
2021 Research in Undergraduate

Mathematics Education Reports

Editors:

Shiv Smith Karunakaran

Abigail Higgins

Presented by

The Special Interest Group of the Mathematical Association of America

(SIGMAA) for Research in Undergraduate Mathematics Education

i



Copyright @2021 left to authors. All rights reserved.

CITATION: Karunakaran, S. S.& Higgins, A. (Eds.). (2021). 2021 Research in Undergraduate Mathematics

Education Reports.

ii



Preface

The past year since the 23rd Annual Conference on the Research in Undergraduate Mathematics Education

was a difficult one for everyone around the world. The COVID-19 pandemic continues to rewrite what is

considered to be normal in our collective personal and professional lives. In an effort to keep the members

of our community as safe as possible, the SIGMAA on RUME Executive Committee made the decision to

cancel the 2021 RUME conference.

The RUME community came together to support the research of the early-career RUME researchers. In

lieu of our annual conference proceedings, early-career RUME researchers were invited to submit results of

current research, contemporary theoretical perspectives and research paradigms, and innovative methodolo-

gies and analytic approaches as they pertain to the study of undergraduate mathematics education. These

submissions underwent a rigorous double-blind peer review process. The 2021 RUME Reports consists of

49 reports (44 Contributed Reports and 5 Theoretical Reports).

Many members of the RUME community volunteered to review submissions. We sincerely appreciate all

of their hard work by the 106 reviewers.

Shiv Smith Karunakaran, RUME Organizational Director
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Investigating the linkage between professional development and mathematics instructors’ 

adoption of IBL teaching practices 
 

 Tim Archie Sandra L. Laursen Charles N. Hayward 
University of Colorado, Boulder University of Colorado, Boulder University of Colorado, Boulder 
 
 Devan Daly  Stan Yoshinobu 
University of Colorado, Boulder  Cal Poly State University, SLO 

Inquiry Based Learning (IBL) professional development workshops are designed to increase 
participants’ capacity to teach using IBL methods. This study used a sample of 312 participants 
from workshops held in 2010-2018 to examine the relationship between professional 
development participation, IBL capacity, and use of IBL teaching practices. We found that 
instructors’ IBL capacity, meaning the beliefs, knowledge and skills that prepare them to use 
IBL, and use of IBL teaching practices increased after participating in professional development. 
Using the Theory of Planned Behavior as a conceptual framework, we used a structural equation 
model to explain the effects of workshop participation and other factors on the use of IBL 
teaching practices. Findings indicated that workshop participation, collegial support, prior IBL 
experience, class size, and course coordination influenced workshop participants’ use of IBL 
teaching practices. These findings support the use of well-designed, intensive professional 
development as a means to change teaching practices.  

Keywords: Inquiry-based learning, Professional development, Workshops, Teaching 

Introduction 
Student-centered, research-based instructional strategies (RBIS) such as inquiry based 

learning (IBL) improve learning and persistence in US undergraduate STEM education (Freeman 
et al., 2014; Ruiz-Primo, 2011). Recent studies in various STEM disciplines show that 
approximately 20% of instructors use these methods extensively (Stains et al., 2018; Eagan, 
2016). Thus, most students do not experience active learning methods regularly: instructor 
adoption is a primary constraint to more widespread use of RBIS. There is expert consensus that 
professional development is one of the most influential factors in facilitating the use of RBIS in 
undergraduate STEM teaching (Khatri et al., 2013; Laursen et al., 2019). Only a few studies have 
linked teaching-focused professional development (PD) to teaching behavior of college 
instructors, and they are in science disciplines, not mathematics (Benabentos et al., 2020; 
Chasteen & Chattergoon, 2020; Manduca et al., 2017; Viskupic et al., 2019). The purpose of this 
study is to contribute to this limited literature by investigating the linkage between professional 
development and mathematics instructors’ adoption of IBL teaching practices.   

 
Theoretical Framework  

The theory of planned behavior (Ajzen, 1991) has been applied to professional development 
(Patterson, 2001), teaching practice (Lee et al., 2010; Sadaf & Johnson, 2017), and in at least one 
study, both professional development and teaching practice (Chasteen & Chattergoon, 2020). In 
this study, we apply this theory to explain how participation in an intensive professional 
development workshop influences instructors’ use of IBL methods.  
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The theory of planned behavior assumes that behavior is “planned” or rational and proposes 
that behavioral intention determine actual behavior (Figure 1). Behavioral intent is influenced by 
three components: attitude, subjective norm, and perceived behavioral control. Attitude refers to 
a person’s favorable or unfavorable evaluation of the behavior of interest. Subjective norm refers 
to perceptions about whether their peers approve or disapprove of a behavior. Perceived 
behavioral control refers to an individual’s perception that they have the ability to perform the 
behavior and that the behavior is under their control. Thus, it too moderates the relationship 
between behavior intention and behavior: according to the theory, strong perceived behavioral 
control is required for behavioral intention to manifest in actual behavior. The theory can be 
adapted to include other factors (e.g. demographics) that influence any of the core components.  

 
Figure 1. Theory of Planned Behavior, after Ajzen 1991  

In applying the theory to this study, the behavior of interest is instructors’ use of IBL 
teaching practices. This behavior is affected by their intent to use IBL teaching methods and their 
ability (e.g., knowledge and skill) to use IBL teaching methods. Instructors’ intent to implement 
is affected by their attitude about IBL, their perceptions of peer support (subjective norm) and 
their IBL knowledge and skills (perceived behavioral control). While not portrayed in Figure 1, 
the theory accommodates other factors outside of the core model. Here we acknowledge that 
factors such as individual characteristics and the context of instructors’ teaching may influence 
the degree to which they plan to implement or actually do implement IBL teaching practices.  
 
Practical context for the study: IBL Intensive Workshops 

Since 2010, 22 intensive workshops on IBL have served about 700 college mathematics 
instructors. The workshops offered instructors knowledge and skills to implement IBL in their 
own classrooms and sought to bolster their confidence and support their IBL decision-making. 
Four-day workshops were held in the summer at locations around the US.  

While the workshop hosts and leaders varied over time, broad features of the workshops 
were consistent, including use of active and collaborative learning methods for teaching 
instructors about IBL. The current workshop model is grounded in research and practical 
experience with PD and incorporates video lesson study, educational research, IBL facilitation 
skills, and personal work time (Yoshinobu et al., 2021). Workshops accommodate instructors’ 
diverse teaching settings because they do not promote a particular curriculum or classroom 
practice, but rather focus on pedagogy. The workshops have been described in some detail by 
Kogan and Laursen (2012); Hayward and Laursen (2014); Hayward and Laursen (2016); and 
Yoshinobu et al. (2021).  
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Research questions 
The purpose of this research was to investigate the linkage between professional 

development and mathematics instructors’ adoption of IBL teaching practices. To this end, this 
study addresses the following research questions: 

1. To what degree do mathematics instructors’ IBL attitudes, knowledge, and skill change 
after professional development? 

2. How do teaching practices change 18 months after professional development?   
3. What is the relationship between teaching practice, professional development, and other 

factors (e.g., individual, institutional, and teaching contexts)? 

Methods 
Data collection and sample  

Workshop participants completed a pre-workshop survey about one month before their 
workshop, a post-workshop survey immediately after, and a follow-up survey about 18 months 
later. Analyses were limited to participants in the 2010-2018 workshop cohorts (n = 517) who 
completed all three surveys (n = 312), yielding a 60% completion rate. About half (49%) had 
IBL teaching experience. The sample included instructors from a range of institution types 
(Ph.D-granting 26%, Master’s 24%, Four year 44%, 2 year 6%), and half of the participants were 
early-career instructors (50% with five years or less teaching experience). Over half (56%) were 
women (56%), higher than the general representation of women in mathematics (NSF, 2015).   

 
Measures 

Surveys included well-established measures (Hayward & Laursen, 2014; Hayward et al., 
2016; Kogan & Laursen; 2012) from several categories related to our theoretical framework 
(Table 1). For constructs with more than one survey item, we calculated a measure of internal 
consistency. All constructs showed acceptable internal consistency (Chronbach’s α > 0.70). 

 
Table 1.  
Map of theoretical constructs, survey measures, categories, scales, survey administrations 

Theoretical 
construct 

Variable 
categories Survey item 

Scale Survey admin 
(Chronbach’s α) 

Attitude IBL capacity 
(belief) 

Extent you believe 
inquiry strategies are 
effective learning 
method 

1 = Don’t know  
2= Not very effective  

3= Somewhat effective 
4 = Highly effective 

Pre  
Post 

Follow-up  
(single item) 

Subjective 
norm 

Departmental 
collegial 
support for IBL 

Support from dept. 
colleagues to use IBL 
in teaching 
Support from dept head 
or chair  

1 = Not at all supportive, 
2= Mostly not supportive 

3= Mixed or moderate 
support  

4 = Mostly supportive 

Follow-up (0.81) 

Perceived 
behavioral 
control 

IBL capacity 
(knowledge, 
skills) 

How would you rank 
your current level of 
knowledge/skill in 
inquiry-based teaching? 

1=None, 2=A little, 
3=Some, 4=A lot 

Pre (0.81), 
Post (0.71, 

Follow-up (0.72) 
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Behavioral 
intent 

Intent to 
implement IBL 

How likely implement 
in next academic year 

1 = Not at all likely          
2 = Somewhat unlikely          
3 = Somewhat likely              

4 = Rather likely 
5 = Definitely 

Post (single item) 

Behavior IBL intensity  
(core IBL 
teaching 
methods, -see 
Hayward et al., 
2016) 

Frequency of use of 
core IBL methods = 
student group work + 
student presentation + 
class discussion - 
lecture – instructor 
solving problems 

1= Never, 2= Once or 
twice a term, 3 = About 
once a month, 4= About 

twice a month,  
5= Weekly, 6= More than 

once a week,  
7=  Every class 

Pre (0.75), 
Follow-up (0.70) 

Other 
factors 
outside of 
the model 

Individual 
characteristics 

Career stage, teaching experience 
Gender, ethnicity, & race 
Prior IBL teaching experience 

  
Pre, Follow-up 

Institutional 
characteristics 

Institution type (highest math degree) 
Minority-serving institution 

 Follow-up 

Teaching 
contexts 

Class size, course coordination, student majors, 
student level  

 Follow-up 

 
Data analysis  

RQ1 was answered by conducting a one-way ANOVA with repeated measures to check for 
differences in three IBL capacity measures over three time points. RQ2 was answered by using a 
paired samples t-test to test for differences in pre-workshop and follow-up IBL scores. RQ3 was 
answered by creating a structural equation model (SEM) based on the theory of planned 
behavior, to describe the relationships between corresponding theoretical components. 

 To maximize model parsimony, only three additional variables (prior IBL teaching 
experience, small class size, and course coordination) were included in the SEM used to answer 
RQ3. These variables were identified by conducting a series of preliminary analyses (e.g. 
ANOVA, regression) that checked for differences in three outcome measures (IBL capacity, 
intent to implement IBL, and IBL intensity) by all individual, institutional, and teaching context 
factors. These analyses yielded few statistically significant differences when controlling for all 
other factors; variables that did yield such differences were included in the SEM.  

Results 
First, we describe findings related to RQ1, addressing the degree to which IBL attitude, 

knowledge, and skill change after professional development. A one-way ANOVA with repeated 
measures was conducted to test for differences in measures of IBL capacity among three time 
points (pre, post, follow-up). We found statistically significant increases in all capacity measures 
from pre to post workshop (Table 2). Effect sizes (η2) indicate the largest increases were in IBL 
knowledge and skill, with a smaller positive change in attitude about IBL effectiveness. From 
post workshop to 18-month follow-up, we found no difference in knowledge, a statistically 
significant decrease in attitude, and a statistically significant increase in skill. However, the small 
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differences in attitude and skill were negligible considering the corresponding survey scales (see 
Table 1). 
 
Table 2 
Changes in IBL capacity: ANOVA Results for differences in mean scores by time point (N = 305) 
 Pre-

workshop 
Post-
workshop 

18-month 
Follow-up 

Omnibus Statistics 

IBL Capacity M SD M SD M SD F (df = 2, 304) p η2 
Attitude 3.36 0.91 3.84 0.42 3.67 0.52 60.21 <0.001 0.17 
Knowledge  2.46 0.70 3.27# 0.61 3.20# 0.60 248.06 <0.001 0.45 
Skill  1.95 0.74 2.53 0.66 2.77 0.62 234.70 <0.001 0.44 
Note. M = mean, SD = standard deviation, F =F statistic, p = probability, df  = degree of freedom, η2 = partial eta 
squared (effect size). Means within each row differ at p  < 0.001 except for those marked with #.   

 
To answer RQ2, we used a paired samples t-test (n = 231) to test for differences between pre-

workshop and follow-up IBL intensity scores. Follow-up scores (M = 6.78, SD = 4.67) were 
significantly higher (t(230) = 14.15, p < 0.001), than pre-workshop scores (M = 0.89, SD = 5.43). 
A large effect size (Cohen’s d = 0.93) indicated a strong meaningful change in IBL teaching 
intensity from pre-workshop to follow-up, as shown in Figure 2. 

 
Figure 2. Change in IBL teaching practice: Distributions of IBL intensity scores before workshop and at follow-up 

We used structural equation modeling to answer RQ3. Two fit indices (CFI and RMSEA) 
were used to assess model fit. CFI values range from 0-1, where values ≥ 0.95 are considered 
well-fitting (Hu & Bentler, 1999). RMSEA values ≤ 0.05 indicate close fit (Browne & Cudeck, 
1993). The SEM (Figure 3) showed excellent model fit (CFI = 0.99, RMSEA = 0.01) and 
explained a moderate amount of variability (r2 = 0.21) in IBL intensity, the intended behavior. 

We see positive, statistically significant relationships between all specified components in the 
model. Of the four variables theorized to influence intent to implement IBL, two had a moderate 
effect, while two others had smaller effects. For actual implementation, IBL knowledge and skill 
had the strongest association, and three other variables were moderately associated. 
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Figure 3. Structural equation model of the theory of planned behavior with standardized regression coefficients.  

Discussion 
The findings show strong linkages between professional development and use of IBL 

teaching practices. First, findings for RQ1 showed that participants’ IBL capacity increased after 
participating in professional development. On average, faculty came to workshops with a strong 
belief about the effectiveness of IBL and thus had little opportunity for growth in this measure of 
capacity. Their initial strong positive attitude toward IBL did show a significant increase after 
attending workshops that persisted for 18 months after the workshop, indicating the workshop 
had a lasting effect. Larger gains in knowledge and skill from pre- to post-workshop were also 
sustained 18 months after the workshop. Participants reported greater gains in knowledge than 
skills: knowledge is gained quickly in a workshop, while skills develop over time with practice.  

Strengthened positive attitudes, knowledge and skills may stem from workshops’ emphasis 
on educational research about IBL teaching and on design principles and practical ideas for IBL 
courses. Research in physics has likewise shown that PD can both strengthen attitudes and 
improve knowledge of RBIS after workshop participation (Chasteen & Chattergoon, 2020). 

Related to RQ2, we found that 18 months after taking part in PD, instructors’ teaching 
became more IBL-intensive and less instructor-focused. The large effect size showed a 
substantial shift in IBL teaching intensity: most were not just dabbling with IBL practices but 
making substantial changes. Prior work in physics is mixed: some results show that many 
instructors abandon RBIS soon after initial adoption (Dancy & Henderson, 2010; Henderson & 
Dancy, 2009), and other work shows high initial adoption (Chasteen & Chattergoon, 2020). We 
suggest that IBL workshops promote implementation by providing time for instructors to plan 
their course and adapt methods to their own context (Hayward & Laursen, 2016).  

Findings related to RQ3 were consistent with our theoretical framework. Model fit indices 
show that our data fit the model well, and observed statistically significant positive relationships 
demonstrate consistency with theorized relationships. First, the model specified four factors 
related to intent to implement IBL. The modeled relationships are all consistent with theory and 
are shown here in order from strongest to least strong factor according to our SEM:  

• IBL attitude: As instructors’ pro-IBL attitudes strengthened, intent to implement IBL also 
strengthened. (model coefficient 0.18) 
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• Prior IBL experience: Instructors with prior IBL experience had stronger intent to 
implement IBL than those without (model coefficient 0.14). Prior IBL experience has 
been identified as a factor that aided IBL implementation (Laursen et al., 2019).   

• Perceived departmental support: Instructors reporting supportive peers were more likely 
to intend to use IBL, compared to those with less supportive peers (model coefficient 
0.09). This finding corroborates prior research (McConnell et al., 2020).  

• IBL knowledge and skill: Instructors with high knowledge and skill were more likely to 
intend to implement IBL than were instructors with less knowledge and skill (model 
coefficient 0.08).  

The model specified four factors related to IBL intensity. The modeled relationships are all 
consistent with theory and are ordered here from strongest to least strong, according to our SEM:  

• IBL knowledge and skill: On average, instructors with high knowledge and skill 
implemented IBL more intensively than did instructors with less knowledge and skill. 
(model coefficient 0.27) 

• Intent to implement IBL: Instructors with high intent tend to use IBL more intensively 
than those with weaker intent. (model coefficient 0.20) 

• Coordinated courses: Instructors teaching coordinated courses were more IBL-intensive 
than those whose courses were not coordinated, consistent with prior work linking course 
coordination to use of active learning strategies (model coefficient 0.19) (Bazett & 
Clough, 2020; Rasmussen et al., 2014).  

• Small class size: Instructors who applied IBL in smaller classes were more likely to use 
IBL more intensively than those who taught larger classes (model coefficient 0.18). Some 
IBL teaching practices (e.g., student presentations) are harder to use in larger classes, 
especially for new users. Class size has been identified as one of the top factors making 
IBL implementation more difficult for new users (Laursen et al., 2019). Importantly, our  
finding reflects initial implementation in the first academic year after the workshop, and 
does not speak to whether small classes are important for long-term use of IBL.  We 
know of many experienced instructors who use IBL effectively in large classrooms. 

Connecting findings from RQ1 and RQ2, it appears that workshops increase IBL capacity, 
which in turn increases instructors’ use of IBL teaching practices. Findings about RQ3 support 
this conclusion, as IBL knowledge and skill had the strongest association with IBL teaching 
intensity in this model. A positive attitude about IBL teaching, support by department colleagues, 
and prior IBL experience were important in supporting intentions to use IBL teaching, but skills 
and knowledge enabled instructors to actually implement IBL. Teaching contexts do matter: 
coordinated courses and class sizes can influence how intensively IBL is implemented.  

These findings point to several practical implications. Investments should focus on intensive 
PD to strengthen instructors’ attitudes and their knowledge and skill to enact RBIS. Targeted 
efforts to inform and train department leaders, faculty, and course coordinators to create 
supportive environments could also hasten uptake of IBL and other RBIS. Supporting initial 
implementation with small class sizes or team efforts could ultimately offer more students more 
research-aligned teaching practices, as instructors develop skills in more forgiving circumstances 
and then learn to adapt their practices to different teaching contexts. 
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What’s the Norm? Instructors Justify their Active Learning Moves and Decisions 
 

Amy Been Bennett 
University of Nebraska-Lincoln 

As VITAL faculty continue to teach more university mathematics courses, departmental efforts to 
improve instruction and shift toward active learning should align with instructors’ teaching 
approaches and decisions. In this study, three instructors described their classroom norms and 
justified teaching moves via professional obligations. External factors, such as the physical 
learning spaces, interactions with students, and institutional constraints, influenced their 
pedagogy. This report emphasizes the support systems required within mathematics departments 
to sustain instruction improvement efforts among VITAL faculty.  

Keywords: active learning, VITAL faculty, pedagogical decisions, classroom norms 

Review of Relevant Literature 
Recently, there has been a general effort in science, technology, engineering, and 

mathematics (STEM) departments across the nation to implement active learning strategies at the 
university level (Association of American Universities, 2017; Conference Board of the 
Mathematical Sciences, 2016). While there is evidence that active learning is more effective at 
facilitating student learning of mathematics than traditional lecture approaches (Freeman et al., 
2014; Michael, 2006), the feasibility of implementing these interactive strategies is often 
challenged by faculty and instructors (Le et al., 2018; Michael, 2007). Instructors’ hesitancy or 
resistance to implement evidence-based teaching practices, such as inquiry-based learning (IBL), 
can be due to their personal perceptions of these practices, lack of support, institutional factors 
such as course coverage pressure and classroom layouts, or qualities of the innovative approach 
(Keller et al., 2017; Lund & Stains, 2015; Shadle et al., 2017).  

This paper focuses on a specific group of undergraduate mathematics instructors: VITAL 
faculty. The term “VITAL faculty” was established by MAA leaders (Levy, 2019) to refer to 
Visiting and Instructional faculty (full- and part-time), Teaching assistants (especially graduate-
level), Adjunct instructors, and Lecturers. As universities move toward hiring more non-tenure-
track faculty, mathematics departments rely increasingly on VITAL faculty to teach courses that 
are required of both STEM and non-STEM majors (Blair et al., 2018; CBMS, 2016).  

In the past decade, researchers in undergraduate mathematics education studying IBL 
practices and outcomes have focused primarily on upper-level courses, such as linear algebra, 
differential equations, and abstract algebra (e.g., Johnson et al., 2020; Kuster et al., 2017; Larsen 
et al., 2013; Rasmussen et al., 2018). In the recent Compendium for Research in Mathematics 
Education, Rasmussen and Wawro (2017) dedicated a chapter to post-Calculus research, which 
includes a review of teaching approaches at that level. Thus, many of the understood active 
learning approaches and classroom norms are in upper-level courses, which are typically taught 
by non-VITAL, tenure-track faculty (Blair et al., 2018). There is a lack of literature about how 
non-tenure-track faculty members, especially novice instructors (Speer et al., 2010), teach 
introductory-level mathematics courses via an active learning approach. 

The focus on upper-division courses is apparent in research on instructor preparation and 
professional development as well. Studies that examine the preparation of instructors of 
introductory-level courses (e.g., Pre-Calculus) tend to focus on graduate teaching assistants 
rather than instructional faculty (e.g., Beisiegel, 2017; Ellis, 2016; Milbourne & Nickerson, 
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2016). What is unknown is how specific groups of VITAL faculty members learn about, 
implement, justify, and improve on active learning practices in their classrooms. The lack of 
research about the practice of teaching (Speer et al., 2010) leads to limited research-based 
support for VITAL faculty and other instructors who are beginning to shift toward evidence-
based teaching practices.  

The practices and pedagogical knowledge of post-secondary instructors are influenced by a 
multitude of factors and external demands (Bennett, 2020). While time spent in the classroom 
can have positive effects on instructors’ experiential learning of teaching, it can be influenced by 
the demands and culture of their institution (Keller et al., 2017; Oleson & Hora, 2014). 
Additionally, even when instructors are experienced lecturers, this does not necessarily translate 
to a sense of confidence or expertise with active learning practices (Bennett, 2020). VITAL 
faculty may have other backgrounds, constraints, and obligations that influence their teaching 
which differ considerably from their full-time or tenure-track colleagues (Laursen, 2019; Levy, 
2019). 

Theoretical Framework 
Instructors make pedagogical decisions based on demands imposed on them by external 

people and structures. In mathematics education research, factors that influence teaching 
decisions, that is, compel teachers to abide by certain instructional norms while breaching others, 
have been previously answered with internally-based notions, such as knowledge and beliefs 
(e.g., Philipp, 2007; Speer, 2008). However, I view teaching college mathematics as existing 
within the context of a didactical contract (Brousseau, 1984), which shifts the justification of 
actions to the practice of teaching, rather than to individual teachers. This shift necessitates an 
examination of external factors and environmental constraints on pedagogical decisions. 

Herbst and Chazan (2003, 2011, 2012) established the practical rationality of mathematics 
teaching framework by drawing on the instructional triangle (Cohen et al., 2003) as an activity 
system to describe how teachers make pedagogical decisions based on their institutional 
environment (see Figure 1). The novelty of the practical rationality framework is that it describes 
the practice of teaching, and thus shifts the unit of analysis to the external factors and 
justification sources that influence instruction, rather than internal factors of the instructor.  

Contractual Norms within Teaching 
Within the practice of teaching mathematics, there are norms, or routines and actions that are 

common and expected. Norms are implicit behaviors that exist in social settings, such as learning 
environments, that demand recognition and responses from the participants in the setting. 
Didactical contracts are differentiated and described by the norms expected by the actors as they 
play out their roles. Different expected norms create different contracts. “Thus, the norms of a 
contract can be a source of justification for actions in teaching” (Herbst & Chazan, 2012, p. 605).  

Norms within a didactical contract are contractual norms. Contractual norms have a large 
grain size, meaning two teachers can abide by the same norms yet carry out those norms in what 
appear to be very different ways (Herbst & Chazan, 2012). Here, I take up Herbst and Chazan’s 
supposition that a finer analysis might reveal nuances within norms. I denote the actualization of 
contractual norms by teaching moves, which are the actions performed by the person in the role 
of teacher during a lesson. Because of their smaller grain size, teaching moves describe 
instruction in greater detail and allow for disparities in contractual norms across instructors. 
Thus, I draw on rationality theory to understand instructional decisions and extend practical 
frameworks that explain specific teaching actions. 
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Professional Obligations of Teaching Mathematics 
The role of teacher exists in institutions of schooling, surrounded by societal stakeholders in 

education. To understand teachers’ justifications within these institutions, Herbst and Chazan 
(2011, 2012) described four professional obligations that act as implicit norms and constraints 
within the institutional environment: disciplinary, individual, interpersonal, and institutional. 

The four obligations acknowledge that teachers are members of a common practice, rather 
than individuals who disregard external factors of teaching. College instructors, as members of 
the practice of teaching undergraduate mathematics courses, are assumed to consider similar 
factors that are reasonable and relevant to their practice (Herbst et al., 2011). The obligations 
may create tensions; a teaching action that aligns with one obligation may not align with another. 
In this way, the obligations help researchers explore why some innovations are taken up while 
others are viewed as not feasible or not in alignment with the practice of teaching mathematics 
(Herbst & Chazan, 2003). In the following paragraph, I describe each of the four obligations. 

The disciplinary obligation ensures that the instructor accurately conveys and represents 
mathematics content, practices, and qualities, as deemed fit by stewards of the discipline. The 
individual obligation ensures that the instructor attends to individual students’ behavioral, 
cognitive, emotional, and social needs, as a client of instruction and complete human being. In 
other words, there are two ways to attend to the individual: academically as a mathematics 
student and emotionally as a complete person. The interpersonal obligation ensures that the 
instructor attends to society, interactions between instructors and students, and the use of shared 
resources, such as discursive, physical, and social spaces and times. The institutional obligation 
ensures that the instructor regulates and abides by components of the schooling administration, 
such as curriculum, schedules, spaces, and policies. 

 
Figure 1. The four professional obligations influence the role of the teacher and the teacher’s relationships 

Research Questions 
This paper addresses the following research questions: 

1. What norms do instructional faculty use in their classrooms when teaching 
introductory-level mathematics via active learning? 

2. How do professional obligations play a role in instructors’ pedagogical decisions 
within an active learning approach to teaching mathematics? 

Methods 
The data presented here are part of a larger qualitative, dissertation study. This study took 

place at a large, public, research-oriented university that had recently made efforts to shift toward 
evidence-based teaching practices and create collaborative learning spaces (CLSs) as part of an 
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initiative to improve undergraduate STEM teaching (AAU, 2017). CLSs are classrooms that 
promote student-centered approaches by incorporating flexible furniture, adaptive layouts, and 
interactive technologies (e.g., Baum, 2018; Odum et al., 2020). 

This paper focuses on three participants, Maggie, Amber, and Charles, who were full-time 
instructional faculty members in a Department of Mathematics and are considered VITAL 
faculty. The instructors varied in age, education backgrounds, years of experience teaching, and 
approaches to active learning. Even though they had various experiences teaching mathematics 
at different grade levels, they did not have experience teaching via active learning (at any level). 
They chose active learning based on their recent arrival to this department or encouragement and 
inspiration from their colleagues.  

Together, they taught three introductory courses: College Algebra, Pre-Calculus, and a data-
based course intended for non-STEM majors, which focused on interpreting and representing 
data using a variety of graphs and tools (e.g., Microsoft Excel). Each instructor taught multiple 
sections of one or more of these three courses, and the sections took place in a variety of 
classroom spaces, including CLSs, large lecture halls, and smaller, traditional classrooms (see 
Table 1). They each sought different resources and mentorships in the department and across 
campus since the experience of teaching via active learning and in CLSs was new for them.  

In the larger study, I observed each instructor’s teaching six times using the Observation 
Protocol for Active Learning (OPAL) tool (Frey et al., 2016) and taking field notes. The OPAL 
tool focused on both student and teacher actions, such as asking and answering questions, 
working in groups, moving around the classroom, and resources used while lecturing and 
presenting. Observations informed lesson debriefs and subsequent interviews, all audio recorded. 
Lesson debriefs were casual discussions following observations that resembled informal 
interviews (Hatch, 2002). Semi-structured, in-depth interviews built on prior conversations and 
the observations to understand the teaching perceptions and rationale of instructors. A primary 
interview took place about halfway through the semester and a secondary interview took place at 
the end of the semester. The secondary interview also served as a member check for participants 
to review my interpretations of their lessons and of our prior conversations. 

This paper focuses on the analysis of the norms observed during lessons or mentioned by 
instructors during lesson debriefs and interviews using multiple qualitative coding techniques. In 
particular, I used Saldaña’s (2016) description of concept coding to highlight norms and teaching 
moves, which were guided by relevant research describing practices in undergraduate 
mathematics classrooms. The norms were then analyzed through the lens of the practical 
rationality framework (Herbst & Chazan, 2012).  

 
Table 1. Key Information about Instructors and their Classes 

Instructor Course Classroom Class Size Experience 
Maggie Pre-Calculus CLS 35 Prior experience teaching 

high school math Pre-Calculus Traditional Classroom 35 
Amber Data-based Course CLS 72 Prior experience as 

graduate teaching assistant  Data-based Course Lecture Hall 72 
Charles College Algebra CLS 72 Prior experience teaching 

Community College math Pre-Calculus Traditional Classroom 35 

Findings 
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After coding the observations and instructors’ discussions of their pedagogy, I found that 
there is a nested structure of norms and teaching moves, where contractual norms describe 
routines of larger grain size and teaching moves give finer detail about what the instructor 
implements. In other words, norms are comprised of various teaching moves. This is how, for 
instance, both Maggie and Amber established a norm of frequently asking their students 
questions during class, but it looked very different in their classrooms.  

In her CLS, Maggie discretely selected table groups ahead of time to respond to her 
questions; whereas, in her traditional classroom, she let multiple students shout out the answers 
simultaneously. In her CLS, Amber created an elaborate protocol that used Excel to randomly 
select a table group and group representative to respond to each question; however, in her lecture 
hall, she simply asked questions to the whole class and waited for a volunteer to respond. All of 
these teaching moves correspond to the same norm of asking students questions, but opting for 
one over another caused the pace of instruction and types of interactions to appear very different.  

Out of the 395 total teaching moves coded, 49 moves (about 12.4%) were coded as 
“rejected”, meaning the instructor referred to it in a negative way or claimed to not use it in their 
instruction. Out of the 49 moves that instructors claimed to reject, 17 corresponded to the norm 
of lecturing. These rejected teaching moves used the term “lecturing” explicitly or mentioned 
classroom dynamics related to lecture. Indeed, observation data confirmed that the instructors 
sometimes (for Maggie and Charles) or always (for Amber) spent less time lecturing than doing 
activities with students during class. In this way, even though this was their first year trying 
active learning, they were successful with moving away from lecture-based norms and 
implementing more interactive teaching moves in their courses. 

Discussion 
In this section, I discuss how instructors used the norms mentioned above and how the 

obligations influenced their choice and justifications of these norms. 

Discussion of Norms 
In the context of teaching undergraduate mathematics, lecturing is typically viewed as the 

traditional or even expected approach to teaching mathematics at the undergraduate level (Stains 
et al., 2018); thus, it is the norm. However, the instructors in this study made decisions to alter 
this approach and breach this norm. 

Lecturing was a nuanced norm, as all three instructors rejected it at times and found it to be 
beneficial other times. For instance, Maggie and Amber both rejected the norm of lecturing when 
it was used in excess, i.e., “lecturing for the entire class period”. They instead implemented 
“mini-lectures” and “interactive lectures” throughout lessons, situated between collaborative 
activities. Similar to participants in Mesa et al.’s (2019) study, both Maggie and Amber saw 
benefits in lecturing only if it was used sparingly and at appropriate times, such as at the end of a 
lesson to summarize key concepts and restate mathematical definitions. On the other hand, 
Charles was the only instructor to not outright reject lecturing for an entire class period. He was 
“trying harder and harder to break that mode” of lecturing, but for most of the semester, he still 
felt the need to lecture for large amounts of some lessons, mostly due to external factors, such as 
pressures of content coverage and lack of classroom resources.  

As the instructors learned about and experimented more with an active learning approach, 
they moved away from posing questions to the entire class and instead directed their questions to 
smaller, specific groups of students in an intentional way, such as Amber’s protocol for selecting 
random tables in the CLS to call on groups of students. The instructors reflected that this not 
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only made questioning norms more efficient by taking up less time but also encouraged equitable 
participation across all students and helped the instructors relinquish their authority and 
redistribute it to the groups (Cohen & Lotan, 2014). 

Discussion of Obligations 
Overall, the instructors attended to all four professional obligations, oftentimes to multiple 

obligations at once. Imbalances of obligations could often be explained by the instructors’ 
backgrounds. For instance, Maggie taught mathematics for several years at a high school where 
she felt there were many structures and rules to follow, so she tended to emphasize the 
institutional obligation and its accompanying constraints. Whereas Charles came to the 
university after years of teaching in a community college setting and often talked about how he 
had much more autonomy there. This influenced him to downplay the institutional obligation at 
the university, since he was not used to such a structured environment. 

The following two examples illustrate how Charles and Amber attended to the individual and 
interpersonal obligations, and how Amber and Maggie justified decisions based on the 
institutional obligation. 

Attending to the individual and interpersonal obligations. Charles viewed lecturing as a 
way to attend to the individual obligation. He frequently told jokes and personal anecdotes to 
break up the lesson and not “overload” his students with information. He expressed his desire to 
lower students’ stress levels through “distractions”, such as humorous stories about his 
experiences or math-related puns. In this way, he was very aware of his students’ emotions and 
purposefully crafted his lectures to ease their math anxiety.  

Gradually, Charles became more comfortable interacting with student groups during class, 
rather than lecturing, but participation issues arose in his CLS. This was a large classroom with 
an unconventional, adaptive layout of furniture, which made it difficult to interact with all 
students. As other learning spaces researchers have documented, it created a “golden zone” for 
interactions in the front, center part of the room, and a “shadow zone” (Park & Choi, 2014, p. 
757) in the back and along the perimeter, where students were too far from the designated front 
to interact with Charles while he was giving instructions or writing on the doc cam.  

Attending to the interpersonal obligation, Amber also encountered issues with inequitable 
participation in her lecture hall. She reflected, “So what I found…was that when I just solicited 
responses last year, like ‘somebody volunteer,’ I had three students that would always respond.” 
This dilemma led to the protocol for asking questions that she created for her CLS, where table 
groups were systematically and randomly called on. This satisfied the individual obligation as 
well, since the equitable participation norms created a low-stress environment where students 
could discuss questions with peers before answering. 

Attending to the institutional obligation. For an example of the institutional obligation, I 
draw on Amber’s and Maggie’s experiences. Amber saw an alignment between the institutional 
obligation and teaching the data-based course via active learning. Since this was a terminal 
course for students and was designed to focus on problem-solving, it was better suited for active 
learning (than other introductory courses she had taught), which gave the appearance that Amber 
ignored some institutional obligations. In fact, these characteristics of Amber’s course led to 
fewer constraints and less content coverage pressure. However, Amber did feel constraints at 
times as a VITAL faculty member with multiple sections to teach. She acknowledged her 
obligation to the math department to teach the courses she was assigned, but her assigned class 
times made it difficult for her to attend campus-wide workshops and seminars to learn about 
active learning and collaborative spaces. 
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Maggie frequently referred to tensions between her intended active learning norms and the 
institutional obligation. Keeping both sections of Pre-Calculus consistent was a constant dilemma, 
particularly because she was assigned two different types of classrooms. She reflected,  

I think [being in the CLS] was easier to get students to talk to each other about the math. 
…That collaborative space had the whiteboards, whereas the other more traditional 
space, there was no individual whiteboards. So it was like, well, if you do a group activity 
there, how can you get the group to show their work or share out? 
Maggie considered the practical aspects of teaching and cited institutional factors and 

constraints as justifications for her decisions. She stressed how Pre-Calculus had a packed 
course schedule, which made it difficult to do active learning activities in class. Highly-
coordinated, common exams in Pre-Calculus added extra course coverage pressure. 
Coordinated exams also meant that Maggie had to keep her two sections of Pre-Calculus at 
the same place in the curriculum, even though the differences in participation and activities 
meant that the two sections often progressed at different paces. This meant deciding how to 
utilize the resources in each classroom to best teach the course material.  

Rather than mentioning the supports and benefits of coordinated courses and departmental 
structures (Martinez et al., 2020), the instructors in this study spoke more about the dilemmas 
and constraints that the institutional obligation placed on them. 

 
Conclusion and Implications 

In conclusion, the instructors in this study used a wide variety of classroom norms and 
teaching moves while teaching via an active learning approach. The practical rationality 
framework revealed a hierarchy of teaching moves that described each instructor’s approach in 
greater detail, accounting for differences within specific contractual norms. The norms 
implemented were influenced by a variety of external factors, including student emotions and 
participation, features of the physical learning spaces, and institutional constraints on the specific 
courses. The norms were also influenced by the instructors’ main teaching goals, their education 
backgrounds, and their teaching experiences.  

The lens of professional obligations brought to light tensions that the instructors experienced 
while navigating an active learning approach within a mathematics department at a large, 
research-oriented university. The instructors responded to tensions by recognizing and attending 
to some obligations while downplaying others; this compartmentalization helped them manage 
the many factors that influence teaching. This study emphasizes the importance of understanding 
the teaching approaches and justifications of understudied groups of undergraduate mathematics 
instructors, namely VITAL faculty. Non-tenure track faculty face obligations that their tenure-
track colleagues may not, as well as issues of status. Instructors’ packed teaching schedules can 
prevent them from attending professional development seminars that are crucial for providing 
support and scaffolds for improving instruction. 

The findings presented here suggest the need to study the pedagogy and justifications of 
VITAL faculty members to better support them as they transition toward evidence-based 
teaching practices such as active learning. Furthermore, qualitative descriptions of implemented 
teaching moves were necessary to highlight nuances within contractual norms, which illustrated 
the types of interactions and levels of collaboration occurring in active learning classrooms. As 
the number of VITAL faculty members increase while mathematics departments continue to shift 
toward active learning, it is crucial to align the efforts of those involved to improve 
undergraduate mathematics education. 
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Students’ Meanings for their Symbolization about Rate of Change Functions in Dynamic 

Geometric Contexts 

 

Zachary S. Bettersworth 

Arizona State University 

I present the results from a set of clinical interviews conducted during the 2019-2020 academic 

year to produce generative models of student thinking about rates of change towards the end of a 

university-level calculus sequence at a large State University in the Southwestern United States. 

The data presented here presents a case for supporting students’ symbolization as emergent from 

their previous conceptualization and mental activity. I provide a conceptual analysis to illustrate 

ways of thinking that may be propitious for understanding rates of change in a calculus context 

and symbolizing with the intent to convey meaning.   

Keywords: Student Thinking, Rate of Change Functions, Partial Derivatives, Calculus 

The National Science Foundation (NSF) stated in its synopsis of the Improving 

Undergraduate STEM (Science, Technology, Engineering, and Mathematics) Education: 

Education and Human Resources (IUSE: EHR) Initiative that STEM-based job creation will 

outpace non-STEM based job creation in the coming years. Modeling dynamic systems, using 

derivatives as rate of change functions, and understanding the connection between rate of change 

and accumulation functions are crucial ideas for a first course in calculus (Carlson et al., 2015; 

Park, 2015; Rasmussen & Keene, 2019; P. W. Thompson, 1994; P. W. Thompson & Ashbrook, 

2019; White & Mitchelmore, 1996). The sort of symbolization required to model dynamic 

systems (i.e., systems of ordinary or partial differential equations) is both nuanced and 

complicated. It is pertinent to help students’ progression towards becoming scientifically literate 

and adept in the sorts of mathematical skills needed to succeed in their future careers. In the 

context of mathematics education research, aiding students in applying their mathematical skills 

to real-world scientific contexts is both relevant and necessary.  

Rates of change are a ubiquitous topic in most mathematics and science courses. From 

understanding constant rate of change to understanding Maxwell’s equations of 

Thermodynamics, the ideas of derivative and rate of change are prevalent in most upper-division 

STEM courses (Cannon, 2004, 2004; Henderson et al., 2017; Rasmussen & Keene, 2019; 

Roundy et al., 2014; J. R. Thompson et al., 2012; Wagner et al., 2012; Yeatts & Hundhausen, 

1992; Zandieh, 2000). To further investigate the various ways of thinking students construct 

about rates of change across the calculus curriculum, I decided to examine multivariate calculus 

(MC) students’ meanings for their symbolizations for rate of change functions in dynamic 

geometry contexts. I seek to investigate the following questions:  (1) How do students make 

sense of their own symbolization (geometry formulas, derivatives, function notation, differentials, 

etc.) in the context of modeling dynamic geometry contexts? (2) What ways of thinking do 

students exhibit as they attempt to make sense of multiple, possibly composed, rate of change 

functions? 

Theoretical Background 

I leverage radical constructivism (Glasersfeld, 1995) as my theoretical lens for this study. 

One of the core tenets of radical constructivism is that individuals actively construct knowledge. 

Individuals’ current cognitive structures (schemes) strongly impact how they are able to make 
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sense of what we, as instructors, intend to teach them. Since researchers can’t directly access 

each student’s individual mathematical reality (students’ mathematics), the best we can do, as 

researchers, is build models of the student’s mathematics (the mathematics of students) (Steffe & 

Thompson, 2000).  

Since I am curious about students’ ways of thinking about rate of change functions after 

completing a course in MC, I leverage quantitative reasoning (QR) as an operational lens to 

explicate my model of each student’s thinking (P. W. Thompson, 1990, 1993). QR can describe 

the ways of reasoning that pervades much of mathematics. To be clear, by quantity, I mean 

someone’s conceptualization of a measurable attribute of an object. The process of quantification 

is a dialectic between someone’s conceptualization of an object and the quality of the object they 

are imagining as measurable. The measure of the attribute is proportional to the unit (P. W. 

Thompson, 2011). A quantitative operation is the operation of thought by which one 

conceptualizes a situation quantitatively (P. W. Thompson, 2011). Someone’s quantitative 

structure is their individual network of their various conceptualizations of quantitative operations 

and the quantities that comprise them (Tasova & Moore, 2020; P. W. Thompson, 2011).  

I use Thompson and Harel’s definitions of understanding, meaning, and ways of thinking 

(Harel, 2008a, 2008b; P. W. Thompson et al., 2014). To have an understanding in the moment is 

to assimilate. All understandings are technically understandings in the moment, relative to the 

student’s current perception of the problem context, their individual schemes, and the meaning of 

their understanding. The student’s meaning is the space of implications existing at the moment of 

understanding. Someone’s scheme for a given concept is their web of meanings that can be 

interrelated and overlapping (P. W. Thompson et al., 2014). A student’s scheme for rate of 

change is their meaning for rate of change. A student’s way of thinking is a consistent 

anticipation of multiple meanings in reasoning which is attained by continually reconstructing 

that reasoning anew. Knowledge persists because it works for the student. For example, I 

conjecture that if a student’s “differentiation” scheme is connected with their scheme for 

“composition of rates” and  “function composition” that student will more readily anticipate 

situations where they could use the chain rule to construct a rate of change function in applied 

contexts (Jeppson & Jones, 2020; Jones, 2018). This way of thinking about the chain rule 

outlines by Jeppson and Jones may provide a strong foundation for meaning making and 

constructing mathematical models in applied scientific contexts. 

I use O’Bryan’s construct of emergent symbolization to describe a student's actions only if 

they think symbolization (the individual’s, another student, their instructor, textbook author, etc.) 

is intended to convey meaning (O’Bryan & Carlson, 2016; O’Bryan, 2020). Though O’Bryan 

utilized emergent symbolization in the context of Precalculus, I believe this construct is useful 

for supporting students meaning making for the multitude of symbols throughout a university 

calculus sequence. Since symbolization is intended to convey meaning to another, it is useful to 

conceive of symbols as unalterable social constructs in the mathematics community. Zandieh et 

al. leverage the instructor as a brokering agent between a local classroom context and the larger 

mathematics community to discuss how instructors can use instructional tools to support the 

formalization of students’ initial symbolization or mathematization of eigenvectors in the context 

of the Inquiry Oriented Linear Algebra (IOLA) curriculum. I use Zandieh and colleague’s 

definition for symbolizations as a process of creating and using symbols to convey one’s 

mathematical ideas (Zandieh et al., 2017). Our roles as instructors are then to support students in 

constructing productive meanings for the ideas we intend to teach them and helping students 

engage in normative symbolization activity with the intent to convey meaning.  
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Conceptual Analysis of the Growing Circle Task 

Thompson provided four different ways to use a conceptual analysis for research. I intend to 

use the following conceptual analysis to accomplish:  (1) building models for what students 

know in the context of the “Growing Circle” task, (2) describing ways that may be propitious for 

future learning about rate of change functions, (3) describing deleterious ways of knowing to 

students’ understanding of important ideas in this context, and (4) analyzing the coherence and 

fit of various ways of understanding the “Growing Circle” task (P. W. Thompson, 2008). 

Statement of the Growing Circle” Task: 

1. Consider the area formula for a circle with a changing radius 𝑟, 𝐴(𝑟) = 𝜋𝑟2, find 

𝐴′(𝑟). 
2. Suppose the radius of the circle is changing with respect to time, 𝑟 = 𝑟(𝑡), find a 

function which represents area in terms of time 𝑡. [𝑟(𝑡) = ln⁡(0.3𝑡) if needed] 

3. For the circle whose radius is changing with respect to time, find 𝐴′(𝑡). 

A Productive Meaning for Constant Rate of Change 

A student who has constructed a deep conceptual understanding of constant rate of change 

may symbolize the linear approximation of the variation in the circle’s radius in the following 

manner:  𝑟(𝑡0 + 𝑑𝑡) = 𝑟(𝑡0) + 𝑟′(𝑡0)𝑑𝑡. A student’s quantitative structure may include their 

conceptualization of the following quantities: (1) The initial length of the radius of the circle 

(𝑟(𝑡0)), (2) The number of seconds the circle’s radius had been growing up to that moment (𝑡0), 

(3) the variation in the number of seconds (𝑑𝑡), (4) the rate of change of the radius-length with 

respect to the number of elapsed seconds at the moment 𝑡0 seconds had elapsed (𝑟(𝑡0)), (5) the 

linear approximation of the variation in the radius-length of the circle (𝑟′(𝑡0) ∗ 𝑑𝑡), and (6) the 

approximation of the new radius-length of the circle after 𝑡0 + 𝑑𝑡 seconds has elapsed (𝑟(𝑡0) +
𝑟′(𝑡0) ∗ 𝑑𝑡). The student may understand that this local, linear approximation well-approximates 

the variation in the radius-length for a small enough variation in the number of elapsed seconds.  

Reconceptualizing the Radius of the Circle as a Quantity whose Value Varies 

A student may construct a set of circles and imagine picking a particular radius-length and 

mentally create that particular circle from the set of all possible circles they previously 

conceptualized. Conversely, a student who has reconceptualized the radius-length of a circle as 

the value of a quantity may imagine a single circle whose radius-length varies smoothly and 

continuously through all possible values. I conjecture that a student who possesses the second 

image will likely think about the formula 𝐴 = 𝜋𝑟2 as an equivalence statement relating the 

values of two quantities whose values vary:  the value of the radius-length of the circle at any 

moment (𝑟) and the corresponding area of the circle (𝐴) for that particular radius-length.  

Conceptualizing the Product of Rates as a Quantitative Operation  

While many students have memorized the chain rule when first learning the derivative rules 

in calculus, thinking about whether to implement a mnemonic device to recall the chain rule and 

conceptualizing a composition of rates as a quantitative operation are very different cognitive 

operations. When multiplying two rates, many students will “cross out units” (i.e., crossing out 

the inches when multiplying 𝑖𝑛2/𝑖𝑛 * 𝑖𝑛/𝑠𝑒𝑐). However, this does not imply the student has 

quantified the result of their calculation as a new rate, nor conceptualized multiplying rates 

together as a quantitative operation.  
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When constructing the rate of change function from the accumulation function 𝑓(𝑔(𝑡)), 
multiplying 𝑓′(𝑔(𝑡)) and 𝑔′(𝑡) is intended to convey a quantitative operation, i.e., quantifying 

the resultant product (𝑓′(𝑔(𝑡)) ∗ 𝑔′(𝑡)) as a new rate. To use a rate of change function 

representationally in the “Growing Circle” context, 𝑓′(𝑔(𝑡)) represents the value of the rate of 

change of the area of the circle with respect to the radius at the moment 𝑡 seconds have elapsed, 

𝑔′(𝑡) represents the value of the rate of change of radius with respect to elapsed time at the 

moment 𝑡 seconds have elapsed. Multiplying these two rates together creates a new rate, 

𝑓′(𝑔(𝑡)) ∗ 𝑔′(𝑡), which represents the rate of change of the area of the circle with respect to 

elapsed time at the moment 𝑡 seconds have elapsed.  

Methodology 

Three students each participated in one to two generative clinical interviews (Clement, 2000) 

over the 2019-2020 academic year. Due to the burgeoning nature of the mathematics education 

literature on student thinking about multivariable calculus topics, these interviews were 

conducted by a single researcher analyzing students’ responses across each task (Rasmussen & 

Wawro, 2017). An interview protocol was developed with the goal of forming initial models of 

how students think about derivatives and partial derivatives while enrolled in a MC course. 

James’ first interview was conducted near the end of the Fall semester of 2019, while Malia and 

Alexis’ interviews were completed toward the beginning of the Spring semester of 2020. All 

three students were enrolled in the same conceptually-oriented MC course with the same 

professor. James, Malia and Alexis were all three Mathematics Education majors, worked in the 

same Precalculus tutoring center, and were enrolled in the same conceptually-oriented DIRACC 

Calculus courses (P. W. Thompson & Ashbrook, 2019). My analysis of James’ written work and 

verbal responses is presented here. James identified as a white man (he, him, his). The data was 

analyzed using a grounded theory approach (Strauss & Corbin, 1990).  

Using Function Notation Representationally 

As part of the DIRACC curriculum (P. W. Thompson & Ashbrook, 2019), students were 

introduced to various ways to write the function notation for a rate of change function (i.e., 

𝑟𝑓(𝑥), 𝑓
′(𝑡), 𝑦′, 𝑑𝑦/𝑑𝑥, 𝑑[𝑓(𝑥)]/𝑑𝑥, etc.). The notation for the rate function 𝑟𝑓 is intended to 

convey that the rate of change function is associated with a corresponding accumulation function 

𝑓. Each of these notations is intended to convey different information about the value of a rate of 

change function or the relative size comparison of amounts of variation between an independent 

quantity and the corresponding amount of variation in the dependent quantity. For instance, 

𝑑𝑟/𝑑𝑡 represents the value of the rate of change of the radius of the circle with respect to elapsed 

time at some moment. A student who has conceptualized differentiation as a process to construct 

a rate of change function from a given accumulation function may intend to use their rate of 

change function representationally.  

Results 

I present James’ work on the “Growing Circle Task”, which was part one of the third task in 

the initial clinical interview protocol. As my initial model for James’ thinking was slowly built 

over the course of the interview, I draw from James’ responses to the first two tasks to support 

my claims. I present James’ novel symbolization when he intended to differentiate, and James’ 

quantitative structure for the “Growing Circle” Task.  
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James’ Novel Symbolization for his Intent to Differentiate  

First, a quick note about some of James’ unique symbolizations. James’ symbolization for 

conveying his intent to differentiate a given function, expression, or equation differed somewhat 

from the normative method (Fig. 1). For instance, if James wanted to convey that he intended to 

differentiate a function 𝑓 with respect to 𝑥, he would write 𝑓′(𝑥) = 𝑓(𝑥)𝑑𝑥 as opposed to 

𝑓′(𝑥) =
𝑑

𝑑𝑥
[𝑓(𝑥)] or 𝑓′(𝑥) =

𝑑[𝑓(𝑥)]

𝑑𝑥
. James’ continual use and description of his “intent to 

differentiate” symbolization implied James’ stable meaning for his novel notation. James’ 

meaning for his symbolization for his intent to differentiate persisted throughout three semesters 

of a university-level calculus sequence.  

   
Figure 1. James’ written work from the “Growing Circle” task conveying his intent to differentiate two functions 

with respect to 𝑟 and 𝑡 respectively. 

James’ Quantitative Structure for the “Growing Circle” Task 

At first, when James was asked to differentiate the area function for a growing circle, he was 

very surprised by the result of his differentiation. Despite James’ strong computational abilities, 

interpreting the result of his differentiation in the context of the growing circle task led James to 

believe his answer was incorrect.   

James: What would A prime be? Okay so this is…so A represents the area with a changing 

radius so then A prime would represent how the area changes when the radius changes 

um…and you would just derive with respect to r. So this would be [writes 𝐴′(𝑟) =
𝜋𝑟2𝑑𝑟] so A prime r would equal pi r squared dr which is equal to 2 pi r…Is that right? 

See everything I said felt right and now this is the area or circumference and now I feel 

like I’m wrong. 

 
Figure 2. James’ written work finding the derivative of the area function with respect to the radius-length. 

After asking James to reiterate his thoughts about what each symbol meant to him, I showed 

James an animation for the growing circle task. James reiterated that he did not think the rate of 

change of the area of the circle should be equivalent to its circumference. James stated he 

believed it should be a “higher power”, indicating perhaps that James thought the rate of change 

of the area of the circle with respect to its radius should be growing quickly since the equation 

for the area of a circle is quadratic in terms of its radius-length. James’ eventual accommodation 

emerged from mentally comparing the radius-lengths of two different circles whose radii are 

almost numerically equivalent.  

Interviewer: I’m going to let the radius change by 0.25. I’m going to let the slider play and 

the radius is going to change by 0.25 and then fill in 0.25 and then fill in. [plays the 

animation]…so if I stop that and I look at this…blue stuff. What does that kind of look 

like to you? 
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James: Ohh…it is right. It does look like a little other circle. Okay, I understand now. We 

sort of have this change in the radius [draws larger circle and shades in with blue]. In 

this case you have it as 0.25 and you can sort of see that is a thick circle almost. Its just 

another circle around it that has a really thick border. So if we were to make our change 

in r to be really, really small it might as well just be a circle. In that sort of sense since its 

just a circle, that area that it makes up would be the same as the circumference. When 

your r is really big this is kind of a really big circle…Its that change in area between this 

radius length and this radius length [draws another smaller blue circle]. When you make 

the radius length arbitrarily the same you get this circle which is our original circle 

[outlines first circle in blue] with original area and you get this sort of one [outlines 

second circle in red] that is barely outside of it to the point that it barely has no 

thickness…that’s just the circumference of the circle with that radius.  

   
Figure 3. James’ sketch of the two circles with different radius-lengths after watching the “growing circle” 

animation. 

James’ quantitative structure for the remainder of the “Growing Circle” task emphasized 

three different quantitative relationships:  (1) the radius determining values of the area of the 

circle, (2) the number of elapsed seconds determining the radius-length of the circle, and (3) the 

number of elapsed seconds determining the area of the circle. It was unclear whether James 

conceptualized the relationship between the number of elapsed seconds (𝑡) and the area of the 

circle (𝐴) as a composition of functions. Though James could think about the relationship 

between any pair of quantities, he did not appear to simultaneously hold in his mind his 

conceptualization of the relationship between the quantities of time, radius, and area. This could 

be why James did not correctly differentiate his area function with respect to time. 

Though James substituted the function rule for 𝑟 when he wrote his function rule as 

𝐴(𝑟(𝑡)) = 𝜋(𝑟(𝑡))2. James believed that due to the nature of what the prime notation 

represented (Fig. 4), he did not think his various derivatives of area with respect to time 

represented the same thing when he thought about the radius of the circle. As an artifact of 

James’ unique way of symbolizing, James differentiated his 𝐴(𝑡) = 𝜋(𝑟(𝑡))
2
 function as 

𝐴′(𝑡) = 𝜋(𝑟(𝑡))
2
𝑑𝑡 = 2𝜋𝑟′(𝑡). James had conceptualized the order of differentiation of 

𝜋(𝑟(𝑡))
2
 in two parts: (1) differentiate 𝑟(𝑡), (2) differentiate what was left:  the 𝜋 and the square 

term. Since 𝜋 was a constant, it simply “stayed” then he was supposed to bring down the 

exponent. It appeared James was operating from a previously memorized procedure that he had 

not thought about in a while. This is different than using the chain rule to convey a new rate of 

change function formed from composing two other rates (
𝑑𝐴

𝑑𝑡
=

𝑑𝐴

𝑑𝑟
∗

𝑑𝑟

𝑑𝑡
). James attempted to 

reconcile his confusion using his prior work and reasoning as evidence that he was correct 

(James’ earlier thinking about⁡𝐴′(𝑟) = 2𝜋𝑟 implied that 𝐴′(𝑡) = 2𝜋𝑟′(𝑡) was correct). Since 

James had conceptualized the rates as ratios, it made sense to him that if 2𝜋𝑟 represented how 

the area changed if the radius was changed by a small amount, then 2𝜋𝑟′(𝑡) represented how the 

area changed if you change time by a small amount.  
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Figure 4. James’ written work on the last part of the “Growing Circle” task demonstrating his symbolization 

emerging from his quantitative structure. 

At the end of our second interview, James attributed his entire experience to forgetting the 

chain rule. Though James mentioned several times during the interview that he felt he was 

missing some foundational knowledge about the various ways mathematicians symbolize 

derivatives in calculus, James dismissed his experience from both interviews as “I forgot a rule.” 

This comment suggests that this student believes the source of his difficulties were due to not 

remembering how to execute a procedure, as opposed to implementing the rule only after 

mentally constructing a composite rate of change function (Jeppson & Jones, 2020; P. W. 

Thompson & Carlson, 2017).  

Discussion 

The function notation associated with derivatives and rate of change functions is intended to 

convey a scheme of meanings. However, in James’ case, he felt as if he lacked an explanation for 

why mathematicians use these notations in a normative manner. Though James’ symbolization 

for his intent to differentiate was emergent, it was far from normative and was never corrected 

over three semesters of calculus. It may be crucial for students to first engage in quantitative 

reasoning before symbolizing to avoid falling into the trap of symbol pushing without thinking. 

Perhaps by coordinating (1) an instructor’s intent to support the formalization of students’ 

burgeoning symbolization and (2) operationalizing the construct of emergent symbolization to 

support students in only symbolizing with an intention to convey meaning, we gain a clearer 

image of what it would mean to support students in first engaging in conceptualizing the relevant 

quantities before being asked to write symbols throughout the calculus curriculum. Students 

must be continually supported in symbolizing with the intent to convey meaning. Allowing 

students to reflect on their symbolizing activity may engender a habitual need to symbolize with 

the intent to convey meaning.  

I suggest that future research should examine the longitudinal development of students’ 

ability to use symbols to represent the meanings they have constructed. As a foundation for 

improving students’ mathematical and scientific literacy, it seems reasonable that students at all 

levels should be supported in viewing and using symbols to express the quantitative relationships 

they have conceptualized. More work is needed to understand the mechanisms for coordinating 

students' symbolization activity with their conceptualized quantities in calculus.  

Limitations 

The work presented here used data from students enrolled in a conceptually-oriented calculus 

curriculum. As such, the generalizability of these results may be limited. The work and student 

thinking presented here was from the analysis of a single student. As such, more work is needed 

to support the strength of the claims presented here. Though student thinking about rate of 

change functions is not new or novel, this data emerged from a study designed to understand 

how students think about partial derivatives after completing multivariable calculus.  
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Connecting Computation: Mediating Mathematical Knowledge Through Computational Modules 

 

Sarah D. Castle 

Michigan State University 

This study examined the nature of Calculus II student’s engagement with MATLAB modules and 

the ways in which the computational modules mediated student’s understanding of Taylor series. 

Through analysis of observations and interviews, using an instrumental genesis framework, a 

pattern of student’s views on the relationship between mathematics and computation developed 

in relation to student ability to conjecture and engage in mediated epistemic interactions with the 

MATLAB modules. This study highlights how the conceptualization of the two areas as distinct 

poses barriers and challenges for students, thereby questioning how to develop computational 

environments that support mediated epistemic interactions.   

Keywords: Computation, Coding, Instrumental Genesis, MATLAB, Epistemic Mediated 

Interaction 

New technological advances and the rise of data, coding, and computing have had drastic 

changes on the workforce infrastructure and the skills needed within the 21st century. There is an 

international shortage of those trained in the fundamentals of computational methods to fill jobs 

across academia and industry alike (SIAM Education, 2011), necessitating an examination of 

current educational methods to develop well-educated citizens in a computing intensive world 

(Cobb, 2015; CSTA, 2017). In preparing these students computational skills are needed, 

especially within mathematics (Lockwood et al., 2019). Computation is not only advantageous 

for student’s future careers, but also has pedagogical motivation to deepen student’s learning of 

mathematics by reinforcing concepts like abstraction, a key skill for mathematical proof and 

underpinning of computational thinking (Wing, 2011). Computation can reinforce desirable 

habits of mind such as communication and persistence (Lockwood et al., 2019). Despite the 

potential for the co-construction of mathematical and computational knowledge current studies 

in literature have focused on a proof by existence for this combination (Lockwood et al., 2019; 

Valdés-Fernández et al., 2019). Students not only have to grapple with the language of 

mathematics and the mathematical register but also comprehend the new grammatical strategies 

within programming simultaneously, resulting in the need to in essence translate between two 

technical languages (DeJarnette, 2019). Further, the blending of computation into mathematics 

does not always occur smoothly and can leave students feeling frustrated and confused as there is 

a disconnect between the two (Krause et al., 2019).  

Universities have responded to this call for computing in a variety of ways including the new 

majors (Silvia et al., 2019) and new computational labs and modules (Chabay & Sherwood, 

2008; Psycharis, 2016). The development of modules is a highly attractive as these can be paired 

with pre-existing curricula, are feasible for universities of any size, and have a low cost. Despite 

the potential promise, what is less explored in literature are the ways that computational modules 

can mediate mathematics learning. In order to gain a more nuanced understanding, I will address 

the following research questions: (1) What is the nature of student’s engagement with 

computational modules employed during a Calculus II course?  (2) How do the computational 

modules mediate student’s mathematical learning regarding series during a Calculus II course? 
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Setting 

This study focused on a specific MATLAB module developed for a large, midwestern R1 

university as a part of the mathematical laboratory series for Calculus II courses. The course had 

no prerequisites for any computational or coding experience. The course met four times a week, 

where three days were lecture and the remaining day was a recitation. During the recitation, 

students alternated between taking a quiz or engaging with a MATLAB module. This course was 

chosen due to the pre-developed computational modules that had gone through years of section-

focused reform and had been scaled up to a course-wide requirement during Fall 2019.  

Theoretical Framework 

In order to conceptualize the relationship between computational modules and students, an 

instrumental genesis framework (Béguin & Rabardel; Guin & Trouche, 1998; Vernillion & 

Rabardel, 1995) is utilized to focus on student learning in instrument-mediated activity. Students 

are able to either directly interact with the mathematics, or engage in a mediated interaction, as 

shown in Figure 1, where the computational module (the artifact) facilitates mathematical 

understanding (Lonchamp, 2012; Pargman et al., 2018). Through repeated mediated interactions, 

the artifact begins to reorganize the ways students engage with the mathematics, specifically that 

the nature of the knowledge a student generates has changed. As this continues, the artifact 

changes into an instrument, which does not exist in itself, but rather a student is able to 

appropriate and integrate it into their conceptions of mathematics (Verillion & Rabardel, 1995). 

