Introduction to Mathematical and Computational Thinking: A New Gen-Ed Math Course

Betty Love, Victor Winter, Michael Matthews, Michelle Friend University of Nebraska - Omaha

Background

- University of Nebraska Omaha
- One gen-ed math course: College Algebra
- 1600 students/year enrolled
- 2% (32 students) went on to take calculus

New math gen-ed course

- Introduction to Mathematical and Computational Thinking
- Goals:
 - Engage students
 - Change attitudes about math and STEM
 - Provide many opportunities for students to be creative
 - Teach mathematical thinking, not calculating
 - Use IBL to promote deeper learning
- Offered for the first time in Spring 2018

- Mathematical thinking is more than being able to do arithmetic or solve algebra problems... Mathematical thinking is a whole way of looking at things, of stripping them down to their numerical, structural, or logical essentials, and of analyzing the underlying patterns. — Keith Devlin, Mathematics: The Science of Patterns
- Computational thinking involves
 - decomposition breaking down a complex problem or system into smaller, more manageable parts
 - pattern recognition looking for similarities among and within problems
 - abstraction focusing on the important information only, ignoring irrelevant detail
 - algorithms developing a step-by-step solution to the problem, or the rules to follow to solve the problem

Patterns

- "Mathematicians of all kinds now see their work as the study of patterns - real or imagined, visual or mental, arising from the natural world or from within the human mind." — Keith Devlin, Mathematics: The Science of Patterns
- To leverage the power of the computer, one must be able to create a small program that, when executed, produces a large number of computational steps.
- And in order for this to occur, there must exist a pattern in the computational sequence that can be described by the program.

5						
4						
3						
2						
1						
0						
	0	1	2	3	4	5

5						
4						
3						
2						
1						
0						
	0	1	2	3	4	5

8									
7									
6									
5									
4									
3									
2									
1									
0									
	0	1	2	3	4	5	6	7	8

2 x 2

з 6 7 8

3 x 3

4 x 4

What are the coordinates of the red cells in the n x n case?

Square	2x2
LL	0
LR	4
М	2
UL	0
UR	4

2 x 2

Square	2x2
LL	0
LR	4
М	2
UL	0
UR	4

Square	3x3
LL	0
LR	6
м	3
UL	0
UR	6

3 x 3

11												
10												
9												
8												
7												
6												
5												
4												
3												
2												
1												
0												
	0	1	2	3	4	5	6	7	8	9	10	11

Square	2x2	3x3	4x4	5x5
LL	0	0	0	0
LR	4	6	8	10
м	2	3	4	5
UL	0	0	0	0
UR	4	6	8	10

See any patterns?

Square	2x2	3x3	4x4	5x5
LL	0	0	0	0
LR	4	6	8	10
м	2	3	4	5
UL	0	0	0	0
UR	4	6	8	10

Square	2x2		3x3		4x4	5x5	
LL	K	0		0	0	0	
LR	2	< <mark>2</mark>	2 >	3	2 x <mark>4</mark>	2 x <mark>5</mark>	
м	1	(<mark>2</mark>	1 >	3	1 x <mark>4</mark>	1 x <mark>5</mark>	
UL		0		0	0	0	
UR	2	< <mark>2</mark>	2 >	3	2 x <mark>4</mark>	2 x <mark>5</mark>	

Square	2x2	3x3	4x4	5x5
LL	0	0	0	0
LR	4	6	8	10
м	2	3	4	5
UL	0	0	0	0
UR	4	6	8	10

Square	2x2		3x3		4x4	5x5	n x n
LL		0		0	0	0	0
LR	2	x <mark>2</mark>	2	k <mark>3</mark>	2 x <mark>4</mark>	2 x <mark>5</mark>	2 x <mark>n</mark>
М	1	x <mark>2</mark>	1	к <mark>З</mark>	1 x <mark>4</mark>	1 x <mark>5</mark>	1 x <mark>n</mark>
UL		0		0	0	0	0
UR	2	x <mark>2</mark>	2	к <mark>З</mark>	2 x <mark>4</mark>	2 x <mark>5</mark>	2 x <mark>n</mark>

Coordinates of red squares for n x n case:

- LL: (0, 0)
- LR: (2*n, 0)
- M: (1*n, 1*n)
- UL: (0, 2*n)
- UR: (2*n, 2*n)

How do I know if I'm right???


```
1
    open Level_3;
 2
 3
     fun oneDottedBlackSquare (x,y) =
 4
         (
 5
            put2D (2,2) BLACK (x,y);
 6
            put2D (1,1) RED (x,y)
 7
        );
 8
 9
10
    buildZD (8,8);
11
12
    oneDottedBlackSquare (0,0);
13
    oneDottedBlackSquare (4,0);
14
    oneDottedBlackSquare (2,2);
15
    oneDottedBlackSquare (0,4);
16
    oneDottedBlackSquare (4,4);
17
18
     show2D "my artifact";
```


Creates one n x n dotted square at (x,y)

Call it five times to create five squares.

Program output viewed in LEGO Digital Designer

Endless options for making problems of varying degrees of difficulty

Offset artifact from the origin

Make harder (or easier) problems

- Offset artifact from the origin
- Introduce more variables and more complexity

Make harder (or easier) problems

Grow artifacts in multiple directions

Make harder (or easier) problems

- How many blocks in a₂₀?
- Find *i* such that a_i has 113 blocks.
- Develop an expression for computing the number of blocks in the nth element of this pattern.
- Write a Bricklayer program to generate the nth artifact centered at location (x,y).

Geometric progressions

Stamping Pattern

Geometric progressions

Stamping Pattern

Artifact positions along the *x*-axis

Initial Tile Size →	2x2	3x3	4x4	5x5	<mark>2</mark> x2	<mark>3</mark> x2	<mark>4</mark> x2	<mark>5</mark> x2	2	2x2	3x3	4x4	5x5
Step 0	x + 2	x + 3	x + 4	x + 5	X + <mark>2</mark> *1	X + <mark>3</mark> ∗1	X + <mark>4</mark> *1	x + <mark>5</mark> ∗1	х +	- 2*2 <mark>0</mark>	x + 3*2 <mark>0</mark>	x + 4*2 <mark>0</mark>	x + 5*2 <mark>0</mark>
Step <mark>1</mark>	x + 4	x + 6	x + 8	x + 10	x + <mark>2</mark> ∗2	x + <mark>3</mark> ∗2	x + <mark>4</mark> *2	x + <mark>5</mark> ∗2	X +	- 2*2 <mark>1</mark>	x + 3*2 <mark>1</mark>	x + 4*2 <mark>1</mark>	x +5∗2 <mark>1</mark>
Step <mark>2</mark>	x + 8	x + 12	x + 16	x + 20	x + <mark>2</mark> ∗4	x + <mark>3</mark> ∗4	X + <mark>4</mark> *4	x + <mark>5</mark> ∗4	х +	- 2*2 <mark>2</mark>	x + 3*2 <mark>2</mark>	x + 4*2 <mark>2</mark>	x + 5∗2 ²

Generalize

Thinking process to determine artifact position in the general case

Art Shows!

This project is supported by:

Grant # 1712080

We would love to talk to you about implementing our course at your school!

All Bricklayer materials and software are free.

