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Introduction. 
It is this second direction of proof theoretic work I 
want to describe. It is concerned with the discovery of 
the structure and the efficient construction of 
mathematical proofs. 

The issue raises the question, “What logical methods
can be used in such work?”

This has become a central issue through work on 
computer-based formal verification and proof search.



Introduction. 

Using a distinction that goes back to the 1950s and 
60s, one can use two different kinds of methods, 
machine-oriented and human-oriented ones.

The machine-oriented techniques have been mostly 
refinements of resolution. The human-oriented ones 
range from pure “heuristics” (N&S) to incorporating 
aspects of natural deduction (WB) and (LR). 

The concerns go actually back to the 1920s and 30s!



Introduction. 

In 1933, a dissertation was completed promising the 
discovery of a “new symbolic logic for mathematical 
proofs”; that is then elaborated as follows:

It applies, as far as I can see, to all proofs in all 
branches of mathematics .... It makes it possible to 
write down the proof of a theorem in a very much 
shorter space than by the usual method and at the 
same time it makes the proof of the theorem very 
much clearer. … It is only necessary to give in 
sequence the leading ideas of the proof. 



Introduction. 

In fact, once these leading ideas are given – together 
with a few directions – then it becomes possible to 
compute from the leading ideas just what the proof of 
the theorem will be. In other words, once the leading 
ideas are given, all the rest is a purely mechanical sort 
of job. It is possible to define once and for all how the 
job is to be carried out.

Some History? From 1913 to 1918? From the calculus 
of PM to that introduced by Hilbert & Bernays in 
1922? From there to Gentzen’s natural deduction?



Introduction. 

At this moment, let me just say that Gentzen built on 
H&B’s 1922-work when formulating the intuitionist 
ND calculus in his “Urdissertation” of 1932. (I will 
come back to the H&B calculus a little later.)

In his official dissertation of 1933, he asserted that 
the calculus is as close to real reasoning as possible. 
Thus,

… the calculus is particularly suited for the 
formalization of mathematical proofs. (p.166)  



Introduction. 

In his 1936-paper in which he proved the consistency 
of classical arithmetic, Gentzen went a step further 
and considered formal derivations in the ND calculus 
as images of mathematical proofs. He indicated also a 
direct way of obtaining these “proof images”.

Then he asserted,

The objects of proof theory shall be the proofs 
carried out in mathematics proper. (p. 499) 



Introduction. 

Gentzen’s interest was shared by one of his Göttingen 
friends who completed in 1933 a thesis under Weyl; 
that friend wrote in 1979 about this “early logical 
work”:

There remains the real question of the actual 
structure of mathematical proofs and their strategy. It 
is a topic long given up by mathematical logicians, but 
one which still—properly handled—might give us 
some real insight.



Introduction. 

In 1933, the friend saw himself as quite a radical and 
expressed his views about the developing dissertation in 
a letter to his mother.  He saw in it the discovery of “a 
new symbolic logic for mathematical proofs”.  

You may remember what I read to you earlier and you 
may recognize him on this photo from 1929:



Part A: some history. 



Introduction.
Until about 20 years ago, I was not really aware of this 
direction of work in the proof theoretic tradition. I 
had worked, however, from 1975 to 1977 under Pat 
Suppes on CAI in proof theory and became around 
1986, for purely pedagogical reasons, interested in: 

(1) The fine structure of mathematical proofs reflected 
in appropriate logical calculi, and

(2) Strategic ways of constructing proofs interactively
and heuristics for their automated discovery. 



Overview

That interest is in the background of the work on 
which I am reporting:

Part A. Natural formalization: Dedekind’s lemma.

Part B. Bi-directional reasoning: NIC calculi.

Part C. Automated search: Gödel’s theorems.
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Part A. Natural formalization.
The natural formalization of a mathematical proof is 
achieved by using a rule-based, strategic approach that 
includes defined notions and operations.

In addition, one applies Lemmas-as-rules both “forward” 
and “backward”. 

The latter requires a careful conceptual organization, 
what Hilbert called a “Fachwerk von Begriffen”.



Part A. Natural formalization.
The natural formalization of a mathematical proof is 
achieved by extending a rule-based, strategic approach to 
include defined notions and operations.

