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Preliminaries

Before getting into the substance of my talk, I’d like to spend a
little time explicating the title. I assume ‘in’ and ‘the’ are
self-explanatory, so I will focus on ‘logic’ and ‘integers’.
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What is logic?

For the purposes of this talk, logic may be understood to be the
study of the correct forms and principles of deductive reasoning for
some (suitably formalized) fragment of language.

Different logicians have focused on different fragments of
language. Aristotle, in his Prior Analytics, was interested in a fairly
narrow class of arguments, syllogisms, composed of three
categorical propositions involving quantifiers such as ‘all’ and
‘some’. On the other hand, Stoic logicians like Chrysippus focused
on the logic of complex propositions built up using connectives like
‘and’ and ‘or’, that is, propositional logic.
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What is logic?

Perhaps unsurprisingly, logicians have often disagreed with one
another about what the correct, or valid, forms of reasoning are.
These debates, especially over the conditional (‘if . . . , then . . . ’),
have at times been widespread and intense, as Sextus attests in
quoting an epigram of Callimachus (M I.309):

See there!1 Doubtless, even the crows upon the rooftops
are cawing about what sort of thing has followed [from
what].

1See where? Perhaps Alexandria, where Callimachus was active in the 3rd
century BCE.
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What is logic?

Today, if one is taught logic, they are most likely to be taught (the
rather inappropriately named) classical first-order logic, which deals
with both quantificational and propositional expressions. But
debates over the valid principles of logic continue and the number
of proposed non-classical logics continues to grow rapidly.2 In this
talk, I will be focused on non-classical logics, some old, some new.

2It is noteworthy that some of these modern debates have progressed little
(except in technical respects) beyond debates which were already recorded in
antiquity. See especially the debate on conditionals—material, strict, and
relevant—recounted by Sextus, PH II.110ff.
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What is logic?

Now then, there are different ways of specifying a logic. After fixing
a formal language, you might specify the logic proof-theoretically,
that is, by axiomatizing it, or by articulating rules of inference for
it (for example, by presenting a natural deduction system or a
sequent calculus). Alternatively, you might characterize the valid
principles model-theoretically (i.e., semantically).

Any good logic (if I may editorialize) will in fact be articulated in
both ways, which makes showing that the articulations are
equivalent very important. A soundness theorem shows that the
proof-theory “matches” the model-theory, and a completeness
theorem shows that the model-theory “matches” the proof-theory.
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What are the integers?

Well, I’m sure I don’t need to tell any of you this!

Nevertheless, I will actually be interested only in certain narrowly
circumscribed integer structures in this talk, so it would be good to
spend a little time talking about these on their own terms.
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What are the integers?

I take the natural numbers to be the positive integers, that is,
N = {1, 2, . . .}.

Perhaps the most natural way of ordering N is by using the
‘less-than-or-equal’ order, ≤. It is clear that 〈N,≤〉 is a
partially-ordered set (‘poset’), for ≤ is reflexive, anti-symmetric,
and transitive.

But there are other natural ways of ordering the natural numbers.
Consider the ‘evenly divides’ relation |, that is, the relation such
that n|m iff ∃p ∈ N(n× p = m). Then clearly 〈N, |〉 is also a poset.
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What are the integers?

The structures 〈N,≤〉 and 〈N, |〉 are not only posets, but what are
called lattices. Any two natural numbers have both a join and a
meet with respect to ≤, namely, their maximum and minimum,
respectively. But any two natural numbers also have a join and a
meet with respect to |, namely, their least common multiple and
greatest common divisor, respectively.

For different emphasis, we might, for example, present the lattice
〈N, |〉 as 〈N, lcm, gcd〉, noting that the order is straightforwardly
recoverable: m|n iff gcd(m, n) = m.
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What are the integers?

6

2 3

1

Figure: A sublattice of 〈N, |〉.
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What are the integers?

Lattices show up throughout mathematics and some of these are
more exotic than others. Both 〈N,≤〉 and 〈N, |〉 are distributive,
both have a least element, neither is complete, and neither has a
greatest element.