During this process, which is referred to as instrumentation, students begin to understand the 

constraints, affordances, and the procedures linked to the artifact, and which leads to 

differentiated usages and ultimately to the psychological construct of the instrument (Guin & 

Trouche, 1998). Operationalization of this process is accomplished through instrumentalization 

levels. Longchamp (2012) delineates three levels, where the first is when the artifact is used for a 

particular action and under limited circumstances. The second level is when the artifact is linked 

to a class of situations, and the final level is when the artifact is modified substantially and 

permanently, as to perform a new function. These three levels provide insight into where a 

student is during the instrumentation process and relating the student’s actions within the 

mathematical context.  

 
Figure 1. Students can engage with the mathematics and/or the computation directly, as indicated by the dark green 

solid arrows, or they can engage in a mediated interaction in mathematics through the computational module.  

Methods 

Participants and Data Context 

Student participants were recruited across all sections, and a convenience sample of five 

students was selected. This sample spanned majors, computational experiences, and genders in 

order to bring a variety of perspectives and experience to the study. Due to Covid-19, all courses 
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were moved completely online, including the MATLAB modules, so all data collection occurred 

through online video conferencing and screen recordings. It is important to note that since this 

change occurred mid-semester, students had been completing these modules with a group in 

person during a finite time period. After the switch to online, students were to complete the lab 

individually over the course of a few days, but still could get help through an online forum. 

Taylor Series Module of Interest 

The focal laboratory was the final MATLAB module focused on series. As students 

progressed through the course, the assumption was that there would be a greater proficiency with 

MATLAB. Therefore, since the familiarity with an artifact impacts the instrumentation process 

(Trouche, 1999), the final module was chosen in hope that there would be greater discussion 

about the mathematics, whether direct or mediated, rather than initial MATLAB environment 

questions. Additionally, during pilot interviews, students commented on enjoying seeing the 

applicability of series within the computational environment, rather than simply existing as an 

abstract mathematical concept. Students were provided with a MATLAB .mlx file which 

contained the bulk of code and instructions. They were responsible for modifying and potentially 

adding existing code in order to answer different mathematical questions. 

Within the module, there were four tasks for the students to complete. The first task was to 

write a line of code that would calculate the maximum value of the difference between the fifth-

degree approximation for ln(1+x) and the full Maclaurin series, then repeating this for the 200th 

degree approximation. Students were provided with a graph of the approximation and ln(2) 

plotted on the interval [-0.9, 0.9] with a slider to change the degree up to N=9. The second task 

focused on approximating ln(2).  Students used a predefined function that calculated the first N 

terms of the approximation of ln(1+x), where x = 1 and then implement a trial-and-error strategy 

so that the difference between the Nth degree polynomial and ln(2) was no more than 10-8. The 

third task had students rewrite the logarithm ln(2) = -ln(1/2) and then use the predefined function 

to calculate the Nth degree Maclaurin series polynomial at x = -1/2. The goal was to calculate the 

degree needed so that the error was no more than 10−8. The code also generated plots to show 

the error plotted against the degree. Finally, students were to figure out why the second method 

needed fewer operations. Students were provided with the code to generate a plot of ln(1+x) 

plotted against the 10th order Maclaurin polynomial on the interval [-0.8,1.2]. 

Data Collection and Analysis 

Each participant went through a POP cycle, which refers to a pre-observation interview, 

observation, and then a post-observation interview. The pre-interview focused on establishing a 

baseline for the participant, both with respect to their mathematical and computational 

backgrounds as well as to how they generally engage with the modules. Participants were also 

asked about Taylor series and their importance. This interview occurred 1-2 days prior to their 

observation. Observations lasted approximately one hour, in order to mimic the conditions prior 

to the transition to online learning and provide a time boundary for students. During this time, I 

was a passive observer, and participants could pursue any line of inquiry and use any resource to 

complete their module. Observational notes were taken in addition to the video and screen 

recordings to record any poignant points to clarify during the post-interview.  

The post-observation was conducted within two days following the observation, allowing 

participants to reflect on their experience and ensure that the details were fresh in their minds. 

The same set of questions surrounding Taylor series were asked in addition to video-stimulated 
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reflections. Short clips of interest from their observation were shown to clarify participant 

actions and motivation, allowing for illumination of student thinking during the observations. 

After completing the POP cycles for all participants, general profiles of students were 

developed. Participant observations were coded so that each participant action was the unit of 

analysis, including, but not limited to, reading code, running code, modifying a variable, adding 

a new line of code, and scrolling. These actions were then coded as either direct or mediated as 

prescribed by the theoretical framework. Longchamp’s (2012) dimensions of mediation were 

applied, in that during interactions, students would either engage in epistemic or pragmatic 

mediations. Epistemic mediation seeks to know the object (MATLAB module) and to transform 

it into an instrument in relation to the mathematical context, whereas a pragmatic mediation 

focuses on comprehending a specific task and context. Looking across the individual actions led 

to the grouping of actions by topic and/or participant focus; these were referred to as 

conversations. These conversations were then coded as either pragmatic or epistemic. A 

conversation could contain both epistemic and/or pragmatic actions despite the overall coding.  

Participant Overview 

Five students were a part of this study: Clint, Tony, Carol, Janet, and Margaret. These 

students had varied computational and mathematical experiences, as well as differing majors. An 

overview of the participants is presented in Table 1.  

Table 1. A table summarizing the participant’s majors, prior computational and mathematical experiences. 

Participant 

Carol 

Clint 

Janet 

Margaret 

Tony 

Major 

Chemical Engineering  

Computer Science 

Chemistry 

Packaging 

Mathematics 

Prior Computation 

MATLAB & Python 

Java, SQL, Python & C++ 

None 

None 

Calculus II Modules 

Prior Mathematics 

Calculus I 

Calculus I 

Calculus I 

Calculus I & ITP 

Calculus II 

Results 

During the interviews and observations, what became increasingly apparent was that it was 

extremely difficult to mediate mathematics learning if participants viewed computation and 

mathematics as two separate entities. That is, when students tended to separate the mathematics 

into one domain and the computational interactions into another, it was difficult to engage in 

mediated epistemic interactions. Therefore, although the goal of the modules was to enhance 

student’s understanding of Taylor series, when this divide existed, the computational activity was 

not necessarily developing student’s understandings. It is important to note that this separation 

does not refer to the previous computational experiences, such as those that learned coding in the 

context of mathematics or physics versus those that took independent coding courses. Rather, the 

separation is referring to the in-the-moment actions and the ways in which students expressed 

their thought process during the interviews. Further, although this presentation is seemingly 

dichotomous, the reality is that the ways that each student viewed the relationship, or lack 

thereof, with mathematics and computation ebbed and flowed during the observations. 

Nonetheless, I contend that the separation of these two entities contributed to frustration and 

created barriers for some students to engage in mediated epistemic interactions. 

In order to highlight the separation, I will initially focus on the work of Tony, who had 

previously taken Calculus II and had engaged in some prior MATLAB experience. For Tony, he 
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began by exploring the pieces of code, and interacted with a built-in slider and visualization 

output, but he expressed some initial frustration in that the code was “really difficult for [him] to 

understand”. He switched to using a pen and paper since he felt that he could not “get it with the 

MATLAB code and was trying to cheat [his] way through with the MATLAB code”. He 

recorded his answer after some hand calculations and hoped that he did not “do all that math for 

nothing”, referring to his pen and paper approach instead of the code, and continued onto the 

next section. Both of these actions were direct and pragmatic interactions with computation and 

mathematics respectively. During the remainder of the observation, and the reflection, Tony 

continually made remarks such as the “code would have been helpful if I could have figured out 

what it had been telling me” or that he “honestly [found] this to be extremely confusing” when 

reading code. When working on the second exercise, Tony focused on a graph of error versus the 

degree of the polynomial and then stated: 

“Okay so I assume they mean it is some number in here. [Pointing to the higher degrees 

and clicking on different points which display the number of terms and the corresponding 

error of the approximation] Oh! Oh sweet.  It is going to be way higher than 250 then. 

Can I get a better like approximation if I just change some code or something” 

He began by changing a value in the code from 250 to 5,000, and then stated “I don't really feel 

like guessing and checking like they are asking me to. It seems tedious… Hmm only three digits 

in [referring to the error] so let’s try 50,000". He continued with this method but encountered 

roadblocks through some runtime errors and syntax issues, as there were different locations to 

potentially modify the existing code. After a brief pause, he reread the question, consulted some 

resources, and noted that  

“I thought I understood the question and I don't think I actually do. I am trying to see if 

that particular function, or the Taylor expansion follows the function ln(x) or ln(1+x) all 

the way to infinity and it doesn’t. It follows it to 1. I was trying to find its radius of 

convergence.” 

He returned to the code and stated “I think that I might just do what I was doing before and try to 

find it when it is a huge number. I don't understand... It seems right somehow... but I don't really 

understand how." He continued to try different approaches and was met with new errors until the 

time of the observation had expired. During this part of the observation, Tony was primarily 

focused in on the coding portion and separated it from the mathematics. By viewing the coding 

as ‘cheating’ with MATLAB, this underscored an assumption that somehow the computational 

element was not genuine mathematics, or that there was some sort of deceit or fraud occurring. 

Rather than having computation as an environment for, or an extension of mathematics, this 

opposition formed a barrier for Tony. Even in his frustrations, he noted that it is the coding and 

after encountering errors, he then focused on the mathematics independent of the coding context. 

Tony continued to jump between the two different realms, rather than using one to mediate the 

understanding of the other and this transition brought about tensions. 

This tension was not isolated to Tony, rather both Margaret and Janet had similar experiences 

with the separation. Margaret had encountered technical issues in the beginning and was unable 

to modify code, but she decided to read through the code and she stated that she was “just trying 

to read and understand the jargon” and followed up with “ I am trying to figure out the coding so 

that I can make it work for me so I can figure out uh the sum and figure out how I can change x 

and therefore change the term”. The observation ended early due to these difficulties, but before 

her follow up interview, she completed all the tasks by hand using pen and paper.  Despite the 

difficulties, she emphasized that the goal was to make the coding work for her and in her follow 
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up interview elaborated that she did not understand why the computational modules were 

required. She has in essence put coding and mathematics in distinct categories, mitigating the 

potential overlap and mediated epistemic interactions.  

In her pre-observation interviews, Janet had noted that typically with the modules she walked 

away with “confusion and no real insight into calculus concepts” as many times she would “look 

for patterns in the code and change things”. During the observation, when comparing the two 

different approaches to approximations, she stated that “there must be something in the code 

which is why it probably makes sense” and then proceeded to work with the code in order to 

answer the question. During these encounters, Janet had separated into either looking at the code, 

or looking at the mathematics. When she used the different resources available to her, such as a 

group chat or online forum, she expressed that she was “just trying to figure out how do you 

know what you are doing” when modifying the code. Although there were periods for 

participants where the mathematics and computation were separate, there were also points which 

highlighted a connection between the two and using the computational environment to 

understand the mathematics.  

 For example, consider the case of Carol. During the third problem, she initially changed 

the code to try and center the Maclaurin series at .5; however, this resulted in a complex number, 

an unexpected result. She adjusted her array to have negative terms but commented “uhm that’s 

weird I have never summed something where N is negative… Well, we will go for it and see 

what happens”. This resulted in immediate MATLAB errors, and she commented “I feel like this 

is degrees because this is like an array that it is evaluating [approximation]”. After these 

MATLAB warnings, she discovered an error, reset her code using positive indices, and then fine-

tuned her approximation. During this mediated interaction, Carol’s understanding of 

mathematics informed her approach to the code, in that it seemed irregular for her to have a 

negative N, and also her understanding of coding informed her mathematical understanding. She 

knew what an array did, and she began to link the terms of the approximation to this 

computational construct. The allowed overlap permitted mediated interaction. A key moment for 

Carol was during the final problem, where she reasoned:  

“A Maclaurin series is centered at 0 and radius of convergence is 1. So when x=1, you’re 

pretty much on the endpoint of where the function is converging [long pause] no could 

be converging since R=1, you have an open interval of convergence of (-1,1)... the 

question is does it converge on 1 because if [not] it won’t be very good at approximating” 

After an initially reasoning, she carefully went through the lines of code and examined the 

outputs stating "okay I think I am right because it is telling you to look at this right here 

[pointing at x=1] and it really begins to really diverge here.. Out of curiosity though, what 

happens when you increase the number of terms… Oh it definitely diverges”. Carol was able to 

use the computational environment in order to develop a deeper understanding of the 

mathematics, namely what it means for a series to diverge. For her, the code was a realm in 

which she could explore the mathematics and conjecture, which led to a fundamental change in 

how she viewed diverging endpoints. She expressed that she had always wondered what a 

diverging endpoint meant and understood and could visualize it. This mediated epistemic 

interaction proceeded to develop a higher level of instrumentation as her understanding of 

diverging endpoints as a whole has been changed and she now expressed her understanding in 

relation to the MATLAB module.  

 Finally, Clint expressed statements where he would adjust the number of terms and 

related it back to the degree of a polynomial and error. When gesturing towards the error output, 
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he stated the error is the difference between “the actual answer and the approximation and the 

lesser the difference, the better for us” and increasing the number of terms would “make the 

difference much much less… because it approximates it better”. The ways in which he engaged 

in the computation related back to the mathematics he was investigating. He attributed this to his 

prior coding experience as he could “just figure out [the mathematics] at the start and get right to 

the point as opposed to figuring out the code itself”. For him, he was able to use the computation 

as a way to investigate the mathematics. When adjusting the number of terms, Clint would 

conjecture a potential output and what the code would do, specifically surrounding the error and 

the quality of approximation.   

Discussion and Conclusion 

One of the primary results from this study was the challenge for students to engage in 

mediated epistemic interactions when viewing computation and mathematics as two distinct 

entities. This finding is reified in the literature as others have noted the perceived disconnect 

between the two (Krause et al., 2019) and the tendency to delineate struggles into either 

understanding the code or the mathematics (DeJarnette, 2019). Further, an interesting point arose 

in the mediated epistemic interactions, such as that of Carol and a diverging endpoint. Carol 

tended to view the computation and mathematics as connected, and then conjecture about the 

mathematics in this computational context. The act of conjecturing preceded the mediated 

epistemic interaction, and this occurred for Clint as well. This process of conjecturing, 

experimenting, and testing understanding of code and mathematics, are all in line with the 

practices detailed by Lockwood et al. (2019) that mathematicians use. Therefore, if there is an 

environment where computation and mathematics are viewed as connected, then potentially 

incorporating conjecture may lead to developing a deeper understanding of mathematics. 

Nonetheless, there is a key implicit assumption in that there is not a disconnect between the two. 

For example, Tony had engaged in conjecture and was beginning to engage with both the code, 

and the mathematics, but was missing the key link between the two that would have potentially 

allowed his conjecture to initiate an mediated epistemic interaction. If the perceived structure is 

that computation exists outside of the main lecture hall, as nearly all students commented that it 

was not mentioned during ‘normal lectures, then this reinforces a view that mathematics and 

computation are separate, which in terms makes mediated epistemic interactions far more 

difficult. This delineation calls into question the notion of simply attaching labs to a mathematics 

class. If the goal is to understand the mathematics more deeply or be able to engage with it in a 

new context, then the dichotomy poses a serious threat. It seems as if an integrated 

computational component could better address the overlap and why computation is beneficial to 

mathematics, in turn providing an environment for mediated epistemic interactions to occur.  

When designing computational experiences in the mathematics classroom, a key question 

that needs to be addressed is how to create an environment that foster’s students understanding 

of both mathematics, computation, and their unique relationship. The danger of having a sole 

coding introduction at the beginning of the semester is that students are exposed to MATLAB in 

limited circumstances and linked to particular actions, thereby making it difficult for students to 

proceed to the second or third level of instrumentation. Further, if this initial introduction 

positions the coding and computation as distinct from the mathematics, then students may not be 

in an environment that promotes epistemic interactions with the mathematics. Further study on 

the relationship to the prior coding experiences and view on mathematics would be beneficial to 

further understand how students coordinate learning mathematics and computation 

simultaneously and use computing to explore the mathematics.  
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Three Phases of Active Proof Reading Strategy for Comprehension of Mathematical Proofs: An 
exploratory study 

Eyob Demeke 
California State University, Los Angeles 

 
In advanced mathematics courses, proofs are instrumental in conveying mathematical 
knowledge. As a result, in many upper-division undergraduate math courses, proof 
comprehension is a crucial aspect of learning mathematics. This study examines proof reading 
strategies that eleven mathematics doctoral students profess to use to facilitate proof 
comprehension. This paper identifies 12 strategies that participants in this study employed to 
improve proof comprehension. I argue that those 12 proof reading strategies occur in three 
phases. In particular, doctoral students in this study engaged in three types of reading: 
preliminary reading, engaged reading, and reflective reading. The paper concludes with a brief 
remark on this research's implication for teaching proofs in undergraduate mathematics. 
 
Keywords: Proof, proof comprehension, proof reading, undergraduate mathematics education  
 

Students are expected to spend significant time reading proofs and glean mathematical 
knowledge from them in many upper-division mathematics courses. But recent studies show that 
proof comprehension is a notoriously difficult task for many students (Author, 2018). One way 
to support students' proof comprehension is to study how experts such as math professors read 
proofs. In an exploratory study, Weber and Mejia-Ramos (2011) identified three strategies 
research mathematicians generally employ when reading proofs: appealing to the authority of 
other mathematicians who read the proof, line-by-line reading, and modular reading. Moreover, 
in all three strategies, the authors noted that mathematicians used non-deductive reasoning. In 
another proof reading study, Weber and Mejia-Ramos (2014) surveyed 118 mathematicians and 
confirmed their earlier exploratory study findings. By modifying the research methodology used 
in Weber and Mejia-Ramos’ (2011) study, this study seeks to further proof reading strategies that 
can facilitate proof comprehension.  

Theory 
Research on proof comprehension is continuing to uncover significant differences in proof 

reading strategies between novice (e.g., beginning undergraduate students) and expert (e.g., 
mathematics doctoral students) students. For example, Inglis and Alcock (2012) observed their 
participants' eye movement while reading a proof and concluded that undergraduate students, 
compared to the experts in their study, spend more time focusing on the "surface features" of a 
mathematical proof.  Based on this observation, the researchers found that undergraduates spend 
less time focusing on proof's "big picture," such as the proof's logical structure. Inglis and 
Alcock’s (2012) finding may explain why students often have difficulty understanding the 
logical structure of a mathematical argument, as evidenced elsewhere in the literature (e.g., 
Selden & Selden, 2003).  

There is a growing body of research looking into strategies that can enhance comprehension 
of mathematical proofs. For instance, Weber and Mejia-Ramos' (2013) describes five proof 
reading strategies that undergraduates can use to facilitate their understanding. Their study 
observed four mathematics majors reading six proofs. The authors considered these students to 
be strong because they were successful in their content-based mathematics courses and on the 
follow-up proof comprehension test that the authors designed based on Mejia-Ramos et al.'s 
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(2012) proof comprehension assessment model. Their analysis revealed five proof reading 
strategies that the students used to facilitate their understanding of the proofs, which are (a) 
trying to prove a theorem before reading its proof, (b) comparing the assumptions and 
conclusions in the proof with the proof technique being used, (c) breaking a longer proof into 
parts or sub-proofs, (d) comparing the proof approach to one's own approach, and (e) using an 
example to understand a confusing inference. Weber and Mejia-Ramos (2013) followed up their 
qualitative study with a large-scale internet-based survey study that included mathematics majors 
and mathematicians from 50 large state universities in the United States. Their quantitative 
study's purpose was two-fold: (1) to explore whether mathematicians prefer mathematics majors 
to use these five proof reading strategies and (2) to investigate to what extent mathematics 
majors use these strategies. Their study's main finding is that the majority of mathematics majors 
do not use these proof reading strategies that mathematicians find useful for proof 
comprehension. This finding sheds light on why undergraduate students often gain little from 
proofs they read or see during lectures (e.g., Conradie & Frith, 2000; Rowland, 2001; Lew et al., 
2016).  

Research Methodology 
Recall that this study's primary goal is to gain insight into how math Ph.D. students read 

proofs for understanding. The data to address the research question is obtained from interviewing 
eleven doctoral students in mathematics. I met with participants individually for a videotaped, 
semi-structured, hour-long, task-based interview.  During the interview, participants were 
observed reading proofs of four distinct theorems. The content of three out of the four proofs is 
undergraduate mathematics; the other is from graduate-level mathematics. These interviews 
aimed to observe the strategies participants employed while reading proofs and examine how 
these strategies could contribute to proof comprehension. During the interview, participants were 
told that they could highlight or write on the proofs' text. Additionally, they were encouraged to 
think out loud while reading each proof. 

After a participant completed reading the proofs, I asked several questions to explore their 
proof reading strategies. When participants said something I found confusing or interesting, I 
asked for clarification. The following questions are representative of my interview protocol: 

• What are some of the things you were doing when reading these proofs to increase your 
understanding of them? 

• Can you describe things you do to understand a proof? How do you know when you have 
understood a proof? 

• When reading proof from a textbook or a journal article, what do you do when you get 
stuck? 

When a participant did not mention any of the proof reading strategies described in Weber and 
Mejia-Ramos' (2013) study, I explicitly asked them how often, if any, they employed these 
strategies.  

Data Analysis 
Each interview was transcribed fully, and pseudonyms were assigned to the participants. 

Both the interview transcripts and analytic memos were studied carefully. The interview 
transcripts were initially analyzed using thematic qualitative text analysis (Kuckartz & Kuckartz, 
2002; Maxwell, 2013). In the first pass through the data, any episode when a participant 
discussed something relevant to proof reading either prompted or otherwise was labeled as a 
proof reading strategy.  
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After identifying instances where participants talked about their proof reading strategies, I 
coded each instance using a semi open-coding scheme. Existing theoretical constructs from the 
literature on proof reading strategies such as Weber and Mejia-Ramos' (2013) study were used in 
the categorization process when I was confident that the literature's constructs agreed with the 
data. In contrast, when participants' responses were considered new or cannot be captured by 
existing constructs, I used in vivo coding—where terms used by participants are used as codes—
and process coding to capture "observable and conceptual action in the data" (Saldana, 2013). I 
then organized similar codes into categories to develop a coding scheme, which was eventually 
checked by two experienced researchers, each with a Ph.D. in mathematics education and 
extensive research experience.  

Finally, all interview transcripts were carefully examined and coded explicitly using the 
proof reading strategies identified in the coding scheme. Participants enacted behavior when 
reading a proof was cross-examined against a specific issue they were trying to address to 
facilitate their comprehension of the proof. For example, when I saw a participant underline a 
particular assertion or a definition in a proof or constructed a small sub-proof, I asked a follow-
up question to understand their rationale for doing so.  

Results 
A careful analysis of the data suggests that participants in this study viewed mathematical 

proof reading as a non-trivial cognitive task that involves active engagement with the proof. 
Active engagement with proof is understood as any cognitive activity carried out to understand 
the proof. Taken together with previous literature on proof reading strategies (cf. Weber & 
Mejia-Ramos, 2011; Weber, 2015; Weber & Mejia-Ramos, 2013), the data in this study suggests 
that doctoral students engaged in three phases of reading cyclically: preliminary, engaged, and 
reflective. 

Preliminary Reading 
Preliminary reading is a theoretical construct that refers to a collection of strategies 

participants reported to employ to ascertain the proof's framework and overarching methods. 
Selden and Selden (1995) define proof framework as "the top-level structure of the proof, which 
does not depend on detailed knowledge of the relevant concepts" (p. 129). A key feature of 
preliminary reading is that participants are not interested in figuring out the proof's details; for 
instance, verifying the validity of an assertion or computation is less critical during preliminary 
reading. Instead, at this stage, the reader is interested in figuring out the overarching or "big 
picture" and motivating ideas of the proof. Preliminary reading can be considered an elaboration 
of what Weber and Mejia-Ramos (2011) consider modular reading.  Table 1 below describes 
reading strategies participants may use during this stage of the active proof reading cycle.   

 
 

Table 1 
 
 

Table 1. Summary of Sub-categories or strategies included in preliminary reading, description of the content of the strategies, 
and the number of participants who mentioned them 

Strategy  Content Num 
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1. Understanding the statement of the theorem 
 

Trying to understand the 
theorem by explicitly attending 
to concepts, objects stated or 
implied by the theorem (Weber, 
2015) 

3 

2. Proving or sketching a proof for the theorem before 
reading its proof 

Trying to construct a rough 
sketch or a complete proof of the 
theorem before seeing its proof 
(Weber, 2015) 

10 

3. Identifying the proof framework Trying to understand how the 
proof proceeds by attending to 
what sub-claims are being 
proven, what proof technique is 
being used, what can be 
assumed, and what must be 
shown using that proof technique 
(Weber, 2015) 

5 

4. Skimming Moving from one assertion to 
another without justifying them 
but to understand what is going 
on and how ideas in the proof 
are tied together to prove the 
theorem (Weber & Mejia-
Ramos, 2011) 

9 

 
As shown in Table 1, the most frequently mentioned preliminary reading strategy is proving or 
sketching a proof for the theorem before reading its proof. Ten out of eleven participants said 
they used this strategy to enhance proof comprehension. For example, when I asked G7 if he 
tried to prove any of the theorems in the interview tasks before reading its proof, he responded: 

Some of them. I've seen [task] C before. [Task] B I did not try to prove it. Um [task] A I 
did try to prove it on my own and then [task] D I tried to prove it a little while, I thought 
about what is needed to be shown…I came up with one approach that was perhaps 
plausible and then I went to see what these authors had done. But I at least thought about 
it minimally. I think about what needs to be shown… 

When I asked G7 how often he uses this strategy, he said: 
 So you know ideally, if I were never in a rush, you know first I would try to prove it on 
my own and then um I want to make at least sure I know what needs to be shown and try 
to come up with some approach that seems like something that could work and then I'll 
look at the first line of the proof. And then maybe there's a key idea in the first line and 
say okay, now you know perhaps I can prove it from there. 

 
It is important to note that when G7 uses this strategy—proving or sketching a proof for the 
theorem before reading its proof—he does not necessarily come up with a correct or complete 
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proof; instead, an attempt or partial proof or laying out what the "landscape" of a proof may look 
like suffices.  

Another participant, G8, also said he tried to prove the theorems before reading their 
respective proofs during the interview. When I asked him how frequently he uses this strategy, 
he said: "When I see a theorem, when I see a proposition or a statement, and I'm familiar enough 
with the ideas, and I will try and sketch out how I would understand it. If I'm unfamiliar with the 
ideas, I typically use the proof as learning material."  

Participants in this interview discussed factors that influence preliminary reading: time and 
familiarity. For instance, G7 stresses the importance of time when deciding whether to sketch a 
proof of the theorem before reading its proof. As expected, G7 said he won't embrace the 
aforementioned preliminary reading strategy when he is in a "rush" or doesn't have enough time 
to execute the strategy. G8, on the other hand, pointed out that he makes a judgment call as to 
whether or not to use the strategy based on his level of familiarity with the underlying concepts 
of the theorem. 

Engaged Reading 
Engaged reading is a theoretical construct that refers to the set of strategies participants 

employed when trying to make sense of specific assertion (s) or an argument within a proof.  
Table 2 below describes seven strategies participants used during this phase of the active proof 
reading cycle.   
 
Table 2 
 
 

Table 2. Summary of sub-categories or strategies included in engaged reading, description of the content of the strategies, and 
the number of participants who mentioned them 

Strategy  Content Num 
 

1. Justifying some assertions Trying to fill in gaps to 
understand why a specific 
assertion is correct (note: some 
gaps could be filled mentally 
without having to write 
anything) 

8 

2. Partitioning the proof into smaller,  
manageable pieces 

Trying to organize long proofs 
by breaking them into their 
modular structure  

7 

3. Using specific examples to understand  
a problematic assertion or series of assertions 

Trying to use illustrations or 
diagrams to understand a 
complicated or confusing 
assertion  

4 

4. Zooming in Trying to understand specific 
ideas in proof by conducting a 
unit analysis  

2 
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5. Identifying, translating, and interpreting 
confusing assertions, key ideas, or notation using 
one's own words 

Attending to higher-level 
concepts of the proof; making a 
note of key ideas or techniques 
employed in the proof 

11 

6. Forward-looking reading (Hide-and-seek) Trying to complete the proof's 
remaining arguments after 
attending to the proof's key ideas 
and how they proceed.   

4 

7. Resource utilization  Relying on a book or a colleague 
for an explanation of a given 
assertion (s) within a proof 

8 

 
Engaged reading is by far the most active phase of the reading cycle. During this phase, 
participants were often observed underlining, highlighting essential ideas, and working out 
details of important assertions they found confusing. For example, when I asked G7 about some 
of the text he emphasized, he said: "… sometimes I underline something when I see that it's 
going to be used again later. So in this proof, we compare two computations. So we have this 
product over here, and then we have this product over here, so it's a visual guide." Another 
participant, G8, said:  

In proof B, I only underlined one thing. I probably should have highlighted two. I should 
have emphasized abelian group, and every non-identity element is of order two, right? 
That's the key idea, right? We have an algebraic structure…we have a group structure in 
particular. And everything is of order two, which means that it's a 2-group. 

It is important to note that G8, in particular, said he underlines what he considers to be the 
proof's key ideas.  
 
Reflective Reading  

Reflective reading is a theoretical construct that refers both to a specific strategy and an 
analytical main coding category. As a strategy, reflective reading relates to instances where 
participants were observed reflecting on the whole or part of the proof. Evidence of this strategy 
include: (a) summarizing the entire or part of the proof using one's own words, (b) reflecting on 
specific takeaways such as a proof technique or key ideas from reading the proof, and (c) 
frequently asking oneself what a particular assertion in the proof says about the mathematical 
object under exploration within the proof. Reflective reading was a popular strategy utilized to 
improve proof comprehension. Nine out of eleven participants said they frequently use this 
strategy to enhance proof comprehension. The excerpt below illustrates introspective habits G8 
engages in while reading a proof.  
 

If I think my approach is more elegant than the author, I will, which is not typically the 
case, think about the author. I'll try and read into what the author was trying to present. 
I'll try, and I'll ask myself if I'm using techniques, if I misunderstand something. If my 
approach is significantly more elegant. Am I imagining that something is nicer than it is? 
Am I imagining that certain facts are stronger than they are? So, am I cheating? When 
that's not the case, I will ask myself what is the author trying to present? Are they setting 
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me up for a corollary afterward that uses the ideas from this proof, which this particular 
approach makes more explicit? When the author's proof is better than something, I can 
sketch it out for myself. I will examine the methods, ideas that they used, and how those 
better encapsulate the ideas, better sum together, piece together the ideas that I'm trying 
to use. So were they able to assemble these landmarks a bit better? Were they able to 
connect them in a much more direct fashion? 

Discussion and Concluding Remarks 
This exploratory study is an attempt to support students' proof comprehension by carefully 

examining characteristics of proof reading strategies exhibited by experts, mathematics doctoral 
students. This study's key finding is that proof comprehension is an active cognitive process that 
involves several strategies that can be grouped into three reading phases: preliminary, engaged, 
and reflective. Typically, participants in this study would engage in a preliminary reading first 
and then proceed to the most active part of the reading phase: engaged reading. Typically, 
participants dive into reflective reading once they feel like they have an adequate understanding 
of the proof in its entirety, usually after preliminary and engaged reading. However, it could be 
the case that participants may elect to reflect on a small subset of assertions in the proof before 
understanding the whole proof.  This study also revealed potentially effective proof reading 
strategies that were not documented in prior studies described earlier (e.g., Identifying, 
translating, and interpreting confusing assertions or notation using one's own words, forward-
looking reading, and resource utilization). 

Additionally, this research may shed light on a relationship between the proof comprehension 
assessment model proposed in Mejia-Ramos et al. (2012) and proof reading strategies. Recall 
that Mejia-Ramos et al. (2012) argue that proof comprehension can be assessed locally and 
holistically. A proof can be understood either locally by “studying a specific statement in the 
proof or how that statement relates to a small number of other statements within the proof, or 
holistically based upon the ideas or methods that motivate the proof in its entirety.” (p.6) For 
instance, several of the strategies participants employed during engaged reading phase could 
support local comprehension; whereas, strategies employed during preliminary reading and 
reflective reading may enhance holistic comprehension of a proof.   

To sum up, the difficulty associated with proof comprehension can be assuaged by exposing 
students to strategies that can enhance proof comprehension. If future studies confirm that the 
proof reading strategies presented here are effective in improving proof comprehension, 
mathematicians could incorporate them into their teaching.  For instance, professors who teach 
proof-based mathematics courses, such as introduction to mathematical proof courses, can 
explicitly communicate these strategies to their students. A professor could model some of the 
aforementioned strategies by incorporating proof reading activity during a lecture. Moreover, a 
professor can develop proof comprehension questions using the Mejia-Ramos et al. (2012) 
model and foster these strategies' usage.   
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How do undergraduate engineering students engage with puzzle problems related to first-

order differential equations? 
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This paper explores how undergraduate engineering students engage with puzzle problems 

related to first-order differential equations. One hundred and thirty- five undergraduate 

engineering students engaged with four puzzle problems related to first-order differential 

equations in self-selected groups of two or three students while their communications were 

audio recorded. The findings related to one of these problems are reported here. The results 

show that many students struggled with identifying how DEs could be used for modeling real-

world situations, and as a consequence of that, they solved the puzzle using their physics 

knowledge. The findings suggest that more focus should be paid to including modeling (or 

puzzle) tasks in DEs courses to help engineering students engage in higher-order thinking, 

develop thinking skills and problem-solving strategies needed for their future careers and 

advanced courses.  

Keywords: Puzzle-based learning, differential equations, high-order-thinking, problem-

solving strategies, thinking skills. 

Introduction 
        Many engineering students graduated with the ability of solving routine mathematical 

tasks, but are not successful in applying what they have learned in solving real-world 

problems that require critical and creative thinking (Kamsah, 2004; Falkner, Sooriamurthi, & 

Michalewicz, 2012). This might be due to many students are limited to textbook questions 

that are solved using the topics discussed in the classroom (Michalewicz & Michalewicz, 

2008). Furthermore, university mathematical courses do not appeal to several engineering 

and mathematics first-year university students (Klymchuk, 2017).  

       A number of university engineering and mathematics students drop out from their study 

“not because the courses are too difficult but because, in their words, they ‘are too dry and 

boring’” (Klymchuk, 2017, p. 1106). Engineering graduates need strong communication 

skills and team-work mindset, but some have not developed these skills and values (Kamsah, 

2004; Mills & Treagust, 2003). 

       Puzzle-Based Learning (PzBL) has been recognized as one of the approaches that could 

be used to develop students’ problem-solving strategies and thinking skills (e.g., critical 

thinking, creative thinking, and lateral thinking) (Badger, Sangwin, Ventura-Medina, & 

Thomas, 2012; Falkner et al., 2012; Klymchuk, 2017; Michalewicz & Michalewicz, 2008). In 

recent years, several studies have explored the use of PzBL in the teaching and learning of 

calculus (Badger et al., 2012; Klymchuk & Staples, 2013). However, a literature search 
revealed no study exploring the impact of using PzBL in the teaching and learning of 

Differential Equations (DEs).  

       DEs play an important role in engineering and mathematics (Maat & Zakaria, 2011; 

Rowland, 2006). DEs are frequently used in different disciplines, including engineering, to 

model real-world problems and understanding real-world phenomena (Arslan, 2010). This 

study seeks to fill the gap by exploring how undergraduate engineering students engage in 

solving puzzle problems related to first-order DEs. The research question sought to answer in 
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this study is How do undergraduate engineering students engage with puzzle problems 

related to first-order differential equations?  

Puzzle-Based Learning 

       PzBL refers to engaging students with puzzle problems to enhance students’ problem-

solving strategies and thinking skills (Michalewicz & Michalewicz, 2008). It could be 

considered as a sub-set of Problem-Based Learning (Thomas, Badger, Ventura-Medina, 

Sangwin, 2013). PzBL could help students develop their competency in solving real-world 

problems in their future careers (Falkner et al., 2010, 2012). Puzzle problems can activate 

higher-order thinking as typically they are non-routine problems that require a great deal of 

analyzing the given information, and students often need to create a new strategy for solving 

those problems (Radmehr & Vos, 2020). PzBL helps students learn mathematical concepts 

meaningfully and increase students’ motivation to learn mathematics (Klymchuk, 2017). 

PzBL impacts the classroom environment by making it more entertaining and increasing 

students’ curiosity and participation in classroom discussions (Klymchuk, 2017). 

      There are three types of puzzle problems: Sophism, paradox, and puzzle (Klymchuk, 

2017). A sophism can be defined as an “intentionally invalid reasoning that looks formally 

correct, but in fact, contains a subtle mistake or flaw” (Klymchuk, 2017, p. 1106). A paradox 

is a “surprising, unexpected, counter-intuitive statement that looks invalid but in fact is true” 

(Klymchuk 2017, p. 1106). Puzzle refer to “non-standard, non-routine, unstructured question 

presented in an entertaining way” (Klymchuk, 2017, p. 1106). Puzzles are similar to 

mathematical modeling tasks, which is an important part of engineering and mathematics 

education (Klymchuk, 2017). 

      A task is called a puzzle problem if it has most of the four following criteria: Generality, 

simplicity, Eureka factor, and entertaining (Badger et al., 2012; Michalewicz & Michalewicz, 

2008). In relation to the generality, puzzle-problems “should explain some universal 

mathematical problem-solving principles” (Michalewicz & Michalewicz, 2008, p. 3).  

Regarding simplicity, the puzzle-problems should be easy to state and remember 

(Michalewicz & Michalewicz, 2008). To meet the Eureka factor criterion, the solution of the 

puzzle-problems should not be immediately intuitive and finding the correct path to solving 

them may take time and energy. When students find the correct approach to solve a puzzle 

problem after spending much effort, the feeling that they have at that moment is called 

Eureka moment- Martin Gardner’s Aha! - (Michalewicz & Michalewicz, 2008). Finally, 

regarding entertaining, puzzle-problems should be enjoyable activities that encourage 

students to keep looking for a correct solution for puzzle problems (Michalewicz & 

Michalewicz, 2008).  There is no need for all the puzzle problems to have the above criteria 

(Michalewicz & Michalewicz, 2008). The best puzzle problems for teaching mathematics are 

those that have both a conventional and a lateral thinking solution (Thomas et al., 2013). 

Lateral thinking and creative thinking are closely related (De Bono, 1990), and therefore 

engaging in solving puzzle problems could improving students’ creative thinking (Klymchuk, 

2017; Thomas et al., 2013).     

Differential Equations  

     DEs play an important role in engineering and mathematics students (Maat & Zakaria, 2011; 

Rowland, 2006).     DEs are used in many disciplines, including engineering, to model real-world 

situations (Arslan, 2010). It is important that engineering students develop a strong knowledge 

of how different problems could be modelled using DEs and how different types of DEs could 

be solved (Kwon, 2002).  
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     There are three typical approaches for solving DEs: algebraic (analytic), qualitative 

(graphical), and numerical (Rasmussen, 2001). Analytical methods are techniques for finding 

the symbolic form of DEs’ solutions, while qualitative and numerical methods focus on finding 

the graphical and numerical forms of DEs’ solutions, typically with the help of technology 

(Rasmussen, 2001).  

    The majority of students in traditional introductory DEs courses are inclined to use 

analytical methods for finding solutions to DEs (Arslan, 2010; Keene, 2007). However, these 

methods are not effective in solving all types of DEs (Rasmussen, 2001). Furthermore, previous 

studies pointed out students’ competencies in using graphical and numerical methods for 

solving DEs are limited (Camacho-Machín, & Guerrero-Ortiz, 2015; Czocher 2017).  Many 

students struggle with solving DEs tasks, and the relationship between DEs and their solution 

is not meaningful for them (Arslan, 2010; Rasmussen, 2001) due to having an instrumental 

understanding of DEs (Arslan, 2010; Rasmussen, 2001). 

     Engaging students with mathematical modelling tasks is an effective way to improve 

students understanding of how DEs can be used to solve real-world problems; develop 

students’ problem-solving skills; and increase students’ motivation for learning DEs (Czocher, 

2017). Furthermore, modelling tasks could help students develop their competencies in 

communicating their ideas, educate them as independent learners, and prepare them for their 

future careers (Ärlebäck, Doerr, & O’Neil, 2013). However, many students in traditional DE 

courses encounter difficulties finding and formulating a meaningful DE when engaging with 

modelling tasks (Rowland, 2006). These difficulties could be related to students’ understanding 

of DEs being procedural instead of conceptual due to heavy emphasis on analytical techniques 

in traditional courses for solving DEs (Arslan, 2010; Rasmussen, 2001).  

Research method 

       In this study, a sequential mixed method study (Yin, 2014) was designed to explore how 

undergraduate engineering students engage in solving puzzle problems related to first-order 

DEs. The participants were 135 undergraduate engineering students from a public university 

in the east of Iran. Four puzzle-problem tasks (one sophism, one paradox, and two puzzles) 

were designed and were validated by two senior lecturers of DEs. Then, the tasks were 

piloted with eleven mathematics students. After minor changes to the wording of the tasks, 

the participants engaged in solving these tasks in self-selected groups of two or three students 

and audio-recorded their communication. In this paper, we report how students engaged with 

one of the puzzles. The data were analyzed using an inductive content analysis approach 

(Vaismoradi, Turunen, & Bondas, 2013) as previous studies have not explored how students 

engage with such tasks in DEs.  

The puzzle problem  

       This task explores how students engage in constructing a suitable DE using their 

knowledge of mathematics and physics. Regarding the entertaining criteria of puzzle 

problems, integrating physics with DEs increases students’ motivation to learn DEs (Rowland 

& Jovanoski, 2004). Additionally, many students are familiar with such physics problems in 

their high school education or when passing an introductory physics course in their first-year 

university study; however, they might not have the experience of how DEs could be used for 

solving such problems. 
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 At 9 o’clock this morning, Asghar and Farzad flew from Tabriz to Ankara on a private jet 

with the weight of 265 kg. On the way to Ankara, on Van Lake, at the height of 6,000 meters 

from the lake’s surface, the jet’s engines failed. Consequently, the jet crashed vertically at a 

speed of 300 𝑘𝑚/ℎ. Eight seconds after the engines failed, Farzad pressed the emergency 

exit button. After pressing the emergency exit button, it usually takes 4 seconds for the pilot 

and the co-pilot to be ejected. Do Asghar and Farzad succeed in rescuing themselves? 

(Consider the air resistance coefficient as 5 𝑘𝑔/𝑘𝑚  and the total weight of Asghar and 

Farzad to be 135 kg). 

     Regarding simplicity, this task is not very long and relatively easy to understand and 

cannot be shortened if one wants to keep its context. By considering air resistance and gravity 

force, students could solve this task and reach the eureka factor when they find out whether 

Farzad and Asghar were rescued. For instance, they could use the following DE 𝑣′ = 𝑔 −

(
𝑘

𝑚
) 𝑣 (where v is the velocity of the jet, g is the acceleration of gravity, k is air resistance 

coefficient, and m is the weight of the jet), and find the distance between the jet and the 

ground after 12 seconds. Regarding generality, students by engaging in this task, could 

develop further how they could use their knowledge of DEs to solve physics problems related 

to the falling object and, more generally, how DEs could be used for calculating acceleration 

and velocity.   

Results 

The majority of students’ communications (forty-one groups (87%)) were related to 

modeling the situation using their physics knowledge, and they could not find how DEs could 

be used for solving this task: “what is the relationship between physics problem and DEs. I 

have not seen any physics problem that could be solved using DEs”. The remaining six 

groups engaged in modelling the situation using DEs, and one group was successful in doing 

so.  

Of the forty-one groups, twenty groups (42%) realized that this task  is similar to physic 

questions that can be solved using the Newton’s second law (i.e., ∑𝐹 = 𝑚𝑎); however, 

twenty-one groups (45%) used other physical formulas, such as 𝑣2 − 𝑣0
2 = 2𝑎 Δ𝑥 and 𝑥 =

1

2
 𝑔𝑡2 + 𝑣0𝑡.  

Sixteen groups out of the twenty groups (34%) identified that the sum of the jet’s vertical 

external forces is the product of the constant mass and the vertical acceleration of the jet. 

Furthermore, they realized that the resistance of the air influences the jet’s motion in the 

opposite direction, and it is proportional to the velocity of the jet.  

Nine groups (19%) first solved the task without considering the air resistance, and they 

found that Farzad and Asghar would succeed in rescuing themselves. Thus, they concluded 

that when they were rescued without air resistance, subsequently, Farzad and Asghar would 

be rescued by taking into account the air resistance because the air resistance impacts the 

motion, in the opposite direction.  

The other seven groups (15%) considered air resistance from the beginning of their 

calculations (Figure 1). Thirteen groups (28%) had difficulties considering the real-world 

factors, i.e., air resistance and its impact on velocity and acceleration of the motion. A sample 

response was: “We do not consider air resistance in physics; I do not know how to take it into 

account. So, let us solve it without air resistance”. 
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Figure 1. A sample response to the task without using DEs 

      As highlighted earlier, six groups (13%) constructed a mathematical model using DEs. These 

groups used the Newton’s second law to construct the following equation,  𝑚𝑔 − 𝑘 𝑣 = 𝑚𝑎.   Then, 

by considering 𝑎 =
𝑑𝑣

𝑑𝑡
, they formed a DE model and used the separable technique for solving the DE. 

They also calculated 𝑐 using the velocity of the jet when the engines failed (𝑡 = 0). Afterwards, these 

groups computed the jet’s velocity 12 seconds after the engines failed and used 𝑣2 − 𝑣0
2 = 2𝑎∆𝑥 to 

find ∆𝑥, in order to compare it with 6000m, the height of the jet when the engines failed. They 

concluded Farzad and Asghar were rescued after 12 seconds because the jet has not crashed in the 

lake by that time. An excerpt from a group is provided below: 

Mahdi (The names used in this paper are pseudonyms): We had this type of question in 

physics, but we did not consider the air resistance. I think we should use the Newton’s 

second law. 

Kian: yes, I agree, but we should write the equation based on the Newton’s second law, 

and consider air resistance...  

Mahdi: [after 5 minutes] We have 𝑚𝑔 − 𝑘𝑣 = 𝑚𝑎 from the Newton’s second law. If we 

consider 
𝑑𝑣

𝑑𝑡
= 𝑎, we can calculate velocity in each moment. 

Parsa: It seems reasonable. Let us solve the equation. [they solved the problem together]  

 

      mg − kv = m
dv

dt
⟹ 4000 − 5g = 400

dv

dt
⟹ 800 − v = 80 v′⟹ 10 −

v

80
= v′⟹ 

          v′ =
800−v

80
⟹ 

800−v

80
=
dv

dt
⟹ 

dt

80
=

dv

800−v
⟹ 

1

80
t =  − ln(800 − y) + c  

       By considering the conditions: t = 0 , v = 300.     

−ln 500 + c = 0 ⟹ c = ln 500 = 6.2 

1

80
t = − ln(800 − v) + 6.2

t=12
⇒   v = 363 

                         v2 − v0
2 = 2g Δx ⟹ 3642 − 3002 = 20 Δx ⟹  Δx = 2088.45 < 6000] 

          Kian: so, they were rescued. 

     The remaining five groups (11%) were not successful in solving the DE they had formed. 

Three groups (6%) had difficulty in calculating ∫
𝑑𝑣

𝑚𝑔−𝑘𝑣
. For instance, one group considered 

𝑢 = 𝑚𝑔 − 𝑘𝑣, and calculated the integral as follows: ∫
𝑑𝑢

−𝑘𝑢
= ln 𝑢 = ln

𝑚𝑔−𝑘𝑣

𝑚𝑔
. The fourth 

group found the general solution correctly; however, they made a mistake in calculating the 

particular solution when substituting the initial values (𝑡 = 0, 𝑣 ≃ 83.3 𝑚 𝑠⁄ ). The fifth 
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group found the following DE 𝑣′(𝑡) +
5

𝑚
𝑣 = 𝑔, and then represented it based on the 

derivative of 𝑦, i.e., 𝑦′′(𝑡) +
5

𝑚
𝑦′(𝑡) = 𝑔. However, they were not able to solve it. They 

highlighted that after solving the DE and founding a general solution for 𝑦(𝑡),  𝑦(12) should 

be calculated, and if it is less than 6000, Farzad and Asghar were rescued.  

Discussion and conclusion 

        This paper explores how students engaged in solving a puzzle related to first-order DEs. 

The findings indicate that many students struggled with identifying how DEs could be used 

for solving the puzzle and consequently used their physics knowledge to solve the puzzle. 

Puzzles are similar to modeling tasks (Klymchuk, 2017), and therefore, our findings could be 

compared with those studies that explored how university students engage with modeling 

tasks.  

      The findings are in line with previous studies (Britton, New, Sharma, & Yardley, 2005; 

Crouch & Haines, 2004; Klymchuck, 2010; Rowland, 2006) that reported many students are 

not capable of using their mathematical knowledge for finding an appropriate model for 

solving real-world problems. For instance, Klymchuck (2010) highlighted that “many 

students have difficulties in translating the word problem into the mathematical formula and 

then deciding which mathematics they should use” (p. 82). This might be because students 

did not have enough experience in solving modeling problems in the context of DEs (Crouch 

& Haines, 2004). As Czocher (2017) highlighted, in many traditional DEs courses, lecturers 

incline to emphasize more analytical techniques in their teaching.  

      Our anecdotal observations also showed that many lecturers in their introductory DEs 

courses do not focus enough on solving real-world problems and modeling tasks using DEs 

due to time restriction and intense curriculum.  If lecturers discuss modelling (or puzzle) 

tasks in lectures more often and include such tasks in students’ assignments and possibly 

exams, students would have more opportunities and motivation to develop their problem-

solving strategies needed for successfully engaging with mathematical modeling or puzzle 

tasks, and could also help students develop their conceptual understanding of DEs (e.g., 

Arslan, 2010; Rasmussen, 2001).  

       Engaging students with puzzle problems could create opportunities for students to 

engage in productive struggle, one of the main elements of powerful mathematical 

classrooms (Schoenfeld, 2014).  Additionally, one of the main purposes of mathematical 

service courses such as DE is preparing students for the mathematics they will encounter in 

their future courses or careers (Czocher, 2017; Falkner et al., 2012). Challenge students to use 

their mathematical knowledge to solve modelling (or puzzle) problems could help them 

develop problem-solving strategies and thinking skills needed for future careers (Falkner et 

al., 2012) or advanced courses.  
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The COVID-19 pandemic has had unprecedented ramifications on higher education. In this 
paper we describe how the pandemic impacted a community of practice of instructors involved in 
the instruction of first year mathematics courses. In particular, we use qualitative data from 
interviews and open-ended survey responses to describe how members of this community 
responded to the changes in instruction brought about by the pandemic, and in what ways the 
community adapted to support instructors in engaging in this new instructional format in order 
to sustain itself through this transition. 

Keywords: Community of practice, Graduate Teaching Assistant, COVID-19 

Student experiences in introductory mathematics courses play a significant role in retention 
at U.S. institutions. These courses often act as a barrier for STEM-intending students, resulting in 
many students switching from a STEM major to a non-STEM major, or failing to matriculate at 
all. Such impacts are more pronounced with students from historically-underrepresented 
populations (Ellis et al., 2016; Griffith, 2010; Laursen, 2019; PCAST, 2012). In response to the 
concerning impacts of these courses, numerous mathematics departments have started initiatives 
to restructure their introductory mathematics courses. In particular, several departments are 
embracing the use of student-centered practices as a way to engage students in the learning 
process and support increased student success. Since such practices are often novel to instructors, 
these efforts necessitate a parallel initiative to increase the level of support instructors receive for 
enacting such practices. Research suggests that a community of practice model may be valuable 
in helping instructors use these practices (e.g., Thompson et al., 2015; Viskovic, 2006). By 
engaging in a community of practice, instructors can access communal sources of knowledge and 
resources that enable them to make changes to their instruction.  

Unfortunately, like many change efforts, these communities of practice can devolve if 
members do not actively work to sustain the community. Sustainability may be especially 
tenuous given the unprecedented ramifications of COVID-19 on higher education. Over time, 
these communities have established ways of operating and visions for instruction that COVID-19 
rapidly disrupted. Moreover, the pandemic has exacerbated existing socioeconomic inequalities 
at the collegiate level. In one survey of students at a large public institution, lower-income 
students were reportedly 55% more likely to delay graduation because of COVID-19 than other 
students (Aucejo et al., 2020). Given that many departments are relying on communities of 
practice to increase equitable teaching and therefore improve equitable student experiences, it is 
crucial that the field learns how such communities may have responded to, and sustained 
themselves, after this major disruption in their practice. In this paper, we report on how one 
community of practice within University X’s mathematics department adapted in response to the 
sudden transition to remote learning in Spring 2020. 

Theoretical Framework 
A community of practice consists of three fundamental elements: “a domain of knowledge, 

which defines a set of issues; a community of people who care about this domain; and the shared 
practice that they are developing to be effective in their domain” (Wenger et al., 2002, p. 27). 
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The domain of a community of practice is “what gives a group its identity and distinguishes it 
from a club of friends or a network of connections between people” (Smith, Hayes, & Shea, 
2017, p. 211). A domain “consists of key issues or problems that members commonly 
experience” (Wenger et al., 2002, p. 32). It also creates a shared sense of accountability and 
contributes to the development of a practice. While the domain is the broad topic that the 
community focuses on, the practice is “the specific knowledge the community develops, shares, 
and maintains” (Wenger et al., 2002, p. 29). The practice involves a set of common approaches 
and shared standards that evolves as a “collective product” (p. 39). The community refers to the 
group of people brought together by the domain, as well as “the quality of the relationships that 
bind members” (Snyder & Wenger, 2010, p. 110). By interacting with one another, members of 
the community of practice “learn together, build relationships, and in the process develop a sense 
of belonging and mutual commitment” (Wenger et al., 2002, p. 34). Moreover, a strong 
community “encourages a willingness to share ideas, expose one’s ignorance, ask difficult 
questions, and listen carefully” (p. 28), thus creating a “social learning system that goes beyond 
the sum of its parts” (p. 34). 

The First Year Mathematics Community of Practice 
In this paper, we focus on a community of practice whose shared domain contains two key 

components: a desire to improve undergraduate mathematics education, specifically through 
increased student engagement and learning in first year mathematics courses, as well as a related 
focus on creating robust formal and informal professional development which “inspires members 
to contribute and participate, guides their learning, and gives meaning to their actions” (Wenger 
et al., 2002, p. 28). 

This community is formed by those involved in the instruction of first year mathematics 
courses, primarily including graduate students and faculty coordinators. We use the phrase first 
year mathematics courses to refer to all precalculus courses, calculus, and a first-year liberal arts 
mathematics course. The majority of instruction of first year mathematics courses at University 
X is provided by graduate students, either as recitation instructors in large lecture coordinated 
calculus courses, or as instructors of record (e.g., most precalculus courses are taught by graduate 
students as instructors of record). For the remainder of this paper we use the term graduate 
teaching assistants (GTAs) to refer to individuals who are either instructors of record or 
recitation instructors. GTAs also play a critical role in the leadership of first-year courses. 
Calculus recitation instructors are overseen by an experienced GTA who conducts regular 
meetings and observations of recitations. Similarly, precalculus courses are coordinated by a 
GTA whose main responsibilities include leading regular course meetings, writing assessments, 
and conducting observations; they also typically teach the course they are coordinating. All 
GTAs have shared offices in the same building - encouraging interactions about teaching and 
learning. First year GTAs are all placed in a large office so that they can build personal and 
professional relationships more easily. The university has also hired dedicated faculty members 
to support this community of practice - their main roles include providing professional support 
for GTAs and overseeing the coordination of these courses. Since their main role is to support 
GTAs’ growth as instructors, and ultimately the success of these courses, these faculty members 
have offices on the same floor as most instructors who teach first year courses. 

The practice of this community includes pedagogical knowledge that is used to support 
student learning in first year mathematics courses, curriculum development, assessment methods, 
and other activities related to teaching first year mathematics courses. The practice involves a set 
of common approaches and shared standards that evolves as a “collective product” (p. 39). For 

2021 Research in Undergraduate Mathematics Education Reports 57



example, all these first-year courses are taught using active learning methods. Further, GTAs are 
given explicit opportunities to shape this collective product. As an example, the department has 
employed GTAs on numerous projects to improve first year courses (e.g., writing open-access 
online textbooks for these courses, developing online homework problems, and contributing to a 
shared wikispace of detailed lesson plans).  

Purpose and Research Question 
This research is part of a mixed-methods study to understand how this first year mathematics 

community of practice adapted to support GTAs and students in first year mathematics courses 
that were impacted by the transition to remote instruction brought about by the COVID-19 
pandemic. For this paper we analyze qualitative data collected as part of this study to examine 
how GTAs influenced and interacted with the community of practice as it evolved, and to what 
extent the community was able to sustain itself. To this end, we ask the following research 
question: How was the first year mathematics community of practice impacted by the transition 
to remote instruction due to COVID-19, and how was it able to sustain itself through this 
transition? 

Methods 
We gathered data in Summer 2020 by conducting 45–60 minute semi-structured interviews 

with 12 GTAs (four of whom were coordinators) who were involved in teaching first year 
mathematics courses. We also interviewed four faculty members who were actively involved in 
mentoring or overseeing the GTAs who were involved in these courses. These faculty members 
served as either course coordinators and/or program directors of the first year courses. Our 
research questions and interview questions were informed by prior attempts at categorizing this 
institution’s community of practice, as well as literature on communities of practice and 
departmental and institutional change. Interview questions focused on how key dimensions 
relevant to a community of practice may have changed from the participant’s perspective, 
including: norms for and ways of engaging with other members of the community, instructional 
resources, and instructional practices. Recordings of the interviews were transcribed and 
analyzed in Dedoose. An initial coding scheme of theory-driven codes was developed based on 
our previous work analyzing departmental change as well as the communities of practice 
literature (DeCuir-Gunby et al., 2011). Researchers used an iterative process to refine this coding 
scheme. Once the coding scheme was stable, each researcher used this scheme to independently 
code 11 of the interviews, and reconcile in groups of at least three researchers (Creswell & Poth, 
2018). Based on this analysis the researchers believed that data saturation was achieved, and 
moved onto a second level of analysis. Individual researchers were assigned codes (e.g., 
communication) to summarize in a report that included emerging themes and supporting 
evidence (e.g., quotes, contextual data, etc.). Researchers specifically sought out competing 
pieces of evidence when developing themes related to each code (Stake, 1995).  

Once we generated this report, we read through it to understand how each dimension of the 
community of practice (domain, community, and practice) may have been impacted by the 
transition. The report was then modified to include this analysis. In addition, we triangulated the 
interview data with open-ended responses from a climate and culture survey that was 
administered to all graduate students at the beginning of Summer 2020. These open-ended 
response questions asked GTAs to comment on how COVID-19 had impacted their interactions 
with members of the department in terms of who they go to for advice, who they go to for 
instructional materials, and who they go to in order to discuss teaching. GTAs were also 
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prompted to describe how the change to an all-online teaching environment had impacted the 
community of practice of GTAs in the mathematics department at University X. The response 
rate for this survey was high amongst GTAs involved in first year mathematics courses (87%) 
and the majority of the open-ended response questions from this group were filled out (ranging 
from 69% - 82%). We read these open-ended responses and the remaining interviews for any 
evidence that supported or contradicted emerging themes. 

Findings 
Our findings are structured into two main sections: what changed in the community of 

practice and what did not change due to the transition to remote instruction. For each section, we 
describe overarching themes that emerged from our analysis of the interview and survey data and 
provide evidence of how the community of practice was impacted by changes due to COVID-19. 

What Changed 
Structure of courses. The abrupt transition to remote instruction necessitated rapid and 

significant structural changes to the department’s first year mathematics courses. The most 
immediate change was that all introductory courses were to follow an asynchronous model, as 
mandated by university leadership. This model was chosen, in part, because of concerns about 
varying levels of student access to technology. This gave department members two weeks to re-
envision how to preserve the active learning and student engagement that had been happening in 
these courses, while following the asynchronous requirement. Prior to the transition, all 
precalculus courses, as well as the first-year liberal arts mathematics course, were designed to 
support small group work on problems contained in a course packet, with small lectures 
interspersed throughout the class as necessary to guide students as they worked through these 
problems. In calculus, a similar model was followed in recitation sections. To replace this model 
most courses chose to implement discussion boards in an effort to engage students in peer 
conversations about mathematics. The discussion boards were based on content that was in the 
course packets, with the videos based on content that would normally be lectured on in the 
precalculus courses. Exams were also re-imagined to be distributed by online platforms. A 
precalculus coordinator shared, “we made our exams shorter in question length and we changed 
the type of questions we asked too.  We tried to ask things [that] were more open-ended so they 
couldn't just steal it off of Chegg,” with similar changes made in other courses.  

To enact these plans, GTAs and coordinators shared the task of developing the new 
curricular materials to cover the remaining course content under the guidance of the faculty 
members who oversaw all coordination efforts. Some GTAs relied on community developed 
instructional resources, most notably the shared wikispace, to support their new role as 
curriculum designer. For example, one GTA shared that they “used the [wikispace] more after 
the transition while preparing the videos that I made. I found it helpful to use the structure of the 
lesson plans provided for structuring my lecture videos.”  To support student engagement, course 
instructors also took on the new role of managing and encouraging online discussions, rather 
than facilitating in-person discussions. 

With the changing roles and responsibilities that followed the transition to remote instruction, 
so did the power structure in making course decisions. One GTA shared that in developing new 
curriculum materials to use across all sections, they lost control over individual instructional 
decisions. As one GTA described, before the transition, 

 I had full control over how I'm going to present this material, how I'm going to utilize 
my [learning assistant], how I'm going to interact with students, but after the transition, 
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especially because like--I mean I'm thankful that I didn't have to create material for every 
single section, but like I didn't really have much control on how the students are getting 
this information. 
Communication. After the transition, the ways GTAs communicated with other members of 

the community of practice changed dramatically. GTAs at University X had previously relied on 
informal, convenient interactions in hallways and shared offices to exchange teaching ideas and 
build personal relationships. Since this was no longer possible, the majority of GTAs reported 
interacting with fewer of their peers after the transition. One GTA explained that, “the move 
online has shifted us from a community of GTAs to various bubbles based on course.” Another 
GTA stated that the community of practice had gotten “more segmented. We don't interact 
regularly with people outside of our immediate social spheres the way we would in-person.” 
Overall, this led to a sense of isolation among many GTAs. As one GTA described, 

Well it has become a whole lot more isolating. Before, I would run into random people 
and casually have a discussion about instruction, or other GTAs would pop into my office 
and have a chat with me. Now I only have these discussions with a few close friends in 
the department. 
Informal ways of communicating were often replaced with more formal, less convenient 

modes of communication (e.g., emails, regular Zoom meetings). As one GTA coordinator 
described, communication became more scheduled, and “less impromptu. I feel like more people 
emailed me after than usual because you can always drop a quick email, kind of like how you 
can always just drop by an office.” While the number of emails may have increased, there is 
evidence that the lack of convenient ways of communicating meant that some people were less 
likely to seek advice unless they felt they had to. As one participant said, 

I haven't had the opportunity to drop by anyone's office, so I only contact them for advice 
if I have something I really need to ask; things can't come up in casual conversation and 
I'm more hesitant to email someone than drop by their office.  
That said, it seems that overall GTAs felt supported by the community, in part due to regular, 

weekly formal communication in coordination meetings and emails. For most of the courses, the 
weekly meetings played an essential role in keeping instructors connected to each other. Several 
instructors mentioned that these meetings became longer and were more important after the 
transition to remote learning. However, Calculus did not continue regular meetings for recitation 
leaders. The GTA coordinator of this course noted how interactions between recitation leaders 
notably decreased and suggested that these weekly meetings should be reinstated for future 
semesters to check in with recitation leaders and support their instruction. Recitation instructors 
expressed how this decrease in interaction hindered their ability to learn from each other, “in my 
experience, I have interacted with fellow GTAs much less frequently after the transition. That is 
a bad thing as it prevents discussion about things that work and things that don't.” 

Identity. Another major component that changed after the transition to remote learning was 
how graduate students viewed their identities as teachers. Due to the university requirement that 
courses be held asynchronously, graduate students were no longer meeting with their students on 
a regular basis. As one GTA stated, “another thing...with asynchronous courses is it takes away, 
kind of like the feeling that I am actually teaching them because even if I produce some of the 
material, I don't see them learning or how they're using it.” Moreover, under the coordination 
structure, GTAs shared the responsibility of course development tasks such as creating course 
videos and writing discussion board questions. In some courses, GTAs split into groups with 
some focusing on course videos, while others focused solely on writing exams. This distribution 
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of curriculum development led some GTAs to view themselves as more of a content manager, 
rather than a teacher. As another GTA stated,  

GTAs teaching convened courses have really been hurt by this transition from an 
experience perspective. The role of each individual GTA in teaching their students has 
gone from being of central importance to having almost no impact, since most lessons are 
now other GTAs teaching the material. 
Unfortunately, the asynchronous structure provided more opportunities for exam dishonesty. 

