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Antiquity

Beginning with Aristotle, almost every major philosopher and
mathematician before the nineteenth century rejected the notion of the
actual infinite. They all argued that the only sensible notion is that of
potential infinity—at least for scientific or, later, non-theological purposes.

In Physics 3.6 (206a27-29), Aristotle wrote, “For generally the infinite is
as follows: there is always another and another to be taken. And the
thing taken will always be finite, but always different (2o6a27-29).”

As Richard Sorabji [38] (322-3) puts it, for Aristotle, “infinity is an
extended finitude”. (see also [19],[20])
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Antiquity

Aristotle, along with ancient, medieval, and early modern mathematicians,
recognized the existence of certain procedures that can be iterated
indefinitely, without limit. Examples are the bisection and the extension of
line segments.

Ancient mathematicians made brilliant use of such procedures. For
example, the method of exhaustion, a kind of forerunner to integration,
was employed to calculate the areas of curved figures in terms of
rectilinear ones.

What was rejected are what would be the end results of applying these
procedures infinitely often: self-standing points and infinitely long regions.
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Antiquity

In On generation and corruption, Aristotle writes:

For, since no point is contiguous to another point, magnitudes
are divisible through and through in one sense, and yet not in
another. When . . . it is admitted that a magnitude is divisible
through and through, it is thought that there is a point not only
anywhere, but also everywhere in it: hence it follows that the
magnitude must be divided away into nothing. For there is a
point everywhere within it, so that it consists either of contacts
or of points. But it is only in one sense that the magnitude is
divisible through and through, viz. in so far as there is one point
anywhere within in and all its points are everywhere within it if
you take them singly. (317a3-8)
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Antiquity

Closely related to the notion of potential infinity, for Aristotle, is that of
potential existence. For Aristotle, points just are the limits of line
segments (and line segments just are the edges of plane figures, and plane
figures just are the (flat) surfaces of physical objects).

The points interior to a line segment only exist potentially. They are
places where the line can be broken. But if the line is not broken there,
the point only exists potentially.

The same goes for the parts of the line segment themselves. As a
continuous magnitude, the line segment is a unity. Its parts exist only
potentially.
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Antiquity

Jonathan Lear [19] argues that it is not the existence of iterated
procedures that makes for Aristotelian potential infinity. The matter
concerns the structure of geometric magnitudes:

Potential Infinity Øystein Linnebo and Stewart Shapiro



Antiquity

. . . it is easy to be misled into thinking that, for Aristotle, a
length is said to be potentially infinite because there could be a
process of division that continued without end. Then it is natural
to be confused as to why such a process would not also show the
line to be actually infinite by division. . . . [I]t would be more
accurate to say that, for Aristotle, it is because the length is
potentially infinite that there could be such a process. More
accurate, but still not true . . . Strictly speaking there could not
be such a process, but the reason why there could not be is
independent of the structure of the magnitude: however earnest
a divider I may be, I am also mortal. . . . even at that sad
moment when the process of division does terminate, there will
remain divisions which could have been made. The length is
potentially infinite not because of the existence of any process,
but because of the structure of the magnitude. (p. 193)
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Antiquity

According to Lear, then, a line segment is potentially infinite because there
are infinitely many places where it can be divided. So, no matter how
many times one divides a line, there will still be some of the line left.

Lear concludes that Aristotle’s thesis is “that the structure of the
magnitude is such that any division will have to be only a partial
realization of its infinite divisibility: there will have to be possible divisions
that remain unactualized” (p. 194).
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Antiquity

On either Lear’s reading of Aristotle or the above gloss concerning iterated
procedures, potential infinity invokes both modality and the activities of a
perhaps idealized mathematician.
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Antiquity

There is a closely related matter. It is generally agreed that Euclid’s
Elements captures at least the spirit of geometry during Plato’s and
Aristotle’s period. Most of the language in the Elements is dynamic,
talking about what a (presumably idealized) geometer can do.

For example, the First Postulate is “To draw a straight line from any point
to any point”, and the Second is “To produce a finite straight line
continuously in a straight line”.

Or consider the infamous Fifth:

That, if a straight line falling on two straight lines make the
interior angles on the same side less than two right angles, the
two straight lines, if produced indefinitely, meet on that side on
which are the angles less than the two right angles.
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Antiquity

Plato was critical of the geometers of his day, arguing that this dynamic
language is inconsistent with the nature of the true subject matter of
geometry:

[The] science [of geometry] is in direct contradiction with the
language employed by its adepts . . . Their language is most
ludicrous, . . . for they speak as if they were doing something and
as if all their words were directed toward action . . . [They talk]
of squaring and applying and adding and the like . . . whereas in
fact the real object of the entire subject is . . . knowledge . . . of
what eternally exists, not of anything that comes to be this or
that at some time and ceases to be. (Republic, VII)
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Antiquity

This, of course, is a nice Platonic thought—for those who like such
thoughts.

Aristotle rejected this orientation and, we suggest, the dynamic language
employed in Ancient geometry better reflects his views.

