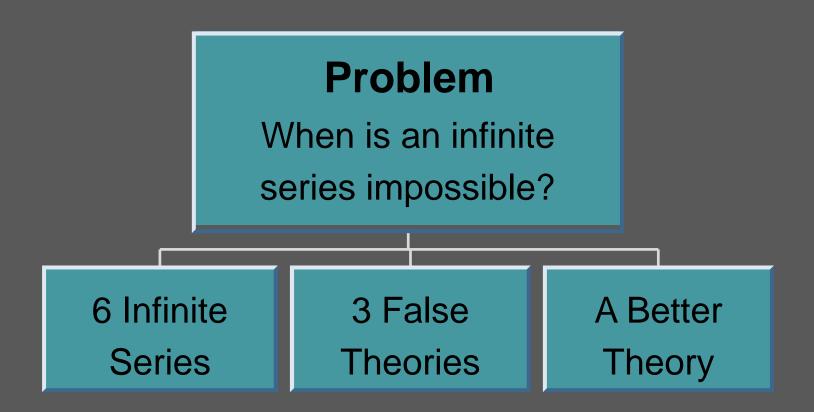
Possible & Impossible Infinities

Michael Huemer owl232@earthlink.net



. . .

The Truth RegressSeries:P.It's true that P.It's true that it's true that P.

Generated by principle: $P \rightarrow It$ is true that P. Verdict: Benign.

The Endless Zeno Series Series: 1/2 3/4 7/8

Generated by principle: To travel some distance, one must first travel half the distance.

Verdict: Benign.

Variant: The beginningless Zeno Series Series: ... 1/8 1/4 1/2

Generated by principle: To travel some distance, one must first travel half the distance.

Verdict: Benign.

Thomson's Lamp Series: Off t=0

On t=1/2 Off t=3/4

Puzzle: At the end of the series, is it on or off? Verdict: Impossible.

- The Littlewood-Ross Banker
 - Start: infinite pile of \$1 bills, bills # 1, 2, 3, ...
 - Series: \$9 bills 2-10 \$18 bills 3-20 \$27 bills 4-30
 - Puzzle: At the end of the series, how much money do you have? Verdict: Impossible.

The Regress of CausesSeries:AThe cause of AThe cause of the cause of A

Generated by principle: Every event has a cause; every cause is an event.

Verdict: Controversial.

The Regress of ReasonsSeries:PThe reason for PThe reason for the reason for P

Generated by principle: Every justified belief has a reason; every reason is a justified belief. Verdict: Controversial.

Desired:

- A criterion of the impossible infinite that
- a) Has some plausible theoretical rationale
- b) Classifies the Truth Regress and Zeno's Series as benign
- c) Classifies Thomson's Lamp and the Littlewood-Ross Banker as impossible

Regresses of causes and epistemic reasons are negotiable.

Three Failed Criteria

Theory #1: There can be potential infinities, but no actual infinities.

Counter-examples

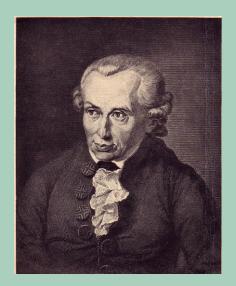
Truth regress

The Zeno series

Three Failed Criteria

Theory #2: An infinite series cannot be completed by successive addition.

- Counter-example:
 - The endless Zeno series



Three Failed Criteria

Theory #3: An infinite series is vicious when each member *depends on* the next.

Counter-example:

The beginningless Zeno series

A New Theory of the Vicious Infinite

- Theory: There cannot be an infinite, natural, intensive magnitude.
- Explanation: Two kinds of quantities: Cardinal numbers: 0, 1, 2, ..., א₀, ... Magnitudes: (represented by real #s)

A New Theory of the Vicious Infinite

- Theory: There cannot be an infinite, natural, intensive magnitude.
- Two kinds of magnitudes:
 - Extensive: Additive across parts. Length, duration, volume, ... Intensive: Not additive across parts. Temperature, density, velocity, ...

A New Theory of the Vicious Infinite

- Theory: There cannot be an infinite, natural, intensive magnitude.
- Two kinds of quantities:
 - Natural: Real properties of objects. (Usually) causally efficacious.
 - Artificial: Stipulative, may involve mathematical operations that lack physical significance. Non-causal.

- Thomson's Lamp:
 - Forces/accelerations increase without bound; hence...
 - Infinite material strength
 - Infinite energy density
 - Infinite speed

Variation on Thomson's Lamp:

The switch is a dial. At 0 degrees, lamp is on. All other positions are off.

Diagnosis: This series is possible, but not paradoxical. – In the end, the lamp is on.

Littlewood-Ross Banker:

Impossible for similar reasons as Thomson's Lamp.

Zeno:

. . .

Truth regress: Infinite # of propositions: no problem. p T(p) T(T(p))

Fundamentally, there are only finite numbers. There is not a number larger than every real number. Claims about the infinite must be restatable in terms of finite numbers.

Why are infinite cardinalities allowed?

- S has infinite cardinality $=_{df}$ for any natural number *n*, S contains a subset with more than *n* members.
- Conceptually, this only commits us to the existence of natural numbers.

Why are infinite extensive magnitudes allowed? *x* has an infinite amount of extensive magnitude $M =_{df}$ For any real magnitude *m* of *M*, *x* possesses a part whose quantity of *M* is greater than *m*.

Example: Space is infinite = for any chosen volume v, there is a part of space with volume greater than v.

Conceptually, this only commits us to the existence of finite magnitudes.

Why can there *not* be an infinite intensive magnitude?

- The preceding analytical strategy fails for intensive magnitudes, since intensive magnitudes do not compound over parts.
- An ascription of infinite intensive magnitude requires that there be a number greater than all real numbers.

Why consider only natural magnitudes? Artificial magnitudes could do anything. Ex.: define schmass to be $\frac{1}{3-\text{mass}}$. When mass=3, schmass=∞.

The Controversial Cases

- The regress of causes No reason why this could not exist.
- The regress of reasons No reason why this could not exist. This is not to say that it's plausible.

Some Other Paradoxes

Hilbert's Hotel Benardete's paradoxes St. Petersburg Laraudogoitia's paradox The spaceship

Further Reading

Michael Huemer, *Approaching Infinity* (New York: Palgrave Macmillan, 2016)