As a result, GTAs felt like they needed to police their students more and be on the lookout for 
cheating. There were frequent discussions in coordination meetings about how to mitigate 
cheating and administer exams online. As one GTA noted, “there were a lot of talks about how 
to properly implement an exam online that would be resistant to cheating.” This shift from a 
focus on teaching to preventing cheating was a noticeable change for some of the GTAs in terms 
of their identity as an instructor. As one GTA said,  

I also have not really been one to worry about cheating very much in the past because I 
never felt like I had to due to how the course was set up. Now that there are more 
opportunities for cheating, I feel like I have to actively do more to prevent it. 
While this focus on cheating was overall a negative experience for GTAs, many GTAs 

expressed that because of the transition, they became more aware of equity issues. As one GTA 
said, “I believe it's heightened all of our awareness of the inequality in learning resources that 
our students have simply because of the difficulties some might have in procuring a good Wi-fi 
connection.” Another GTA mentioned that what he had learned from the transition would impact 
his practices in the future, saying that he thought Zoom office hours would be helpful in the 
future in order to encourage more students to attend. 

What Stayed the Same 
A major commonality throughout many of the interviews was the desire to preserve active 

learning in these courses. As one faculty member explained, 
So the first step was then to look at the University's requirements, and in particular the 
asynchronous requirement and to think through what it meant to do math asynchronously 
while prioritizing active learning. So that was sort of our, our motivation was that it's got 
to be asynchronous and it has to get students active. 
Despite this, some GTAs felt that the transition to asynchronous instruction was incongruent 

with the established values of the community, and department as a whole. As one GTA said, 
“almost everything is asynchronous. I understand why this is. However, I feel that this goes 
against the teaching ideas of the department.” Another GTA said that the shift to remote 
instruction changed the focus of teaching to be on how content should be delivered, rather than 
focusing on interactions with students. When speaking of challenges brought about by the 
transition, almost all respondents expressed concerns about student engagement – reflecting their 
shared desire to continue to engage students in whatever ways they could.  

Another theme throughout these interviews was the desire for GTAs to retain some 
ownership of these courses. During the initial weeks of the pandemic, a faculty taskforce and the 
faculty coordinators were forced to make radical changes to course structures within a period of 
two weeks, allowing for little input by GTAs. However, once the general structure of these 
courses was established, GTA coordinators resumed their roles in the decision-making process to 
put these structures into place. Many of the GTA coordinators we spoke with expressed that they 
continued to have quite a bit of agency in directing the course and, in some cases, they felt that 
their role had expanded. Moreover, coordinators relied heavily on feedback and support from 
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GTA instructors to make changes throughout the remainder of the semester. As one GTA 
mentioned, “a lot more of the instructional materials were entrusted to the GTAs.” This 
underscores the level of trust placed on GTAs to support these courses. Although some GTAs 
felt like they lost control over individual instructional decisions, as a whole, GTAs retained a 
significant role in the operation of these courses. 

Discussion 
Despite the numerous challenges posed by COVID-19, University X’s first year mathematics 

community of practice continued to operate through the transition to remote instruction, 
providing support for GTAs as they strove to engage students in an asynchronous environment. 
Based on the analysis from this study, it is clear the community focused on retaining structures 
that allowed for increased communication (e.g., regular weekly Zoom meetings), while also 
engaging GTAs in creation of new materials which allowed GTAs to continue to collaborate 
with another about teaching, even if the actual face of teaching changed dramatically. Moreover, 
this situation allowed for some unexpected growth in GTAs as teachers. Many GTAs reported 
thinking differently (and more often) about equity issues than they had in the past, and some 
GTAs discussed how these experiences may influence their teaching in the future. Further, GTAs 
gained experience with online tools to support student engagement, and developed materials that 
can be used in future semesters (both for in-person and online courses) to support different 
instructional models. As an example, since these data were collected, these courses have 
switched to synchronous models that were heavily influenced by instructional insights from 
Spring 2020. In particular, the instructional videos that were developed in Spring 2020 were used 
to inform new video development over the summer; these videos are currently being used to 
support a flipped-classroom model in several of these courses. While we have not conducted a 
formal study on the community of practice since Spring 2020, there is strong anecdotal evidence 
that the community is still thriving, despite the challenges it has faced in the last year. One 
possible factor contributing to the resiliency of this community, that we have not yet touched 
upon, is that the community had already been formed to accommodate radical changes. In 
particular, the community is always in flux due to GTAs graduating and shifting into new roles 
within the department on a semester basis. As such, in its original formation the community of 
practice was forced to accommodate this by developing permanent structures and roles (e.g., the 
faculty members who oversee coordination of these courses). Future studies should explore this 
relationship further to better understand how the community is sustained. 
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Peer mentoring programs are one approach to improving the pedagogical development of 

mathematical sciences graduate students. This paper describes the peer mentoring experiences 

at three institutions that have implemented a multi-faceted GTA professional development 

program. Data was collected from surveys and focus groups conducted with graduate teaching 

assistants at each institution regarding mentees’ ratings of their mentors, mentors’ ratings of 

their impact on mentees, mentors’ impressions of the benefits and challenges of peer mentoring, 

and mentees and mentors’ ratings of program components related to support from mentors, their 

TA coach, program staff, and other graduate students. Most GTAs found value in participating 

in the peer mentoring program. While the mentees found their mentors to be significant to their 

own success and effectiveness, the mentors did not rate themselves as high as the mentees rated 

them with respect to their own significance in impacting the effectiveness of their mentee.  
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Graduate Teaching Assistants (GTAs) in the mathematical sciences are often responsible for 

a significant portion of the entry-level undergraduate instruction at doctoral-granting universities 

in the United States (Eller, 2017). Consequently, departments in the mathematical sciences 

across the country have been implementing instructional and professional training programs to 

enhance GTAs teaching abilities; the goal is to improve existing and future undergraduate 

mathematics pedagogy (Gutmann et al., 2005; Ellis, 2014). In an assessment of a GTA 

professional development program at a large doctoral-granting institution, Ho and Pilgrim (2020) 

found that most of the participants envision teaching as a significant, if not, the main role in their 

future careers; furthermore, all participants pointed out that along with the positive outcomes 

already happening in their classes because of the pedagogical training, their communication 

skills and teaching confidence were meliorating as well.  

Peer mentoring is one of the formal components that institutions have introduced in order to 

help develop GTAs teaching and research abilities (Flores-Scott & Nerad, 2012). Based on the 

classical mentor-apprentice model, Treston (1999) describes mentorship as a “relationship in 

which the mentor provides support, advice, feedback and guidance” to the mentee. Moreover, 

mentor-mentee conversations, especially after a class observation, are highly valued by GTA 

peer-mentors as a gateway to constructive criticism (Yee & Rogers, 2017). Additionally, 

Browne-Ferrigno and Muth (2012) explain that peer relationships in higher education consist of 

mutual support and sharing of resources. Fittingly, it has been found that peer-mentoring 

relationships among graduate students help them acquire knowledge and grow professionally 

(Lorenzetti et al., 2019). Considering the impact of peer-mentoring in GTAs’ pedagogical 

training, it is imperative for universities to pursue its betterment and research its foundation. 
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Belnap and Allred (2009) reported the need for research that explores the reasons why 

graduate assistant development programs impact their participants and how it happens, and not 

just the outcomes of this impact. Hence, this paper explores mentees’ and mentors’ perceptions 

of the peer mentoring program during the first year of the program implementation and during 

the March 2020 transition to emergency remote instruction due to the COVID-19 pandemic.  

semester.  

This study aims to address this need by examining the experiences of mathematics and 

statistics GTAs at the three institutions where PSUM-GTT operates, leading to the three research 

questions that guided this study. 

1. How did mentees and mentors perceive the mentor’s impact on the mentee’s success as 

an educator and on their transition to remote instruction and/or tutoring?  

2. What reasons did the mentees and mentors provide for their ratings? 

3. What benefits and challenges did mentors identify in terms of their own development as 

an educator? 

 

Theoretical Framework 

The PSUM-GTT program was based on a social theory of learning by Wenger and Lave 

(1991). We claim that mentors and mentees learn and grow through their membership in 

intersecting communities of practice, namely the communities of mentors and of mentees, both 

of which are nested within the departmental teaching and learning community. Professional 

learning communities in educational settings have been shown to have a positive impact on both 

pedagogy and on student outcomes (Vescio, Ross, & Adams, 2008). As GTAs meaningfully 

engage with peers and faculty mentors in these communities, they develop their pedagogical 

expertise and refine their practices (Lave & Wenger, 1991; Chi, 2006). Consequently, GTAs 

become more active in the social-professional communities of educators within their 

departments, and they shape their identities in relation to those communities (Wenger, 1998). We 

also posit that the impact of participating in these communities of practice is magnified for those 

GTAs who serve as both mentees and as mentors, as the viewpoints obtained through their roles 

provides varied insights into the practice of teaching. Relevant here, we also believe that serving 

as a mentor contributes to the development of the GTAs as future professional educators.   

The Context: The PSUM-GTT Program 

The Promoting Success in Undergraduate Mathematics Through Graduate Teaching 

Assistant Training (PSUM-GTT) program is a comprehensive graduate teaching assistant (GTA) 

training program in mathematical sciences that was designed and refined at one institution and is 

being replicated at two peer institutions. The program components include a first-year teaching 

seminar, peer mentoring and support from a peer TA coach, a Critical Issues in STEM Education 

seminar, and K-12 outreach to inform the GTA’s understanding of the paths that students take 

before entering the university. The program goal is to strengthen the teaching capabilities of 

mathematical sciences GTAs in order to improve the academic outcomes of the undergraduates 

that they teach. Intended outcomes include GTAs’ increased preference for student-focused 

instruction, satisfaction with their teaching training and mentoring, increased attention to equity 

and inclusive pedagogy in the classroom, and decreased rates of their undergraduate students 

earning grades of D or F or withdrawing. 

2021 Research in Undergraduate Mathematics Education Reports 65



 

Peer Mentor Training 

The peer mentor training offered in the PSUM-GTT program is conducted every fall 

semester and requires approximately 8-10 hours of time spread over two asynchronous training 

modules and up to 3 synchronous meetings. The mentor training goals are to (a) clarify the role 

and purpose of the mentor, (b) provide training that will support mentors in fostering a good 

working relationship with mentees, (c) provide tools that promote conversations and reflection 

about teaching and learning, (d) provide training in effective coaching tools and techniques, (e) 

train mentors to conduct teaching observations and provide effective feedback, and (f) provide 

support and mentoring to the mentors. 

The coaching tools that are demonstrated in the training include: (a) supporting GTAs in 

considering and being open to new perspectives about teaching and learning, (b) bringing 

awareness to how people listen and to introduce the concept of listening like our lives depend on 

it, (c) teaching mentors how to seek permission before giving coaching, (d) training mentors in 

giving specific and concrete praise to their mentees, (e) teaching mentors how to hold space 

without giving coaching so that mentees can process their struggles, burdens, or frustrations, and 

(f) training mentors in effective goal setting. 

Method 

Data Collection 

At the end of the spring 2020 semester, all 46 graduate students participating in the program 

completed an online survey in Qualtrics that addressed mentoring relationships, spring 2020 

teaching experiences (including a focus on active learning and equity in the classroom), and 

overall impression of the program components. This paper focused only on the following survey 

items relating to mentoring: a pair of Likert survey items that asked mentees and mentors to rate 

the mentors influence on success as an educator and transition to remote instruction using a 5-

point scale, the open-ended questions that immediately followed these Likert items that 

prompted the respondents’ rationale for ratings, one open-ended item each about positive and 

negative impacts of being a mentor, an open-ended and a single Likert item about overall 

perception of the mentoring component of the larger PSUM-GTT program.  

Participants 

There were 11 graduate student mentors, 12 mentees, and 1 TA coach at Institution A; 8 

graduate student mentors, 3 faculty mentors, 12 mentees, and 1 TA coach at Institution B; 10 

graduate student mentors and 12 mentees at Institution C, all of whom chose to participate in the 

comprehensive training program. At Institution A, 56.5% of participants identified as male and 

43.5% identified as female. Approximately 65.2% of participants were international students. At 

Institution B, 46.5% of participants identified as male and 43.5% identified as female. 

Approximately 13.0% of participants were international students. At Institution C, 45.5% of 

participants identified as male and 54.5% identified as female. Approximately 40.9% of 

participants were international students. All three universities are considered to be research-

intensive. 

 

Analysis 

Descriptive statistics (e.g., means and percentages) were used to summarize Likert survey 

items. Thematic analysis (Braun & Clarke, 2006) was used to analyze the open-ended survey 

responses.  
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Results 

Mentees’ Ratings of Mentor’s Influence 

Approximately 67% of mentees at Institutions A and C and 83.4% at Institution B rated their 

mentor as being at least somewhat significant in their effectiveness as a GTA (i.e., instructor of 

record, recitation section leader, tutor) during the 2019-2020 academic year (see Table 1). At 

Institutions B and C, mentees’ ratings with regards to their mentors’ influence on their transition 

to remote instruction were lower. Approximately 50% of mentees at Institution B and 33% at 

Institution C rated their mentor as being at least somewhat significant in their transition to 

remote instruction during the Spring 2020 semester due to the Covid-19 pandemic.  

 

Table 1. Mentees’ Rating of Mentor’s Significance on Mentees’ Effectiveness 

Response 

Category 

Overall, how significant do you believe your mentor was to your success ... 

as a GTA this school year? in your transition to remote instruction? 

Inst. A Inst. B Inst. C Inst. A Inst. B Inst. C 

Not at all 

significant 

1 

(8.3%) 

 1 

(8.3%) 
 0 

 1  

(8.3%) 

 4 

(33.3%) 

 1 

(8.3%) 

Not very 

significant  

  3 

(25.0%) 

 1 

(8.3%) 
 0   2 (16.7%) 

  2 

(16.7%) 
 3 (25.0%) 

Somewhat 

Significant   

 3 

 (25.0%) 

 3 

(25.0%) 

 1 

(8.3%) 

4 

(33.3%) 

 2 

(16.7%) 

 1 

(8.3%) 

Significant   3 

(25.0%) 

 2 

(16.7%) 

  6 

(50.0%) 
 2 (16.7%) 

 3 

(25.0%) 

2 

(16.7%) 

Very 

significant 

  2 

(16.7%) 

 5 

(41.7%) 

 1 

(8.3%) 
  2 (16.7%) 

 1 

(8.3%) 

 1 

(8.3%) 

 

When reporting reasons for their ratings of their mentor’s influence on their success as GTA 

during the 2019-2020 school year, positive impacts were attributed to the mentor giving 

advice/help (n = 9), providing encouragement (n = 5), and providing feedback on teaching (n = 

3). While some mentees reported that there wasn’t much communication with their mentor after 

the switch to remote instruction (n = 6) and/or that they relied on or were supported more by a 

course coordinator than their mentor during the transition (n = 2), others still found their mentor 

to be a source of advice (n = 4) or support and encouragement (n = 4). The three representative 

quotes below illustrate why mentees believed their mentors had a positive impact on their 

success as GTAs and in their transition to remote instruction. A mentee from Institution A stated, 

“I got help from my mentor at any time and also she always encouraged me.” One mentee from 

Institution B reported, “My mentor was fantastic. [...] He also gave great feedback on how I can 

improve in the classroom.” Another mentee from Institution C stated, “My mentor was a 

constant source of encouragement and reassurance, especially in the shift to remote instruction.” 
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Mentors’ Ratings of Their Own Influence on Mentees 

While 83.3% of mentors at Institution C rated themselves as being at least somewhat 

significant in their mentee’s effectiveness as a GTA during the 2019-2020 academic year, far 

fewer mentors rated themselves in a similar manner (58.4% and 33.4% at Institution A and B, 

respectively) (see Table 2). When discussing their reasons for how they rated their own 

influence, some mentors were more confident in their impact, such as one mentor at Institution B 

who replied, “I felt like I saw my mentee improve in concrete ways throughout the year.” Some 

mentors reported that they specifically helped their mentees via answering questions and 

addressing concerns (n = 4), sharing ideas (n = 1), providing guidance about social or cultural 

aspects related to teaching (n = 1), and building the mentee’s confidence (n =1). However, some 

(n = 4) believed that their mentees would have succeeded either way. For example, one mentor at 

Institution B stated, “My mentee is a good teacher, and I think she would still be a good teacher 

without me” and one mentor at Institution C reported, “My mentee was already a good teacher, 

but through our conversations, I believe we were both able to improve.” 

 

Table 2. Mentors’ Rating of Their Own Significance on Mentees’ Effectiveness 

Response 

Category 

Overall, how significant do you believe your mentoring was to your 

mentee’s success ... 

as a GTA this school year? in the transition to remote instruction? 

Inst. A Inst. B Inst. C Inst. A Inst. B Inst. C 

Not at all 

significant 

1 

(8.3%) 

 1 

(8.3%) 
 0 

 5 

(41.7%) 

 4 

(33.3%) 
 0 

Not very 

significant  

  2 

(16.7%) 

3 

(25.0%) 
 0 

  1 

 (8.3%) 

  2 

(16.7%) 
  7 (58.3%) 

Somewhat 

Significant   

 4 

(33.3%) 

2 

(16.7%) 

8 

(66.7%) 

2  

(16.7%) 

 2 

 (16.7%) 

 1 

 (8.3%) 

Significant  
 3 

(25.0%) 

 2 

(16.7%) 

  1 

(8.3%) 

 4 

(33.3%) 
 0 

1  

(8.3%) 

Very 

significant 
  0  0 

 1 

(8.3%) 
 0  0 

 1  

(8.3%) 

 

Mentors' ratings of their own impact on their mentee’s transition to remote instruction during 

the pandemic were lower, with approximately 50% at Institution A, 16.7% at Institution B, and 

24.9% at Institution C rating themselves as being at least somewhat significant. Some mentors (n 

= 4) were able to see that they helped their mentees during this time, although the amount of 

credit they gave themselves varied. For instance, one mentor at Institution B said, “I was able to 

provide [mentee] with a little help and resources, but I don't feel I made a big impact.” Another 

mentor at Institution A shared, “[The impact during the transition] is significant in terms of 

learning from each other by sharing experience, ideas, and some problems.” 
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Some mentors felt they had less of an impact on their mentees during the transition to remote 

instruction. There were several reasons for this, including either the mentee or mentor not 

teaching during the spring semester (n = 4) or already teaching fully online (n = 1), the 

department faculty and staff providing the bulk of the support during the transition (n = 4), and 

diminished frequency of interaction (n = 6). For example, one mentor at Institution C reported, 

“[...] she did not have many issues, and she had a course coordinator who took over a lot of her 

duties, so she was able to make the transition smoothly without much help from me.” Another 

mentor at Institution B said, “We didn’t really meet very much once remote instruction started.”  

Mentors’ Perceptions of Benefits and Challenges of Mentoring 

Mentors shared that they believed that being a mentor in the program had a positive impact 

on them as instructors as they learned from their mentees (n = 10), reflected on their own 

teaching and/or growth (n = 13), grew their network (n = 2), and improved their leadership 

and/or listening skills (n = 3). A mentor at Institution A said, “I grew as a teacher. [...] this made 

me reflect on my teaching and make changes on it.” One mentor at Institution B stated, “I always 

think there is a positive impact on my teaching by being a mentor. The act of mentoring and the 

process of thinking about teaching and how it could be better can always help.” One mentor at 

Institution C reported, “It was fantastic. I was able to learn from someone by teaching.”  

Most mentors reported no negative impacts of the mentoring program. While two mentors 

mentioned the time commitment as a cost, neither indicated that the negatives outweighed the 

benefit. While one mentor said that having to assess why they taught the way that they did shook 

their confidence some, the other saw that same personal reflection as a positive. For example, 

one mentor at Institution C reported, “I was forced to question everything I did as a teacher, [...] 

In doing so I found habits that needed pruning, and also became more willing to attempt diverse 

strategies in the classroom.” 

Ratings of How Beneficial the Peer Mentoring Was to Mentors and Mentees  

Mentees and mentors were asked to rate how beneficial the mentoring component of the 

training program was to them. Of those that answered the question, approximately 83.3% of the 

mentors at Institution A, 75.0% at Institution B, and 100% at Institution C rated the mentoring 

component as at least somewhat beneficial to them. Similarly, approximately 83.3% of the 

mentees at Institution A, 100% at Institution B, and 100% at Institution C rated the mentoring 

component as at least somewhat beneficial to them. 

Discussion and Implications  

Overall, the majority of mentors and mentees rated the peer mentoring component of the 

training program to be at least somewhat beneficial to them, which is consistent with previous 

literature about peer mentoring programs. The process of actively reflecting on their teaching in 

these intersecting learning communities, both independently and with their mentor/mentee 

counterpart, supported the refinement of the pedagogical practice of both the mentee and the 

mentor. Based on feedback from the mentees and mentors, the program had positive impacts on 

the mentees’ success as GTAs and their transition to remote instruction when the COVID-19 

pandemic started. The mentors additionally reported positive effects on their own growth as an 

instructor, as well as on their leadership and listening skills. While a practical concern related to 

GTA training and mentoring is the time commitment, few students mentioned this in their 

responses. Consequently, mentors and mentees alike belong to a departmental community where 

their teaching practices improve, and their growth occurs throughout their time as mentees and 
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later as mentors, even during unexpected circumstances such as the sudden transition to remote 

instruction due to the COVID-19 pandemic. 

While mentees felt that their mentors made significant contributions to their teaching 

effectiveness, many mentors, in particular at Institution B, didn’t feel that their contribution was 

as significant as their mentees gave them credit for. All of the mentors from Institution B had 

been a mentee prior to serving as a mentor and all but two had served as mentors in prior years. 

It is possible that these prior experiences of being mentored and/or being a peer mentor over 

multiple years, which are different communities of practice, may be adding another filter through 

which some of the mentors view their contribution to the development of their mentees progress 

as an educator and their own identities as effective mentors. The issue of self-efficacy as a 

mentor is interesting and warrants additional research. How is prior experience in the program 

either serving as a mentor or participating as a mentee impacting mentor self-efficacy? In what 

ways are mentors with low self-efficacy as a mentor, engaging differently with their mentees? 

What impact, if any, is that having on mentees? What can be done to improve the self-efficacy of 

mentors?  
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Sense of Belonging in Two First-Semester Calculus Pathways 

 

Casey Griffin 

University of Delaware 

Retention in Science, Technology, Engineering, and Mathematics (STEM) continues to be a 

problem in the U.S. Prior research indicates that students leave STEM due to poor instruction 

and low sense of belonging in introductory STEM courses. Incorporating active learning into 

these courses, especially Calculus, has potential to support students in developing a greater 

sense of belonging and staying in STEM. This study investigates students’ sense of belonging in 

two versions of introductory Calculus – a standard course and a non-standard course infused 

with active learning. Results indicate that students in the two courses recognized differential 

opportunities to engage in active learning. While there was no significant change in students’ 

sense of belonging over the course of the semester in either course, students in the active 

learning course reported significantly higher sense of belonging than students in the standard 

course, both early in the semester and at the end of the semester. 

Keywords: undergraduate calculus, active learning, sense of belonging 

Problem 

The U.S. has a retention problem in undergraduate STEM. Less than half of all STEM-

intending students complete a STEM degree, and the students who leave STEM are 

disproportionately women and students of color (Chen et al., 2013; PCAST, 2012; Seymour & 

Hunter, 2019). To expand and diversify the pool of STEM graduates, the PCAST’s 2012 report 

called for adoption of empirically validated teaching practices at the undergraduate level, 

especially in the first two years of STEM coursework. And yet almost 10 years later, we continue 

to lose students throughout the STEM pipeline. 

Students who leave STEM often cite poor instruction in introductory STEM courses as a reason 

for leaving — citing Calculus in particular (Ellis et al., 2014; Seymour & Hunter, 2019). In fact, 

students are less tolerant of poor teaching now than they were 20 years ago (Seymour & Hewitt, 

1997; Seymour & Hunter, 2019). Students reported “good teaching” as engaging and interactive 

and “bad teaching” as boring and non-interactive (Seymour & Hunter, 2019).  

In addition to concerns about pedagogy, students who leave STEM also report a low sense of 

belonging in (Rainey et al., 2018; Seymour & Hunter, 2019; Shapiro & Sax, 2011). A student’s 

sense of belonging is their “sense of being accepted, valued, included, and encouraged by others 

(teachers and peers) in the academic classroom setting and of feeling oneself to be an important 

part of the life and activity of the class” (Goodenow, 1993, p. 25). Students with low sense of 

belonging are more likely to leave STEM, and these students are disproportionately women and 

students of color (Rainey et al., 2018; Seymour & Hunter, 2019). 

Calculus can be an especially critical leak in the STEM pipeline. It is required of most STEM 

majors, and is usually taken in students’ first year. Thus, Calculus is often one of students’ first 

experiences with undergraduate STEM coursework. In addition, it is often a prerequisite or 

corequisite for other STEM courses, and so students who perform poorly may be prevented from 

taking other courses in their major. Consequently, students’ experiences in Calculus can be 

influential in their decision to persist in STEM (Ellis et al., 2014; Seymour & Hunter, 2019). 
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Relation to Literature and Conceptual Framework 

This study investigates relationships between students’ sense of belonging and opportunities 

to engage in active learning in Calculus. In this section, sense of belonging and active learning are 

defined and a theoretical argument linking active learning and students’ sense of belonging is 

presented. 

Students’ Sense of Belonging 

Sense of belonging refers to the level at which one feels connected to a particular environment, 

or feels accepted and appreciated by others in that environment (Rosenberg & McCullough, 1981). 

According to Strayhorn (2019), sense of belonging is a basic human need and other processes like 

listening to a lecture and studying for a test cannot be completed until the basic need is met. Thus, 

sense of belonging can influence how students interact in a classroom. This study adopts 

Goodenow’s (1993) definition of sense of belonging as the “sense of being accepted, valued, 

included, and encouraged by others (teachers and peers) in the academic classroom setting and of 

feeling oneself to be an important part of the life and activity of the class” (p. 25).  

Researchers have studied students’ sense of belonging in math or STEM courses using a range 

of approaches. For example, Good et al. (2012) developed a Mathematical Sense of Belonging 

(MSoB) instrument to measure students’ sense of belonging in mathematics. A factor analysis 

revealed five distinct factors contributing to one’s sense of belonging: Acceptance (e.g., “I feel 

like I fit in”), Affect (e.g., “I feel calm”), Desire to Fade (e.g., “I wish I could fade into the 

background”), Trust (e.g., “I trust my instructors to be committed to helping me learn”), and 

Membership (e.g., “I feel that I belong to this class”). Rainey et al. (2018) conducted interviews 

with students to investigate their sense of belonging in STEM. Students’ reasons for feeling they 

did or did not belong were categorized into four central themes: interpersonal relationships, science 

identity, personal interest, and competence. Lahdenperä et al. (2020) conducted a study in which 

students completed the MSoB survey and responded to two additional items asking about positive 

and negative factors contributing to their sense of belonging in math. Based on their analyses, 

Lahdenperä et al. expanded Rainey et al.’s framework, identifying learning environment as a 

distinct category influencing students’ sense of belonging. Here, learning environment refers to 

“student perceptions of elements in the teaching practices, such as lectures and small group 

discussions” (p. 484).  

Research indicates that students with a higher sense of belonging are more likely to persist in 

STEM, and that women and students of color are less likely to develop a strong sense of belonging 

in STEM than their white male classmates (Rainey et al., 2018; Seymour & Hunter, 2019; Shapiro 

& Sax, 2011). Good et al. administered their survey to students at a highly selective university and 

found sense of belonging in math to be a significant predictor of intent to study math in the future. 

Rainey et al. (2018) found students’ sense of competence and ability to form interpersonal 

relationships to be most influential for students’ decisions to persist in STEM.  

Active Learning and Its Potential Connection to Sense of Belonging 

Active learning can be broadly conceived of as any instruction that engages students in the 

learning process (Prince, 2004). More specifically, active learning can be defined as engaging 

students in “the process of learning through activities and/or discussion in class, as opposed to 

passively listening to an expert” (Bonwell & Eison, 1991, p. iii). Examples of ways instructors can 

provide active learning opportunities are facilitating whole-class discussions, engaging students in 

group work, and using student response systems such as clicker polls. Research indicates that 

students who have opportunities to engage in active learning attain higher levels of achievement, 
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self-efficacy, sense of mastery, and persistence than students who do not have such opportunities 

(Freeman et al., 2014; Lahdenperä, Postareff, & Rämö, 2017; Michael, 2006; Prince, 2004; 

Rasmussen et al., 2019; Salomone & Kling, 2017; Watkins & Mazur, 2013).  

Instruction that incorporates active learning provides students with a more engaging and 

interactive learning experience and is linked to higher achievement and self-efficacy, supporting 

students’ sense of competence. Instruction that incorporates active learning provides opportunities 

for students to interact with their instructors and/or classmates and thus supports students in 

forming interpersonal relationships. Thus, by bolstering students’ sense of competence and ability 

to form interpersonal relationships, active learning has the potential to sustain or strengthen 

students’ sense of belonging. Specifically, this study hypothesizes that having multiple 

opportunities to engage in active learning in Calculus will be linked with a greater sense of 

belonging.  

This study examines students’ sense of belonging in two versions of Calculus I offered at the 

same post-secondary institution. One version is a standard large-lecture Calculus course taught 

primarily by lecture; the other is a non-standard, integrated Calculus course taught using active 

learning instructional strategies. The purpose of this study is to better understand students’ sense 

of belonging in Calculus, and how it may be related to opportunities to engage in active learning. 

Specifically, this study addresses the following research questions in the context of these two 

versions of Calculus: (1) How do students in each course characterize the instruction they 

experience? (2) To what extent does students’ sense of belonging change over the course of a 

semester?, and (3) How does students’ sense of belonging in the two courses compare? 

Research Methodology 

Setting and Participants 

This study was conducted at a mid-sized R1 research university in the mid-Atlantic region of 

the U.S. during the Fall 2020 semester. The university offers two pathways for Calculus I. One is 

a standard one-semester Calculus course. Each semester, multiple sections of this course are 

offered, taught by a mix of permanent and temporary faculty. The course is coordinated in the 

sense that there is a common textbook (Stewart, Clegg, & Watson, 2021) and common exams. To 

enroll, students must earn a certain minimum score on the university’s math placement test. 

Students in the course are typically freshmen intending to major in STEM. In the Fall 2020 

semester, eight sections were offered, taught by four different instructors, with each section capped 

at 100 students. Typically, this course is taught in a large auditorium with lecture as the primary 

means of instruction. However, due to the COVID-19 pandemic, this course was taught in a 

synchronous virtual format over Zoom during the Fall 2020 semester. For the remainder of this 

paper, this course will be referred to as C-T.  

The second pathway through Calculus I is a two-semester Integrated Precalculus and Calculus 

course designed to incorporate multiple opportunities for active learning. The first semester of the 

course, which is the focus of this study, develops differential Calculus, weaving in necessary pre-

calculus topics as they arise. The second semester (which is not the focus of this study) develops 

integral Calculus, again weaving in necessary pre-calculus topics. Each semester, multiple sections 

of the course are offered, taught by permanent faculty. The course also uses the Stewart et al. 

textbook, as well as a second textbook designed specifically for integrating calculus and pre-

calculus topics. The course is highly coordinated. In addition to common textbooks and exams, 

the instructors teach from common lesson plans specifying which problems students work on each 

class, and whether they will be discussed as a whole class or in small groups. To enroll, students 
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must earn a certain minimum score on the math placement test; however, this minimum is lower 

than that required for C-T. Students are typically freshmen who need Calculus for their intended 

major but have not mastered all of the pre-calculus prerequisites. In the Fall 2020 semester, two 

sections were offered, taught by two different instructors, with each section capped at 50 students. 

Typically, this course is taught in a special classroom in which students sit at circular tables in 

groups to enable opportunities to work on math problems together during each class session. 

However, due to the COVID-19 pandemic, this course was taught in a synchronous virtual format 

over Zoom during the Fall 2020 semester. To maintain opportunities for group work, Zoom’s 

breakout room functionality was used in most class meetings. For the remainder of this paper, this 

course will be referred to as C-A.  

Participants were students enrolled in C-T or C-A in the Fall 2020 semester. Only one C-T 

instructor (who happens to use some active learning strategies in her lectures, especially student-

response polls) was able to have students participate. All 198 students enrolled in her two sections 

of C-T and all 91 students enrolled in the two sections of C-A received an email inviting them to 

participate. All participants were asked to complete two surveys, one administered early in the 

semester and one near the end of the semester. For this study, only students who were freshmen 

and completed both surveys were considered, resulting in a final sample size of 114 C-T students 

and 69 C-A students. Table 1 provides the demographic background of the final set of participants. 

Most C-T students (~90%) reported they had taken Calculus in high school, whereas 60% of C-A 

students reported they had never taken Calculus before. 

 
Table 1. Student demographics for C-T and C-A. 

Characteristic C-T C-A 

 n % n % 

Gender 

   Female 

   Male 

   Non-binary/Third Gender 

Ethnicity 

   Hispanic, Latinx, or Spanish 

   Not Hispanic, Latinx, or Spanish 

Race 

   White/Caucasian 

   Black or African American 

   Asian 

   American Indian or Alaskan Native 

   Middle Eastern 

   Other 

 

44 

70 

0 

 

10 

93 

 

79 

6 

18 

1 

0 

5 

 

39 

61 

0 

 

9 

82 

 

69 

5 

16 

1 

0 

4 

 

37 

31 

1 

 

11 

54 

 

57 

8 

5 

2 

1 

2 

 

54 

45 

1 

 

16 

78 

 

83 

12 

7 

3 

1 

3 

Data Collection 

Students from two sections of each course completed two surveys during the 14-week 

semester. The first survey took place in the third week of the semester, just after the drop/add 

deadline to attempt to avoid participant mortality. The second survey was distributed in the 

eleventh week of the semester. The two surveys were nearly identical. The first survey was 

designed to capture students’ early sense of belonging, after just a few weeks of instruction. The 
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second survey was designed to capture students’ sense of belonging towards the end of the course, 

and to collect information about the instructional strategies they had experienced in the course.  

The surveys were distributed and completed electronically using Qualtrics, a web-based survey 

tool. Good et al.’s (2012) MSoB instrument was incorporated into each survey. The MSoB portion 

consists of 30 Likert items, forming five factors that contribute to students’ sense of belonging in 

a mathematics community. Additionally, students were asked to indicate how often they 

experienced each of eight instructional strategies, and to identify the three most frequently used 

strategies. The instructional strategies were chosen based on typical active learning instructional 

practices (e.g., group work), as well as strategies known to be used in at least one of C-T or C-A. 

See Table 2 for the full list of instructional strategies. In C-T, 80% (N=158) completed the first 

survey and 77% (N=153) completed the second survey. In C-A, 94% (N=86) and 88% (N=80) 

completed the first and second survey, respectively.  

Data Analysis 

 To capture students’ perceptions of the instructional strategies used in each course, 

frequencies were computed to determine the percentage of students who reported experiencing 

each strategy. These proportions were tested with a two-sample proportion z-test with p<0.05 to 

determine significant differences between strategies used in the two courses. Remaining analyses 

were conducted using IBM SPSS Statistics 27 software. Mean responses were calculated for 

overall sense of belonging and for each factor of the MSoB. Dependent samples t-tests were 

conducted to determine significant differences between responses on the first and second surveys; 

independent samples t-tests were used to determine differences in mean responses between C-T 

and C-A students with p<0.05. The effect size of each significant difference was calculated using 

Cohen’s (1988) benchmarks for d (≤0.20 small effect, 0.50 medium effect, ≥0.80 large effect).  

Results 

Instruction 

 To determine how students perceived their Calculus instruction, students were presented with 

eight instructional strategies and asked to identify the three most frequently used. Table 2 presents 

the percent of students in each course who chose each strategy as frequently used. 

 
Table 2. Percent of C-T and C-A students selecting each instructional strategy as one of the most frequently used. 

 C-T C-A z Cohen’s d 

Students work on math in groups 

Students work on math individually 

Instructor asks for student responses 

Instructor lectures 

Instructor encourages students to ask questions 

Instructor encourages students to talk to each other 

Students present their work to the class 

Students answer in-class polls 

21% 

87% 

16% 

86% 

45% 

3% 

4% 

25% 

97% 

9% 

80% 

45% 

48% 

14% 

3% 

4% 

9.81*** 

-10.19*** 

8.40*** 

-5.73*** 

0.24 

-- 

-- 

-- 

1.84 

1.79 

1.39 

0.9 

0.06 

-- 

-- 

-- 

Asterisks are used to denote the p-values (* for p<0.05, and *** for p<0.001 significance levels). Entries with “—” 

denote tests that could not be conducted due to a small sample size. 
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C-T students were significantly more likely to report lecture and working individually on math as 

the predominant strategies. In contrast, C-A students were significantly more likely to report 

working in groups and being asked to share their responses as the predominant instructional 

strategies. These data indicate that students perceived very different types of instruction in the two 

courses, with C-A students reporting more opportunities for active learning.  

Sense of Belonging 

Students’ responses to the MSoB portion of the survey were used to measure their sense of 

belonging. Table 3a presents the mean scores on each survey for each course. There are two main 

results. First, there was no significant change in students’ sense of belonging or its associated 

factors between the first and second survey for either course. Second, C-A students reported 

significantly higher sense of belonging than C-T students, both early in the semester and at the end 

of the semester, with medium effect sizes. Additionally, C-A students had significantly higher 

averages on each of the five factors associated with sense of belonging. Table 3b presents the 

results from the tests for significance and effect size.  

 
Table 3a. Mean scores (and standard deviations) on the MSoB items for C-T and C-A. 

 C- T Survey 1 C-T Survey 2 C-A Survey 1 C-A Survey 2 

Sense of Belonging 

Acceptance 

Affect 

Desire to Fade (-) 

Trust 

Membership 

5.95 (1.21) 

6.19 (1.24) 

5.75 (1.59) 

5.52 (1.74) 

6.18 (1.45) 

5.88 (1.64) 

5.95 (1.34) 

6.18 (1.41) 

5.76 (1.60) 

5.55 (1.66) 

6.23 (1.52) 

5.85 (1.62) 

6.72 (0.99) 

6.96 (1.02) 

6.34 (1.41) 

6.09 (1.31) 

7.16 (0.98) 

6.95 (1.15) 

6.86 (1.03) 

7.10 (0.98) 

6.53 (1.42) 

6.25 (1.50) 

7.22 (0.99) 

7.09 (1.12) 

 
Table 2b. Dependent and independent T-test comparisons. 

 Dependent Samples t-Test Independent Samples t-Test 

 C-T C-A Survey 1 Survey 2 

 t(113) Cohen’s 

d 

t(68) Cohen’s 

d 

t(181) Cohen’s 

d 

t(181) Cohen’s 

d 

Sense of Belonging 

Acceptance 

Affect 

Desire to Fade (-) 

Trust 

Membership 

0.08 

-0.09 

0.09 

0.26 

0.49 

-0.27 

0.01 

-0.01 

0.01 

0.02 

0.04 

-0.02 

2.13* 

1.88 

1.83 

1.41 

0.55 

1.05 

0.14 

0.14 

0.14 

0.11 

0.06 

0.12 

4.68*** 

4.38*** 

2.52* 

2.52* 

5.45*** 

5.20*** 

0.71 

0.67 

0.39 

0.38 

0.83 

0.79 

5.17*** 

5.20*** 

3.30*** 

2.88* 

5.31*** 

6.14*** 

0.79 

0.79 

0.50 

0.44 

0.81 

0.94 

Asterisks are used to denote the p-values (* for p<0.05, and *** for p<0.001 significance levels). 

Discussion 

This study examined students’ sense of belonging in two different Calculus learning 

environments at the same institution. Results indicate that there were no significant changes in 
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sense of belonging or its associated factors in either course. However, C-A students consistently 

reported a higher sense of belonging than C-T students, both early in the semester and at the end 

of the semester. Several hypotheses and areas for further investigation emerge from these results. 

What factors might account for the higher sense of belonging in C-A students? Although the 

design of this study does not allow for causal claims, several hypotheses emerge. C-A students did 

report experiencing more frequent use of active learning strategies than the C-T students. 

Specifically, C-A students reported the two most common instructional strategies were working 

on math problems in groups and being asked by the instructor to share their thinking. Regular 

group work ensures students have opportunities to get to know one another and discuss their ideas, 

thus enabling them to form interpersonal relationships. Having opportunities to share their thinking 

with the instructor supports their ability to form a relationship with their instructor. Both 

instructional strategies have the potential to foster a safe learning environment in which students 

feel accepted and “belonging.” In contrast, the two most common instructional strategies reported 

by C-T students were lecture and working on math individually, suggesting that students had fewer 

opportunities to form relationships with their peers and their instructor. The smaller class size in 

C-A may have further enabled students to form relationships with their instructor and their peers. 

Additionally, the fact that C-A incorporated prerequisite Pre-calculus topics and only covered 

differential Calculus may have contributed to a higher sense of competence in the C-A students. 

Further research is needed to tease out the differential effects of instructional and curricular 

features of the courses. However, the findings do align with Lahdenperä et al.’s (2020) argument 

that learning environments that enable social interaction support students’ sense of belonging in 

the mathematical community. 

The majority of C-T students reported having taken Calculus previously; the majority of C-A 

students reported never taking Calculus before. Given this, one might assume that C-T students 

would report a higher sense of competence, and thus sense of belonging in Calculus, than C-A 

students, at least early in the semester. Interestingly, the results indicate the opposite was true — 

C-T students reported significantly lower sense of belonging than C-A students, both early in the 

semester and at the end of the semester. Perhaps having taken Calculus before but needing to take 

it again in college had a negative impact on C-T students’ sense of competence. Similarly, given 

that C-A students had placed into a “lower” version of Calculus, one might assume they would 

have a lower sense of belonging, at least early in the semester. Again, the opposite played out. 

Thus, the findings from this study highlight the importance of considering the learning 

environment when studying students’ sense of belonging. 

This paper presents results on all students who completed both surveys. Further research is 

needed to determine the differential impact of different instructional approaches, including active 

learning strategies, on women and students of color, as these students disproportionately leave 

STEM. 
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Semiotic Conflicts in Students' Collective Proof Comprehension Activity 
 

 Lino Guajardo Kate Melhuish Holly Zolt 
 Texas State University Texas State University Texas State University 
 
Making sense of proofs and statements is a fundamental part of advanced mathematics classes; 
however, researchers have established that students have limited approaches to reading proofs 
and may struggle to comprehend them. Converting between representation systems can play an 
essential role in comprehending formal mathematics including proofs and statements. While 
navigating representation systems, students are likely to evoke an array of personal meanings 
that can lead to semiotic conflicts in communication. In this study, we examine what conflicts 
arose as a group of students collectively worked to comprehend the Fundamental 
Homomorphism Theorem. Our results show that the students had conflicts related to functions 
and quotient groups that arose when converting between the formal and other representation 
systems. Although these conflicts can be problematic, we believe that with a productive 
discussion and instructor intervention (when necessary) these conflicts can be resolved. 

Keywords: proof comprehension, representation systems 

Proof comprehension is a fundamental activity in advanced mathematics classrooms where 
students encounter proofs in lecture and textbooks. However, research points to students' passive 
consumption of proof presentations as inadequate for students’ understanding of them (e.g., Lew, 
et al., 2016). In Mejia-Ramos and Inglis’ (2009) overview of mathematics education literature in 
proof-based settings, they pointed to a lack of studies related to proof comprehension. Since this 
review, researchers have developed an assessment framework for proof comprehension (Mejia-
Ramos, et al., 2012) and suggested and studied productive strategies for proof comprehension 
(Samkof & Weber, 2015; Weber & Mejia-Ramos, 2013). These approaches share the 
commonality of comprehension as multidimensional – focusing both on holistic and local line-
by-line understanding. 

These studies suggest that proof comprehension involves transforming all or some aspects of 
a formally represented proof into other representation systems (such as informally summarizing 
key ideas or illustrating a portion of the proof through an example.) In fact, Mejia-Ramos et al. 
(2012) point to the use of examples (and diagrams) as a key component of their comprehension 
framework. Other studies have pointed to the role of examples and diagrams in developing better 
comprehension of proofs for both students and mathematicians (e.g., Weber & Mejia-Ramos, 
2013, Samkoff & Weber, 2015, Weber, 2015) at both the level of a high-level generic proof 
(Lew, et al., 2020), to make sense of inferences (Weber & Mejia-Ramos, 2013), and even the 
theorem itself (Samkoff & Weber, 2015).  

Because of the significant role of representation systems (and their constituent signs) in proof 
comprehension, theories informed by semiotics can provide a useful lens to analyze proof 
comprehension. In this study, we focus on proof comprehension as a collective activity – 
analyzing a group of four students making sense of the Fundamental Homomorphism Theorem 
(FHT) statement and proof. We identify semiotic conflicts (Godino, et al., 2007) apparent in their 
discourse as they both convert objects between the formal representation system and other 
mathematical registers and treat objects within registers (Duval, 2006). From analyzing these 
episodes, we share both challenges that may be common to understanding a syntactically and 
symbolically dense proof, and ways that students’ disparate meanings may be resolved. 
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Theoretical Orientation and Analytic Framing 
In the context of abstract algebra, focal mathematical objects are abstract and general. As 

noted by Presmeg, et al. (2016), engaging with and communicating about such mathematical 
objects requires the use of signs that “are not the mathematical objects themselves but stand for 
them in some way” (p. 9). As a result, theories of semiotics, that is, theories related to study of 
signs, have become a prevalent way to analyze mathematical activity and discourse. In this 
study, we take a view of semiotics influenced by Duval’s (2006) theory of registers of semiotic 
representation and Godino et al.’s (2007) onto semiotics—two theories that can serve a 
complementary role (Pino-Fan, et al., 2017). We focus specifically on Duval’s (2006) notion of 
representation systems (registers). Mathematical meaning is inherently constrained and shaped 
by the available signs and rules of a representation system (natural language, symbolic, 
figures/drawings, and diagrams/graphs.) In our context, we add the representational system of 
proof, which we label formal: “generalized symbolic statements which can be combined into 
permitted configurations via the rules of, for example, predicate calculus, propositional logic and 
acceptable proof frameworks” (Alcock & Inglis, 2008, p. 114). We then consider the activities of 
conversion and treatment, “to substitute one semiotic representation for another, only by 
changing the semiotic system mobilized; and to substitute two semiotics representations within 
the same semiotic system” (Pino-Fan, et al., 2017, p. 101), respectively.  

We then use onto semiotic (Godino, et al., 2007) notions of primary objects – focusing on the 
subset of objects that are not directly observable (concepts/definitions, propositions and 
procedures, Font, et al., 2013). Mathematical objects contain dualities that reflect that there is not 
“one ‘same’ object with different representations.” (Font, et al., p. 7). Rather, meaning and 
representation of an object are subject to dualities including:  the expression (the sign) and 
content (the meaning referent) and correspondingly what is ostensive (observable) and non-
ostensive (imagined). Objects are also understood both personally (to the individual) and 
institutionally (which can refer to the local community of students or a larger community). An 
object can also be treated as unitary (a single thing) or systematic (something to be decomposed 
into a system). Finally, an object can be intensive (general) or extensive (a specific example). 
While these dualities are presented as dichotomies, we argue for a spectrum where something 
like a generic example (Font & Contreras, 2008) can serve as a bridge. These dichotomies can 
lead to semiotic conflicts, “disparity or difference of interpretation between the meanings 
ascribed to an expression by two subjects, being either persons or institutions” (Godino, et al., 
2007, p. 133) as students discuss mathematical objects in different representational systems. 
Such conflicts, while observable by a researcher, are often unnoticed by students. These conflicts 
can serve to limit student communication or progression but can also serve as a space for 
students to negotiate new meaning and make mathematical progress.  

 
Background on the Fundamental Homomorphism Theorem 

The Fundamental Homomorphism Theorem (FHT) describes an essential relationship 
between complex group theory ideas including quotient groups, homomorphisms, kernels, and 
isomorphisms. Each of these topics individually can be quite challenging for students to develop 
robust and normative meanings (see Dubinsky, et al., 1994; Leron, et al., 1995; Melhuish, 2019; 
Melhuish, et al., 2020). As Asiala, et al. (1997) documented, the algorithm for creating cosets 
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often supersedes other conceptions. Further, to understand the FHT, students need to conceive of 
cosets as both sets and objects themselves that can be elements within a group structure. Indeed, 
Nardi’s (2000) study of a tutor and student engaging with the FHT points to the struggle 
associated with decontextualized nature of learning quotient groups. This study also suggests a 
fundamental challenge in “co-ordination and understanding of the link between and, as well as 
the clarification about the definition of” (p. 184) the relevant functions: isomorphisms and 
homomorphisms. Research related to isomorphism and homomorphism point to reliance on 
algorithmic processes and the need for a sophisticated understanding of function (Leron, et. al, 
1995). Melhuish, et al. (2020) have further documented that students’ treatment of 
homomorphisms is tied to their coordination with the concept of function and that the meaning 
associated with function can serve as a support or hindrance in productive engagement with 
homomorphisms, kernels, and the FHT. In sum, the literature points to complexity involved in 
understanding the FHT and its constituent parts. In this study, we focus on: 

(1) What meanings do student evoke from different representation systems as they engage 
with the FHT and its proof? (2) What semiotic conflicts arise as students engage in 
comprehension tasks related to the FHT and to what extent are they resolved? 

 
Figure 1. The theorem and beginning lines of the proof.  

 

Methods 
As part of a larger project, we have conducted a series of task-based interviews centered on 

proof in abstract algebra in a large, public university in the United States. In this paper, we focus 
on a group of four undergraduate mathematics majors who had recently completed an abstract 
algebra course. Students were first provided the FHT statement and asked to dissect the 
important terms within the statement. Next, they were given example groups and 
homomorphisms and asked to identify parts of the example that correlate with the statement of 
the FHT. Lastly, the students were given the proof of the FHT and prompted to make sense of 
the theorem globally and locally in conjunction with their prior statement dissection and 
examples. 

The focal transcript (along with video and student work) was analyzed through several 
passes. First, the three members of the research team independently read through the data and 
created a set of memos broadly identifying student activity and representational systems at play. 
From this initial pass, the team arrived at the set of relevant representation systems and initial 
objects. After this holistic pass, the lead researcher chunked the transcript into a series of 16 
episodes. For each episode, the lead researcher created a narrative, first identifying mathematical 
objects, representation systems, and student meanings ascribed to objects. This narrative was 
then expanded to describe conversion, treatments, relevant object dualities, semiotic conflicts, 
and resolution paths for these conflicts. For each episode, other team members read each 
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narrative and compared it to the existing transcript with the aim of challenging initial 
interpretations. Disagreements were resolved through discussion. Here, we provide a brief 
overview of pervasive conflicts, and share two illustrative episodes. 
 

Results  
An essential part of understanding in the FHT and its proof is understanding the meaning of 

function and well-defined. Students’ personal meanings for function appeared consistent when 
referencing a procedure from the graphical system (vertical line test), but their meanings were in 
conflict in the diagram representation system (with a subset of students producing 1-1 rather than 
well-defined), and in verbal descriptions where two of the four students focused on everywhere-
defined (“mapped each element to something”). Throughout the tasks, students would bring 
different personal meanings for the properties and often reach resolution (such as coming to an 
agreement over the contradicting diagrams), only for the conflict to reemerge in a different 
representation system (such as identifying well-defined within the proof). 

We also documented consistent conflicts related to quotient groups. Of note, when describing 
what a quotient group is, some students attended to a “list of cosets” whereas others attended to a 
group structure. A second conflict emerged in relation to the meaning of “factor group” with 
students in disagreement as to whether the normal subgroup would be “factored out” evoking a 
meaning of factor related to removal rather than a meaning consistent with factoring as 
partitioning. A third conflict emerged in relation to the meaning of the elements in the quotient 
group where some students treated the elements as sets (H as the identity in G/H) whereas others 
treated the elements as singleton (“e” is the identity G/H). Finally, a related conflict emerged in 
relation to the representative symbolic notation for cosets (aH) and symbolic set notation ({a1, 
a2, a3, . . .}) where the representative notation was personally meaningful to some students (and 
connected with coset formation) but did not appear to have meaning beyond the symbols for 
other students. 

Converting the FHT between the formal and diagrammatic representation system  
 The two pairs of students were each given a homomorphism example (ϕ: ℤ to ℤ4 where 

ϕ(x)=x mod 4 and ϕ: ℤ12 to ℤ3 where ϕ(x)=x mod 3, respectively) and tasked with creating a 
function diagram and identifying where the FHT can be seen in the diagram (a task to convert 
from the formal representation system to the diagrammatic system). Moreover, this task involved 
the duality between intensive (general statement) and extensive (diagram example). Both pairs 
converted between the formal statement and informal symbolic by identifying G and H, 
respectively. However, at this point, several of the students voiced uncertainty about the quotient 
group connection and where the isomorphism can be seen in the diagram.  

In order to address this issue, the teacher-researcher asked the students to put their diagrams 
on the board. Student C explains that they began by listing “dozens of elements” but simplified 
to “just the four unique cases” (a treatment). Student A and D agreed that they had a similar 
process. Student C noted, “at least I’m starting to really see the coset groups forming individual 
elements.” We interpret this comment as reflecting some resolution around the elements of 
quotient group conflict. Although, we acknowledge there is still some language inconsistency 
with the cosets being referenced as groups.  

The teacher-researcher then had the students concretely connect the parts of the formal 
statement with the diagrammatic representation on the board - focusing on the finite example. 
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The students converted between the systems, and navigated between the exemplar-type duality to 
identify the kernel, G, and H. They are then prompted, “where is our isomorphism? Where is our 
quotient group?”  There are two viable ways to create the cosets of the quotient group. The 
cosets can be built by identifying the kernel and using the coset formation procedure or through 
creating pre-image subsets. In this case, one pair of students appeared to have used the latter 
version, but voiced uncertainty about whether these created the quotient groups, “We did that 
right? […] We don’t know. We think we could have possibly started” identifying the kernel as 
the identity (further evidencing resolution around the element-set coset conflict.) In contrast, 
Student C used the coset procedure sharing, “So, I just started with what we have here, kernel of 
ϕ […] from the left I added the next operation of our H.”  

The teacher-researcher had previously requested representative notation by asking for a 
“name” for the cosets (a more standard notation in the formal representation system). At this 
point, Student A recognized they have the same cosets, but states “we just didn’t know how to 
name them.”  However, when the teacher-research prompted about the + operation, Student A 
and D identify the operation from ℤ3 (the operation in the image) rather than from ℤ12 (the 
operation in the coset) further evidencing that there is a conflict in the personal meanings 
attribute to the coset formation process. After some discussion, the teacher-researcher advocated 
that the representative elements are from ℤ12, but it is unclear whether this conflict was resolved 
for all the students. However, we do have evidence that the students were all seeing the cosets 
(regardless of formation process) as the quotient group elements as they are easily able to answer 
how many elements are in the quotient group itself (3). 

At this point, the teacher-researcher focuses on where the isomorphism is. Student B notices 
“the order of the image of phi is the same as your quotient group.” With this comment, the 
teacher-researcher prompts the students if the cosets are clear from the original function diagram 
(Figure 2a). To which Student B and D indicate that “If you got all the purple lines” (B) and 
“They would regroup it like that” (D). With the teacher-researcher as the scribe, the students 
produced the following function diagram, a treatment in the diagrammatic representation system 
(Figure 2b - without the red markings). 

 

 
Figure 2. (a) Function diagram of the homomorphism phi from Z12 to Z3. (b) Reorganized function diagram 

After the creation of this diagram, Student B makes the comment that “you see it's one-to-
one and onto” evidencing conversion between the formal meaning of isomorphism and the 
function diagram instantiation. However, Student B took back their suggestion when asked for 
further explain indicating a potential conflict between what they see (ostensive) and 
corresponding non-ostensive mathematical concepts. Student C continues, “we have that 
grouping, if we change the mapping...” suggesting creating “ℤ12 so you divide by zero three six 
nine slash kernel” with Student D suggesting, “bracketed off and that becomes the one element” 
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with the teacher-researcher using their suggestions to add the red circles/lines to the diagram. We 
see evidence of resolution around both the quotient groups and isomorphism through the use of 
the diagram instantiation. Student B asked, “so now the red is your factor group?” and student D 
agreed. Student B also commented, “and now it’s 1-1 and onto” with Student D elaborating, “and 
there’s your isomorphism.” At this point, the students seemed to have successfully converted 
from the formal representation to a diagram.  

Converting Between a Line in the Proof and a Symbolic Example 

In this episode, the students were tasked with making sense of the line if g1K = g2K, then for 
some k in K, g1k= g2 in the FHT proof. The teacher-researcher prompted the students to convert 
this line to the symbolic/ diagrammatically illustrated example (Figure 2). Recognizing that these 
objects are cosets, Student B suggested “kernel of phi [as] one of em' and then four plus kernel of 
phi is another one?” Here we see the student using distinct cosets rather than distinct elements 
from the same coset. This conflict is recognized and resolved by Student D who suggested 
changing the second coset, “It’d be 1+ ker ϕ.” to which Student B agreed, “Oh, I'm talking about 
the wrong one. Okay, yeah.” The students continued converting from the formal representation 
to the informal symbolic example with Student C suggesting another coset equivalence, “so 
kernel phi would be equal to three plus kernel phi.”  

The teacher-researcher returned focus to the formal representation asking, “But how do we 
know that g1k= g2 for some k?”  Student B made two suggestions: “because it’s normal” and “I 
thought it was because it was not nonempty, so you have identity in there.” As only one student 
is suggesting, the teacher-researcher prompted for students to explain what “g1K = g2K” means. 
Student B focused on the entire set: “two cosets that are the same” and while Student D attends 
to the elements, “These sets repeat down in a row?” reflecting uncertainty in their personal 
meaning. The teacher-researcher then introduced the use of a symbolic example prompting 
students to create g1K and g2K. The teacher-researcher and students constructed the expanded 
versions (Figure 3) converting between the condensed version of cosets typical of formal proof 
representation into an expanded symbolic representation.  While it was not clear that the 
meaning shared for the equivalence was in conflict for Student B and D originally, the conflict is 
explicated in this new representation. Student B suggested the cosets being the same means “all 
the elements.. They're matching” further explaining “g2, g1 are the same g2𝑘𝑘1, g1𝑘𝑘1.” Student D 
responds, “Not necessarily those... all the elements in g2K there's an element that matches them 
somewhere in g1K.” Student B’s personal meaning focused on the element level, while Student 
D’s personal meaning was at the set level (aligned with the normative meaning for set equality). 

 

  
Figure 3a and 3b. The cosets of K with representative g1 and g2. 

 
To see if other students understand Student D’s reasoning, the teacher-researcher asked 

someone to revoice what Student D said. In response, Student A stated, “that's like continuing? 
So somewhere along the line there would be g2k in the g1k function” Here we see that Student A 
shared their meaning with Student D. However, Student C returned to the formal proof line and 
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asked, “But there's only like g2 so what does just g2 look like?” This question may reflect a desire 
to know the exact match. Student D then explains the idea that “g2 has to be somewhere in here” 
because the cosets are equivalent and introduces a “km” such that “g1km = g2.” Student C 
responded that they are finding a “specific one” and Student A suggested “arbitrary.” In the 
expanded cosets, specific ki's are listed and Student D introduces km. In the formal proof, the line 
has just “k.” Student C’s personal meaning attributed km as more specific than k while Student D 
and A are seeing km as representing an equally arbitrary element.  

After some continued conversation, we see an additional layer of complexity and some 
resolution. Student B commented, “I've been thinking that g2 is some like a group.” With Student 
C agreeing, “That's what I was thinking, too.” This may evidence a conflict around the meaning 
for representation notation: when an element is the referent and when a set is the referent. 
Student D commented that “g2 is like another element” with Student B explaining they went 
from “what is that?” and identified “the whole revelation I had was when you put km.” At this 
point, the conflict seemed to be resolved for the students, although this claim relies on weak 
evidence for Student C as they had stopped voicing questions. 

Discussion 
In this paper, a variety of conflicts arose as students conveyed meaning for different objects 

as they converted and treated them across and within representation systems. The students in the 
task had difficulty with functions and converting functions from a formal representation to a 
diagrammatic representation. They had conflicts with quotient groups such as, notational 
representation, set vs groups, and elements as cosets vs elements as singletons. We saw that 
students had conflicts in converting a formal representation of the isomorphism in the FHT 
theorem to a diagrammatic representation of an isomorphism in a given example. We also saw 
students having conflicts when converting between the line of the formal proof and symbolic 
concrete and generic representations.  

From a research and teaching perspective, we found the identification and, in some cases, 
resolution of these conflicts to be a useful lens. The conflicting means students evoke may 
account for some of the disconnect between instructor intentions and students’ comprehension. 
We found students brought different meanings for functions and quotient groups, and different 
notation and representation systems often shaped the meanings involved. Prompts to convert 
between representation systems appeared productive to terms of explicating conflicting meaning 
and allowing for discussion space to resolve conflicts. Further, instructors may find it to useful to 
identify the representation systems in which students’ personal meanings may diverge and 
strengthen the connections between objects symbolized in different systems. 
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An Instrumental Approach Towards Graduate Teaching Instructors’ Use of Applets  

Aysia M. Guy 

Arizona State University  

 

This study investigated how mathematics instructors’ instructional goals for teaching constant 

rate of change (CROC) influences their perception and use of applets in mathematics instruction.   

This report presents results from a clinical interview with graduate teaching instructors (GTIs) 

to illustrate the degree to which their mathematical meanings for teaching (MMT) impact their 

image for how an applet should be used and how the GTIs’ use of the applet influences their 

MMT. I use instrumentation theory as a lens for explaining the relationship that develops 

between an instructor and particular features of the applet. I conclude with a discussion of how 

GTIs MMT for constate rate of change impacts their intended use of an applet’s feature and how 

they imagine they can use an applet to advance students’ mathematical understanding of CROC. 

 

Keywords: Applets, Instrumentation Theory, Teachers Mathematical Meanings, Technology 

 

Introduction and Literature Review 

As technology advances, digital technologies such as graphing software and applets are being 

created and used in elementary, secondary, and undergraduate mathematics education (Eason 

and Heath, 2004) to support students' mathematical learning. Applets are interactive computer-

based objects that enable students to visualize attributes of specific mathematical ideas 

(Gadanidis, Gadanidis, & Schindler, 2003). The dynamic abilities of an applet can promote 

discussions that focus on quantities and their relationship within a problem context as they vary 

in tandem (Moore, 2009). 

Although applets are frequently included in mathematics curricula as resources to support 

students’ learning and performance, few instructors are using applets in their teaching (e.g., 

Engelbrecht & Harding, 2005; Daher, 2009). Teachers’ pedagogical beliefs, mathematical 

knowledge, classroom management, and comfort with applets have been identified to influence 

their perception of applets and how they incorporate applets into their instruction (Gadanidis et 

al., 2003). When solving mathematical problems, some teachers perceive applets as tools for 

visually representing quantities within a problem context, thus potentially supporting students in 

constructing an appropriate image of the problem context (Daher, 2009). However, a teacher’s 

perspective on teaching and her view of what is involved in learning a particular idea or making 

sense of a problem context might influence whether or not they use the applet.   

Over the years, researchers (Bowers, Bezuk, & Aguilar, 2011; Moore, 2009; Guy, 2020) 

have demonstrated the benefits of applets as tools for supporting student mathematical learning 

when utilized as a didactic object (Thompson, 2002). An object (e.g., a visual aid, a graph, or an 

applet) is not considered didactic until the teacher or researcher views the object as a tool for 

producing reflective classroom discussions focused on a particular theme or way of thinking 

(Thompson, 2002). Moore (2009) revealed that an applet implemented as a didactic object could 

enable and sustain discussions that focus students’ imagery on coordinating changes in the 

vertical distances’ values above the horizontal diameter and the changes in arc-lengths’ values as 

they varied in tandem. An important feature of his implementation of the applet was his decision 

to use the enactment of the applet’s dynamic features as a way to verify and/or modify students’ 

predictions of how the quantities’ values may vary in the context of trigonometry. His 

implementation of having students anticipate allowed them the opportunity to imagine how the 

2021 Research in Undergraduate Mathematics Education Reports 90



quantities varied and reflect on their conjectures relative to their conception of the dynamic 

contextual situation. Moore’s use of the applet to support students’ conception of trigonometric 

function was driven by his mathematical meanings for teaching angle measure. 

