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Abstract

The aim here is to set out a philosophy, foundations and methodol-
ogy for mathematics that can best be described as ‘natural logicist’. It
is what logicists might have arrived at, had they enjoyed the benefits
of Gentzen’s methods of natural deduction. Mathematical content, we
argue, is best captured by rules set out in a natural deduction format,
governing a primitive vocabulary of expressions belonging to a variety
of syntactic types. The objects of each mathematical theory—for ex-
ample, numbers in the case of arithmetic; points, lines and planes in
the case of geometry—are to be treated as sui generis. The task is
then to find suitable rules governing the basic functions and relations
characteristic of the different mathematical domains.

∗Earlier versions of this paper were presented at the Workshop on Reverse Mathematics
in Chicago, in November 2009; and as an invited lecture to the Philosophy of Mathematics
Special Interest Group of the Mathematical Association of America (POMSIGMAA) in
Lexington, Kentucky, in August 2011. The author is grateful to both audiences for helpful
questions. The current version is a working draft, and is neither polished nor complete.
The author welcomes any comments from interested readers.
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1 A brief historical background

There are two ways that logic serves mathematics.

1. Logic provides formal proofs that ‘regiment’ the informal proofs of
ordinary mathematics.

2. (More controversial:) Logic furnishes definitions of the primitive con-
cepts of mathematics, allowing one to derive the mathematician’s ‘first
principles’ as results within logic itself.

With (1), one is pursuing logic as proof theory. With (2), one passes from
logic proper to logicism, which is a specific philosophical account of the
nature of mathematical knowledge and its objects. We shall take these in
reverse order.

1.1 Up to and including Frege

Logicism is the philosophical and foundational doctrine, concerning mathe-
matics, that mathematical truth is a species of logical truth, and that math-
ematical objects are logical objects. The truths of mathematics are therefore
analytic in Kant’s sense—they are true solely by virtue of the meanings of
the linguistic expressions involved. Another consequence of this view is that
mathematical certainty is of a piece with certainty about logical truth. The
same holds for necessity.

The doctrine of logicism had its first glimmerings in the writings of
Dedekind, but it really only came to full flowering in the work of Frege.
Their combined contributions represented a culmination of the trend, by
their time well under way among leading mathematicians, towards the arith-
metization of real (and complex) analysis. This trend had its beginnings in
the even earlier works of Gauss and Bolzano. It came to maturity in the
works of Cauchy and Weierstraß, and became the dominant paradigm in
Western thought about the nature of mathematics. The leading idea of the
arithmetizers was that the concepts and first principles of arithmetic and
analysis are to be found in the human understanding, independently of its
geometric intuitions concerning any spatial or temporal continua. Arith-
metic and analysis are completely conceptual and logical in their axiomatic
sources and in their deductive development.

Frege, as is well known, went in for overkill with the formal system
that was to vindicate his logicism. He sought to unify all of arithmetic
and analysis within a general theory of classes. Classes were supposed to
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be logical objects par excellence. The strategy was to define the natural
numbers, say, as particular classes within a much more capacious universe
of abstract, logical objects. Using the definitions, one would then derive the
first principles of arithmetic (the Peano–Dedekind axioms, say) as theorems
within the theory of classes. To that end one would exploit, ultimately, only
the deeper underlying axioms governing classes themselves.

Among these axioms was Frege’s ill-fated Axiom V—a principle of what
is today known as ‘näıve comprehension’. Corresponding to any property Φ,
Frege maintained, there is the class of all and only those things that have
the property Φ. In the language of second-order logic:

∀Φ∃X∀y(y ∈ X ↔ Φy).

Russell’s famous paradox ensued. For Φy take y 6∈ y. One thereby obtains

∃X∀y(y ∈ X ↔ y 6∈ y).

Let r be such an X. So
∀y(y ∈ r ↔ y 6∈ y).

But r is an object within the scope of this generalization. Instantiating with
respect to r, one obtains

r ∈ r ↔ r 6∈ r.

But one can show in short order, within a very weak propositional logic,
that any statement of the form

A↔ ¬A

is inconsistent.1 So Frege’s Axiom V is inconsistent.
This simple formal discovery occasioned the ‘crisis in foundations’ early

in the 20th century.

1.2 After Frege and up to Zermelo, but before Gentzen

Russell offered his own solution to the problem of his paradox, in the form of
his theory of types (both simple and ramified). By stratifying the universe of
objects into types, or levels, he sought to avoid the vicious circularity that
he had diagnosed as the underlying problem with Fregean class abstraction.
According to Russell, it should be illicit to define a class C in a way that

1We have been using the mathematician’s ‘relation-slash’ notation r 6∈ r instead of the
logician’s ‘sentence-prefix’ notation ¬(r ∈ r).
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involves generalizing about any range of individuals to which C itself would
have to belong. Thus the notion of self-membership, along with non-self-
membership, could not even be deployed.

This Russellian constraint on class abstraction, however, meant that
for many a ‘class abstract’ of the form ‘the class of all x such that Φ(x)’,
the existence of such a class could not be guaranteed as a matter of logic.
Instead, one would have to postulate that such classes existed. And this
came to be regarded as detracting from their status as would-be logical
objects, and revealing them instead as no more than mathematical posits.
Their existence was once again a synthetic a priori matter, rather than one
of analytic necessity and certainty.

Exactly why such classes would have qualified as logical objects cour-
tesy of a single immensely powerful postulate (had it been consistent), but
would not so qualify if their existence has to be secured in a more piecemeal
postulational fashion, has never been clear to this writer. But that was the
Achilles heel of Russellian logicism. The existential postulation present in
his Multiplicative Axiom (nowadays known as the Axiom of Choice) and in
his Axiom of Reducibility were seen as marks of the merely mathematical,
albeit against the background of a much more capacious universe of abstract
objects than just the natural numbers or the real numbers themselves.