The matter of infinity is tied to this. For Aristotle, we never have infinite
collections of points, objects, or anything else, and we never have infinitely
long lines or infinitely large regions of space or time. Because of the
structure of the geometric realm, we have procedures that can be iterated
indefinitely, and we speak about what those procedures could produce, or
what they will eventually produce if carried sufficiently (but only finitely)
far.
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Antiquity

In holding that these geometric procedures can be iterated indefinitely,
Aristotle again follows the mathematical practice of the time, this time in
opposition to his major opponents, the atomists (see [26]), who postulate
a limit to, say, bisection.
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Early modern times — Leibniz

Views like Aristotle’s were standard throughout the medieval and early
modern period, through most of the nineteenth century. The greatest
mathematical minds insisted that only the potentially infinite makes sense.
Leibniz, for example, wrote:

It could . . . well be argued that, since among any ten terms
there is a last number, which is also the greatest of those
numbers, it follows that among all numbers there is a last
number, which is also the greatest of all numbers. But I think
that such a number implies a contradiction . . . When it is said
that there are infinitely many terms, it is not being said that
there is some specific number of them, but that there are more
than any specific number. (Letter to Bernoulli, [21], III 566,
translated in [24], 76-77, 87)
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Early modern times — Leibniz

The contradiction here might be the so-called “Galileo paradox”, that,
with an infinite collection, the part can be the same size as the whole.
Today, of course, this is regarded as a feature of the infinite, not a bug.

Leibniz:

. . . we conclude . . . that there is no infinite multitude, from
which it will follow that there is not an infinity of things, either.
Or [rather] it must be said that an infinity of things is not one
whole, or that there is no aggregate of them. ([22], 6.3, 503,
translated in [24], 86)
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Early modern times

Yet M. Descartes and his followers, in making the world out to
be indefinite so that we cannot conceive of any end to it, have
said that matter has no limits. They have some reason for
replacing the term “infinite” by “indefinite”, for there is never an
infinite whole in the world, though there are always wholes
greater than others ad infinitum. As I have shown elsewhere, the
universe cannot be considered to be a whole. ([23], 151)

And Gauss, in 1831:

I protest against the use of infinite magnitude as something
completed, which is never permissible in mathematics.
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Early modern times

For Gauss and Leibniz, as for Aristotle, as for a host of others, the infinite
just is the limitlessness of certain processes; no actual infinities exist. The
only intelligible notion of infinity is that of potential infinity—the
transcendence of any (finite) limit.
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To the present: Cantor

For at least the cases of interest here—regions, natural numbers, and the
like—Georg Cantor argued for the exact opposite of this, claiming that the
potentially infinite is dubious, unless it is somehow backed by an actual
infinity:

I cannot ascribe any being to the indefinite, the variable, the
improper infinite in whatever form they appear, because they are
nothing but either relational concepts or merely subjective
representations or intuitions (imaginationes), but never adequate
ideas ([6], 205, note 3).
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To the present: Cantor

. . . every potential infinite, if it is to be applicable in a rigorous
mathematical way, presupposes an actual infinite ([7], 410–411).

We think it safe to say that this Cantorian orientation is now dominant in
the relevant intellectual communities, especially concerning the
mathematical domains mentioned above, with various constructivists as
notable exceptions.
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To the present: Cantor

It should be noted that, on the surface, at least, Cantor was not consistent
in his rejection of the potential infinite. Sometimes he ascribed to
so-called “absolutely infinite”, or what he dubbed “inconsistent
multitudes” (e.g., the ordinals), features closely analogous to those of the
potentially infinite.
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To the present: Cantor

In a much quoted letter to Dedekind, in 1899, he wrote:

[I]t is necessary . . . to distinguish two kinds of multiplicities . . .
For a multiplicity can be such that the assumption that all of its
elements ‘are together’ leads to a contradiction, so that it is
impossible to conceive of the multiplicity as a unity, as ‘one
finished thing’. Such multiplicities I call absolutely infinite or
inconsistent multiplicities . . . If on the other hand the totality of
the elements of a multiplicity can be thought of without
contradiction as ‘being together’, so that they can be gathered
together into ‘one thing’, I call it a consistent multiplicity or a
‘set’. (Ewald [10], 931-932)
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To the present: Cantor

An 1897 letter to Hilbert is even more suggestive:

I say of a set that it can be thought of as finished . . . if it is
possible without contradiction (as can be done with finite sets)
to think of all its elements as existing together . . . or (in other
words) if it is possible to imagine the set as actually existing with
the totality of its elements. (Ewald [10], 927)

Of course, Cantor considered all of the transfinite sets, such as the natural
numbers and the real numbers, to be actual infinities. Most of our
present concern is with those, but we will address the potentiality of the
iterative hierarchy.

At least with hindsight, it is clear what Aristotle, and the ancient,
medieval, and early modern mathematicians did not have: infinitely large,
completed collections and infinitely large geometric figures. But what did
they have instead? Just what is a potential infinity?
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Further skepticism

Concerning the contemporary scene, Karl-George Niebergall [29] writes:

To gain a better understanding of [the phrases “x is potentially
infinite” and “T makes an assumption of the potentially infinite”]
I regard as a goal in itself. One simply has to admit that they
play an important role both in philosophy and in investigations
on the foundations of mathematics. My feeling is, however, that
a clear meaning has never been given to them. (p. 231)
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Further skepticism

He later adds

Personally, I simply have no ordinary understanding of these
phrases, and I do not find much help in the existing literature on
them. It seems that even examples are missing . . . [T]hose
philosophers who are interested in the theme of the potentially
infinite are usually drawn to it because they regard it as desirable
to avoid assumptions of infinity (i.e., of the actual infinity), yet
do not want to be restricted to a mere finitist position. An
assumption of merely the potentially infinite seems to be a way
out of this quandary: . . . it allows you to have your cake and
eat it too (p. 256-7).
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Further skepticism