There are also important differences between 〈N,≤〉 and 〈N, |〉.
The first is a total or linear order, while the second is not. The
first has only one atom, while the second has infinitely many.
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Outline of the Talk

This is a talk about logics which can be modeled using integer
lattices and which are, given suitable interpretations of the logical
constants, sound and complete with respect to some such
structures. I will mainly be interested in 〈N, |〉 and the logics it
gives rise to. I will also be keen to show how elementary
arithmetical facts and properties correspond to or suggest
philosophically interesting features of logics.
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Outline of the Talk

The plan of the talk is as follows:

1. I will discuss a couple of historical highlights involving logics
and the integers;

2. I will examine mathematical intuitionism and intuitionistic
logic and connections to the integers;

3. I will offer a few remarks on relevance logic and the integers.
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Lattices and Logic: A Love Story

Now, logicians can fairly be said to love lattices. The properties of
the logical propositional connectives ∧ and ∨ share much in
common with the lattice operations meet and join, respectively.
Nearly every propositional logic one encounters in the literature
can be given a so-called algebraic semantics based on lattices.

But the history of lattice theory and logic goes back considerably
farther than many logicians and mathematicians probably
appreciate. Indeed, it goes back to a time when lattice theory
wasn’t a discipline and the received logic wasn’t propositional.
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Leibniz

In 1679, Leibniz, one of the greatest mathematicians and
philosophers of his day, sought to present an arithmetical
semantics (or model theory) for the then-prevailing logic,
Aristotle’s assertoric syllogistic.

‘Why?’, you might wonder. The motivation for producing some
kind of arithmetical interpretation of reasoning appears to be
intimately related to a long-held ambition of Leibniz to produce a
universal calculus for expressing all thought as clearly as
arithmetical notions and relations are expressed.
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Leibniz

Leibniz—a sometime diplomat!—seems to have been a genuine
believer in the power of symbolism, logic, and mathematics to
resolve differences. In a famous passage (G VII 200), he writes:

To return to the expression of thought by characters, I feel
that controversies can never be ended [. . . ] unless we with-
draw from complicated reasonings to simple calculations,
from vague terms to definite characters [. . . ] Then, when
controversies arise, there will be no more need for dispute
between two philosophers than between two mathemati-
cians [Computistas]. It will suffice for them, pens in hand,
to sit at their abaci, and say to each other [. . . ] let us
calculate.
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Leibniz

Let’s take a closer look at Leibniz’s proposal. First, however, I
should note that Leibniz actually made several distinct proposals in
1679 (these are collected by Couturat [3, pp. 42ff.]). I aim to focus
only on a few common features of these and my treatment here
will be somewhat informal. For further details, consult  Lukasiewicz
[12] and Soritov [18].
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The Syllogistic: Background

Now then, recall that Aristotle’s (assertoric) syllogistic deals with
the so-called ‘categorical propositions’, which are as follows:

(a) AaB (universal affirmative) is read: ‘All Bs are As’;

(e) AeB (universal negative) is read: ‘No Bs are As’;

(i) AiB (particular affirmative) is read: ‘Some B is A’;

(o) AoB (particular negative) is read: ‘Some B is not A’.

A bit of notation: if p is a categorical proposition, p is the
contradictory of p, as given by the traditional square of opposition
(e.g., AaB is AoB).
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The Syllogistic: Background

A deduction is, roughly, something of the form p, q ⇒ r , where
p, q, and r range over categorical propositions. The ‘good’ (i.e.,
valid) deductions are called syllogisms.

Now, some valid deductions are better than others; Aristotle calls
these ‘perfect’ (APr. I.1, 24b20ff.). We can think of these as
being, roughly, self-evident axioms. These include, for example,
Barbara (1-aaa):

AaB,BaC ⇒ AaC (Barbara)
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The Syllogistic: Background

Besides these axioms, there are also rules for deriving other
syllogisms, including conversion rules like:

AiB, p ⇒ q

BaA, p ⇒ q
(a-Conversion)

And then there’s the following rule:

p, q ⇒ r

p, r ⇒ q
(Antilogism)

Formally, then, a syllogism is just one of the axiomatic (or perfect)
syllogisms, or any deduction derivable from them using rules such
as these.
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The Leibnizian Interpretation

What’s arithmetic got to do with any of this? Consider AaB,
where B, the subject term, is understood as Human and A, the
predicate term, is understood as Rational. Then AaB says,
colloquially, ‘All Humans are Rational’.

What does it mean to say that all humans are rational? Us
moderns tend to think of this extensionally : it means that the set
of human-things is a subset of the set of rational-things. But this
is, twice-over, not the way Leibniz thought about this.
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The Leibnizian Interpretation

First, he wasn’t thinking in terms of sets. Second, following
Aristotle, he thought intensionally. Roughly, think of how Rational
is part of, is contained in, the “real definition” of Human.

