
Complementary foundations for mathematics:
when do we choose?

Michael Shulman

University of San Diego

April 6, 2022
Joint Mathematics Meetings

AMS Special Session on “Competing Foundations for
Mathematics: How Do We Choose?”

Outline

1 A non-foundational manifesto

2 ZFC vs ETCS

3 Type theory

4 Synthetic mathematics

We need a new metaphor

The word foundation suggests a physical building:
• A building can only have one foundation.
• If the foundation has a flaw, the whole building can collapse.
• Can’t change the foundation and leave the building alone.

But none of this is true for “mathematical foundations”, at least
insofar as they matter to a mathematician.

I prefer to think of a “mathematical foundation” as a programming
language for mathematics.
• Many programming languages coexist without trouble.
• A bug in the compiler can be fixed, and most code is fine.
• Languages or libraries implementing the same interface can be

used interchangeably.

We need a new metaphor

The word foundation suggests a physical building:
• A building can only have one foundation.
• If the foundation has a flaw, the whole building can collapse.
• Can’t change the foundation and leave the building alone.

But none of this is true for “mathematical foundations”, at least
insofar as they matter to a mathematician.

I prefer to think of a “mathematical foundation” as a programming
language for mathematics.
• Many programming languages coexist without trouble.
• A bug in the compiler can be fixed, and most code is fine.
• Languages or libraries implementing the same interface can be

used interchangeably.

Expanding that metaphor

“High-level” languages. . . , Java, Python, OCaml, Prolog, . . .

Machine languages. . . , ARM, MIPS, x86, PowerPC, . . .

Expanding that metaphor

“High-level” languages. . . , Java, Python, OCaml, Prolog, . . .

Machine languages. . . , ARM, MIPS, x86, PowerPC, . . .

Expanding that metaphor

“High-level” languages. . . , Java, Python, OCaml, Prolog, . . .

Machine languages. . . , ARM, MIPS, x86, PowerPC, . . .

SQL, Regexps, HTML, . . .

Domain-specific languages

Pseudocode, English, . . .

Informal “languages”

Expanding that metaphor

“High-level” languages. . . , Java, Python, OCaml, Prolog, . . .

Machine languages. . . , ARM, MIPS, x86, PowerPC, . . .

SQL, Regexps, HTML, . . .

Domain-specific languages

Pseudocode, English, . . .

Informal “languages”

Executable and Turing-complete

Executable, not Turing-complete Turing-complete, not executable

The landscape of mathematics

Most mathematicians work up here, and don’t care about what’s below.

First-order logic, . . . Mathematical English, . . .

ZFC

ETCS

HoTT

MLTT

formal and math-complete

formal, not math-complete math-complete, not formal

The landscape of mathematics

Most mathematicians work up here, and don’t care about what’s below.

First-order logic, . . .First-order logic, . . . Mathematical English, . . .Mathematical English, . . .

ZFC

ETCS

HoTT

MLTT

formal and math-complete

formal, not math-complete math-complete, not formal

What’s different?

What’s different?

It doesn’t have to be that way

We should treat “mathematical foundations” more like
programming languages.
• It doesn’t make sense to argue about which is “correct”.
• As Colin said, all foundations can do the same things.
• Ask not just how they do it, but how well?

Then choose an appropriate one for each task.
Let’s see what that looks like with some examples.

Outline

1 A non-foundational manifesto

2 ZFC vs ETCS

3 Type theory

4 Synthetic mathematics

ZFC and ETCS

Zermelo–Fraenkel set theory (ZFC)

• Formulated in single-sorted logic with axioms
• Everything is a set, and can be an element of other sets
• Well-founded global membership predicate ∈
• Strict global equality

Elementary Theory of the Category of Sets (ETCS)

(The closest thing to “category theory” as a foundation.)
• Best formulated in two-sorted logic: sets and functions
• Axioms assert category-theoretic universal properties
• “Elements” of X are functions 1→ X , “subsets” are injections
• Sets are not elements of other sets
• Equality only for functions with same domain/codomain

ZFC ↔ ETCS

The sets and functions in ZFC satisfy the axioms of ETCS+R
(ETCS augmented with a replacement/collection axiom).

In ETCS+R, the extensional well-founded accessible pointed graphs
satisfy the axioms of ZFC.

