Russ deForest Penn State

JMM Jan 19, 2019

John Roe Oct 6, 1959 – Mar 9, 2018 In Quantification (GQ) fields, students practice and master basic mathematical and statistical skills of **lifelong value** in solving **real world problems**.

-Penn State's Updated Learning Objectives

• *Mathematical Mindsets*, interview with Jo Boaler

- *Mathematical Mindsets,* interview with Jo Boaler
- "Think about how many people hate mathematics."

- *Mathematical Mindsets*, interview with Jo Boaler
- "Think about how many people hate mathematics."
- Many students are not well served.

- *Mathematical Mindsets*, interview with Jo Boaler
- "Think about how many people hate mathematics."
- Many students are not well served.
- "We need a math revolution."

• ... invites students to be active participants in shaping the future of our world

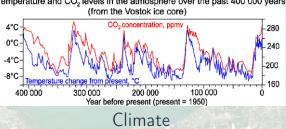
- ... invites students to be active participants in shaping the future of our world
- ... admits up front that we don't have the answers to many important questions

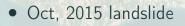
- ... invites students to be active participants in shaping the future of our world
- ... admits up front that we don't have the answers to many important questions
- ... facilitates students in asking their own questions

- ... invites students to be active participants in shaping the future of our world
- ... admits up front that we don't have the answers to many important questions
- ... facilitates students in asking their own questions
- ... encourages students to see themselves as advocates for, and creators of, solutions that make the world a better place

- ... invites students to be active participants in shaping the future of our world
- ... admits up front that we don't have the answers to many important questions
- ... facilitates students in asking their own questions
- ... encourages students to see themselves as advocates for, and creators of, solutions that make the world a better place
- ... develops quantitative skills that can help students be more effective advocates for the things they care about




Foreword by Francis Edward Su


- Mathematics for Sustainability, Springer (May, 2018)
- Also available electronically through SpringerLink

Deringer

- Oct, 2015 landslide
- 180 million tonnes of debris

- Oct, 2015 landslide
- 180 million tonnes of debris
- That's about "90 million midsize SUVs".

- Oct, 2015 landslide
- 180 million tonnes of debris
- That's about "90 million midsize SUVs".
- Question: How would you put the size of this landslide in familiar terms?

• Niagara Falls flow rate:

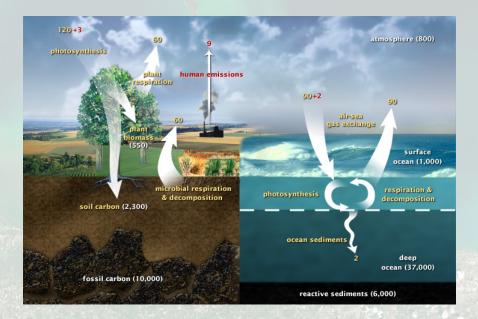
- Niagara Falls flow rate:
- 2800 tonnes/sec

- Niagara Falls flow rate:
- 2800 tonnes/sec
- Landslide lasted 1 min

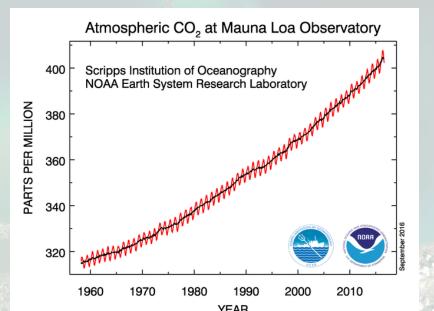
- Niagara Falls flow rate:
- 2800 tonnes/sec
- Landslide lasted 1 min
- How long for a similar mass of water to go over Niagara Falls?

- Niagara Falls flow rate:
- 2800 tonnes/sec
- Landslide lasted 1 min
- How long for a similar mass of water to go over Niagara Falls?
- About 18 hours.

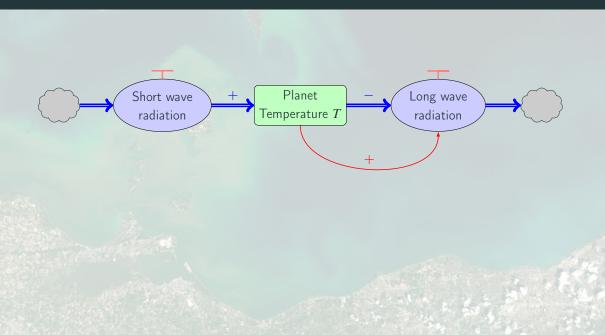
- 180 million metric tons of debris
- 600 foot high wave
- Fourth largest tsunami recorded in the past 100 years

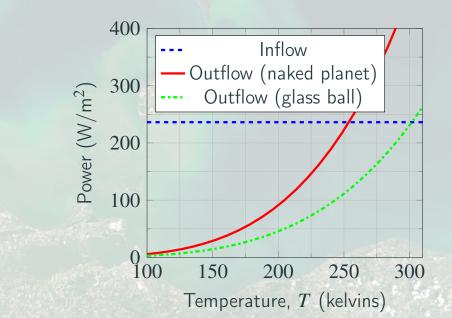

Estimate total carbon-dioxide emissions from round-trip travel to a Penn State football game.