Now, following Leibniz, let’s think of these disharmony-causing
vague concepts (Human, Rational) as associated with precise
characters (natural numbers). The idea is that for AaB to be true
is for the A-number to be a part of (i.e., divisor of) the B-number,
or in Leibniz’s (translated) words:

The characteristic number of the subject can be divided
exactly [. . . ] by the characteristic number of the same sign
belonging to the predicate. [3, p. 78]
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The Leibnizian Interpretation

We have here the very first steps of a full arithmetical
interpretation of the language of the assertoric syllogistic. I will
not go over the other cases (the ei-fragment raises complications,
unfortunately), but Leibniz effectively shows how to give truth
conditions for all the categorical propositions using the natural
numbers, |, and gcd. That is, he (implicitly) articulates a semantics
for the language with respect to the divisibility lattice 〈N, |〉.
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The Leibnizian Interpretation

So far, so good. But we haven’t said anything yet about the most
important thing: ⇒.

Backing up for a moment, we can think of a model as 〈N, |〉
together with an assignment (interpretation), ν, of logical terms
into N.3 Then a deduction p, q ⇒ r is invalid if we can find a
model such that p and q are true, but r is false; and the deduction
is valid if there are no such models.

3In his mature treatment, Leibniz in fact assigns terms to pairs of coprime
natural numbers.
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The Leibnizian Interpretation

This gives everything that is needed to start to see how facts
about the divisibility lattice correspond to facts about the
syllogistic. For example, recall the valid (perfect) syllogism
Barbara: AaB,BaC ⇒ AaC . The validity of this straightforwardly
corresponds to the fact that | is a transitive relation. For suppose
that Barbara was invalid; then we could find an assignment ν such
that ν(A)|ν(B) and ν(B)|ν(C ) but ν(A) - ν(C ), which is clearly
impossible.
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The Leibnizian Achievement

Leibniz himself shows, or comes fairly close to showing, that the
assertoric syllogistic is sound with respect to his (mature)
arithmetical semantics. This was—for the time especially—a major
achievement. He doesn’t show completeness, but as a testament
to his insight, the mature semantics he proposed is in fact
complete, as logicians have subsequently shown (consult S lupecki
[17] and Weiss [24]).

In fact, you don’t need the full divisibility lattice for completeness.
Weiss [24] has recently shown that you can get by with certain
four-element sublattices thereof, e.g., 〈{1, 2, 3, 6}, |}, and that four
elements is the ‘best of all possible results’.
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Gödel Algebras

Leibniz’s pioneering efforts in arithmetically modeling logic appear
to have been almost completely unknown until the 20th century.
Thus, our next stop, another logician famous for mixing logic and
the integers, lived hundreds of years after Leibniz. No, I won’t be
talking about his eponymous coding scheme or famous
incompleteness theorems; instead, I will just briefly touch upon one
of Kurt Gödel’s lesser known contributions, but the one which is
most relevant to the topic of this talk.4

4Incidentally, Gödel was an enthusiastic fan of Leibniz—perhaps too
enthusiastic. Menger [15, pp. 122–123] recounts how Gödel became convinced
of a conspiracy to suppress or destroy Leibniz’s work.
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Gödel Algebras

Let Gn be the sublattice of 〈N,≤〉 consisting of the first n natural
numbers. Each Gn is a Heyting algebra (roughly, bounded lattice
residuated with respect to meet) where ↪→ is defined thus:

a ↪→ b =

{
n if a ≤ b,
b else.

These Gn are sometimes known as Gödel algebras since Gödel [9]
used them to show that propositional intuitionistic logic (more on
that in a moment!) is not a finitely valued logic.5

5Actually, Gödel [9] inverts the order so that 1 is always the greatest
element, but this is not an important difference.
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Gödel Algebras (and Beyond)

By extending 〈N,≤〉 with a greatest element ω, one can
analogously obtain an infinite Gödel algebra, which Dummett [5]
shows algebraically characterizes so-called Gödel-Dummett logic
(LC), an important intermediate logic. (Interesting related results
were obtained for RM, an important quasi-relevance logic; consult
Anderson and Belnap [1].)
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Intuitionistic Logic

At this point, you may be wondering, ‘And what does this have to
do with philosophy and logic again?’