For various methodological reasons, the theory of types fell out of favor
as a foundational theory for mathematics, and was replaced by the newly
emerging set theory due to Zermelo and Fraenkel. This displacement took
place during the 1920s. The aim was still to unify all of mathematics, and
to provide a capacious universe of abstract objects in order to do so. All
the different mathematical theories would be interpretable within set the-
ory, upon suitable identification of ‘set-theoretic surrogates’ for the objects
studied by those theories. So, for example, the finite von Neumann ordinals
can serve as set-theoretic surrogates for the natural numbers.2 And ℘(ω),
the power set of the set of natural numbers, is the set-theoretic surrogate
for the real continuum.3

After the profound influence of the Séminaire N. Bourbaki in the early
to mid-twentieth century and the ‘new math’ revolution that it occasioned,
we are nowadays accustomed to conduct our higher mathematical thinking

2We do not say the finite von Neumann ordinals are the set-theoretic surrogates for
the natural numbers, because of the well-known ‘Benacerraf point’ that there are other
recursive progressions within the universe of (hereditarily finite) pure sets that could serve
just as well—Zermelo’s finite ordinals, for example.

3Cantor’s theorem (that every set has strictly more subsets than members) has the
special case that ℘(ω) has more members than ω does, hence is uncountable.



6

only in set-theoretical terms. But many of the ‘textbook’ results of advanced
mathematics were formulated and proved (in accordance with the standards
of informal rigor of the time) before set theory had reached maturity as the
general ‘carrier theory’ for higher mathematics.

1.3 After Gentzen

It was only with the work of Gerhard Gentzen in the early 1930s (see [3]) that
researchers in foundations were equipped with formal calculi of deduction
that could do real justice to the actual structure of dependencies within
mathematical proofs. What we have in mind here are the dependencies of
conclusions upon both premises and assumptions that may have been made
only ‘for the sake of argument’. Examples of assumptions of the latter kind
are reductio assumptions (assume ϕ; derive absurdity; conclude ¬ϕ, now
independently of ϕ); assumptions for conditional proof (assume ϕ; derive
ψ; conclude ϕ → ψ, now independently of ϕ); and the case-assumptions
for proof-by-cases (first assume ϕ in order to derive θ; secondly, assume ψ
in order to derive θ; thence conclude θ from ϕ ∨ ψ, independently of the
case-assumption ϕ that appears in the first case-proof, and independently
of the case-assumption ψ that appears in the second case-proof).

Looking back, it strikes one as quite extraordinary that the community
of mathematical logicians took so long to discover the calculi of natural
deduction (and the sequent calculi), once Frege, in 1879, had cracked the
previously hidden grammatical code of multiply quantified sentences. It is
extraordinary that Gödel, in 1929, could have demonstrated the complete-
ness of first-order logic before Gentzen’s natural formulation of it, when that
logic was available only in the forms of the highly unnatural deductive calculi
devised by Frege, by Hilbert, and by Russell and Whitehead.

The essential breakthrough of Gentzen’s treatment was to treat each
logical operator in isolation, with rules of its own, rules in which only that
operator would explicitly feature. Moreover, the rules in question would
deal only with a single occurrence (in dominant position) of the operator in
question. The rule for reasoning to a conclusion with the operator dominant
was called its introduction rule; while the rule for reasoning from a premise
with the operator dominant was called its elimination rule.

The introduction and elimination rule for any logical operator have to
be in a certain kind of equilibrium, an equilibrium that lends itself to an in-
terpretation of the rules as forming the basis of an intelligible social contract
between any responsible, rational and sincere speaker, and any responsible,
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rational and trusting listener.4

The equilibrium in question is explicated by the so-called reduction pro-
cedures for the logical operators. These procedures enable one to remove
from a proof any sentence occurrence that stands both as the conclusion
of an application of an introduction rule and as the major premise of an
application of the corresponding elimination rule. Repeated application of
the procedures will eventually turn the proof into one that is in normal
form—essentially, one that is not eligible for any further application of the
procedures.5

The reduction procedure for conjunction illustrates the foregoing ideas
clearly. In the case of conjunctions A ∧B

(i) one who hears A∧B sincerely asserted should be able logically
to infer from it both A and B: for this is all the information that
the asserter ought to have acquired before inferring to A ∧B.

(ii) one who undertakes to assert A∧B should ensure that both
A and B are indeed the case: for A and B are what any listener
would be able logically to infer from A ∧B.

This harmony between speaker’s obligations, as in (ii), and listener’s entitle-
ments, as in (i), is brought out by the following two-part reduction procedure
for ∧:6

∆
Π
A

Γ
Σ
B

A ∧B
A

7→
∆
Π
A

∆
Π
A

Γ
Σ
B

A ∧B
B

7→
Γ
Σ
B

Here, Π is a proof of the conclusion A from the set ∆ of premises; and Σ is
a proof of the conclusion B from the set Γ of premises. The sets ∆ and Γ
can in general be distinct; indeed, they can be disjoint.

4It has been Michael Dummett, especially, who has advanced this interpretation. The
present author has also stressed the importance of such equilibrium for the evolution of
logically structured natural languages. See [13] and [15].

5The normalization theorem is due to Prawitz. See [7].
6Here, for ease of illustration, we follow Gentzen and Prawitz in using ∧-E in its serial

form. Elimination rules can also be stated in a parallelized form, due to Peter Schroeder-
Heister. See [8]. For the advantages of the parallelized rules in automated proof-search,
see [16]. For their special role in analyzing relevance of premises to conclusions within
proofs, see [18] and [24].
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The unreduced proof-schema on the left in each case showsA∧B standing
both as the conclusion of (∧-I) and as the major premise of (∧-E). In other
words, the operator ∧ is introduced, and then immediately eliminated. The
occurrence of A ∧ B is maximal. The reducts to the right of each arrow
respectively show that one cannot thereby obtain anything that one did not
already possess.

Note also that each of the reducts on the right of the arrow 7→ has either
∆ or Γ as its set of undischarged assumptions. Whichever one it is, it could
well be a proper subset of the overall set ∆∪Γ of undischarged assumptions of
the unreduced proof-complex on the left. So with the reduction procedure
for ∧ we learn an important lesson: reducing a proof (i.e. getting rid of
a maximal sentence occurrence within it) can in general lead to a logically
stronger result. This is because when Θ is a proper subset of Ξ, the argument
Θ : ϕ might be a logically stronger argument than the argument Ξ : ϕ. It
will be a logically stronger argument if one of the sentences in (Ξ\Θ)—that
is, the set of members of Ξ that are not members of Θ—does not itself follow
logically from Θ. To summarize: by dropping premises of an argument, one
can produce a logically stronger argument. And reduction can enable one to
drop premises in one’s proof of an argument. So reduction is a potentially
epistemically gainful operation to perform on any eligible proof, for it can
produce a logically stronger result.