Niebergall [28], §§2.5,3; [29], §6 argues that, on some straightforward
attempts at definition, the potentially infinite just collapses into the
actually infinite (or the finite). So, what we cannot have, he claims, is a
notion of the potentially infinite that is to be distinguished from both the
finite and the actually infinite. If we follow contemporary practice and
allow the actually infinite a place, then there is no room for the merely
potentially infinite. Everything is either finite or infinite—nothing can fit
between those:
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Further skepticism

given the modern conception of sets in classical logic, I have
never understood “potentially infinite” in a way which would give
the potential infinite any use—a place of its own different from
the finite and the infinite. It seems to me that merely in
intuitionistic frameworks the predicate “potentially infinite” may
find a reasonable rational reconstruction. Thus, in dealing with
this discourse I feel as if I were a (Quinean) linguist in the
process of developing a radical translation from a foreign
language into his mother tongue. ([28], 167, n. 41)
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Further skepticism

In [29], 257, however, he concedes: “It is granted that one could try to
define ‘x is potentially infinite’ by employing a modal vocabulary.” That is
the plan here. We hope to articulate a serviceable notion of the
potentially infinite, one that can live, side by side, with the actually
infinite. This plays a role in understanding the notions of mathematical
“construction”, in indefinite extensibility, and in the debate over absolute
generality. It will also help to articulate the thesis that the iterative
hierarchy is itself potential.
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Further skepticism

Niebergall goes on to claim that “at least since Quine’s criticism there is
reasonable doubt as to the general understandability of the modal idiom”.
He adds a note that when it comes to mathematics, “talk of possibility
and necessity becomes dispensable”, since “a mathematical sentence is
regarded as necessary if true” (p. 258). It is, of course, incumbent on us
to say something about the modality involved, and to distinguish it from
the sense in which every mathematical sentence is “necessary if true”.
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Our goal

Our over-arching aim in this paper is to analyze the notion of potential
infinity and assess its scientific merits. This aim leads to a number of more
specific questions.

Perhaps the most pressing one is whether the conception of potential
infinity can be explicated in a way that is both interesting and
substantially different from the now-dominant conception of actual infinity.
One might suspect that, when metaphors and loose talk give way to
precise definitions, the apparent differences will evaporate.

As we will explain, however, a number of differences still remain. Some of
the most interesting and surprising differences concern consequences that
one’s conception of infinity has for higher-order logic.
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Our goal

Another important question concerns the relation between potential
infinity and mathematical intuitionism. More than anyone else,
intuitionists have continued to take potential infinity seriously even after
the Cantorian revolution. In part as a result of this, it is now commonly
thought that the appropriate logic for potential infinity is intuitionistic.
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Our goal

Both Hilbert and the early intuitionists have associated
commitment to the actual infinite with the use of classical logic,
so that, for example, the use of quantification over the integers
combined with classical logic commits one to the the set of
integers as an actual infinity. I would like someone to explain
why this is the same notion of actual infinity as Aristotle’s. (One
might ask, too, whether quantification over the integers using
intuitionistic logic commits one to the actual infinite—and why.)
(W. Tait)
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Our goal

Show that there a coherent notion of potential infinity ‘in between’
the finite and the absolutely infinite.

Determine whether there a connection between potential infinity and
intuitionistic logic.

Show that we can learn from two millenia of theorizing about
potential infinity. There are valuable successor concepts!
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Our goal

We will analyze the question and find that potential infinity is not
inextricably tied to intuitionistic logic. There are interesting explications of
potential infinity that underwrite classical logic, while still differing in
important ways from actual infinity.

However, we will also find that on some more stringent explications,
potential infinity does indeed lead to intuitionistic logic. We take this
clarification of the relation between potential infinity and intuitionistic
logic to be one of the main achievements of the paper.
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Modal explication

Recall Aristotle’s analysis of the potential infinite:

For generally the infinite is as follows: there is always another
and another to be taken. And the thing taken will always be
finite, but always different (Physics, 206a27-29).

A nice example is Aristotle’s claim that matter is infinitely divisible.
Consider a stick. However many times one has divided the stick, it is
always possible to divide it again. Now, it is fairly natural to explicate
Aristotle’s temporal vocabulary in a modal way. This yields the following
analysis of the infinite divisibility of a stick s:

�∀x(Pxs → ♦∃y Pyx) (1)

where Pxy means that x is a proper part of y .
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Modal explication

If, by contrast, the divisions of the stick formed an actual infinity, the
following would hold:

∀x(Pxs → ∃y Pyx) (2)

According to Aristotle, it is not even possible to complete infinitely many
divisions of the stick, that is:

¬♦∀x(Pxs → ∃y Pyx) (3)

By endorsing both (1) and (3), Aristotle is asserting that the divisions of
the stick are merely potentially infinite, or incompletable, as we will also
put it.
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Modal explication

Consider now the natural numbers, which according to Aristotle are also
merely potentially infinite. We can represent this view as the conjunction
of the following theses:

�∀m♦∃n Successor(m, n) (4)

¬♦∀m∃n Successor(m, n) (5)

Thus, provided we are willing to use the resources of modal logic, there is
no problem whatsoever in distinguishing the merely potential infinite from
the actual infinite.
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Modal explication

This use of modal logic introduces a problem of translation, however.
Other than in informal glosses, the language of mathematics is today
relentlessly non-modal. In particular, when the question of the appropriate
logic of potential infinity arises, it tends to do so in the ordinary,
non-modal language of arithmetic. So we will need some bridge between
the modal language in which we analyze potential infinity and the ordinary
non-modal language.
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Modal explication

The heart of potentialism is that the existential quantifier of ordinary
non-modal arithmetic has an implicit potential character. When a
potentialist says that a number has a successor, she really means that it
potentially has a successor—that is, that it is possible to construct or
define a successor.