Let’s take a step back and take a closer look at intuitionistic logic
(i.e., the logic Gödel proved this technical result about).
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Intuitionistic Logic: Background

Intuitionistic logic is perhaps the best known of all non-classical
logics today. It arose in the early 20th century out of intuitionism,
a movement in the foundations of mathematics founded by
L. E. J. Brouwer which primarily attracted adherents in Holland.

The specifics of intuitionism are beyond the scope of this talk, but
the important thing, for our purposes, is that it is a species of
constructivism. Hallmarks of constructivism are the assimilation of
the notions of truth and proof and the rejection of proofs which
rely on non-constructive principles (e.g., excluded middle).
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Intuitionistic Logic: Background

The following is a classic example of a non-constructive proof:

Theorem

There are irrational numbers a and b such that ab is rational.

Proof.

Either
√

2
√

2
is rational or it is not. If it is, put a = b =

√
2. If it is

not, put a =
√

2
√

2
and b =

√
2, which suffices.

Yale Weiss Logic in the Integers



Introduction
Some Historical Highlights

Intuitionistic Logic
Relevance Logic

Concluding Remarks

The Logic of Intuitionism
Intuitionism in the Integers
Integer Insights

Intuitionistic Logic: Background

What is problematic about this proof, from a constructivist
viewpoint, is its use of excluded middle. We are not told which of

the two cases obtain—
√

2
√

2
being rational or not—and it might

even be, for all we know, impossible to say which.6 Relying on
excluded middle, the proof doesn’t construct witnesses to the
theorem, that is, it doesn’t say which of two possible pairs are the
witnesses.

6In this particular case it is possible to say which, but that doesn’t change
the philosophical point.
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Intuitionistic Logic: Background

Intuitionistic logic is supposed to give a formalization of
constructively acceptable reasoning. Let’s be a little more rigorous
and pin down the language. I use Π for an infinite set of
propositional variables; formulae are built up from these and the
connectives →,∧,∨, and ⊥ using the standard formation rules. I
use p, q, . . . for propositional variables and ϕ,ψ, . . . for formulae.
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Intuitionistic Logic: Background

There is an informal semantics for the language of intuitionistic
logic, the so-called BHK semantics, which brings out the
proof-centric approach to truth. Here are the conditions for the
propositional fragment:7

(i) A proof of ϕ ∧ ψ is a combination of a proof of ϕ and a proof of ψ;

(ii) A proof of ϕ ∨ ψ is given by giving either a proof of ϕ or a proof of
ψ;

(iii) A proof of ϕ→ ψ is a construction which, given a proof of ϕ,
returns a proof of ψ;

(iv) There is no proof of ⊥.

7There is some variation in how these conditions are presented;
cf. Artemov [2, pp. 1–2] and Fine [7, p. 550].

Yale Weiss Logic in the Integers



Introduction
Some Historical Highlights

Intuitionistic Logic
Relevance Logic

Concluding Remarks

The Logic of Intuitionism
Intuitionism in the Integers
Integer Insights

Intuitionistic Logic: Background

This semantics is, I emphasize, informal. I will look at a formal
version shortly. Nevertheless, one can already see intuitively how
excluded middle fails. For if neither ϕ nor ¬ϕ (¬ϕ := ϕ→ ⊥) has
a proof, by the BHK condition for disjunction, ϕ ∨ ¬ϕ doesn’t
either. Thus, it is not generally guaranteed that ϕ ∨ ¬ϕ holds.
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Intuitionistic Logic: Background

Intuitionistic logic is supposed to codify intuitionistically acceptable
reasoning as intuitively characterized by the BHK semantics.
Propositional intuitionistic logic (J) can be axiomatized thus:

(ϕ→ ψ)→ ((θ → ϕ)→ (θ → ψ)) ϕ→ (ψ → ϕ)
(ϕ→ (ψ → θ))→ (ψ → (ϕ→ θ)) (ϕ ∧ ψ)→ ϕ
(ϕ→ (ϕ→ ψ))→ (ϕ→ ψ) (ϕ ∧ ψ)→ ψ
ϕ→ (ψ → (ϕ ∧ ψ)) ϕ→ (ϕ ∨ ψ)
(ϕ→ θ)→ ((ψ → θ)→ ((ϕ ∨ ψ)→ θ)) ψ → (ϕ ∨ ψ)

⊥ → ϕ ϕ,ϕ→ψ
ψ
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Intuitionism in the Integers

Now, I have already touched upon one result concerning J and the
integer structure 〈N,≤〉. But the points made thereby were really
negative. J is not (algebraically) complete with respect to that
structure or any of the related structures I mentioned.

