – “if this is what meaning in mathematics is, let’s get rid of it!” 

 B. Traditional high school mathematics 

Much of high school mathematics has also been taught from a purely manipulative approach, and 
I would argue that it is then also only minimally mathematics. High school algebra is especially 
vulnerable to this approach. First, we introduce many new notations, often with little explanation 
of what they mean or the rules under which they operate, or even with ambiguous rules that 
change in what appears, to many students, arbitrary manners. For example, we use letters to 
represent assorted objects (generally at first, numbers, but later functions and more), and we do 
so in many different contexts. (We say that “3(x + y) = 3x + 3y” is an identity, the distributive 
property, whereas we sometimes say that “sin(x + y) = sinx + siny” is an error, misusing the 
distributive property – though it’s often not explained why the distributive property isn’t 
applicable here. However, the latter also could be asking us to find all x and y with that property. 
A lot of our notation is similarly ambiguous: the letter x can be a variable quantity in the 
definition of a function, an unknown quantity to be solved for, an arbitrary number in an 
expression of an identity, etc.). 

Second, often very little emphasis is placed on the concepts involved: that to keep an equation 
true, or equivalent, what is done to one side must be done to the other; that if something doesn’t 
work for numbers, it won’t work for variables (but some things won’t work for variables that do 
for numbers); that one manipulates expressions and equations to change them to forms where 
what’s going on is more evident. 

Of course, one doesn’t have to teach algebra in this mindless way, but teachers who haven’t 
made the connections, between the symbol-pushing and the concepts those symbols are 
representing, are unlikely to make them for their students. 
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So traditional high school mathematics is often taught in a way that is not mathematics – this is 
one reason I have pushed to not have “college algebra” count for general education credit in 
mathematics at the university level – because even if there are some concepts there, they tend to 
become overwhelmed by the manipulative activities. 

On the other hand, the concepts are closer to the manipulations at the high school level than at 
the elementary school level, and some subjects, such as geometry, seem to me to almost 
inevitably require consideration of concepts. It can still be taught in a deadening way that makes 
it, at best, borderline mathematics. For many, the formality of two-column proofs, memorizing 
definitions, axioms and postulates, and so on, deadens the potential pleasure of discovering new 
mathematical results or justifications of observations. But inherently it seems much closer to 
“real” mathematics. 

I’ve clearly, as I’ve been talking, been identifying some qualities that make something 
mathematics, or make it “not really mathematics.” So maybe we’re making some progress. 
Mathematics seems to be about ideas or concepts of a certain kind – among them, ideas that are 
preserved under some kinds of transformations. And mathematics seems to involve exploring 
these ideas, not just repeating or memorizing them. In particular, mathematics is not symbol 
manipulation devoid of a relationship to what those symbols represent. Symbols are important, 
for several reasons. We have learned that, once we know how that symbol manipulation affects 
the concepts, we can, in fact, manipulate the symbols without referring to their meaning. Thus 
learning how to manipulate symbols has been an important part of mathematical development. 
Further, in some circumstances, we can learn new relationships simply from manipulating those 
symbols (as, for example, when, in dealing with a differential equation that we don’t know how 
to solve, we say, well, what if we had a solution in the following form: what would it then have 
to be). Nonetheless, the manipulations themselves are not mathematics: it’s the concepts they are 
representing that is where the mathematics lies. 

 C. Common Core State Standards 

So I’d like to turn to a particular direction in school mathematics that has been receiving a lot of 
attention in the last half-dozen years, the Common Core State Standards. I’m not speaking either 
as a proponent or as an opponent of these standards, but more as an observer. There is clearly an 
attempt, via these standards, to get students thinking more about the meaning of the mathematics 
they are studying – we’ll look at several examples in a few minutes. On the other hand, the 
standards  have also been introduced in some very problematic ways and with a variety of 
agendas on the part of those introducing them. Unlike the New Math, not a lot of money has 
been spent on institutes training teachers to teach in ways consonant with the standards. They 
have been introduced at a time when many political leaders are looking for mechanisms to use to 
weed out ineffective teachers, or, alternatively, mechanisms to punish or blame teachers for the 
problems of society. I’m not interested in getting into a fight over this right now – clearly I do 
have some opinions about what I’ve seen, but that’s not my point in bringing them up. 
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What I’d like to do is look at some of the sample assessment items for the CCSS that one of the 
consortiums developing those tests, PARCC, has released, and the extent to which these appear 
to be introducing real mathematics at the school level. I have chosen examples that I feel have 
some important mathematical concepts in them. 

1. Third grade: “Art Teacher’s Rectangular Array.”  This is classified as “modeling and 
applications”, though, frankly, I think it’s pretty poor as that. But it does involve exploration. 