To remain as neutral as we can on how the successor is introduced, we will
talk schematically about generating a successor.

Potential Infinity Øystein Linnebo and Stewart Shapiro



Modal explication

This suggests that the right translation of ∃ is ♦∃
And since the universal quantifier can hardly be less inclusive in its range
than the existential, this also suggests that ∀ be translated as �∀, that is,
as a statement that whatever objects we go on to generate, everything
generated will be thus-and-so.

Let us call this the potentialist translation. And let us call the modal
operator-quantifier hybrids �∀ and ♦∃ modalized quantifiers.
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Modal explication

We can now raise the question of which principles in the non-modal
language are validated via this bridge. The answer will obviously depend
on the modal logic that we plug in on the modal side. In the next section,
we will defend a certain choice, namely a system known as S4.2. In this
system, we can prove the highly desirable result that the modalized
quantifiers behave logically like the ordinary quantifiers, in a sense to be
made formally precise.
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Modal explication

This yields a conditional answer to the question of the logic of potential
infinity. If the background modal logic is classical S4.2, then the
potentialist translation validates classical logic, while if the background
modal logic is intuitionistic S4.2, the same goes for the logic that is
validated.

This shows that potential infinity must (or at least can) be separated from
intuitionistic logic.
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Philosophical interlude

Some, theorists may object that potential infinity no longer looks very
different from actual infinity, in light of the classical version of the
“mirroring theorem” we just alluded to.

There is one fairly conservative response available. One can insist that,
despite the shared adherence to classical logic, the outlined explication of
potential infinity is nevertheless importantly different from actual infinity.
This difference is manifested not only in the (implicit) presence of modal
operators, which a skeptic might challenge, but also in the higher-order
logic that is validated. Some details will come later.
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Philosophical interlude

There is also a more radical response. One might insist that if we are
serious about the merely potential infinity of, say, the natural numbers, it
is not enough to insist that every number be generated after finitely many
steps. One might additionally require that every arithmetical truth
somehow is made true after finitely many steps in the process.

It is not all that clear what this means, but perhaps we can illustrate the
idea. The strings �∀m and ♦∃m express universal generalizations that at
least seem to concern all the numbers, including ones not yet generated.
A strict potentialist cannot allow such a generalization to be true merely in
virtue of the space of possible worlds, considered in its entirety. Rather,
the generalization must be made true after finitely many steps in the
process. In short, a strict potentialist will insist that every question that
has an answer, gets this answer in a finitary manner. We should never
have to wait until the end of time.
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Philosophical interlude

The distinction we have in mind can be illustrated with the so-called weak
Brouwerian counterexamples. Can the potentialist say, now, that it either
is or is not the case that every even number greater than 2, whenever it is
generated, is the sum of two primes? Or whether there will be, at some
point, a string 5555555 in the decimal expansion of π.

A classicist will say “yes” to both questions, as they are just instances of
excluded middle. But from the point of view of a potentialist, both
questions assume that there are determinate facts about what is, and is
not, possible—facts about the structure of possibilities, so to speak. A
strict potentialist will demur at those instances of excluded middle. For
her, if the Goldbach conjecture (or the thesis about the decimal expansion
of π), or its negation, is true, it must somehow be made true after a finite
period of generation.
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Philosophical interlude

We must accordingly distinguish between four main orientations towards
the infinite. Actualism about the infinite unreservedly accept actual
infinities and finds no use for modal notions in mathematics. Perhaps the
actualist will say that the existence of actual infinities—such as the natural
numbers and the real numbers–is necessary. These numbers exist in all
worlds.

A second character asserts the (necessity of the) possible existence of an
actual infinity:

�♦∀m∃n Successor(m, n).

We will not cover this option further, nor will we give it a name, but
modal actualism or GH might be appropriate. See [12].
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Philosophical interlude

In contrast to these views, the potentialist insists that the objects with
which mathematics is concerned are generated successively, such that at
any one stage, there are never more than finitely many objects, but that
we always (i.e., necessarily) have the ability to go on and generate more
such objects.

As hinted above, there are two versions of this view. The liberal
potentialist holds that there are determinate facts about what is and what
is not possible. So, to repeat the above example, there is a fact of the
matter concerning whether a counterexample to the Goldbach conjecture
will ever be generated (and whether a given sequence will eventually occur
in the decimal expansion of π).

If the name weren’t already taken, we might call this character a “modal
realist”, since he is realist (in truth-value) about modality (but not about
the existence of possible worlds).
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Philosophical interlude

Finally, the strict potentialist requires not only that every object be
generated at some finite stage but also that every truth be “made true”
after some finite number of steps. We will show that this loose talk about
being ‘made true’ can be made formally precise and that the resulting
version of strict potentialism can be satisfied. We will find that this is
where distinctively intuitionist ideas enter and where intuitionistic logic is
appropriate.
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Philosophical interlude

It is important to notice, however, that strict potentialism need not be
identified with any form of anti-realism. To be sure, it is true that
anti-realism provides one way to motivate strict potentialism. Indeed, an
anti-realist about the modality in play would not allow any truths to
obtain solely in virtue of future, unrealized possibilities. Since these
possibilities aren’t (yet) real, they cannot contribute to any truths.
However, one need not be an anti-realist to take an interest in strict
potentialism. One’s interest may be the purely methodological one of
studying the mathematics that can be established with only the weakest
possible reliance on the infinite.
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The modal framework

Here we sketch the modal framework used for explicating the above four
positions concerning the infinite.

We invoke the contemporary heuristic of possible worlds, but we
understand this as only heuristic, as a manner-of-speaking. The theory
itself is formulated, officially, in the modal language, with the modal
operators primitive. The modal language will be rock bottom, not
explained or defined in terms of anything else.