• A graph is a set with a binary relation ≺.
• A pointed graph is equipped with a root element ?.
• A pointed graph is accessible if every element admits a path to the

root x ≺ x1 ≺ · · · ≺ xn ≺ ?.
• A well-founded graph has no infinite path · · · ≺ y2 ≺ y1 ≺ y0.
• An extensional graph satisfies (∀z .(z ≺ x ↔ z ≺ y))→ x = y .
• For graphs X ,Y , say X ∈ Y if ∃y ≺ ? in Y such that X is

isomorphic to the graph of elements admitting some path to y .

ZFC vs ETCS: Some bogus arguments

Against ETCS:
• “It’s ugly to define elements and subsets as functions.”

• Can add separate sorts for elements and subsets to ETCS
(c.f. e.g. SEAR). But collapsing them reduces redundancy.

• It’s no uglier than defining (a, b) = {{a}, {a, b}} in ZFC.
• “The elements of a subset should be elements of its superset.”

• Can also modify ETCS to make this true.
• This sort of thing is everywhere (e.g. 2 ∈ N vs 2

1 ∈ Q).
• “Can’t use sets as data structures”: a group in ZFC is a pair
(G ,m), but in ETCS we can’t pair up a set with a function.
• This is just part of the encoding: statements about groups

become statements about sets with a function.

Against ZFC:
• “Defining 3 as a set like {0, 1, 2} gives truth values to

meaningless statements like 1 ∈ 3 and π ∈ 3.”
• Math is full of such “irrelevant implementation details”, like

whether R consists of Cauchy sequences or Dedekind cuts.

http://ncatlab.org/nlab/show/SEAR

Those problems belong to the elaborator

These sorts of problems should be handled by non-core aspects of
an implementation:
• Elaboration and syntactic sugar: the compiler can use clever

algorithms to determine what the user probably meant.
• Abstraction barriers, like namespacing and access control.

After we use {{a}, {a, b}} to implement the interface of
(a, b), or functions 1→ X to implement the interface of
“elements”, or Cauchy sequences to implement the interface of
R, external code is only allowed to use the interface.
• Implicit coercions: If we declare i : N→ Q as such, the

compiler can insert it wherever needed to make things compile.
In programming, such features are considered part of a language.
In mathematics, they aren’t considered part of the “foundations”,
but they are needed in any formalized implementation, and are
performed mentally by human mathematicians.

ZFC vs ETCS: More bogus arguments

Against ETCS:
• “It requires category theory, which is sophisticated and not

foundational”.
• The axioms of ETCS are simple first-order statements.
• Incorporating ideas of category theory doesn’t make them

harder or non-foundational, just as ZFC is not invalidated by
incorporating ideas of well-foundedness.

Against ZFC:
• “The complexity of ETCS→ZFC means ETCS is simpler.”

• Or, it means ETCS ignores structure that’s naturally present.
• It’s a tribute to ZFC that it automatically produces such a rich

structure from simple axioms.

A real advantage of ETCS: internal languages

Observation

Many categories arising in nature (“toposes”) satisfy all the axioms
of ETCS+R except
• Well-pointed: a set X is determined by its elements 1→ X .
• The axiom of choice (⇒ the law of excluded middle).

We can force well-pointedness by interpreting “elements” as
generalized elements U → X for variable objects U, yielding
Kripke–Joyal semantics.

In this way, any topos interprets constructive ETCS.

Free models

Toposes are an algebraic structure: their operations are those of
geometric logic (∧,

∨
,∃). Thus, any geometric theory T generates

a free topos (a.k.a. classifying topos).

So if we want to show that T is consistent with ETCS+R, we can
just:

1 Give an explicit construction of its classifying topos,
2 Check that this topos is nontrivial, and
3 Check that it still satisfies the axiom of choice.

E.g. with T = the theory of an uncountable proper subset of R,
we get consistency of ¬CH.

Forcing

To do this in ZFC, we can either:
1 Construct a classifying topos, interpret ETCS+R in it, then

build a model of ZFC in that.
2 Write down the Kripke-Joyal semantics of the model of ZFC in

the classifying topos without mentioning either explicitly.
3 Find a small enough model of ZFC such that the classifying

topos “already exists” outside it, like defining the polynomial
ring Z[x] as the set { a+ bπ | a, b ∈ Z } ⊆ R.

All of these work, but the algebraic perspective is clean and general.

A real advantage of ZFC: inner models

In a model (V ,∈) of ZF(C), we can look for M ⊆ V that also
models ZF(C) with the same ∈.