Thompson (2016) explained that a teacher’s mathematical meanings for teaching (MMT) 

consist of the teacher's images of the mathematics they teach and the intended meanings that they 

hope their students to have. A teacher’s mathematical meanings are described as productive 

when the meanings she holds are productive for students’ mathematical learning, in the long run, 

if they were to hold them as well (Bylerley & Thompson, 2017). Thompson, Philipp, Thompson, 

& Boyd (1994) stated that teachers’ images of the mathematics they teach influences how they 

implement curricula in their classroom(s). These researchers characterized and defined these 

images as teachers’ orientations towards mathematics teaching. Thompson et al. (1994) claimed 

that a teacher with a conceptual orientation tends to focus their students' attention away from the 

thoughtless application of procedures and provide opportunities for students to conceptualize 

quantities in problem contexts and explain the rationale for claims. In contrast, a teacher whose 

actions are driven by their image of mathematics as the application of calculations and 

procedures for producing numerical results ("solving task to just get an answer") is described to 

possess a calculational orientation towards teaching mathematics.  

 

Theoretical Perspective 

Prior research on the instrumental approach has proven to be fruitful for investigating how 

technology can be used and what shapes its use during an interaction between the learner and a 

digital tool. Instrumentation literature (e.g., Vérillon & Rabardel, 1995; Artigue, 2002; Thomas 

& Holton, 2003; Drijvers, Kieran, Mariotti, ... & Meagher, 2009; Drijvers, 2019) has focused on 

describing the interaction between the student and digital tool. In this study, I use 

instrumentation theory as a lens to examine the initial interactions between a teacher and an 

applet that they are viewing for the first time.   

An instrumental approach consists of one's transition in viewing an object as an artifact (e.g., 

a tool) to an instrument. When an object is viewed as an instrument, there exists a bilateral 

relationship for the use of the tool, in which, on the one hand, the user (and their mathematical 

meanings) shapes the techniques for using the tool, and on the other hand, the tool shapes and 

transforms the user's mathematical practice (Drijvers, 2019). An artifact is described as an object 

that is used as a tool1. Whereas an instrument is a conceptualization that entails the uses of an 

artifact with a specific goal in mind (e.g., GTIs’ uses of an applet with their teaching goals in 

mind). The use of an artifact as an instrument entails the researcher’s (or teacher’s) schemes and 

techniques for how they imagine using the artifact. I define a scheme as the organizations of 

mental activity (or actions) that includes a set of conditions that trigger the scheme and an 

expectation of the results of having applied the scheme (Piaget, 1971). Human activity (e.g., a set 

of gestures, ways of thinking, and actions both physical and mental) by an individual in order to 

perform a given task (Trouche, 2005) is referred to as the individual’s use of the applet. Thus, as 

a GTI experiences one or several features of an applet, I (the observer) will speak of it as a 

conceptualized use of the applet or an instrumented technique.  

The process of building an instrument from an artifact is called instrumental genesis (see 

Figure 1). This process consists of two interconnected components: One component is 

 
1 An applet described in instrumentation theory is already assumed as a tool (Russell, 1997) and not as an object that 

one must come to view as a tool. The latter view of an applet as a tool stems from a radical constructivist 

(Glasersfeld, 1985) stance that I adopt.  
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instrumentalization, which is a process where the user (e.g., GTI) constructs an image of what 

the artifact is designed for and how it should be used. For an applet, this entails the activity of 

selecting and discovering relevant features (e.g., clicking on boxes or moving sliders) and 

unplanned attempts to transform certain functions of the applets (e.g., the interface) with the goal 

of modifying and personalizing the applet to one’s liking. Instrumentalization can be described 

as the process of a GTI differentiating between their MMT for a mathematical idea and their 

image of the purpose of the applet’s capabilities and features.  

 
Figure 1:The transition from an artifact to an instrument through instrumental genesis. 

The second component is instrumentation. This is the process through which the constraints 

and potentialities of an artifact shape the subject and how they may use the tool during their 

instruction. During this process, one goes through the emergence and evolution of schemes while 

performing tasks of a given type. Defouad (2000) described this process in two phases, which I 

will explicate in relation to this study. The first phase, which happens at the beginning, entails 

the GTI attempting to find a balance between their former teaching practices and their imagery 

for conveying mathematical ideas with the newfound capabilities from the tool. The second 

phase is where a state of equilibrium is established (rather the subject is aware of it or not) in the 

use of the applet features and capabilities that align with the GTIs instructional goals and what 

they perceive the applet to be useful for. Hence, this report investigates instructors’ conception of 

the applet’s usefulness in supporting students’ understanding of constant rate of change and 

answer the following questions: 

• How do GTIs’ mathematical meanings for teaching influence the ways in which they 

spontaneously incorporate applets in preparation for instruction? 

• In what ways are GTIs’ instructional goals for the concept of constant rate of change 

aligned with how they imagine incorporating applets in their teaching? 

 

Methodology 

This study involved two graduate teaching instructors, Ebony and Armando, at a large 

public university in the southwest United States. The GTIs teaching experience of the Pathways 

Precalculus (Carlson, Oehrtman, & Moore, 2018) curriculum ranged from 2-3 years, with each 

completing one year of a professional development seminar called TUME.2 (Teaching 

 
2 This seminar included mathematical tasks designed and sequenced to support the GTAs in constructing productive 

meanings for key mathematical ideas in the precalculus curriculum. 
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Undergraduate Mathematics Education). The GTIs participated in one clinical interview 

(Clement, 2000) where the researcher asked the GTIs to complete two tasks designed to reveal 

their thinking and meanings for CROC. Following the task, I presented the feature of an applet 

designed to support student understanding of the idea of CROC to the GTIs and asked them to 

think aloud as they interacted with the applet. This consisted of open-ended questions that 

focused on how the GTIs intended to use the applet to support their instructional goals for the 

task & CROC. Interviews lasted 1.5 hours and were recorded using Zoom Video Communication 

technology (2020) to capture facial gestures, audio, and written responses with transcripts.  

The interviews were analyzed in two phases following an open coding approach (Strauss & 

Corbin, 1990). The first phase entailed analyzing GTIs' mathematical meanings for teaching 

CROC. The second phase entailed analyzing teachers’ interactions with the applets through the 

lens of the instrumental approach. This consisted of identifying moments in which GTIs 

leveraged their MMT and instructional goals for CROC when using specific features of the 

applet.   

Results 

I share the following results from the GTIs’ interview with Task 1 (Figure 2) and the Candle 

Burning Applet (CB-Applet, see Figure 3) from the Pathways Precalculus course materials. I 

first highlight the instructors expressed meanings for CROC and their image of the ideas they 

hope to convey to students. Next, I illustrate the GTIs orientation to teaching mathematics by 

describing their image of the pedagogical task (e.g., the goal it serves) and the questions they 

intended to ask when using the applet during discussions with their students. Lastly, I share how 

the GTIs expressed meanings and orientation toward teaching CROC impacted their image of 

how they intend to use the applet and how this use is aligned with their instructional goals.  

 

GTIs’ Meanings and Orientation for Teaching CROC  

Ebony began the interview by reading the prompt (Task 1) aloud and explicated how she 

would determine the original length of the candle (see Figure 4, left panel). Next, I asked Ebony 

A candle is 8.5 inches tall when it has been burning for 6 hours at a rate of ¼ in. per hour. How 

tall was the candle before it was lit? 

Figure 2: The Candle Burning task (Carlson et al., 2018). 

Figure 3: A screenshot of the candle burning applet (Rendered in GeoGebra by Sander, 2015) 
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how she would use this task in her class. She indicated that she would lead a discussion aimed at 

getting her students to attend to the quantities and how they are related. She explained that she 

wanted to support the students in conceptualizing an appropriate image of the problem context. 

She later described this conversation as being centered around a key way of thinking that she 

later defined as quantitative reasoning (Thompson, 2008). Next, she further explained that she 

would focus students’ attention on the variations in the remaining length of the candle and burnt 

lengths of the candle with respect to time elapsed. She also described covariational reasoning 

(Thompson & Carlson, 2017) as another way of thinking that she imagined students must be 

engaged in to support their understanding of CROC as she intended. She stated that with the help 

of prior conversations about the quantities, their relationships, and the construction of tables of 

the covarying values that students meaning of CROC (in the context of the problem) may 

express “the change in the length of the candle burned is always negative 1/4th times as large as 

any change in time.” During her interaction with the applet, Ebony expressed the goal that her 

students understand CROC as entailing a constant ratio between two covarying quantities. This 

evidence suggests that Ebony’s image of this task included a conversation centered around 

CROC as a way for describing how the changes in one quantity’s values change relative to the 

changes in another quantity’s values in the context of a burning candle.   

Figure 4: Ebony (left panel) and Armando’s (right panel) written work for Task 1. 

In contrast to Ebony, Armando read the prompt aloud and began to write a function formula  
to determine the initial height of the candle in terms of time (see Figure 4 right panel). Armando 

stated that if he presented this problem to his student, he would prefer to go right into generating 

a formula to represent the situation. But for the prescribed curriculum, it was important to attend 

to quantities as stated in the TUME seminar because this was key in supporting students in 

constructing meaningful formulas. For this task, Armando stated that the intended meaning for 

CROC that he imagines his students to develop is that the expression ∆ℎ/∆𝑡 is a ratio that 

represents a single number “no matter what two points you pick” (referring to his drawn 

graphical representation of CROC where there exists a CROC between the remaining length, h, 

and time, t). He further expressed that by showing his students the definition (see Figure 4 right 

panel), the goal of the task is to support students in understanding the general case, which can be 

represented by constructing the point-slope formula. In addition, he explained that CROC “is a 

way for characterizing linear relationships and as far as the intuition and sort of the pictorial 

reasoning and physical reasoning goes… You know, I hope that they (the students) think that the 

constant rate of change is all about linear relationships. All about lines.” This statement suggests 

that Armando’s image of CROC entailed a computational and geometric representation of a line 

that is comprised of a linear relationship.  

 

2021 Research in Undergraduate Mathematics Education Reports 94



The GTIs’ Use of the Applet  

As Ebony first interacted with the CB-Applet, she voiced her appreciation for the interface 

of the applet as the image of the candle burning in the left panel aligned with her goal of 

supporting students’ image of the problem context. Ebony clicked on each of the boxes and 

moved the sliders to discover the capabilities of the applet. She mentioned that the variations of 

the blue and red vectors on the axes correspond with the line segments on the candle (both on the 

interface of the applet and in her constructed image). Next, Ebony clicked on the following 

boxes in this particular order: ShowPoint, ShowTrace, then ShowGraph, then proceeded to 

describe her intended use of these functions. She verbalized that the use of these three features 

supported her goal of engaging her students in coordinating the changes in the two quantities 

values as they vary together (see Excerpt 1).  

Excerpt 1 

Ebony: Okay, so that's nice, that it doesn't just immediately show the graph. So, I like this 

because I imagine using these three features [referring to ShowPoint, ShowTrace and 

ShowGraph] to help students...to help the graph emerge in students’ thinking. So we could, 

like, really have a conversation about covarying quantities where I would like to turn on this 

point [only leaves the ShowPoint box checked] and have conversations about like, okay, so 

like. What does it... why is that, what does it mean for that point to be on the y-axis [Ebony 

had moved the t-slider to 0 with the original height to 10 in.]? Now let's imagine that the 

candle has burned for one hour, where do you imagine you're going to see that point on the 

graph and we could actually like, show them [moves t-slider to 1 hour and circle’s her cursor 

around the point] and  have a conversation about if they're correct. And then, the nice thing is 

then having a conversation about how we can use this tracepoint and how all of the values on 

this line. We can help the graph emerge in students' thinking [moves t-slider to illustrate the 

trace feature on the graph] that's nice. I like that. 

As Ebony continued interacting with the applet, she explained to me that she wanted a line 

segment on the graph to represent the change in the burnt length as she increased the t-slider. In 

response to her perceived constraint of the applet, Ebony constructed a new technique for 

conveying her intended image for the change in the burnt length by remembering the capabilities 

of Zoom and its annotation feature. She described that if she were to use this applet during 

instruction, she would press play on the applet and have students watch the emergence of the 

tracing of the graph in order to verify the numerical values on the constructed table that 

represents changes in the remaining length and burnt length relative to the changes in time. She 

used the annotation feature to draw horizontal vectors to represent changes in time and vertical 

vectors to represent the changes in the burnt length, which would result in changes in the 

remaining height of the candle. 

Armando’s initial interaction with the CB-Applet entailed trying to discover what the 

applet could do in relation to the task by typing in the original height of the candle that he 

produced and the CROC from Task 1 (e.g., 1/4 in per hr., but mistakenly typed 1.4). He began to 

demonstrate that if he used the applet during instruction, he would use the trace function to plot 

the points (6, 1.6) and (5,3) on the line and then determine the value of the CROC based on the 

definition. He suggested that if one would like to know the CROC between these two points (if 

the burn rate box was hidden), then one can compute the CROC by using the ratio (∆𝑟/∆𝑡 where 

r and h represent the remaining length of the candle). He explained that once students are able to 

calculate the CROC to be -1.4, then the mathematical expression ∆𝑟/∆𝑡 can support their 

construction of a linear line through the idea of building a “staircase” (see Figure 5). His goal of  
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building a staircase was to determine corresponding changes in r when the change in t is known 

as it can be used to produce the original height of the candle. Throughout his interactions with  

the applet, Armando appeared to be interested in the calculations needed to determine a CROC 

and its values to construct a graph, rather than thinking of how a student might understand their 

conveyed meanings for CROC. In addition, the questions he described that he would pose to his 

class when using the applet all focused students’ attention on interpreting static information 

about the graph. 

 

Discussions 

Ebony’s MMT with regard to Task 1 focused on engaging her students in conversations 

centered around thinking about the quantities, their relationship between the quantities, and how 

those quantities vary together. Then, when describing her use of the ShowTrace feature in the 

context of a classroom discussion, Ebony focused on a conceptual understanding of CROC as a 

way to describe the proportional relationship that exists between the changes in two quantities' 

values as they vary together. She used the dynamic visualization of tracing a point as 

representing a record of the relationship between covarying quantities (e.g., a graph that 

represents the time elapsed since the candle was lit and the remaining length of the candle as 

they vary together at a CROC of -¼ in. per hr.). Hence, her intended use of the applet as an 

instrument to support students understanding of CROC aligned with her expressed instructional 

goals for teaching CROC.  

In contrast, Armando’s MMT and orientation for Task 1 focused on expressing his meaning 

for CROC as a procedure for calculating other values that satisfy the relationship of the problem 

context. For him, key attributes of CROC were that the ratio ∆𝑟/∆𝑡 expresses the slope of a line 

and indicates the graph’s steepness. As he was describing his use of the ShowTrace feature in the 

context of teaching, Armando focused on the ratio ∆𝑟/∆𝑡 as a way for computing coordinate 

points that can be connected by a straight (e.g., a way for illustrating the slope) and used the 

building of "staircases" to construct a linear graph. His perception of the applet was an 

instrument that can visually verify that the ratio for CROC as a secant line between two points on 

the graph of a function. Rather, Ebony perceived the intended use of the applet as an instrument 

that can support and sustain a conversation centered around student’s conceptualization of the 

problem context. 

The results from this study suggest that a teacher’s conceptualization of how an applet’s 

features can support students’ mathematical learning is guided by their MMT. The mathematical 

meanings a teacher holds guide their instructional decisions and actions, which impacts how they 

use the applet during instruction. One limitation to this study is that only two instructors were 

presented. I intend to conduct a similar study on a larger scale, where further teacher research 

should focus on the teachers' conceptualization of the applet(s) as an instrument which impacts 

their implementation of the applet to support students' mathematical learning.   

Figure 5: Armando's illustration of building a staircase 
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Collaborative Creativity in Proving: Adapting a Measurement Tool for Group Use 
 

Amanda Lake Heath 
Middle Tennessee State University 

Creativity is central to mathematics and mathematics education. One hindrance to research in 
mathematical creativity is the complex nature of defining and measuring creativity. Some efforts 
have been made to study mathematical creativity at the K-12 level, but just recently researchers 
have begun exploring mathematical creativity at the undergraduate level. Proof is essential to an 
undergraduate mathematics education, and as university mathematics classrooms evolve to 
incorporate more active and collaborative learning, it is imperative to understand the 
relationship between collaboration and creativity in proving. This study seeks to apply the 
Creativity-In-Progress Rubric (CPR) on Proving (Savic et al., 2017) to two collaborative small-
group proving episodes and to evaluate its ability to present a holistic image of a group’s 
creative proving process. Findings of this evaluation led to the three suggestions for future use of 
the CPR on Proving in collaborative settings. 

Keywords: mathematical creativity, proof, creativity in proving, collaboration 

Creativity is a central tenant of mathematics, and mathematical creativity is a rapidly 
growing research area.  Between the years 2000 and 2021, there are over 6000 items on Google 
Scholar that contain the phrase “mathematical creativity,” and about 1300 of these were 
published in the years 2019 or 2020. Mathematical creativity has been recognized as an 
important part of mathematics education. Neglecting mathematical creativity in mathematics 
curricula denies students from truly understanding what mathematics is and from seeing the 
beauty of mathematics (Mann, 2006), and encouraging students to think creatively is essential to 
successful mathematics major courses (Schumacher & Seigel, 2015).   

This study investigates the assessment of collaborative creativity in proving. I seek to answer 
the question: how can creativity in proving be assessed in a collaborative setting? I wish to 
examine the ability of the existing individual Creativity-In-Progress Rubric (CPR) on Proving 
(Savic et al., 2017) to depict a holistic representation of the creative process of a group. This 
study’s theoretical framework aligns with that of Savic et al. (2017); I assume that mathematical 
creativity is domain specific, relative in terms of context and background, and assessed as a 
process rather than a product. 

Background Literature 
Defining mathematical creativity has been a difficult task for scholars in mathematics and 

mathematics education (Karakok et al., 2015; Mann, 2005, 2006; Nadjafikhah et al., 2012; 
Sriraman, 2004). Definitions of creativity vary depending on whether creativity is characterized 
as: domain-general or domain-specific, a process or an end product, and relative or absolute 
(Savic et al., 2017). Lack of a central definition of mathematical creativity has created a 
challenge in measuring creativity and thus pursuing research in mathematical creativity. 

Despite difficulties in defining creativity, there have been several attempts to create a 
measure of both domain-specific and domain-general creativity (e.g., Kattou et al., 2013, Leikin 
& Elgraby, 2020; Levav-Waynberg & Leikin, 2012; Savic et al., 2017; Siswono, 2010; Torrance, 
1966, 1974).  Guilford’s (1959) characterization of creativity aimed to present testable factors of 
creativity and has been commonly used as a framework for measuring and defining creativity. 
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The four aspects of creativity, as suggested by Guilford, are fluency, flexibility, originality, and 
elaboration. This characterization inspired the Torrance Tests of Creative Thinking (TTCT; 
Torrance, 1966, 1974) to measure domain-general creativity, the similar Mathematical Creativity 
Test (MCT; Kattou et al., 2013) to measure domain-specific mathematical creativity, and many 
others (e.g., Leikin & Elgraby, 2020; Levav-Waynberg & Leikin, 2012; Siswono, 2010). 

The Creativity-In-Progress Rubric on Proving 

 

Figure 1. The Creativity-In-Progress Rubric. From "Formative Assessment of Creativity in Undergraduate 
Mathematics: Using a Creativity-in Progress Rubric (CPR) on Proving” by Savic M., Karakok G., Tang G., El 

Turkey H., Naccarato E., 2017 In R. Leikin & B. Sriraman. (Eds) Creativity and giftedness (pp. 23–46). 
https://doi.org/10.1007/978-3-319-38840-3. Copyright 2017 by Springer International Publishing. 

The CPR on Proving, which can be seen in Figure 1, assumes creativity to be domain-
specific, a process, and relative. The most recent published version of the CPR on proving (Savic 
et al., 2017) presents two categories: making connections and taking risks, which are split into 
subcategories. Student work is assessed on a continuum to characterize the proving process of an 
individual student. The CPR on proving has been used as both a formative assessment tool (e.g., 
El Turkey et al., 2018) and a student reflection tool (e.g., Omar et al., 2019; Tang et al., 2017). 
The Creativity Research Group (Creativity Research Group, 2020) has suggested future research 
on the influence of socialization and collaboration on creativity in proof (Savic, 2016) using the 
Creativity-In-Progress Rubric. 
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Group Creativity 
The Creativity-in-Progress Rubric on Proving was designed to measure the creative efforts of 

an individual student, yet students in a classroom do not necessarily act on their own. Students’ 
ideas and creative contributions are influenced through collaboration with peers and instructors. 
Many mathematics classrooms employ group work as a means to improve learning; Slavin 
(1996) even called research on collaborative learning, “one of the greatest success stories in the 
history of educational research” (p. 43). However, in my review of undergraduate mathematical 
creativity research, studies have almost exclusively investigated the creativity of an individual 
rather than the creativity of a collaborative group. Some research exists on group mathematical 
creativity in K-12 students (e.g., Aljarrah, 2020; Levenson, 2011; Sarmiento & Stahl, 2008). 
Existing studies with undergraduate students have compared group and individual creativity 
(Molad et al., 2020) and investigated how students construct every-day linear algebra examples 
in an interview setting (Adiredja & Zandieh, 2020).  

Group creativity is the generation of creative ideas by groups when the interactions and 
inputs of several people are considered (Levenson, 2011). Investigations on group creativity have 
indicated that a creative product may not necessarily be improved by collaboration (Paulus et al., 
2000). Paulus and Yang (2000) claimed that poor outcomes of group creativity may be a result of 
inattentiveness of group members, difficulty generating ideas while listening to the ideas of 
others, and lack of incubation time during collaborative work. In collaborative settings wherein 
diverse individuals work toward a common goal, a variety of backgrounds and knowledge may 
contribute to the creative product, but it is also possible for diversity of perspectives to be too 
wide and deter agreement on a common solution (Kurtzberg & Amabile, 2001). 

The purpose of the following study is to explore the relationship between creativity in 
proving and group creativity. This study specifically investigates the assessment of collaborative 
creativity in proving and seeks to answer the question: how can creativity in proving be assessed 
in a collaborative setting? 

Methods 
Participants and Data Collection 

Data was collected from an undergraduate Introduction-to-Proof course at a large public 
southeastern university in the United States. The data used in this study consisted of 25-minute 
video recordings of two small-group proving episodes during a class meeting in the first week of 
the course. Group 1 consisted of three students: Nathan (math major), Ganesh (non-degree 
seeking graduate student), and Matthew (math major); group 2 also consisted of three students: 
Susan (math major), Mason (computer science major; math minor), and Craig (computer science 
major; math minor).  All names used are pseudonyms.  

This course was facilitated in a collaborative, inquiry-based learning environment where 
small groups of students would work together to prove instructor-provided mathematical 
conjectures.  The two groups investigated in this study were selected using a matched-
comparison sampling technique, where each group worked independently to prove the same 
conjecture: the product of consecutive twin primes is one less than a perfect square. When the 
class was presented with the proving task, the instructor (a) presented students with definitions 
for the terms prime number, twin prime, and perfect square, and (b) encouraged students to use 
alternative representations such as diagrams, pictures, language, and symbols in their group 
proof. Students worked in their groups of three to prove the given statement and occasionally 
asked questions of the instructor or graduate assistants. A notable feature of this task is that the 
statement is also true in a more general context (e.g., for any two integers that differ by two).  
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This setting and sampling technique provided unique insight to answer my research question 
as (1) the given task was likely novel to students and thus allowed for an openness in students’ 
approaches to proving the conjecture, (2) the group work occurred during week one of the 
course, so students were probably unfamiliar with proving and most contributions in terms of 
proving strategy could be assumed to be novel, or at the very least un-shared, by all members of 
the group, and (3) both groups were asked to prove the same statement and this provided the 
opportunity to analyze two different group processes in completing the same task.  

Data Analysis 
The two video recordings were first transcribed and then coded according to a protocol 

coding method (Saldana, 2013).The codes were predetermined according to the seven 
subcategories of the CPR on Proving: Making Connections between (1) Definitions/Theorems, 
(2) Representations, and (3) Examples; and Taking Risks according to (4) Tools and Tricks, (5) 
Flexibility, (6) Perseverance, and (7) Posing questions. Each episode was coded for instances 
within the group proving pertaining to the subcategories as described in Savic et al. (2017). 

The goal of this coding strategy was to identify moments in which the group engaged in 
creative proving as defined by the CPR. This allowed the group to be viewed as a cohesive unit 
of analysis and assess their proving process in each subcategory on the spectrum of beginning, 
developing, and advancing. Descriptions of each of these levels can be found in Figure 1 above.   

The final stage of analysis aimed to assess the ability of the CPR on Proving to tell the story 
of each group’s creative proving process. In this stage, I reconsidered the video data and 
observed important moments and themes which influenced the group’s process and may not be 
conveyed by the CPR on Proving. 

Findings 
In this section, for each group I present first a holistic general summary of the group’s 

interactions as they attempt to prove the conjecture “the product of consecutive twin primes is 
one less than a perfect square.” I then describe the placement of each group on the CPR on 
Proving. Then, in the Discussion section of this paper, I compare the findings from my holistic 
summaries of each proving episode to the impression given by the CPR on Proving. 

Group 1 Holistic Summary 
Group 1 worked very well together and constructed their proof by challenging, recognizing, 

and building upon the ideas of their fellow group members. The group began the team’s efforts 
by verifying examples of the statement. Ganesh first challenged the group by proposing that 
simply generating examples would not be enough to prove the statement and suggested the use 
of more general principles.  Despite this objection, Matthew noticed through the group’s list of 
examples that the perfect square referenced in the statement is the result of squaring the “middle” 
number of the twin primes used, and he wrote an algebraic representation of the statement: n! −
1 = (n − 1)(n + 1). Ganesh and Matthew argued over how to restrict this equation to be true 
only for twin prime numbers, and Matthew questioned what would happen if they plugged in a 
non-prime. Prompted by this, Nathan tested an example using n = 10. Matthew then noted that 
if the statement is actually true for all natural numbers, then the statement would have to hold for 
the smaller subset of the twin primes; Ganesh did not initially understand Matthew’s claim, but 
Nathan and Matthew explained it to him together. The group proceeded to collectively generalize 
the statement (i.e., questioning and checking whether the statement would hold for natural 
numbers, negative integers, real numbers, etc.) until the group work time concluded.  
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Group 1 Assessment via the CPR on Proving 
Figure 2 below provides an aggregation of my coding for group 1’s proving attempt in the 

25-minute span. Figure 1 provides specific descriptions of each subcategory level. 

 

Figure 2. Levels of Group 1’s work according to the CPR on Proving. 

Using Figure 2, one can observe in which categories group 1 demonstrated strength or 
weakness.  For example, consider the “Between Representations” category. First, group 1 used 
an algebraic representation when Matthew said:  

If we look at it and n squared is a perfect square, we have n minus 1 times n plus 1, which 
would be our two prime numbers here, F.O.I.L. it out, and we get n squared minus one. 
Group 1 also attempted to use symbolic representation by looking up appropriate symbols for 

“element of” and “subset” to use in their proof; however, the group did not seem to make use of 
a conceptual connection between the symbols and their other work. Since group 1 attempted 
different representations and made some incomplete connections, I coded their work as 
“developing” in the Between Representations subcategory. 

Group 2 Holistic Summary 
In contrast to group 1, the students in group 2 spent more of their group time working 

independently. The first few minutes in group 2 were spent trying to understand the vocabulary 
in the statement. When Susan attempted to generate an example of the statement, she considered 
3 and 5 and observed that the number used to generate the perfect square creates the Pythagorean 
triple 3, 4, 5.  While Susan worked on her idea, Craig was focused on using mathematical 
symbols and language to rewrite the statement, and Mason worked to verify more examples of 
the statement.  Mason’s engagement with the examples led him to observe that the number in the 
“middle” of the twin primes being the square root of the perfect square mentioned in the 
statement. While Mason contemplated his idea, Susan admired Craig’s rewriting of the statement 
using symbols for “for all,” “therefore,” etc. Mason worked to represent the statement 
algebraically and produced the equation: n(n + 2) = (n + 1)! 	− 1. Mason finally made the 
conclusion that his equation would work for any number, and hence it would prove the statement 
for twin primes. Susan challenged this approach, and while she was eventually able to revoice 
Mason’s ideas, she remained confused about the proof at the end of the group’s time together. 
Later during class, Mason presented the group’s work to their classmates. 

Group 2 Assessment via the CPR on Proving 
Figure 3 below provides a summary of the coding for group 2’s proving attempts in the 25-

minute group work session.  
Using Figure 3, one can observe group 2’s performance in each category throughout their 

proving process.  For example, consider the “Posing Questions” category. Throughout their 
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collaboration, the members of group 2 posed several clarifying questions. For example, while 
generating examples, Craig asked, “What’s the prime number after 7?” and later Susan asked her 
group members and the instructor of the course, “Does one count as a prime number?”  

 

Figure 3. Levels of Group 2’s work according to the CPR on Proving. 

Group 2 also demonstrated posing questions while considering possible generalizations of 
the statement. Mason asked the group, “What if that's true for any two numbers that are two 
apart? Like...what if that's true for any two numbers?” After posing this question, Susan and 
Craig largely ignored this idea; nonetheless, Mason proceeded to test his question independently 
and conclude that the statement could apply to any two numbers with a difference of two.    

Although most questions posed were to clarify the given statement and definitions, Mason’s 
question about generalizing the statement somewhat propelled a conversation regarding the 
reasoning of the proof. Thus, I coded group 2 between the “developing” and “advancing” levels 
in the Posing Questions subcategory.  

Discussion 
Does the CPR on Proving tell the whole story? 

The Creativity-In-Progress Rubric on Proving was designed to measure the creativity 
displayed in an individual’s proving attempt, yet in this study I have attempted to assess a group 
of students as a unit. Here I describe some observations made through a comparison of the 
holistic summary of each groups’ work to their respective placement on the CPR.  

When reviewing the CPR on Proving assessment of group 1, there are only a few moments 
neglected in consideration of this group’s holistic story. The coaction of group 1 is not evident 
by viewing the CPR on Proving assessment of their work. Each student’s individual creative 
contributions to the proof were deeply intertwined with their teammates, and this should be 
represented in a rubric of their creative proving process. In contrast to group 1, group 2 did not 
construct their ideas collectively. I imagine that the CPR on Proving would have been a more 
appropriate tool for assessing each individual group member of group 2 rather than viewing the 
group as a unit. Students in both groups frequently posed suggestions or conjectures to their 
classmates, and this is not acknowledged on the CPR.   

Suggestions for Use of the CPR on Proving in Collaborative Settings 
With the above observations in mind, I have developed three suggestions for use of the CPR 

on Proving when applied to a group. My suggestions below are motivated by improving the 
rubric to enhance its use in revealing mathematical creative abilities in tertiary students through 
formative assessment and/or reflection. These suggestions may allow the CPR on Proving to help 
students overcome common roadblocks in proving by reflecting upon their creative process in a 
group setting.  
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First, I suggest an additional category titled “Collaboration.” The addition of this category to 
the rubric will require reflection upon the group’s ability to recognize and build upon one 
another’s contributions. In the continuum of evaluating collaboration, at the beginning level the 
group members’ attempts of the proof are individual. At the developing level, group members 
acknowledge one another’s ideas and attempt to produce a cohesive proof. Finally, at the 
advancing level, the group constructs a proof collaboratively and successfully incorporates the 
contributions of each group member cohesively. For example, in the cases examined in this 
paper, group 1 would be placed at the “advancing” level, while group 2 would be placed at a 
high “beginning” level.  

The second suggestion for modification of the CPR on Proving is to expand the “Posing 
Questions” subcategory. I observed in my analysis that students working in a group frequently 
posed suggestions or conjectures where they may have been posed as questions in an individual 
setting. I would expand this category to be “Posing Questions/Making Suggestions.”  For 
example, in group 1’s attempt to generalize the statement, Matthew said: 

“It's a positive number. I'm going to say positive because I don't think it would work with 
negative... But I don't know, because there's only... Ugh! If we include negatives, then it 
could be like one and zero. So maybe we can say any nonzero number.”  
This suggestion prompted a conversation between Matthew and Nathan regarding whether or 

not the statement would apply to negative numbers similar to how the conversation could have 
proceeded if Matthew had asked “can we include negative numbers?” The CPR on Proving did 
not capture this moment because Matthew did not phrase his thought as a question even though 
his body language and tone indicated he was seeking the groups input on his suggestion.  

Finally, when implementing the CPR on Proving in a collaborative setting as a reflective 
tool, I suggest that students evaluate the proof attempt by first viewing the group as a unit and 
then using the CPR on Proving to assess their individual contribution to the group. For example, 
in group 1, Nathan contributed a majority of the examples, Ganesh was strong in making 
connections to other theorems and flexibility, and Matthew posed important questions to the 
group. In group 2, Susan and Craig would have had lower scores overall in most categories, 
while Mason would have had higher scores in most categories. Encouraging group members to 
examine their contributions may allow them to notice areas for improvement, appreciate 
contributions of their group members, and learn how to approach proofs more collaboratively.  

Future Research 
Mathematical creativity is a central tenant of tertiary mathematics education, especially in 

proof. For this reason, future research should focus on determining how to foster creativity in 
tertiary mathematics students. Problem posing (Silver, 1997), Model-Eliciting Activities and 
phenomenon-based learning (Asahid & Lomibao, 2020), and multiple solution tasks (Leikin & 
Elgraby, 2020) have been conjectured to improve mathematical creativity skills. A clear 
direction for future research is to examine if collaboration in proving fosters mathematical 
creativity.   

The CPR on Proving has offered a wonderful contribution to the world of undergraduate 
mathematical creativity in proof by providing a reflective and formative assessment tool to 
encourage and emphasize creativity. In my experience, as students progress in their mathematics 
education, they increasingly look to their peers for support and engage in collaboration. My 
suggestions for future use will support the continued development of the use of the CPR on 
Proving in a collaborative setting.  
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Examining the Distribution of Authority in an Inquiry-Oriented Abstract Algebra Environment 
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Recent large-scale research points to evidence of inequitable outcomes between women and men 
in inquiry-based mathematics education (IBME) courses. One explanation for differing outcomes 
may be that women are having different experiences in these courses than men. Specifically, the 
ways in which students garner mathematical authority and leverage their authority in both whole 
class and small group contexts may differ between students. Framing authority as a relation 
between people determined by their mathematical activity, we present an exploratory analysis of 
the authority relations between students as they engage with tasks developed for an IBME 
abstract algebra course. Findings suggest there are indeed discrepancies in the amount of time 
students have mathematical authority. We present examples of situations in which discrepancies 
are visible to begin examining the underlying nature of these discrepancies.   

Keywords: Abstract algebra, inquiry, mathematical authority 

Many researchers have positioned inquiry-based mathematics education (IBME) (Laursen & 
Rasmussen, 2019) as means to support student-centered undergraduate classrooms. These 
paradigms share commonalities: “student engagement in meaningful mathematics, student 
collaboration for sensemaking, instructor inquiry into student thinking, and equitable 
instructional practice to include all in rigorous mathematical learning and mathematical identity-
building" (p. 129). Until recently, the first three pillars have dominated research in this paradigm 
with equity largely underexplored at the undergraduate level (Adiredja & Andrews-Larson, 
2017). Consider the context of abstract algebra—there are several research-based curricula (e.g., 
Larsen, et al., 2013) and studies exploring student and teacher activity in inquiry classes (e.g., 
Fukawa-Connelly, 2016). Such work reflects a positive reality: students are engaging in 
meaningful mathematics. However, recent large-scale research points to differing outcomes for 
students such as Laursen, et al. (2014) and Johnson et al.’s (2020) contradictory results when 
looking at the outcomes for women and men in these types of courses.   

It is possible that students are having different experiences in these courses in terms of their 
ability to leverage their authority in both whole class and small group contexts. Possessing 
mathematical authority can aid students in developing deeper conceptual understanding of 
concepts and developing more productive identities and dispositions toward mathematics 
(Langer-Osuna, 2017). In addition, mathematical authority can result in improved motivation and 
engagement because of increased choice and responsibility. However, typical mathematics 
classrooms can possess structures that remove authority from students (Wagner & Herbel-
Eisenmann, 2009). Although IBME courses may differentiate in several ways from these typical 
classrooms, IBME courses may still possess structures that serve to restrict or remove 
mathematical authority from students. While the restriction of authority is typically framed as 
teachers (or other institutional figures) removing authority from students by limiting their 
opportunities to engage with mathematics, it is possible that students themselves may restrict 
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authority from others. Given that IBME courses provide more opportunity for students to engage 
with mathematics and with each other, a related question then is whether and how student-to-
student authority relations might work to restrict authority from some students.   

While authority relations have been analyzed to some degree in the K-12 setting (e.g., Amit 
& Fried, 2005; Cobb, Gresalfi & Hodge, 2009), they remain largely implicit in the undergraduate 
setting. As we conjecture that authority relations may provide an explanatory mechanism for 
differing student experiences in IBME classrooms, developing a theory of authority relations in 
the advanced undergraduate setting is important. Thus, in this paper, we focus on a group of four 
students engaged in task-based interviews designed to mimic an IBME classroom in order to 
carefully analyze their authority relations. We focus on a lab setting because (1) some of the 
highly studied curricula at this level have been developed based on student thinking/activity in 
similar settings (e.g., Larsen, et al., 2013) and (2) the lab setting provides opportunity to explore 
in depth the ways that students are interacting in a group without extraneous classroom 
influences. This exploratory analysis focuses on the following research question:  

How do mathematical authority relations manifest among participants as they engage with 
abstract algebra tasks?  

Theoretical Framing 
A key distinction of authority within a mathematics classroom is between pedagogical and 

mathematical authority (Wilson & Lloyd, 2000). In this paper, we primarily focus on the latter. 
In other words, we focus on describing authority that is derived from engaging with mathematics 
rather than sources of authority that are perhaps institutional in nature (e.g., the pedagogical 
power of a teacher to determine a discussion topic). We assert that authority is visible by 
observing people’s actions. Symbolic interactionism describes relationships between individuals 
and asserts that communication is how people make sense of and act upon their world. We adopt 
the theoretical lens of symbolic interactionism and use Goffman’s (1981) notion of authorship 
and animation to describe authority relations as interactions between people and the activities in 
which they are allowed to take part. In this paper, mathematical authority is defined as a dynamic 
and negotiated relationship between people (or groups of people, or organizations, etc.) where 
one party defers to another in a mathematical situation (Lambert, Hicks, Koehne & Bishop, 
2019). This definition stands in contrast to definitions of authority that rely on characteristics or 
immutable traits of an individual, such as perceived status due to age or possessing a PhD, and 
definitions that consider authority to be an attribute of an individual that may evolve over time 
(e.g., Engle et al., 2014). Instead, we conceptualize authority as a dynamic, moment-to-moment 
feature of interactions that is not carried beyond the situation in which the authority is manifested 
(i.e., a student with a “dominant” personality does not necessarily maintain mathematical 
authority from one class session to another.) 

Table 1. The AAA Authority Framework for Authority Relations 

Authorship Refers to the significant contribution to the 
mathematical ideas under consideration. 

Asks: Who is the primary source, or author, of 
the mathematical ideas?   

Animation Refers to who is publicly communicating or 
extending mathematical ideas. 

Asks: Who is communicating mathematical 
ideas in the classroom?  

Assessment Refers to judgements/evaluations made about an 
idea. 

Asks: Who is assessing mathematical ideas in 
the classroom and who is being assessed?  
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To operationalize authority relations, we utilize the AAA (read “triple A”) framework 
(Lambert et al., 2019). AAA consists of three components of activity: authorship, animation, and 
assessment of ideas. Table 1 broadly outlines the AAA framework; we discuss specifics of the 
components of AAA in the methods below. Aligned with the AAA framework, we draw upon 
two concepts from Goffman’s (1981) Forms of Talk: participation frameworks and footing. 
Participation frameworks offer an assignment of participation types to everyone involved in an 
event. In the context of AAA, the possible types of participation are the author, the animator, or 
the assessor of mathematical ideas. Footing refers to a participant’s alignment with others within 
a participation framework as well as the obvious or subtle shifts in that alignment from moment-
to-moment. Communication is then accomplished by attending to everyone’s participatory status 
during an event. In the context of AAA, this amounts to identifying who holds the status of 
authorship, animator, or assessor from one event to another. In the next section, we describe how 
these concepts assist in coding our data. 

Methodology 
The data in this study were collected as part of a larger project focused on adapting student-

centered teaching practices from the K-12 setting to the undergraduate setting. The data consists 
of two 2-hour long task-based interview sessions with a group of four undergraduate students 
(one woman and three men) at a large, public university in the United States. To begin analyzing 
our data, the first author segmented each interview by attending to footing: (a) shifts in 
participation structure, (b) shifts in the mathematical content focus, or (c) the introduction of a 
new task or activity. Three types of segments were identified: segments that emulated whole-
class (WC) activity (i.e., everyone engaged in focused discussion with the interviewer 
facilitating), segments that emulated small group (SG) activity (i.e., participants worked in pairs; 
one or more participants worked without the interviewer present), and segments that were either 
not mathematical or involved independent work with no student interaction. 

The AAA framework was originally developed to attend to the collective authority of all 
students (contrasted with the teacher) rather than the authority of individuals in a given moment. 
In other words, if one student authors an idea in a class discussion, then students collectively 
receive credit for authorship. In this paper, we adapt AAA to track authority for individuals. 
Each segment that was labelled as WC or SG was assigned codes of which individuals were the 
holders of authority for each of authorship, animate-speak, animate-scribe, and assessment. 
Authorship is based on opportunities to contribute which are constrained by the overall focus of 
a segment. Authorship involves establishing the focus or making a significant mathematical 
contribution to the overall focus of a segment. It is assumed that the interviewer will direct 
classroom activities and functions, such as assigning a worksheet or posing a question to the 
class, and thus, these activities do not count toward authorship.  

The component of animation is divided among speaking and scribing activity. Speaking is 
the public oral communication of mathematical ideas. Speaking may include (a) revoicing 
another’s idea, (b) expressing disagreement/confusion with another’s ideas, (c) sharing new 
ideas/content, and (d) asking probing questions to elicit another’s ideas.  Scribing includes the 
communication of ideas which occurs publicly through (a) inscribing mathematical content on a 
board/document camera, (b) and gesturing to written work. A key aspect of scribing is board 
control, which often involves placing oneself at the front of the classroom.  

Finally, an assessment is defined as an explicit statement that indicate the correctness, 
validity, or sensibility of a given mathematical contribution (such as a statement, argument, or 
strategy). Any disagreement or argumentation between students is considered as explicit 
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assessment. Acts of assessment may or may not be followed up with a justification. Who makes 
a justification is not necessarily the same individual who makes the initial assessment and 
justification can be presented with varying degrees of quality.  

For each segment, we determined which students held authority for the activities of 
authorship, animate-speak, animate-scribe, and assessment by assigning a code to each student 
that participated in each activity. Segments that were particularly difficult to code were brought 
to the group to resolve coding and interpretations. Once each segment was coded, the length of 
time for which each student was involved in a segment in which they held authority for each 
activity was determined for both of whole class and small group time. In the next section, we 
present the results of this analysis. 

Results 
There was a total of 69 coded segments across the interviews: 55 WC and 14 SG.  Figure 1 

below represents the lengths of time (in minutes) for which each of the participants successfully 
took the opportunity to participate across both interviews in both WC and SG contexts. 

 
Figure 1. Lengths of time (in minutes) participants held authority. 

There is clear unbalanced participation across all AAA activities. Across WC segments, Student 
C was moderately dominant in both of authorship and assessment. More striking, however, is the 
discrepancy in time spent as a holder of authority when shifting the participation structure to SG 
settings. In particular, Student A was a holder of authority for each of author, speak, and assess 
the least amount of time across all SG segments. In contrast, Students C and D spent the greatest 
amount of time as holder of authority for each of author, speak, and scribe, while Student D’s 
participation in assessing increased dramatically from WC to SG. Thus, the dominant holder of 
authority for an activity shifted depending on the participation structure. In the sections that 
follow, we seek to begin disentangling the underlying reasons for such difference and explore 
possibilities for these disparities by examining a variety of excerpts.   

Authoring Public Ideas 
Within the two interviews, Students C and D were found to be the author of mathematical 

ideas more than A and B, especially during SG time. In contrast, Student A was found to be an 
author for the least amount of time compared to the other students across the total time. The 
following segment illustrates a particular example of Student A failing to achieve authorship 
despite making utterances that contribute to the mathematical conversation. In this segment, the 
teacher-researcher (TR) is prompting students to share out their thoughts on how they would 
begin proving a theorem: 
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TR: So what are the types of things that we think about when we're going to 
prove something? 

Student B:  What you're given. 
Student A:  <concurrently with Interviewer> …assuming. 
TR: What you're given. All right, so let's go ahead and keep track of these 

things. Let's say ... "what you're given." <writes phrase on board> All 
right, and what are the things that we're given? 

Student B:  G and H are isomorphic. 
Student A:  < concurrently with Student B > …are isomorphic. 
TR:  G and H are isomorphic. <writes phrase on board>. Okay. 
Student B:  G is abelian. 
TR:  G is abelian. <writes phrase on board>. Anything else? 
Student B:  They're groups. 
TR:  G and H are groups. <writes phrase on board> Anything else? 
Student C:  That's about it. 
Student D:  That's all that I see. 

 
Although Student A does in fact contribute independent mathematical ideas in response to the 
interviewer’s questions, Student A’s contributions are either: (a) made concurrently with Student 
B who speaks up over Student A, or (b) spoken while the instructor is already acknowledging 
and making public Student B’s contribution. Further, the instructor only animates Student B’s 
contributions (through re-voicing and scribing on the board.) Because Student A never 
successfully puts forth an idea that is clearly recognized or acknowledged by the group, she does 
not receive authorship credit in this segment. It is also noteworthy that Students C and D’s turns 
of talk at the end effectively halt further opportunity for authorship from others.   

Refusing the Opportunity to Speak 
The length of time in which students took opportunities to speak were seen to be relatively 

high for all students across all situations. This is to be expected due to the usual ease of which 
individuals can contribute by simply making a statement relative to the mathematics. However, 
we found it worth investigating small discrepancies to make sense of why a student may not have 
spoken in a segment. In the following segment, Students B and D have just finished giving a 
presentation at the board while Students A and C are asked to respond to the presentation with a 
comment and a question:  

 
TR: So, something that makes sense, something that you have a question 

about? 
Student C: Yeah, something that made sense, I really thought you did a great job 

explaining the definition well in tandem using the diagram. I understood 
everything you said, as you were showing the mapping from a ... is phi of 
a equal to phi b, a equal to b <referring to 1-1 property> you did 
everything very well in sync, with the instruction and explanation-wise. 
*Looks to Student A who silently nods her head in agreement* 

TR:  Question? 
Student C: *Looks back at Student A who shakes her head* Just when we were 

talking about the operations, I thought it was really well-done, writing 
down the operations, what you were using, although this equation at the 
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bottom ... you all did switch back and forth of operation, or dot, or star, 
your saying of it. 

 
Examples of students not speaking can appear in two ways: passively and actively. Passive non-
speaking may occur when a student does not contribute verbally, but without acknowledgment or 
invitation by others. In contrast, this segment illustrates active non-speaking. Although, Student 
C immediately begins answering the first question posed to the pair, Student A refuses Student 
C’s invitation (nonverbal cue by looking back at her) to both elaborate on Student C’s initial 
comment, and to initiate a verbal response to the second prompt – indicating through gesture her 
choice to turn down the invitation.   

Examining Who Assesses and How 
Assessment can be tied to other authoritative activities, chiefly by taking up authority by 

speaking, but also through authoring and scribing. Who assesses has implications for who the 
main actors are within a mathematical discussion. However, the form of assessment may also 
influence who is taking up authority among the other activities. In this excerpt, the students are 
engaged in a debate following a prompt by the interviewer about making a modification to a 
diagram on the board that was scribed as part of a presentation by Students A and C (authors.) In 
particular, Student B has pointed out a flaw of the diagram not explicating the mapping of an 
element a in a group G to its image: φ(a). 

 
Student C: We don't know for... in G, what a itself maps to. We know what a 

operation b maps to, but we don't know what a maps to. 
Student B:  I don't know why not. You wrote "phi of a" 
Student C: This <points at board> is in G, though. Or, I'm sorry, this is in H, this is 

not in G. I only think ... because we only work in terms of elements in G 
when we're using them in tandem with another operation ... if that makes 
sense. 

Student A:  But the diagram is confusing. 
Student C: Yeah. Well, I think ... I'm just saying I think the operation is necessary, 

because, unless we're working with a kernel. If we find a kernel, then we 
could say… a is in kernel, and it maps to e. We could say that for sure, but 
we don't know any single element that maps to another element in H. 

Student B:  Even though we know that it's onto and one-to-one. 
Student C: Well, yeah, but we don't know the exact element. We know there is a 

kernel. 
 
Note the variety of assessment that occur in this excerpt and who makes it: (a) assessments of 

an idea intended to significantly alter another authored idea, thereby establishing new authorship; 
(b) detailed assessments either for (or against) an authored idea put forth by oneself (or another); 
and finally, (c) assessments that either confirm or deny the contribution of another without 
making new contribution. The first type of assessment is primarily made by Student B who has 
begun the argument with Student C. The second of these types is done only by Student C as he is 
working to defend a diagram drawn during his presentation. His assessment of Student B’s 
critique allows for him to maintain authorship, as well as give him an opportunity to scribe (by 
gesturing at the board.) Finally, Student A contributes a brief assessment that serves only to 
affirm up Student B’s argument, thereby limiting her opportunity to receive authorship credit.  
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Discussion 
Inquiry approaches to mathematics instruction often emphasize “supporting students in 

maintaining authority and ownership of the mathematics” (Kuster et al., 2018). However, the 
quantifier (all students) is often left implicit in these stated principles and the ways we analyze 
student activity in such settings. Through our analysis of just four students in a relatively open 
setting, we were still able to document discrepancies in authority relations. The AAA authority 
framework allowed for observation of which activities students had the opportunity take part in 
and provided a lens to further parse individual segments. In contrast with prior work using AAA, 
we examined authority at the individual student level illustrating important differences across our 
students including: differences in authority within small groups versus whole class segments, 
substantial differences in who assesses in small group, and differences in participation at a base 
level as reflected by speaking. The chosen examples of authority relations allow for insight into 
potential explanations for the differences in participation in authoritative activity: student 
interactions may prevent others from holding authority (either inadvertent or not), students may 
simply choose to not participate, and finally, authority may be limited or extended dependent on 
the type of assessment one partakes in. If a primary aim of IBME is for students to have 
authority and ownership of mathematics, then we suggest that it is vital to explore authority 
relations in these settings. If students leave these courses with different experiences (as suggested 
in Johnson, et al. (2020), and we argue further evidenced by this analysis), we may need to 
revisit the implicit “all students” quantifier to better understand the experience of “some 
students” in terms of authority relations. 

The current form of AAA provided an insightful global view of authority. Based on our 
current analysis, we have several conjectured routes of adaptation to the framework that can 
further support its use in relation to students individually rather than collectively. One limitation 
of our current analysis is that authorship (and other activities) for a segment may vary in degree 
and contribution. Future research can move away from a binary approach to analyze both nature 
and degree (such as primary author for idea #1). Further, we conjecture that tracking particular 
mathematical ideas that are the focus of authorship, animation, and assessment can provide 
richer illustrations. This is particularly salient when looking at small groups where conversation 
often ebbs and flows in less directed ways than in whole class instruction. Finally, we note the 
important role invitations and barriers played in shaping authority relations. Future analysis can 
expand on the nature of these contributions. 

The results of this work point to suggestions for improving equitable teaching practice. 
Gerson and Bateman (2010) argue that the limiting of teachers’ mathematical authority is one 
way of helping to ensure shared authority in the classroom between students and the teacher. 
However, teachers may also consider ways of utilizing their pedagogical authority to assist 
students in having more opportunity to author, speak, scribe, and assess. For example, the 
shutdown of further responses at the end of the first example presented above could have been 
mitigated by an intervention from the teacher-researcher through extending another invitation to 
respond and further authored ideas may have become public. Thus, striking a delicate balance 
between limiting and leveraging the types of authoritative power held by a teacher can assist in 
creating a more equitable distribution of mathematical authority. 
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Promoting Student Agency and Engagement Through Student Partnerships: A Case of an 
Introduction to Analysis Course 

 
 Abigail Higgins Ryan Alvarado Sayonita Ghosh Hajra 
 Sacramento State Amherst College Sacramento State 

Most advanced mathematics courses are taught via lecture, in which it is hard to foster 
meaningful student engagement, agency, and community. In this paper, we discuss an academic 
support resource called The Students as Partners Program that was implemented in an 
Introduction to Analysis course with 26 students at a private institution in the Northeastern 
United States. This model of support positioned three currently-enrolled students in this course 
as “Student Partners” who were tasked with communicating information to the instructor about 
student experiences that the instructor could then use to respond dynamically to student needs. 
In this exploratory study, we examined how student-partnerships can promote student agency, 
which allowed instructors to implement instructional design structures that supported and 
facilitated student engagement in- and out-of-class and classroom community. 

Keywords: agency, engagement, advanced mathematics, undergraduates, student partnerships 

Introduction 
Students often have unpleasant experiences in upper-level, proof-based mathematics courses 

like real analysis. Most advanced mathematics courses in the United States and internationally 
primarily utilize lecture-style instruction (Fukawa-Connelly et al., 2016; Artemeva & Fox, 2011) 
in upper-level courses. Most of these courses employ a “definition-theorem-proof” instructional 
style, during which students tend to be passive during class time, participating primarily through 
note-taking (Weber, 2004). Paoletti, et al. (2018) found that while lecturers in advanced 
mathematics courses asked students a number of questions, lecturers failed to provide students 
with authentic opportunities to construct or co-construct mathematical content and reasoning. 
Learning mathematics requires student engagement, but most advanced mathematics courses do 
not allow much opportunity for engagement; and the normative passive nature of students in 
advanced mathematics classes can contribute to decreased outcomes for students. 

Trowler and Trowler’s 2010 meta-analysis on student engagement in higher education found 
that student engagement is correlated with student achievement. Student engagement is also 
correlated with particular positive outcomes for students including critical thinking, self-esteem, 
productive racial and gender identity formation, improved grades, and persistence. We agree 
with Trowler and Trowler’s claim that student engagement is a shared responsibility among 
students and institutions and their staff. While ultimately, students must exercise agency in 
choosing to engage and the quality of engagement, institutions and staff are responsible for 
instituting structures that allow for, encourage, and incentivize student engagement.  

In this paper, we discuss one way to construct productive structures for student engagement 
called student partnerships. In these partnerships, select student(s), called Student Partners (SPs) 
are invited to be collaborators in the educational process. Each week, they meet with their 
instructor to provide ongoing feedback on teaching practices, discuss the learning needs of the 
students in their class, and directly engage in pedagogical conversations surrounding student 
learning. Positioning students as active participants in the shaping of the course design lifts the 
curtain to allow students to see the process of developing and delivering a course, promotes 
metacognitive and communication skills, and encourages active community participation. 
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Moreover, student-faculty partnerships provide students a means to have anonymous (and thus, 
hopefully authentic) input on the ways they can engage with the course material and with each 
other in the classroom which, in turn, and can help the instructor construct and refine structures 
for students that promote greater engagement in, and responsibility for, their own learning 
(Cook-Sather and Luz, 2014). 

This is an exploratory case study about student partnerships and their impact on student 
engagement and agency. The central goal of this paper is to illustrate how student partnerships 
can promote student agency, which allows instructors to implement instructional design 
structures that support and facilitate student engagement through interaction and participation, 
time and effort, and belonging.  

Theoretical Frameworks 
Our study employs two theoretical frameworks: student agency and student engagement. Our 

conception of student agency draws on Emirbayer and Mische’s (1998), who define agency as a 
response to structure - the set of forces that either facilitate or constrain an individual’s progress 
towards a goal. Given an element of structure, whether that structure is facilitating or 
constraining an individual’s goal, agency encompasses the individual’s choice to respond and the 
quality of response to that structure. Agency is not a quality individuals have or do not have, 
rather agency is something an individual achieves in particular situations. In an advanced 
mathematics class, many students have the goal of learning mathematics or participating in 
meaningful mathematical activity. Traditional class structures may limit the ways students can 
achieve agency by constraining the ways in which they can respond to structures that facilitate or 
constrain their learning, but alternative structures may give students more opportunity to achieve 
agency. In this study, we are focused on student agency as a student’s response to instructional 
design structures (classroom structures over which an instructor has control) towards the goal of 
learning mathematics or participating in meaningful mathematical activity. 

Our framework for student engagement is adapted from Kahu’s (2013) framework for 
student engagement in higher education. There are six dimensions to this framework: the 
sociocultural context; the structural and psychosocial influences; engagement; and the proximal 
and distal consequences. We have modified this framework to focus on the aspects of student 
engagement salient to our study (see Figure 1). As we are focused on the classroom level and 
only collected data from one semester, have only retained psychosocial influences, engagement, 
and proximal consequences. In our framework, psychosocial influences include teaching, 
teachers and staff, and support at the university, along with student identity and skills. In this 
context of this study, staff includes the university employees in the Center of Teaching and 
Learning (CTL) who helped facilitate the student partnership and support includes teaching 
assistants assigned to this course. We have also added student agency to this dimension, by 
which we mean the degree to which they respond - and the quality of these responses - to 
instructional design structures; the agency a student can achieve influences their engagement. In 
Kahu’s framework, a student’s individual experiences are influenced by qualities of both the 
student and the institution to emphasize that student engagement comprises “more than just an 
internal static state,” (Kahu, 2013, p. 13). 
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Figure 1: Student Engagement Framework; adapted from Kahu, 2013. 

Methodology 

Background  
In spring 2020, the CTL at a small northeastern liberal arts college in the United States of 

America introduced a pedagogical program that was modeled after the Students as Learners and 
Teachers program at Bryn Mawr and Haverford Colleges. Each instructor was teamed up with at 
least one student partner and had autonomy in selecting their partners. Student Partners (SPs) 
met with instructors weekly and with CTL staff and other student partners every other week. SPs 
were paid for their time. In this paper, we highlight the partnership between the mathematics 
faculty and three SPs in an upper division introduction to analysis course that is required for all 
students majoring in mathematics at the institution and was supported by two undergraduate 
teaching assistants who had already completed the course. 

Study Participants 
Participants were 26 undergraduate students enrolled in an introduction to real analysis 

course that met for four 50-minute class periods per week, three of whom served as SPs. One of 
the researchers was also the instructor of the course, Dr. T, and served as a participant reflecting 
on their experiences. We gave all interviewees pseudonyms: Nico (a student partner), Milo, 
Rory, Sun, and Jaime. 

Data Collection 
Data was collected in the spring 2020 semester. The data consisted of 1) five synchronous 

classroom observations over Zoom, 2) five 30-minute student interviews, 3) Dr. T’s reflections, 
and 4) SP reflections. Generalized Observation and Reflection Platform (GORP) (Center for 
Educational Effectiveness, n.d.) was used to observe five classes towards the end of the semester. 
In March 2020, the course transitioned to remote teaching due to the COVID-19 pandemic and 
observations occurred after this transition. The two researchers who observed were muted and 
their videos were turned off and they did not interfere with the class. Of the five student 
interviewees, one was a SP. Interview questions reflected student experience in- and out-of-class, 
their interactions with the instructors and peers, and student perception of themselves in the 
context of mathematics and real analysis. 

Analysis 
Using our framework for student agency, we used open and axial coding to analyze interview 

data for references to structures implemented by the instructor control (instructional design 
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structures - IDS) and student responses to these structures (Braun & Clarke, 2006). Classroom 
observation data and student interview data were used in the analysis of student engagement 
within our framework for engagement described above. In order to examine student and faculty 
interaction in the classroom, the researchers noted the number of times a student interacted with 
the faculty and used an open coding thematic analysis to categorize the different types of faculty-
student interactions, namely answering a question, asking for clarification, asking follow-up 
questions, stating conjectures, and other, occurred during a 50-minute class time. We used open 
and axial coding to analyze interview data for evidence of student engagement, as defined in our 
theoretical framework. Dr. T’s and SPs’ reflections were used to triangulate and validate results. 

Results 
We first present evidence of IDS referenced in the student interviews and student responses 

to these structures. Next, we present themes of student engagement in the course and connect 
these to themes of IDS.  

Themes of Instructional Design Structures 
Assignments. One element of IDS referenced in several student interviews was a Theorem-

Definition sheet assignment. Nico (a SP) described this assignment: “you basically just type up 
or write up all of the theorems and definitions that we had done that week.” While Dr. T 
implemented this assignment without input from the SPs, after implementation, SPs validated the 
value of this assignment for him. Nico reported that this “mandatory assignment” helped them 
study for the course and Milo reported that even though this assignment was “extra work,” it 
helped them understand the “ideas more concretely.”  Jaime initially thought this assignment 
“would be annoying,” but “in the end, … it out-weighed any drawbacks. And I thought that was 
really helpful.” The student partnership provided a mechanism through which students could 
respond to the class structure. This feedback helped reaffirm for Dr. T the value of this 
assignment for students’ learning. 

Class Format. When the onset of the COVID-19 pandemic interrupted physical instruction, 
the instructor had to make decisions about adjusting the instructional design to the remote 
learning environment. In their interview, Nico described how the instructor leveraged the student 
partnership to help make these decisions. Nico reported that “before the switch to remote 
learning, our [SPs] main focuses were making sure that we could cater to the needs of everyone 
in the class,” while after the switch, “it was more focused on structuring the class in a remote 
setting.” They reported that they discussed different formats for exams, live versus recorded 
instruction, and the use of breakout rooms with Dr. T. Through the student partnership, students 
had an opportunity to respond and provide input on the class format during an uncertain time. 
This direct student feedback helped Dr. T make informed decisions about structuring class in the 
new remote modality. 

Themes of Student Engagement and Connections to Instructional Design Structures 
From the five student interviews, we identified three themes of student engagement: 

interaction and participation, time and effort, and belonging.  
Interaction and Participation. Nico noted that participation in class after the switch to 

remote learning was noticeably different than before the switch, “... most people before remote 
learning would feel free to jump in and propose different ideas. ... now it’s mainly just getting 
questions answered based on the material and clarifications on stuff that we’re doing right now.” 
This suggests that the class format before the switch to remote promoted student participation in 
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class. Even after the switch to remote, students still regularly asked questions during class time. 
Sun reported that they typically do not ask questions during class time, and while they did not 
ask questions via audio during remote learning, they were able to ask more questions using the 
chat feature in Zoom than they would have during physical instruction. During all five class 
observations, Dr. T used a tablet to write and lecture, something he had used for instruction even 
before the switch to remote, and frequently paused to ask and answer questions. Classes that 
were observed mostly consisted of lecture and some Desmos demonstrations. We observed a 
high amount of student participation during these observations, especially for a remote 
environment at the onset of virtual instruction. On average, there were 13 student interactions in 
a 50-minute class. We also observed that students were actively listening and taking notes as 
most of the student videos were available. The SPs were highly involved during class; their 
interactions comprised almost half of the total number of interactions (asking or answering 
questions) during class time. 

The class format, informed by conversations between Dr. T and the SPs, allowed for students 
to ask questions in-the-moment and helped promote interaction and participation, aspects of the 
behavioral dimension of our framework for student engagement. Thus, through the student 
partnership, students achieved agency by responding to the class format. From this information, 
Dr. T was able to make choices about the class format that increased student engagement. 

Time and Effort. For Nico (a SP), the “Theorem-Definition Sheet” assignment provided a 
structure which incentivized spending time and effort on course material. They noted that 
continuously refreshing course content is an important practice, but “it’s always hard to kind of 
remind myself to do it on my own. So [the theorem-definition sheet assignment] was a super 
helpful way to do it no matter what.” Despite its value, Nico doubted that they would continue 
this practice in the future as they were unlikely to complete an assignment that was not 
mandatory (i.e. part of their grade). This suggests that this assignment increased Nico’s general 
course engagement by incentivizing the expenditure of time and effort in refreshing course 
material. Even though Jaime they thought this assignment “would be annoying” or “hand-
holding, in a way,” in the end, they decided that it was really helpful and provided a lot of value 
in their learning. This assignment provided a structure that promoted this behavioral component 
of engagement. While this assignment originated from Dr. T without input from the SPs, SPs 
helped reaffirm this assignment’s value for Dr. T.  