The question starts, “An art teacher will tile a section of the wall with painted tiles made by 
students in three art classes. Class A made 18 tiles, Class B made 14 tiles, Class C made 16 
tiles.” 

“Part A: What is the total number of tiles being used?” (There’s nothing interesting here: it’s a 
straightforward sum. Notice it’s 48 tiles in all.) 

          

          

          

          

          

          

          

          

          

          
 

“Part B: The grid above shows how much wall space the art teacher can use. Use the grid to 
create a rectangular array showing how the art teacher might arrange the tiles on the wall. Select 
the boxes to shade them. Each tile should be shown by one shaded box.”  

Notice that 48 is actually quite an interesting number to think about in this context, since it has 
many factors, and thus there are many rectangular grids that one could make: 2 by 24, 3by 16, 
and so on. But this particular question is not written as a class exploration, though it being 
among the sample assessments suggests that a teacher getting children ready for these tests 
should have them do such explorations. For an assessment, they want a small finite number of 
possible student responses so that it will be fairly quick to grade. 

Note that here  the grid is 10 by 10; and students have to understand the terminology: that just 
shading the first 48 squares isn’t what it’s asking for. And although there are many factors of 48, 
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to make it fit on this computer screen, only 6 by 8 or 8 by 6 will work. (Notice that a display that 
is 6 tiles wide and 8 high is quite a different display from one that is 8 by 6.) But asking students 
to explore, to find different rectangular arrays and see if there are some lengths that won’t work, 
is doing real mathematics, exploring the factorization of integers. 

2. Fifth grade: “Mr. Edmunds’ Pencil Box” “Mr. Edmunds shared 12 pencils among his four 
sons as follows: Alan received 1/3 of the pencils; Bill received ¼ of the pencils; Carl received 
more than 1 pencil; David received more pencils than Carl.” 

“A. On the number line, represent the fraction of the total number of pencils that was given to 
both Alan and Bill combined.” (This is an on-line problem, and students use buttons (labeled 
“More tick marks” “Fewer tick marks”) to increase or decrease the number of equal sections on 
the number line.) 

“B. What fraction of the total number of pencils did Carl and David each receive? Justify your 
answer.” 

The first part is entirely computational but can either be solved by simply adding 1/3 + 1/4, OR 
by first finding how many pencils Alan and Bill each received (by finding 1/3 of 12, ¼ of 12), 
adding the number of pencils, and then finding what fraction of 12 total pencils this was. To 
represent it on a number line, children have to understand the idea of denominators of fractions 
representing the number of parts a unit is divided into, and that therefore they need to make the 
screen have 12 parts (11 tick marks) between 0 and 1.  

But the second part requires considerable reasoning: a student who found, in the first part, 
correctly, that Alan and Bill together got 7 pencils, knows that in total Carl and David got 5. But 
it requires further reasoning to realize that there is only one solution: since Carl gets at least two 
pencils, he must in fact get two and David must get 3, since he’s supposed to get more. Again, 
because it’s an assessment item, it’s restricted to having a small number of correct answers (in 
this case, just one), but in class one could extend this problem either by not requiring that Carl 
gets more than one pencil (thus leaving numerous solutions), or by using a larger number of 
pencils and exploring what range of possibilities there are: it can be the beginning of a lot of 
combinatorial activity. 

So we see several aspects of mathematics in these problems: the fact that there can be multiple 
approaches to solving mathematical problems, that they can be approached from several 
perspectives (numerical, geometric, via fractions or integers), that potentially open-ended 
problems can be used even in early grade school, that one can reason without having an algebraic 
(or other) formula, that one can do experiments with mathematical objects (even putting different 
number of tick-marks on the number line is a form of experiment). Let’s turn to some high-
school problems. 
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3. “High School Functions” The question says, “A portion of the graph of a quadratic function  
f (x) is shown in the xy-plane. Selected values of a linear function g(x) are shown in the table.” 

    

 

Here we’re given two functions, neither via its algebraic expression: a quadratic function (with a 
negative coefficient of x2) given by a graph, with the coordinates of all three intercepts and the 
vertex; and a decreasing linear function given by four successive points (with the x-coordinate 
changing at a fixed rate). This problem can be approached by finding the algebraic expressions 
for each function (though, to be honest, I’ve never done this because I find the other approaches 
more interesting). But in fact one can solve the whole problem without ever finding the algebraic 
expressions, by working entirely conceptually. For the first question, one is given the y-intercept 
of  f, and simply by observing that g is decreasing and is below f  's y-intercept, one knows that 
g’s y-intercept is less than that of f. The second question is even quicker: f (3) is positive, while 
g(3) is clearly negative. The third question requires a little computation: because g is decreasing, 
its maximum on [-5,5] is at -5; and since its slope is -2, it will have the same maximum as f does. 
(One has to not be bothered by the fact that the maxima are at different x-coordinates for the two 
functions: this will probably bother many students who are used to comparing functions at the 
same x-value.) The fourth question is about the slope of what, in calculus, is called the “secant 
line”, of course; we have already found the slope for g in the third question, and just have to find 
it for f. It also involves comparing negative numbers (and, frankly, I don’t like all the 3’s hanging 
around). 