However, J is complete with respect to 〈N, |〉, in a sense to be
spelled out more fully below. Not only that, but the semantics
corresponds in a fairly natural way to the BHK semantics which I
briefly described above.
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Intuitionism in the Integers

The central intuitive idea is as follows: we can think of the natural
numbers as proofs or constructions which, when combined, yield
other proofs and constructions. We think of combination as a
generally accretive operation. Thus, we shall interpret
combination, mathematically, as join—more specifically, lcm.
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Intuitionism in the Integers

Let’s be a little more rigorous. The formal semantics adapts ideas
mainly due to Urquhart [19]. Define a hereditary model over 〈N, |〉
as follows:

DEFINITION (Hereditary Model)

A hereditary model is a structure M = 〈N, |,V 〉 where
V : Π ∪ {⊥} → P(N) is subject to the following conditions:

1. j ∈ V (p) implies lcm(j , k) ∈ V (p);

2. j ∈ V (⊥) implies lcm(j , k) ∈ V (⊥);

3. j ∈ V (⊥) implies j ∈ V (p) (for all p).
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Intuitionism in the Integers

Given a hereditary model M = 〈N, |,V 〉 and j ∈ N, the relation
|=M

j (‘j is a proof of’) is defined as follows:

1. |=M
j p if and only if j ∈ V (p);

2. |=M
j ⊥ if and only if j ∈ V (⊥);8

3. |=M
j ϕ ∧ ψ if and only if ∃k , l ∈ N such that j = lcm(k , l),

|=M
k ϕ and |=M

l ψ;

4. |=M
j ϕ ∨ ψ if and only if |=M

j ϕ or |=M
j ψ;

5. |=M
j ϕ→ ψ if and only if ∀k ∈ N, 6|=M

k ϕ or |=M
lcm(j ,k) ψ.

8This is really the only case that doesn’t fit the usual BHK semantics
neatly; one might say various things here [20, 7, 22], but note that the usual
condition yields a Jankovian ⊥ [10].
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Intuitionism in the Integers

We say that ϕ is true in a hereditary model M if the ‘null-proof’
makes it true, i.e., if |=M

1 ϕ. And we say that ϕ is valid if ϕ is true
in all hereditary models. This may be extended to define the
validity of arguments in the obvious way: the inference from Γ to ϕ
is valid if the conditional formed by the conjunction of the
elements of Γ as antecedent and ϕ as consequent is valid.
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The first thing to note is that the foregoing semantics exactly
characterizes propositional intuitionistic logic (for the details,
consult Weiss [22, 23]):

THEOREM (Completeness)

J is sound and complete with respect to hereditary models.
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Integer Insights

With that result in hand, it becomes very intuitive to obtain
various technical results about intuitionistic logic by relying on
familiar features of the divisibility lattice.

For example, (ϕ→ ψ) ∨ (ψ → ϕ) is not a theorem of J. We can
easily specify a countermodel M to an instance of it by putting
V (p) = 2↑ and V (q) = 3↑ (define j↑ = {k ∈ N : j |k}). This, in
effect, works because 2 and 3 are incomparable with respect to |.
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But maybe more important than any specifically technical point is
that the structure of the divisibility lattice suggests further
philosophical insights via its connection to the informal BHK
semantics.

For example, the lattice 〈N, |〉 is not complete, in the sense that it
is not guaranteed that a join (lcm) exists for arbitrary subsets of N.
But should a constructivist hold that an arbitrarily large (even
infinite) combination of proofs or constructions is itself, necessarily,
a proof or construction? Aren’t these supposed to be finitary,
surveyable objects? So, here is a way in which an integer structure
might be used to help elaborate and fill-out an underspecified
intuitive concept.
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Relevance Logic

Before wrapping up this talk, I would like to say a few words about
relevance logic in the integers. Relevance logic, though it has
(modern) roots in early 20th century [4], really did not develop
into its own until the 1960s and later.