Powerful, incisive and revolutionary though Gentzen’s approach has since
proved to be, it was, in its turn, curiously limited. It was restricted to just
the universally acknowledged logical operators of first-order logic: ¬, ∧,
∨, →, ∃ and ∀. At exactly the same time (1934), Carnap published his
Logische Syntax der Sprache, which offered an account of analyticity for
languages in which all logico-mathematical operators could make similar
contributions to the status of a sentence as analytically true (or analytically
false). Carnap, however, did this by employing axiomatizations involving all
the various logico-mathematical operators, co-functioning in grammatically
complex axioms. His approach was therefore quite unlike that of Gentzen,
which was single-operator focused. The 1930s let the tradition fall prey
to an unfortunate methodological lacuna: a failure to generalize Gentzen’s
approach beyond the strictly logical operators of first-order logic. Proof
theory was thereby deprived of a potentially fertile agenda: an investigation
of the various forms that introduction and elimination rules might take, as
it addresses rule-governed expressions whose rules are not quite so neatly
classifiable as introduction and elimination rules. This is the case, for exam-
ple, with families of ‘coeval’ and interdependent concepts of a nevertheless
logico-mathematical kind. An excellent example of such a family is that of
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the ordered pair of any two things; the first member of any ordered pair;
and the second member of the same. See [21] for further details. (Another
novel feature of this example, and of other examples that could be given,
is that the operators in question are term-forming operators. Gentzen had
confined his study to sentence-forming operators.) Perhaps it was Tarski’s
theory of truth for formalized languages (see [11]) that deflected interest
away from further development of this essentially inferentialist approach to
the meanings of logical and mathematical operators.

2 Foundations of Mathematics, in its mature phase

The area of study known as ‘foundations of mathematics’ aims to classify
various mathematical theories according to their various systematic proper-
ties, and to study important relations amongst them. It also seeks a single
unifying, over-arching theory that can accommodate all those more ‘provin-
cial’ theories, upon suitable interpretation of the latter in the former.

2.1 The foundationalist’s main aims

Given the usual ‘branches’ of mathematics, such as number theory, geometry
(Euclidean and non-Euclidean), topology, etc., the foundationalist typically
seeks to

1. identify their primitive concepts and first principles;

2. formulate a logic that applies to all of them;

3. investigate relationships among various theories, such as

(a) T conservatively extends T ′;

(b) If T is consistent, then T ′ is consistent;

(c) T is interpretable in T ′;

4. provide a unifying theory with as few primitives as possible, in which
all of the theories can be interpreted;

5. investigate properties of theories such as

(a) T has a (countable) model;

(b) T is κ-categorical, i.e. T has exactly one model, up to isomor-
phism, of cardinality κ;
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(c) T is complete; and

(d) T is decidable.

2.2 The languages peculiar to different branches of mathe-
matics

Different branches of mathematics, as any practising mathematician knows,
are distinguished by their different stocks of concepts—which means that
they are distinguished, in turn, by their ‘extra-logical’ vocabularies of ex-
pressions. These expressions can be simple names, function signs and/or
predicates; and they can also be more complicated expressions, such as
variable-binding operators. We offer here just four illustrations of the re-
spective stocks of such primitives for different branches of mathematics.

• The language of arithmetic contains the primitive expressions 0, s, +,
×, ∧ (exponentiation)

• The language of 3-D projective geometry contains the following prim-
itive expressions:

– the sortal predicates ‘. . . is a point’, ‘. . . is a line’, ‘. . . is a plane’;

– the binary relation ‘. . . is included in (or lies on) —’; plus

– the incidence operators

∗ the point of intersection of line λ and plane Π

∗ the point of intersection of the two co-planar lines λ and λ′

∗ the line of intersection of the two planes Π and Π′

∗ the line determined by the two points π and π′

∗ the plane determined by the two intersecting lines λ and λ′

∗ the plane determined by the line λ and the point π not on λ

• In addition to the primitives of arithmetic, the language of real analysis
calls for

– a notation for functions: λx.f(x); and

– the ordering relation < .

• The language of set theory contains but one binary predicate, ∈;7

and, if one wishes, the set-abstraction operator {x| . . . x . . .}. (The
latter is useful but not essential for the development of set theory.)

7We concede that it is quite extraordinary that all of mathematics can be obtained
using only a single binary predicate.
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3 The foundational project of Natural Logicism

It is interesting to inquire about the basic concepts and pre-set-theoretic,
‘native’ intuitions of the mathematicians who were able to formulate and
prove important results that have only subsequently acquired their predom-
inantly set-theoretical trappings. We have in mind here not the kind of
not-altogether-trustworthy geometric intuitions against which real analysis8

(so it was thought) had to be guarded via the arithmetization undertaken
by Cauchy and Weierstraß. Rather, we have in mind the analytic9 intu-
itions10 of the competent mathematician, which, when clear and distinct,
betoken a thorough grasp of the mathematical concept(s) involved. A case
in point would be the intuition that the natural numbers obey the Principle
of Mathematical Induction. (Pace Poincaré, we consider this intuition to
be analytic, not synthetic. Its analyticity can be exhibited by furnishing it
with a constructive logicist derivation using only rules that are analytic of
the notions ‘number of F s’, ‘successor’ and ‘zero’.11)

The aforementioned general inquiry is one on which the present author
has been engaged for some time. It has led to a ‘natural-logicist’ refor-
mulation of arithmetic,12 projective geometry,13 Euclidean geometry, real
differential calculus,14 the theory of higher infinities,15 and set theory it-
self16 (as just one among other branches of higher mathematics, rather than
as an all-embracing foundational theory).

In the course of laying a natural-logicist foundation for each mathemat-
ical discipline, it has proved imperative also to achieve clarity about the
norms of logical inference within a free logic with abstraction operators.

8Here, ‘analysis’ is meant in the mathematical sense—the study of real numbers and
functions of reals.