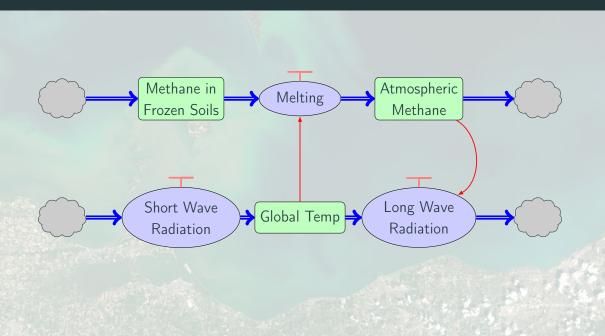
$$100,000 \frac{\text{people}}{\text{game}} \times \frac{1 \text{ vehicle}}{4 \text{ people}} \times \frac{300 \text{ miles}}{1 \text{ vehicle}} \times \frac{1 \text{ gallon}}{15 \text{ miles}} \times \frac{20 \text{ Jbs}}{1 \text{ gallon}} \times \frac{1 \text{ ton}}{2000 \text{ Jbs}}$$
$$= \frac{100,000 \times 300 \times 20}{4 \times 15 \times 2000} \frac{\text{tons}}{\text{game}} \approx 5000 \frac{\text{tons}}{\text{game}}$$

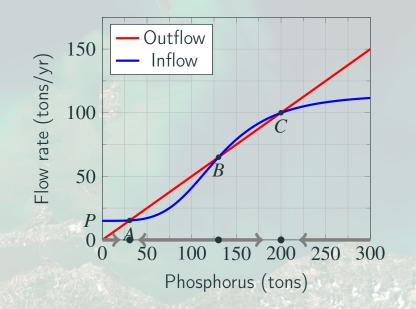

Making Effective Comparisons

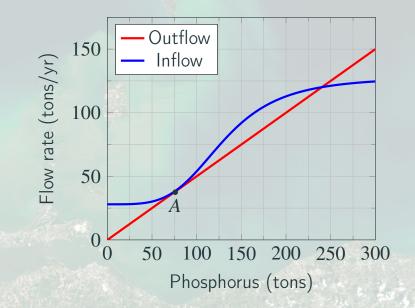
- 5000 tons of carbon-dioxide emissions
- Avoided emissions from 1 wind turbine running one year
- Avoided emissions from switching 150,000 incandescent bulbs to LEDs (annual).
- Avoided emission from recycling 1700 tons of waste
- Carbon sequestered by 5000 acres of forest in one year.
- See the EPA Greenhouse Gas Equivalencies calculator

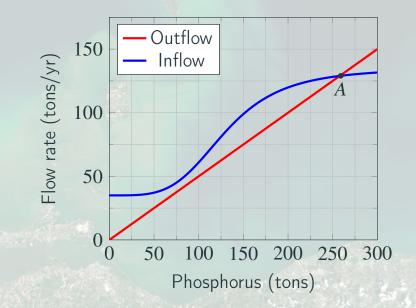

Dynamic Equilibrium

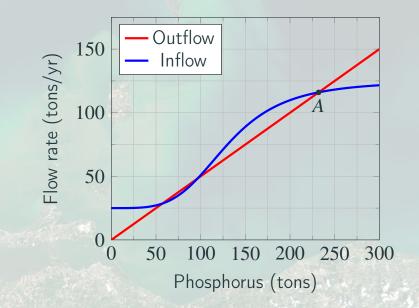

Out of Equilibrium


Earth's Energy Balance

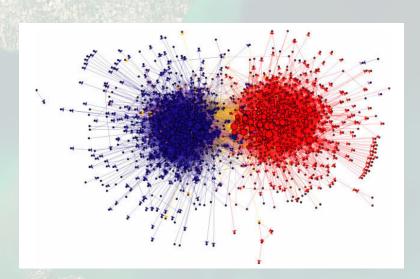

Earth's Energy Balance


Feedbacks

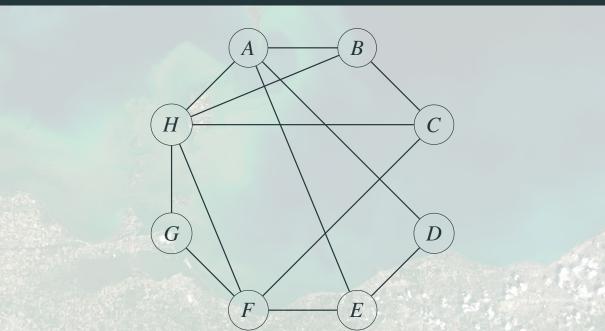

Stability of equilibria


Tipping points and hysteresis

Tipping points and hysteresis



Tipping points and hysteresis


Homophily in Networks

Group	Percentage Response			
Level of Concern	None	Low	Medium	High
Overall sample	2%	10%	36%	53%
Concern among Friends				
	Friends' Concern			
Own Concern	None	Low	Medium	High
	1,0110		meanann	Ingn
None	5%	11%	37%	47%
None Low	5% 2%	11% 12%		U
			37%	47%