Relevance logic is really a family of logics (like intermediate logics),
all of which are supposed to be motivated by considerations
of—get this—relevance.
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Relevance Logic

The easiest way to get a grip on what relevance logic is about is to
look at the sorts of things relevance logicians don’t like (I’ll focus
just on formulae here). If what is most characteristic of
intuitionistic logic is its rejection of excluded middle, perhaps what
is most characteristic of relevance logic is the rejection of
weakening:

ϕ→ (ψ → ϕ) (K)

In the presence of otherwise fairly unobjectionable axioms, this
straightaway leads to ‘irrelevant’ theorems like ϕ→ (ψ → ψ) and
ϕ→ (ψ ∨ ¬ψ).
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Relevance Logic

Different relevance logicians have different stories to tell about
what the operative notion of relevance is and what sort of
connection(s) logical reasoning should preserve. But almost all
relevance logicians agree that a necessary condition on a logic
being relevant is that it satisfies the following condition:

DEFINITION (Variable Sharing Property)

A logic L satisfies the variable sharing property if ϕ→ ψ is a
theorem only if ϕ and ψ ‘share content’ in the sense of having at
least one propositional variable in common.
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Exact and Inexact Proof

The approach to relevance logic that I favor (which is—full
disclosure—a bit nonstandard and yields nonstandard logics) is to
think of it and intuitionistic logic as belonging to the same broadly
constructive family. Where relevance logic differs from
intuitionistic logic is, fundamentally, in resting on an exact rather
than inexact notion of construction or proof (cf. Fine [7]).
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Exact and Inexact Proof

You will recall that in the hereditary models for J I gave above,
among other things, it was required that j ∈ V (p) imply
lcm(j , k) ∈ V (p). Colloquially, this is to require that, given any
construction j establishing p, any combination of j with any other
construction gives a construction establishing p. In fact, we can
prove a fairly general heredity result for the hereditary models: for
any formula ϕ, if |=M

j ϕ, then |=M
lcm(j ,k) ϕ (cf. the analogous result

in Kripke semantics for J [11]).
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Exact and Inexact Proof

But think about the following example: the usual proof of the
Fundamental Theorem of Arithmetic (that every positive integer
greater than 1 has a unique product of primes factorization) really
has two component proofs, one establishing the existence of a
unique factorization, and the other establishing its uniqueness. The
proof may fairly be regarded as a combination of those two proofs.
Is the proof of the theorem also a proof of the existence claim? Of
course it implies the existence claim, but the proof contains much
that is extraneous to establishing that claim. In other words, it’s
not an exact proof of that result, and is, so to speak, largely
irrelevant to it.

Yale Weiss Logic in the Integers



Introduction
Some Historical Highlights

Intuitionistic Logic
Relevance Logic

Concluding Remarks

Relevance Logic
Exact and Inexact Proof
Integer Insights

Exact and Inexact Proof

Speaking a bit loosely, relevance logic—anyway, the relevance logic
S and its neighbors—is what you get when you throw out the
heredity conditions from the hereditary models and keep the truth
conditions (at least mostly) the same.9 S and its neighbors are like
J, but exactified.

9There are some subtle issues here and different decisions on these matters
result in slightly different logics; consult Weiss [23]. I should remark that S as
standardly formulated requires a different condition for ∧ than that I presented
above for J, and does not include ⊥.
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Completeness

Now, the logic S, originally proposed by Urquhart [19], is also
complete with respect to 〈N, |〉, but of course its models differ
from the models for J mainly by not imposing heredity conditions.
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Variable Sharing Property

And we can use the integers, once again, to obtain interesting
results, like that (positive) S has the variable sharing property. The
idea of the proof is simple and can be described very briefly.
Suppose ϕ and ψ share no variables. For every variable p in ϕ, put
V (p) equal to the set of even numbers; for every variable p in ψ,
put V (p) equal to the set of odd numbers. It is readily shown that
ϕ→ ψ fails in this model—the ‘key observation’ is that lcm(j , k) is
odd if and only if j and k are—whence ϕ→ ψ is not a theorem of
S, and hence, S has the variable sharing property. For more
details, consult Weiss [21].
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I hope to have conveyed to you today that there are a number of
interesting connections between integer structures and logic, and
that the divisibility lattice, in particular, is an especially rich
structure from the point of view of logic.

As a final remark, I would like to emphasize that, while many of
these logics can be (and are) studied from a more abstract
perspective, certain benefits attach to focusing on concrete
structures like 〈N, |〉. Not only are they more intuitive to work with
technically, but by virtue of having additional structure, they can
also suggest insights which a purely abstract approach might not.
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