9Here, ‘analytic’ is meant not in the mathematical sense mentioned in footnote 8, but
in the Kantian sense, as arising from the meanings of the words involved.

10Here, ‘intuitions’ is used in the sense of ordinary mathematical parlance, and not in
the special Kantian sense of ‘telling us something informative about the world’, which
Kantians regard as the contradictory of the Kantian sense of ‘analytic’ !

11See [14], ch. 25, ‘On deriving the basic laws of arithmetic: or, how to Frege-Wright a
Dedekind-Peano’.

12Ibid.
13See [20].
14See [22].
15See [23].
16Just as the Dedekind-Peano axioms for arithmetic are derived as non-trivial results

within a deeper logicist account of number, so too the Axiom of Extensionality of set
theory is derived non-trivially from the deeper principles laid down in the logicist account
of the set-abstraction operator. See [19] for details.
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The present author has dealt successively with the description operator, the
number-abstraction operator and the set-abstraction operator.17 With the
appropriate logic formulated, one can turn one’s attention to the concepts
and operations specific to each mathematical discipline in turn.

• A logical investigation of orderly pairing affords a logicist treatment
of addition and multiplication in arithmetic.18

• A natural-deduction investigation of the incidence operators in projec-
tive geometry affords a logicist treatment of the foundations of that
discipline within which its famous Principle of Duality is beautifully
clarified:

Given any proof Π of a theorem ϕ, the dual result ϕ′ is
proved by the dual proof Π′, obtained by merely interchang-
ing ‘point’ and ‘plane’ (in the 3-D case), likewise interchang-
ing pairs of the incidence operators mentioned above, and
switching the arguments of all occurrences of the incidence
relation.19 One otherwise leaves unchanged the macro-structure
of Π (i.e. its pattern of applications of rules of inference) in
thus passing to its dual Π′.20

• A natural-deduction investigation of functions sui generis (and not
by way of set-theoretical surrogacy) leads to an elegant treatment of
derivatives of real functions, which hews to the basic intuitions of the
student of calculus.21

3.1 The aims of Natural Logicism

3.1.1 Rigorous regimentation of mathematical reasoning

Natural Logicism aims rigorously to regiment reasoning within any given
branch of mathematics by using a system of appropriate natural-deduction
rules. This is what justifies calling this version of logicism ‘natural’.

17See [12], ch. 7, and [19].
18See [21].
19In the 2-D case, one interchanges ‘point’ and ‘line’ within the proof Π, interchanges

appropriately different pairs in the dimensionally reduced set of incidence operators, and
switches the arguments of all occurrences of the incidence relation.

20See [20].
21See [22].
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3.1.2 Identification of conceptual primitives, and defined con-
cepts, with an eye to actual mathematical practice

The defined concepts should be manageable, fruitful, and of wide applica-
tion. They should help to atomicize the reasoning.

3.1.3 Formulation of introduction and elimination rules for con-
ceptual primitives and for concepts defined in terms of
them

Such rules pin down the concepts in question. This is what justifies use of
the label ‘logicism’.

Judicious choice of definitions, in which the definienda are furnished
with introduction and elimination rules, enable one to minimize the logical
complexity of sentences appearing in the formal proofs provided as regimen-
tations of passages of informal mathematical reasoning.

3.1.4 Formal proofs should be homologues of informal ones; for-
malization should merely ‘supply missing details’.

The early forms of logicism tended to obscure the virtues of logical rigor
(in the regimentation of mathematical proofs) because they were tied to a
quite orthogonal project. This was the project of trying to furnish an all-
embracing, over-arching theory of classes or theory of types. The universe
of discourse of the sought unifying theory, it was hoped, would accommo-
date (through appropriate surrogates) all the various kinds of mathematical
objects that different mathematical theories are ‘about’.

This Fregean and Russellian bent had the consequence that Logicism,
as a philosophy and foundations for mathematics, appeared to be over-
ambitious. Yet Logicism can and should be prosecuted without any concern
for the unification of mathematics via class theory or set theory or cate-
gory theory or the theory of types (to name the most important ‘unifying
theories’ on offer). A logicism worthy of the name could confine itself to sim-
ply making existing proofs in the main corpora of rigorous22 but informal
mathematics, perfectly rigorous because completely formal and symbolic.

22Here we mean ‘rigorous’ to be understood in the usual way that a well-trained math-
ematician understands it. All main steps are explicitly indicated. Appeals to intuition
are made only when the writer and the reader can be expected to know how to eliminate
them in favor of more rigorous symbolic reasoning.
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3.1.5 Formal proofs should be in normal form (when all their
undischarged assumptions are declared).

This methodological constraint forces one to make judicious choices of lem-
mas interpolated between one’s mathematical axioms and the theorems that
one seeks to derive from them. It obliges one also to deploy a logic that en-
ables one to make the kind of deductive progress that is evident throughout
mathematics. The standard systems of classical logic and intuitionistic logic
provide a rule of ‘unrestricted Cut’, which is designed to ensure that proofs
can be ‘accumulated’: if one has proved lemma ϕ from axioms ∆, and has
also proved theorem ψ from lemma ϕ plus further axioms Γ, then one has
ipso facto proved theorem ψ from the combination of axioms ∆ ∪ Γ:

∆ : ϕ ϕ,Γ : ψ

∆,Γ : ψ

It is not necessary, however, to have a rule of Cut in such an unrestricted
form in order to ensure deductive progress in mathematics. Indeed, it is not
necessary to have a rule of Cut at all, as part of one’s logical system. All
that is needed, rather, is the truth of the following:

There is an effective binary operation [ , ] on proofs such that
given any proof Π of ∆ : ϕ, and given any proof Σ of the sequent
ϕ,Γ : ψ, the proof [Π,Σ] proves either ψ or ⊥ from (some subset
of) ∆ ∪ Γ (that is, [Π,Σ] proves either a sequent Θ : ϕ or a
sequent Θ : ⊥, for some subset Θ of ∆ ∪ Γ).23

A remarkable feature of the introduction and elimination rules for the stan-
dard logical operators is that (with the elimination rules stated in their
‘parallelized’ form) one can insist that only normal-form proofs count as
proofs, and still secure the truth of the displayed claim. Normality, more-
over, is guaranteed by a beautifully simple expedient: major premises of
eliminations must ‘stand proud’, with no proof-work above them. A ma-
jor goal for the research program of Natural Logicism is to preserve these
metalogical features of first-order logic when we extend it by adopting our
envisaged introduction and elimination rules for more peculiarly mathemat-
ical notions.