The framework takes its inspiration from Linnebo [25], which develops a
modal explication of the Cantorian notion that the universe of set theory is
itself potential. For the time being, we remain neutral as to whether the
background logic is classical or intuitionistic.
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The modal framework

To invoke the heuristic, the idea is that some “possible worlds” have
access to other possible worlds that contain objects that have been
“generated” from those in the first world. From the perspective of the
earlier world, the object in the second exist only potentially.

One sort of construction is geometric, following Euclid: the later world
may contain, for example, a bisect of a line segment in the first. Or the
later world might contain an extension of a line segment from the first
world. Other sorts of constructions are arithmetic: the later world might
contain more natural numbers than those of the first, say the successor of
the largest natural number in the first world. Or, for a third kind of
example, the later world may contain a set whose members are all in the
first world. Or, to look ahead, a given sequence may have one (or more)
elements in the later world than it has in the first world.
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The modal framework

An Aristotelian would assume that every possible world is finite, in the
sense that it contains only finitely many objects. That is in line with the
rejection of the actually infinite. We make no such assumption here,
however. Our goal is to contrast the actually infinite and the potentially
infinite, so we need a framework where both can occur (to speak loosely).
An actual infinity—or, to be precise, the possibility of an actual infinity—is
realized at a possible world if it contains infinitely many objects.

We also assume, without much in the way of argument, that objects are
not destroyed in the process of construction or generation. That is, we
accept generation, but not corruption. Suppose, for example, that a given
line segment is bisected. Then the resulting “world” contains the two
bisects, as well as the original line segment.
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The modal framework

Of course, we must say something about the modality that we invoke,
which motivates a specific modal logic. To continue the heuristic, it
follows from the foregoing that the domains of the possible worlds grow
along the accessibility relation. So we assume:

w1 ≤ w2 → D(w1) ⊆ D(w2),

where ‘w1 ≤ w2’ says that w2 is accessible from w1, and for each world w ,
D(w) is the domain of w .

For present purposes, we can think of a possible world as determined
completely by the mathematical objects—regions, numbers, sets, etc.—it
contains. So we can add that if D(w1) = D(w2), then w1 = w2; and we
can strengthen the above to a biconditional. However, the above
conditional is sufficient for our technical purposes.
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The modal framework

As is well-known, the above conditional entails that the converse Barcan
formula is valid. That is,

∃x♦φ(x)→ ♦∃xφ(x) (CBF)

This alone makes it doubtful that the modality in question can be
“ordinary” metaphysical modality—whatever exactly that is. For it is
widely held that there are objects whose existence is metaphysically
contingent (Williamson [42] notwithstanding). For example, let φ(x) say
(or entail) that x does not exist. Presumably, there is someone, such as
Aristotle, or a given line segment, that might not have existed. So we
have ∃x♦¬φ(x). But then it would follow via (CBF) that it is possible
for there to exist something that doesn’t exist, which is absurd.
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The modal framework

We are also rejecting the common thesis that mathematical sentences are
necessary, if true, in this sense of modality anyway. We do have that once
a mathematical object comes into existence—by being constructed—it
continues to exist, of necessity.
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The modal framework

One plausible option is that the modality employed in the explication of
potential infinity is a kind of restriction of “ordinary” metaphysical
modality. In terms of possible worlds, the relevant modality is the one
that results from restricting the accessibility R associated with
metaphysical modality by imposing that additional requirement that
domains only ever increase along the accessibility relation.

More explicitly, we define:

w1 ≤ w2 :↔ w1Rw2 &D(w1) ⊆ D(w2).
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The modal framework

An alternative response is to sever any link between the metaphysical
modality and the modality invoked in explicating potential infinity.
Instead, we might regard the latter as an altogether distinct kind of
modality, say the logico-mathematical modality of Putnan [32] or Hellman
[12], or the interpretational modality of Fine [11] or Linnebo [25].

We remain neutral on this matter of metaphysics.
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The modal logic

Our next issue concerns the right logic for the modality we use to
explicate potential infinity. Again, it will be useful to indulge in talk about
possible worlds, writing the associated accessibility relation as ≤. Recall
that w ≤ w ′ means that we can get from w to w ′ by generating more
objects. This motivates the following principle:

Partial ordering: The accessibility relation ≤ is a partial order.
That is, it is reflexive, transitive, and anti-symmetric.

We can also require the accessibility relation to be well-founded, on the
ground that all mathematical construction has to start somewhere.
Nothing of substance turns on this, however.
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The modal logic

At any given stage in the process of construction, we may have a choice of
which objects to generate. This seems especially relevant in geometry,
although it applies in set theory and real analysis. For example, given two
intervals that don’t yet have bisections, we can choose to bisect one or the
other of them, or perhaps to bisect both simultaneously.

Assume we are at a world w0 where we can choose to generate objects, in
different ways, so as to arrive at either w1 or w2. It makes sense to require
that the licence to generate a mathematical object is never revoked as our
domain expands. The option to, for example, bisect a given line segment
can always be exercised at a later stage.
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The modal logic

This corresponds to a requirement that the two worlds w1 and w2 can be
extended to a common world w3. This property of a partial order is called
directedness and formalized as follows:

∀w1∀w2∃w3(w1 ≤ w3 &w2 ≤ w3)

We therefore adopt the following principle.