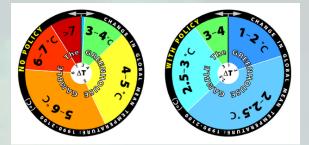
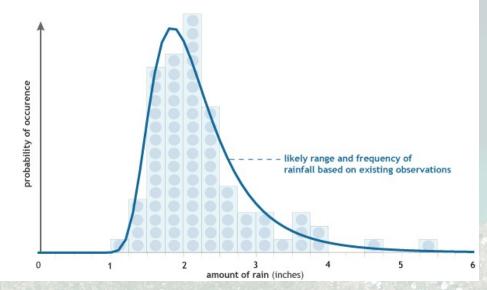


Figure 1: Links between political web pages prior to 2004 U.S. Presidential election.

Information cascade

Uncertainty and Risk



Temperature anomaly	under 3°C	3–4°C	4–5°C	5–6°C	6–7°C	7 °C+
Probability (no policy)	0.01	0.12		0.34	0.15	0.09

Temperature anomaly	under 2°C	2-2.5°C	2.5-3°C	3°C+
Probability (with policy)	a - Carlor and	0.43	0.27	0.10

What is a 1,000 year storm?

What would 1-day rainfall extremes look like if we had a longer observational record?

The Stern Review

- The Stern Review: The Economics of Climate Change
- Controversy on discount rates used in assessing future costs of climate change
- Discounting applied over long time horizons involves making an ethical choice

The Tragedy of the Commons

- Game Theory
- Resolving the Tragedy of the Commons
- Cap and Trade
- Revenue Neutral Carbon Taxes

Course Details

- Active learning environment
- Students work in groups, facilitated by undergraduate teaching assistants:
 - Alexa Derago
 - Bethany Barkley
 - Jason Wang

Writing Assignments

- In the News: Blog posts connecting current events or news with themes of course
- Make an Estimate: Personal estimates of water use, energy use, greenhouse gas emissions
- **Critical Response:** refuting or supporting others' arguments with quantitative evidence.
- Write and Respond Project: Advocacy or analysis writing piece related to the course, supported by quantitative arguments
- Reflective writing assignment

Instructor Resources

- Mathematics for Sustainability, Springer
- Rubrics, assignments, exercises, quizzes, slides available by request
- deforest@math.psu.edu

• "The writing assignments helped us pick topics we were personally interested in and it helped to make it more fun and intriguing."

- "The writing assignments helped us pick topics we were personally interested in and it helped to make it more fun and intriguing."
- "This is a wonderful course that made me appreciate math and what its impact is on the "real world"

- "The writing assignments helped us pick topics we were personally interested in and it helped to make it more fun and intriguing."
- "This is a wonderful course that made me appreciate math and what its impact is on the "real world"
- "I was confused with why there were so many writing assignments for this math course... This is a Gen Ed math course... Only math majors should be writing papers about math."

 "I chose this class because I thought it would be an easier math class for me to take because I was not good at quantification, that was the wrong idea. There was nothing easy about this class but in the end, I do feel more confident in my quantitative skills."

- "I chose this class because I thought it would be an easier math class for me to take because I was not good at quantification, that was the wrong idea. There was nothing easy about this class but in the end, I do feel more confident in my quantitative skills."
- "After this semester Math 33 has inspired me to do so much more – and I have decided to pursue Earth and Sustainability as a minor."

- "I chose this class because I thought it would be an easier math class for me to take because I was not good at quantification, that was the wrong idea. There was nothing easy about this class but in the end, I do feel more confident in my quantitative skills."
- "After this semester Math 33 has inspired me to do so much more – and I have decided to pursue Earth and Sustainability as a minor."
- "I always feel engaged in the discussions, as well as am excited to think critically on the issues presented in the course."

- "I chose this class because I thought it would be an easier math class for me to take because I was not good at quantification, that was the wrong idea. There was nothing easy about this class but in the end, I do feel more confident in my quantitative skills."
- "After this semester Math 33 has inspired me to do so much more – and I have decided to pursue Earth and Sustainability as a minor."
- "I always feel engaged in the discussions, as well as am excited to think critically on the issues presented in the course."
- "I never realized I would learn so many interesting topics in a math class."

Thank You!