Sheaves of Probability



Owen Biesel

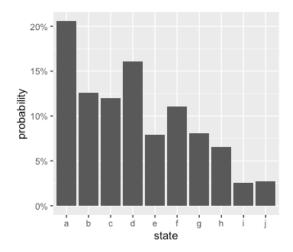
Southern Connecticut State University bieselo1@southernct.edu

Owen Biesel (SCSU)

Sheaves of Probability

January 5, 2024

Credences represented by a probabilities



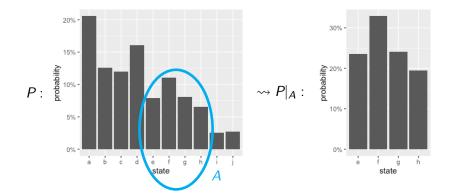
Our credences are represented by a probability measure P on a "state space," e.g. $X = \{a, b, c, d, e, f, g, h, i, j\}$.

Owen Biesel (SCSU)

Sheaves of Probability

January 5, 2024

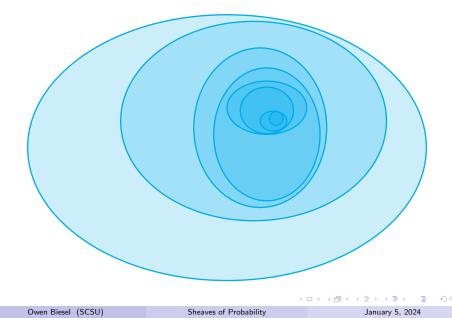
Conditionalization



< (17) × <

2

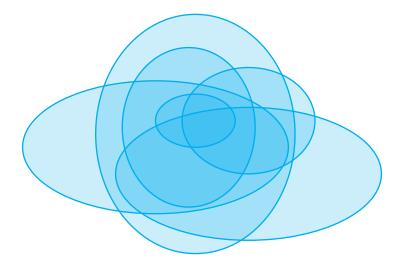
Gradually accumulating evidence narrows down state space



Show of hands:

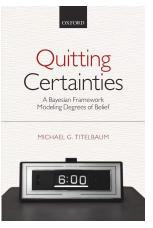
• How many of you can no longer remember something you're sure you used to know?

Overlapping sets of evidence



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Generalized Conditionalization



Titelbaum's notion of consistency among a collection of different agents' credences:

Definition (Generalized Conditionalization)

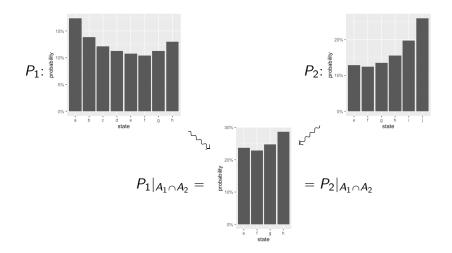
Let X be a state space, and let P_i be probability measures on subsets $A_i \subseteq X$. We say that the P_i satisfy generalized conditionalization (GC) if for each pair of agents i, j we have

$$P_i|_{A_i\cap A_j}=P_j|_{A_i\cap A_j}.$$

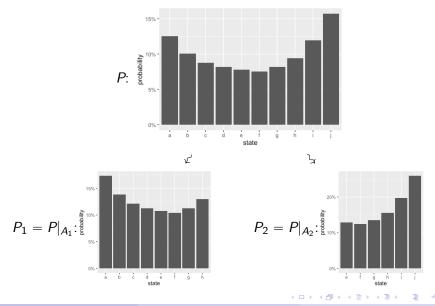
Essentially, do the P_i agree where they overlap?

< ロト < 同ト < ヨト < ヨト

Example credences satisfying GC



A common prior



Owen Biesel (SCSU)

January 5, 2024

If probability measures P_i on A_i satisfying GC (namely, $P_i|_{A_i \cap A_j} = P_j|_{A_i \cap A_j}$) always uniquely determine a "common prior" P on $\bigcup_i A_i$ with $P|_{A_i} = P_i$, it would mean that probability measures form a *sheaf*. Do they?

(日) (同) (三) (三)

If probability measures P_i on A_i satisfying GC (namely, $P_i|_{A_i \cap A_j} = P_j|_{A_i \cap A_j}$) always uniquely determine a "common prior" P on $\bigcup_i A_i$ with $P|_{A_i} = P_i$, it would mean that probability measures form a *sheaf*. Do they?