Directedness: The accessibility relation ≤ is directed.
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The modal logic

Directedness ensures that, whenever we have a choice of mathematical
objects to generate, the order in which we choose to proceed is irrelevant.
Whichever object(s) we choose to generate first, the other(s) can always be
generated later. Unless ≤ was directed, our choice whether to extend the
ontology of w0 to that of w1 or that of w2 might have an enduring effect.
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The modal logic

NOTE: We will have occasion to consider non-directed systems, when we
come to explicate mathematical constructions with some genuine
indeterminacy. The key examples are Brouwerian choice sequences.
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The modal logic

The mentioned properties of the accessibility relation ≤ allow us to
identify a modal logic appropriate for studying the generation of
mathematical objects. Since ≤ is reflexive and transitive, the modal logic
S4 will be sound with respect our intended system of possible worlds.

As is well known, the directedness of ≤ ensures the soundness of the
following principle as well:

♦�p → �♦p. (G)

The modal propositional logic that results from adding this principle to a
complete axiomatization of S4 is known as S4.2.

As already discussed, we also have the Converse Barcan Formula, which
means that S4.2 can be combined with an ordinary theory of
quantification with no need for any complications such as a free logic or an
existence predicate.
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The modal logic

A note on (G):

♦�p → �♦p. (G)

The underlying idea is that the only difference between a given world w
and an accessible world w ′ is that the latter may contain some objects
that have been generated from the first. So if a proposition p is made
necessary in w ′, that must be due entirely to the existence of those
generated objects.

Given directedness, those same new objects can be generated from any
world that is accessible from w . So the proposition p in question can be
made necessary.
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The modal logic

As noted above, two different kinds of generalization are available in the
modal framework. First, there are the generalizations expressed by the
ordinary quantifiers ∀ and ∃. Since the variables range just over the
ontology of the relevant world (so to speak), this is an intraworld form of
generality.

That is, a sentence in the form ∀xφ, for example, is true at a world w just
in case φ holds of all objects in D(w), the domain of w .
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The modal logic

But there is also another, transworld form of generality available,
expressed by the complex strings �∀ and ♦∃. These strings have the
effect of generalizing not just over all entities at the relevant world, but
over all entities at all (accessible) worlds.

This idea will receive a precise statement in two “mirroring” theorems that
we will state shortly. Loosely speaking, this theorem says that, under
some plausible assumptions, the strings �∀ and ♦∃ behave logically just
like quantifiers ranging over all entities at all (future) worlds.

We refer to these strings �∀ and ♦∃ as modalized quantifiers, although
they are strictly speaking composites of a modal operator and a quantifier
proper.
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The modal logic

Some definitions: First, given a non-modal formula φ of a given
mathematical language, its potentialist translation φ♦ is the formula that
results from replacing each ordinary quantifier in φ with the corresponding
modalized quantifier. That is, ‘∀x ’ is replaced by ‘�∀x ’; and ‘∃x ’ is
replaced by ‘♦∃x ’.

Say that a formula is fully modalized just in case all of its quantifiers are
modalized.
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The modal logic

We say that a formula φ is stable if the necessitations of the universal
closures of the following two conditionals hold:

φ→ �φ

¬φ→ �¬φ

Intuitively, a formula is stable just in case it never “changes its mind”, in
the sense that, if the formula is true (or false) of certain objects at some
world, it remains true (or false) of these objects at all “later” worlds as
well.
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Mirroring

We can now state our mirroring theorems.

First, let ` be the relation of classical deducibility in a language L.

To be clear, this means classical deducibility without the use of any plural
or higher-order comprehension axioms. Those are regarded here as
“non-logical”. This will loom large below.

Now let `♦be deducibility in the modal language corresponding to L, by `,
S4.2, and the stability axioms for all atomic predicates of L.
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Mirroring

Theorem 2 (classical mirroring): For any formulas φ1, . . . , φn, ψ
of L, we have

φ1, . . . , φn ` ψ if and only if φ♦
1 , . . . , φ♦

n `♦ ψ♦

See [25] for a proof.
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Mirroring

This Mirroring Theorem tells us that, if we are interested in classical
logical relations between fully modalized formulas in a modal theory that
includes S4.2 and the stability axioms, we may delete all the modal
operators and proceed by the ordinary non-modal logic underlying `.

Thus, under the assumptions in question, the composite expressions �∀
and ♦∃ behave logically just like ordinary quantifiers, except that they
generalize across all (accessible) possible worlds rather than a single world.
This provides the desired bridge between actualist and potentialist theories.
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Mirroring

It is important to notice that the potentialist translation is available only
when we can assume that the accessibility relation is directed and that we
thus have axiom (G). Without this axiom, the equivalence from the
mirroring theorem breaks down.
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Mirroring

There is a second mirroring theorem if the background modal logic is
intuitionistic.

As usual, define a formula Φ to be decidable in a given intuitionistic
theory if the universal closure of (Φ ∨ ¬Φ) is deducible in that theory.

Let `I be the relation of intuitionistic deducibility in a language L (again
without the use of any plural or higher-order comprehension axioms). And
let `I♦be deducibility in the modal language corresponding to L, by `I ,
S4.2, the stability axioms for all atomic predicates of L, and the
decidability of all atomic formulas of L. Then

Theorem 3 (intuitionistic mirroring): For any formulas
φ1, . . . , φn, ψ of L, we have

φ1, . . . , φn `I ψ if and only if φ♦
1 , . . . , φ♦

n `I♦ ψ♦
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Comprehension

We now see that one important difference among our four conceptions of
the infinite arise in the background modal logic—whether it is classical or
intuitionistic.