Belonging. From the outset, Dr. T put a lot of effort into establishing a community-oriented 
class. During instruction, he invites students into the process of constructing mathematical 
knowledge through scaffolding questions that encourage and build on student contributions. In 
their reflections, SPs noted that Dr. T emphasized that student participation was valuable and 
welcomed, despite the “correctness” of answers or suggestions, and that this helped them feel 
more comfortable participating in class. Dr. T was also using a tablet for instruction before the 
switch to remote, which allowed him to face his students during instruction and establish a 
stronger connection with students during class than if he were writing on the board with his back 
to students. The atmosphere in this course promoted a sense of belonging for Nico so that, in 
spite of the switch to remote learning, they maintained connection with classmates and the 
instructor. They reported that “Dr. T always stressed in this class is it’s important to build a sense 
of community, and so try to keep that.” As a student partner, Nico worked closely with Dr. T in 
structuring the course. In their statement above, Nico reaffirmed Dr. T’s valuing of classroom 
community. While the transition to remote learning certainly impacted the atmosphere of class, 
other interviewees reported that Dr. T worked to maintain the classroom community after the 
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switch. While building community and belongingness are core teaching values that Dr. T had at 
the start of the course, feedback from his conversations with SPs helped reaffirm these 
pedagogical decisions. Data from student interviews and Dr. T’s reflections indicate that many 
students experienced a sense of belonging, especially before the switch to remote learning. Thus, 
through the student partnership, students could respond to Dr. T’s choice to emphasize classroom 
community. This choice promoted a sense of belonging for students, which is reflected in the 
affective dimension of our engagement framework. 

From interviews with students, classroom observations, and Dr. T’s reflections, we identified 
three themes of student engagement from our framework: interaction and participation 
(behavioral), time and effort (behavioral), and belonging (affective). We connected these themes 
of engagement to their structural influences. Interaction and participation were influenced by the 
class format Dr. T established, which was informed by the student partnership. Time and effort 
were influenced by assignments Dr. T chose, such as the Theorem-Definition sheets, which was 
reaffirmed through the student partnership. Belonging was influenced by the classroom climate 
Dr. T established through his teaching, which was reaffirmed by the student partnership.  

Conclusion and Limitations 
Student partnerships can increase agency by providing a mechanism through which students 

can respond to IDS. Using these responses, instructors can make choices that increase student 
engagement. Dr. T used SPs “as a bridge between the students and the professor” (a quote from 
Nico) to gather authentic and dynamic feedback about class structures. In their weekly meetings, 
Dr. T was able to discuss feedback with SPs, ask clarifying questions, and understand the 
reasoning behind the feedback SPs provided. Knowing the “why” behind this feedback helped 
him to make meaningful pedagogical choices to address student struggles. SPs served as a 
humanistic liaison between the students and instructor; this human connection was especially 
important for students during the transition to remote learning when in-person learning was 
interrupted. The SP program provided a continuous feedback loop (see Figure 2) of meaningful 
information that Dr. T could use to reaffirm, revise, or generate new IDS. Given this feedback, 
Dr. T could also, of course, choose to make no changes to IDS. 

 
Figure 2: Feedback Loop Provided by SP Program 

Some limitations include a small data set and only one interview with a SP (Nico). Other data 
was collected for this study, including student surveys, that is not reported in this paper as they 
have not been analyzed yet.  
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The Presentation of Composition Across the Curriculum 
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Research has shown that college students struggle to understand the operation of composition 

and the compositive structure of functions. A study of the treatment of composition in written US 

curricula identified the opportunities that were provided to teachers and students. This report 

presents the types of functions and representations used to communicate composition in 

mathematics curricula across the transition from secondary mathematics to college calculus. 

The presentation of composition was overwhelmingly algebraic and less than four percent 

involved multiple representations. The results also revealed that composition was mainly 

presented with linear binomials, monomials, and the inverse cancellation of transcendental 

functions. The opportunities in written curricula were similar to the types of tasks on which 

researchers have reported students being successful. Diversifying textbook problems and 

examples has potential to increase student and teacher knowledge on composition and the 

compositive structure of functions. 

Keywords:  Function Composition; Precalculus; Representation; Curriculum 

 

The operation of composition is essential to the function concept and is foundational to the 

structure of complex functions, calculus, and advanced mathematics (Carlson et al., 2010). 

Research has shown that students are proficient solving composition tasks represented 

algebraically (Carlson et al., 2010; Hassani, 1998; Meel 1999), use multiplication instead of 

composition (Engelke et al., 2005; Horvath, 2010; Meel 1999), and routinely determine the 

algebraic rule for the composite prior to addressing any other aspect of the problem (Horvath, 

2010; Uygur & Ozdas, 2007). 

College students who have successfully completed composition tasks have commonly used 

one of two main methods. One way is to view composition as a recursive sequence of functions 

where substitution is used to evaluate the innermost position function at a particular numerical 

value of the independent variable and then relays this function value to next function in the 

sequence and evaluate it in the same pointwise manner. This sequence of recursive substitution 

was illustrated by a calculus student that evaluated the composition of 𝑓(𝑥) = {
|𝑥 − 1|  if 𝑥 > 1
      2       if 𝑥 ≤ 0

  

and 𝑔(𝑥) = 𝑥 − 2 at the point 𝑥 = 2 by first determining 𝑔(2) to be 0 and then evaluating 𝑓(0) 

to obtain the result of 2 (Vidakovic, 1996). Another common approach has been to view 

composition as a substitution operation. The algebraic formula of the composition of 𝑓(𝑥) and 

𝑔(𝑥) is determined by substituting the algebraic formula of the first function 𝑔(𝑥) into the 

independent variable of the second function 𝑓(𝑥). 

Most of the literature on function composition has focused on students’ performance on 

composition tasks. There is little literature on the designing of instruction on the topic of 

composition (i.e., Ayers et al., 1998; Webster, 1978) and no studies analyzing the presentation of 

composition in textbooks. Building on the knowledge of college students’ solution strategies of 

composition tasks, this study investigated the treatment of composition in written curricula from 

Algebra 1 at the secondary level to calculus at the college level. The data presented in this paper 

came from this larger curricular analysis. This report concentrates on the types of functions and 
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representations that were used to communicate composition and on the mathematical shifts that 

existed in the written curriculum between the secondary and post-secondary level. 

 

Conceptual Framework 

The larger study categorized the composition content in the mathematical texts according to 

Van Dormolen’s (1986) categories of theoretical, algorithmical, and communicative. The 

theoretical category included definitions, descriptions of composition, and the properties of 

composition. The algorithmical category included procedures and the actual performance of 

composition. The communicative category included language, symbols, and mathematical 

notations used to present composition. Similar categories have been used in other studies of 

mathematics written curricula (i.e., Smith et al., 2016). 

This short report is comprised of data only from the communicative category. In particular, 

the types of functions and representations used by textbooks to present composition is discussed. 

Whenever there were multiple function types or representations in a single textual element, every 

type of function and representation were coded. This paper specifically reports on the following 

research questions: (1) Which types of functions were used to present composition and how did 

that change across the curriculum? (2) Which types of representations were used in the 

composition content of mathematics textbooks? 

 

Method 

Twelve US textbooks in four series of mathematics curricula were selected for analysis. A 

textbook series was defined as a collection of subsequent course texts marketed by a single 

publisher with common authors. Two series were selected at the college level and the other two 

series at the secondary level. Selecting two series at each level provided one perspective of 

composition that was widely used, and a second perspective that differed from the first. Together 

they provided a wider view of composition across the curriculum than a single series. The 

secondary level was included in this study to provide background information on the 

mathematics students encountered prior to their college experience. Additionally, comparing the 

data at both levels could depict any mathematical shifts students may experience as they 

transition into college mathematics. 

At the college level, Stewart’s Calculus: Early Transcendentals (2012) and Precalculus: 

Mathematics for Calculus, by Stewart et al. (2007) published by Thompson Brooks/Cole was 

selected as the most widely adopted series (Horvath, 2012). Calculus (2009) by Hughes-Hallett 

et al. and Functions Modeling Change: A Preparation for Calculus (2011) by Connally et al. 

published by Wiley was selected for the second college series because it approached the topic of 

composition differently than the widely adopted texts. It included a variety of representations and 

utilized a mixture of justifications and proofs (Askey, 1997), while the Stewart texts contained 

fewer representations and more formal proofs.  

At the secondary level, each series consisted of textbooks for Algebra 1, Geometry, Algebra 

2, and Precalculus. Glencoe/McGraw-Hill Mathematics (2010) was selected as widely adopted 

series (Dossey et al., 2008). This series presented its content by an exposition-examples-

exercises format and the composition content focused on substitution. The other secondary series 

was the CME Project (2009) published by Pearson. It arranged its content by mixing the 

exposition with examples and problems. Composition was introduced as the linking of function 

machines and formally defined composition as an operation on functions.  
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This paper reports on the types of functions and representations used to communicate the 

principles and properties of composition and not to compare curricula. Differences between 

courses will be reported, but the differences between textbooks for the same course will not be 

discussed.  

Every page in each secondary and in each college precalculus textbook was examined to 

identify all instances of composition. Every page in the calculus texts were analyzed from the 

beginning through the section on the chain rule. There were 4040 sentences, figures, and 

problems involving composition identified as composition elements. The type(s) of functions and 

the type(s) of representations that appeared in each element was recorded. A second coder 

applied the coding scheme to a random sample of 300 elements. There was 100% agreement 

between the two coders in their coding of the types of function and the types of representation 

for each data element. 

 

Results 

Types of Functions 

The composite structure of functions builds complex functions from simple ones. Of the 

2597 elements that contained at least one type of function, 93% were the composition of two 

functions, 6% were the composition of three functions, and the remaining 1% were compositions 

of four or more functions. Half of these elements included a polynomial function. Trigonometric, 

root, and exponential functions each appeared in 12% of the elements, logarithmic functions and 

affine transformations were each included in 10%, geometric transformations in 8%, and rational 

functions in 7%. Ordered pairs, piecewise-defined functions, and absolute value functions each 

appeared in less than 2% of the elements. These numbers do not sum to 100% because one-

fourth of the elements contained more than one type of function. For example, finding the 

composition of 𝑓(𝑥) =
𝑥2+1

3𝑥
 and 𝑔(𝑥) = 𝑥3 would be coded as both a rational and polynomial 

functions. The distribution of the number of elements and the number of codes for each course is 

shown in Table 1. As seen in the table, the data revealed a significant increase in the number of 

multiple codes in the college texts compared to the secondary texts. This indicated that the 

secondary texts were predominately compositions of homogeneous types of functions and the 

college texts contained a greater number of compositions of diverse function types. 

 

Table 1. The number of Types of Functions elements and codes per course. 

Course Elements Codes Multiple Codes 

Algebra 1 111 133 20% 

Geometry 184 184  

Algebra 2 841 925 10% 

Secondary Precalculus 448 568 27% 

College Precalculus 799 1155 45% 

Calculus 214 319 49% 

    

While most types of functions occurred throughout the curriculum, the composition 

involving the geometric transformations of translations, rotations and reflections mainly 

appeared in Geometry and compositions involving affine transformations and ordered pairs only 

appeared in Algebra 2. In Geometry, all 184 elements were geometric transformations. In 

Algebra 2, affine transformations occurred in 29% of the codes. The distribution of the 
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remaining types of function codes within each course is shown in Figure 1. Polynomials had the 

highest frequency in every course. Trigonometric and root functions were next most prevalent in 

secondary precalculus and the exponential and logarithmic functions were more emphasized in 

the college courses. 

 

 
Figure 1. The distribution of the codes for the Types of Functions within each course. 

 

The polynomial functions included polynomials of various degree and number of terms. 

Linear polynomials appeared in 62% of the elements, quadratic functions in 32%, cubic 

polynomials in 4%, and 1% had degree higher than 3. Regarding the number of terms 25% were 

monomials, 66% were binomials, and 8% were trinomials. In every course, linear binomials 

occurred more than any other type of polynomial. The distribution shown in Figure 2 illustrates 

the emphasis of linear binomials within each course. In the graph, 100% is the total of Function 

Type Codes within a respective course. Quadratic binomials received more attention in the 

college courses and quadratic trinomials in the secondary courses. Across the entire curriculum, 

half of all polynomials being composed were linear binomials and another 25% were monomials.   

 

 
Figure 2. The distribution of the types of polynomials within each course. 
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The compositions of transcendental functions predominately involved the composition of 

inverse functions. Seventy-one percent of the trigonometric functions compose trigonometric and 

inverse trigonometric functions. Similarly, 62% of the compositions involving exponential 

functions and 77% of those involving logarithmic functions are the composition of exponentials 

and logarithms with a focus on the cancellation property of inverse functions.  Overall, 17% of 

the elements across the curriculum contained the composition of a transcendental function with 

its inverse. 

 

Representations 

The composition content in these textbooks was represented by algebraic symbols, graphs, 

tables, verbal descriptions (Example A), numerical functional correspondence such as ordered 

pairs and function notation (Example B), illustrations such as function machines and mapping 

diagrams, and geometric figures. The geometric figures representation included geometric shapes 

and pictures that were transformed via composite transformations.  

Example A: f is the rule “square” and g is the rule “subtract 3.” The function f ◦ g first 

subtracts 3 and then squares; the function g ◦ f first squares and then subtracts 3. (Stewart, 

2012, p. 193) 

Example B: Suppose that j(x) = h
-1

(x) and that both j and h are defined for all values of x. Let 

h(4) = 2 and j(5) = -3. Evaluate, if possible, j(h(4)). (Carter, Cuevas, Day, et al., 2010, p. 

411) 

Of the elements with a representation, 81% contained an algebraic equation or expression, 

7% contained geometric figures, 6% were graphical, 5% were verbal, 3% were tabular, 2% were 

numerical correspondences, and 1% was illustrations. Algebraic, graphical, and verbal 

representations appeared throughout the curriculum. Numerical correspondence representations 

were predominately found in secondary texts, and tables predominately appeared in college texts.  

Multiple representations appeared in 4% of the elements with a representation. Of these, 30% 

occurred in Algebra 1, 8% in Algebra 2, 12% in secondary Precalculus, 26% in college 

Precalculus, 24% in Calculus. Of the multiple representation elements, 44% contained both 

algebraic and graphical representations and 43% contained both algebraic and verbal 

representations. Of these multiple representation elements 30% occurred in Algebra 1, 7% in 

Algebra 2, 12% in secondary Precalculus, 27% in college precalculus, and 24% in calculus. The 

college precalculus course contained more than double the number of multiple representation 

elements than the secondary precalculus course. 

 

Discussion 

Researchers have reported that college students have performed well on basic algebraic 

composition tasks and have struggled on tasks that focus on the compositive structure of 

functions. This study has identified that monomials, linear binomials, and the inverse 

cancellation property of transcendental functions accounted for 55% of the types of functions 

that appeared in the composition content of these secondary and early college textbooks. 

Additionally, the representation with the highest frequency in every course was algebraic.  

While there have not been studies focused on students’ performance on compositions tasks of 

various function types, researchers have reported statistics on students solving composition tasks 

represented algebraically, graphically, and tabularly. Carlson, et al. (2010) reported student 

success rates as 94%, 50%, and 47%, respectively. Hassani (1998) reported rates of 84%, 10%, 

and 50%, respectively. In an interview with a student in a developmental algebra course, 
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DeMarois & Tall (1996) reported that the student needed guidance to complete a composition 

task using the table, unable to begin a graphical composition task, and successful with minimal 

guidance on an algebraic composition task. This analysis of written curricula revealed the same 

representation with which students were successful was the same as representation 

predominately in mathematics textbooks. 

This study also looked for the mathematical shifts between the secondary and college 

curriculum. The data revealed that the college texts were similar to the secondary texts in the 

dominance of the algebraic representation and the high frequency of linear binomials. A shift did 

occur with the college curricula having more quadratic monomials and having a two-thirds 

increase in the number of elements that composed multiple types of functions. Being aware of 

these changes in the mathematical demand, teachers and curriculum authors can better support 

students’ transition into college mathematics. 

While it is true that written curricula do not determine what teachers teach and what students 

learn, it does contribute to both (Remillard et al., 2009; Stein et al., 2007). Teachers look at the 

adopted textbook as they prepare what they will teach and the students themselves have direct 

access to the written curriculum. Written curricula are involved at both ends of the teaching and 

learning experience. 

Even though these findings are limited to a small sample of twelve texts, we can gain 

valuable information. The problems that students performed well on were common types of 

composition tasks in textbooks. More research on composition is needed to better understand 

how to improve students’ understanding of composition and the compositive structure of 

functions and the similarities between textbooks and student knowledge. 
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The abrupt switch from in-person instruction and tutoring to remote or online instruction and 
tutoring as a result of the COVID-19 pandemic in March 2020 was difficult for even the most 
experienced instructor. In this paper, we explore how graduate teaching assistants (GTAs) at 
three different institutions responded to and experienced this change. Data was collected from 
surveys and focus groups conducted with graduate teaching assistants at each institution, as part 
of our ongoing collaborative NSF-funded project focusing on equipping mathematical sciences 
GTAs to become better teachers. In their responses, the graduate teaching assistants discussed 
topics ranging from what they did in their remote classrooms to the challenges they faced and 
supports they received from their department, university, and fellow classmates and faculty. 
 
Keywords: graduate teacher training, remote instruction and tutoring, teaching assistants 
 

Much of the undergraduate instruction in mathematics and statistics is provided by graduate 
teaching assistants (GTAs), who often have only limited training and experience in teaching 
(Blair et al., 2015; Ellis, 2014; Speer et al., 2005; Speer & Wagner, 2009). Responding to this 
need, Promoting Success in Undergraduate Mathematics Through Graduate Teaching Assistant 
Training (PSUM-GTT) is a multi-institution National Science Foundation-funded program that 
supports GTAs in developing knowledge, skills, resources, and mindsets to become effective 
instructors. The goal of PSUM-GTT is to improve academic outcomes of undergraduates in 
mathematical sciences courses by strengthening teaching capabilities of GTAs. PSUM-GTT 
aims to provide immediate benefits for the undergraduate students that GTAs currently teach. In 
addition, because many of today’s GTAs are the “faculty of the future” (Saxe & Braddy, 2015, p. 
27), we expect the program will provide lasting benefits to the post-secondary students current 
PSUM-GTT participants will teach for decades to come.  

 While there is extensive literature related to instructional practices and professional 
development for online teaching, Hodges et al. (2020) and Ho, Cheong, & Weldon (2021) 
distinguish between emergency remote teaching due to an emergency or crisis and extended 
planning for online learning, which might be a 6–9-month process. While some recent work in 
mathematics education has focused on remote and online instruction and tutoring practices 
during emergency remote teaching necessitated by the Covid-19 pandemic (Dumbaugh & 
McCallum, 2021; Johns & Mills, 2021), these studies focused on best practices, not the lived 
experiences of mathematical experiences GTAs and the training and support they received to 
support the sudden transition to remote teaching and learning in March 2020. This study aims to 
address this need by examining the experiences of mathematics and statistics GTAs at the three 
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institutions where PSUM-GTT operates, leading to the three research questions that guided this 
study. 

1. How did the rapid transition to remote learning and instruction impact and change the 
instruction of GTAs and their approach to teaching? 

2. What challenges did the GTAs face during the transition to remote learning and 
instruction? 

3. What supports did the GTAs receive during the transition to remote learning and 
instruction? 

Theoretical Framework 
The theoretical foundations of communities of practice (Lave & Wenger, 1991; Wenger, 

1998) have become a model for growth and change in higher education (McDonald & Cater-
Steel, 2017) and have been studied in mathematics and mathematics education faculty (Sack et 
al., 2016). Recent work has included a focus on infusing active learning into foundational 
science, technology, engineering, and mathematics (STEM) courses (Tomkin et al., 2019) 
through communities of practice. The elements of the PSUM-GTT program (described below) 
interact to foster an instructional community of practice among the mathematical sciences GTAs 
in the program.   

Study Context: The PSUM-GTT Program  
PSUM-GTT is a multi-faceted approach to supporting GTAs’ growth as mathematical 

sciences educators. It was launched at one institution in 2015 and was expanded to two other 
institutions in 2019. At all three institutions, beginning GTAs are expected or encouraged to 
participate in PSUM-GTT. The program includes a seminar on teaching, held weekly for PSUM-
GTT participants in their first year of the program, which examines best practices in classroom 
instruction and assessment, equity and inclusion, active learning, and student engagement. A 
Critical Issues in Undergraduate STEM Education seminar series features scholars and 
practitioners for seminars which provide deep dives on significant topics. Additionally, each 
GTA in the first two years of the program (mentee) is paired with an experienced GTA or faculty 
member who serves as a mentor, and one GTA at each institution serves as a TA coach to 
provide additional non-evaluative support to all GTAs. Finally, PSUM-GTT participants learn 
about the K-12 mathematics pipeline by visiting local middle or secondary schools or 
volunteering in STEM programs for students hosted at the university campus or in the 
community.  

Method 

Data Collection 
The PSUM-GTT project includes data collection at the end of each semester for the purpose 

of program refinement and broadly relevant research. At the end of the Spring 2020 semester, all 
67 of the GTAs in the program across the three universities completed an online survey via 
Qualtrics. The survey included matrix-formatted items that asked GTAs to indicate (from a 
provided list) which instructional techniques they employed before and after the switch to remote 
learning and instruction. Open-ended survey items asked the GTAs to report the challenges they 
faced, and the support they received. Additionally, 35 GTAs agreed to participate in focus 
groups to further discuss their teaching experiences that semester. 
 
Participants 
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There were 11 graduate student mentors, 12 mentees, and 1 TA coach at Institution A; 8 
graduate student mentors, 12 mentees, and 1 TA coach at Institution B; 10 graduate student 
mentors and 12 mentees at Institution C, all of whom chose to participate in the comprehensive 
training program. At Institution A, 56.5% of participants identified as male and 43.5% identified 
as female. Approximately 65.2% of participants were international students. At Institution B, 
46.5% of participants identified as male and 43.5% identified as female. Approximately 13.0% 
of participants were international students. At Institution C, 45.5% of participants were identified 
as male and 54.5% identified as female. Approximately 40.9% of participants were international 
students. All participants had some undergraduate teaching experience, either at their current 
institution or a different institution, prior to the Spring 2020 semester. All three universities are 
considered to be research-intensive.  

When all three schools shifted to remote learning in March 2020 because of the COVID-19 
pandemic, 16 participants at Institution A were serving as instructors of record, as were 20 
participants at Institution B and 10 participants at Institution C. Of these 46 who were instructors 
of record, only 6 had taught online previously and 21 had taken a prior online class.  
 
Analysis 

Descriptive statistics (e.g., means and percentages) were used to summarize items related to 
instructional strategies. Thematic analysis (Braun & Clarke, 2006) was used to analyze the open-
ended survey items and focus group transcripts.  

Results 

What Happened During Instructional Time  
After the suspension of in-person classes, 39.5% of GTAs who were instructors of record or 

recitation leaders reported using a synchronous online format that met at the usual class time. 
Approximately 18.6% reported a mixture of formats that was mostly synchronous, while 16.3% 
reported a mixture that was mostly asynchronous. Approximately 14% reported using an entirely 
asynchronous format. The remaining 11% chose “Other”, and listed details such as posting 
recorded videos, using a flipped classroom approach, or live lecturing for those students that 
could attend and archiving lectures for those who could not attend synchronously. 

Instructors were asked to identify the instructional approaches they used before and after the 
transition to remote instruction. As indicated in Table 1, all active learning instructional 
techniques were reported being used more frequently when teaching face-to-face compared to 
teaching remotely.  For example, student brainstorming was used by 80.4% of participants for 
face-to-face instruction but just 43.4% during remote instruction. Similarly, the use of teacher 
questioning decreased from 87% for face-to-face instruction to 69.6% for remote. Related to 
teacher questioning, the use of wait time after questions decreased from 89.1% during face-to-
face to 65.2% when remote.  

The decreased use of active learning and student-focused approaches was also seen in 
techniques such as jigsaw, students find the teacher’s mistake, peer review, informal assessment 
and student feedback at the end of class. All of these techniques had reported decreases of over 
50% with the shift to remote instruction and 45.3% of instructors reported spending less than 
20% of class time on active learning. The decrease in student-focused teaching also led to a 
decline in perceived student engagement with 88.1% of instructors identifying a moderate or 
great decline in engagement during remote instruction. Finally, the GTAs’ perception of their 
quality of instruction declined with 61% describing their instruction as “not as good” as before 
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shifting to remote instruction, 34.1% reporting their instruction about the same, and 4.9% 
indicating better instruction during remote. 
 

Table 1. Instructional Techniques Usage Prior to and During Remote Instruction 

Use of Instructional Techniques (n=46) Face-to- 
face 

Remote  Difference 

Direct instruction/lecture 
Students brainstorming 
Peer review of work 
Informal assessment – end of class 
Pop quiz 
Using wait time after questions 
Students posing questions in class 
Teacher questioning 
Role playing 
End of class feedback – (e.g. minute paper) 
Have students find teacher’s mistake 
Group quiz 
Students share work on board 
Inquiry-based learning tasks 
Game-based approaches (e.g. Jeopardy) 
Jigsaw 
Think-pair-share 
Using clickers or other response options 

40 (86.9%) 

37 (80.4%) 
22 (47.8%) 
19 (41.3%) 
8 (17.4%) 
41 (89.1%) 
36 (78.3%) 
40 (87.0%) 
5 (10.9%) 
14 (30.4%) 
29 (63.0%) 
11 (23.9%) 
23 (50.0%) 
16 (34.8%) 
5 (10.9%) 
4 (8.7%) 
22 (47.8%)  
3 (6.5%) 

31 (67.4%) 
20 (43.4%) 
6 (13.0%) 
5 (10.9%) 
6 (13.0%) 
30 (65.2%)  
32 (69.6%) 
32 (69.6%) 
4 (8.7%) 
6 (13.0%) 
16 (34.8%) 
7 (15.2%) 
5 (10.9%) 
11 (23.9%) 
0 (0.0%) 
1 (2.2%) 
3 (6.5%) 
3 (6.5%) 

9 (-22.5%) 
17 (-45.9%) 
16 (-72.3%) 
14 (-73.7%) 
2 (-25%) 
11 (-26.8%) 
4 (-11.1%) 
8 (-20%) 
1 (-20%) 
8 (-57.1%) 
13 (-44.8%) 
4 (-36.4%) 
18 (-78.3%) 
5 (-31.3%) 
5 (-100%) 
3 (-75%) 
19 (-86.4%) 
0 (no change) 

Note: In the survey given to GTAs, this item was a multiple response item as GTAs could use 
multiple different instructional techniques in their courses. 

 
 In addition to the surveys, selected GTAs participated in focus groups regarding their remote 

classrooms. This focus group data provides further insight and information into how GTAs made 
the transition to remote instruction. Several mentees and mentors converted their course to a 
flipped classroom, with recorded lectures and synchronous discussion, problem-solving, and 
collaboration. They used features in their learning management system and breakout rooms in 
their video-conferencing software to create smaller groups for students. Some GTAs at all three 
institutions mentioned uploading notes and pre-recorded lectures for students to view prior to 
class. At Institution B, mentors described how course coordinators for some large service classes 
had pre-recorded lectures to both assist the GTAs in preparation and provide more uniformity in 
the instruction across that course. The majority of mentees and mentors across all three sites 
conducted their courses synchronously, but several GTAs, particularly at Institution A, changed 
to asynchronous instruction in response to poor student attendance, internet connectivity issues, 
etc., and reserved class time for problem-solving sessions and active learning activities. Other 
items mentioned that were used to facilitate instruction included iPads for drawing, computer 
software such as Desmos and GeoGebra for graph and figure construction, and virtual 
whiteboards. 
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The GTAs discussed that during remote instruction they worked to provide appropriate 
accommodations for students who reported varying “life issues” affecting their performance in 
the class. Sample accommodations made included GTAs conducting varied office hours for 
students with work and/or family obligations, flexibility with due dates, and providing extensions 
where necessary. Several also reported following up with missing students via email or phone. 
GTAs were also aware of equity issues impacting student participation and performance related 
to a lack of software, insufficient technology and/or lack of reliable internet. GTAs themselves 
reported spending more time in the preparation, delivery and grading components of their course. 

Challenges and Supports Reported by GTAs 
Teaching and learning remotely.  
Low attendance and participation. The most common challenge identified by GTAs in focus 

groups was students not attending class. A number of GTAs also expressed concern about 
students who logged on but whose audio and video were turned off and who did not participate, 
so the GTAs could not tell whether or not students were following along with class. In addition, 
when GTAs did not see their students regularly in the classroom, it was more difficult to follow 
up with students who were struggling. Several GTAs noted that some students did not respond to 
their email outreach or that it is harder to communicate effectively via email.  

Instructional design and active learning. Many GTAs conveyed a desire to engage their 
students in active learning, but expressed difficulty doing so in the remote context. For instance, 
one GTA noted that students were more reluctant in the remote context to share their work, and 
others noted that active learning activities were more difficult in the remote context. While 
breakout rooms offered an analogous experience to think-pair-share and group work, GTAs 
commented that students were less likely to participate in remote learning breakout groups than 
their in-person equivalent.  

Assessment, and recognizing and responding to student understanding. Numerous GTAs 
expressed concern about formative and summative assessment and responding to student 
questions during remote instruction. GTAs accustomed to in-person instruction missed the 
opportunity to circulate the classroom and see students’ individual and group work. For instance, 
one GTA described missing “being able to walk around the classroom and see what's on your 
paper.” Numerous GTAs also lamented not being able to see students’ faces so that they could 
perceive students’ confusion, understanding, and “aha! moments.”  

With less ability to gauge students’ understanding, GTAs were less able to adjust their 
instruction to address student questions or confusion. One GTA explained, “It was just kind of a 
lot of guessing and hoping like, hey, I'm putting this out there. I think it should be good enough. 
But I don't really know until they take your test.” Another GTA noted it was more intimidating 
for students to ask questions in the remote context since they had to ask them in front of 
everyone rather than being able to ask other students sitting near them. When students did use 
the chat function during class for questions, it was hard for the GTA to notice and respond to 
them while continuing to lead instruction. A GTA also observed that students were more 
reluctant to attend office hours via Zoom. Thus, it was more difficult for GTAs to gauge and 
respond to student understanding in the remote context than in the classroom context. 

With regard to tests and exams, many GTAs expressed concern that students were receiving 
unauthorized aid, whether from web resources or other students. In addition, they described their 
own and students’ concerns about the proctoring services used by the institutions to monitor 
students while they took their exams. 
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Time required for instructional planning, provision of special help, and assessment in 
remote context. Support from other GTAs and from faculty and staff helped GTAs address the 
increased time demands of remote/online instruction. GTAs named specific graduate teacher 
training personnel as providing them with individual support in addition to supporting the larger 
body of student instructors. GTAs in some highly coordinated courses received substantial 
support from faculty course coordinators, such as the sharing of videos or loading of content into 
course management systems, in addition to regular “check-ins” or meetings. GTAs reported 
other graduate students as a source of support. These peer interactions via email, text and 
Facebook included discussion of details provided in university and department emails, answering 
of specific questions related to a class, sharing of resources from those who had taught online 
before, and assistance with creating assessments, such as writing exam questions. 

However, a number of GTAs commented on the increased time demands of online teaching. 
Indeed, across the three schools, 70% of instructors of record reported spending more or much 
more time on remote instruction than they previously had for in-person instruction. Focus group 
respondents identified specific time-consuming activities such as recording and editing videos, 
preparing for class, grading student work, and responding to student questions. 

Technology resources and know-how.  
GTA technology know-how. A number of GTAs who had not previously taught online (i.e., 

asynchronous) or remotely (i.e., online synchronous) reported needing to identify appropriate 
technology tools that were available to them, learn to use these tools and troubleshoot issues, and 
determine by “trial and error” which worked best. The mathematical sciences context made it 
particularly important to find a technology tool to fill the purpose served by a chalkboard or 
whiteboard in a classroom because instructors wanted students to be able to see them working a 
problem (as on a chalkboard) at the same time that the instructor was able to see and be seen by 
the students.   

GTA access to technology. Emails from each university and department provided details 
regarding resources for moving to remote teaching, such as training on Zoom or Bluejeans and 
course management systems. Additionally, two universities provided some students with 
university-owned technology for teaching, such as laptops, iPads or tablets, and microphones, or 
reimbursed them for individual purchases. However, some students indicated that the process for 
getting this technology was not clear to them, so not all GTAs initially had the technology they 
needed for remote teaching.  

Student access to technology. Numerous GTAs reported that students contended with weak 
Internet connections and/or a lack of helpful hardware like a camera, microphone, stylus, iPad, or 
whiteboard. 

Pandemic as context.  
Practical difficulties faced by GTAs. The pandemic created a number of practical difficulties 

for GTAs. GTAs who were parents reported difficulty working from home with their young 
children, and another GTA who is a parent relocated to live with family. A couple of GTAs 
experienced increased demands in their own academic work, with one describing the workload 
as “unforgiving.” Several also noted that no longer having access to a workspace on campus 
made it more difficult to focus or to get help from other GTAs or faculty, and one described 
being “overwhelmed” by the volume of university e-mail. 

Personal struggles faced by GTAs. GTAs identified personal struggles they faced as a result 
of the pandemic, including diminished focus or motivation, mental health challenges, low 
energy, financial hardship, and not enjoying teaching in the remote context as they had in person. 
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Obstacles to student participation and learning. In addition to student challenges related to 
technology and teaching and learning, as described above, a number of GTAs reported that they 
had students who had difficulty attending class because of changes in their work schedules, the 
need to care for young children, or time zone differences. GTAs were faced with limiting 
synchronous interactions or knowing that some students would not be able to participate. One 
GTA commented that some students had gone home to another country and mused, “is it 
equitable to ask them to log in at 2am in the morning math class where they're expected to 
participate?”  

Additional support that GTAs wished they had. 
When asked what additional support could have helped them, GTAs identified two main 

areas. In terms of support for teaching, GTAs indicated that they could have used more direction 
on how to request technology and how to create their own questions in WebAssign, as well as 
more guidance on how to teach effectively in the remote environment. GTAs without course 
coordinators noted that they wish they’d had the same level of support as those with highly 
coordinated classes. In addition to support for teaching, GTAs indicated the need for more 
support for themselves as students and individuals. 

Conclusion and Implications  
The training program created a network of support and collegiality among GTAs and 

between GTAs and PSUM-GTT faculty and staff that was essential for the transition to 
remote/online instruction. While this support network was beneficial in fostering the community 
of practice around mathematical sciences instruction and learning, the difference among GTA 
assignments within departments resulted in GTA reports of varying support levels. Overall, 
PSUM -GTT faculty, staff, and students at the three institutions came together around a shared 
commitment to undergraduate education in the mathematical sciences, learned from each other, 
and contributed to the growing knowledge base of remote teaching and learning (Smith, Hayes, 
& Shea, 2017). 

Active learning, student engagement and equity are foci of the program. Active learning 
approaches were used less often remotely, and instructors reported declines in student 
engagement. While many GTAs found different methods of reaching their students and learned 
to use different technologies that they might not have in a traditional setting, departments can 
support GTAs in their teaching by providing strategies and resources for active learning, student 
engagement, and assessment in online and remote courses and tutoring experiences. GTAs 
attention to equity issues was greater during the pandemic than prior to the transition. GTAs 
were more likely to make accommodations and follow-up with students.  

GTAs were simultaneously contending with increased time related to remote teaching and 
learning and their own coursework and/or research as necessitated by the remote context. Due to 
GTAs receiving communication from multiple sources (e.g., dean’s office, department chair, 
course coordinator), streamlining of communication from within the department specifically 
about resources would have been helpful. 
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Are We Sharing the Same Interpretations For “Prove” And “Show?”: Comparison of An 

Instructor’s and Students’ Interpretations 

 

 Jihye Hwang Shiv Smith Karunakaran 

 Michigan State University Michigan State University 

Proof is a medium of mathematical communication and has distinct characteristics related to it. 

Among various characteristics, we focus on the words in proving tasks prompts (PTP), such as 

“prove,” “show,” “justify,” or “explain” because students’ arguments can be changed 

depending on the keyword, which can impact assessing their learning when the students and the 

instructor do not share the same interpretation for the same keyword in PTP. Thus, in this study, 

we observed an Introduction to Proofs course to see which and how the keywords in PTP are 

presented to students and interviewed the instructor and a focus group interview of her three 

students. The finding indicates that the instructor’s interpretation and students’ interpretations 

were different. Although students are adjusting their pre-existed meaning for those words to the 

context, this study suggests that instructors cannot assume that students share the same meaning 

of the keywords in PTP with them. 

Keywords: proving, proof, argumentation 

Learning a discipline is deeply related to the discourse used therein so that one can fully 

participate (Lemke, 1990; Lew & Mejía-Ramos, 2019; Schleppegrell, 2007). Specifically, to 

communicate using mathematical arguments, it is important for students to learn the discourse 

used and to understand the expectations of them in such situations. However, upon examining 

typical types of problem statements used in Introduction to Proof (ITP) courses, we find a variety 

of words used to prompt proving tasks such as “prove [a claim],” “show [a claim],” “give an 

explanation,” or “justify your answer.” Thus, we posed the following questions: “Are these 

words prompting the same task? Are they interchangeable?” Students are asked to create or 

evaluate mathematical arguments in response to varying prompts such as 

“prove/show/justify/explain a claim.” What often occurs is that instructors enter the discursive 

moment with their own interpretations of the prompts for proving tasks while students enter with 

their own (possibly differing) interpretations. Hence, we spotlight the keywords in proving task 

prompts (PTP), such as prove, show, justify, or explain, as an important area for getting students 

to think about what they are asked to do.  

Of course, one might ask why the issue of such a small aspect of proving tasks is of concern 

in undergraduate mathematics education. Depending on the prompt, students’ interpretations 

affect the logical structure of the arguments and how they present their work. Moreover, if one’s 

goal is to assess how students understand proving, assessing their understanding of proving 

becomes difficult if students think that the words for prompting proving are interchangeable.  For 

example, depending on how students interpret show, some might think that they can provide 

some examples or can use graphs to make their point, whereas others may view show as a 

synonym to prove. As these keywords in PTP can change the structure of the arguments, we 

think it is important to focus on how people interpret these words. Especially, we focus on 

whether a teacher and their students would interpret the words similarly. Therefore, in this study, 

we investigated how an instructor and her three students interpret the keywords, prove, show, 

justify, and explain, in PTP and whether they interpret similarly or differently. 
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Background and Theoretical Framework 

Several researchers have raised questions about the meanings of keywords in PTP, such as 

“show,” “prove,” “justify,” “convince,” or “explain,” used to prompt proving tasks (e.g., 

Dreyfus, 1999; Hersh, 1993; Hwang & Karunakaran, 2019). For instance, Alcock (2013) posited 

that mathematicians consider “prove” and “show” to be synonyms when they prompt proving 

tasks. Dreyfus (1999), however, questioned the word “show” when it is used to prompt 

argumentation as it asks for students to provide a formal proof or an inductive argument. This 

question is supported by a study of Calculus I students’ interpretation of the words “prove” and 

“show” used to prompt proving tasks (Hwang & Karunakaran, 2019, 2020). Hwang and 

Karunakaran (2019, 2020) suggested that students might think the word “prove” necessitates a 

narrower set of appropriate and formal options than the word “show”. Their finding suggested 

that students think the prompting word “show” could prompt an inductive argument even if they 

think that argument is not appropriate for “prove.” Moreover, they found that responses to the 

prompting word “show” need to focus on demonstration and can include visuals or the 

measuring of figures.  

As another example, Mejía-Ramos and Inglis (2011) studied student engagement with the 

words “proof” and “prove” used to prompt proving. They used semantic contamination as their 

framework, and the research was based on their assumption that meanings from daily use of the 

words might be able to influence students’ engagement with tasks. Their finding suggested that 

students responded more casually to the verb “prove” than the noun “proof,” which aligns with 

their research on the usage of the two words in English. The finding also suggested people’s 

usage of words in daily life affects their responses to mathematical questions. 

Although very few researchers have examined the meaning of keywords in PTP, the need for 

further research about the prompting words could be found from some of the existing studies. 

Researchers questioned and/or reflected on how they worded their prompts for interviews or 

survey questions. For instance, Liu and Manouchehri (2017) reflected that changing wordings of 

questions might help to get a better result regarding the gap of student understanding concerning 

roles of proofs; thus, they called for further research on how these wordings affect the research. 

Also, sometimes researchers did not explicitly reflect on wordings to prompt students’ responses 

during the interview tasks, but their results indicated that students might interpret those words 

differently. Bieda and Lepak (2014) purposefully avoided using the prompt “prove” and used 

“convincing” as a word to study students understanding, considering their population, middle 

school students. Their research results implied that students distinguish “show” and “tell 

(explanation)” when they are asked to choose “convincing” arguments. As another example, a 

student in Healy and Hoyles (2000) indicated that “examples could be a “proof,” although not an 

“explanation” (p. 418), which again implied that students distinguish between proofs and other 

types of justifying arguments. This result possibly means that students would have differently 

responded to prompts that were worded differently. Hence, again, we claim that understanding 

linguistic aspects of the prompts in proving tasks are important because it is one of the starting 

points in solving the problem and building their arguments (Mejía-Ramos & Inglis, 2011). 

In this study, we use the framework by Stein et al. (1996) as our theoretical framework that 

guides our study design and data collection. According to the framework by Stein et al., (1996) a 

task evolves throughout three different stages: when a teacher or task designer develops the task; 

when the teacher sets up the tasks to the classroom; and when the task is enacted in the 

classroom. They claim that the sequence of this evolution eventually influences students’ 

learning. We consider that teacher’s interpretation as a kind of teacher subject matter knowledge 
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that can influence the task set-up as well as viewing students’ interpretation as a factor 

influencing the task implementation. Therefore, according to the framework, if a teacher and 

their students do not share the same interpretation of the keywords in PTP, then it can lead 

students to possible misunderstanding of mathematical proving.  

 

 
Figure 1. The modified mathematical framework by Stein et al. (1996) 

Methods  

The setting of the reported study is an ITP course in a large public midwestern university. 

We chose the ITP course because instructors and students in the course need to engage with 

proving tasks frequently. Therefore, an instructor of the course would have some interpretations 

of the keywords in PTP as well as at least some understanding or expectation of how students 

would react to the keywords. For that reason, Alycia (all names are pseudonyms), who was one 

of the six instructors teaching the course in spring 2020, participated in the study. Alycia was a 

mathematics doctoral student teaching this course for the first time as the instructor of record, but 

she had served as a teaching assistant for this course during the previous semester. The data 

collection with her consisted of two cycles of a half-hour-long pre-interview, two classroom 

observations, and an hour-long post-interview. During the pre-interviews, the first author asked 

her about her teaching plan for the week such as proofs that she would present to students or the 

problems that students would do. Alycia’s voice was recorded during the classroom observation 

and the first author took notes on what she wrote on the board. Then, during the post-interviews, 

there was a brief discussion of what she did and whether there was a relevant case related to 

keyword in PTP as well as two interview tasks–one for each post-interview. 

After the data collection with Alycia was finished, three students (Ryan, Leo, and Tyler) 

from Alycia’s class participated in a focus group interview. The reason we chose the focus group 

interview was for participants to have a similar situation to their classroom because the ITP 

course in the university used groupwork as one of its major practices. During the focus group 

interview, they solved one proving task, discussed some questions related to PTP, and then 

collectively tackled the task used in Alycia’s second post-interview. In this second task, 

participants were asked to sort six already generated arguments for the same statement “𝑥2 +
4𝑥 + 18 > 0 for all real numbers x.” to one or more of the keywords in PTP, prove, show, 

justify, explain, or none of the above. The six arguments had different characteristics such as 

using a graphing calculator (A3), using empirical examples (A4), using algebraic expressions 
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(A1), or using different mathematical contents (A2, A5, and A6) (some examples in Figure 2). 

All interviews were video-recorded, and the observations were audio-recorded.  

Once the data collection was finished, all of the interviews and relevant parts of observations 

were transcribed. In the first round of coding, sentences were categorized depending on the focus 

keywords (prove, show, explain, and justify). At this stage, for Alycia’s data, we distinguished 

between her responses that were about how she would herself interpret the prompts and those 

that were about her expectations for her students’ responses. Under each keyword, descriptive 

codes were developed. After the second round of coding, narratives of each keyword in PTP for 

an instructor and the focus group were created. To compare an instructor’s interpretations and 

students’ interpretations, we categorized relevant codes with three characteristics of 

mathematical arguments from Stylianides (2007): set of accepted statements, modes of 

argumentation, and modes of argument representation. Set of accepted statements refers to 

mathematical statements accepted by the mathematical community where the author meant to 

present the argument; modes of argumentation refer to the logical structure of an argument such 

as using inductive reasoning or deductive reasoning; and the modes of argument representation 

indicates the form of argument such as linguistic, graphic, or symbolic aspects. We posit that the 

keywords in PTP can influence on each of these three characteristics, especially the latter two. 

Figure 2. Some Examples from The Task in Which All the Participants Engaged 

Findings  

In this paper, because of the space constraints, we focus on prove and show which are the 

most common keywords in PTP used in proof-based mathematics courses. From our data 

analysis, we found that Alycia refers to prove and show as synonyms, but her students do not 

consistently agree. First, we present the data from the instructor, Alycia, and then we present the 

students’ data, which we compare to Alycia’s responses.  

Alycia’s Interpretations 

Alycia herself interprets prove and show as synonyms as commonly used in the professional 

mathematical community and wanted her students to consider them that way as well: 

Alycia: if someone said, “show me that this is true,” I feel like I still need to go through every 

scenario. And part of that is just probably just because of my training [as a mathematician]. 

This quote shows that due to mathematical experience, she became to think that prove and show 

are synonyms, because both of the words ask her to consider all possible scenarios. In the first 

post-interview, she claimed that she had tried to imply the message to students by switching up 

A1 A2 

A3

 

A4 
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the words. But in the later interview, she said she will state the synonymity explicitly to students. 

And in the observation, we found that she vocalized the following expectation to her students:  

Alycia: So, show or prove. So, in your everyday life, these might mean different things, other 

professors that you encounter in your life, they may mean different things, show or prove. 

But if I ask you to show something, I'm asking you to prove it. [If] I ask you to prove 

something, I'm asking you to show it. 

As well as wanting her students to know the synonymity of prove and show, Alycia also 

expected them not to use example-only based argument (empirical arguments) or calculators. In 

addition, she wanted her students to have good proof writing skills where she viewed a proof as a 

response to prove and show. 

Alycia’s Anticipation of Her Students’ Responses 

Although she emphasized and wanted her students to know the synonymity of the two words, 

she anticipated that students might answer differently to prove and show. Alycia thought that 

responses to prove would be more formal than responses to show. As part of it, she thought that 

students might use various forms, such as tables or graphs, when answering to show. In addition, 

she also wondered if students would feel less intimidated when they saw show or more stressed 

because they are not sure what show meant compared to when they saw prove: 

Alycia: …when people think of a proof or something like that in the mathematical sense, I 

think that just, I think, I'm sure plenty of people's blood pressure spikes when they hear that 

[prove] ….  is if I asked them to show something, will that give them anxiety because they 

don't know what I'm asking for? You know? So, so it is kind of like this double-edged sort of 

for like, sure. Proof might sound more intimidating … So then if I, so, so if I ask them to 

show something but maybe they don't know what that means, well then give them more 

anxiety, then if I asked them to prove something and that just sounds more intimidating. 

Hence, although Alycia viewed and expected students to know that prove and show are 

synonyms, she expected some students to struggle in interpreting and responding to different 

PTP words.  

Students’ Interpretations 

From the focus group interview with her students, it seemed her anticipation of how students 

would respond to those words has some relationship with how a subset of her students interpret 

the words. Students were aware that prove and show are similar and that similarity being 

consistent in the class. However, they needed to remind themselves that those are asking the 

same things: 

Leo: So, if it says, just like, "Show why this isn't true," then you can ... Your first reaction, a 

lot of times, is going to be just like, "Okay, I'm just going to write down the counterexample 

and move on." But we really, then you have to like, step back and like, "Wait a second. 

They're not asking for that. They're asking for a proof. 

Descriptions similar to this one appeared repetitively. Student participants were reminding 

themselves that the class they are in is “Transitions,” where their instructor told them prove and 

show are synonyms. The following is the description by Leo when the interviewer asked them 

what the word show means to them: 

Leo: Sometimes it's, show is, in some cases, show can mean like, give an example of 

something, and then, in some cases, like in [course number of Transitions], a lot of times it 

[“show”]'s going to mean prove. So, you have to just make the judgment, yourself, of what 

they're really trying to ask. 
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Leo again referred to the course and mentioned that they are asked to produce the same 

arguments to show as if they are responding to prove in the context. Ryan and Tyler agreed with 

this description. However, as Leo indicated, they viewed show to mean something else in 

different contexts, which is related to how Alycia anticipated students would respond to show.  

Also, related to Alycia’s wondering related to affective aspects of the two words prove and 

show, students claimed that they felt different for both of them. During the interview, I brought 

up the case when Alycia mentioned in the class that prove and show are synonyms, and the 

following were their reactions:   

Interviewer: … I remember Alycia, one time, said, "Show and prove are the synonyms in the 

class." 

Leo: Yeah, but like- 

… 

Leo: Yeah, you hear that, and, but it's like, you see it on the paper, you don't think of them 

the same way. 

Ryan: Yeah. 

Interviewer: Mm-hmm (affirmative). 

Tyler: If somebody says show, or prove, you're like, "Well, all right. I'm going to be doing 

pretty much the same thing," but there's a different feel, I think, to both of them. 

Ryan: Mm-hmm (affirmative).  

Although the three students did not say and I did not ask further at this point how they felt 

differently, during the interview they interpreted that show is more casual or provided “a little bit 

of breath of relief” than prove did. However, in general, it seems that they were adjusting their 

reaction to the word show as what the mathematical community that they belong to interprets it 

as.  

Comparison of Alycia’s and The Three Students’ Interpretations 

Although students are being enculturated to the professional mathematical community and 

both populations’ interpretations looked similar, the responses to the task indicated some 

differences. When looking at Alycia’s interpretation of the four keywords, deductive 

argumentation was the base requirement for any of them because she chose none of the above for 

non-deductive argument (A3 and A4; see Table 1). However, students included A3 as a possible 

answer for the show PTP, which means that deductive argument was not necessarily the 

requirement, but they focused on the graphical mode of argument representation. Similar to this, 

student participants generally paid lots of attention to the mode of argument representation such 

as focusing on defining variables, explaining every step, or making a conclusion, when they were 

deciding if something can be a response to the prove in PTP. This finding is related to why 

students’ choice and Alycia’s choices were different for the choice “prove,” and seems to be 

related to Alycia’s standpoint that she wanted to teach them to have a good habit of writing 

proofs. 

Also, when comparing the choices for show, two of them are common A5 and A6, but the 

others do not overlap with each group’s responses–A5 and A6 were deductive arguments using 

different mathematical knowledge. Considering A1 is an argument with only algebraic work and 

A3 is with graphs, it seems students still think concepts that show can have a variety of forms. 

Interestingly, the choices did not overlap with what Alycia anticipated her students might 

choose. Therefore, although (or as) students are learning how the PTP words are used in 

professional mathematical communities, their interpretations of the words were different than the 

instructor’s interpretations and expectations.   
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Table 1. Choices of the prompts   

 Prove Show Justify Explain None of the above 

Alycia for 

herself 

A2, A5, A6 A2, A5, A6 A1 A2 A3, A4 

Alycia for 

students’ 

possible 

responses 

A2, A5, A6 A2, A4 

(general 

students), 

A5, A6 

A1, A3 

(only first 

line), A4 

A3, A4,  

A5 (nervous 

students) 

 

Students A6 A1, A3, 

A5, A6 

A2, A5, A6 A2, A3, A5, 

A6 

A4 

Discussion 

Our study indicates that some students’ interpretations of keywords in PTP were different 

than how their instructor interpreted the words. During the interview without the tasks, it seemed 

their meanings were similar, but their choices were different when we asked them to decide a 

proper PTP. More specifically, students distinguished prove and show, and thought that show can 

have a variety of meanings, unlike prove. This result can relate to Mejía-Ramos and Inglis’s 

study (2011) when they found that student responded differently to the subtle difference between 

“prove” and “give a proof.” As students have seen these keywords in PTP in their lives other 

than mathematics and even in other mathematics, the meanings can be transferred to the new 

mathematical contexts that they face.  

However, in our study, we could observe that the students are adjusting their pre-existing 

meaning before the ITP course to what their instructor interprets it as, based on what the student 

participants mentioned as possible meanings in the other contexts such as calculus courses. But, 

given that this data collection is a month after the course started, students need some time to 

adjust their meaning of the keywords in PTP. Our study indicates, therefore, that interpreting the 

keywords in PTP as an instructor wants them to do might not be tedious for students requiring 

some extra time or work. This is because students need to learn if and so how three 

characteristics of mathematical argument (Stylianides, 2007) change depending on the PTPs. In 

addition, we also found that students’ choices and their instructor’s anticipated choices of the 

PTPs were different, which means that although the instructor is aware of the possible difference, 

it is not easier for them to anticipate how students would think about the responses or how 

students might respond to a given PTPs. That is, instructors also need some time and work to 

understand how their students are viewing the keywords in PTP and communicate with them 

about the possible issue.  

These results suggest that the keywords in PTP can lead to students’ responses being 

different than what task designers want, which can influence the assessment of student work; 

hence, task designers should be careful about the word choice in PTP especially when they do 

not have chance to share their meanings with task-doers such as in the case of national 

standardized tests or certain research settings. The data set in this study is not large, but 

generalization of the result was not the goal of the study, although the result that students see the 

words prove and show as different was found from our previous study as well (Hwang & 

Karunakaran, 2020). In the future, how these keywords in PTP influence students’ responses in 

test settings on a large scale or how these keywords have been used in research settings might 

help the mathematics education community to see the importance of PTP. 

 

2021 Research in Undergraduate Mathematics Education Reports 145



References 

Alcock, L. (2013). How to study as a mathematics major. Oxford University Press. 

Bieda, K. N., & Lepak, J. (2014). Are you convinced? Middle-grade students’ evaluations of 

mathematical arguments. School Science and Mathematics, 114(4), 166–177. 

https://doi.org/10.1111/ssm.12066 

Dreyfus, T. (1999). Why Johnny can’t prove (with apologies to Morris Kline). Educational 

Studies in Mathematics, 38, 85–109. https://doi.org/10.1023/A:1003660018579 

Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in 

Mathematics Education, 31(4), 396–428. https://doi.org/10.2307/749651 

Hersh, R. (1993). Proving is convincing and explaining. Educational Studies in Mathematics, 

24(4), 389–399. https://doi.org/10.1007/BF01273372 

Hwang, J., & Karunakaran, S. S. (2020). Students’ Interpretations of the prompts for proving 

tasks: “prove” and “show.” In S. S. Karunakaran, Z. Reed, & A. Higgins (Eds.), 

Proceedings of the 23rd Annual Conference on Research in Undergraduate Mathematics 

Education (pp. 260–267). 

Hwang, J., & Karunakaran, S. S. (2019). Students’ responses to differing prompts for reasoning 

and proof tasks. In A. Weinberg, D. Moore-Russo, H. Soto, & M. Wawro (Eds.), 

Proceedings of the 22nd Annual Conference on Research in Undergraduate Mathematics 

Education (pp. 1123–1124). 

Lemke, J. L. (1990). Talking science: language, learning, and values. Ablex Publishing 

Carparation. 

Lew, K., & Mejía-Ramos, J. P. (2019). Linguistic conventions of mathematical proof writing at 

the undergraduate level: Mathematicians’ and students’ perspectives. Journal for Research 

in Mathematics Education, 50(2), 121–155. 

https://doi.org/10.5951/jresematheduc.50.2.0121 

Liu, Y., & Manouchehri, A. (2017). Middle school children’s mathematical reasoning and 

proving schemes. Investigations in Mathematics Learning, 6(1), 18–40. 

https://doi.org/10.1080/24727466.2013.11790328 

Mejía-Ramos, J. P., & Inglis, M. (2011). Semantic contamination and mathematical proof: Can a 

non-proof prove? Journal of Mathematical Behavior, 30(1), 19–29. 

https://doi.org/10.1016/j.jmathb.2010.11.005 

Schleppegrell, M. J. (2007). The linguistic challenges of mathematics teaching and learning: A 

research review. Reading & Writing Quarterly, 23(2), 139–259. 

https://doi.org/10.1080/10573560601158461 To 

Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for 

mathematical thinking and reasoning: an analysis of mathematical tasks used in reform 

classrooms. American Educational Research Journal, 33(2), 455–488. 

https://doi.org/10.3102/00028312033002455 

Stylianides, A. J. (2007). Proof and proving in mathematics education. Journal for Research in 

Mathematics Education Journal for Research in Mathematics Education, 38(3), 289–321. 

https://doi.org/10.1007/978-94-007-2129-6 

 

2021 Research in Undergraduate Mathematics Education Reports 146



The Circle Schema: An Example of Schema Interaction in College Geometry 
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There is a need to address student understanding of the role of definitions in undergraduate 

mathematics, and research is needed to determine pedagogical strategies that facilitate 

development of this understanding. In geometry, research shows students can better develop 

their understanding of concepts and their definitions by observing properties and making 

conjectures in non-Euclidean geometry. In this study, students learned concepts in Taxicab 

geometry in a College Geometry course in which theory in Euclidean geometry is the primary 

focus. The triad of stages of schema development and a model of schema interaction were used 

as frameworks in the analysis of student responses to a questionnaire and follow-up interview 

about the definition of circle in Taxicab and Euclidean geometry. As a representative illustration 

of a level of schema interaction, insight into the thinking of one student is presented in this 

report. Pedagogical suggestions are provided as a result of this data analysis. 

Keywords: Definitions, Geometry, Taxicab, Circle, Schema 

Introduction 

Studies show that many preservice and even in-service teachers have insufficient 

understanding of the high school mathematics curriculum (Speer et al., 2015) and, more 

specifically, mathematical definitions (Chesler, 2012; Moore-Russo, 2008; Leikin & Winicki-

Landman, 2001; Zazkis & Liekin, 2008). Edwards and Ward (2008) claim this is true for many 

mathematics majors and that this should be addressed in undergraduate mathematics, as research 

is needed to determine pedagogical strategies that help facilitate student’s understanding of the 

concept of definition. Research shows by exploring concepts and definitions in non-Euclidean 

geometry, students can better understand Euclidean geometry (Dreiling, 2012; Hollebrands, 

Conner, & Smith, 2010; Jenkins, 1968). One example of a non-Euclidean geometry in which 

students can explore concepts is Taxicab geometry, which is the geometry that is the result of 

measuring distance as defined by the 𝐿1 norm. Siegel, Borasi, and Fonzi (1998) and Dreiling 

(2012) encourage the introduction to Taxicab geometry before other non-Euclidean geometries 

since the simpler space makes it easier for students to reason and thus abstract concepts. For this 

report, we present results and discussion on the following research questions pertaining to 

student understanding of Circle: (a) How do students adapt their understanding of relationships 

among concepts associated with the definition of circle from Euclidean geometry to Taxicab 

geometry and vice versa? (b) How can using a model of schema interaction for the circle in 

Euclidean geometry schema and circle in Taxicab geometry schema help to describe the overall, 

underlying structure of the circle schema in students’ minds? 

Theoretical Framework 

In APOS Theory, a constructivist framework based on Piaget’s reflective abstraction, there 

are four different stages of cognitive development: Action, Process, Object, and Schema (Arnon 

et al., 2014; Dubinsky, 2002). A description of these levels of cognitive development in a general 

sense are omitted for the sake of space and detailed descriptions of the different levels of 

cognitive development associated with particular concepts in Euclidean and Taxicab geometry 

(like Distance, Circle, and Midset) are provided in Kemp (2018) and Kemp and Vidakovic 
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(2018, 2019, 2021). Arnon et al. (2014) stated that to describe certain learning situations, 

considering the schema structure may be necessary. As a result of the progression of APOS-

based research, analyzing this structure may help to explain “why students have difficulty with 

different aspects of a topic, and may even have different difficulties with the same situation in 

different encounters,” (p. 110). Considering the development of a student’s schema has proven to 

lead to a deep understanding of how he or she reasons when confronted with a mathematical 

problem situation - how a student uses certain evoked components of a schema and relates them 

to one another when presented with these situations can reveal the structure of this schema and 

its development. Arnon et al. (2014) state that there is a need to investigate the development of 

schemas and how they are applied in mathematics.  

To investigate the development of the circle schema, we utilize “the triad” of stages of 

schema development proposed by Piaget and García (1989). In studies such as Clark et al. 

(1997), Cotrill (1999), McDonald et al. (2000), Baker et al. (2000), and Trigueros (2000, 2001), 

researchers found the addition of the triad to their analysis helped to paint a better picture of how 

the components of schemas work together in certain circumstances. In particular, the reader’s 

attention is focused to Baker et al. (2000) and how the authors define an overall calculus 

graphing schema in terms of the interaction of two schemas, as it is the first model of schema 

interaction described in detail. The authors describe the relationship between what are named the 

interval schema and the property schema and analyze common student errors when solving “an 

atypical calculus graphing problem,” (p. 558). It is also noted Trigueros (2004) provides a 

second model of schema interaction for the solutions of systems of differential equations.  

Below, descriptions are provided of the stages associated with the triad of development of the 

circle in Euclidean geometry schema (cEg) (which is the Euclidean geometry schema as it is 

evoked within the circle schema) and the mental constructions believed to be necessary to 

achieve these stages. Similarly, the evoked Taxicab geometry schema within the circle schema 

will be referred to as the circle in Taxicab geometry schema (cTg). A genetic decomposition is 

defined as a “description of how the concept may be constructed in an individual’s mind,” 

(Arnon et al., 2014, p. 17). For this study, a genetic decomposition was developed to identify the 

different ways the cEg and cTg schemata interact with one another in a student’s mind. The 

circle schema is described as its components may be evoked within the interaction of the 

Euclidean geometry schema and Taxicab geometry schema, using the framework and genetic 

decomposition presented in Baker et al. (2000) as a model. This genetic decomposition was used 

in data analysis and will be referred to as the cEg-cTg schema interaction. The genetic 

decompositions presented in Kemp (2018) and Kemp and Vidakovic (2018, 2019, 2021) were 

also used in analysis to help inform the researchers of the underlying structure of students’ circle 

schema and how this schema is rearranged, or accommodated, to form new relationships among 

its components. For the representative example presented in this report, a brief description of the 

level of schema interaction will be provided. This example is chosen as an illustration of the 

interaction of schemata since the student appeared to accommodate her circle schema during the 

interview. This student provided insight as to how connections can be made to facilitate the 

development of the circle schema and ways to deepen student understanding of the role of 

mathematical definitions. 

The three stages of schema development are prefixed Intra-, Inter-, and Trans- and each of 

these stages is described in general in Arnon et al. (2014). For length, we only provide 

descriptions of these stages in relation to the cEg schema. The stages of schema development are 

similar for the cTg schema. A student operating at the Intra-cEg exhibits this by viewing the 

2021 Research in Undergraduate Mathematics Education Reports 148



components of the circle schema as isolated structures. A circle in Euclidean geometry is 

analyzed in terms of its properties either geometrically or algebraically (e.g. - it is round). 

Explanations of properties are local and particular. At least an action conception of the concepts 

of Euclidean Distance, Radius, Center, and Locus of points are necessary mental 

constructions to operate at this stage. A student operating at the Inter-cEg can exhibit this by 

forming relationships among the isolated ideas from the Intra-cEg stage and making connections 

between geometric and algebraic properties of a circle in Euclidean geometry. At least a process 

conception of some of the concepts of Euclidean Distance, Radius, Center, and Locus of 

points (and evidence that he or she can coordinate at least two of them) are necessary mental 

constructions to operate at this stage. A student exhibiting that she is operating at the Trans-cEg 

has constructed an awareness of the completeness of the circle in Euclidean geometry schema 

and can “perceive new global properties that were inaccessible at the other levels,” (Baker et al., 

2000, p. 559). The student coherently understands and can describe the construction of a circle 

and the structure of the equation for a circle in Euclidean geometry and how these are a result of 

the definition of a circle. It is necessary for a student to have at least a process conception of all 

Euclidean Distance, Radius, Center, and Locus of points concepts and has coordinated all 

combinations of these processes (which coordinates all geometric/algebraic representations). 

