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The starting points are Gödel’s incompleteness theorems.

Theorem (Gödel)

No reasonable axiomatic theory is complete.

Theorem (Gödel)

No reasonable axiomatic theory proves its own consistency.

No axiom system suffices for the development of all of mathematics;
how should we navigate the vast array of axiomatic theories?
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The so-called consistency strength hierarchy maps out the
reasonable axiomatic theories and their relations.

Definition

For a base theory B , we say that T ≤B
Con U if B proves that the

consistency of U implies the consistency of T .

Definition

T <B
Con U if T ≤B

Con U and U ≰B
Con T .

Definition

T and U are equiconsistent over B if T ≤B
Con U and U ≤B

Con T .

James Walsh On the hierarchy of natural theories



Introduction
Set theory as a case study
The consistency operator
Second-order arithmetic

The so-called consistency strength hierarchy maps out the
reasonable axiomatic theories and their relations.

Definition

For a base theory B , we say that T ≤B
Con U if B proves that the

consistency of U implies the consistency of T .

Definition

T <B
Con U if T ≤B

Con U and U ≰B
Con T .

Definition

T and U are equiconsistent over B if T ≤B
Con U and U ≤B

Con T .

James Walsh On the hierarchy of natural theories



Introduction
Set theory as a case study
The consistency operator
Second-order arithmetic

The so-called consistency strength hierarchy maps out the
reasonable axiomatic theories and their relations.

Definition

For a base theory B , we say that T ≤B
Con U if B proves that the

consistency of U implies the consistency of T .

Definition

T <B
Con U if T ≤B

Con U and U ≰B
Con T .

Definition

T and U are equiconsistent over B if T ≤B
Con U and U ≤B

Con T .

James Walsh On the hierarchy of natural theories



Introduction
Set theory as a case study
The consistency operator
Second-order arithmetic

The so-called consistency strength hierarchy maps out the
reasonable axiomatic theories and their relations.

Definition

For a base theory B , we say that T ≤B
Con U if B proves that the

consistency of U implies the consistency of T .

Definition

T <B
Con U if T ≤B

Con U and U ≰B
Con T .

Definition

T and U are equiconsistent over B if T ≤B
Con U and U ≤B

Con T .

James Walsh On the hierarchy of natural theories



Introduction
Set theory as a case study
The consistency operator
Second-order arithmetic

Theorem (Folklore)

<Con is not pre-linear, i.e., there are non-equiconsistent T and U
such that T ≮Con U and U ≮Con T .

Theorem (Folklore)

The ordering <Con is ill-founded, i.e., there is a sequence
T0 >Con T1 >Con T2 >Con ... where each Ti is consistent.
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All known instances of non-linearity and ill-foundedness are ad hoc;
they were discovered by applying logical techniques.

Empirical Observation: The restriction of <Con to the theories
that arise in practice is a well-ordering.

EA,EA+,PRA, IΣn,PA,ATR0,Π
1
nCA0,PAn,ZF,ADL(R)

Explaining this contrast is widely regarded as a major outstanding
conceptual problem in mathematical logic.
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The fact that “natural” theories, i.e. theories which have
something like an “idea” to them, are almost always linearly
ordered with regard to logical strength has been called one
of the great mysteries of the foundations of mathematics.

S. Friedman, Rathjen, Weiermann
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Three reasons for discussing set theory.

1 Set theory has proceeded in an explicitly axiomatic way since
the isolation of ZFC.

2 ZFC is highly general.
3 ZFC is insufficient for answering many of the problems that

motivated the early development of set theory:
The Continuum Hypothesis
Projective Measure
Suslin’s Hypothesis
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Set theorists have investigated a wide array of extensions of ZFC.

large cardinal axioms
determinacy axioms
forcing axioms

Can we make rational judgments about the correctness of these
principles or their consequences?

Steel has promoted the following maxim:

maximize strength.
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Steel’s Maxim echoes Cantor’s dictum of mathematical freedom.

The <Con tells us what mathematics can be developed on the basis
of one theory rather than another; (more or less) if Con(T ) implies
Con(U) then T can interpret U and not vice-versa.

Poincaré interpreted two dimensional hyperbolic geometry in
the Euclidean geometry of the unit circle.
Dedekind interpreted analysis in set theory.
Gödel interpreted proof theory in arithmetic.
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Is Steel’s Maxim coherent?

Let’s consider some sentence φ that is independent of ZFC.

1 φ increases strength but ¬φ does not.
2 ¬φ increases strength but φ does not.
3 Neither φ nor ¬φ increases strength.
4 Both φ and ¬φ increases strength.

