Sheaves of Probability

Owen Biesel

Southern Connecticut State University
bieselo1@southernct.edu

Credences represented by a probabilities

Our credences are represented by a probability measure P on a "state space," e.g. $X=\{a, b, c, d, e, f, g, h, i, j\}$.

Conditionalization

Gradually accumulating evidence narrows down state space

Do we actually accumulate evidence monotonically?

Show of hands:

- How many of you can no longer remember something you're sure you used to know?

Overlapping sets of evidence

Generalized Conditionalization

Quitting
Certainties
A Bayesian Framework
Modeling Degrees of Belief

MICHAEL G. TITELBAUM

Titelbaum's notion of consistency among a collection of different agents' credences:

Definition (Generalized Conditionalization)

Let X be a state space, and let P_{i} be probability measures on subsets $A_{i} \subseteq X$. We say that the P_{i} satisfy generalized conditionalization (GC) if for each pair of agents i, j we have

$$
\left.P_{i}\right|_{A_{i} \cap A_{j}}=P_{j} \mid A_{i} \cap A_{j} .
$$

Essentially, do the P_{i} agree where they overlap?

Example credences satisfying GC

A common prior

Sheaves

If probability measures P_{i} on A_{i} satisfying GC (namely, $\left.P_{i}\right|_{A_{i} \cap A_{j}}=\left.P_{j}\right|_{A_{i} \cap A_{j}}$) always uniquely determine a "common prior" P on $\bigcup_{i} A_{i}$ with $\left.P\right|_{A_{i}}=P_{i}$, it would mean that probability measures form a sheaf. Do they?

Sheaves

If probability measures P_{i} on A_{i} satisfying GC (namely, $\left.P_{i}\right|_{A_{i} \cap A_{j}}=\left.P_{j}\right|_{A_{i} \cap A_{j}}$) always uniquely determine a "common prior" P on $\bigcup_{i} A_{i}$ with $\left.P\right|_{A_{i}}=P_{i}$, it would mean that probability measures form a sheaf. Do they?

Answer: No!

GC credences with no common prior

	a	b	c
P_{1}	40%	60%	
P_{2}		40%	60%
P_{3}	60%		40%

These have no common prior P : we would need to have

$$
P(a)<P(b)<P(c)<P(a) .
$$

They're also "logically inconsistent" in the sense that together, the three agents have learned evidence that rules out all three possible states.

Verifying GC

	a	b
P_{1}	40%	60%

Verifying GC

Verifying GC

Verifying GC

Three notions of compatibility

(1) GC (Generalized Conditionalization): Do the probability measures agree on their overlaps?
(2) CP (Common Prior): Is each probability measure the restriction of a single prior distribution?
(3) LC (Logical Consistency): Do the probability measures all overlap nontrivially?
We have seen an example where GC holds but CP and LC do not.

$\mathrm{LC} \Longrightarrow(\mathrm{GC} \Longleftrightarrow \mathrm{CP})$

In fact, for logically consistent probabilities, satisfying GC is equivalent to having a common prior!

Theorem (B—, '24)

Let X be a state space, and for each $i \in\{1, \ldots, n\}$ let P_{i} be a probability measure on $A_{i} \subseteq X$. Suppose that for each i, we have $P_{i}\left(\bigcap_{i=1}^{n} A_{i}\right)>0$. Then the following are equivalent:

- For all $i, j \in\{1, \ldots, n\}$, we have $P_{i}\left|A_{i} \cap A_{j}=P_{j}\right|_{A_{i} \cap A_{j}}$.
- There exists a unique probability measure P on $\bigcup_{i=1}^{n} A_{i}$ such that for each $i \in\{1, \ldots, n\}$, we have $\left.P\right|_{A_{i}}=P_{i}$.

Sheaves of Probability

Theorem (B—, '24)

Let X be a measurable space, let $E \subseteq X$ be a measurable subset, and let $[E, X]$ be the collection of measurable subsets of X containing E, partially ordered by inclusion. Equip $[E, X]$ with the notion of coverage given by finite unions, making it a site. Then the functor

$$
[E, X]^{\mathrm{op}} \rightarrow \text { Set }
$$

sending each subset A to $\{$ probability measures P on A with $P(E)>0\}$, and each inclusion $A \subseteq B$ to the restriction function $\left.P \mapsto P\right|_{A}$, is a sheaf.

Sketch of Proof

Proof Sketch.

(1) Scale each P_{i} to an ordinary finite measure μ_{i} such that $\mu_{i}(E)=1$.
(2) Show that the measures μ_{i} agree "on the nose" on their overlaps.
(3) Construct a finite measure μ on $\bigcup_{i=1}^{n} A_{i}$ that agrees with each μ_{i}.
(9) Normalize μ to give the desired probability measure P on $\bigcup_{i=1}^{n} A_{i}$.

Thank you!

Questions for further discussion:

- What goes wrong with infinite covers $A_{1}, A_{2}, A_{3}, \ldots$?
- Is there some kind of group cohomology lurking in this story?
- Could we consider sheaves on more general categories to account for self-locating uncertainty?