Due to length, we provide here only a partial genetic decomposition for the cEg-cTg schema 

interaction. In general, this model includes nine levels of schema interaction that result as the 

two schemata of circle in Euclidean geometry (cEg) and circle in Taxicab geometry (cTg) 

interact with one another at various stages. These nine stages are shown in Table 1 below and 

each of these is described in detail in the full genetic decomposition. As an example, in the 

genetic decomposition, the mental structures necessary for a student to operate at an Inter-cEg 

stage of schema development and Intra-cTg stage of schema development, and what the 

interaction of these schemata look like at these different stages (which we refer to as the Inter-

intra level of schema interaction) are described. 

Table 1. The nine levels of cEg-cTg schema interaction. 

Methodology 

This research study was conducted at a large university in a College Geometry course during 

a Fall semester, which has an introduction to proof course as a prerequisite. Since it is a cross 

listed course, there were both undergraduate and graduate students enrolled in the course. The 

textbook used in the course was College Geometry Using the Geometer’s Sketchpad (Reynolds 

& Fenton, 2011), written based on APOS Theory and the ACE Teaching Cycle (Asiala et al., 

1996). The material of the course covered concepts and theorems in Euclidean geometry often 

seen in a College Geometry course and included Taxicab geometry for four class sessions at the 

end of the semester. Written work from the semester and videos from the in-class group work 

and discussion during the Taxicab geometry sessions were collected as data. After the semester 

but before final exams, semi-structured interviews were conducted with 15 of the 18 students 

enrolled in the course who voluntarily signed up to participate in the interviews. The following 

  circle in Taxicab geometry schema (cTg) 

  Intra- Inter- Trans- 

circle in Euclidean 

geometry schema (cEg) 

Intra- Intra-intra Intra-inter Intra-trans 

Inter- Inter-intra Inter-inter Inter-trans 

Trans- Trans-intra Trans-inter Trans-trans 
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questions from the questionnaire were relevant to this data analysis, and are a subset of the 

questions asked before and during the interview:  

1. Define and draw an image (or images) that represents each of the following terms 

however you see fit: Circle, Distance.  

2. For any two points 𝑃(𝑥1, 𝑦1) and 𝑄(𝑥2, 𝑦2) 

(i) Euclidean distance is given by 𝑑𝐸(𝑃, 𝑄) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 

(ii) Taxi distance is given by 𝑑𝑇(𝑃, 𝑄) = |𝑥2 − 𝑥1| + |𝑦2 − 𝑦1| 
Using the grids below, illustrate each of these two distances. Be as detailed as 

possible in labeling them.  

3. Is the following definition true in both geometries? Explain. “The circle (Euclidean or 

Taxi) is a set of points in the plane equally distant from a fixed point.” 

4. Using the grids below, sketch the following circle in both geometries: Circle with 

center at 𝐶(3,3) and radius 𝑟 = 2.  

In general, there is no unique ideal response for most of these questions since the main goal of 

these interviews was to get students to elaborate on their thought processes as they responded to 

these questions. However, Figure 1 below shows how a student could illustrate what is asked in 

Question 2 and Question 4. For Question 3, this definition holds in both geometries, but the 

circles will visually appear different as a result of the way in which distance is defined.   

By asking questions about both Euclidean and Taxicab geometry on the questionnaire as well 

as probing from the interviewer, students were presented with an atypical task, just as the 

participants in Baker et al. (2000). For analysis of data from these interviews, using the idea of 

schema interaction allowed for a deeper analysis of each student’s make up, or structure, of the 

circle schema. Considering each of the concepts within this schema (Distance, Radius, Center, 

and Locus of points) helped to describe these structures. There was also a need to consider each 

of these concepts within both Euclidean geometry and Taxicab geometry, how each student 

understood these concepts within these geometries both algebraically and geometrically, and 

how this resulted in their overall understanding of the definition of Circle. From this information 

and using the genetic decomposition for the cEg-cTg schema interaction, all 15 students’ work 

and responses were analyzed. Due to space limitations, only one case of one level of schema 

interaction is presented in this report, and more information about schema interaction can be 

found in Kemp (2018). What follows is a description and example of a student exhibiting the 

Figure 1. Visual representations of Euclidean and Taxicab distance (top row) and a Euclidean and Taxicab circle 

each with center (3,3) and radius 2 (bottom row). 

2021 Research in Undergraduate Mathematics Education Reports 150



trans-trans level of schema interaction between the cEg and cTg schemata associated with the 

circle schema. This analysis will focus on what components of one student’s circle schema were 

evoked to justify the responses she provided on a questionnaire prior to a follow up interview 

and her exploration of these concepts during the interview.  

Results 

A student is exhibiting operating at the trans-cEg, trans-cTg (trans-trans) level of schema 

interaction when the student has generalized the concept of Circle completely and has a coherent 

understanding of how the construction of a circle and the equation of a circle is a direct result of 

the definition of a circle. That is, the student has generalized the structure of the equation for a 

circle geometrically and algebraically in both Euclidean and Taxicab geometry. In terms of 

APOS Theory, the student has successfully constructed new processes geometrically and 

algebraically by coordinating all of her Distance, Radius, Center, and Locus of points 

processes. There is a complete coordination of the student’s cEg and cTg schemata, and the 

student would be able to evoke any necessary components of these schemata to coherently talk 

about a circle in both geometries. There were three students out of the 15 who participated in 

interviews who exhibited evidence of operating at the trans-trans level of schema interaction. As 

a representative illustration for this level, we provide the APOS Theory and schema-interaction 

based analysis of Parker’s responses to the questionnaire and prompts during her interview. We 

present a description and representative example of this level of schema interaction as this 

student provided evidence that she was able to accommodate her circle schema during the 

interview to begin operating at a trans-trans level of schema interaction. Through this 

accommodation, she provided unique insight into her thinking.  

Parker was both a graduate student enrolled in the MAT program and a secondary 

mathematics teacher and was interviewed with two other graduate students. Parker’s definition 

of a circle written on the questionnaire was the “set of all points equidistant from a given point 

known as the center.” On the part of the questionnaire that asked if the definition of a circle 

provided held in both Euclidean and Taxicab geometry, Parker responded “Yes, the given 

distance just looks different in reference from the center.” This provided evidence that while 

evoking her geometric representation of Circle and saying, “distance just looks different,” Parker 

was aware that the choice of metric is the distinguishing factor between the visual appearance of 

a circle in Euclidean and a circle in Taxicab geometry. Parker’s illustrations of a Euclidean and 

Taxicab circle from the questionnaire are shown in Figure 2, below. Although she was not asked 

to explain how she constructed her geometric representations of the circles, many details can be 

deduced from her illustrations.  

In her sketch of the circle in Euclidean geometry, she plotted the four points that were two 

units away from the center on the vertical and horizontal from the center then most likely 

“connected” these points based on how she knew the circle would look. For her sketch of the 

circle in Taxicab geometry, in addition to plotting the same four points on the vertical and 

horizontal from the center, she also plotted four more points that were two units away from the 

Figure 2. Parker’s illustrations of a Euclidean and Taxicab circle on the questionnaire. 
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center and used these eight points to construct her circle. This is an indication that she likely used 

her understanding of the definition of a circle and the Taxicab metric to construct this circle, and 

that she had formed a coherent understanding of the geometric representation of a circle. In each 

interview, the students were prompted to try to write the equation of the circles they had drawn 

in Euclidean and Taxicab geometry. During conversation between the interviewer and the other 

two students in this group interview, Parker was writing down the equation for Taxicab distance 

under her illustration of a circle in Taxicab geometry, seen in Figure 3. It is noted that anything 

in red ink indicates it was written during the interview (and black writing was written while 

filling out the questionnaire prior to the interview). She interrupted the conversation between the 

interviewer and the other students and said the following.  

Parker: This might be wrong… I wrote the formula for…calculating distance for Taxicab, 

and then I know…this has to be compared to the center which is (3,3) so… if my distance 

is 2, doesn’t that make it?...Is equal to 2. So let me change that…’Cause then like this 

point up here is [(3,5)] and if we plug in 3 and 5…3 minus 3 is 0, 5 minus 3 is two, so 

that would mean our distance is 2, which means it’s on the circle. 

Note that she used the variable 𝑑, and then substituted the value of 2 (the radius) for 𝑑, which 

is what indicated she understood how distance and the measure of the radius was involved in the 

equation of a circle. Parker implied here verbally that she knew the distance formula should be 

related to the radius when she says, “this has to be compared to the center”. Specifically, she 

indicated she knew if the distance from the center to all of the points on this circle is the same, 

then this distance should be equal to the radius of the circle. She then used an arbitrary point to 

verify that a point she knew geometrically was on the circle, would also satisfy her algebraic 

representation of the circle, saying, “…our distance [between the center and (3,5)] is 2, which 

means it’s on the circle”. In this moment, we believe Parker had accommodated her circle 

schema and made connections between the geometric and algebraic representation of a circle in 

Taxicab geometry. It appeared Parker had generalized her understanding of the definition of a 

circle and was aware how the representations of a circle geometrically and algebraically are a 

result of the definition of circle. Parker provided evidence here that she was coordinating her 

Distance, Radius, Center, and Locus of Points processes across her cEg and cTg schemata to 

articulate her reasoning for writing the equation of her Taxicab circle in this way. 

The interviewer then asked Parker if she could she draw a circle using a different metric if 

she were given one (and to describe how she would approach that task). Parker responded 

confidently, “yeah… figure out what the metric is asking…and what it’s… well we eventually 

get our radius, and then we can…,” and she began moving her finger in the air like she was 

starting at a center point and drawing outward. In further elaboration, she said “…the unit 

circle…and the radius needs to be one, so we have to figure out from the metric…what would 

yield an answer of one and if we do that then we can sketch the circle.” Without explicitly stating 

she would construct multiple radii in order to sketch the circle, she implied this by her motions in 

the air with her finger, since it is interpreted that she was constructing multiple radii using some 

Figure 3. Parker's equations for the Euclidean and Taxicab circles she drew, written during the interview. 
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arbitrary metric. Further, she described that for a unit circle, she would use the new metric to find 

the points that would be one unit away from the center (“would yield an answer of one”). During 

this exchange, Parker provided evidence she had successfully constructed new processes 

geometrically and algebraically by coordinating all of her Distance, Radius, Center, and Locus 

of points processes. She appeared to have a complete coordination of her cEg and cTg schemata 

and was able to coherently talk about a circle, not only Euclidean and Taxicab geometries, but in 

an arbitrary space. For these reasons, Parker provided evidence that by the end of the interview 

she had formed a complete, coherent understanding of the underlying structure of the circle 

schema and was operating at the trans-trans level of schema interaction. 

Discussion and Concluding Remarks 

Parker exhibited evidence that she had generalized the definition a circle geometrically and 

algebraically in both Euclidean and Taxicab geometry. She also indicated she would be able to 

draw a unit circle using an arbitrary metric and, based on her reasons for writing the equation of 

the circle in Taxicab geometry, we believe she would be able to also write the equation for that 

circle. All three students who exhibited evidence of operating at the trans-trans level of schema 

interaction were able to explain the structure of the equations of a circle in both geometries in 

general terms and how it related to their illustrations and the definition of a circle. This is the 

main difference between the students operating at the inter-inter level and the trans-trans level. 

Some of the students operating at the inter-inter level of schema interaction could recall the 

Euclidean circle equation and could write the equation of a circle in Taxicab geometry, but 

mainly relied on “copying” the format of distance formulas. In contrast, the students operating at 

the trans-trans level showed they could clearly discuss how the distance formula is involved with 

this equation as a result of the definition of a circle. By making connections between the 

algebraic and geometric representations of concepts in both Euclidean and Taxicab geometry, 

students were able to generalize their understanding of this definition. There appeared to be a 

positive relationship between the amount and depth of these connections and the extent to which 

students were able to generalize the definition of a circle. In the example provided here, by 

visualizing and algebraically defining a circle in an atypical context, such as Taxicab geometry, 

Parker continued to construct and re-construct relationships between components within her 

circle schema. This is consistent with Dreiling (2012), Hollebrands, Conner, & Smith, (2010), 

and Jenkins (1968) in regard to the development of her understanding. This is evidence that more 

activities meant to help students form these connections between geometric and algebraic 

representations in geometry should be used in classroom instruction. 

There is a lack of research that uses of the stages of the triad in APOS Theory (for examples, 

see Clark et al. (1997) and McDonald et al. (2000)), but even fewer studies that use the idea of 

the “double triad” or schema interaction. A model of schema interaction was used in this study 

and one level of schema interaction was described in detail in this report, using the original 

model by Baker et al. (2000) as a guide. Baker et al. (2000) determined that analyzing their data 

using APOS Theory without the triad or schema development hindered the researchers from 

understanding the thought process of many of the participants. Similarly, by involving a genetic 

decomposition for a model of schema interaction into the analysis of this study, the researchers 

were able to better describe the structure of the participants’ circle schema and their overall 

understanding of the definitions of various concepts in geometry. It is believed that the genetic 

decomposition of this schema interaction developed for this study could be used as a model for 

how students can assimilate any metric into their circle schema, although further research would 

need to be done to validate this. 
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Influences on Problem Solving Practices of Emerging Mathematicians 

 

Andrew Kercher(1) James A. Mendoza Álvarez(1) 
(1)The University of Texas at Arlington 

Mathematical problem solving research that focuses on the development of problem solving 

practices can provide mathematics educators the tools with which to foster the use of such 

practices in their students. This study hopes to identify influences on the development of 

emerging mathematicians’ problem solving technique. Emerging mathematicians from an 

undergraduate real analysis course and first-semester graduate course in linear algebra were 

invited to a sequence of two interviews, during which they completed problem solving tasks and 

reflected on their growth as mathematical problem solvers. In particular, they were asked to 

expound on formative experiences that affected the development of their problem solving 

strategies. Participants reported ways that both teaching mathematics and learning mathematics 

from skilled instructors influenced the way they solved novel problems. 

Keywords: Problem solving, Teaching, Graduate students 

The body of research on mathematical problem solving is multifaceted. Studies in this field, 

for example, might hope to explain the nature of problem solving, generate a framework for 

analyzing problem solving, or catalogue the problem solving behaviors of expert mathematicians 

(cf. Schoenfeld, 1989; DeFranco, 1996; Selden et. Al., 1999; Carlson & Bloom, 2005). 

Resourceful mathematics educators could leverage any one of these studies, regardless of its 

stated purpose, in service of second, implicit goal: to better understand how to foster problem 

solving growth in their classrooms. 

One might suspect that, to help mathematical novices grow as problem solvers, one might 

only have to teach them to replicate the problem solving strategies employed by experts. But as 

noted by Silver (1985), 

This is specious reasoning and such advice may be counterproductive to learning. Surely 

the behavior of experts is highly efficient and often elegant, but the polished, mature 

problem solving behaviors of experts fail to reveal the successive approximations that 

preceded these mature procedures (pg. 251). 

The study described in this report aims to capture these successive approximations (and thereby 

better understand the expert problem solving methods in which they culminate) by asking 

emerging mathematicians to identify which experiences contributed to the ongoing development 

of their problem solving strategies. Here, we define an emerging mathematician as a student of 

mathematics who understands foundational content knowledge but has had limited opportunities 

for refinement of their mathematical practice. Over the course of a semester, participants self-

reported experiences both as teachers and as students of mathematics that influenced their 

process for solving novel problems. 

Background and Theoretical Perspective 

One hallmark of classrooms that successfully encourage problem solving is the breadth and 

connectedness of the mathematics knowledge they impart (Arcavi et al., 1998; Collins et al., 

1988); another is that this knowledge is also robust and thoroughly justified (Arcavi et al., 1998; 

Schoenfeld, 2014). While these qualifications might be lumped together in order to assert that 

expert problem solvers simply have more content knowledge, this is an oversimplification. 
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Certainly, experts have more content knowledge (DeFranco, 1996). However, content knowledge 

cannot be leveraged for problem solving if it is inert (Whitehead, 1929; as cited in Renkl et al., 

1996), that is, confined only to applications that are similar to the specific instructional 

circumstances under which it was introduced. The difficulty for some mathematics students 

(primarily, those with a preponderance of inert knowledge) to apply familiar concepts to novel 

situations is sometimes referred to as the transfer problem; researchers have developed many 

pedagogical strategies that hope to address this issue. Those that fall under the situated learning 

model of instruction (e.g. Bransford et al., 2012; Spiro et al., 1991; Campione et al., 1988, 

Collins et al., 1988) hope to overcome the transfer problem by introducing mathematics concepts 

already embedded in a novel, real-world context from the outset. 

Problems of transfer, however, are not only relegated to students who cannot solve real-

world problems with abstract mathematics. Research has also shown that even otherwise 

successful calculus students have significant difficulty applying their textbook knowledge of the 

subject to completely abstract (but entirely novel) problem solving situations (Selden et al., 

1999; Selden et al., 1994). In response, some pedagogical models describe instructional 

strategies that teach both content knowledge and powerful thinking strategies, allowing the 

application of knowledge to solve unfamiliar problems (e.g. Liljedahl, 2016; Schoenfeld, 2014; 

Fiorella & Mayer, 2015). Illustrations of such classrooms are multifaceted and necessarily 

describe not only of the type of content delivered but also the method of delivery, type and 

frequency of corresponding assessment, layout of the classroom, and appropriate questioning 

strategies. One belief embodied by these models is that students are more likely to develop 

successful patterns of thought and effective problem solving strategies when they are actively 

engaged both with the content and with each other (see also Silver, 1985; CBMS, 2016). A 

notable example of such a classroom is Schoenfeld’s problem solving course, taught at UC 

Berkeley and analyzed, in part, in Arcavi et al. (1998). Through an authentically collaborative 

mathematical environment, this course emphasized effective modes of mathematical thought that 

included instruction on both metacognitive strategies and the application of specific heuristics. 

Methodology 

Setting and Participants 

The study took place at a large, urban, public, and Hispanic-serving university. In order to 

recruit emerging mathematicians, participants were solicited from the population of upper-

division undergraduate mathematics majors and first-semester mathematics graduate students. 

Undergraduate participants came from an undergraduate analysis course that has an 

“introduction to proofs” course prerequisite; that is, these undergraduates had experience with 

foundational techniques for mathematical justification but had not had extensive experiences 

refining them through prolonged or advanced application. Graduate participants came from a 

first-semester graduate course in linear algebra. Their status as first-semester graduate students 

acknowledges a baseline experience and competency with a broad spectrum of mathematical 

technique; however, as beginning graduate students, they had not yet encountered the demands 

of mathematics graduate courses, mathematical research, and exploration of unsolved problems.  

In the first week of the Fall 2020 semester, both groups of participants responded to a short 

questionnaire (administered at the beginning of a class period corresponding to one of the 

respective courses described above) in which they were asked to rate certain problem solving 

techniques using a Likert scale (from “1 – Strongly Disagree” to “6 – Strongly Agree”). For an 

example of such questionnaire items, see Figure 1 below. 
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Figure 1. Select Likert scale items from the preliminary questionnaire. 

Participants also indicated their interest in participating in a sequence of two interviews. The first 

interview was scheduled as soon as possible so that it would take place close to the beginning of 

the semester; the second interview occurred at the end of the same semester. For interview 

protocol and procedure, see the following section. A total of 11 undergraduate students and 20 

graduate students responded to the initial questionnaire, and of these, 4 undergraduate students 

and 8 graduate students participated in the interview sequence. Due to the small number of 

respondents, the interviewed participants necessarily represented a convenience sample. 

Information on interview participants is provided in Table 1, below. 

 
Table 1: Interview participant information 

Pseudonym 

Will 

Riley 

Brady 

Verna 

Anne 

Greg 

Taylor 

Mia 

Sara 

Frank 

Julie 

Carol 

Gender 

Male 

Female 

Male 

Female 

Female 

Male 

Other 

Female 

Female 

Male 

Female 

Female 

Age Bracket 

18-22 

18-22 

18-22 

33+ 

18-22 

23-28 

28-33 

18-22 

18-22 

33+ 

18-22 

23-28 

Population 

Undergraduate 

Undergraduate 

Undergraduate 

Undergraduate 

Graduate 

Graduate 

Graduate 

Graduate 

Graduate 

Graduate 

Graduate 

Graduate 

Data Collection and Analysis 

Each interview was recorded and lasted between 45 and 90 minutes. During an interview, 

participants completed a sequence of three tasks intended to prompt problem solving 

engagement. They were also asked to comment on their decisions and thought processes while 

working on the task sequence. For an example of an interview problem, see Figure 2 below. 

 

 
Figure 2. The second task given during the first interview, adapted from Schoenfeld (1998, pg. 98). 
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At the end of the first interview, participants also elaborated on their responses to the initial 

questionnaire. This process was facilitated by the interviewer, who asked them to expand on 

initial questionnaire responses that were sufficiently different from the average response for their 

population. During the second interview, after completing the requisite sequence of three tasks, 

participants also completed the same questionnaire to which they had already responded at the 

beginning of the semester. This time, the interviewer prompted them to respond to questionnaire 

items for which their second response was significantly different than their first, i.e., if the 

response was two or more points different or when it indicated any shift from agreement to 

disagreement (or vice versa). 

The goal of the questionnaire analysis conducted during interviews was to provide 

participants with a chance to reflect on the development of their opinion towards particular 

problem solving strategies; to supplement this goal, a number of interview protocol questions 

were asked at the end of each interviewer. For example, these questions included: (1) How has 

your approach to problem solving changed (over time/ in the past semester)? (2) Has any 

singular (class/ person/ event) significantly affected your approach to problem solving (in the 

past semester)? How? (3) Describe the particular qualities of your favorite math course that made 

it stand out. 

Responses to interview questions and any discussion of questionnaire items were initially 

transcribed verbatim. The select quotes provided in the section below have been lightly edited 

for clarity by removing speech disfluencies, except when doing so would alter the tone or 

meaning of a sentence. The transcripts were then analyzed using open and axial coding (Strauss 

& Corbin, 1998) that aligned with techniques from thematic analysis (e.g., Braun & Clarke, 

2006; Nowell, Norris, White, & Moules, 2017). An initial coding pass was conducted by both 

researchers, who then met to compare their work; codes were expanded, subsumed, or redefined 

appropriately until both researchers were in agreement. 

Results 

Below, we introduce two prominent themes that emerged during interviews: participants 

recognized when development of their problem solving strategies  had been instigated by their 

experiences both while teaching and while learning from influential teachers. 

Growth while Teaching 

Across interviews, participants identified that teaching experiences served to augment their 

originally surface-level understanding of mathematics. For example, Mia explained how teaching 

had increased her proclivity for sense-making:  

Before, when I used to do math but I didn't understand something, I feel like I would just 

skip it. And then move on, take it as: okay, this is fact. […] Teaching my calculus course, 

since I have to go so in-depth with the students because they ask so many questions, I feel 

like—now, I feel like I get more caught up on the things that I don't understand as well. 

[…] Now when I understand things, I understand them. 

Brady identified this phenomenon as having to “over-learn” a topic that he planned to teach, a 

practice which made him aware of an important pedagogical dichotomy tied to sense-making: 

“You can memorize a formula, or you can actually understand what the formula's doing.” Anne 

echoed Brady’s sentiment, explaining that adopting the former strategy was “the reason why 

people need tutoring, I feel: they don't understand why you're doing what you're doing. And so, I 

can't just be like, well, use this formula. I don't know why it works, but it does. It just confuses 

them more. So it's made me have to figure out why I was doing things in previous courses as 
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well.” Several participants found that preparing for teaching not only increased the depth of their 

mathematical understanding but also its breadth; especially when dealing with students of 

varying mathematical competencies, participants recognized that, as teachers, they needed to 

consider multiple ways to approach one problem or explain one concept. Carol observed that 

“While going for the teaching, I see sometimes, like: what are the other options to solve this? 

What can be the different methods?” and that this practice of planning ahead and weighing 

multiple options carried over into her own problem solving. 

Additionally, some participants found that teaching led them to discover specific techniques 

or explanations that could be applied to their own areas of study. Anne noted that teaching 

“things to help them [her students] figure out what to do on a problem, when they see it, helps 

me to do that.” She was not the only participant who adapted her own problem solving strategies 

to reflect what she recommended to her students: Frank noted that he was “more attuned to” 

making sure his work “flows in a logical way” after interacting with students whose work was 

disjointed and not well-supported with mathematical justification. Verna taught her students the 

importance of carefully reading and interpreting the text of a given problem: 

I want to help them to understand the question. So I—like, for me, I read it but go with 

them over the question and ask them: look what they ask here. They figure out, oh, this is 

what they ask? Like this. So I make them to understand the question and what they ask 

about. And they have the knowledge, but they didn't know. That's why—that’s helped 

me. 

Appropriately, Verna appeared to be especially conscientious of the need to read interview tasks 

carefully. Figure 2 below illustrates a sequence of annotations indicative of her approach to 

interview tasks; this included identifying important numerical data, isolating the question being 

posed to better anticipate the form of her solution, and clarifying any unfamiliar mathematical 

notation. 

 

 
Figure 3. An example of Verna’s propensity for carefully attending to the text of a given task. Problem 1 preceded 

Problem 2 (see Figure 1) in the first interview. 

Riley described tutoring a student to whom she would sometimes give the solution to a 

problem. Then, she would prompt the student to “justify why I got that, exactly. What am I 

doing, and why does it relate to this problem?” She mentioned, in her second interview, that 

thinking about her own work from a similar perspective (especially when that work was proof-

based) was sometimes helpful when approaching a difficult problem. In both interviews, Riley 

lived up to this claim. For example, she attributed her difficulty solving the task pictured in 

Figure 1 to the fact that she was “not completely certain what the answer’s supposed to look 

like,” and so could not apply this strategy. On the other hand, in a different task that required her 

to inscribe a square in an arbitrary triangle, Riley successfully applied an approximation of her 

working backwards strategy by starting with a square and instead attempting to verify whether 

she could circumscribe an arbitrary triangle about it. 
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Growth while Learning 

Many participants also commented on those of their own instructors whose pedagogical 

decisions they perceived as influential in their problem solving development. Some instructors 

contributed directly to this development by giving the participant new strategies or heuristics for 

tackling novel problems. For example, Riley described the lasting impression of a favored 

instructor’s teaching strategy: 

It’s one thing for a professor to give you a function and give you a problem, give you an 

example, and show you how it works. You could mimic that, a lot of the time. But to 

have a professor that gives you a problem that you haven't seen before, and gives you 

certain tools that will help you solve the problem, and so you know that those tools are 

there, you'll be able to solve the problem a lot easier than someone that's mimicking. 

They won't take that away. 

Other participants were more specific about the problem solving heuristics that they had learned. 

Verna learned the value of providing thorough mathematical justification. With respect to one 

influential professor, she said, “When she give us a problem, she told us to go step by step and 

don't, like—don’t ignore this. This [has] some meaning. This [has] some meaning. You must 

understand what you [are] talking about.” Brady, in reference to the same instructor, remembered 

the same lesson: “But with most of our proofs, it felt like it was pretty much line by line, you 

know? […] And I felt like, in the beginning, that that was very important. Because now, I don't 

just skip a few lines of work without really thinking about it first.” This behavior was in evidence 

during the first interview, wherein Brady solved a task that required him to cut an arbitrary right 

triangle into two isosceles triangles. There, he drew an arbitrary rectangle and attempted to 

appeal to the mathematical properties of its diagonals. Brady was able to indicate places during 

this justification process where he relied on visual intuition to substantiate a claim; he explained 

that a truly rigorous explanation would not be so informal. 

Riley explained how her previously tentative approach to novel problems was affected by 

one instructor who encouraged her to, “even if you're not sure about going about a problem, 

draw something. Put something down. Because it's probably worth it in the end. Because you're 

thinking of it.” Carol had also been encouraged to draw diagrams by several instructors who 

valued visual representations, and she noted that this was particularly helpful for reframing 

familiar proofs in more interesting, intuitive ways; as an example, she recalled one professor who 

used diagrams to illustrate the relationship between Cauchy and convergent sequences. During 

her work on the task pictured in Figure 1, Carol drew ten discrete visualizations as tools for 

sense-making and justification. This was more than the rest of the participants combined; a 

selection of Carol’s visualizations are provided in Figure 4 below. 

 

 
Figure 4. Some of Carol’s diagrams, depicting three different cases corresponding to different values of 𝛼. 

Carol also noted that her professor’s visualizations were more engaging for students: “It was 

not just writing on the board and we have to copy that.” Other participants also found previous 
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instructors memorable for their ability to engage students by giving them agency in the creation 

of mathematics. Brady remembered an instructor who called on the class directly to answer 

important mathematical questions, including having “us do proofs up on the board and stuff. The 

students of the class. And that kind of, I guess, added a community feeling to the class.” The 

epistemological responsibility of students to generate their own explanations even extended to 

one of Frank’s professor’s office hours, and Mia recalled one professor who “challenged you to 

think by yourself. […] Like, he didn't tell you the answer. He made you think it through.” Sara 

explained the value of classrooms in which students themselves were involved in the creation of 

mathematics when she said that students who are “part of the conversation” are better equipped 

to explain the phenomena that they have learned. To substantiate this claim, she drew upon her 

experience with a recent professor who encouraged students to generate their own definitions for 

important concepts; from a problem solving perspective, this challenged Sara’s preconception 

that mathematics was a rigidly defined subject wherein problems had prescribed methods of 

solution. 

Conclusion and Implications 

From participant interviews, a number of themes arose with respect to problem solving 

development. Graduates and undergraduates alike thought that teaching mathematics helped 

them to recognize and leverage more effective problem solving techniques. In particular, 

participants saw increased value in drawing diagrams, justifying their methodology, and 

carefully making sense of the problem text. Most graduate students also felt that their teaching 

experiences gave them a deeper understanding of the material, both because of the pedagogical 

requirement that they know several effective explanations and because of the opportunity to 

reacquaint themselves with older content. As observed in Selden et al. (1999), incremental 

growth in facility with content over a period of repeated exposure is not unusual; students in 

constant contact with calculus, for example, can still take years to be able to apply that content in 

creative ways. Furthermore, repeated exposure from a teacher’s perspective might foster a deeper 

understanding of mathematical content.  Such deeper understanding is a fundamental aspect of 

many pedagogical frameworks aimed at improving problem solving (e.g. Schoenfeld, 2014). In 

participants’ work, these conceptual advantages allowed them to consider multiple approaches to 

a given problem and apply a diverse array of heuristics; furthermore, they felt comfortable 

justifying why their chosen methodology was both appropriate for the circumstances and 

mathematically sound. 

On the other hand, undergraduates were more likely than graduate participants to recall 

specific problem solving strategies taught to them by instructors. These strategies were identical, 

though, to two of the previously noted strategies learned through teaching: visualizing to make 

sense of difficult concepts and justifying every claim. As students, both graduate and 

undergraduate participants also recognized that their most influential instructors tended to give 

them the opportunity to discover and take ownership of the mathematics content. This agency 

engaged students, mirroring recommendations from literature (Schoenfeld, 2014; Liljedahl, 

2016) and giving participants better tools with which to justify their mathematical reasoning. It 

also instigated an affective shift; participants who constructed their own mathematical meanings 

felt more confident in constructing their own approaches to novel problems. That is, participants 

reported feeling less compelled to remember and apply a “correct” method after experiencing the 

flexibility of mathematics first-hand in an influential classroom environment. Such instruction 

may thus promote the ability of students to transfer content knowledge from the original 

introductory environment to novel problem solving situations.  

2021 Research in Undergraduate Mathematics Education Reports 162



References 

 

Arcavi, A., Kessel, C., Meira, L., & Smith, J. P. (1998). Teaching mathematical problem solving: 

An analysis of an emergent classroom community. Research in collegiate mathematics 

education, 3(7), 1-70. 

Bransford, J. D., Sherwood, R. D., Hasselbring, T. S., Kinzer, C. K., & Williams, S. M. (2012). 

Anchored instruction: Why we need it and how technology can help. In Cognition, 

education, and multimedia (pp. 129-156). Routledge. 

Campione, J. C., Brown, A. L., & Connell, M. L. (1988). Metacognition: On the importance of 

understanding what you are doing. The teaching and assessing of mathematical problem 

solving, 93-114 

Carlson, M. P., & Bloom, I. (2005). The cyclic nature of problem solving: An emergent 

multidimensional problem-solving framework. Educational studies in Mathematics, 58(1), 

45-75. 

Collins, A., Brown, J. S., & Newman, S. E. (1988). Cognitive apprenticeship: Teaching the craft 

of reading, writing and mathematics. Thinking: The Journal of Philosophy for Children, 8(1), 

2-10. 

Conference Board of the Mathematical Sciences, 2016. Active learning in post-secondary 

mathematics education. Retrieved from 

www.cbmsweb.org/archive/Statements/Active_Learning_Statement.pdf. 

DeFranco, T. C. (1996). A perspective on mathematical problem-solving expertise based on the 

performances of male Ph. D. mathematicians. Research in collegiate mathematics education, 

II, 195-213. 

Fiorella, L. & Mayer, R.E. (2015) Eight Ways to Promote Generative Learning. Educational 

Psychology Review. doi 10.1007/s10648-015-9348-9. [Accessed: 23 November, 2015]. 

Liljedahl, P. (2016). Building thinking classrooms: Conditions for problem-solving. In Posing 

and Solving Mathematical Problems (pp. 361-386). Springer, Cham. 

Renkl, A., Mandl, H., & Gruber, H. (1996). Inert knowledge: Analyses and remedies. 

Educational Psychologist, 31(2), 115-121. 

Schoenfeld, A. H. (2014). What makes for powerful classrooms, and how can we support 

teachers in creating them? A story of research and practice, productively intertwined. 

Educational researcher, 43(8), 404-412. 

Schoenfeld, A. H. (1989). Explorations of students' mathematical beliefs and behavior. Journal 

for research in mathematics education, 338-355. 

Selden, A., Selden, J., Hauk, S., & Mason, A. (1999). Do calculus students eventually learn to 

solve non-routine problems. Consulté le, 20. 

Selden, J., Selden, A., & Mason, A. (1994). Even good calculus students can't solve nonroutine 

problems. MAA notes, 19-28. 

Silver, E. A. (1985). Research on teaching mathematical problem solving: Some 

underrepresented themes and needed directions. In Teaching and learning mathematical 

problem solving (pp. 261-280). Routledge. 

Spiro, R. J., Feltovich, P. J., Jacobson, M. J., & Coulson, R. L. (2012). Cognitive flexibility, 

constructivism, and hypertext: Random access instruction for advanced knowledge 

acquisition in ill-structured domains. In Constructivism in education (pp. 103-126). 

Routledge. 

2021 Research in Undergraduate Mathematics Education Reports 163



Bridging-Course Students Extract Square Roots:  

Commognitive Account of Seeming Conflicts Within Students’ Discourses  

 

Igor’ Kontorovich 

The University of Auckland  

This study explored the grasp of square roots among 11 students in a bridging course, with a 

special focus on instances where the same student generated seemingly conflicting responses. 

Building on the commognitive framework, the analysis indicated that individual students square-

rooted differently in a range of situations, such as cases where roots were extracted from square 

numbers and from squared radicands, where roots “stood alone” and where they were 

incorporated in an exercise. Differences were found in the procedures that students employed 

and the tasks that they pursued. A theoretical account was offered, suggesting that what may 

appear as a conflict within a student’s discourse could be a sensible difference of actions taken 

in task situations that this student construed as incompatible. 

Keywords: commognitive framework, roots, algebra, bridging courses 

Rationale and Aim 

The study of roots accompanies students all the way from middle school through to 

university mathematics. Typically introduced in the context of integers, roots are gradually 

extended to fractions, parametric expressions, equations, and functions. Through the Pythagorean 

theorem and the law of cosines, roots find their way into geometry and trigonometry lessons. In 

university courses, roots are often used to exemplify inverse functions in calculus and multi-

valued functions in complex analysis. Then, it is barely surprising that school curricula and 

bridging courses dedicate dozens of teaching hours to develop students’ proficiency with this 

cross-curricular mathematical concept (Kontorovich, 2018a). 

Research has been interested in the learning and teaching of roots, with a special focus on 

students’ difficulties and mistakes (e.g., Cangelosi et al., 2013; Kontorovich, 2016, 2018a, b, 

2019). For instance, Crisan (2014) asked a group of pre-service secondary teachers to square-

root from 25𝑦2 (i.e. to simplify √25𝑦2). This request divided the group between the proponents 

of “√𝑦2 = 𝑦”, and those who adhered to “√𝑦2 = ±𝑦”.  

In Kontorovich (2019), I explored the unconventionality of such answers among school 

graduates, with a focus on the tensions that may have been evoked. Indeed, if a student was to 

assume that square-rooting from squared radicands yields the initial input (e.g., “√(−6)2 =
−6”), then would this same individual endorse the chanted property of even roots as outputting 

non-negative numbers? Alternatively, if a student was convinced that square roots generate two 

opposite results (e.g., “√𝑥2 = ±𝑥”), would they entertain the idea that √𝑥2 − √𝑥2 is not only 0 

but also ±2𝑥? When students’ answers to such questions were consistent with ‘no’, I interpreted 

it as a conflict in their mathematical knowledge. In this article, I revisit my previous analysis 

with the aim of generating a theoretical account of situations in which students produce 

conflicting responses as part of their square-rooting. 

Offering theoretical accounts for the described situations is not straightforward. For instance, 

when introducing their seminal notion of concept image, Tall and Vinner (1981) acknowledge 

that “[a]t different times, seemingly conflicting images may be evoked” (p. 152). The researchers 

explain such conflicts with learners’ unawareness of them but do not elaborate on the 
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mechanisms that conceal the conflict from the learner. I capitalize on the commognitive 

framework (Sfard, 2008) to make sense of the conflict phenomenon. 

Theoretical Framework 

The commognitive framework is concerned with human communication and discourses 

(Sfard, 2008). The latter are distinguished through their keywords (e.g., “square roots”), visual 

mediators (e.g., “√∎”), verbal and symbolic narratives (e.g., “√𝑥2 = |𝑥|”), and recurrent 

routines (e.g., square-rooting). 

Communication is a patterned and rule-driven endeavor, which allows people to be efficient 

in situations that they consider as similar. Lavie et al. (2019) contextualize routines in task 

situations – settings where one considers themselves bound to do something. Commognition 

explains one’s capability to act in a new situation by harking back to precedents that this person 

views as sufficiently similar to the present one. This justifies recreating patterns that are familiar 

from the person’s own experience or from the experiences of others. The choice of specific 

precedents occurs with the help of precedent identifiers – features of a current task situation that 

a person considers sufficient to make the link to past events.  

Lavie et al. (2019) suggest that identifying relevant precedents would be infeasible without a 

pre-selection, which gives rise to a precedent-search-space. The researchers explain that this 

space is often created before any specific task situation is set based “on the unarticulated 

assumption that precedents for whatever happens in this setting should come from the same 

discursive, material, institutional, and historical context” (ibid, p. 160). I suggest that such spaces 

can be further deconstructed into “smaller” precedent pockets – sets of precedent events on 

which a person draws when coping with a series of task situations assigned in the same setting. 

For instance, if asked whether a specific number is a perfect square, my actions would depend on 

the number: for some numbers, I can retrieve their square roots from memory; for others, I would 

first check whether they end with 0, 1, 4, 5, 6, or 9. In this sense, my replications would come 

from different pockets in my precedent-search-space. 

Lavie et al. (2019) define a task, as it appears to a person in a given task situation, as “the set 

of all the characteristics of the precedent events that she considers as requiring replication” (p. 

9). Due to differences between the precedents and the current task situation, replication preserves 

some past actions while changing others. A procedure is subsequently described as “the 

prescription for action that fits both the present performance and those on which it was modeled” 

(p. 9). Eventually, Lavie et al. suggest that a routine “performed in a given task situation by a 

given person is the task, as seen by the performer, together with the procedure she executed to 

perform the task” (p. 9). 

Commognitive conflicts feature in an “encounter between interlocutors who use the same 

mathematical signifiers (words or written symbols) in different ways or perform the same 

mathematical tasks according to differing rules” (Sfard, 2008, p. 161). The divide described by 

Crisan (2014) epitomizes such a conflict since the teachers from different square-rooting 

“camps” applied different routines and arrived at contradictory outcomes. Such conflicts stem 

from mathematical discourses that do not share a well-defined set of rules that would allow their 

participants to resolve their disagreements deductively. Sfard (2008) terms such discourses as 

incommensurable and explains that “two narratives that originate in incommensurable discourses 

cannot automatically count as mutually exclusive even if they sound contradictory” (p. 258). 

While commognitive conflicts are rooted in interpersonal communication, the primary unit of 

the commognitive interest is discourse. It seems more consistent, then, to position commognitive 
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conflict as an inter-discursive phenomenon (Kontorovich, 2019). This opens the door to consider 

conflicts within one’s mathematical discourse, i.e. between its sub-discourses (e.g., arithmetic 

and algebra) and even between their “smaller” components, such as narratives. Furthermore, a 

person does not necessarily need to experience a conflict for an external observer to argue for its 

presence. As such, I suggest that the notion of “same mathematical task” used by Sfard in her 

definition of a commognitive conflict is open for researchers’ operationalizations and 

interpretations. 

The Study 

In the presented commognitive terms, the question underlying this study is “what are the 

characteristics of task situations, in which students employ square-rooting routines that, on the 

face of it, entail conflicting narratives?” 

Participants and context 

The data was collected from a class of 11 eighteen- and nineteen-year-olds enrolled in a so-

called bridging course affiliated with a large technological university in Israel. These students 

had finished school with the minimal mathematical requirements of the national educational 

system. They enrolled in the course to improve their school qualifications and achievements and 

thus gain acceptance into the universities and faculties of their choice. The particular course re-

engaged its students with high-school mathematics and additional topics useful for first-year 

tertiary courses. At the time of data collection, the participating students were at the end of an 

instruction sequence that covered topics in arithmetic and algebra where roots were discussed.  

Research has noted that canonical discourses on roots do not always align with each other 

(e.g., Kontorovich, 2016, 2018b). Thus, let me delineate a discourse that may be considered as 

canonical in the context of this study. Israeli curriculum defines 𝑏 as a square root of 𝑎 if 𝑏2 = 𝑎. 

The signifiers “the square root” (in Hebrew “הריבועי השורש”) and ‘√ ’-symbol are used for non-

negative roots only. This might smooth students’ transitions between arithmetic, algebra, and 

calculus. For instance, the narrative “√9 = 3”, is correct through the lens of algebraic operations 

as well as when it is approached as a function 𝑓(𝑥) = √𝑥 at 𝑥 = 9. In this way, while being 

capable to draw on several precedent pockets, as long as the radical symbol was involved, 

students could be expected to generate non-contradictory narratives. Nevertheless, ‘root’ is also 

used to refer to all the values that satisfy an equation. Then, 3 is the square root of 9, but ±3 are 

roots of 9 as well as being roots of the equation 𝑥2 = 9. 

Data collection and the questionnaire 

Sfard (2008) notes that each communicational medium – verbal, gestural, iconic, symbolic – 

“has its own discourse that supports its unique set of narratives” (p. 156). This makes some 

discursive steps “easier to perform than some others, depending on the type of ‘materials’ in 

which they are implemented” (ibid, p. 156). The written medium has been chosen for this study 

as it is a key communicational channel, through which mathematical discourses of mature 

students are captured, developed, and assessed. 

The data was collected through a specially designed questionnaire. Two parts of it contained 

questions asking students to square-root from a variety of numbers and parametric expressions 

squared. Specifically, the questions involved square numbers, integers, monomials, binomials, 

and their combinations. The emphasis was placed on square-rooting from squared radicands so 

as to remove the calculational burden and to allow students to complete more questions. Each 
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question was followed by a request to explain the generated response, which was expected to 

provide wider access to students’ routines. The last part of the questionnaire was concerned with 

the definition of square root and the meanings of the radical symbol, and it is analyzed 

elsewhere. The students’ course teacher confirmed that the questions in the questionnaire were 

not very different from the ones that were discussed in the classroom. The questionnaire was 

distributed in a regular lesson and the students worked on it individually without using 

calculators, as was usual for this course. Students’ work was not time-limited, but all of them 

submitted their work in less than 25 minutes. 

Analysis 

The questionnaire of each student was analyzed in three stages. The first stage aimed at 

indicating responses where each student employed the same routines. For this aim, each response 

was construed as an implementation of some routine as a response to an assigned question, i.e. a 

task situation. Implementations were categorized as similar based on their words and symbols, 

number of steps involved, and resulting narratives. In the second stage, similar implementations 

were examined to delineate the procedure and the task of their underlying routine. Having no 

access to students’ interpretations of the assigned task situations, the task was deduced based on 

the steps that a student took, while paying special attention to the end-result that they obtained. 

The procedure was constructed by generalizing the steps that each student captured in writing. 

Comparing the responses of different students highlighted nuances and changes in the emerging 

routines. In the last stage, task situations in which each student demonstrated the same routine 

were characterized, aiming to identify their common features, such as formulations and the 

mathematical objects involved. 

Results and Commognitive Account 

I start by taking a close look at Anna’s responses to introduce the commognitive account for 

apparent conflicts in her square-rooting. This is followed by additional examples of students’ 

routines. 

When the radicands in the questionnaire were presented as perfect squares (e.g., 9, 16, 169), 

Anna copy-pasted the prompt preceding it with the ‘±’-symbol and responded with two opposite 

roots encapsulated under the ‘±’. For instance, as a response to the request to simplify √169, she 

wrote “±√169 = ±13”. In the questions where the radicands were presented in a squared form, 

she started with converting the radical to the power of half, followed by reducing the powers to 

1, and concluded with the initially squared input (e.g., “√112 = (112)
1

2 = 111 = 11”). More or 

less the same procedure was observed when Anna square-rooted from squared negative numbers 

and parametric expressions (e.g., “√(−6)2” and “√𝑥2”). In some of the questions, she explained 

that “square root of 𝑥2 is 𝑥 itself”. This description attests to the difference of routines that Anna 

employed when square-rooting from perfect squares and squared radicands.  

From the perspective of canonical mathematics, the described patterns of Anna’s square-

rooting appear as a source of potentially conflicting narratives. Indeed, if “square root of 𝑥2 is 𝑥 

itself”, then what is the square root of 169? Anna maintained that it is “±13”, but if acted on in 

accordance with the procedure associated with squared radicands, she is likely to end up with 13 

as the only root. Before labelling these two narratives as mutually exclusive, let me attend to 

assumptions that justify considering the narratives together in the first place. For an algebraically 

versed person, it may seem self-evident that square numbers, squared numbers, and squared 

parametric expressions are instances of the same object. Then, when asked to square root from it, 
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this person could turn to the same precedent pocket and replicate the same actions. Alternatively, 

by drawing on different precedent identifiers, this person might resort to different pockets; for 

instance, one involving square numbers and one with squared radicands. After all, it is not rare 

for people to recall square roots of some numbers quickly but stumble over the power notation. 

The point, in this case, is that the actions associated with the pocket of squared radicands are still 

applicable to the task situation with square numbers, and these actions lead to the same outcome. 

The coherence of mathematics ensures that manipulations with powers, such as 132, will yield 

the same outcome as recalling the root of a square number 169 right away. In this sense, I 

suggest that the pocket of squared radicands subsumes the pocket of precedents with square 

numbers (see Sfard, 2008 for a similar relation between subsumed and subsuming discourses).   

There seem to be no grounds to assume that in her square-rooting Anna resorted to the same 

or subsumed precedent pockets. To the contrary, the consistence of her routines suggests that she 

turned to (at least) two incommensurable pockets of precedents; for example, one involving 

perfect squares and one with squared radicands. It is possible, then, that each task situation was 

compared to the relevant precedent pocket, which entailed different actions. I use 

“incommensurable” to stress that the precedent pockets can be construed as different to the 

extent that Anna would not see a reason to think about them together and would not consider 

looking for connections between them. Within this account, claiming the existence of conflicts 

between actions that Anna employed in task situations that she saw as different, would be like 

arguing that having different breakfasts on the weekdays and the weekends creates a 

contradiction. 

Anna was not the only student to consistently employ different routines in different task 

situations. For instance, Betty’s acted differently when the assigned roots “stood alone” and 

when they were part of more compound calculations. In the former cases, she generated two 

opposite results, while in the latter instances, only the positive roots were considered (e.g., 

“√169 = ±13” vs ““√81 − 8 = 9 − 8 = 1”). Charlie showed similar patterns when parametric 

expressions were involved. 

The next two examples showcase that some routines differed not only in their procedures and 

outcomes, but also in their tasks. The analysis of Daisy’s questionnaire showed that her square-

rooting changed for monomial and binomial expressions. In the former task situations, she 

realized the radicands in a single step producing simplified expressions that were free of the 

radical sign (e.g., “√𝑎2 = 𝑎”). In the latter pocket, she expanded the brackets by squaring the 

binomials and keeping the result under the root symbol (e.g., “√(−𝑎 + 1)2 = √(1 − 𝑎)2 =

√12 − 2𝑎 + 𝑎2”). And while some may argue that no roots were extracted in the latter cases, I 

refer to them as square-rooting procedures as they consistently featured in task situations asking 

Daisy to simply expressions with roots. 

The second example (shown in Figure 1) comes from Ella. The left part of Figure 1 

illustrates that her procedure was consistent with the task of simplifying the assigned roots when 

the parameters were named with letters from the beginning of the alphabet (e.g., “𝑎”, “𝑏”); 

however when faced with “𝑥”, “𝑦”, and “𝑡”, she equated the assigned expressions to zero and 

attempted to solve the emerging equation. 

To explicate, by referring to a student’s actions in sets of task situations with shared features, 

I do not imply that these features were the precedent identifiers on which each student drew 

when employing their routines. For instance, it is possible that Ella’s square-rooting depended 

not on the name of the parameter but on the structure of the assigned expression. Indeed, she 

may have been sensitive to situations where the roots were extracted from monomials and where 
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they were incorporated with addends that did not require simplification (like 2𝑥 in the right part 

of Figure 1). 

 
Figure 1. Illustrations of Ella’s square-rooting 

Summary and Discussion 

This study enriches the body of literature on learning and teaching of roots (e.g., Crisan, 

2014; Kontorovich, 2016, 2018a, b). While some previous studies focused on the correctness of 

students’ mathematizing (e.g., Cangelosi et al., 2013), this investigation was concerned with 

seeming conflicts within students’ square-rooting. The key contribution of this study to this body 

of knowledge is in showing that at the end of an instructional sequence, students can operate 

with roots differently across, but consistently within, collections of task situations with common 

features. Specifically, the analysis showed that students’ square-rooting can change between task 

situations involving perfect squares and squared radicands, roots that stand alone and those 

featuring in more compound exercises, monomials and binomials, and when parameters are 

named with different letters. Some of the identified routines differed not only in their procedures, 

but also in their tasks. Notably, none of the students square-rooted numbers differently from 

parametric expressions – something that might have been expected given the extensive literature 

on the transition from arithmetic to algebra (e.g., Carr, 2012). The fact that these differences did 

not emerge may be related to the fact that, as part of the instructional sequence, arithmetic and 

algebra were taught in close proximity one to another and the connections between the two were 

stressed. 

This study offers some insights to the commognitive strand of research. Currently, this strand 

has been mostly attentive to interpersonal conflicts (e.g., Lavie et al., 2019), when the study at 

hand has concerned apparent conflicts within one’s mathematical discourse. Following in the 

footsteps of Lavie et al. (2019) and others, the construct of conflict has been dis-objectified with 

the aim of considering it from the perspective of mathematics learners, i.e. those who are claimed 

to demonstrate it. Specifically, I suggested that in different task situations a student can draw on 

different precedent identifiers and hark back to incommensurable pockets of precedents. The 

narratives emerging from replicating different actions may seem conflicting to those who 

juxtapose them. However, the juxtaposition is viable as long as the assigned task situations are 

construed as elements from the same collection; a collection that invites resorting either to the 

same precedents or to precedent pockets that subsume one another. However, if a person 

associates different task situations with incommensurable precedent pockets, there seems to be 

no reason for this person to consider either the replicated actions or their outcomes together in 

the first place. Within this account, acting differently under circumstances that are deemed as 

different is the sensible thing to do. 
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So how can students like those who participated in this study be supported to ensure that their 

mathematizing to become canonical? This question invites further research into teaching and 

learning aimed at students revising their already developed discourses. Practice-wise, this 

endeavor requires teachers to become familiar with routines that their students develop. This 

draws attention to the diagnostical potential of engaging students with carefully-varied task 

situations. That said, the sensitivity to task situations that the students exhibited in this study 

suggests that it may be not easy to come up with diagnostically informative variations. This is 

because newcomers to mathematical discourse – like students – and discourse oldtimers – like 

teachers – often have conflicting ideas regarding what is similar and what is different in 

mathematics. 
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Using social learning theory with the central concept of a community of practice, we situate this 

work within a secondary mathematics methods course to unpack preservice secondary 

mathematics teachers (PSMTs) development through the use of video case studies. We analyzed 

six sessions of the course in which PSMTs engaged in discussions about video segments of 

mathematics teaching rooted in the Teaching for Robust Understanding (TRU) framework for 

high-quality instruction. Analysis of this data showed opportunities for PSMTs to develop 

critical skills for teaching (Hiebert et al., 2007). Our contribution includes the addition of a new 

skill to Hiebert’s framework, Understanding the Mathematics, as an important component of 

PSMT learning that may precede the original four skills. Future research should focus on 

connections between PSMTs’ evolving mathematical understandings and analysis of video to 

better understand the impact of their content knowledge on developing the critical skills for 

teaching. 

 

Keywords: Preservice Secondary Mathematics Teachers, Video Case Studies, Mathematics 

Methods Course 

 

Introduction 

Hiebert and colleagues (2007) suggested four teaching skills that preservice teachers should 

develop within a teacher education program: (1) specifying the learning goals for the 

instructional episode; (2) conducting empirical observations of teaching and learning; (3) 

constructing hypotheses about the effects of teaching on students’ learning; and (4) using 

analysis to propose improvements in teaching. These skills were centered on the notion that the 

goal of teaching is to support student learning, and therefore, to acquire these skills, preservice 

teachers needed learning experiences embedded in actual classroom settings (Hiebert et al., 

2007). Teacher education programs have provided preservice teachers with experiences in the 

form of supervised clinical teaching experiences, or practical teaching courses (practicums). 

However, these experiences are varied depending on individual supervising teachers whose 

practices might not be aligned with best practices and theories discussed in university methods 

courses (Cavanagh & Prescott, 2007). Based on these inconsistencies, preservice teachers might 

rely on their own experiences as students (Feiman-Nemser & Buchmann, 1985). Thus, there is 

concern that preservice teachers might not have the opportunity to build the critical skills needed 

to become effective teachers (U.S. Department of Education & Office of Postsecondary 

Education, 2013).  

To build the critical skills for teaching, Hiebert and colleagues (2007) advocated for 

providing opportunities for preservice teachers to learn to teach from teaching not only within 

classrooms, but before entering a classroom. Methods courses can provide preservice teachers 

with such learning experiences where they develop the skills needed for field-based teaching 
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through analyzing teaching in terms of student learning. One powerful type of learning 

experience that has been shown to provide preservice teachers a way to view teaching and 

learning in a classroom setting is the use of video case study (Star & Strickland, 2008). In a 

methods course, guided discussions and analyses of video-recorded classroom teaching can help 

preservice teachers focus on important aspects of a lesson, which can provide opportunities for 

preservice teachers to develop and understand their teaching skills in real contexts (Star et al., 

2011). Moreover, new research calls for video case study analysis need to be rooted in a 

framework for teaching (e.g., Bonaccorso, 2020). In our work, we partnered video case study 

analysis with the Teaching for Robust Understanding (TRU) framework, which has allowed us to 

investigate how preservice secondary mathematics teachers (PSMTs) attend to and develop 

teaching skills necessary to learn how to teach from studying teaching (Hiebert et al., 2007). In 

particular, this study seeks to answer the following research question: In what ways does video 

case study analysis rooted in a teaching framework provide PSMT opportunities to develop the 

critical skills of teaching? 

 

Conceptual Framework  

 

Communities of Practice 

To understand PSMTs’ learning, we adopted a community of practice (CoP) model for our 

conceptual framework. A CoP is defined as a group of people “who share a concern, a set of 

problems, or a passion about a topic, and who deepen their knowledge and expertise in this area 

by interacting on an ongoing basis” (Wenger et al., 2002, p. 4). A methods class consists of 

preservice teachers and the instructor(s) working together to deepen knowledge of teaching and 

learning during regular course meeting times across a semester. In our study, PSMTs and the 

methods instructors analyzed video case studies of mathematics teaching in order to foster 

sustained teacher learning about high-quality instruction using the TRU framework. Therefore, 

in the context of this study, the methods course acted as a CoP because the group tackled a set of 

problems around the nature of high-quality instruction and deepened their knowledge regarding 

the skills needed for successful implementation. 

 

Video Case Studies in Preservice Teacher Education 

Researchers have found that video analysis has the potential to focus preservice teachers’ 

attention on particular aspects of teaching and learning. PSMTs typically have difficulties in 

attending to issues of mathematics teaching and learning when they begin teacher training (e.g., 

Star & Strickland, 2008). Research has shown that analyzing classroom videos provides 

preservice teachers a chance to broaden their perspectives regarding what to observe, and direct 

preservice teachers’ attention to critical aspects of mathematics teaching and learning. In 

particular, Martinez et al. (2015) found preservice teachers’ ability to anticipate student 

mathematical thinking could be enhanced by partnering video watching with a research-based 

framework. Other researchers (Santagata & Angelici, 2010; Santagata et al., 2007) placed 

particular emphasis on the use of an observation framework as a lens for analyzing a videotaped 

lesson. Findings from this research suggested that an observation framework designed to guide 

teachers’ analyses of classroom videos has a positive impact on improving preservice teachers’ 

ability to attend to important elements of the teaching and learning of mathematics. Therefore, 

PSMTs in our study analyzed video case studies with a specific lens to better understand the 

teaching of mathematics. 
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Teaching for robust understanding (TRU). We used video case studies rooted in the TRU 

framework to help PSMTs align their understanding of mathematics teaching and learning to 

dimensions of high-quality instruction that support deep mathematical learning opportunities for 

students. The TRU framework is categorized by five interrelated dimensions of high-quality 

mathematics instruction: (1) the mathematical content; (2) cognitive demand; (3) equitable 

access to content; (4) agency, ownership, and identity; and (5) formative assessment 

(Schoenfeld, 2017). In this study, the purpose of using video case studies rooted in the TRU 

framework was to focus PSMTs’ discussions on particular aspects of powerful mathematics 

classrooms and provide them with a common language to examine the teaching and learning of 

mathematics.  

 

Methods 

 

Context 

The participants of the study include 12 PSMTs enrolled in two separate sections of an 

undergraduate mathematics methods course that met on campus. This course is the second of two 

required methods courses that PSMTs took prior to their practicum experience. Each of the six 

75-minute sessions studied was facilitated by the course instructor. On two occasions, an 

additional instructor familiar with the teaching materials and framework provided support.  

Over the course of each semester, the instructor scheduled three sessions for video case study 

analysis. For these course meetings, PSMTs engaged with the mathematics in the lesson, viewed 

a video clip from a real classroom setting, and collectively analyzed the video through whole 

class discussions. When engaging with the mathematics PSMTs completed tasks from the 

student perspective and discussed the core mathematical ideas embedded in the lesson. After 

watching the video of the enacted lesson PSMTs responded to reflective questions and utilized 

tools aligned to the teaching framework to analyze the mathematics teaching and learning. One 

of the tools, the On Target, is shaped like a bullseye and helps PSMTs situate teaching moves 

within different TRU dimensions. Each On Target provides a reflection question and lists 

teaching moves associated with one TRU Dimension. The outer rings provide examples of 

possible teaching moves less aligned, and the inner rings showcase teaching moves more aligned 

with the high-quality instruction defined by the TRU dimension. By using this tool, the PSMTs 

could focus their observations and use common language to reflect on what they saw in the 

video. All materials for the video case study analysis were grounded in a particular dimension of 

the TRU framework (Schoenfeld, 2017) to further assist PSMTs in developing teaching 

hypotheses aligned with powerful mathematics classrooms. This On Target tool was modified 

with permission from materials in development by the TRU group at the University of 

California, Berkeley (Schoenfeld & the TRU Project, 2018). 

 

Data Collection and Analysis 

Each of the class meetings in which PSMTs engaged with video case study analysis was 

video and audio recorded. After transcribing each meeting, we analyzed the data using thematic 

analysis (see Herbel-Eisenmann & Otten, 2011; Lemke, 1990). The course instructor, a graduate 

research assistant, and a second graduate student with expertise in the materials, began by open 

coding each session independently and then met to discuss and define emerging themes. From 

our thematic analysis six themes emerged: Understanding the Mathematics, Understanding TRU 

Tools/Dimensions, Understanding the Lesson, Recognizing TRU Dimension in Video, 
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Understanding Teacher Moves, and Connecting Teacher Moves a TRU Tool. The three 

researchers then coded the transcripts by identifying episodes related to the six themes. An 

episode is a portion of the transcript that focused on one particular topic. An episode ended when 

the focus of the talk changed. We then noted the number of episodes of each theme occurring 

over the course of the six sessions. Finally, the three researchers collaboratively engaged in a 

secondary analysis connecting the themes to Hiebert et al.’s (2007) skills to investigate the 

opportunities the PSMTs had to develop these critical skills of teaching. 

 

Results  

Through our secondary analysis, we identified relationships between our themes and the four 

critical skills for teaching. Table 1 shows this alignment and the frequency of each theme. The 

frequency of episodes suggested opportunities for the PSMTs to develop the critical skills for 

teaching while analyzing video case studies in their methods class. However, our most frequently 

observed theme did not align with the previously defined skills (Hiebert et al., 2007).  

Table 1: Theme alignment to Hiebert et al. (2007) and number of episodes 

Theme 

 

Alignment to Hiebert et al. (2007)  Number of 

episodes 

Understanding the Mathematics  No defined skill 33 

Understanding TRU 

Tools/Dimensions 

Skill 1 - Specifying the learning goals for the 

instructional episode 

9 

Understanding the Lesson Skill 1 - Specifying the learning goals for the 

instructional episode 

7 

Recognizing TRU Dimension in 

Video 

Skill 2 - Conducting empirical observations of 

teaching and learning 

2 

Understanding Teacher Moves  Skills 3 & 4 - Constructing hypotheses about 

the effects of teaching on students’ learning; 

and (4) Using analysis to propose 

improvements in teaching 

16 

Connecting Teacher Moves a 

TRU Tool 

Skills 3 & 4 - Constructing hypotheses about 

the effects of teaching on students’ learning; 

and (4) Using analysis to propose 

improvements in teaching 

19 

 

Connecting Teacher Moves to a TRU Tool and Developing Skill 3 

Our first example comes from PSMTs’ discussions around a video case titled Defining and 

Describing Quadrilaterals that highlighted the TRU dimension of cognitive demand. After 

watching the video, the PSMTs were prompted to discuss their observations with the support of 

the related On Target tool (Figure 1) with the following reflection question: To what extent are 

students supported in grappling with and making sense of the mathematical concepts?  
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Figure 1. A version of the On Target tool discussed by PSMT-1 and PSMT-2 (recreated by authors) 

 

PSMT-1: So we thought he was good because he stayed away from that outside things. Uh, 

one of the things we mentioned was how, um, for scaffolding moves students in 

productive directions without giving answers away, was like when the student said par…, 

like gave the definition for parallel, and instead of just like shooting him down, and being 

like, no that’s wrong, he like, kind of like opened it up for everyone, you know, and like 

what does that really mean? And he kept moving forward that way, so that was good. 

PSMT-2: And he also, he didn’t scaffold them so much that it just took all the demand away. 

You know, it was, like he didn’t just, you know, like PSMT-1 said, go off that one wrong 

answer and just tell everyone what it was. 

This example shows two PSMTs unpacking Skill 3: constructing hypotheses about the effects 

of teaching on students’ learning (Hiebert et al., 2007). By stating “stayed away from the outside 

things,” PSMT-1 referred to teaching moves from the outer rings of the On Target that lowered 

the cognitive demand of a lesson. PSMT-1 stated that the teacher maintained cognitive demand 

through questioning moves that privileged and responded to students’ mathematical thinking and 

did not funnel students toward one particular way of thinking. PSMT-2 built upon PSMT-1’s 

observation and concluded that students are being provided the opportunity to grapple with the 

mathematical ideas in the lesson. This suggests that both PSMT-1 and PSMT-2 connected the 

teaching moves of maintaining cognitive demand to students' learning, the main focus of Skill 3.  