It turns out that all four possibilities are realized; in the fourth
case we cannot follow Steel’s Maxim.
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1 φ increases strength but ¬φ does not.
2 ¬φ increases strength but φ does not.
3 neither φ nor ¬φ increases strength.
4 both φ and ¬φ increases strength.

When we restrict our attention to natural theories, only the first
three possibilities are realized.

This is just to say that natural theories are linearly ordered by
consistency strength.
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Consider again the axiom systems extending ZFC:
large cardinal axioms
axioms of definable determinacy
forcing axioms

These systems have different motivations, but they are well-ordered
by consistency strength.

They converge on statements about N; in fact, they converge on
statements about R.

At the level of sentences about R, we know of only one
road upward. We are led to it many different ways.

Steel
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Fix a sufficiently strong, sound, effectively axiomatized theory T ,
e.g., elementary arithmetic, Peano Arithmetic, ...

T is incomplete by Gödel’s first theorem; T does not prove ConT
by Gödel’s second theorem.

Are there any proper extensions of T that are strictly weaker than
T + ConT ?
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Rosser introduced a trick whereby we can find sentences strictly
weaker than ConT .

T ⊢
(
RT ↔ ∀x

(
PfT (x , ⌜RT⌝) → ∃y < xPfT (y , ⌜¬RT⌝)

))
RT “says”: If there are any proofs of RT , then they are preceded by
proofs of ¬RT .

We can use Rosser’s trick to produce independent sentences strictly
weaker than ConT .

ConT ∨ RT+¬ConT

Yet these sentences are highly unnatural.

Self-reference, dependence on a seemingly arbitrary numeration of
proofs,...
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Instead of focusing on specific theories, we focus on algorithms for
uniformly extending theories.

We are particularly interested in g that are monotone:

If T proves φ→ ψ, then T proves g(φ) → g(ψ).
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There are many monotone algorithms for uniformly extending
theories.

id : φ 7→ φ

Con : φ 7→ ConT (φ)

Rosser’s trick engenders an algorithm for extending theories, but it
is not monotone.

Indeed, the Rosser algorithm is not monotone in virtue of the
pathological properties flagged earlier.
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The goal is to prove that the consistency operator is the unique
weakest monotone algorithm for uniformly extending theories.

What does “the unique weakest” mean?

We can make sense of this claim only modulo a suitable
equivalence relation.

Let φ be a true sentence. Then the set of sentences that implies φ
is a cone.

{ψ : T + ψ proves φ}
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Let’s call a function g bounded if there exists a k ∈ N such that,
for every φ, g(φ) ∈ Π0

k .

For technical reasons, we restrict our attention to bounded
functions.
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Theorem (W.)

Let g be a bounded, computable, and monotone. Then one of the
following holds:

1 There is a cone C such that for all φ ∈ C, T + φ ⊢ g(φ).

2 There is a cone C such that for all φ ∈ C,
T + φ+ g(φ) ⊢ ConT (φ).

That is, either g is as weak as the identity on a cone or as strong as
the consistency operator on a cone.

The consistency operator is the unique weakest method for
uniformly extending theories.
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This contributes to a partial explanation of the well-ordering
phenomenon.

It suggests that the iterates of the consistency operator form a
spine of axiomatic theories that is, in some sense, canonical.

James Walsh On the hierarchy of natural theories



Introduction
Set theory as a case study
The consistency operator
Second-order arithmetic

This contributes to a partial explanation of the well-ordering
phenomenon.

It suggests that the iterates of the consistency operator form a
spine of axiomatic theories that is, in some sense, canonical.

James Walsh On the hierarchy of natural theories



Introduction
Set theory as a case study
The consistency operator
Second-order arithmetic

We now shift our attention to second-order arithmetic, the joint
theory of the natural numbers and the real numbers.

ACA0 is our base theory; it is a second-order pendant of PA.
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The Π0
1 formulas are the formulas ∀x ∈ N φ where φ is computable.

The Σ0
1 formulas are the formulas ∃x ∈ N φ where φ is computable.

The Π1
1 formulas are the formulas ∀x ∈ R φ where φ has no

quantifiers over R.

The Σ1
1 formulas are the formulas ∃x ∈ R φ where φ has no

quantifiers over R.
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Definition
A theory T is Γ-sound if every Γ sentence that T proves is true.

RFNΓ(T ) := ∀φ ∈ Γ
(
PrT (φ) → TrueΓ(φ)

)
Fact: A theory is consistent just in case it is Π0

1-sound.

Definition

T ⊢Γ φ if there is a true ψ ∈ Γ such that T + ψ ⊢ φ.

Fact: For any T and φ, T ⊢ φ if and only if T ⊢Σ0
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1

Π1
1
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Theorem (W.)
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Π1
1

pre-well-orders the Π1
1-sound extensions of ACA0.
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Thanks!
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