So what do I see that involves what I’d call real mathematics in this problem? First, that the same 
object (the two functions) can be represented in multiple ways, and yet be the same object. Also, 
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that these functions have properties that are characteristic of their type of object, the 
understanding of which lets one compare them in a range of ways. These properties are used for 
thinking about the concepts and determining further properties. So one explores the functions, 
via the ways they’re presented; one “experiments” with them to see what they do (such as 
finding the slope of g and determining whether that slope is sufficient that it is higher than f  
somewhere on the given interval, whether its slope is always larger or smaller than that of f on 
that interval). 

4. “Seeing structure in a quadratic equation” “Solve the following equation: (3x – 2)2 = 6x – 4.” 
This problem invites observing that this is a variation (translation and stretching) of the equation 
u2 = 2u. Doing so enables the student to solve the equation very quickly and with much less 
symbolic computation or memorization, as well as via a much more conceptual approach. I think 
this is typical of “real” mathematics: not that we don’t compute – even in this problem one has to 
do minor computation to see where 3x – 2 equals 0 or 2. But I think we’ve all learned that it’s 
generally a good idea to think about the problem for a while before starting to compute. 

Possibly disturbing is that all of these problems can be approached both conceptually and via 
old-fashioned symbolic manipulation – but certainly seeing those connections is presumably the 
aim of those writing the problems, given the titles these problems have been given. 

Problems such as the ones I have mentioned tend to encourage active learning: rather than 
memorizing something like the quadratic formula, one can ask students to look for structure in 
(3x – 2)2 = 6x – 4: can they find some similarity in the expressions on each side of the equation? 
What would happen if we substituted u for 3x – 2: what does that do to the equation? Can they 
then solve it? How would that help with the original equation? Similarly the high school function 
example: one can ask the class to think of properties of these functions that would allow 
answering the questions without finding formulas for the given functions. And elementary school 
students can experiment with ways to make a rectangle with area 48. 

So what aspects of mathematics are we seeing in these CCSS problems? That the same object 
can be represented in multiple ways, and that by being aware of the multiple representations, one 
can often avoid nasty computations. This has been a productive attitude in mathematics, and, 
perhaps, is in fact part of the nature of mathematics. Also, that the excitement in mathematics is 
in problem-solving – an excitement that had largely been taken out of mathematics when I was in 
school – everything was rote or routine. 

 D. Hyman Bass’s school-level problems 

Finally, I’d like to look at something that Hyman Bass has been presenting recently – I heard him 
give a talk at the joint meetings in 2015, and he did a workshop (somewhat different 
presentation, but roughly the same topic) about it at the New Jersey section meeting. Bass is a 
well-known algebraist who has been interested in school level mathematics, and the 
mathematical education of teachers, for quite a number of years, and has worked with folks 
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(especially Deborah Ball) with substantial experience actually teaching at the elementary school 
level. Actually, I’m first going to mention a problem I only heard him speak about at the MAA-
NJ meeting: if you have m cakes to divide among n people (say 5 cakes among 7 people), what is 
the smallest number of cuts you can make to divide them evenly? This is clearly a problem 3rd 
grade students can work on; fair sharing is of interest at that age, and they have the sophistication 
to work on it. There are many ways to cut the cakes: cut each cake 5/7 of the way; then, with one 
of the 2/7 pieces, cut it in half. So 5 people get uncut 5/7 pieces, and the remaining two get three 
pieces: two 2/7 pieces and one 1/7 piece. Or, cut the first cake at 5/7; put the remaining 2/7 
together with 3/7 of next cake. Next, take its remaining 4/7 together with 1/7 of next cake. This 
is the only cake cut twice: at 6/7 also. And so on. 

 But it turns out that the question is related to the Euclidean algorithm, to square tilings of a 5 by 
7 rectangle, to several questions in graph theory, and so on. 

But the main thing I’ve seen him do is hand out a list of four arithmetic problems to one group, 
three rate problems to another, three geometry problems to a third group, three algebra problems 
to a fourth group, and suggest that they work on them for a while. Here, for example, are the four 
arithmetic problems:  

1. Find all ways to express ½ as the sum of two unit fractions 

2. Find all rectangles with integer side lengths whose area and perimeter are numerically equal. 

3. The product of two integers is positive and twice their sum. What could these integers be? 

4. For which integers n > 1 does n – 2 divide 2n? 

For contrast, here is one of the geometry problems: Given a point P in the plane, find all integers 
n such that a small circular disk centered at P can be covered by non-overlapping congruent tiles 
shaped like regular n-gons that have P as a common vertex. 

