Assessing Quantitative Reasoning in Introduction to Probability and Statistics

Robert J. Krueger, Ph.D. rkrueger@csp.edu JMM 2014

About Concordia University, St. Paul

- Christian (Lutheran Church Missouri Synod)
- Inner-city, St. Paul, MN
- Comprehensive (grounded in the liberal arts)
- NCAA Division II Athletics
 - Volleyball: 7 consecutive national championships
- Tuition Reset (dropped tuition \$10,000)
- Head-count: 1300 trad undergrad, 800 cohort degree-completion, 1500 graduate

Traditional Undergraduates

- 35% not Caucasian
 - Small but growing international presence
- 28% first-generation
- 83% Minnesotan
- 30% Lutheran

Quantitative Reasoning

University-wide learning outcomes

- Translates verbal or written assertions into quantitative data
- Reads and analyzes quantitative data
- Interpretation of quantitative data
- Supports conclusion

These are currently assessed in math and physical science courses...130-180 students a year take Introduction to Prob/Stats per year

Collection Instrument

Website: elumen.info

Scale

- 0 Did not attempt activity or little effort
- 1 Beginning
- 2 Developing
- 3 Accomplished
- 4 Exemplary
- NA Default; Faculty didn't enter data
 - Working on faculty communication to minimize number of NA values in the data set

Translates verbal or written assertions into quantitative data

Beginning	Developing	Accomplished	Exemplary
Student develops	Student	Student	Student develops
mathematical	develops	develops	appropriate
expressions and/	mathematical	appropriate	mathematical
or operational	expressions	mathematical	expressions
definitions from	and/or	expressions	and/or operational
verbal or written	operational	and/or	definitions from
assertions with	definitions	operational	verbal or written
significant errors.	from verbal or	definitions	assertions with
	written	from verbal or	clearly defined
	assertions with	written	variables and/or
	few errors.	assertions.	units.

Translates verbal or written assertions into quantitative data

Find the probability that a committee of four women and two men are randomly selected from six women and five men. Carefully explain each step of the process and use words.

1 - some attempt at setting up the expression

2 - correct identification as a combination or probability problem

3 - equation correctly identified, some possible execution errors

4 - expression correctly set up, solved correctly, with each step carefully explained

Reads and analyzes quantitative data

Beginning	Developing	Accomplished	Exemplary
Student	Student	Student chooses	Student uses or
exhibits	either	and properly	compares more
ability to	chooses or	applies a method	than one method
differentiate	properly	of quantitative	of quantitative
between	applies a	analysis	analysis.
qualitative	method of		
and	quantitative		
quantitative	analysis		
data.			

Reads and analyzes quantitative data

The average local cell phone call length was reported to be 2.27 minutes with standard deviation of .75 minute. A random sample of 40 phone calls showed an average of 2.48 minutes in length. At α =0.05, is there enough evidence to say a difference was found?

- a) Do all five steps of the hypothesis test.
- b) Find the 95% confidence interval for this problem.

c) Comment on the relationship between parts a and b. Explain thoroughly.

- 1 attempts an answer
- 2 answers a) or b) correctly
- 3 answers a) and b) correctly
- 4 answers a), b) and c) correctly

Interpretation of quantitative data

Beginning	Developing	Accomplished	Exemplary
Student	Student	Student	Student accurately
interprets	interprets	accurately	interprets the
the	the	interprets the	quantitative data
quantitative	quantitative	quantitative data	recognizing the
data with	data with	with no errors.	limitations of the
significant	few errors		methodology used
errors			

Interpretation of quantitative data

- The National Football League Commissioner wants to know if the NFC quarterbacks threw fewer touchdowns than AFC quarterbacks so far this season. Given α =0.05, use the sample data and standard deviations below to determine if this is true. (Do all five steps) NFC: 14, 21, 16, 11, 15, 14, 28 (standard deviation is 5.7)
 - AFC: 24, 12, 13, 18, 19, 23 (standard deviation is 5.0)

1 - some attempt at setting up the five steps with significant errors

2 - some steps correctly identified and executed

3 - all steps correctly identified, some possible execution errors or lack of result summary

4 - all 5 steps correctly identified and executed with thorough summary of the results

Supports conclusion

Beginning	Developing	Accomplished	Exemplary
Student uses	Student	Student	Student accurately
no	incorrectly	accurately uses	uses quantitative
quantitative	uses	quantitative data	data to support
data to	quantitative	to support	conclusions and
support their	data to	conclusions	recognizes
conclusion	support		extensions of the
	conclusion		problem and/or
			conclusion

Supports Conclusion

A teacher gave a math pretest and post-test. The table shows the number each student got right for each test. At $\alpha = 0.10$, did the students score significantly better on the post-test? From the given information, complete the remaining steps with complete justification of the decision and appropriate summary. (We provide hypotheses, test value, and critical value.)

- 1 some attempt at solving the exercise, but no correct answers
- 2 steps 4 or 5 correctly identified
- 3 steps 4 and 5 correctly identified but decision or summary incomplete
- 4 both steps 4 and 5 correctly identified and executed

Translates verbal or written assertions into quantitative data.

Spring 2013	1.5%	0.0%	10.8%	26.2%	32.3%	30.8%	100% (65)
Fall 2012	2.6%	0.0%	6.7%	13.3%	57.3%	22.7%	100% (75)
Reads and analyzes quantitative data							
Spring 2013	1.5%	0.0%	12.3%	36.9%	30.8%	20.0%	100% (65)
Fall 2012	2.6%	0.0%	1.3%	22.7%	60.0%	16.0%	100% (75)
Interpretation of quantitative data							
Spring 2013	1.5%	0.0%	12.3%	23.1%	41.5%	23.1%	100% (65)
Fall 2012	2.6%	1.3%	9.3%	33.3%	52.0%	4.0%	100% (75)
Supports conclusion							
Spring 2013	1.5%	0.0%	18.5%	24.6%	38.5%	18.5%	100% (65)
Fall 2012	2.6%	1.3%	8.0%	52.0%	25.3%	13.3%	100% (75)
Term subtotals:	2.1%	0.7%	12.9%	39.3%	31.4%	15.7%	100% (140)