 

Understanding the Mathematics and Defining A New Skill  

During another session of the methods course, the PSMTs analyzed a video case titled 

Representing Quadratic Functions Graphically focused on the TRU dimension of formative 

assessment. PSMTs were asked to sketch two quadratic curves that “look quite different from 

each other.” PSMT-3 drew a standard quadratic curve with its vertex at the origin, and the same 

quadratic curve rotated 90 degrees (see Figure 2), which prompted the following discussion: 
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Figure 2. PSMT-3's two different quadratic curves 

 

I-2: The other one’s not a function, right? That’s a difference. Quadratic relation. Not a 

function. 

I-1: [PSMT-3], do you understand what [I-2] just said there? About it not being a function? 

PSMT-3: Yeah. 

I-1: So what would be the difference between the equation you would have for those two 

then? Like you said the first one was y = x2, what would be an equation for the other one?  

PSMT -3: I don’t know from the top of my head, to be honest.  

PSMT-1: It would be a root of x, right? A square root? But that would only be positive. Half 

a circle.  

I-2: Did you say half a circle? Can you say, what do you mean by half a circle? 

PSMT-1: I have no idea how you would represent that, but it looks like half a circle. So it 

would make me think the equation of a circle, centered at whatever the center of that 

would be.  
After viewing the video clip, the conversation returns to discussing the prior graphs. In the 

final minutes of the class, the instructor brings the students back to two graphs created by PSMT-

3. The instructor challenges the class to come up with a quadratic equation that could represent 

the graphs. After a bit of discussion, the PSMTs continue to grapple with the content. 

I-2: Can you think of an equation that defines this relationship? If this is y equals x squared, 

then can you think of an equation for this [referring to rotated graph]. 

PSMT-2: [To PSMT-1] What is that?  y2=x? Is that what you just wrote there? y2=x?  

I-2: Is this?  Does that work? 

PSMT-2: Yes. I was on Desmos trying to graph what I was doing but I made something 

really ugly. So no I mean what I was doing before, it was like just a whole bunch of lines. 

I-2: Is that, is y2=x a quadratic relation? 

PSMT-1: Yes.  

I-2: Is there anybody who's not convinced that that curve is defined by y squared equals x?  

PSMT-2: I’m convinced. 

PSMT-1: Why are you convinced PSMT-2?  

PSMT-2: Because I graphed it and it makes sense.  

I-1: It looks like it.  

PSMT-2: It makes complete sense.  

These mathematical discussions suggest that the PSMTs were developing their own 

understanding of mathematics. Before watching the video, we see the PSMTs struggling with the 

task itself. They talk about the square root and a half circle, thus illustrating uncertainty with 
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what would constitute a quadratic relationship. After watching the video lesson, the PSMTs 

continue to unpack the meaning of a quadratic relationship and again return to the graphs created 

earlier. In this discussion, we continued to observe uncertainty around some of the mathematical 

concepts (e.g., inverse, function, relation). 

As we analyzed this discussion, we recognized that our interpretation did not directly align 

with any of the four critical skills for teaching (Hiebert et al., 2007). This led to our defining a 

Skill 0, Understanding the Mathematics, defined as making sense of the mathematics for 

yourself, unpacking different ways others might solve a problem, and/or unpacking students’ 

understanding of the mathematics. We contend Skill 0 to be an important component of PSMT 

learning that may precede the original four skills. 

 

Discussion and Conclusion  

The aim of this study was to explore opportunities for PSMTs to develop the critical skills of 

teaching in a methods class using video case studies rooted in a framework for high-quality 

instruction. Through our thematic analysis and subsequent alignment to the skills, we found 

several episodes of PSMTs’ discussion that aligned to the four critical skills for teaching (Hiebert 

et al., 2007), suggesting an opportunity for PSMT development. Our most frequently occurring 

theme, Understanding the Mathematics, did not align with any of the previously defined skills as 

determined by Hiebert and colleagues. This finding suggests that PSMTs may require 

opportunities to think and interact with their own mathematical understandings since they must 

first grapple with these before understanding and hypothesizing about teaching moves and their 

impact on students’ mathematical thinking.  

Other researchers have also found that interrogating personal mathematical thinking is an 

important precursor for PSMTs developing skills for teaching. For instance, Graeber (1999) 

suggests that PSMTs must be able to provide alternative representations of mathematics for 

students as well as have the ability to recognize and analyze students’ alternative solutions and 

approaches to solving mathematical tasks. She suggests that methods classes focus on providing 

opportunities for PSMT to explore various models and approaches to mathematical concepts in 

order to achieve this. Hine (2015) and Şahin et al. (2016) also note that PSMTs’ mathematical 

understanding influences their ability to notice student misconceptions, offer alternate 

approaches, and assist students with deepening their understanding of mathematics. Therefore, 

we propose the addition of Skill 0 to the critical skills for teaching framework (Hiebert et al., 

2007). Adding this skill to the existing framework has the potential to support PSMTs in 

developing the other four critical skills for teaching, such as constructing hypotheses about the 

effects of teaching on students’ learning and proposing improvements in teaching.  

One limitation of this study is that it existed in only two sections of a methods course taught 

in the same year with a small number of participants. This context does not allow us to make 

general claims about PSMTs’ skill development. We therefore suggest future research to 

examine PSMTs use of video case study on a larger scale. Such research should focus on 

studying the connections between PSMTs’ evolving mathematical understandings and their 

analysis of video cases to suggest how PSMTs are learning about the critical skills of teaching. 

Even so, our work indicates that when designing a mathematics methods course, instructors 

should incorporate video cases with discussions rooted in a framework for high-quality 

instruction. These additional activities should also include time to focus on PSMTs 

understanding of their own mathematics. This focus is the avenue through which instructors can 

open up opportunities for PSMTs to develop the critical skills for teaching (Hiebert et al., 2007). 
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A Student Perspective on Excellence in Undergraduate-Mathematics Instruction 

 

Ofer Marmur 

The University of Auckland 

The question of what high-quality undergraduate-mathematics instruction entails has been 

examined in prior studies mainly by directly analyzing lecturers’ teaching practices. The current 

exploratory study aims to provide a complementary angle by inquiring into a student perspective 

on this topic. Based on student-centered data consisting of interviews and questionnaires, the 

findings point towards 8 characteristics of “excellent lecturers” as perceived by undergraduate 

students. These provide student-driven support for some of the prior lecture-centered research 

claims, though also highlight the importance students attribute to the affective dimension in 

teaching, which has not yet received sufficient research attention. 

Keywords: Teaching practices, High-quality instruction, Students’ perceptions, Affect 

“During the studies of an average student, he or she will encounter different types of 

lecturers [...], yet there are only a few lecturers that the mere mentioning of their name 

puts them at a different league above the rest. They are considered mythological warriors 

who stand side by side with students in their struggle to succeed at the [university] 

despite all difficulties.” (a student quote from an article on an excellent undergraduate 

mathematics lecturer, published in a student-run university magazine; Reuven, 2014) 

 

Recent years have shown a growth of interest in undergraduate mathematics education within 

the research community (Biza, Giraldo, Hochmuth, Khakbaz, & Rasmussen, 2016; Nardi & 

Winsløw, 2018). In particular, one topic that has received research attention regards the 

characterization of quality undergraduate-mathematics instruction, aiming to provide a practical 

contribution to the improvement of undergraduate teaching (e.g., Biza et al., 2016; Speer, Smith, 

& Horvath, 2010). Studies addressing what it means to be a good undergraduate lecturer have 

mainly done so through empirical data stemming from lecture observations and interviews with 

lecturers, as well as by theorizing what constitutes high-quality teaching (e.g., Bergsten, 2007; 

Schoenfeld, Thomas, & Barton, 2016; Wood & Su, 2017). However, there seem to be relatively 

few studies that inquired into a student perspective when attempting to characterize the teaching 

practices of good lecturers. As illustrated by the quote above, students may share strong opinions 

when asked to evaluate their lecturers, where “only a few lecturers” would be considered by 

students as “a different league above the rest”. Accordingly, the current study aims to provide 

another “brick” in the growing corpus of studies on undergraduate teaching by focusing on the 

characteristics and traits students attribute to those lecturers they regard as “excellent teachers”. 

Characterizing High-Quality Undergraduate-Mathematics Instruction 

Previous studies have offered various (yet often overlapping) frameworks for characterizing 

what it means to be an excellent lecturer. In one line of studies addressing this topic, lecture 

observations served as the main source for data analysis. For example, Bergsten’s (2007) study, 

examining a Calculus lecture, provided a list of criteria accounting for high-quality instruction: 

information delivery, connections, rigor-intuition, algebraic-imagistic modes, gestures, socio-

mathematical norms, mathematical mind, inspiration, personalization, and general criteria. 

Most of these criteria focus on the mathematics-related dimensions of teaching, such as making 
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connections across different topics (the criterion “connections”) or balancing between formal and 

informal mathematical registers (e.g., “rigor-intuition”). However, several of the criteria also 

emphasize the importance of lecturers serving as role models for students, providing motivation 

and support (e.g., “inspiration” and “personalization”). In another study, Movshovitz-Hadar and 

Hazzan (2004) analyzed an Algebra lecture and offered six principles characterizing an excellent 

lecturer’s rhetoric. For example, Principle 1 suggests first providing a “top-down” description of 

the main ideas and only then a “bottom-up” construction of the details; and Principle 6 suggests 

explicitly distinguishing between important and less important ideas of the lecture.  

A more theoretical approach was taken in another line of studies by conceptualizing which 

dimensions could be used to describe, analyze, and improve undergraduate-mathematics 

instruction. For example, through a review of prior research, Speer et al. (2010) suggested 

different cognitively-oriented dimensions for analyzing undergraduate teaching practices, among 

them: selecting and sequencing content; motivating specific content; allocating time within 

lessons; and asking questions, using wait time, and reacting to student responses. Also Pritchard 

(2010) utilized a literature review to offer a framework that accounts for effective lectures based 

on three interrelated dimensions: communicating mathematical ideas, which requires clarity and 

flexibility in the delivery while responding to instantaneous student feedback; modeling 

mathematical reasoning while highlighting different heuristic approaches to problem solving; 

and motivating students by expressing enthusiasm and cultivating a “learning community”.  

However, as noted earlier, relatively few studies have explicitly included a student 

perspective when examining and analyzing undergraduate-mathematics instruction. Within these, 

a particularly interesting case is presented in Lew, Fukawa-Connelly, Mejia-Ramos, and Weber’s 

(2016) study, which involved not only an observation of a lesson by a reputable lecturer, but also 

subsequent interviews with students in order to examine their understanding of the lesson. 

Though the direct analysis of the lecture identified characteristics of quality instruction, the 

interviews surprisingly revealed that the students did not comprehend the main ideas of the 

lecture. One of the explanations provided by Lew et al. regarded the students’ prioritization of 

the written formal content on the board, whereas the main ideas were expressed by the lecturer 

only orally. Another study incorporating a student perspective on undergraduate teaching is 

offered by Marmur and Koichu (2018), who identified 8 types of lesson-events the students 

found conducive to their learning, characterized in relation to their lecturers’ instructional acts 

(see also the notion of key memorable events; Marmur, 2017, 2019).  

The importance of incorporating a student perspective in research on effective teaching 

practices has been repeatedly acknowledged in studies situated at the school level, recognizing 

the mathematics classroom as a place of meaning-negotiation between teachers and students 

(e.g., Kane & Maw, 2005; Kaur, 2008). Taking these ideas to research at the tertiary level, I 

suggest that an inquiry into a student perspective may offer lecturers an opportunity to reflect on, 

and possibly re-evaluate, their teaching practices according to a hierarchy of which of these 

teaching practices students value most. Accordingly, the current study focuses on students’ 

perceptions of undergraduate teaching by addressing the following research question: How do 

university students characterize high-quality undergraduate-mathematics instruction? 

Method 

The data for this exploratory study are comprised of semi-structured interviews with 5 

students and questionnaires filled by another 18 students at a highly-ranked research university 

in Israel. Due to this paper’s length constraints, while nonetheless wishing to discuss the findings 

in detail, in what follows, I focus only on the data from the interviews. The interviewed students 
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were in their second (n=1) and third (n=4) year towards a BSc in electrical engineering. The 

choice of interviewing students in a later stage of their degree was based on the assumption that 

students who had already experienced different mathematical courses with various lecturers 

would be able to provide a more informed opinion on what high-quality instruction entails. 

The participants were asked to prepare for the interviews by contemplating how they would 

characterize an excellent lecturer while thinking about specific examples in advance. The notes 

they made in preparation for the interview were collected as part of the data. During the 

interviews, the students were first asked to describe their general experience of mathematics 

lectures thus far and were subsequently guided in sharing detailed accounts and characteristics of 

good (and for contrasting purposes, also “bad”) lecturers they had studied with. The duration of 

the interviews ranged from 30 to 50 minutes, and they were audio-recorded and transcribed. 

For the data analysis, I employed an inductive approach, where categories emerged from 

dominant themes through a process of iterative engagement with the data (Yin, 2011). The 

themes were based on the students’ perceptions of what it means to be an “excellent lecturer”, a 

“bad lecturer”, and perhaps most interestingly, nuanced distinctions the students made between 

lecturers who were “good” and those who were “excellent”. While acknowledging the study’s 

limitation in making inferences from a small number of students, I suggest that the following 

analysis considerations offer support to the validity of the findings: (a) each of the themes 

characterizing excellent lecturers was identified based on statements by all interviewed students, 

with the exception of one at most; (b) statements in support of the identified themes were 

expressed repeatedly by the students throughout their interviews; (c) the significance of the 

themes to the students was further supported by a strong affective dimension in the students’ 

statements, inferred either directly through expressions of emotion (e.g., “something I really 

loved about these lecturers”) or implicitly through the use of intensifying adverbs (e.g., “Dr. B is 

very very very very didactic”); (d) additional support in the other collected data (i.e., 

questionnaires and students’ notes); and (e) examining and contextualizing the themes in relation 

to the research literature, thus aiming to offer analytic generalizability rather than sample-to-

population generalizability (Firestone, 1993), as further addressed in the Discussion section. 

Findings 

The analysis stage revealed 8 themes characterizing high-quality undergraduate-mathematics 

instruction according to a student perspective. These are described and exemplified below. 

Adopting a Student Perspective 

A repetitive theme characterizing excellent lecturers was that they were able to see the 

mathematical material and its possible difficulties from a student perspective. The ability to “get 

into the student’s head” was described by the participants as a feature that distinguishes between 

lecturers who are good and those who are excellent. For example, Student D said:  

“I had lecturers that I can say were good but not excellent. I think the difference maybe 

goes beyond the teaching of the material. It’s that if a student asks a question, then they 

know how to answer it in a satisfactory way, as if they entered the student’s head.” 

According to the interviews, a lecturer that adopts a student perspective can support students’ 

learning in both cognitive and affective terms. From a cognitive perspective, the teaching should 

address and incorporate the ways in which students construct mathematical meaning and develop 

their understanding. From an affective perspective, the acknowledgment of the student 

perspective also provides emotional support by creating an environment in which the learning 

process is a journey the students do not have to walk alone; as for example shared by Student A: 
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“You feel that he [Dr. B] is walking with you hand in hand […]. Like he’s coming from 

inside you, from within the audience [of students]. It’s like he’s learning the material with 

you all over again, while also showing it to you along the way.” 

Performativity 

“A good lecture acts a site for ‘awe and wonder’.” (Rodd, 2003, p. 16). The data here support 

this claim and suggest that an excellent lecturer demonstrates performative abilities, including 

attributes such as charisma, sense of humor, and leadership qualities. It is a person who has a 

passion for the subject, and moreover, is able to connect students to this passion as well. For 

example, Student E described the difference between an excellent and a good lecturer based on 

their performative abilities in keeping students involved and interested:  

“Part of the reason there’s such a consensus about Dr. B [being an excellent lecturer] is 

because of his theatrical abilities and his charisma. There’s no doubt this is part of it. […] 

There are lecturers whose complete lack of charisma is the reason why students will fall 

asleep. Last semester I studied Probability with Dr. T, who, as I said before, is a good 

lecturer. But people would simply lose him on a regular basis because he’s so 

monotonous. In the end, there’s a tidy notebook […] because that’s how he teaches the 

course. But on the other hand, if you were sitting like a mannequin all semester long, it’s 

probably going to be very hard for you to prepare for the exam.” 

Furthermore, the interviews suggest that this teaching characteristic also supports students’ 

emotional well-being and raises their motivation to understand the taught mathematics. For 

example, Student E stated that Dr. O’s “humor helped lift people’s spirits and pick them back up. 

[…] When you take something heavy and difficult and deflate it with a stab of humor, then 

suddenly things are not scary anymore.” And Student A shared the following: 

“I think that a trait that characterizes a good lecturer is leadership, […] it’s a matter of 

who excites students, who succeeds in making them feel connected. […] And then, even 

if students don’t understand something, then they will ask. […] It means that I’ll care 

enough to come and ask the lecturer about those things I didn’t understand.” 

Making Connections and Providing Directionality 

This characteristic of excellent lecturers regards making mathematical connections in the 

following ways: (a) connections between past, present, and future ideas of the course; and (b) 

connections between concepts learned in the course and their utility both within and outside the 

mathematical domain. For example, student C discussed the importance of connections both at 

the local level of the material and at the global level of how ideas combine to a “bigger picture”:  

“There are lecturers that at the beginning of each lecture say a sentence or two about what 

we did last time and then make the connection to what we’ll do with this now – which is 

something I really loved about these lecturers. […] I really felt that lecturers who truly 

taught well showed how to look at everything in the context of the big picture. This was 

really helpful. And it was also very interesting seeing how different things connect.” 

Moreover, the participants reported that when such connections are made, this gives them a 

sense of directionality in their studies, which addresses both their cognitive and affective needs: 

“It’s about clearing the fog for students, so they would know a bit more where this 

[material] is heading towards, as well as why. […] We are curious people, so the ‘why’ is 
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important to us. When we don’t know, then there’s this fog along the path […]. So this 

freaks us out. You don’t know what’s going to happen. It drives you crazy.” [Student A] 

Positive Attitude Towards Students 

 “A good lecturer is a lecturer who cares” [Student D]. The importance of lecturers caring 

about their students’ understanding was a repeating theme: “Caring. This is a trait that really 

influences the atmosphere in class, in the sense of how much you’ll feel comfortable asking 

questions. […] And also caring in the sense that they [lecturers] will really speak with you until 

they see you understand” [Student C]. According to the interviews, this could be achieved if the 

lecturer were to use inviting language that encourages students to ask questions: 

“I understand that the bigger the group is, the harder it is to give personal attention. […] 

But at least the lecturer should give the students the feeling and confidence of ‘you can 

come to me, you can approach me, we’ll help you’.” [Student A]  

Furthermore, the data suggest that lecturers’ attitude may have a substantial impact on 

students – “The attitude of the lecturer can really make you love or hate the course” [Student A]. 

Whereas lecturers who demonstrate a positive attitude towards students may raise students’ 

involvement, lecturers who behave dismissively towards students may cause students to dislike 

the course – even when taught by knowledgeable, organized lecturers; as shared by Student B: 

“Dr. E is really organized and knows the material excellently. But if you ask a question in 

her lesson, then you’ll receive a very cold shower, you’ll be humiliated. […] Like, 

serious humiliation. If she had done it to me, I would have been really insulted. […] Like, 

yelling at you to go over the material again in front of a class of several-hundred students 

[…]. On the other hand, Dr. M, her attitude is amazing. She answers questions calmly.” 

Keeping It Simple 

The mathematics that undergraduate students need to learn and deal with is often complex 

and challenging. However, based on the interviews, an excellent lecturer is able to thoroughly 

simplify the material. One of the methods mentioned by the students was using “extremely 

simple examples” to demonstrate definitions and proofs. The students emphasized that it is the 

deliberate choice of which examples are presented that can make even complicated material 

become simple, understandable, and clear. For example, Student A shared the following:  

“Dr. Z, what Dr. Z does, she brings the material to amazing simplicity. […] She explains 

it by bringing it to such a simple level. She simplifies everything and gives the most basic 

examples in the world, that not understanding them […] is just impossible.”  

Other ways of simplifying the material included the use of illustrations, gestures, simple 

language, and daily situations to explain the material. For example, Student B stated: 

“He [Dr. B] really brings every theorem to the level of a person on the street, like even 

they could understand what he’s talking about. [...] He takes a complex idea and really 

simplifies it. [...] I’ll give you an example. When he explained the definition of a limit of 

a function, I think everyone understood it. […] He used words that are very intuitive. You 

can imagine it, it’s words that create an image in your head. He uses a lot of words like 

that, it’s very very easy to follow, very easy to connect. […] So suddenly even this scary 

definition feels much more understandable.” 

Calm Time Management 

While the data suggest students acknowledge the time constraints on lecturers, they 

nonetheless characterize excellent lecturers as lecturers who are able to manage their time in a 
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calm manner. This as opposed to lecturers who seem to be “running against the clock” in their 

teaching in order to cover the material. As articulated, for example, by Student D: “What I less 

liked about this lecturer was that she was super stressed and super quick – if you blinked for a 

second, then you lost her.” Also Student E shared a similar stance: “If a lecturer is speeding 

through the material, this means that something in the planning of the schedule is not right.” 

It should be noted, however, that according to the students, calm time management does not 

mean no time management. For example, Student E claimed that a good lecturer knows when to 

insert pauses, which “can even be just a few seconds long” – allowing the students to finish 

copying from the board or “the time needed for an understanding to kick in”. Student E 

explained this could prevent students from feeling “lost” and “entering a whirlpool of 

frustration”. Another repeating claim was that good time management not only regards allocating 

time for answering students’ questions calmly, but also knowing when lecturers need to say “no” 

to additional questions and instead continue in the lesson; as, for example, shared by Student C: 

“It’s really nice when a lecturer answers everyone’s questions and does it really patiently. 

But many times I encountered the situation where the lecturer answered too many 

questions, and then we simply didn’t have the time to learn what we were supposed to.” 

Meticulous Preparation and Presentation 

Another characteristic of excellent lecturers is an extremely orderly and thorough 

presentation of the material, which also stems from being rigorously prepared for each lesson. 

For example, consider the following excerpt by Student A, who described excellent lecturers as 

having high pedagogical awareness in both planning and executing the lesson:  

“Everything is very thorough and everything is very orderly, and you see that there’s an 

orderly lesson plan that they thought about in depth: what comes before what, where 

should the example go, where should the theorem go? I think that at this level, Dr. B is 

very very very very didactic, and like, really, he’s at the highest level I have seen.” 

According to the interviews, other aspects in lecturers’ meticulous preparation and 

presentation of the material include a very deliberate choice of examples in the preparation stage, 

as well as making sure to not only explain the material orally, but also write all their explanations 

on the board (cf. Lew et al., 2016). As, for example, claimed by Student C: “I think it’s really 

good when lecturers write down everything they explain. Especially if these are important things. 

That they really write in an orderly manner on the board, so we could look at it afterwards.” 

Creating a Hierarchy of Importance in the Mathematical Material 

While the students acknowledged that attention to detail is crucial in mathematics, they also 

wished to be guided on which of these details they should concentrate and focus on first, before 

attempting to make sense of others. The characteristic “creating a hierarchy” thus regards 

lecturers helping students distinguish between more important and less important aspects of the 

material. As illustrated by Student A, not knowing what is vital to comprehend and what is less 

crucial to understand may result in students experiencing anxiety and stress: 

“When you don’t know what to focus on, then you don’t know what is important [and] 

you don’t know what’s not important. […] When you don’t know what to focus on, 

everything puts you into some kind of panic mode, and this is what makes it so difficult.” 

According to the interviews, one way in which this hierarchy can be created is by lecturers 

repeating and summarizing only the most important and relevant information at the end of each 

lesson or topic. Another way regards lecturers first providing students with the general structure 
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of the proof and only subsequently filling in the details (see also “structural proof”; Leron, 

1983). Student B described this teaching practice, as well as its affordances for student learning: 

“Every good instructor does this. […] They create […] a fragmentation of the solution 

into blocks [and explain] ‘this is what I’ll to do [in each block]’. […] This is good for a 

lot of reasons. […] If you lost some part of the proof, a block in proof, you can say, ‘well, 

I don’t understand what the lecturer is doing right now, I’ll wait for the next block, I’ll 

accept the previous block as a given’. This might sound a bit funny, but in the end, it’s 

the difference between understanding and not understanding anything.” 

Discussion 

The motivation for this study stemmed from a gap in the research on undergraduate-

mathematics instruction, which has not sufficiently incorporated a student perspective when 

inquiring into this topic. Addressing this gap in this initial, exploratory study, 8 characteristics of 

high-quality instruction were identified based on student-centered data, offering the following 

contribution to undergraduate-mathematics research. 

First, I suggest that the findings herein provide important initial support to prior research on 

undergraduate teaching by adding a student perspective to the discussion of the topic. For 

example, the characteristic “Positive attitude towards students” could be regarded as a student 

validation to one of Jaworski’s (2002) elements in her teaching triad, sensitivity to students 

(regarding their affective needs); “Calm time management” resonates with Speer et al.’s (2010) 

theoretical discussion on allocating time within lessons; “Making connections” across topics, a 

notion that has been widely discussed in prior lecturer-focused studies (e.g., Bergsten, 2007; 

Yan, Marmur, & Zazkis, 2020), seems to indeed motivate students; and “Creating a hierarchy of 

importance” supports prior characterizations of effective teaching, such as Leron’s (1983) notion 

of structural proof and Movshovitz-Hadar and Hazzan’s (2004) claim that good instruction 

requires distinguishing between important and less important ideas of the lecture. 

Secondly, and perhaps more importantly, the student perspective on teaching as reflected 

here might challenge us, as a research community, to widen our focus of attention towards the 

affective dimension that is inherent to any teaching-learning interaction. As can be observed in 

the findings above, there is a strong affective dimension in the students’ descriptions of which 

teaching qualities they found significant to their learning experience in lectures. This affective 

dimension was expressed not only regarding characteristics that explicitly attend to students’ 

affective needs (e.g., “Positive attitude towards students”), but also regarding characteristics that 

are often viewed through a purely cognitive lens – for example, the characteristic “Making 

connections”, which when not met, “drives you crazy”, as argued by Student A. Furthermore, the 

affective dimension in the students’ interviews was often inseparable from the cognitive one, 

supporting a non-dualistic approach to affect and cognition in mathematics education (e.g., Roth 

& Radford, 2011); for example, consider the characteristic “Adopting a student perspective”, 

which tends to both students’ cognition and affect. While we may find some discussion of affect-

related characteristics of high-quality undergraduate teaching in prior studies, this dimension is 

often presented as secondary and subordinate to the cognitively-oriented teaching characteristics 

(e.g., Movshovitz-Hadar & Hazzan, 2004). Accordingly, I suggest not only that further empirical 

research into the student perspective is needed, but also that the data analysis of such empirical 

studies would benefit from further development of theoretical frameworks that highlight the 

affective dimension of undergraduate-mathematics teaching and learning. 
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Not Choosing is Also a Choice 

 

Niusha Modabbernia 

Simon Fraser University 

 

Combinatorics is a growing topic in mathematics with widespread applications in a variety of 

fields. It has become increasingly prominent in both K-12 and undergraduate curricula. There is 

a clear need in mathematics education for studies that address cognitive and pedagogical issues 

related to students’ conceptions of combinatorial ideas. I investigate students’ perceptions of the 

option of not choosing while solving counting problems. In this report, as part of a larger study, 

I focus on experiences of one undergraduate student who was interviewed in the larger study. 

The interview was conducted as they solved combinatorial tasks that included the possibility of 

not choosing a particular attribute when enumerating choices. The data analysis highlighted 

detecting choices as one of the factors contributing to students’ success in solving counting 

problems. I suggest an extension of a model of students’ combinatorial thinking that has been 

introduced in mathematics education literature. 

Keywords: combinatorics, counting problems, detecting choices 

Counting problems comprise an essential part of combinatorics and are often used to 

introduce this area of mathematics. Although counting problems are easy to state there is much 

evidence that students struggle with understanding and solving them (e.g., Eizenberg & 

Zaslavsky, 2003; Godino, Batanero, & Roa, 2005, Batanero, Navarro-Pelayo, & Godino, 1997). 

The existence of abundance evidence might be one of the reasons that draw the field’s attention 

to the importance of combinatorics in mathematics curricula (e.g., Lockwood, Wasserman & 

Tillema 2020). As counting problems are currently part of K-12 and undergraduate curricula, 

there is a necessity to study factors that might have affected students’ success. To this end, 

addressing students’ ways of thinking at a level that benefits a deeper understanding of how 

students conceptualize counting problems is significantly essential. Lockwood (2013) 

conceptualized students’ combinatorial thinking by considering students’ ways of thinking about 

counting problems based on three components—formulas/expressions, counting processes, and 

sets of outcomes. In solving a counting problem, errors may come from not correctly detecting 

options/choices which the problem specifies. In fact, detecting all the choices in solving a 

counting problem is one of the factors of students’ success. However, options/choices can be 

presented in different ways. In this study, I narrow the focus to students’ understanding of the 

particular option of not choosing as a choice and how students may consider it in their counting 

activity. 

Theoretical Framework 

Lockwood (2013) presented a theoretical framework that provides a model of students’ 

combinatorial thinking. The focus of this model was on the ways students conceptualize counting 

problems. In fact, this model facilitates a conceptual analysis of students’ thinking in facing 

counting problems and it provides a language to address and describe different aspects of 

students’ activities related to combinatorial enumeration (counting). It has equipped educators 

with ways of elaborating on how students might think in solving counting problems, and it has 

provided a powerful lens for analyzing different facets of students’ counting activity. This 
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framework has three components, formulas/expressions, counting processes, and sets of 

outcomes. Any mathematical expressions that results some numerical values can be considered 

as a formula/expression. While solving a counting problem, a counter may engage in an 

enumeration process or series of processes. The counter either performs some steps or 

procedures or even imagines doing them. Both cases are considered as enumeration processes 

which describe counting processes as a component in this model. Sets of outcomes refer to the 

sets of elements that a counter wants to count. Any collection of objects that the counter tries to 

generate or calculate by a counting process, is considered as a set of outcomes. The relationship 

among the three components of this model is illustrated in Figure 1. 

 
Figure 1: Lockwood's model of students’ combinatorial thinking 

Methods 

In this study, as part of a larger study, I report to an interview with one of the students who 

was involved in the study that focused on students’ perception of choosing. The participant, 

Harry, was an undergraduate student who attended a discrete mathematics course (Discrete 

mathematics Ⅱ). The course focused on counting problems, graph theory, trees, inclusion-

exclusion, generating functions, recurrence relations, and optimization and matching. The 

student participated in an individual semi-structured interview, one hour long. The interview 

instrument consisted of two problems that aimed at probing students’ understanding in how they 

consider the possibility of not choosing and comparing students' understanding of “choosing” to 

“not choosing”. I designed the two problems with the goal of highlighting students’ judgments in 

validating the possibility of not choosing as a choice.  

Problem 1: There are 9 international students and 5 domestic students to fulfill English 

language requirement. International students have to take one of three English courses (ENGL 

100A, ENGL 100B, ENGL 100C). There is no requirement for domestic students to take any of 

these three courses. Taking one of these three courses is an option for them. How many 

possibilities are there for students’ choices. (for example, one possibility is 3 international 

students take ENGL100A, 3 international students take ENGL 100B, 3 international students 

take ENGL 100C and all domestic students take ENGL 100B) 

Problem 2: A group of 8 people had a meeting. Three of them had a presentation in this 

meeting. After their presentations they desperately needed a cup of coffee. The people who did 

not present can choose to have coffee. There were 11 different types of coffee to choose from. 

How many possibilities are there for these people’s choices? Amy wrote the following answer: 
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Do you agree with her? What was she thinking about? Nikki's answer was 11
3
×12

5
. What do 

you think about Nikki's answer? 

The problems were designed such that a possible solution―3
9
×4

5
for Problem 1, and 

11
3
×12

5
 for Problem 2―includes consideration of not choosing a particular attribute. The option 

of not choosing is present in different formations in each problem.  

Results 

Although the participant’s work shows he is familiar with the fundamental principles of 

counting, his solutions indicate he was consistent in not considering the option of not choosing in 

the two problems. Although different ways of presenting this option did not affect his 

consideration of the option of not choosing, it affected his combinatorial thinking.  

Organizing the Data by the Three Components of Lockwood’s Model 

After highlighting noteworthy parts of the participants' responses, I categorized them into the 

three components of Lockwood’s model. I have assigned each highlighted situation to the 

components of Lockwood’s model that have played an important role in making the situation 

significant. Pushing students to initiate their counting activity by one of the three components 

does not necessarily keep the rest of their counting activity in the same component.  

The option of not choosing and formulas/expressions. The two numerical expressions in 

the second problem pushed Harry to start his combinatorial thinking with the 

formulas/expressions component. To be able to evaluate 11
3
×12

5
 as an answer, the extra option 

of not having a coffee needed to be numerically explained. Harry started working on the second 

problem by making a connection between the addition principle and the plus signs in Amy’s 

answer. 

Harry: So, what she has is that there is eleven cubed that’s constant among each of her 

expressions and it looks like she also separated it by case by case basis which you can tell by 

rule of sum from the plus signs. 

Harry perfectly interpreted Amy’s counting thought and precisely made sense of each counting 

step he had defined based on Amy’s expression. His consideration of Nikki’s answer started by 

interpreting 11
3
 correctly and continued as follows: 

Harry: For the five optional people the ones who don’t have to have coffee she gave each of 

them twelve choices instead of eleven for the coffee, so what I believe she did was, we 

know that there are eleven types of coffee, for each person, she added one more choice, 

which is whether they are going to have coffee or not. So, say this is person number one 

here, they have eleven different types of coffee to choose from if they choose coffee, she 

thought of the option where that person does not choose coffee as an option. So, it goes 

from eleven to twelve options. 

He continued by writing out 5 dashes, writing 12 in each of the dashes. He indicated each 12 

refers to the 11+1 options. Although 11
3
×12

5
 brought up the idea of considering the option of not 

choosing as an option, supportive counting processes were needed to convince Harry. I discuss 

Harry’s hesitation in acknowledging the option of not choosing in the following subsection. 

The option of not choosing and counting processes. Although multiplication and addition 

principles which are the two foundations of counting processes presented in Harry’s counting 

activity, detecting the option of not choosing appeared problematic. After Harry explained what 
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might be going on in Nikki’s answer by clarifying that 12 in her answer comes from 11+1, I 

asked him if he agreed with her and he answered as follows: 

Harry: No. then I am also biased because this is [pointing to Amy’s answer] exactly how I 

approached the problem the first time and it’s just the way I think of it when I like splitting up 

the cases deciding by rule of sum and the rule of product to determine the stages, that’s just how 

I think. But then hers logically doesn’t seem fundamentally sound because it seems even though 

she umm. I don’t know! It just doesn’t feel right. 

Although He initially felt it may make sense to consider the option of not choosing as a 

choice, he was not convinced to validate this possibility as a choice. He explicitly mentioned, “it 

just doesn’t feel right”. I suspect that he had not seen/considered this kind of choice in his 

previous counting activity and/or in his routine life. After I asked him to explain why he thinks 

considering the twelfth flavor as “no coffee” is not right, he answered, 

Harry: for twelfth option she decided to have no coffee. I am trying to see if, um, I think the 

thing that might be confusing here is that there is no rule of sum differentiating the cases. 

So, the way I have been approaching problems and the way I have seen the most of the 

answers usually is if there are cases involved there is always the rule of sum that 

separating them. What is giving me confusion here is that we only have a rule of product. 

Yes, she has added an extra option to account for there being no coffee chosen, but 

intuitively it feels wrong to me. If that makes sense. I can’t put words to it but if that 

speaks about my own understanding if I can explain why it is not correct. I feel it is not 

correct, but I cannot give an argument as to why she isn’t right. Because I totally 

understand where she is approaching the problem from. 

Harry could interpret Nikki’s expression, but it seemed he was confused if Nikki’s answer 

was correct. Harry’s discussion points to “met-before” construct introduced by Tall (2004). The 

notion of met-before concerns how prior knowledge and previous experiences affect learning in 

a new context. A "met-before" is a personal mental structure in our brain as a result of 

experiences met before and can act both positively and negatively when a new concept is 

introduced (Tall, 2004; 2008). Harry’s previous experience seems to build a connection between 

the existence of cases in counting problems and the necessity of applying the addition principle 

to solve the problem. This connection is an obstacle for considering any other approach that does 

not attend to the cases. In fact, it seems his met-before experience affects negatively on accepting 

the option of not choosing as a choice. Interestingly, to evaluate Nikki’s answer, he tried to 

overcome this obstacle by justifying that multiplication can be seen as repeated addition, so 

having just multiplication in Nikki’s expression does not necessarily make the answer wrong. 

However, the equality of these two suggested answers (expressions) come from the equality of 

their sets of outcomes (based on proper choices and counting processes), and not a specific 

manipulation that rewrites repeated additions as multiplication. I suggest that not validating the 

possibility of not choosing as a choice with supporting counting processes directed Harry’s 

attention to expressions.  

He began working on the first problem by reading it and underlining some words and phrases 

such as “9 international”, “5 domestic”, “one of three”, “no requirement”, “one of these three 

courses”, and “option”. Although he highlighted the keywords in this problem, his first 

interpretation of the problem was incorrect as follows: 

Harry: So, it is possible for me to just only distribute the nine international students among 

the three courses but do nothing with the five domestic students. 
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In solving a problem, having an intended interpretation of what the problem asks is essential. 

Particularly in counting problems, detecting all the options/choices correctly would be the main 

part of interpreting the problems. Harry’s interpretation of having the possibility of not choosing 

any English course for domestic students made him think he does not need to make them 

involved in his counting activity. The option of not choosing has been missed in his first 

consideration. After he correctly counted all the possible ways for international students’ choices 

and reached 3
9
, I asked him to think about domestic students. Although he initially eliminated 

domestic students from his counting activity, he started thinking about them by making an 

interesting distinction between the two principles. He made the distinction to explain where to 

apply the two principles as follows: 

Harry: What I remember in MACM101 [Discrete mathematics Ⅰ] we learned the shortcut was 

that, one shortcut was when you are doing anything involving “and”, like saying student 

one takes this and student two takes that, is the rule of product, but if you have “or”, 

either student one takes this, or student two takes this, you do the rule of sum. 

His explanation about the two principles points to what Tucker (2002) mentioned, 

“Remember that the addition principle requires disjoint sets of objects and the multiplication 

principle requires that the procedure break into ordered stages and that the composite outcomes 

be distinct” (p. 170). Harry’s statement highlights two correspondences between, 1) “and” and 

the multiplication principle and 2) “or” and the addition principle. His language seems to suggest 

he was looking for keywords in distinguishing the proper operation in his solution. However, he 

went on to articulate why considering different cases would be legitimate as follows: 

Harry: this combination or number of possibilities [pointing to his solution that was 3
9
] will 

stay the same for the international students, regardless whatever the domestic students are 

doing. So, it does not have any effect on the international students at all. So that’s ok if 

we try cases. 

He began to list the cases systematically according to how many domestic students get an 

English course. In addition to the interesting distinction he made between the two principles I 

discussed above, he made the second distinction as follows: 

Harry: My intuition is saying that in this case [only one domestic student takes a course] it is 

still the inside the case and not across the cases and inside the cases is still the rule of 

product, because with one domestic student taking a course really you are adding a tenth 

stage. The international students they have their nine stages of choosing, now you add 

tenth stage and it would be three to the ten, because now there is three more choices, how 

will that domestic student choose out of the three courses. I do the rule of sum across the 

cases, because this is where it is like either you have the situation where no domestic 

students take any course, or one student takes it or two domestic, or three or four. 

When he talked about “cases” above, his language of “inside the case” and “across the cases” 

indicate that he is aware of how to use the addition and multiplication principles. Although he 

made some insightful comments about how he decided to apply the two principles, his language 

suggests some keywords for each principle. It seems not validating the possibility of not 

choosing as a choice makes him consider several cases for domestic students and use the 

addition principle. Harry continued by trying to make Problem 1 fit into a combination with 

repetition model, usually called the “stars and bars” technique. He applied the model to count all 

the possible ways for both international and domestic students identically. It seemed he applied 

one formula for both international and domestic students regardless of the possibility of not 

choosing to take an English course for domestic students. After I asked him what the difference 
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is between international students and domestic students, he read the problem several times and 

ended up crossing his answer. He was ultimately not able to realize the option of not choosing 

can be one option for domestic students and the problem can be solved without considering 

different cases. 

The option of not choosing and sets of outcomes. While Harry initially was not assured 

that the option of not having a coffee in the second problem can be considered as the twelfth 

flavor of coffee, his attempt to consider one possible case was convincing for him. 

 

 

Figure 2: Harry's example of an element of the set of outcomes 

Harry: When I think about it and I break it down this way [pointing to the first three dashes 

in his solution] this is just one case, here I add the other part as well [adding five more 

dashes]. These are the three people that they have to. These are the five people who don’t 

have to. And we say this person have coffee number five, coffee flavor six, coffee flavor 

seven. This is one possible way that everything is distributed. If these two people no 

coffee, it is the same. I believe it is logically valid by adding the twelfth choice. And that 

choice is no coffee. 

Harry’s explanation shows his awareness of the overall conditions of the problem. 

Interestingly, considering one element of the set of outcomes helped him to convince himself 

that the option of not choosing is an option. In fact, the case he examined facilitated his insight 

into picturing the option of not choosing in the setting of the problem to validate this type of 

option. I continued the interview as follows: 

Interviewer: So, you also agree with Nikki? 

Harry: Yeah! 

Interviewer: You agree with both? 

Harry: But I usually approach problems like this [pointing to Amy’s answer] and this is the 

only way I have seen it, I agree with Amy’s answer more. I am much more hundred 

percent about Amy’s but when I break Nikki’s option dawn into one case, I can see that 

should be nothing wrong with adding the twelfth option. 

Interviewer: So, you are not hundred percent agree with Nikki? 

Harry: Yeah! Let’s go with that. I can say, I agree with Amy hundred percent, Nikki I can 

see where her logic coming from but since I cannot fully endorse Nikki’s answer. I 

understand it, I see what she did, I can break it dawn. But I don’t understand the problem 

to the point where I can say confidentially that she is right. So, I go with Amy. 

Although he reached the point to acknowledge the option of not choosing as an option, due to 

lack of supportive counting processes, he could not make himself convinced with Nikki’s 

answer. 

Discussion and Conclusion 

Although detecting the option of not choosing is not a counting process, it definitely affects 

the process of counting. This research confirms rejecting the option of not choosing as an option 
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may cause a detour in students’ paths of solving counting problems by increasing the number of 

processes. In addition, not having it as an option may force counters to go through different 

structures of counting processes. Both scenarios make counting processes become more 

complicated. In addition, while detecting the option of not choosing cannot be considered as any 

combinatorial thought related to the other two components of the model, not detecting it as an 

option may affect both. Indeed, detecting the option of not choosing belongs to a broader aspect 

of students’ combinatorial thinking which I call detecting choices. My data shows by including 

this aspect of students’ combinatorial thinking the model will benefit from a refinement. 

Detecting choices would be a necessity for any counting process. However, while in Lockwood’s 

model detecting choices appears to be part of counting processes, my data brings the conclusion 

that detecting choices is a separate element connected to all the three components in Lockwood’s 

model.  

In solving a counting problem, the numbers of choices that the problem specifies are needed 

to be detected in order to make any enumeration process (counting process) begun. The data 

shows detecting choices is not part of counting processes but it is definitely needed in counting 

processes. Lockwood implicitly considered students’ combinatorial thinking related to choice 

detection as part of counting processes. However, the data demonstrates detecting choices carries 

an important role in students’ combinatorial thinking that makes it deserved to have more 

attention. It appears merging the two important aspects of students’ combinatorial thinking—

detecting choices and counting processes—decreases the facilities this model could have brought 

for educators and teachers in this field. In fact, Lockwood’s model does not equip researchers to 

determine how students might detect choices in their counting activities while their 

combinatorial thinking does not involve in any counting process. This is important as it 

demonstrates a need to refine the framework to include this aspect of students’ combinatorial 

thinking.  

 

 

Figure 3: An extension for Lockwood's model of students’ combinatorial thinking 

The data shows detecting choices tremendously affects the other three components. Hence, 

detecting options/choices not only could be part of students’ combinatorial thinking but also 

could be the core of students’ counting activity. So, I locate the fourth component in the core of 

Lockwood’s model.  
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Math Anxiety: A Case Study on the Individualized Nature of Math Anxiety 

 

 Gabrielle Mynatt Christine Phelps-Gregory 

 Central Michigan University Central Michigan University 

 

This study qualitatively explored the effects of math anxiety (MA) on undergraduate college 

students. Four undergraduate students were selected using the Abbreviated Mathematics Anxiety 

Rating Scale (A-MARS) and then interviewed about their beliefs about MA and the symptoms 

they experience from the anxiety—including the origins of the anxiety and methods with which 

they cope with (or attempt to cope with) the symptoms of MA. Students reported the onset of their 

anxiety occurred around elementary school and reported some common experiences such as 

strong feelings and a physical response. However, participants also showed the individualized 

nature of MA with different effects and coping mechanisms. This has implications for 

undergraduate instructors who want to help math anxious students.  

Keywords: Math Anxiety, Undergraduate Education, Math Education 

MA can lead to lower performance and a tendency to avoid majors that require mathematics 

(Ashcraft, 2002). Thus, it is important to better understand undergraduate students’ MA and how 

to help them cope with it. We present a qualitative study that examined four undergraduate 

students and their beliefs about the origin of their MA and how these feelings have impacted 

their lives both in- and outside of the mathematics classroom. 

Literature Review and Conceptual Framework 

An individual is said to have math anxiety if that person experiences “feeling[s] of tension, 

apprehension, or fear that interferes with math performance” (Ashcraft, 2002, p. 181). There are 

three components to this definition—anxiety, mathematics, and performance. That is, in order to 

be considered math-anxious, an individual must exhibit feelings of anxiety that specifically relate 

to mathematics (whether that be seeing, doing, or being evaluated over mathematics); and these 

feelings of anxiety must somehow affect the individual’s ability to do mathematics. MA is also 

often characterized by decreased performance in mathematics (Lindskog, Winman, & Poom, 

2016) as well as physical symptoms typical with anxiety, such as sweaty palms or even crying 

(Ashcraft, 2002). This study will focus specifically on MA in undergraduate students.  

There is some division within the literature about the differences between test anxiety and 

MA, with some researchers finding support for differences between the two constructs and others 

reporting no such support (Dowker, Sarkar, & Looi, 2016; Kazelskis et al., 2000; Ho et al., 

2000). For this study, we follow Ho and colleagues (2000) in assuming that MA and subject-

specific test anxiety are separate constructs and can therefore be examined individually. 

 

Origins of MA 

The origins of MA have not been a focus of much empirical research, though researchers 

agree that there is no single cause for MA (Ashcraft, 2002). Possible contributors to MA have 

been suggested to include genetics, parent feelings about mathematics, peers’/siblings’ feelings 

about mathematics, teacher enthusiasm, classroom instruction, school tracking, mathematics 

experiences, mathematics ability, and other anxieties such as test anxiety (Ashcraft, 2002; Quan-

Lorey, 2017; Wheeler & Montgomery, 2009; Sloan, 2010; Stoehr, 2017). Quan-Lorey (2017) 
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writes, “mathematics anxiety is a complex phenomenon that is usually not caused by an 

individual factor” (p. 20). 

One qualitative study examined three preservice teachers and found that each experienced 

MA differently, and that the origins of each participant’s anxiety were different (Stoehr, 2017). 

One participant developed MA as a result of being separated from the advanced students in 

elementary school. Another participant always operated with the understanding that she was 

simply not a math person. The third participant’s anxiety seemed to stem from her perception of 

a lack of a practical need for the subject. The case study presented here builds on this work, 

further exploring how undergraduate students experience MA differently. 

 

Performance Effects of MA 

MA is important to understand because it has been found to increase difficulty in student 

learning and decrease understanding (Wheeler & Montgomery, 2009). Students that experience 

high MA also “tend to avoid college majors and career paths that depend heavily on math or 

quantitative skills” (Ashcraft, 2002, p. 182). Students with high MA may avoid taking 

mathematics or quantitative reasoning courses in general. The literature suggests this could also 

contribute to lower mathematics performance skills. Furthermore, this could lead to less 

participation in class and lower grades (Ashcraft, 2002; Lindskog, Winman, Poom, 2016).  

 

Classroom Practice Remedies 

Researchers have suggested multiple ways to help remedy MA or help students cope with 

MA. Some suggested remedies for MA include teaching students to use cognitive skills to 

control their anxiety response (Lyons & Beilock, 2012), implementing math methods courses for 

preservice teachers (Sloan, 2010), and teaching ‘why’ a problem solving approach works rather 

than memorizing a formula (Wheeler & Montgomery, 2009). Other suggestions for remedies that 

help to control emotional responses include creative writing and a change in teaching methods. 

Geist (2010) suggests that a change to the teaching methods used in elementary classrooms could 

help to prevent the onset of MA altogether. Several researchers have found that asking students 

to write about their feelings can help lower MA and decrease the performance gap between low 

and high math anxious students (Maloney & Beilock, 2012; Park, Ramirez, & Beilock, 2014). 

Overall, researchers suggest that a focus on helping students decrease their anxiety is a better 

solution than creating new courses to simplify, or water-down, the mathematics (Lyons & 

Beilock, 2012). 

 

Holes in the Literature and Project Rationale 

A majority of studies on MA have used a quantitative approach, including multiple that use 

anxiety rating scales (Ashcraft, 2002; Cates & Rhymer, 2003; Goolsby, et al., 1988; Lindskog, 

Winman, & Poom, 2016; Lyons & Beilock, 2012, Sloan, 2010). Less research has used a 

qualitative approach to examine MA, though some recent research has used participant 

interviews, written participant samples, focus-group interviews, and the creation of mathematical 

timelines (Sloan, 2010; Stoehr, 2017). However, more research using a qualitative approach is 

needed to better understand how MA develops, how it differs from one individual to the next, 

and how it can be remedied within the classroom. The goal for this project was to qualitatively 

explore the symptoms, origins, and effects of MA on highly math anxious undergraduates 

enrolled in college mathematics, as well as the student’s coping mechanisms. The research 

questions were: 
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1. How do math-anxious undergraduates experience symptoms of math anxiety? 

2. What do math-anxious undergraduates view as the source(s) of their MA? 

3. Do math-anxious undergraduates believe math anxiety has affected their life and 

schooling? If so, how? 

4. Do math-anxious undergraduates have ways they cope with their math anxiety? If so, 

how and are the methods effective? 

 

Method 

Participants were chosen from two different college mathematics courses. The first of these 

courses, which we will call Math Modeling, is not algebra-based and is designed for students that 

are not in business or STEM programs; it focusses on modeling mathematics found in everyday 

life activities, such as financial management. The second course is a traditional, algebra-based 

pre-calculus course and is typically taken by students that are interested in business or STEM-

related degrees as a prerequisite for either calculus or business-calculus. 

 

Participants 

While the analysis methods of this study were qualitative in nature, a more quantitative 

measure was used to locate participants that experience symptoms of MA. For this, a survey was 

used—the Abbreviated Mathematics Anxiety Rating Scale (A-MARS)— which is a 25-point 

likert-scale (Alexander & Martray, 1989). A-MARS is scored on a 1 – 5 scale with 1 indicating 

little to no MA and 5 indicating high MA. Students in six mathematics classes were invited to 

take the A-MARS survey and 121 did so. Four students with some of the highest scores on the 

survey, all first-year students, were invited to participate in interviews. These participants were 

not told they ranked the among the highest levels of MA for the set of surveys returned but were 

told that their scores seemed to indicate that they experienced MA. 

 

Data Collection and Analysis Procedures 

Semi-structured interviews were used to collect qualitative data from participants. 

Participants were asked about their feelings regarding mathematics, why they believe they have 

those feelings, if they believed they were anxious about math, and what processes (if any) help 

them to cope with their math anxiety. Participants were also asked about how MA has affected 

their lives, and specifically their college experiences (if at all).  These interviews were audio 

recorded, transcribed, and then analyzed using an open coding technique to develop codes 

inductively from the data. Coding led to creating profiles for each participant, with the goal of 

comparing and contrasting participants to address the research questions. 

  

Results 

Reported below are the results to each of the above research questions. For each research 

question, there were commonalities among the participants as well as a few stark differences.  

 

Symptoms 

The participants in this study had a wide range of reactions to their MA. All four participants 

expressed feelings of frustration and stress. However, each participant had other strong reactions 

when it came to discussing their anxiety. For example, Jacob frequently used the term “freak 

out” when talking about his feelings during mathematics class. When talking about his 

experience in high school, Jacob commented,  
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…I [would] literally just freak out. It was really bad for me. … I felt dumb. I really was 

just like ‘oh my freak. Why can I not get this?’ I used to freak out really badly.  

 

For Jacob, these “freak out” moments would sometimes get so bad, that his friends would ask, 

“are you okay? You look like you’re going to burst a hole through the wall or something”. This 

indicates a level of stress that is not only felt but shown. Other participants did not express quite 

this level of frustration or visible “freaking out”. However, others did express a similar 

discomfort. When asked about how she typically feels in a mathematics classroom, Karly 

responded, “Anxious. Like really ready to go. Even if I am understanding, it’s still not a 

comfortable feeling. I just want to leave”. Participants also reported a physical response to MA. 

Both Karly and Laura reported that they cry when doing mathematics. Karly cried during the 

interview and expressed that simply the act of talking about her anxious feelings toward 

mathematics caused negative emotions. According to her, crying when thinking about or 

participating in mathematics is not something that was new to her. In fact, she indicated that she 

cries a lot when it comes to mathematics. Laura also said that she feels sick to her stomach when 

it comes to high stakes assignments such as tests in the mathematics classroom. Both Jacob and 

Macy talked about sweating as a physical reaction to the anxiety. 

Despite the strong feelings described by each of the participants, Laura was the only 

participant that indicated her MA was significantly worse with mathematics tests than with 

mathematics in general. Each of the participants agreed that their MA was elevated during 

testing situations, but Laura was the only participant to indicate that her anxiety elevates with 

math tests no matter how comfortable she is feeling with the material.  

 

Origins 

All four participants indicated that the onset of their anxiety symptoms either began in 

elementary school or that they had MA feelings for as long as they could remember.  Macy 

recalled doing mathematics homework in elementary school with her father, saying:  

 

…there was one story problem I remember. I had my math book, and I had my story 

problem right there and I remember I cried. We did it so many times, and I still couldn’t 

get it right. He’s a good guy because he was so patient, but I was crying. I just remember 

saying to him, ‘I’m going to fail at life’. Fifth grade. I remember distinctly being so 

distraught and upset because, I just couldn’t get it right. 

 

Peer humiliation was a strong factor in the development of Jacob’s, Macy’s, and Laura’s 

anxieties. Macy recalled timed multiplication tests that were checked by peers and how she was 

afraid of failing in front of peers. Jacob recounted experiences in elementary school of his 

classmates being called to the board to work out a problem for the class. He explained how he 

refused to go to the board out of fear of embarrassing himself in front of his classmates because 

he did not understand the material as quickly as his peers. Laura’s anxiety onset also seemed to 

stem from this peer humiliation. When asked why she thought she had these feelings about 

mathematics, she answered, 
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I’ve always struggled with it and been slower than everyone else and everyone else kind 

of made me feel bad about myself because I wasn’t as fast as them or I didn’t learn as fast 

as they did. 

 

While peer humiliation was a factor in the development of MA for multiple participants, Laura 

was the only participant that indicated peer humiliation was still a strong component of her 

anxiety toward mathematics. When asked why she had chosen not to utilize a mathematics 

resource center on campus, she explained that she would not be comfortable going because she 

would risk other people “judging, or staring, or watching”.  

On the other hand, Karly did not express these feelings at all. In fact, she does not give any 

reason for her anxiety. Instead, she simply states that sometime around second grade she realized 

that mathematics was not her strong suit and her anxiety continued from there. While Karly feels 

she cannot relate to her peers because she believes mathematics comes more naturally to them, 

she gave no indication that her anxiety is rooted in this belief. 

Participants talked about parents and other role models in the interview. Both Jacob and 

Karly indicated that neither of their parents exhibited strong mathematics skills, though Jacob 

talked about a mentor of his that loves mathematics and encourages Jacob. Macy and Laura both 

had one parent they perceived as good at math and another parent that they related to because of 

the parent’s lack of desire to do mathematics. However, none of the participants attributed their 

MA to their role models. Each of the participants argued that they formed their math anxieties on 

their own.  

 

Effect 

Participants reported mixed feelings about how their MA has affected their lives and their 

college experience. Macy, Karly, and Laura all indicated that their MA had not affected their 

choice of college major but had affected either their choice of math class or their experience in 

their college math class. For example, Macy reported that her MA has negatively affected her 

college experience by making the entire experience more stressful. Laura spent some time 

talking about how her MA has caused her to not want to attend school and how she avoids 

mathematics as much as possible. Both Karly and Laura reported taking the Math Modeling 

course because of their MA. Karly had previously enrolled in a different college math course and 

explained:  

 

I was there and [the professor] was just talking and showing something on the board and I 

thought ‘I can’t stay here’. I’m not understanding. I’ve been here all semester long and 

haven’t been understanding. I even went to the math center and I’m still not 

understanding, so, I can’t stay here. …and I never came back for the semester. 

 

Karly said the experience she described above was the reason she chose to take the Math 

Modeling course. Her statement not only shows how her MA played a role in her course 

decision, but also showcases how Karly’s MA has led to her avoiding mathematics where 

possible. Laura showed even stronger avoidance tendencies than Karly. When asked about how 

she reacts to her MA, Laura responded, “if I get frustrated, then I just completely shut down and 

I don’t do it. I just give up”. 

In contrast, Jacob claimed his MA was a factor in his decision to major in social work. In 

fact, he claimed he was upset to learn he needed to take a mathematics course for competency 
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credit. He said, “if someone had told me that I had to take a math class, I probably would have 

reconsidered.” For Jacob, the MA feelings are strong enough that they have influenced important 

decisions in his life.  

 

Coping Mechanisms 

The most prominent coping mechanism among the four participants was seeking outside help 

in some form. Macy talked at length about calling her father for assistance when she was 

struggling. Laura and Jacob indicated that contacting friends or classmates for assistance helped 

them to relax their anxieties. Jacob and Karly each indicated that the mathematics resource 

center on campus was a useful tool.  

Another interesting coping mechanism that was brought up by Laura and Jacob was listening 

to music while working on mathematics. For both participants having a quiet environment with 

music in the background was one way they were able to cope with MA while working to 

complete mathematics homework assignments. Interestingly, these were the same two 

participants that indicated they would reach out to friends for help when they were stuck on a 

homework problem. However, both argue that they cope best with the anxiety when they are 

alone to work on their homework. 

Karly was the most unique in this study because she indicated that aside from visiting the 

mathematics resource center once in a while, she does not have any coping mechanisms for her 

MA. She said that the most she has been able to cope with the anxiety is by trying to detach 

herself from the mathematics by intentionally not thinking about the fact that she is doing 

mathematics when she is in class. The way she described this process was: 

 

I’m present, but I’m not really thinking too hard about it. Like, Yeah, I’m doing math but  

I’m not like really caring that I’m doing it. But if I think, ‘oh yeah I’m doing math. This 

is annoying me’, then I will start to have those feelings. But other than that, if I just 

detach myself from it, then I don’t really [have the anxiety] 

 

Aside from the detachment she described above, Karly stated she has no other way of coping 

with her MA. 

 

Discussion 

The results of this study show the individualized nature of MA, which is not developed nor 

experienced in the same way by different individuals. While many of the participants showed 

similar characteristics, no two participants in this study were similar enough to formulate a 

pattern for individuals experiencing MA. The most prominent similarity, the origin timeline for 

the participants, is the only similarity among all four participants beyond general feelings of 

stress and frustration that can be expected with any form of anxiety.  

Researchers have hypothesized multiple origins for MA (Ashcraft, 2002; Quan-Lorey, 2017; 

Wheeler & Montgomery, 2009; Sloan, 2010; Stoehr, 2017). However, the participants 

interviewed for this study showed no evidence of most of these hypothesized origins, such as 

genetics or role models. The only supported hypotheses were previous math experiences (e.g. 

timed tests) and participants’ perception of their abilities in mathematics.  

 

Implications 
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The current study provides a lens through which to view MA. Rather than looking at MA as a 

whole, this study allows researchers and educators to begin to explore how MA affects students 

on an individualized basis. Hopefully, seeing how students describe their MA will help educators 

recognize signs of MA and have better insight into the experiences of math-anxious students. For 

example, instructors might underestimate how intense the feelings and physical reactions of 

students experiencing MA can be (as shown by the results of this study). This study also shows 

how students are coping with their anxiety, including the importance of support from teachers, 

mathematics resource centers, and family and friends. Undergraduate instructors have an 

important role to play in providing coping mechanisms for students. Finally, this study again 

shows that students with MA may avoid majors or classes that are highly mathematics based. 

Undergraduate advisors may need to pay attention to students’ MA, particularly for those 

students who might leave their programs due to the mathematics requirements. This study opens 

the door for future research (an example of which is described below) to further explore MA and 

how it is experienced at the undergraduate level.  

 

Future Research 

The current study suggests individuals experience the effects of MA differently. However, 

the current study is narrow in scope and only focuses on four individuals. A larger study is 

currently being developed to dig deeper into three aspects of MA—the origins of MA, the effects 

MA has at the collegiate level, and coping mechanisms that may help to alleviate the symptoms 

associated with MA at the undergraduate level. 

Other future work could examine how instructors could incorporate coping mechanisms such 

as support from family and friends into their classes. It would be interesting to examine how 

encouraging students to form cohorts or other networks for support in college mathematics might 

affect MA in the classroom. Music might also be an interesting coping mechanism to examine. 

Future work could examine detachment, as experienced by Karly, in greater detail. 

 

Conclusion 

The results of this study indicate a need for a more individualized approach to the study of 

MA. Understanding MA at an individual level can help to shape the way mathematics is taught 

and how MA is dealt with in the classroom. By creating a more complete picture of MA, 

educators and researchers will be better equipped to create tools for prevention and intervention. 
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A Preservice Teacher’s Experience of Mathematical Research 
 

Jeffrey Pair 
California State University Long Beach 

As part of a summer research project, an undergraduate named Anabella (pseudonym) and I 
(author) collaborated in efforts to prove an unsolved conjecture from the field of graph theory. 
Anabella is a Hispanic mother who one day desires to be an elementary or middle school 
teacher. The researcher collected and analyzed extensive data in order to understand what 
Anabella learned about the nature of mathematics through the research experience as well as 
how she perceived this new knowledge is relevant to her future as a teacher of mathematics. 
Anabella learned that her own mathematical ideas are valuable and reflected that it will be 
important to entertain and consider (rather than dismiss) the ideas of her future mathematics 
students. She also gained a new appreciation of the importance of mathematical communication. 

Keywords: Nature of Mathematics, Mathematical Research, Preservice Teachers, Beliefs and 
Conceptions 

Scholars in mathematics education have found that elementary and middle school teachers 
often have naïve views of the nature of mathematics (Pair, 2017; Thompson, 1992; Watson, 
2019). It is important for teachers in particular to have informed views of the nature of 
mathematics so that they may support their own students in developing informed rather than 
naïve conceptions of the nature of mathematics. The university, with its role in teacher 
development, plays a substantial role in providing opportunities for future teachers to enhance 
their perspectives of the nature of mathematics.  

This study explores the opportunities afforded for a preservice elementary/middle school 
teacher to learn about the nature of mathematics through research mathematics—in this case, 
collaborating to prove an unsolved conjecture from the field of graph theory. Anabella 
(pseudonym) was a student in a content course for preservice elementary and middle school 
teachers that the author was teaching at a large public university in Southern California. Anabella 
stood out in the class for her willingness to share her solutions and engage with mathematics. On 
the first day of class she was drawing complete graphs to solve the handshake problem. Anabella 
also expressed interest in the discipline of mathematics after learning that there were still 
unsolved mathematics problems. The author wrote an application to fund Anabella with a student 
research assistantship and obtained approval from the university’s institutional review board to 
collect data during the project in order to understand what Anabella learned about the nature of 
mathematics and its relevance to her future teaching through the research.  