In addition, one applies “Lemmas-as-rules” both forward 
and backward. 

The latter requires a careful conceptual organization.

Patrick Walsh and I formalized in this “natural” way the 
Cantor-Bernstein Theorem in ZF. (RSL 2019)
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Part A. Natural formalization.

Cantor–Bernstein Theorem. Let f be an injection from 
a to b and g an injection from b to a; then there is a 
bijection h from a to b, i.e., a ≈ b.

The CBT is easily proved from (and easily proves) 
Dedekind’s Fundamental Lemma formulated in WZ.

Fundamental Lemma. Let e, d, and a be sets such that 
e ⊆ d ⊆ a and a ≈ e; then a ≈ d.
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Part A. Natural formalization.
Our final ZF proof, built on about 200 lemmas is short 
… eight lines:

The lemmas in the formal proof articulate the direct 
facts for the concepts of set and function I used in the 
informal “diagrammatic” argument.



Part A. Natural formalization.
Remark. There are presumably many different proofs 
of CBT. Our analysis suggests that there are exactly 
two different proofs. One is Dedekind’s 1887 proof 
and the other Zermelo’s 1908 proof.  They differ in the 
way in which they make explicit inductive definitions.



Part A. Natural formalization.
Remark. There are presumably many different proofs 
of CBT. Our analysis suggests that there are exactly 
two different proofs. One is Dedekind’s 1887 proof 
and the other Zermelo’s 1908 proof.  They differ in the 
way in which they make explicit inductive definitions.

The difference has a beautiful mathematical core. 
With Dedekind’s inductive definition is associated a 
monotone operator: Dedekind’s explicit definition 
yields the smallest, Zermelo’s the largest fixed-point 
of that operator.
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Part B. Bi-directional frames.
Up to now, I have not mentioned which logical principles 
were used in the “natural formalization” of the Cantor-
Bernstein Theorem. In the Introduction I mentioned 
Gentzen’s calculi of “natural reasoning” (Kalküle des 
natürlichen Schließens).

In this part, I’ll move from H&B’s calculus and Gentzen’s
natural deduction calculi to “natural intercalation calculi” 
that reflect directly bi-directional reasoning, thus, more 
of the “actual structure of mathematical proofs”.
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H&B’s axiomatic calculus from 1922 articulates ND rules 
as axioms:

Or rather, Gentzen turned, in a very significant move, this 
axiomatic formulation into his rule-based system:
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the interplay of I- and E-rules, but rather the making 
and discharging of assumptions. That reflected for 
him an important structural element of proofs in 
mathematical practice.



Part B. Bi-directional frames.
Gentzen viewed as distinctive for his ND calculus not 
the interplay of I- and E-rules, but rather the making 
and discharging of assumptions. That reflected for 
him an important structural element of proofs in 
mathematical practice.

That emphasis reveals an unnatural feature of ND: 
(1) to prove (A ® B) one assumes A and aims for B; 
(2) to prove ¬A one assumes A and aims for “Falsum”; 
(3) to prove ("x) P(x) one asserts, it suffices to prove 
P(z) (under the usual variable conditions).



The “proof contexts” are not part of the syntactic 
configuration one uses to start the sequence of proof 
steps.
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The “proof contexts” are not part of the syntactic 
configuration one uses to start the sequence of proof 
steps.

Can one reflect such a proof context in a direct way 
via a “proof configuration”? In such a configuration, 
can one make “forward” and “backward” moves?

A first step can be taken via Gentzen’s sequent 
formulation of ND in his (1936).

Part B. Bi-directional frames.



Part B. Bi-directional frames.

That sequent formulation indicates, locally at each 
proof node, on which assumptions the proof of the 
formula depends. It also presents the proof context.



Part B. Bi-directional frames.

That sequent formulation indicates, locally at each 
proof node, on which assumptions the proof of the 
formula depends. It also presents the proof context.

The rules operate on the rhs and retain another 
unnatural feature of ND: detours! 



Part B. Bi-directional frames.

A second step leads essentially to Gentzen’s sequent 
calculus with E-rules applied on the lhs and I-rules on 
the rhs …  

… it leads also to the cut-rule, cut-elimination, and the 
completeness proof for the cut-free calculus.  