23For fuller discussion of how this ‘restricted transitivity’ principle fully serves all the
mathematician’s needs, see [24].
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3.1.6 Formalization should reveal points of non-constructivity,
impredicativity, ‘purity’ etc.

This is one of the less appreciated benefits of full formalization of mathe-
matical proofs. It enables the maturing mathematician to become aware of
which steps of reasoning might be especially controversial or methodologi-
cally significant.

3.1.7 Treat the objects of the theory as sui generis, rather than
as surrogate objects within a ‘more foundational’ theory
such as set theory.

As remarked by Harrington, Morley, Ščedrov and Simpson in [5] at p. vii:

. . . ZFC . . . is not appropriate . . . for a more delicate study of
the nature of mathematical proof. Standard mathematics is not
inherently or peculiarly set-theoretic.

This remark was intended to set the stage, however, for their subsequent
explanation of how arresting it was that Friedman had been able to demon-
strate necessary uses of abstract set theory in order to prove results in ‘rel-
atively concrete mathematical situations’ (ibid., p. viii). What that means,
however, is that the concrete result in question (ϕ, say) is provable in ZFC
plus some large cardinal axiom, and in turn implies (modulo some weak base
theory, such as EFA)24 the consistency of ZFC plus all smaller large-cardinal
axioms. If one’s main concern is to calibrate the consistency strength of a
particular concrete-looking conjecture ϕ in this way, then of course it be-
hooves one to translate both ϕ and the ‘native’ axioms of the theory T (to
which ϕ might or might not belong) into the language of set theory, so that
the calibration can proceed. If, however, one’s main concern is to clarify
the logical structure of the reasoning by which all the known results of the
‘native’ theory have been established, then it is better to eschew the set-
theoretical trappings that help only with the calibration question, and deal
with T directly, natively, sui generis.

Mathematical theories are learned, developed and communicated ‘na-
tively’. Each theory has its own special stock of concepts; and is ‘about’
its own special kinds of mathematical object. The early proofs by great
expositors of these theories treat these objects as sui generis, without pre-
senting them as complicated sets drawn from the cumulative hierarchy of
pure sets. The ‘Bourbakization’ of mathematics—the re-definition of all the

24EFA is exponential function arithmetic.
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concepts of different branches of mathematics in terms of sets alone—makes
it harder for a beginner to understand what any particular mathematical
theory is about. It makes mathematics, which is already abstract enough,
seem utterly abstract, to the point of enjoying no enlivening or illuminating
connection whatsoever with any other area of human thought—be it physics,
computer science or economics.

3.1.8 Explain how a given branch of mathematics is applicable
(if it is).

The more searingly abstract a presentation one provides for a mathematical
theory, the more difficult it becomes to explain how it is in the very nature
of the mathematical objects concerned that one’s theory about them can be
applied in reasoning about real-world phenomena and the regularities that
underly them. Ironically, it was Frege who made the most of the requirement
that such pplicability be explained—and who then did the most damage to
that very prospect.25

3.2 Some consequences of these aims

1. One attends more carefully to what is really ‘built in’ to a (defined)
concept, as opposed to what is assumed in the hypotheses for one’s
reasoning.

2. One ‘carves informal proofs at their joints’. Regimentation is anato-
mization!

3. One can more easily motivate the study of formal proofs for practising
mathematicians.

4. One can devise proof-search strategies in automated or interactive
theorem-proving that are tailored to the branch of mathematics in
question.

5. One can address the issue of analytic v. synthetic truth in mathematics
with sharper tools at one’s disposal.

6. Occasionally one detects a deeply hidden fallacy in even the best extant
texts.

25This is argued at greater length in [26].
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3.3 Some prime–facie problems for the pursuit of these aims

1. One has to introduce an indefinite number of ‘pasigraphically primi-
tive’ expressions (for all the defined terms).
Answer : So what? We are thereby just mirroring the continuing de-
velopment of informal mathematics, with its ever-increasing stock of
defined concepts. The alleged problem is mitigated, indeed eliminated,
by the fact that these defined concepts are always finite in number.

2. How can one tell whether the formal theory is consistent, or what its
consistency strength is?
Answer : Via mutual interpretation with alternative formalizations
(which can of course be set-theoretic) whose consistency-strength has
already been calibrated.26

3. The sheer grunt-work involved in thus ‘perfecting’ mathematical texts
might be off-putting to [all/nearly all/most/many/several/a few. . . ?]
mathematicians and/or foundationalists.
Answer : Der Teufel liegt im Detail! Welcome to the task of fully
Fregean foundations. At least it affords a prospect of gainful employ-
ment for logicians undertaking to do what logicians ought to do—which
is to clarify the structure of mathematical reasoning at the most re-
fined possible level of symbolic detail.

The question naturally arises, for any mathematical theory T : how far
might this natural-logicist approach be extended to T ? Could T be laid out
in its own ‘native’ terms, shorn of the specifically set-theoretic notions that
are employed in contemporary treatments in textbooks? Could one avoid
the ‘ontological riches’ of a set-theoretic foundation, by helping oneself only
to what is specifically needed, both conceptually and ontologically, in order
to attain the results one is after?

26One of Friedman’s remarkable results is that mutually interpretable theories have
the same consistency strength and conversely. For exposition, see [10]. More recently,
Friedman has written (see [2])

The striking observation is that one finds a remarkable linearity [of consistency
strengths]. This linearity is found not only with finitely axiomatized systems
. . . but with the non finitely axiomatized systems such as PA and ZFC. This
is perhaps the most intriguing, thought provoking, fundamental, and deep
phenomenon in the whole of the foundations of mathematics.