Answer: No!

(日) (四) (日) (日) (日)

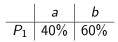
GC credences with no common prior

	а	Ь	с
P_1	40%	60%	
P_2		40%	60%
P_3	60%		40%

These have no common prior P: we would need to have

$$P(a) < P(b) < P(c) < P(a).$$

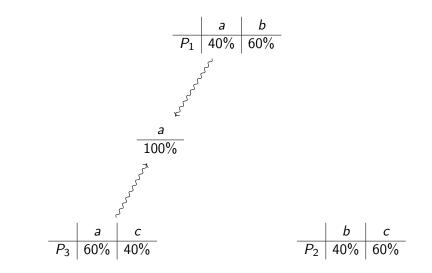
They're also "logically inconsistent" in the sense that together, the three agents have learned evidence that rules out all three possible states.



	а	c
P ₃	60%	40%

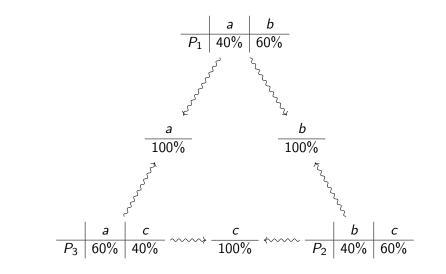
Owen Biesel (SCSU)

January 5, 2024



æ

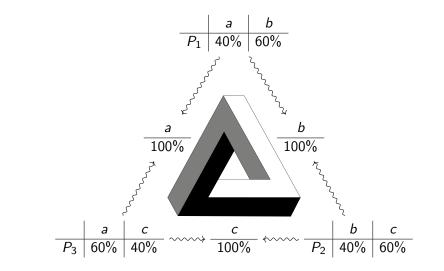
< /⊒> <



Owen Biesel (SCSU)

January 5, 2024

æ



Owen Biesel (SCSU)

January 5, 2024

æ

- GC (Generalized Conditionalization): Do the probability measures agree on their overlaps?
- OP (Common Prior): Is each probability measure the restriction of a single prior distribution?
- Occ (Logical Consistency): Do the probability measures all overlap nontrivially?

We have seen an example where GC holds but CP and LC do not.

In fact, for logically consistent probabilities, satisfying GC is equivalent to having a common prior!

Theorem (B—, '24)

Let X be a state space, and for each $i \in \{1, ..., n\}$ let P_i be a probability measure on $A_i \subseteq X$. Suppose that for each i, we have $P_i(\bigcap_{i=1}^n A_i) > 0$. Then the following are equivalent:

- For all $i, j \in \{1, \ldots, n\}$, we have $P_i|_{A_i \cap A_j} = P_j|_{A_i \cap A_j}$.
- There exists a unique probability measure P on ∪_{i=1}ⁿ A_i such that for each i ∈ {1,..., n}, we have P|_{Ai} = P_i.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Theorem (B—, '24)

Let X be a measurable space, let $E \subseteq X$ be a measurable subset, and let [E, X] be the collection of measurable subsets of X containing E, partially ordered by inclusion. Equip [E, X] with the notion of coverage given by finite unions, making it a site. Then the functor

 $[E,X]^{\operatorname{op}} \to \mathbf{Set}$

sending each subset A to {probability measures P on A with P(E) > 0}, and each inclusion $A \subseteq B$ to the restriction function $P \mapsto P|_A$, is a sheaf.

Proof Sketch.

- **()** Scale each P_i to an ordinary finite measure μ_i such that $\mu_i(E) = 1$.
- 2 Show that the measures μ_i agree "on the nose" on their overlaps.
- So Construct a finite measure μ on $\bigcup_{i=1}^{n} A_i$ that agrees with each μ_i .
- Normalize μ to give the desired probability measure P on $\bigcup_{i=1}^{n} A_i$.

Thank you!

Questions for further discussion:

- What goes wrong with infinite covers A_1, A_2, A_3, \ldots ?
- Is there some kind of group cohomology lurking in this story?
- Could we consider sheaves on more general categories to account for self-locating uncertainty?