In particular the Tait style sequent calculi for classical 
logic are great tools for metamathematical work.



Part B. Bi-directional frames.

This second step does not at all consider one major 
drawback, namely, that the applications of E-rules are 
in general not “goal-directed”.

Let me redescribe, in a different way, the logical 
problem to be addressed; that will lead then to a 
third step.



Part B. Bi-directional frames.

The task is to close the gap between assumptions and 
a goal

(i) by exploiting assumptions via sequences of E-rule 
applications that are directed towards the goal

Or 

(ii) by simplifying a goal via inverted I-rules.
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So, closing the gap between assumptions and a goal in 
this way is a species of “goal-directed” forward and
backward chaining.
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Part B. Bi-directional frames.
So, closing the gap between assumptions and a goal in 
this way is a species of “goal-directed” forward and
backward chaining.

I have called this approach, the intercalation method.  
The rules of Natural Intercalation, the NIC rules, have a 
special formulation, in particular, their E-rules.

Notions: (strictly) positive subformula; extraction 
sequence, formula unification; structured sequent. 
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logic are complete. 
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The NIC calculi for classical and intuitionist first-order 
logic are complete. 

NIC proofs are “isomorphic” to normal ND proofs and one 
can strategically search for proofs via “extraction”, 
“inversion”, and “refutation”.
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Part B. Bi-directional frames.

So, we have calculi that support a bi-directional and 
goal-directed proof construction in both intuitionist 
and classical first-order logic. 

In the same way as ordinary ND trees, such NIC proofs  
are not “easily” displayed on a computer screen. We 
chose a graphical display that is inspired by the 
representation of ND-proofs by Fitch diagrams.

Differences: no “free” assumption rule; no reiteration!
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Gödel’s incompleteness theorems and related results, 
like Löb’s Theorem, for ZF.  

The proofs do not use an arithmetization of syntax 
and the representability of the arithmetized syntactic 
notions.  Rather, it uses the direct representation of 
the inductive and (structurally) recursive definitions of 
syntactic notions and operations in ZF. 



Part C. Automated search.
Let me describe briefly the automated search for 
Gödel’s incompleteness theorems and related results, 
like Löb’s Theorem, for ZF.  

The proofs do not use an arithmetization of syntax 
and the representability of the arithmetized syntactic 
notions.  Rather, it uses the direct representation of 
the inductive and (structurally) recursive definitions of 
syntactic notions and operations in ZF. 

There is one leading idea: Prov-I and Prov–E.



Part C. Automated search.
Given the representability and derivability conditions, 
particular self-referential sentences, and the crucial 
leading idea, AProS very efficiently found proofs of 
those theorems. 

The proofs AProS found are canonical; let me show 
you the proof of the unprovability of the Gödel 
sentence G.

Sieg & Field, Automated search for Gödel’s proofs, 
Annals of Pure and Applied Mathematics, 133, 2005.



Part C. Automated search.
Unprovability of the Gödel sentence G:



Part C. Automated search.
Unprovability of the Gödel sentence G:

Let me show you how this proof is found strategically!



Part C. Automated search.

The particular simplified proofs of the Incompleteness 
Theorems were developed and implemented when I 
was working in Pat Suppes’ IMSSS (1975-77).

The automated proof search (with Prov-E and Prov-I) 
was preceded, in 2003-04, by a detailed analysis and 
interactive construction of the proofs.

That, I assume, will hold for the formulation of any 
automated proof search procedure that is human-
centered. 
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Concluding remarks.

Let me return to Hilbert’s 1900-call for a “a theory of 
the method of proof in mathematics in general”. 

We have taken steps towards such a theory by 
introducing bi-directional reasoning (and its 
representation in NIC calculi) that make it possible to 
reflect important structures of logical and  
mathematical proofs. 



Concluding remarks.

I described some meta-mathematical results for the 
NIC calculi and discussed their use for natural 
formalization and automated search. 

Such work allows us to illuminate the second 
direction of proof theoretic work and brings it to life 
by the analysis of mathematical proofs, their formal 
representation in suitable formalisms, and the 
expansion of strategies for finding intelligible proofs 
fully automatically. 



Thank you!
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