See §6 below for more details about this linear hierarchy of consistency strengths.
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4 The development of Natural Logicism so far

In [12], ch. 7, a natural-deduction system for free logic was formulated, which
could accommodate the potentially non-denoting terms that occur in math-
ematical theorizing. In [14] a general account was given of so-called ‘transi-
tional atomic logic’. A neo-logicist project was then pursued: a constructive
and relevant foundation for arithmetic was set out, taking the number-term
forming operator #x(. . . x . . .) as primitive. Meaning-determining introduc-
tion and elimination rules for # and the successor function were formulated,
and the Dedekind-Peano axioms for arithmetic were derived for the language
of 0, s and #.

The same project was extended, in [21], in order to deal with addition
and multiplication. The concern was to elucidate the application of natural
numbers to count finite collections, and to reveal a way in which essentially
first-order resources could suffice for this purpose. The extra first-order
resources affording a neo-logicist treatment of addition and multiplication
were the rules for the logic of orderly pairing.

In [17] it was argued that the formulation of mathematical theories in
terms of introduction and elimination rules for the main logico-mathematical
operators furnished a principled basis for drawing an analytic/synthetic dis-
tinction within those mathematical theories. The operators in question
are term-forming operators, not sentence-forming ones. Hence the natural-
deduction paradigm of introduction and elimination rules (for connectives
and quantifiers) had to be extended in order to deal with them. The rules
for any term-forming operator have to characterize conditions for its in-
troduction and elimination when it is dominant on one side of an identity
statement.

For example, the ‘logic’ of sets that is generated by such introduction and
elimination rules for the set-abstraction operator {x | . . . x . . .} yields a body
of analytic results, including the so-called axiom of extensionality—a body
of theorizing that Quine once called ‘virtual set theory’. On the synthetic
side would be existential claims such as ‘ω exists’.27 In [19], a general
account was provided of the logic of abstraction operators, including set-

27For the reader not versed in modern set theory: ω is defined to be the set of all
finite von Neumann ordinals, which are the usual set-theoretic surrogates for the natural
numbers. Corresponding to the natural number 0 is the empty set ∅. Corresponding to
the natural number 1 is the singleton of 0, namely {∅}. In general, corresponding to the
natural number n + 1 is the set {0, . . . , n}. In this way, the ‘less than’ relation < among
natural numbers corresponds conveniently to the relation ∈ of set-membership. Moreover,
n is the cardinal number of a set X by virtue of there being a 1-1 mapping from X onto n.
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abstraction. In [25] the method of formulating introduction and elimination
rules was applied to the fusion operator in mereology, with systematic and
simplifying effects.

Given that the general method of introduction and elimination rules
could be claimed to have dealt, with some measure of success, with the
notions of set, number, and part-whole, the neo-Kantian question arises:
could this method bear fruit when applied to geometry?

In search for an answer to this question, [20] focused on the simplest and
most elegant kind of geometry—synthetic projective geometry in both two
and three dimensions (where ‘synthetic’ is used here in the geometer’s sense).
The logico-philosophical project just described is thereby extended beyond
the author’s earlier concerns with set, number, and the relations of parts
to wholes.28 [20] examined how much of the ‘geometry of incidence’ can be
captured with simple and elegant rules for the introduction and elimination
of the ‘incidence operators’; and how much of projective geometrical theo-
rizing depends on existential postulation that would have to be described
as synthetic (where ‘synthetic’ is now used in the meaning-theorist’s sense).
The aim was to dig more deeply than even the most rigorously-minded ge-
ometers are wont to do, in order to furnish a logical foundation that will
yield conventional axiomatizations as by-products. We proceeded as best we
could at first order, avoiding recourse to any higher-order or set-theoretic or
mereological conceptions of geometrical entities.

Various branches of pure mathematics, such as arithmetic, different ge-
ometries, set theory etc. have been axiomatized by the pure mathematicians
who practice in those fields. These mathematicians are interested first and
foremost in the abstract structures formed by the mathematical objects un-
der investigation, even when the intention is to try to characterize the struc-
ture in question up to isomorphism. Questions of applicability are usually
set to one side, as are questions concerning the ultimate logical foundations
of that branch of mathematics within rational thought as a whole. One of
the (perhaps unintended) consequences of this ‘pure isolationist’ approach is
that axioms are chosen with a pragmatic eye on how quickly they can yield
desired consequences, and how readily they will be accepted (without proof)
by the intended audience. Both consistency and certainty are desiderata,
to be sure; but pragmatic compromises are also struck in pursuit of both
brevity of proof and power of single axioms.

This means, in the case of some of the traditional axiomatizations of

28Reference was made, however, in [17] at pp. 301 and 446, to an earlier stage of the
work here decribed on natural foundations for projective geometry.
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different branches of geometry, that there is a trade-off between the length
of axioms and their number—usually increasing the former and decreasing
the latter. The axioms eventually chosen serve mainly as convenient starting
points for deductions, provided only that they will be accepted as true of
the intended subject matter. There is no uncompromising concern, on the
part of practising mathematicians, to ensure that all the axioms laid down
are conceptually basic, or—even better—analytic of the concepts involved.
Nor is there any concern to keep the axioms within some tightly constrained
syntactic class, involving, say, a minimal number of quantifier alternations.

[20] departed rather self-consciously from this established precedent in
mathematical axiomatization. Rather than stating axioms—which are (usu-
ally complex) sentences of a formal language—we stated transitional atomic
rules of inference. These are rules of inference, in natural-deduction for-
mat, in which only atomic sentences feature. Some of them may contain
parameters, thereby enabling one to express existential import—but still
the only sentences in view are atomic. Secondly, we stated a great many
rules, arranged, as far as possible, in thematically coherent groups. Our
basic methodological principle was, and is: state more simply and more fre-
quently, rather than less simply and less frequently. Fundamental principles
of geometry should be like so many little ants, making for a supple organic
whole, rather than like heavy foundation stones that are difficult to put in
place.

5 What is distinctive about projective geometry?

The general philosophical reader may not be au fait with the ways in which
projective geometry differs from affine geometry or from Euclidean geometry.
So a few words of explanation will be in order. The following method of
comparing and contrasting geometries is that of Klein’s well-known Erlanger
Program.