Given the von Neumann hierarchy V =
⋃

α Vα indexed by ordinals,
we can construct M =

⋃
αMα by transfinite recursion.

Example

If Lα+1 consists of all the sets definable from Lα, we have Gödel’s
constructible universe L, which satisfies AC and GCH.

To do this in ETCS, we seemingly have to construct ZF(C) first.

Outline

1 A non-foundational manifesto

2 ZFC vs ETCS

3 Type theory

4 Synthetic mathematics

The need for types

Many bogus objections to ZFC/ETCS involve their paucity of types.

In ZFC:
• If we had a separate type of ordered pairs, we wouldn’t have to

encode (a, b) as {{a}, {a, b}}.
• If we had a separate type of natural numbers, then π ∈ 3

would be ill-typed and meaningless.
In ETCS:
• If we had separate types of elements and subsets, we wouldn’t

have to encode them as 1→ X or A � X .
• If we had a type of sets, we could pair a set with a

multiplication to make a type of groups.

Dependent type theory

• Replace the homogeneous collection of sets with a
heterogeneous collection of types.
• Type-forming operations: A× B , A t B , BA, . . .
• Each type has different elements: (a, b) : A× B , while

inl(a) : A t B and (x 7→ x2) : NN, etc.
• Types are elements of a universe type, A : U .

To avoid paradoxes, U : U1, while U1 : U2,. . .
• Families of types are functions B : U A.

Then have
∏

a:A B(a) and
∐

a:A B(a).
• Propositions are particular types, proofs are their elements.
• Equality only meaningful for elements of the same type.

For now, consider classical extensional type theory (CETT), where
a : A and A = B : U imply a : B , and the axiom of choice holds.

Modulo details with universes, this interprets mutually with ETCS
(hence also ZFC).

Some bogus arguments against DTT

“It’s ugly/wrong/unnatural to define propositions as types.”
• This is just a redundancy-reducing trick, like elements-as-functions

in ETCS and pairs-as-sets in ZFC.

“Too complicated, with all those type formers.”
• Apples and oranges: DTT includes a lot of the “non-core” features

we need anyway in using ETCS/ZFC.

• The logic of ETCS/ZFC has lots of connectives (∧,∨,⇒,∃,∀); in
DTT these are incorporated via propositions-as-types.

Types also solve other problems

• Insert an implicit coercion i : N→ R whenever we expect
something of type R but are given something of type N.
• To hide the definition of R, export “R” as an abstract type.
• Can use data structures as data structures.

Groups :=
∐
G :U

∐
m:G×G→G

Outline

1 A non-foundational manifesto

2 ZFC vs ETCS

3 Type theory

4 Synthetic mathematics

Synthetic mathematics

ZFC, ETCS, and CETT all agree that the basic objects of
mathematics are set-like, with discrete distinguishable “elements”
unconnected to each other.

But there are other kinds of objects that are rich enough to build
mathematics out of, e.g.

1 Topological spaces
2 Smooth spaces
3 Computational data structures
4 Quantum objects
5 Sets with infinitesimals
6 Higher groupoids
7 Higher categories

Synthetic topology (SynTop)

• Built on constructive ETT: no choice or excluded middle.
• Now view types as spaces, with elements “cohering” together

and all functions being “continuous”.
• Choice fails because choices can’t be made continuously.
• Add “nonclassical” axioms and structure describing cohesion.
• The naïve definition of “group” now automatically represents a

“topological group”, etc.
• Basic examples turn out discrete as long as that’s sensible

(e.g. Z, finite groups), while synthetic “cohesion” arises
automatically when needed (e.g. R, profinite groups), instead
of having to be added by hand.

SynTop ↔ set-like theories

The discrete types in SynTop satisfy ETCS/CETT.

Some collections of spaces in ZFC/ETCS/CETT satisfy SynTop.

• Identify a good small category T of test spaces (e.g. Rn’s)
• Equip T with a Grothendieck topology specifying which families of

continuous maps are covering.
• A sheaf is a functor X : T op → Set taking covers to limits.
• The collection of sheaves on T satisfies SynTop.

Some bogus arguments against SynTop

“Spaces are defined using sets, hence not foundational.”
• In a set-based theory, spaces are defined using sets. But in SynTop,

spaces are a primitive undefined thing, and sets are defined in terms
of those (the discrete spaces).

“Spaces are a sophisticated concept; foundations should be simple.”
• We think spaces are sophisticated because 20th century

mathematics trained us to build them out of sets. But thinkers back
to Aristotle argued instead for a non-punctiform continuum.