And one of the rates problem: Nan can paint a house in n days, and her mom can paint it in m 
days (n and m positive integers). Working together, they can paint the house in 2 days. What are 
the possible values of n and m? 

First, observe that these are all school-level problems – that is, they could be posed to high 
school classes, or lower. Of course, all mathematicians know that there are very difficult 
problems that can be posed with high school, or even elementary school, vocabulary. 

Also notice that they all involve some symbol manipulation, but also involve understanding and 
examining some concepts, and what the implications of the concepts are. One fairly quickly sees 
that the first problem has two solutions: ¼ + ¼, or 1/3 + 1/6. One doesn’t see any more: but how 
can one show that that’s all there are? Hmm: 1/m + 1/n = (m+n)/mn. So if 1/m + 1/n = ½,  
2(m+n) = mn – wow – perimeter equals area; the product is twice the sum... 
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In any case, as people work on their collection of problems, they start realizing these are all 
variations of the same problem. That is, the same question can be seen through over a dozen 
different lenses.  I think that this collection of problems embodies at least a significant aspect of 
the nature of mathematics – but as of today, I’m still puzzling over them, trying to figure out 
exactly what that is. 

Notice that both the CCSS problems I mentioned and those Bass has been presenting have the 
feature that they can be approached not simply by different methods, but by methods that are 
from completely different parts of mathematics – geometry, algebra, graph theory, and so on.  
Certainly there are theorems in mathematics that have never been approached from the 
perspective of more than one area of mathematics. But I think the frequency with which one can 
approach a mathematical concept from a range of perspectives is a feature that intrigues people 
about mathematics, that makes it an exciting subject, and perhaps that makes it different from 
other subjects. Not that this doesn’t happen in other subjects, but these deep, unexpected 
connections occur with an unusually high frequency in mathematics. 

One thing I’d like to point out about this kind of problem: it makes any “foundation” for 
mathematics that I’ve seen – whether through logic, set theory, model theory, or category theory 
– inadequate. None of them account for the wide range of different pairings of fields and 
approaches one finds in mathematics. Logic and model theory are especially susceptible to this 
criticism – simply changing whether you’re describing the natural numbers with just one 
constant (1) and one function (the successor) versus with several functions (say, addition and 
multiplication) makes it, from the perspective of logic, completely different structures. One can 
interpret one within the other – there are ways of partially accounting for this difficulty – but this 
is only for perspectives that are from the same field of mathematics. Logic really seems 
inadequate to view mathematical objects from different perspectives. But so does category 
theory – it does enable one to talk about certain ways in which very different structures are 
essentially the same – but only when there are clear ways of replacing every item in one 
perspective with its equivalent from the other. It’s one reason that I, and many mathematicians, 
tend to be, at least in some respects, firm platonists. If it’s a world out there that we’re reporting 
on, then mathematicians may well be somewhat like the blind men examining the elephant – we 
each perceive it from our own perspective, and are amazed when someone shows us how to see it 
from a different perspective. 

V. Summary 

One problem with working on the question “What is mathematics?” is that, if I find the right 
answer, it will be obvious to people, and the reaction will be, “Yes, of course, I knew that all 
along.” Nonetheless, I think it’s worth trying to find it. 

So let me try to summarize where this has taken us. 
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First, I’ve been trying to look at the question of what mathematics is by examining what is in 
common about all the subjects that we call mathematics that is behind our calling them 
mathematics, and for subjects that are on the borderline, or are mathematically-related, why we 
would not call them mathematics.  

For today, I’m examining school (K-12) mathematics. As I’ve suggested, I’d classify some 
school mathematics – what I’d call “mindless symbol manipulation” – as not really being 
mathematics, but I’d say that, depending on what is taught and how it is taught, and how 
questions are asked, much of what is taught at the K-12 level can be mathematics; and that there 
is currently an attempt, in the CCSS, to bring more real mathematics into the curriculum. 

In particular, what aspects do we see of the nature of mathematics as we examined school 
mathematics? First, that the same object can be represented in multiple ways, and that by being 
aware of the multiple representations, one can often avoid nasty computations. That the same 
structure may occur in completely different contexts and even completely different branches of 
mathematics. That mathematical understanding and knowledge comes from working on 
problems that seem natural, by experimenting with what can happen and what is ruled out by the 
given conditions. That mathematics is about concepts, understandings, interrelations among 
meanings: there needs to be an interaction between the concepts and mathematical manipulations 
to solve mathematical problems. We experiment and make conjectures; then we look for proofs, 
which often involves more experimentation as well as symbolic computation. 

None of this is news; but we’re focusing on what makes mathematics mathematics – so maybe 
we’re making a little progress. 

I would welcome any comments or suggestions. 
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