Each geometry is based on notions (primitive or defined) that remain
invariant under a distinctive group of transformations of the space in ques-
tion. The transformations form a group because the result of performing
any two licit transformations in succession is a transformation that is itself
licit. In the case of Euclidean geometry, the transformations are distance-
preserving; they can be generated by a combination of (rigid) translations,
rotations and/or reflections. Under all such transformations, the follow-
ing features of geometrical figures will be invariant: incidences and tangen-
cies; distances, ratios of distances, and equidistances; areas and volumes;
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betweennesses; angles and perpendiculars; circles; parallels. So Euclidean
theorems are allowed to employ any of these notions.

In affine geometry, by contrast, the transformations in question are lin-
ear : those stretchings and/or shrinkings in different directions that can
deform squares into parallelograms, circles into ellipses, cubes into paral-
lelopipeds, and spheres into ellipsoids. Under linear transformations, con-
gruent Euclidean figures will remain at best similar figures. No longer will
distances, ratios of distances, equidistances, areas, volumes, angles, per-
pendiculars or circles be invariant. So no affine theorem can employ these
notions. But affine theorems can still employ the notions of incidences and
tangencies, betweenness, and parallels. For these are invariant under linear
transformations of space.

In projective geometry, the transformations in question are projections.
These are best illustrated in the two-dimensional case. Imagine two planes,
not necessarily parallel to one another, and a point of central projection not
on either of them. Imagine a geometrical figure in the original plane (say, a
triangle abc) being projected by straight lines through the point of projection
onto its image in the copy plane. Note that the line from the point of central
projection might pass through a source-point in the original plane before it
hits the corresponding image-point in the copy plane; but that there can also
be cases where the line from the point of central projection passes through
the image-point in the copy plane on its way to the source-point in the
original plane.

What geometrical features will remain invariant under such projections?
The answer is: but a meager stock. Straightness of lines will survive. So too
will incidences and tangencies; hence also collinearities of more than two
points, and concurrencies of more than two lines. But when a point x is
between points y and z on some line in the original plane, that need not be
the case with their respective images x′, y′ and z′ in the copy plane. And
when a line k is parallel to line l in the original plane, that need not be the
case with their respective images k′ and l′ in the copy plane.

The projective geometer has to exercise ingenuity to discover more ab-
stract features of various geometric figures—features such as harmonic cross-
ratios, or separation of one pair of points by another pair—that will be pro-
jectively invariant, and in terms of which interesting theorems may be stated
and proved. Projective transformation is so far-reaching that a circle can
be transformed into an ellipse, or a parabola, or an hyperbola, depending
on its relation to the point of projection and the copy plane. In projective
geometry, accordingly, there is but one notion of conic, uniting the three
kinds of conic section familiar from the Euclidean case.
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There is something seductively ascetic about projective geometric truths.
They are formulated in terms of incidences alone, and are devoid of any
concern for distance, angle, parallelism or betweenness. Projective geometry
might be thought of as the bare logic of criss-crossing.

From a logical point of view, there is something seductively aesthetic
about projective geometric truths. First, projective space is incidence-
replete. Any two co-planar lines meet in a point—even if it has to be a
‘point at infinity’. Likewise, any two planes meet in a line—even if it has
to be a ‘line at infinity’. This means that the logical rules for incidences
can be framed in a smoothly exceptionless way. Secondly, every projec-
tive geometric truth has a dual—in two dimensions or in three dimensions,
as appropriate. In two dimensions, for example, any two points determine
a unique line containing them. Dually: any two lines determine a unique
point that they contain. In three dimensions one has the same phenomenon,
albeit with different ‘switchings’ or inter-substitutions of key notions. For
example, any plane and any line not in it determine a unique point in that
plane and on that line. Dually: any point and any line not containing it
determine a unique plane containing that point and that line. (In three
dimensions, one dualizes by interchanging ‘point’ and ‘plane’, while leaving
‘line’ undisturbed.)

The natural-deduction treatment proposed in [20] for projective geome-
try sought to capitalize on, and to highlight, both the existence of extremal
elements (points and lines at infinity) and the inherent dualities in two di-
mensions and three dimensions respectively. It was a modest initial foray, by
a proof-theoretically minded logician, into the theory (or logic?) of synthetic
projective space.

It remains to be seen whether and to what extent the techniques de-
veloped in [20] for projective geometry might be adapted so as to yield
similar systematic treatments of affine and/or Euclidean geometry. The au-
thor envisages an extension of the natural-deduction rules framed in [20]
so as to avoid reliance on extremal elements and to cope with the newly
admissible notions such as parallelism (in the affine case) and equidistance
and betweenness (in the Euclidean case). The challenge will be to show
how predicates (not: term-forming operators) can admit of similar logicist-
inferentialist treatment.
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6 The Linear Hierarchy of Consistency Strengths

We furnish here an account of the linear ordering, by consistency strength,
of various mathematical theories of interest to the foundationalist. Con-
sistency strength increases as one goes down the rows in the tables below.
Theories with the same consistency strength are listed on the same row, but
perhaps in different columns. The columns house the different kinds of the
theories in question (1st-order arithmetics; 2nd-order arithmetics; higher-
order arithmetics; 1st-order set theories; 2nd-order set theories). T ≈ T ′

means that the theories T and T ′ have the same consistency strength.

The calibration of consistency strengths is made possible by ‘uniformiz-
ing’ the ontology of the mathematical theories being compared. The natural
numbers are taken as given, as forming one sort; and then the question be-
comes which sets of natural numbers one should acknowledge, as forming a
second sort. The stronger the commitment on this second score, the greater
the consistency strength of one’s theory. Brilliant though the work has
been, in comparing various theories when cast in these terms, one cannot
help remarking how ‘unnatural’ that re-formulation is, when one considers
the methods of coding employed in order to define negative integers, rational
numbers, real numbers, etc. out of the naturals.

Word of warning: The terminology ‘second-order’ is well established
among those foundationalists who study these matters; but the reader must
not casually assume that the label is earned (or incurred) by quantifica-
tion that is genuinely second order, that is, quantification over properties
of, and/or relations among, ground-level individuals. Rather, the ‘second-
order’ entities are ground-level entities of a second sort, so that one is deal-
ing with a two-sorted, first-order system. Entities of the first sort can bear
the membership relation to entities of the second sort; but entities of both
sorts are nevertheless ground-level individuals—as indeed sets themselves
are, within the context of first-order set theory.