Recall that in both mirroring theorems, any plural or second-order
comprehension axioms are considered to be non-logical. So a second
difference among our conceptions of the infinite concerns which
comprehension principles are accepted. This is significant, since virtually
every mathematical theory uses higher-order axioms: induction for
arithmetic, completeness for geometry, Dedekind- or Cauchy-completeness
for real analysis, replacement for set theory. These are usually formulated
using plural variables or second-order variables.
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Comprehension (plurals)

We begin with plural logic. The introduction and elimination rules for the
plural quantifiers are not disputed by any of the views on infinity under
consideration. However, interesting differences emerge concerning the
plural comprehension axioms, which specify under what conditions a
formula φ defines a plurality. The actualist (and modal actualist) answer is
‘always, provided that there is at least one φ’. So the actualist accepts the
traditional, unrestricted plural comprehension scheme:

∃x φ(x)→ ∃xx ∀u[u ≺ xx ↔ φ(u)], (P-Comp)

provided only that φ does not contain ‘xx ’ free.
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Comprehension (plurals)

However, both the liberal potentialist and the strict potentialist must
restrict the plural comprehension scheme. The restriction flows from their
understanding of the quantifiers involved in the question whether an
instance of (P-Comp) is valid. To make this understanding explicit, we
apply the potentialist translation, so as to obtain:

♦∃x φ(x)→ ♦∃xx �∀u[u ≺ xx ↔ φ(u)] (P-Comp♦)

Thus, when properly explicated, the question is for which formulas φ that
is possibly instantiated it is possible for there to be some objects xx which
necessarily are all and only the φ’s.
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Comprehension (plurals)

We take pluralities to be modally rigid. That is, when x is one of some
objects yy , then this is necessarily so, at least on the assumption of the
continued existence of yy . And likewise when x is not one of yy . If E is a
predicate for the existence of an object or a plurality, then modal rigidity is
expressed thus:

x ≺ yy → �(Eyy → x ≺ yy)

x 6≺ yy → �(Ex ∧ Eyy → x 6≺ yy)

Modal rigidity is quite intuitive, on at least one prominent reading of the
modal idiom. Consider Barack and Michelle. If Michelle were not one of
some people, then these people would not be Barack and Michelle but
some other people. Likewise, if Vladimir were one of some people, then
these people would not be Barack and Michelle but some other people.
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Comprehension (plurals)

The rigidity of pluralities has dramatic consequences for our question of
which instances of (P-Comp♦) are valid.

Consider for example the simple condition ‘x = x ’ of being self-identical.
Since this condition is obviously instantiated—something is self-identical in
every world—the question is whether it is possible for there to be some
objects xx which necessarily are all and only the self-identical objects, that
is, such that:

�∀u(u ≺ xx ↔ u = u).
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Comprehension (plurals)

The answer is ‘no’. By the rigidity of pluralities, the condition of being one
of xx is rigid and therefore not satisfied by more objects as we go to more
populous possible worlds. However, the condition of being self-identical is
necessarily satisfied by everything and thus must be satisfied by more
objects as we go to more populous worlds. It follows that the two
conditions cannot be necessarily coextensive, and hence that the
corresponding instance of (P-Comp♦) must be rejected.
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Comprehension (plurals)

More generally, our two potentialist views are only entitled to plural
comprehension on conditions φ that it is possible to exhaust by some
particular possible world. And, for both potentialists, the obvious
restriction is that the formula φ can hold of at most finitely many objects.

So here we have a clear difference between both kinds of actualism, on the
one hand, and the both kinds of potentialism, on the other—assuming that
the mathematical theories in question are formulated in terms of plurals.
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Comprehension (plurals)

Consider, for example, the question of what is the correct theory of natural
numbers and pluralities thereof. Since actualists are entitled to
unrestricted plural comprehension, they get a theory that is much like full
classical second-order PA (the only difference being the trivial one that
there is no empty class of numbers, as all pluralities must be non-empty).

By contrast, the two potentialists are committed to the view that all
pluralities are finite. So their theory will be a plural variant of so-called
weak second-order logic, where the second-order variables are stipulated to
range over all and only finite (and rigid) collections from the first-order
domain.
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Comprehension (second-order)

Unlike plural logic, which generalizes into plural noun-phrase position,
second-order logic (as we will henceforth use the term) generalizes into
predicate position. Unlike the semantic value of a plural noun-phrase,
which we have argued is modally rigid, there is no reason to expect the
semantic value of a predicate to be rigid.

For example, although Socrates satisfies the predicate ‘is a philosopher’, he
might not have done so. This means that the considerations that required
the two kinds of potentialism to restrict plural comprehension, are not
available in the case of second-order logic.
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Comprehension (second-order)

So what will our three conceptions of the infinite entail concerning
second-order logic?

As before, there is complete agreement on the introduction and
elimination rules for the second-order quantifiers. It is only concerning the
second-order comprehension scheme

∃F∀x(Fx ↔ φ(x))

that there is room for disagreement.

Both of our actualists have no reason to abandon unrestricted classical
comprehension, where φ can be any formula whatsoever, provided only
that it does not contain ‘F ’ free.
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Comprehension (second-order)

The two potentialists will insist that the question be fully explicated as
follows:

♦∃F�∀x(Fx ↔ φ(x))

And here we get a sharp contrast between our two potentialists.
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Comprehension (second-order)

First, there is no obvious reason why the liberal potentialist should wish to
restrict comprehension (beyond requiring that φ not contain ‘F ’ free.
Since the concept F need not be modally rigid, it should be fine to let its
application condition at any possible world be given by the condition φ(x)
at that world. And since this potentialist is liberal, she has every reason to
assume this condition to yield a determinate truth-condition at every
world. In sum, on the question of second-order logic, there is no reason
why the liberal potentialist should disagree with the actualist.

