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Credences represented by a probabilities
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Our credences are represented by a probability measure P on a “state
space,” e.g. X=1{a,b,c,d, e, f, g h,ij}.
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Conditionalization
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Gradually accumulating evidence narrows down state space
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Do we actually accumulate evidence monotonically?

Show of hands:

@ How many of you can no longer remember something you're sure you
used to know?
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Generalized Conditionalization

Titelbaum’s notion of consistency among a col-
lection of different agents' credences:

QUI'ttlﬂg Definition (Generalized Conditionalization)
Certainties Let X be a state space, and let P; be probability
e measures on subsets A; € X. We say that the P;
satisfy generalized conditionalization (GC) if for
IS e each pair of agents i, j we have

PI|A,ﬁAJ = Rj|A,ﬂAJ

Essentially, do the P; agree where they overlap?

Owen Biesel (SCSU) Sheaves of Probability January 5, 2024



Example credences satisfying GC
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A common prior
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Sheaves

If probability measures P; on A; satisfying GC (namely, Pi|a~a; = Pjlana;)
always uniquely determine a “common prior” P on [ J; A; with P|4, = P}, it
would mean that probability measures form a sheaf. Do they?
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Sheaves

If probability measures P; on A; satisfying GC (namely, Pi|a~a; = Pjlana;)
always uniquely determine a “common prior” P on [ J; A; with P|4, = P}, it
would mean that probability measures form a sheaf. Do they?

Answer: No!
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GC credences with no common prior

L a | b | c
Py | 40% | 60%
P, 40% | 60%
Ps | 60% 40%

These have no common prior P: we would need to have
P(a) < P(b) < P(c) < P(a).

They're also “logically inconsistent” in the sense that together, the three
agents have learned evidence that rules out all three possible states.
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Verifying GC

| a | b

P1 | 40% | 60%

a ‘ C

Ps | 60% | 40%
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Verifying GC

[ a | b
P1 | 40% | 60%

_ 2
100%
a ‘ c ‘ b ‘ c
Ps | 60% | 40% P2 | 40% | 60%
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Verifying GC

a b
Py \ 40% \ 60%

/N

100% 100%

/ N

a ‘ c s c P ‘ b ‘ c
Ps | 60% | 40% 100% P2 | 40% | 60%
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Verifying GC

a b
P | 40% \ 60%

/N

100% 100%

/ N

a ‘ c s c P ‘ b ‘ c
Ps | 60% | 40% 100% P2 | 40% | 60%
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Three notions of compatibility

© GC (Generalized Conditionalization): Do the probability measures
agree on their overlaps?

@ CP (Common Prior): Is each probability measure the restriction of a
single prior distribution?

© LC (Logical Consistency): Do the probability measures all overlap
nontrivially?

We have seen an example where GC holds but CP and LC do not.
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LC = (GC < CP)

In fact, for logically consistent probabilities, satisfying GC is equivalent to
having a common prior!

Theorem (B—, '24)

Let X be a state space, and for each i€ {1,...,n} let P; be a probability
measure on A; € X. Suppose that for each i, we have P;i((_; A;) > 0.
Then the following are equivalent:

o Foralli,je{l,...,n}, we have Pijana; = Pjlana;
o There exists a unique probability measure P on | Ji_; A; such that for
each i€ {1,...,n}, we have P|a. = P;.
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Sheaves of Probability

Theorem (B—, '24)

Let X be a measurable space, let E < X be a measurable subset, and let
[E, X] be the collection of measurable subsets of X containing E, partially
ordered by inclusion. Equip [E, X] with the notion of coverage given by
finite unions, making it a site. Then the functor

[E, X]°P —> Set

sending each subset A to {probability measures P on A with P(E) > 0},
and each inclusion A < B to the restriction function P — P|a, is a sheaf.
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Sketch of Proof

Proof Sketch.
© Scale each P; to an ordinary finite measure p; such that u;(E) = 1.

@ Show that the measures p; agree “on the nose” on their overlaps.
© Construct a finite measure p on | Ji_; A; that agrees with each p;.
© Normalize p to give the desired probability measure P on | J7_; A;.
Ol
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Thank you!

Questions for further discussion:
@ What goes wrong with infinite covers A, Az, Az, ...7
@ |s there some kind of group cohomology lurking in this story?

@ Could we consider sheaves on more general categories to account for
self-locating uncertainty?
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