• In SynTop, spaces are just as simple as “sets” are in ZFC/ETCS.

Internal Set Theory (IST)

There are innumerable possible “synthetic” theories, to which most
of the same arguments apply. I will highlight just two more.

In Internal Set Theory (Nelson):
• We augment ZFC by a new primitive predicate standard.
• We add axioms, including transfer and an idealization principle

ensuring that there are nonstandard objects.
• In particular, we get infinitesimals behaving like those of

Robinson’s non-standard analysis.
If we forget “standard”, then IST includes ZFC. Conversely, an
“ultrapower” construction like Robinson’s models IST from ZFC.

Homotopy type theory (HoTT)

• Built on intensional dependent type theory.
• Now view types as ∞-groupoids.
• The equality/identity type x = y can contain multiple distinct

identifications, acting like isomorphisms in a groupoid.
• All the structure of an ∞-groupoid follows automatically.
• We can do synthetic homotopy theory, e.g. homotopy groups.
• Basic examples (e.g. N, R, algebra, topology, most of math)

turn out groupoidally discrete, while synthetic groupoid
structure arises automatically when needed (e.g. universes and
types built from them, like the type of groups).

HoTT ↔ set-like theories

The discrete types in HoTT satisfy ETCS/ETT.
• A is discrete if for x , y : A, any two p, q : x = y are equal.

The ∞-groupoids in ZFC/ETCS/CETT satisfy HoTT.

• The simplex category � consists of nonempty finite ordered sets.
• A simplicial set is a functor X : �op → Set. It has sets Xn of

abstract n-simplices with faces and degeneracies.
• A Kan complex is a simplicial set in which every horn (potential

n-simplex missing interior and one face) has a filler.
• The collection of Kan complexes satisfies HoTT (Voevodsky).

Some bogus arguments against HoTT

“∞-groupoids are defined using sets, hence not foundational.”
• In a set-based theory, groupoids are defined using sets. But in

HoTT, ∞-groupoids are a primitive undefined thing, and sets are
defined in terms of those.

“∞-groupoids are sophisticated; foundations should be simple.”
• We think ∞-groupoids are sophisticated because 20th century

mathematics trained us to build them out of sets.

• In HoTT, ∞-groupoids are just as simple as “sets” in ZFC/ETCS.

The advantages of synthetic mathematics

A synthetic theory makes it easier to talk about its basic objects.
• In SynTop, topological structure is carried through all

constructions automatically.
• In IST, all functions also act on infinitesimals, so we can do

analysis, f ′(x) ≈ f (x+δ)−f (x)
δ for δ ≈ 0.

• In HoTT, homotopy-theoretic structure is carried through,
avoiding infinite-dimensional combinatorics. With new
primitives like univalence, we obtain an entirely new style of
proof for homotopical calculations: synthetic homotopy theory.

The first synthetic theory: ZFC?

ZFC has powerful tools for working with well-foundedness
(e.g. Mostowski collapse), and the complexity of building ZFC from
ETCS is not unlike that of modeling synthetic theories.

Is ZFC really a synthetic theory of well-founded structures?
• Imagine a mathematician raised on ETCS/CETT encountering

ZFC for the first time: “These hereditary membership
structures are sophisticated things built out of sets, hence
shouldn’t be foundational!”
• But ZFC is foundational; and so are SynTop, IST, HoTT, . . .

Mathematical worlds

We have learnt to look for connections between branches of
mathematics, and now we must also learn to look for connec-
tions that span worlds of mathematics. . . .Mathematicians have
to be educated so that they develop multiple mathematical intu-
itions that help them feel how the worlds of mathematics behave.

. . . any technical definition of a mathematical world can
never be exhaustive. A world of mathematics may be a forcing
extension of set theory, or a topos, or a pretopos, or a model of
type theory, or any other structure within which it is possible to
interpret the basic language of mathematics.

–Andrej Bauer

Returning to that metaphor

Coders have individual preferences about programming languages.
So do mathematicians for their foundations.

But still, some programming languages are objectively better at
some things. Likewise for mathematical foundations.

Rather than arguing for a “correct” or “best” foundation, we should
study them all, and select the best for any particular task.

“A language that doesn’t affect the way you think about
programming is not worth knowing.” – Alan J. Perlis

	A non-foundational manifesto
	ZFC vs ETCS
	Type theory
	Synthetic mathematics