Sources: We draw here on Table E: Twenty Milestones on the Fundamental
Series, at pp. 220–1 of [1]; as well as on [2]. The interested reader will also
find a wealth of information in [4], [6], and [9].

Note: P2 is also called Z2 (a.k.a. analysis) by those working on so-called
second-order subsystems of arithmetic. We use Burgess’s choice of P here
(after Peano) in order to avoid confusion with Zermelo set theory.
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Colors: We have highlighted the best-known arithmetics, the most impor-
tant systems of reverse mathematics, and the most important set theories.

Table 1: Linear Hierarchy of Consistency Strengths

1st-order arithmetics 2nd-order arithmetics 1st-order set theories

Q (Robinson arithmetic) ≈
Q2(=I∆0; IΣ0; IΠ0;
Polynomial Function Arithmetic;
Nelson–Wilkie Arithmetic)
Q3(=I∆0(exp);
Kalmar Arithmetic;
Exponential Function Arithmetic)
Q4(=I∆0(sup);
Superexponential Function Arithmetic;
Gentzen Arithmetic)
...
Primitive Recursive Arithmetic
...
Qω (Grzegorczyk Arithmetic) ≈ RCA0 ≈
IΣ1 (Parsons Arithmetic) WKL0

IΣ2 (Ackermann Arithmetic)
...
PA (= P1; Q2 + Ind. for all formulae;
Peano Arithmetic); ACA0 Z− −∞
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Table 2: Linear Hierarchy of Consistency Strengths, cont.

1st-order arithmetics 2nd-order arithmetics 1st-order set theories

ACA0 + ∀n∀x∃! TJ(n, x)
ACA
RCA0 + ∃! TJ(ω)
ACA0 + ∃! TJ(ω)
ACA +∃! TJ(ω)
ACA0 + ∀x∃! TJ(ω, x)
ACA0 + {∀x∃! TJ(α, x) |α < ωω}
ACA0 + ∀α < ωω ∀x∃! TJ(α, x)
ACA0 + ∀x∃! TJ(ω, x)
RCA0 + ∃! TJ(ωω)
ACA0 + ∃! TJ(ωω)
ACA0 + ∀x∃! TJ(ωω, x)
ACA0 + {∀x∃! TJ(α, x) |α < ε0}
∆1

1-CA
RCA0 + ∃! TJ(ε0)
ACA0 + ∃! TJ(ε0)
ACA +∃! TJ(ε0)
ACA0 + ∀x∃! TJ(ε0, x)
{ATI(α)|α < Γ0}
ATR0
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Table 3: Linear Hierarchy of Consistency Strengths, cont.

1st-order arithmetics 2nd-order arithmetics 1st-order set theories

ATI(< Γ0)
ATR
Π1

2-TI0
Π1

2-TI
TI
ID2

ID<ω

Π1
1-CA0 (≈ Π1

1-Frege Arithmetic)
Π1

1-CA
Π1

1-CA + TI
Π1

1-TR0

Π1
1-TR

Π1
2-CA0 Z−1

Π1
2-CA

Π1
2-CA + TI

Π1
3-CA0 Z−2

P2 =PA2 (a.k.a. Z2, ≈ Frege Arithmetic) Z− ≈ ZF−
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Table 4: Linear Hierarchy of Consistency Strengths, cont.

Higher-order arithmetics 1st-order set theories 2nd-order set theories

P3 =PA3 ZF− + ℘(ω)
P4 =PA4 ZF− + ℘2(ω)
Pω = PM (type theory)

Weak Zermelo
Z (Zermelo)
ZC ≈ Z + V=L
ZC + ∀α < ω1 ∃!Vα
KP(℘)
ZFC ≈ ZF + V=L NBG

ZFC2 = MK
ZFC + Inaccessible
ZFC + Strongly Inaccessible
ZFC + Strongly Mahlo
ZFC + {∃! Strongly n-Mahlo |n < ω}
ZFC + ∀n < ω ∃! Strongly n-Mahlo
ZFC + Weakly Compact
ZFC + Indescribable B(ernays)
ZFC + Subtle
ZFC + Almost Ineffable
ZFC + Ineffable
ZFC + {∃!n-Subtle |n < ω}
ZFC + ∀n < ω ∃!n-Subtle
ZFC + κ→ ω
ZFC + ∀α < ω1 κ→ α
ZFC + ∃! 0#

ZFC + ∀x ⊆ ω ∃!x#
ZFC + κ→ ω1

ZFC + Ramsey
ZFC + Measurable
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Table 5: Linear Hierarchy of Consistency Strengths, cont.

Higher-order arithmetics 1st-order set theories 2nd-order set theories

ZFC + Concentrating Measurable
ZFC + Strong
ZFC + Woodin
ZFC + Superstrong
ZFC + Supercompact
ZFC + Extendible
ZFC + Vopenka
ZFC + Almost Huge
ZFC + Huge
ZFC + Superhuge
ZFC + ∀n < ω ∃!n-huge
ZFC + Rank into Itself
ZFC + Rank + 1 into Itself
NBG + V into V
ZFC + Reinhardt (⊥)
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In thus paying homage to the formidable achievements of foundational-
ists in locating almost every theory of interest on the linear scale of consis-
tency strengths, the present author nevetheless ventures to suggest that this
achievement is a ladder that one is now free to kick away. If our main aim is
to illuminate the structure of mathematical reasoning itself, then a natural
logicist approach is preferable by far, rather than the straitjacketing that is
involved in getting all these different theories into the forms indicated by
the column-headings above. The natural logicist is prepared to treat each
theory (and its objects) in a sui generis fashion, tailoring the formal rules
for construction of proofs in a way that does analytic justice to the vast body
of proofs in actual journal articles and textbooks written by, and for, the
practitioners of these mathematical disciplines. Any foundationalist anxious
to know the consistency strength of a theory T that holds one’s interest can
of course determine it by interpreting T in some T ′ (and interpreting T ′

in T ), where T ′ is a theory that has already been calibrated by the methods
we can now eschew. This is because (as Friedman has shown) sameness of
consistency strength is equivalent to mutual interpretability.
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