So if a given mathematical theory is formulated in a second-order
language, then, at least from a mathematical point of view, there is no
real difference between an actualist and a liberal potentialist.
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Comprehension (second-order)

What should the strict potentialist say about second-order logic? We
believe she has good reasons to take a much stricter line than the actualist
and liberal potentialist. In order to argue this, however, we first need to
take a closer look at the view.

As we explained the view above, strict potentialism goes beyond liberal
potentialism in requiring not only that the objects be generated in some
incompletable process but also that every truth be ‘made true’ at some
finite stage of this process. If we are serious about the process being
incompletable, there can be no truths that obtain in virtue of the entire
process—the entire space of possible worlds. Every truth must be true in
virtue of some finite initial segment of the process.
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Comprehension (second-order)

For atomic truths, the strict potentialist’s additional demand is
unproblematic. Consider the truth that 1001 is larger than 7. This claim is
wholly about the two mentioned numbers, and as soon as these numbers
have been generated, we have everything in virtue of which the claim is
true.

The problem arises when we consider the quantifiers, the universal
quantifier in particular. In virtue of what is a generalization ∀n φ(n) true?

The classical, and perhaps most natural, answer is that it is true in virtue
of every number being such as to satisfy φ. But if this is our answer, then
the claim can never be rendered true at some finite stage of the process of
generating numbers, as the strict potentialist requires. In short, strict
potentialism makes it hard to see how we can make sense of universal
generalizations over all numbers.
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Comprehension (second-order)

In fact, however, there are ways to make sense of universal generalizations
being made true at some finite stage. One option is the traditional
intuitionistic approach, which equates mathematical truth with proof. The
generalization is made true when we produce a proof of it.

Although this satisfies the strict potentialist’s requirement, it is an extreme
form of anti-realism. The generative process is understood as a process of
actual constructions, whereby both mathematical objects and
proofs—which did not previous exist or obtain—are brought into being.
So here we are entering the territory of orthodox intuitionism.
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Comprehension (second-order)

Another option is available, which avoids saddling strict potentialism with
the extreme anti-realist views of orthodox intuitionism. Consider the
following discussion by Hermann Weyl ([40], p. 54) of whether there is a
natural number that has some decidable property P.

Only the finding that has actually occurred of a determinate
number with the property P can give a justification for the
answer “Yes,” and—since I cannot run a test through all
numbers—only the insight, that it lies in the essence of number
to have the property [NOT] P, can give a justification for the
answer “No”; Even for God no other ground for decision is
available.
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Comprehension (second-order)

On this view, the truth of the universal generalization—that every number
is not-P—has nothing to do with epistemic matters, such as knowledge or
proof. Even God, who is assumed to know all the facts, cannot know
facts that require running through all the natural numbers—the point is
that there are no such facts.

Instead, a universal generalization is “made true” by its lying “in the
essence number” to have the relevant property. And presumably, more and
more essential properties of number will become available as the
generative process unfolds.
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Comprehension (second-order)

Admittedly, these are deep metaphysical waters, even if not exactly those
of orthodox intuitionism. But the ideas in question admit of precise
mathematical models.

In the case of arithmetic, at least, a good first approximation is provided
by the realizability interpretation, going back to Stephen Cole Kleene [17],
in 1945 . The loose talk about what “lies in the essence of number” can
be understood in terms of computable functions.
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Comprehension (second-order)

Let {e}(n) be the result of applying Turing machine with index e to the
input n̄. One can define what it is for a natural number e to be a realizer
for a formula φ, written e  φ. The idea is that e encodes information
that establishes the truth of φ.

A useful metaphysical heuristic is that e functions as a “truth maker” for
φ. Atomic formulas are realized by (codes of) finite computations. The
most important clause is the one for the universal quantifier, where we
define

e  ∀n φ(n) iff ∀n {e}(n)  φ(n)

That is, e realizes the universal generalization ∀n φ(n) just in case the
Turing machine {e} computes a realizer for the instance φ(n) when given
any numeral n̄ as input.

Potential Infinity Øystein Linnebo and Stewart Shapiro



Comprehension (second-order)

In terms of our metaphysical heuristic: e is a truth maker for ∀n φ(n) just
in case e specifies a function that maps any numeral n̄ to a truth maker
for the associated instance φ(n).

Let’s now regard a formula as true just in case it has a realizer or “truth
maker”. Since a realizer is just a natural number, this means that any true
formula is made true after finitely many steps. So our strict potentialist
avoids having to wait until the end of time to make at least some universal
generalizations true.
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Comprehension (second-order)

Of course, there remains the question of whether this definition yields the
right truths. A natural measure of what is “right” is provided by the
standard intuitionist theory of arithmetic, known as Heyting arithmetic,
whose axioms as the same as those of first-order Peano-Dedekind
arithmetic but where the logic is intuitionistic rather than classical.
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Comprehension (second-order)

Pleasingly, there is a theorem that says that Heyting arithmetic is sound
with respect to the notion of truth that we have defined.

Theorem 4. Every theorem of Heyting arithmetic has a realizer.
However, there are theorems of first-order Dedekind Peano
arithmetic that do not have a realizer.
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Comprehension (second-order)

Summing up, we have described an interesting notion of arithmetical
truth, which satisfies the strict potentialist’s requirement that every truth
be made true after some finite number of steps, and on which all the
theorems of intuitionistic—but not classical—arithmetic are true. Notice
also that the real locomotive of this argument is strict potentialism. There
is no direct reliance on an anti-realist conception of the numbers.
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