Literature Review 
While many mathematics education scholars have argued that misconception of the nature of 

mathematics is a major problem in mathematics education (Boaler, 2016; Hersh, 1997; White-
Fredette 2010), little research has been conducted that explicitly addresses how to nurture 
positive conceptions of the nature of mathematics. As Hudson and colleagues (2020) recently 
noted, “There is still much to learn about what students and teachers think about the nature of 
mathematics and how these views impact their work” (p. 55). There are some recent research 
articles and dissertations that address the conceptions of mathematics held by both preservice 
teachers and undergraduate mathematics majors. Kean (2012) developed a survey instrument 
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designed to form a profile of teacher’s conceptions of the nature of mathematics. However, she 
concluded that her first attempt needed much improvement; and that developing a good survey 
instrument would be more difficult than anticipated. To date, Kean’s survey has not been used in 
subsequent research. 

Pair (2017) argued that in order to conduct meaningful research into students’ views of the 
nature of mathematics, the field would need to develop a list of goals for students’ 
understandings of the nature of mathematics. Through an extensive data-driven project that 
included 1) interviews with mathematicians, educators, and mathematics majors; 2) collaboration 
with a pure mathematician in conducting mathematical research; and 3) experience co-teaching 
an inquiry-based transition-to-proof course with a mathematics educator, Pair developed the 
IDEA framework for the nature of mathematics. The framework drew inspiration from 
humanistic philosophy of mathematics (e.g. Ernest, 1991; Hersh, 1997; Lakatos, 1976) and 
emphasized the human discipline of mathematics and its dynamic, rather than its static nature. 
This framework will be discussed further in the theoretical framework section.  

In studying the nature of mathematics conceptions of preservice elementary teachers, Watson 
(2019) found that many possessed a view of mathematics as “a static-unified body of 
knowledge” (p. 148). In interviews with some of these preservice teachers, she found that those 
who experienced mathematics learning through memorization and practice tended to view 
mathematics as a bag of tricks rather than a dynamic problem-solving discipline. However, there 
were some cases in which the preservice teachers from Watson’s study experienced mathematics 
creatively. This led them to see mathematics as more of a creative, problem-solving discipline.  

 
Tabby’s experience with one mathematics task and a teacher who valued her ideas in the 
classroom allowed Tabby to experience mathematics as a problem-driven dynamic 
discipline. Maggie, Tatum, Margot, and Millie also recounted experiences with teachers 
who allowed them to view mathematics as more than a bag of tools and instead as a 
discipline where creation and freedom to create could be valued. (p. 171) 
 
Watson’s findings align with those of Thompson (1992), who three decades earlier noted that 

that when a teacher views mathematics as “a discipline characterized by accurate results and 
infallible procedures” this “can lead to instruction that places undue emphasis on the 
manipulation of symbols whose meanings are rarely addressed” (p. 127). Watson’s (2019) study 
suggests that providing students with opportunities for creativity through problem solving can 
lead to a more productive view and positive attitude towards mathematics. 

While there is some older literature relevant that addresses the nature of mathematics 
(Dossey 1992; Lampert, 1990; Thompson, 1992), the topic still has yet to be systematically 
studied by mathematics education researchers (Hudson et al. 2020). While there are researchers 
who have recently begun to refocus on the nature of mathematics in their research, research 
findings are tentative. How do we best support students and future teachers in developing 
informed and healthy conceptions of the nature of mathematics? The object of the current study 
is to explore how an undergraduate research experience may impact a future teachers’ 
understanding of the nature of mathematics. 

Theoretical Framework 
The foundational framework that guided this research was developed is the IDEA 

Framework for the Nature of Pure Mathematics (Pair 2017). The IDEA acronym refers to four 
characteristics of the nature of mathematics that are important for students to understand so that 
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they are supported in developing a humanistic conception of the nature of mathematics. These 
characteristics are now described with a brief description. First, mathematical ideas are part of 
both our human cultural and individual personal Identity; we inherit mathematical ideas from 
past mathematicians and cultures, and form our own personal mathematical ideas and techniques 
when engaged in doing mathematics. Second, mathematical knowledge is Dynamic and forever 
in the making; the history of mathematics is a story of creation and revision of ideas. 
Furthermore, new mathematical results are published every day. Thirdly, pure mathematics is an 
emotional and creative Exploration of ideas; students should have the opportunity to explore 
such ideas for their own sake in ways similar to that of mathematicians and understand that such 
exploration is essential to mathematics. Fourthly, mathematical Argumentation is required for 
the social validation of mathematical knowledge; mathematicians validate and knowledge claims 
through verification and proof, leading to robust knowledge. The characteristics in this list may 
serve as learning outcomes for instructors wishing to promote a humanistic view of mathematics 
and as a conceptual framework to conduct research on students’ views of the nature of 
mathematics. As these characteristics were inspired by my own experience conducting research 
mathematics, these were characteristics of mathematics that I anticipated Anabella would learn 
about in research. 

Research Design and Methodology 
Anabella is a Hispanic mother and was a traditional undergraduate senior at the time of the 

study. Anabella was compensated for participating in a summer assistantship; and one of her 
responsibilities was to keep a research journal in which she wrote about her experience and the 
new things she was learning about the nature of mathematics and how this new knowledge was 
relevant to her future as a teacher of mathematics. This journal was part of the data collected for 
the study. Additionally, every meeting was audio-recorded (with Anabella’s permission as part 
of the study) in order to capture Anabella’s experience so I could identify meaningful moments 
that contributed to her evolving conceptions of mathematics. The research experience lasted 2 
months; and I collected approximately 60 hours of audio recordings of our meetings, and 
approximately 70 pages of Anabella’s mathematical work and reflections in her journals. Other 
sources of data include photographs of our mathematical work and my mathematical notebooks 
in which I worked on the conjecture and took notes of Anabella’s growth and expanding 
knowledge of the nature of mathematics. The goal in collecting so much data was to be able to 
later summarize the evolution of Anabella’s conception of the nature of mathematics and 
describe in detail, through stories, the experiences that had the most impact on Anabella’s 
growing understanding of the nature of mathematics and uncover how Anabella perceived the 
research experience was relevant to her future as a teacher. 

After transcribing the data, I use qualitative approaches such as open coding and sorting in 
order to find the recurring themes in her reflections (Patton, 2015). The goal was to be able to 
paint a picture of the experiences Anabella had that led to transformations in her understanding 
of the nature of mathematics and also describe how Anabella believed those experiences and new 
understandings are relevant to her as a future teacher. All sources of data are brought together to 
tell stories about Anabella’s experience and how that experience led to a change in her 
understanding of the nature of mathematics and its teaching and learning.  

Results 
I here describe the early stages of the research experience in detail so the reader can get an 

idea of the nature and scope of the mathematical research involved. After providing this 
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background, I then provide a summary of the remainder of the experience and some of 
Anabella’s takeaways from the research.  

To begin the research, I shared with Anabella a paper from a mathematics journal which 
discussed our open problem—what is the chromatic number of graphs with girth 5 and no odd 
holes of length greater than 5? Anabella had several questions about the terminology and 
symbology of the paper, and on the first official day of our research collaboration, we discussed 
mathematical concepts such as girth, chromatic number, clique number, complete graph, cycle, 
chord, and hole. I asked Anabella to conjecture what was the relationship between the clique 
number and the chromatic number; and she conjectured that they were the same. We examined 
several graphs for which it was true that the chromatic number equaled the clique number, but 
ultimately found some examples for which this was not true. I took this as an opportunity to 
explain that it would be common for us to make and revise conjectures: 
 

So this is, I think, the first lesson we have had since we started. You are going to make 
conjectures that you are going to think are true; and you are going to find out they are not 
true, pretty quickly. It happens all the time [in mathematics] actually. I think that is 
important.   
 
As we continued to think about the relationship between the clique number and the chromatic 

number, we discussed the journal article, which laid out the special conditions for which the 
chromatic number would be one more than the clique number. As we did this, Anabella reflected 
on how there are always new mathematical questions one can pursue. “This can go on forever 
and ever and ever,” she said. Immediately, she got a new idea, a process of constructing new 
graphs from complete graphs which she described as “working backwards.” Anabella took a 
complete graph, removed the “outside cycle,” added vertices equal in number to the outside 
cycle, then connected the remaining vertices. See Figure 1 for some images of the process 
conducted on a few graphs. The Peterson graph is created through this process; and I believe 
Anabella invented the process based on her observations of the structure of the Peterson graph.  

 
Figure 1. Anabella’s Invented Process of Creating New Graphs from Complete Graphs 
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For the rest of the meeting, we worked with Anabella’s process, creating new graphs from 
complete graphs, finding the chromatic number, and thinking about how many vertices and 
edges the original and new graphs would possess. I had never read about this kind of process in 
any graph theory text, and I was not sure if other mathematicians had done it before; I shared this 
with Anabella. She was excited at the prospect of exploring mathematics in a way that others had 
not. At the end of our first session she wrote,  

 
I am not fully convinced that no one else in the entire world, in its history, has ever came 
up with what we did today. However, if this is the case that only a few other people have 
ever done so, I feel a sense of great accomplishment because now I can say that I am one 
of those few. I have come up with this all on my own and it is only my first official day 
of work. I can’t wait for what I will achieve tomorrow. Even if my biggest achievement is 
only in my head (or in this case, my notes). […] I have also begun to see the world (in the 
area of mathematics) as infinite. Just today, both Dr. Pair and I had tons of questions on 
each new thought/discovery we made. This is pretty exciting because I really enjoy being 
able to think “outside the box” and ask questions that would otherwise never even be 
considered taking a second look at. The sense of knowing things in general is fun to me 
and from today, I know it is also infinite. This is unlike any other subject because, let’s 
say, with English or history, there are only so many things to know/learn.  
 
On this first day, I believe that Anabella experienced the creative side of mathematics and 

learned more about its dynamic and infinite nature. She recognized that mathematical activity 
has no end, as there are always more mathematical questions one can ask and pursue. She 
enjoyed “thinking outside the box” which I have found students tend to associate with their first 
experiences of mathematical research (Pair & Calva, 2020).  

On the second day of the research, Anabella, based on her own internet research, had many 
questions about concepts such as planarity and girth. The conjecture we were working on 
concerns the chromatic number of graphs with girth 5 and no odd holes of length greater than 5; 
Anabella created the name “high five class” for the set of such graphs. The properties of graphs 
in this class are generalized from the Peterson graph, and Anabella and I spent a substantial 
amount of time discussing the cycles of the Peterson graph in detail. We then proved an 
important (but simple) lemma for the high five class, that no graph in the class has a 7 cycle. We 
then discussed partitioning a graph in terms of levels, or distance from some arbitrary vertex. We 
took many graphs that we had already drawn and partitioned them into levels, also observing 
how the levelling process allowed us to systematically color the vertices of the graphs. We went 
through proof that each level is bipartite, and we also went through a proof that for any graph in 
the class with two levels, the chromatic number is 3. We accomplished a lot on Day 2, and after 
the day was over, Anabella wrote:  
 

My head hurts. I just crammed this new info into my brain in just a few hours. But I think 
we made more accomplishments today. For example, I helped Dr. Pair figure out that 
subgraphs in level 3 cannot connect. […] I learned about levelling and I was pretty fast at 
figuring those out. I learned that level 1 is always independent for any high-5 graph. The 
most important thing I think isn’t understanding the new vocab, but understanding the 
concepts. I can always rename them like Dr. Pair lets me do. It is only my 2nd day with 
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Dr. Pair, but already have come to understand his dilemma, why he is stuck and cannot 
solve the problem. Still, we got many steps closer to solving it.  

 
In this reflection, Anabella realizes what is important are the mathematical concepts, the 

ideas, rather than the vocabulary and the name of the concept. As she says, we can rename these. 
She often referred to vertices as “bubbles.” This is an important notion for teachers to 
understand—the name we give to mathematical concepts is not as important as understanding the 
concepts themselves. It is also enables one to stamp their own identity into mathematics as one 
chooses how to name mathematical objects.   

On the beginning of the third day, Anabella took a lead in suggesting what we should work 
on in approaching the conjecture. She said, “I was thinking what if we focused on like the 
options, like focus on level 2. Because we know level 1 always has to be a color, and level 3 can 
alternate between two colors.” We spent most of the rest of the day imagining we had some even 
cycles in level 3, then looking at how the parents of those cycles were connected in level 2. Near 
the end of the session, I asked Anabella if she saw any similarities between the type of 
mathematics we were working on and what she experienced in school. At first, she said no “not 
at all.” But then a few minutes later, reflecting on our thinking process during the day, she said:  

 
Anabella: So it's kind of like the overall idea. The bigger idea connects.  
 
Interviewer: There is a bigger idea that connects to the school somehow?  
 
Anabella: Yeah. It's like. It's kinda like those Common Core, you read those Common Core. 

Have you seen the video where they talk like, they kinda say that the Common Core 
sucks? And they want to get rid of it. It just makes it hard for kids? But it makes sense 
why it would be a good thing; because if kids can do this, this way, then they can do 
anything else.  

 
Here Anabella reflected on how if we can engage children in the high-level mathematical 

processes similar to those we engaged in during research, for instance problem solving tasks like 
those promoted by the Common Core, then the students will have the capability to do the lower-
level mathematical tasks expected of children in traditional classrooms.  

On the fourth day of our collaboration we began by discussing how different 5 cycles can be 
connected in our graph class; and then we began writing out a proof of our progress thus far. I 
was writing the proof in what I understood to be the standard format as conventional for 
mathematicians. But Anabella was not familiar with the conventions of proof writing. She had to 
ask several clarifying questions to understand the language. Throughout this process Anabella 
contributed her thoughts on how we should word the proof. At the end of the day, Anabella 
wrote in her journal:  

 
Unlike in school there is no right or wrong answer yet. Our math research is 100% based 
on our knowledge, so we may come up with conjectures that are not true. Human error is 
our only flaw. This is normal, but it is the reason we may take longer to solve problems.  
 
Through the next few weeks, we had a breakthrough in our work, finding a proof that for 

graphs in our class with three levels or less, the chromatic number is always three. Yet it took us 
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many days to verify this proof. Anabella was convinced our argument was correct, and yet I 
needed to mend all the holes that I knew existed in the argument. Anabella learned a lot about 
the social validation of mathematical knowledge and mathematical communication through this 
process and throughout the research experience.  

As the culmination of our work together, Anabella presented her work twice, both at a local 
mathematics conference as well as at a student research competition. At those events, Anabella 
described her big takeaways from the project. She was proud of all the different graphs that she 
created, inspired by such famous graphs as the Peterson graph and the Grötzsch graph. Anabella 
said that she learned that “my ideas are important.” She spoke about how she was free to explore 
her own ideas, and how I (as her research instructor) always took them seriously and considered 
them. She recognized that as a future teacher, it would be important to “Let mathematics students 
speak and be heard!” Recognizing how important her own ideas contributed to the research 
process, she realized that this should carry over to her teaching, as she would need to recognize 
that her students’ ideas were important and let them express and explore their ideas in the 
classroom. She also reflected that “communication is key, but the key to communication is 
knowledge.” She learned about the importance of precise communication of mathematical ideas 
and the foundational mathematical knowledge necessary to engage in such communication.  

Beyond the current study, I have more evidence of what Anabella learned through another 
study (Pair & Calva, 2020). In that study, students in my transition-to-proof course worked on 
either the Twin Primes conjecture or the Collatz conjecture, documenting their reflections on the 
process. Anabella, as part of her pursuit of a supplementary authorization to teach middle school 
mathematics, was a student in that course. Her reflections showed a sophistication beyond many 
of the mathematics majors in the course and she was the only student that demonstrated an 
understanding of the importance of the social validation of mathematical knowledge. Anabella 
wrote,  

A mathematical proof is a consensual, regarded answer to a mathematical problem. 
Ideally, it should have no errors (holes) and must convince other mathematicians that it is 
correct and true for its purpose. [...] If you have a conjecture, the only way that you can 
safely be sure that it is true, is by presenting a valid mathematical proof. A proof has to 
be well thought out and tested before being accepted.  
At the end of the semester she identified mathematical research as her own and expressed a 

desire to keep researching: “Although this class has finished, my research has not. I will continue 
it and the best part is that I will do so at my own pace—wherever I feel like it!” 

Conclusion 
I presented the results in a story format to paint a picture of Anabella’s research experience, 

capture what I as the researcher aimed to teach Anabella about the nature of mathematics, and to 
capture her impressions of mathematical research and what she learned about mathematics and 
mathematics teaching through the process. Anabella first displayed her skill and interest in 
mathematics in a content course for preservice elementary and middle school teachers. The 
current study may be seen as an existence proof that some preservice elementary/middle school 
teachers are capable of meaningful engagement in research mathematics—and that engaging in 
research can be a powerful learning experience that can lead to the opportunity to develop their 
own mathematical identity. Anabella learned about the importance of her own ideas as starting 
places for mathematical exploration and reflected that it would be valuable for her future 
students to have similar opportunities. Anabella experienced mathematical communication in a 
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way that also positions her to be a strong mathematics teacher, willing to engage in mathematical 
discourse with her future students.  
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Numerous calculus concepts rely on the ability to conceive of and represent distances in the 

Cartesian plane. Yet, research has found that undergraduate students, even those who have 

studied calculus, may not readily do so (Parr, 2020). This study reports on findings from the 

development of a hypothetical learning trajectory aimed at supporting students in representing 

distance in the Cartesian plane. We hypothesized that this skill would require (a) the ability to 

represent a distance on a number line as a difference and (b) drawing on the Cartesian 

connection to represent a horizontal or vertical distance in terms of x and in terms of y. We 

analyze the types of reasoning used by a Calculus I student while working on these tasks, as well 

as obstacles she faced relative to these two target understandings.  

Keywords: Calculus, Graphical Representations, Distance, Hypothetical Learning Trajectory 

Consider the following task. A generic point (x, y) is indicated on a graph of 𝑦 = √𝑥 − 1. A 

horizontal segment is drawn from this point to the line 𝑥 = 2. Represent the length of the 

segment (a) in terms of x and (b) in terms of y.  

 
Figure 1. Distance between two curves task. 

The skill reflected in this task is the ability to represent distances in the Cartesian plane in terms 

of input and output values of a graphed function. This skill is crucial in Calculus; it is used when 

creating integrals that represent areas bounded by curves and volumes of rotation, and also for 

representing a difference quotient for a function in the definition of the derivative. This skill 

relies on conceptualizing a point’s coordinates (x, y) as describing the horizontal and vertical 

(signed) distances between the point and the origin. Yet, research has shown that students may 

not conceive of coordinates of points in the plane as expressing distances when reasoning about 

related expressions (Parr, 2020). In fact, when the second author gave this task to the students in 

his Calculus I class, only 17.4% of students answered both (a) and (b) correctly, and only 37% 

answered one of the parts correctly. This was, alarmingly, after the chapters about finding areas 

between curves and volumes of solids of revolution using integration. 

Our broader goal for this study is to investigate how students can learn this important skill. 

We conducted a teaching experiment (Steffe & Thompson, 2000) with a hypothetical learning 

trajectory (Simon & Tzur, 2004) involving a sequence of tasks intended to develop this skill. 

This study focuses on several elements of student reasoning that emerged during that teaching 

experiment. 
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Theoretical Background 

In this study, we focus on two target understandings that we hypothesized to be important for 

correctly solving tasks like the one above. The first is conceptualizing a difference of the form 

𝑏 − 𝑎 as representing the distance (along a one-dimensional continuum) between a and b. Since 

this understanding is grounded in interpreting notation, it helps to frame it, and the other related 

concepts we found in the study, using the language of semiotics (Barthes, 1957). A sign is made 

of a symbol (signifier) and a signified. The signified can be a mental object or another mark or 

collection of marks (which itself could be a signifier of something else). An interpretation is then 

the association between the symbol and the signified. With this in mind, we describe this first 

understanding as a composed magnitude interpretation of distances on number lines. 

In the context of representing a segment’s length, we define a composed magnitude 

interpretation as treating an expression of the form “b–a” as representing the following object: 

the length (a measurable attribute) of the segment measured from a to b. This requires the 

construction of the mental object of a quantity (e.g., Thompson, 1994). This interpretation of b–a 

is consistent with Parr’s (2020) description of a magnitude interpretation. We extend this 

definition to include the notion that the distance is composed of the difference of two distinct 

distances. The b is the distance from the origin to one endpoint, the a is the distance from the 

origin to the other, and b–a is the difference between these distances, thus the length of the 

segment. Finally, we contend that this interpretation involves appealing to a difference model of 

subtraction (5–2 is the difference between 2 and 5) as opposed to the more prevalent take-away 

or counting down model of subtraction (5 take away 2 leaves you with 3) (Saxe et al., 2013).  

The second understanding we hypothesized to be important for tasks like the one above 

involves using the Cartesian connection (Knuth, 2000) to represent the distance between a 

general point on a function’s graph and the x- and y-axes, in terms of x and in terms of y, 

flexibly. The Cartesian connection refers to the relationship: points lie on a graph if and only if 

the coordinate pairs (x, y) satisfy its equation. To use this relationship to represent distances in 

terms of x and y involves conceiving of a coordinate point (x, y) as a multiplicative object 

(Saldanha & Thompson, 1998) of a pair of distances from the axes, rather than as the name of a 

location. Although interpreting coordinates as a pair of distances from the point to respective 

axes may seem elementary, undergraduate students may instead interpret coordinates nominally, 

as labels for locations on an axis or the graph (David et al., 2019; Parr, 2020).  

In terms of these two understandings, our research question for this particular study is: What 

types of reasoning emerge, and what obstacles are encountered, when students engage in tasks 

meant to develop their ability to express distances on graphs in the Cartesian plane? 

 

Methods 

As part of a hypothetical learning trajectory (HLT) (Simon & Tzur, 2004), we designed six 

tasks and corresponding learning goals to support students in coming to conceive of and express 

distances on graphs such as the one in Figure 1. In fact, this exact task was given as both a pre-

assessment and as the final task in the sequence. We aimed to sequence the tasks such that each 

subsequent task built off the previous, with a single new conception or step added. The goal of 

the first task of the sequence is to develop the composed magnitude interpretation of a difference. 

As such, this task asked students to represent and label a difference (5–3) on a number line by 

first drawing a segment from the origin of length 5 (a), a segment from the origin of length 3 (b) 

(Figure 2). 
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Figure 2. A portion of Task 1 of HLT to develop composed magnitude interpretation. 

 

The tasks progressed to asking students to represent various difference expressions as 

segments, involving whole numbers, integers, rational numbers, and variables as distances on 

both horizontal (Task 1) and vertical number lines (Task 2). Task 3 reversed this and provided 

students with horizontal or vertical segments, asking students to express the length of the given 

segment as a difference. Task 4 advanced from number lines to the Cartesian plane, giving 

students a generic point (x, y) and asking them to construct a segment from each axis to the point 

and label its distance. This task sought to make the Cartesian connection explicit in students’ 

reasoning. Task 5 was similar, giving a point on a graph of a linear equation, but this time asking 

students to label distances both in terms of the input variable x and the output variable y (See 

Figure 3). Task 6 asked the same questions as Task 5 for a non-linear equation. 

We conducted a teaching experiment (Steffe & Thompson, 2000) using our HLT with four 

groups of two students and one individual student (whose classmate was absent) from an 

undergraduate Calculus I course in Fall 2020 in their recitation section (held remotely) during the 

first week of the course. Students worked through the activity in breakout rooms on Zoom, with 

the researchers observing and offering assistance only if students could not resolve an issue in a 

timely manner.  When these obstacles arose, we asked a series of questions intended to scaffold 

the necessary understandings we intended for the task. Often, these scaffolds took the form of 

asking a similar question with a numerical value rather than a variable, clarifying the intention of 

the task, or referring students back to previous tasks. We then conducted thematic analysis of the 

transcripts of these videos to identify and characterize students’ interpretations relative to the 

development of conceptions we intended. 

 

Results 

Our goal in this study was to identify types of reasoning students use and obstacles they face 

in coming to conceptualize and represent distance between two curves. Using the case of one 

student, Todd, we describe two related obstacles that arose in many of the groups of students, 

which required additional support from the interviewers beyond the tasks to overcome. The first 

is related to students’ conceptions of distance of a segment of endpoints “a” and “b.” The second 

is related to students’ ability to express the same distance in different ways using relationships 

between input and output variables via the Cartesian connection. 

 

Interpretations of Distance of a Segment 

While working with students through these tasks, we noticed three distinct types of student 

interpretations of distance emerge that were distinct from the composed magnitude interpretation 

we were targeting: 
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1. Endpoints interpretation. Students using an ‘endpoints’ interpretation of distance referred 

to a segment’s length, when asked, as “from 0 to a” or “from a to b,” giving the endpoints of the 

segment. In these instances, students reported where the segment began and ended but seem to 

be describing the segment itself rather than imagining a quantity of distance.  

2. Template interpretation. Students using a template interpretation of distance may represent 

the segment length as 0–a, but “–” symbol is considered a dash, not the operation of subtraction. 

In this way, they apply a template, transferring “from a to b” into “a–b” or “b–a” (and may not 

be sure when or why the order matters). If they use “b–a,” it serves as a (single) sign for the 

following object: the segment with endpoints at b and a.  

3. Magnitude interpretation. Students using a magnitude interpretation refer to the distance 

of the segment as b–a, which signifies a quantity, consistent with Parr (2020). It is a sign for the 

following object: the (measurable attribute) of the length of the segment. Students give the 

difference “a–0,” and treat the segment’s distance as a measurable attribute of the segment with a 

numerical value that corresponds to the difference. This interpretation requires b–a to represent a 

single amount, even if it is unsimplified or unsimplifiable. This interpretation does not 

necessarily draw upon the subtraction as representing the difference between two magnitudes of 

length a and b themselves; in this way it differs from the composed magnitude interpretation we 

were targeting (described earlier in the theoretical background section). 

We note that the simplification of the difference is available, as a small syntactic move, to 

students who use the magnitude interpretation. The distance “a–0” is the same as “a” and the 

distance “5–2” is the same as “3.” On the other hand, students who did not use the magnitude 

interpretation did not readily recognize that “a”is the distance from 0 to a, nor readily invoke that 

it is the same as a–0. 

We use the case of Todd (female student who chose her own pseudonym) to illustrate how 

the distinction in these interpretations became apparent to us. As context, we describe an earlier 

exchange between Todd and her classmate Walter that occurred with Task 2. Todd had asked 

whether the expressions were “additive” or “all just differences.” Walter “assumed” they were all 

“differences,” but was unclear about whether to interpret the “–” symbol as subtraction or a dash. 

She said, 

 

So I thought it was like above [Task 1] where we, I guess that's where I might have gone 

wrong up above…I assumed…that it was asking from 3.5 to 2, like the subtract was, or 

the dash was to instead of, or is it supposed to be a subtraction thing? 

 

In this instance, Walter appears to be using an endpoints interpretation of the distance 

between 2 and 3.5 as “from 3.5 to 2” and is unsure about how to interpret the “–” symbol. This 

endpoints interpretation becomes relevant in Todd’s later work on these tasks. While working on 

Task 5a, Todd was at first confused about the intention of the question, and thought x indicated a 

location at x=0 on the y-axis, the left endpoint of the horizontal segment. To clarify, Interviewer 

1 explained that the point represented a generic point (x, y) on the line. This exchange follows: 

 

Int 1: Is there a general way of saying how long that [green horizontal segment from the y-

axis to a generic point on the line y=2x+1] is in terms of just the, the point itself which is 

(x, y)? 

Todd: I feel like there is but I, I don’t really have any ideas on that like I just maybe again it 

would just kind of go back to the whole zero to the x-coordinate like because if I don’t 
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want to say exactly what length it is, I just go from like let’s say every time, doesn’t 

matter what length the segment...it just it stayed on the y-axis and it never went past it 

you know so it always in relation to the x-axis be at zero if I didn’t want to say the length 

of the horizontal segment, I would simply just say from zero to x wherever that x and 

the (x, y) would be.  

 

 
Figure 3. Task 5 of the HLT- represent the horizontal and vertical segments in terms of x and y 

 

In this exchange, Todd first appeals to an endpoints interpretation, stating the endpoints of 

the segment rather than the length of that segment. We also infer that Todd recognized that the 

length of the segment was varying (“doesn’t matter what length the segment is”), and that the 

location of x was varying (“wherever that x…would be”). However, Todd did not use a 

magnitude interpretation, and was even unable to express the distance as the difference x–0, in 

spite of completing the previous 4 tasks, with the help of prompting. When asked the same 

question with a numerical value, Todd was quick and confident to answer correctly: 

 

Int 1: How about this: If you have a segment that goes from zero to two, how long is it? 

Todd: It's two 

Int 1: If you have a segment that goes from zero to five how long is it? 

Todd: 5 

Int 1: If you have a segment (Todd: Sorry) go ahead 

Todd: I was just gonna say so for this one from zero to it's clearly one, it would be one.  

Int 1: Yeah, and so if it goes from zero to x how long is that?  

Todd: x 

Int 1: That's it.  

Todd: So it's just x? For [part] a? 

 

At first glance, it might seem that the only obstacle in Todd’s reasoning is in moving from a 

specific value (2 or 5) to an abstract value (x), or that Todd had difficulty conceiving of x as a 

varying value. However, on the graph, Todd is treating x as a varying location, an endpoint of a 

segment of varying length. It was step of associating “x” with the varying length of the segment 

that appeared to be the obstacle. Thus, we take this obstacle as more than an issue of moving 
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between a numerical value and varying value in the symbolic register—this required a shift in 

how she was interpreting how variables were assigned in the graphical register. Because of this 

obstacle, Todd reverts to an endpoints interpretation rather than a magnitude interpretation.  

 
Signifying a Variable Quantity in Multiple Ways 

Another obstacle we noticed in two groups of students was in expressing a variable distance 

in another way (e.g., in terms of y, rather than x). This obstacle became apparent when students 

did not interpret a given equation of a function as relating distances within a graph; in other 

words, these students failed to make the “Cartesian connection” (Knuth, 2000) between the given 

equation and the graph. As an example, we continue to look at Todd’s work on Task 5, part b. 

Todd explains her thoughts for this question, which asks her to represent the same segment’s 

length, now in terms of y.  
 

Todd: Okay so this is where my head is going but …when I look at it in relation to numbers 

uh you know the blue line would be y right so that one's three x is one…I think if it is 

kind of like y over 3 would represent the horizontal segment because it's y divided by 

three so three divided by three would be one and since x is one y over three… 

Int 2: Oh, it sounds like you're connecting in some way the one and the three or the x and the 

y, right? (Todd: yeah) Is there a way that x and y are connected that were told…? 

Todd: Well are you talking about like the, the linear function or are you I don't know um  

Int 2: So yeah, what does the linear function tell you about x and y? 

Todd: (reading equation) y =2x+1, and then when I think about x and y in relation to the 

graph it tells you how it's going to look, so the slope would be 2, the y-intercept would be 

1, yeah.  

 

In this exchange, Todd recognizes the need to represent the horizontal distance from the y-

axis to the graph in terms of y, and she attempts it with y/3. Todd uses the static distances of the 

point at (1,3) to devise this relation and appears to go through the process of how to operate on 3, 

a stand-in for y, to obtain 1, the stand-in for x. Todd knows what the task is asking of her, but 

does not use the given equation y=2x+1. When directed to the equation, she does not seem to 

think this gives her the relation she was searching for earlier with her conjecture of y/3. Instead, 

the equation represents instructions for the visual features of the graph (“how it’s going to look”) 

including values of the slope and y-intercept. 

As the discussion continues, Todd does see the equation as useful (perhaps because she’s 

been directed to) when asked to find lengths at specific non-variable values. 

 

Int 2: Would there be a way to for you to figure out what the horizontal length would be at 

that point where y would be 19? 

Todd: Yes  

Int 2: How would you do that? 

Todd: uh you would do the, basically find, I don't want to call it the inverse, but you would 

plug 19 in for y in the original equation and do 2x plus 1, subtract 1, to be 18 equals 2x, 

so then your x would be 9, right? 18 over 2, 9? Yeah so, your horizontal segment would 

be 9 if your y segment was 19. 

Int 2: So if I gave you any y-value would you be able to figure out the horizontal length then? 

Todd: Yes, oh, okay, okay wait, wait, wait, wait uh actually I don't know if I’m going the 

right way but I’m gonna do it anyway two yeah okay so if I were to plug in 3 for y there x 
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would wind up being 1 which is what it is, I guess I just I’m getting kind of confused on 

how to include y in there what I just kind of would I uh y equals two x plus one could I do 

y minus one equals two x divided by two, so y minus one over two equals x, would that 

be the horizontal component trying to express like…? 

Int 2: okay so would that work um that y minus one over two? 

Todd: Oh my god, it would work, it would work, okay. 

 

It is notable that Todd quickly and confidently answers the question of what the horizontal 

length would be when y is 19. When given a specific y-value that is not shown, she sees the 

equation as useful for finding the corresponding x-value, and she recognizes it also to be a 

length. But she had not immediately generalized this process to work for y as a variable length. 

She retraces the same operations she used on 19, this time using y, to get the equation’s inverse 

relationship 𝑥 =
𝑦−1

2
, and is then confident in her response. We theorize that this general 

expression of the Cartesian connection was previously unavailable to her because it relies on 

interpreting x and y as variable magnitudes, an interpretation she has not previously developed.  

 

Discussion 

We reported two obstacles in coming to develop an ability to represent distance in the 

Cartesian coordinate system through examples from one student, Todd. Todd’s endpoints 

interpretation of distance was an obstacle on Task 5 when using x to represent a varying length 

of the horizontal segment. Another obstacle for Todd was using the Cartesian connection to 

represent the same segment in terms of y. We conjecture that both of these obstacles are rooted in 

a lack of a composed magnitude interpretation of differences, yet more research is needed to 

investigate the relationship among these conceptions.  

Further research is needed to better understand the development of the conception and 

representation of distance in the Cartesian plane to complete tasks like the ones in this study. For 

instance, future research may investigate how students come to develop a composed magnitude 

interpretation of differences. We intend to refine our tasks and continue to conduct teaching 

experiments to better characterize and support the cognitive processes involved in coming to 

understand a composed magnitude interpretation of differences. 

We conclude by returning to the composed magnitude interpretation we described earlier as 

the foundational understanding involved in representing distances in the Cartesian plane. At the 

heart of the composed magnitude interpretation is the underlying notion that each value 

represented on a number line can be conceived of as a distance from 0. When we use a difference 

to represent a distance between two values, we are utilizing two distinct conceptions of a value x: 

(1) x is a location on a number line and (2) x gives the distance from the location on the number 

line called x and the origin. In practice, we as instructors may switch between these two 

conceptions seamlessly and without acknowledgment that they are fundamentally distinct 

conceptions. For instance, when we say that b–a gives the distance between a and b, we are 

treating a and b as locations, yet the reason that the difference gives that distance relies on 

unpacking a and b as also giving the distance from the origin to each of those locations. When 

we use b–a to represent this distance, we may take for granted the underlying mental actions 

involved with understanding why a difference yields this distance. The results of this study 

indicate that the process of developing a composed magnitude interpretation is non-trivial and 

should be considered central to the goals of teaching calculus conceptually. 
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In this paper, we introduce an RME-based (Freudenthal, 1991) task sequence intended to 

support the guided reinvention of the linear algebra topic of vector spaces. We also share the 

results of a paired teaching experiment (Steffe & Thompson, 2000) with two students. The results 

show how students can leverage their work in the problem context to develop more general 

notions of Null Space. This work informs further revisions to the task statements for using these 

materials in a whole-class setting. 
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Linear Algebra is a critical course for many majors in Science, Technology, Engineering, and 

Mathematics: students learn important computational methods, as well as begin to work with 

mathematical definitions, proofs, and theory. A survey of research on the teaching and learning 

of linear algebra identified significant bodies of recent research in the areas of span, linear 

independence, basis, and eigentheory (Stewart et al., 2019). Notably less work has been done in 

the importantly related areas of vector spaces and subspaces such as null and column spaces.  

Literature Review 

Researchers who have written about student learning related to the topic of vector spaces and 

subspaces have highlighted the challenges inherent and somewhat unique to teaching the topic, 

which was “not introduced to solve a specific open problem but rather to solve different 

problems with the same tools in an economic formal way” (Grenier-Boley, 2014, p. 439). A 

central theme in this literature focuses on the importance of how students reason about sets, 

binary operations, closure, and linear combinations of vectors (Britton & Henderson, 2009; 

Maracci, 2008; Mutambara & Bansilal, 2018; Parraguez & Oktac, 2010; Wawro et al., 2011). 

This is perhaps unsurprising when one considers vector spaces to basically be sets of vectors that 

are closed under linear combinations. In our work, we follow the recommendations of the Linear 

Algebra Curriculum Study Groups in not taking on an abstract treatment of vector spaces as a 

focus for a topic in a first course, but rather focus on subspaces of Rn (Carlson et al., 1993; 

Stewart et al, 2021).  

Our curricula are based on Realistic Mathematics Education (RME), a curriculum design 

theory that relies on design heuristics, specifically, didactical phenomenology, guided 

reinvention, and emergent models (Freudenthal, 1991; Gravemeijer, 1999; Van den Heuvel-

Panhuizen, 2020). In this paper, we describe our development of a sequence of tasks designed to 

support students’ reinvention of vector spaces and present results from a paired teaching 

experiment implementing those tasks. Consistent with the RME design heuristic of didactical 

phenomenology, during our development of the tasks, we identified key conceptual goals for 

supporting students’ conceptualization of vector spaces: understanding vector spaces and 

subspaces as spans of sets of vectors and understanding vector spaces and subspaces as sets 

closed under linear combinations.  
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We also sought to identify an approach to these views of vector space and subspace that 

connected to students’ prior experiences in the Inquiry-Oriented Linear Algebra [IOLA] 

materials. Accordingly, we identified null spaces and column spaces of linear transformations as 

appropriate entry points into reasoning about vector spaces and subspaces as sets closed under 

linear combinations (or, equivalently, as the span of a set of vectors).  

With this in hand, our general strategy for these materials is to approach the content 

objectives of Subspaces of Rn via an exploration of null spaces and column spaces. In this unit, 

students’ solutions to problems will benefit from the development of special sets of vectors 

(which correspond to null spaces), which we anticipate generalizing to the broader notion of 

subspaces as: (a) sets that are closed under scalar multiples and vector addition and (b) sets that 

can be written as the span of some subset of Rn. Our development team identified a problem 

context and iteratively refined a task sequence to support core conceptualizations for null spaces 

that we saw as promising because: (a) it would extend closed loops reasoning about linear 

dependence from prior tasks for making sense of null spaces in a new context and (b) this 

reasoning might then be extended to identify generalized solutions for non-homogeneous 

systems within the problem context (affine spaces). Our team conjectured that the notion of 

closure under linear combinations and closed loop reasoning would be useful for students, but 

we were unsure if and how they would engage in that reasoning. Given this approach to the 

guided reinvention of vector spaces and our current iteration of the task sequence, we developed 

the following Research Question:  

 

What meanings do students develop for null spaces and subspaces from their engagement in the 

task sequence that we designed? 

Methods 

This study was conducted as part of a broader NSF-funded grant focused on expanding 

research-based curricula for inquiry-oriented linear algebra. Our data is in the context of 

subspaces of Rn, with particular emphasis on the idea of null spaces. Our paired teaching 

experiment (PTE; Steffe & Thompson, 2000), or experiment involving interviews with one 

teacher-researcher and two participants, was organized around a sequence of four central tasks. 

PTEs can be helpful in seeing how students learn and reason about a concept. The teacher-

researcher’s role is to elicit and test participants’ ideas. This approach is also helpful in designing 

and refining tasks; in this case, the task sequence leverages hallway closures in a school to better 

understand subspaces (null spaces), which we will detail in a following section. PTEs can be 

useful regarding guided reinvention (e.g., Lockwood & Purdy, 2019; Swinyard, 2011), where the 

goal of our PTE was for students to reinvent ways of organizing or thinking about subspaces. 

Participants, Data Sources, and Analysis Methods 

The participants in this study were two white male undergraduate students (which we have 

given the pseudonyms Carson and Drew) at a predominantly minority public institution in the 

Southeastern United States. All students who completed this class were invited to participate. 

However, Carson and Drew were the only students to volunteer at the end of the semester who 

also met the age constraints of the IRB protocol. Both Carson and Drew had just successfully 

completed a semester of inquiry-oriented linear algebra that did not include explicit instruction 

about subspaces. The course content did include the topics of span, linear independence, matrices 

as linear transformations, composition and inverses, eigenvectors, and eigenvalues. The two 

students participated as a pair in four, 90-minute problem-solving sessions that took place across 
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four different days within a one-week timeframe. The first author was the instructor for the 

course as well as the teacher-researcher for the interviews.  

The sessions were conducted and video recorded via Microsoft Teams, with the interviewer 

screen sharing a presentation of problem statements, annotating student ideas on that shared 

screen, and students typing additional work, responses, and ideas into the chat or holding their 

written work up to their cameras. During each interview session, a second member of the 

research team was present to ask additional questions about the participants’ thinking, to witness 

student work, and to provide additional insight into how to plan for subsequent interviews. After 

each interview, the teacher-researcher, the observing team member, and at least one other 

research team member met virtually to discuss the day’s progress and revise the planned 

materials for the next interview session. 

In addition to the audio-video recordings of the meetings and collection of participant work 

and responses, the team members kept concurrent notes of the interview sessions and recorded 

thoughts shared during the debriefing sessions after each interview. Through this process, we 

developed areas of focus for better understanding the participants’ reasoning as they worked 

through each task in the interviews. We specifically identified one key construct that continually 

emerged throughout the participants’ discussions. Based on these conversations, we identified 

instances of the participants using the construct throughout the recordings and documented the 

evolution of how the students leveraged the construct from each task to the next. The field notes, 

post-interview discussions, and recordings provide triangulation to support the construct’s 

importance throughout the series of interviews. 

Task Sequence 

Drawing on the design heuristic of didactical phenomenology (Freudenthal, 1991; Van den 

Heuvel-Panhuizen, 2020), the research team worked to identify a context to draw out aspects of 

subspaces, especially considering students’ anticipated mathematics at the point in the semester 

at which these materials are planned to be implemented. As an entire research team, we have 

organized the instructional units so that these tasks would occur after students have learned about 

linear in/dependence, span, solving systems of equations, and matrices as linear transformations, 

including composition and inverses of linear transformations. The authors of this paper 

developed the following task sequence based on the idea of One-Way Hallways, which we think 

provides an experientially real starting point that is consistent with directed graphs, or graphs 

made of edges and vertices where the edges have an associated direction to specific vertices 

(Figure 1). Students are first presented with a diagram of the west wing of Ida B. Wells High 

School, with an arrow drawn along each corridor and an explanation of the diagram.  

 
Figure 1. The setup for the first task in the sequence. 
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Task 1. The task sequence begins by focusing on one individual student’s possible paths 

between two rooms and from one room, back to that same room. Students are asked to represent 

paths with column vectors that show how many times a student passed by a camera in each of the 

five hallways. So, for instance, the vector <1, 1, 0, 0, 0> represents a student passing by camera 1 

and camera 2, but no other cameras. Students are first asked to identify all routes that a student 

could possibly take to start a journey in Room A and end the journey in Room C and write these 

possibilities as efficiently as possible. There are an infinite number of such paths if the student in 

the task repeats their trip down some of the hallways. For instance, the journeys described by the 

vectors <3,3,1,1,1> and <17,17,12,5,12> would also result in the student traveling from Room A 

to Room C. After this, students are asked to find routes that describe all journeys one student 

could take from Room C back to Room C while also considering the change in populations for 

each room. Students then are asked to consider both journeys (from A to C and from C to C) for 

5 students traveling the hallways, once again also considering the population changes for each 

room. At the end of the task, students are prompted to consider the set of vectors they have 

developed for each of the four trips and any comparisons they can make between the trips. 

Tasks 2. Task 2 is intended to extend the students’ reasoning toward an understanding in 

which the hallway diagram encodes a mapping from “camera vectors” (5-tuples in which the kth 

entry is the number of students who pass the kth camera) to “classroom change vectors” (4-tuples, 

in which the first, second, third, and fourth entry is the change in student population for room A, 

B, C, and D, respectively). To promote this shift, we ask students to consider the effect that given 

“camera vectors” would have on classroom populations as well as identify possible “camera 

vectors” that would result in given changes in the four classrooms. This activity builds from the 

first activity by abstracting the vectors from being associated with any specific journey within 

the problem context and instead focuses on the input/output relationship between the camera 

vectors and classroom vectors. Specifically, Task 2 presents students with a room capacity 

constraint that requires none of the room populations change throughout the day. This anticipates 

a homogeneous system within this problem context.  

Task 3. In Task 3, students are asked to develop a matrix that corresponds to the mapping 

defined by the hallway diagram and extend their reasoning about the input/output relationship by 

connecting it to their existing understanding of linear transformations. This task then asks 

students to reason about the set of vectors that result in no change in room populations as well as 

the set of all possible vectors that could describe changes in the room populations. In other 

words, this task leverages the problem context to prompt students to reason about the null space 

and column space of the linear transformation. Specifically, students are asked whether these sets 

are closed under scalar multiplication and whether they are closed under linear combinations. At 

this point, an instructor using these materials would define vector spaces and subspaces as sets of 

vectors that are closed under both operations and, equivalently, as sets of vectors that can be 

described as the span of some subset of the set.  

Task 4. To generalize students’ activity up to this point, Task 4 presents them with the 

matrix in Figure 2. This matrix represents students passing through hallways to a different set of 

classrooms in another wing of the school (the East Wing). Students are first asked to identify 

how many hallways and classrooms must be in the East Wing. Students are then prompted to 

figure out all possible hallway flows that would leave the populations unchanged, all possible 

hallway flows resulting in a particular vector, and all possible changes in population for each 

classroom in this wing. At the end of the task, students must decide if this latter set of vectors is a 

subspace of R5. The goal of the last part of this task is to formalize ideas in the context by having 
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students think about them in terms of a matrix equation and set of vectors, while also linking 

these to the concept of subspaces. 
 

 
Figure 2. A matrix representing students passing through hallways of the East Wing of Ida B. Wells High School. 

Results and Discussion 

As conjectured, Carson and Drew developed robust reasoning during the initial task that 

extended into the later tasks. Specifically, the two participants identified closed loops within the 

hallway diagram as a helpful construct to make sense of multiple solutions within the problem 

context. The participants relied on this loop reasoning when discussing solutions to the 

homogeneous system as well as to non-homogeneous systems. Stated formally, this 

conceptualization of the problem allowed the participants to reason about the null space as well 

as an affine space that mapped to a non-zero vector.  

When solving the Task 1, Carson and Drew took time to make sense of the given diagram 

and the vector <1,1,0,0,0>. The participants discussed how to interpret the vector as a journey 

through the hallways, eventually agreeing that the vector did represent a path from classroom A, 

down the hallway containing camera 1, past classroom B, and down the hallway containing 

camera 2 to arrive at classroom C. Following this discussion, the teacher-researcher asked the 

participants, “Can you think of another vector that might show a path from A to C?” Drew 

responded by saying, 

 

Well, the only other way you could get a path from A to C is if you go back to A from C 

and then you could just have like a loop going. So you could have it where it's like 221 - 

or no, 2201 [sic]. So it goes through that 4th camera goes through that 4th hallway 

diagonally and then back up and to the right and back to C. 

 

The teacher-researcher asked Drew to clarify what he meant by the description, which 

prompted Drew to trace a triangle in the air while describing the journey, adding, “And then you 

can repeat that as many times as you want.” When asked to explain his last point, Drew said, 

“Yeah, so you could put a scalar before the vector and you can make it whatever you want and 

you would still get you to A or - from A to C every time.” 

The teacher-researcher then asked the two participants to each write their understanding of 

what Drew had just described. Rather than writing anything, Carson stated that Drew was just 

describing going in a bunch of loops around A, B, and C. Then Carson said, “What's like, it's 

kind of like the homogeneous vector you go back to where you are. When we talk about linear 

transformations - that's basically what you're doing. You're going, you're go in an entire loop 

where you go somewhere, and then you go back.” This imagery references existing IOLA 

materials, specifically the “Getting Back Home” task (Unit 1 Task 3 of IOLA materials), which 

is reasonable considering that Drew and Carson had recently completed those materials.  
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At this point, the second researcher in the interview asked the participants to provide two 

different vectors that they though would be in that set. The teacher-researcher then elaborated on 

this by suggesting the participants provide generic vectors or other solutions. In response to this, 

Carson explained that he could see another path, but did not know how to describe that as a 

vector, saying, “You can go A, B, C, D and then back to A.” In this description, Carson is 

identifying a different loop than the one Drew suggested before. Meanwhile, Drew had typed 

into the meeting chat the vector expressions “x<1,1,1,0,1> + <1,1,0,0,0>” and “x<1,1,0,1,0> + 

<1,1,0,0,0>,” adding that his first expression represented the journey that Carson described. The 

two participants eventually determined that both loops could be used in combination to describe 

all possible journeys of one student traveling from room A to room C.  

Throughout the remainder of the task and, indeed, the subsequent sessions of the teaching 

experiment, the participants continually referred to the loops as ways to generate additional 

solutions to problems in which they were asked to identify paths that would result in given room 

changes. This included later in the first interview when they were asked to find all possible 

journeys that would result in one student traveling from room C back to room C, five students 

traveling from room A to room C, and five students traveling from room C back to room C. This 

culminated in the development of four sets of solutions, which the participants compared. Drew 

and Carson correctly identified that the set of solutions for one student passing from Room C 

back to Room C was equivalent to the set of solutions for five students passing from Room C 

back to Room C. Similarly, the participants identified parallels for the affine sets they had found 

for the 1-person and 5-person journeys from A to C, noticing that the constant vector <1,1,0,0,0> 

would be scaled by 5 for the 5-person journey, but any combination of loops could be used. 

During Tasks 2 and 3, the participants extended this loop reasoning to apply to any 

relationship between camera vectors and room change vectors. They also developed the 

appropriate matrix that is consistent with the vector mapping from R5 to R4 and explored the 

row-reduced echelon form of that matrix to further reason about solutions both for given camera 

vectors and for given room change vectors. We further identified an interesting result in response 

to Task 4 when the participants described and subsequently completed two different solution 

approaches to making sense of the East Wing matrix. Carson suggested row-reducing the matrix 

to identify solutions to the system. Drew, on the other hand, suggested constructing a map of the 

East Wing based on the given matrix and identifying loops in that diagram to find solutions to 

specific systems. Throughout the task sequence, the participants’ loop reasoning continually 

proved useful, including when considering new systems. In future implementations of the task, 

we anticipate further revising the materials to better support these conceptualizations. We are 

also transitioning to generating instructor support materials that will incorporate results from this 

PTEs as well as planned whole-class implementations.  

Acknowledgments 

This research is based upon work supported by the National Science Foundation under grant 

numbers DUE-########. Any opinions, findings, and conclusions or recommendations 

expressed in this material are those of the author(s) and do not necessarily reflect the views of 

the National Science Foundation. 

References 

Britton, S., & Henderson, J. (2009). Linear algebra revisited: An attempt to understand students' 

conceptual difficulties. International Journal of Mathematical Education in Science and 

Technology, 40(7), 963-974. 

2021 Research in Undergraduate Mathematics Education Reports 227



Carlson, D., Johnson, C. R., Lay, D. C., & Porter, A. D. (1993). The Linear Algebra Curriculum 

Study Group recommendations for the first course in linear algebra. The College 

Mathematics Journal, 24(1), 41-46. 

Freudenthal, H. (1991). Revisiting mathematics education. Dordrecht: Kluwer Academic 

Publishers. 

Gravemeijer, K. (1999). How emergent models may foster the constitution of formal 

mathematics. Mathematical thinking and learning, 1(2), 155-177. 

Grenier-Boley, N. (2014). Some issues about the introduction of first concepts in linear algebra 

during tutorial sessions at the beginning of university. Educational Studies in Mathematics, 

87(3), 439-461. 

Lockwood, E., & Purdy, B. (2019). Two Undergraduate Students' Reinvention of the 

Multiplication Principle. Journal for Research in Mathematics Education, 50(3), 225-267. 

Maracci, M. (2008). Combining different theoretical perspectives for analyzing students’ 

difficulties in vector spaces theory. ZDM, 40(2), 265-276. 

Mutambara, L. H., & Bansilal, S. (2018). Dealing with the abstraction of vector space concepts. 

In Challenges and strategies in teaching linear algebra (pp. 147-173). Springer, Cham. 

Parraguez, M., & Oktaç, A. (2010). Construction of the vector space concept from the viewpoint 

of APOS theory. Linear algebra and its applications, 432(8), 2112-2124. 

Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying 

principles and essential elements. Handbook of research design in mathematics and science 

education, 267-306. 

Stewart, S., Andrews-Larson, C., & Zandieh, M. (2019). Linear algebra teaching and learning: 

themes from recent research and evolving research priorities. ZDM, 51(7), 1017-1030. 

Stewart, S., Axler, S., Beezer, R., Boman, E., Catral, M., Harel, G., McDonald, J., Strong, D., & 

Wawro, M. (under review). The Linear Algebra Curriculum Study Group (LACSG 2.0) 

Recommendations.  

Swinyard, C. (2011). Reinventing the formal definition of limit: The case of Amy and Mike. The 

Journal of Mathematical Behavior, 30(2), 93-114. 

Van den Heuvel-Panhuizen, M. (2020). Didactical Phenomenology (Freudenthal). Encyclopedia 

of mathematics education, 218-220. 

Wawro, M., Sweeney, G. F., & Rabin, J. M. (2011). Subspace in linear algebra: Investigating 

students’ concept images and interactions with the formal definition. Educational Studies in 

Mathematics, 78(1), 1-19. 

2021 Research in Undergraduate Mathematics Education Reports 228



Incorporating Generalization into University Classrooms:  
An Emerging Distinction from Instructors 

 Branwen Schaub Elise Lockwood 
Oregon State University 

Abstract: In this paper we share findings from six interviews with instructors on whether, and 
how, they attend to generalization in their teaching. In particular, the interviews highlighted a 
distinction between generalizing in the classroom as being teacher or student generated. This 
study furthers our understanding of generalization beyond student activity and opens us to 
further questions such as how, if at all, students understand this distinction in the classroom.  
 
Keywords: generalization, instructional practice, teaching 
 

Introduction 
Generalization is a foundational mathematical activity, and there is much agreement in the 

field that generalization is an important practice for students to learn (Davydov, 1972/1990, 
Kieran, 2007; Mason, Stacey, & Burton, 2010; Mata-Pereira & da Ponte, 2017). While studies 
have explored students’ generalizing activity through interviews (e.g., Jones & Dorko, 2015) and 
small group teaching experiments (e.g., Reed & Lockwood (2021)), much less has been 
investigated about generalization occurring in classrooms. In particular, although generalization 
is clearly a fundamental and important mathematical practice, little is known about the extent to 
which generalization is explicitly or implicitly discussed, taught, or presented in university 
classrooms (if at all). The work presented in this paper is part of a larger study that seeks to 
explore both how generalization is currently presented in K-16 classrooms and how 
generalization might be effectively taught and incorporated into K-16 classrooms. We focus here 
on the postsecondary setting, examining ways in which university instructors may attend to and 
incorporate generalization into their teaching. In this paper, we share findings from interviews 
with six university instructors, in which they discussed the practice of generalization and ways in 
which they think about and incorporate generalization in their teaching practice. These 
interviews revealed important insights about the nature of generalization, highlighting different 
ways in which practicing instructors think about and treat generalization in their classrooms. 
Given that relatively little has been explored about the teaching of generalization, especially at 
the postsecondary level, our broad research goal is to engage in initial, exploratory work to 
investigate how generalization is actually presented and taught in postsecondary classrooms. 
With this broad goal in mind, in this paper, we seek to answer the following research questions: 

1. To what extent do instructors incorporate generalization in their teaching at the university level? In 
particular, to what extent did the instructors we interviewed attend to generalizing in their 
classrooms? 

2. What insights about the nature of generalization emerged from conversations with practicing 
postsecondary instructors? 

Background Literature 
Generalization is a fundamental mathematical practice, and researchers (Ellis, 2007; Lannin, 

2005; Peirce, 1902; Rivera & Becker, 2007, 2008), curriculum designers (e.g., Hirsch et al., 
2007; Lappan et al., 2006) and policymakers (Council of Chief State School Officers, 2010) 
emphasize generalization as important. However, even given its status as a valued mathematical 
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practice, there is ample evidence that students face difficulties in engaging in generalizing; for 
example they are not always successful in stating and evaluating general statements or in 
recognizing and articulating patterns (Blanton & Kaput, 2002; Čadez & Kolar, 2015; English & 
Warren, 1995; Lannin, 2005; Mason, 1996; Moss, Beatty, McNab, & Eisenband, 2006; Orton & 
Orton, 1994; Rivera & Becker, 2008). Much work has been done in the field to help students 
develop a deeper understanding of generalization and to gain proficiency with engaging in 
generalizing activity. In some cases, such attempts have taken the form of conducting theoretical 
(e.g., Harel and Tall, 1991) and empirical (e.g., Ellis, 2007; Ellis et al., 2017) explorations of 
different ways of characterizing generalizing activity, or of designing domain-specific tasks to 
help students engage in rich generalizing activity (e.g., Reed & Lockwood (2021)).  

Many of the studies that have explored students’ generalizing activity have focused on 
students’ generalizing in interview settings but not within classrooms themselves (e.g., Dorko & 
Jones, 2015; Ellis, 2007; Reed & Lockwood, 2021). Further, such work has concentrated on 
students’ engagement and has not interrogated or investigated teachers’ experiences with 
thinking about or promoting generalizations; neither has it explored occurrences of 
generalization within classrooms. A goal of this study, then, is to begin to examine instructors’ 
perspective of generalization, particularly within the context of their teaching practice. 
Compared to the wealth of literature on students’ generalizing activity, considerably fewer 
studies have explored generalization in teaching. Indeed, the relatively limited research on 
teachers’ support of students’ generalization suggests that it is challenging for teachers to 
fostering correct generalization among students (Callejo & Zapatera, 2017; Cockburn, 2012; 
Mouhayar & Jurdak, 2012). We thus see value in trying to better understand ways to support 
teachers in promoting generalization in their classrooms.  
 

Theoretical Perspective – Characterizing Generalization 
There are a number of ways in which generalization has been defined in the literature, and in 

this section, we clarify how we characterize generalization in this study. Generalization has been 
presented both from an individual, cognitive perspective (e.g., Carraher, Martinez, & 
Schliemann, 2008; Davydov, 1990; Harel & Tall, 1991; Kaput, 1999) and as a social construct 
that involves discourse and activity (e.g., Doerfler, 1991; Jurow, 2004; Latour, 1987). We 
broadly adopt this social perspective by framing generalization within contexts and interactions. 
We follow Ellis (2007) and Ellis et al. (2017) in characterizing generalization as involving any of 
the following actions: (a) identifying commonality across cases, (b) extending one’s reasoning 
beyond the range in which it originated. and/or (c) deriving broader results from particular cases.  

There are a number of ways in which researchers have distinguished between aspects of 
generalizing. For example, Harel and Tall (1991) differentiate between expansive, 
reconstructive, and disjunctive generalization, and Harel (2001) has offered distinctions between 
result pattern generalization and process pattern generalization. Ellis also created a generalization 
taxonomy to focus on different kinds of generalizing actions (2007). Others have also built upon 
Ellis’ (2007) taxonomy to articulate different kinds of generalization actions that emerged for 
students in a variety of domains and age ranges, such as describing the Relating-Forming-
Extending (RFE) Framework (Ellis et al., 2017), which distinguished three major categories of 
generalizing activity: Relating, forming, and extending. When we consider students’ generalizing 
activity, we often view such activity in terms of these generalizing actions. We mention these 
constructs here to demonstrate the many ways in which researchers have attempted to 
characterize salient aspects of generalizing. Each of these distinctions and characterizations are 

2021 Research in Undergraduate Mathematics Education Reports 230



designed to shed some light on a feature of generalization, be it ways in which students might 
engage in generalizing activity, or ways in which we as researchers can identify, understand, and 
interpret generalization activity. We seek to understand relevant distinctions among 
generalization that might inform our understanding of generalization in the undergraduate 
classroom in particular, and our work contributes to these existing distinctions in the literature. 

Many of the perspectives shared to this point have focused on the generalizing actions of 
students. However, as we will see in this paper, the results from the interviews shed light on 
additional distinctions that we find noteworthy and that are related to classroom contexts. So, 
while we frame our work in existing literature and characterizations of generalization, our 
findings will reveal what we think are novel distinctions that our instructors attended to and 
viewed as relevant. These provide additional insight into how we might think about 
generalization broadly and how we might encourage students to engage in generalization.  
 

Methods 
Data Collection 

We report on individual interviews conducted with university instructors. These interviews 
are the first phase in a larger project in which we aim to create a professional learning 
community among 3-4 instructors over the course of the academic year, engaging them in 
professional development about the nature and practice of generalization in their teaching. We 
sent recruitment emails to 15 instructors at a large public university, inviting them to participate 
in an interview. Six instructors responded, and we interviewed all of them. The participants 
represented a wide range of the department (information is found in Table 1). We conducted 
individual, ~90 minute interviews over Zoom with the participant and both authors of this paper.  

 
Table 1. Pseudonym, position title, experience, and courses typically taught for each participant. 

Pseudonym Position Title  Years 
teaching  

Courses typically taught 

Participant A Senior Instructor  9 calculus, differential equations, linear algebra 
Participant B Associate 

Professor 
9 discrete math, advanced calculus 

Participant C Professor 32 upper-level geometry courses 
Participant D Senior Instructor  10 calculus, differential equations, discrete math, 

linear algebra 
Participant E Senior Instructor  9 calculus, differential equations, linear algebra 
Participant F Instructor 1 college algebra, pre-calculus, calculus 

 
Our goal with these interviews was to get a sense of the instructors’ approaches to teaching, 

to identify their initial views and definition of generalization, and to understand if and how they 
incorporated generalization into their teaching. To this end, we asked demographic questions, 
general questions about their teaching, their initial characterizations of generalization, and 
questions about teaching generalization, including whether and how they attended to 
generalization in their own classrooms. After they presented their own initial characterization, 
we provided them with our working characterization of generalization from Ellis (2007): 
“Generalization involves engaging in at least one of three activities: a) identifying commonality 
across cases, b) extending one’s reasoning beyond the range in which it originated, or c) deriving 
broader results about new relationships from particular cases” (p. 444). 
Data Analysis  
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The interviews were transcribed. The first author wrote summaries of each interview to 
get a better understanding of each participant’s views of generalization in their teaching by 
identifying each of the participants’ initial characterizations of generalization and 
comparing/contrasting them against each other. Using MAXQDA, she engaged in an open 
coding of the interviews for all the examples of generalization provided in the interviews (the 
final categories were: examples from courses taught, participant’s own mathematical 
experiences, research experiences, and hypothetical examples) and she then used the coded 
sections to create a table of examples of generalization that the participants described. To 
identify themes and the results in this paper, both authors had ongoing conversations about what 
was appearing in the data through the participants’ characterizations and examples of 
generalization, and together we engaged in initial open coding based on the different ways in 
which the participants described generalization in their classrooms. Several key distinctions 
emerged from this initial open coding, and from this we articulated the results given below, 
drawing on examples from the data, verifying our initial coding by repeatedly reviewing the 
transcripts, and having ongoing conversations about the examples given by instructors.  
 

Results 
Overall, the interviews yielded new insights about postsecondary instructors’ views of and 

incorporation of generalization in their classrooms. We found that these instructors had a rich 
repository of characterizations and examples of generalization that went beyond our current 
understanding of generalization. We saw a variety of ways in which teachers engaged, or did not 
engage, in generalizing activity in the classroom, and they varied in the extent to which they had 
thought about generalization prior to the interviews. Indeed, it is noteworthy that some 
instructors were in fact quite attentive to generalization in their teaching, and they shared 
thoughtful insights about generalizing in their teaching.  

Due to space, we can only present one key finding from these interviews. We describe one 
main distinction about generalization in the postsecondary classroom that emerged from the 
interviews, and we share examples and discuss it. This distinction, and the participants’ 
discussion about it, informs our understanding of generalization in postsecondary classrooms, 
highlighting a variety of ways in which generalization might be incorporated and taught.  

 
An Emerging Distinction between Generalizations in the Classroom 

In analyzing interview data, a key distinction emerged about generalization in the classroom 
as to whether a generalization is instructor or student generated. As noted, many of the ways in 
which previous research has characterized generalization has been focused on students’ 
generalizing actions – that is, how we might foster student engagement in particular generalizing 
actions such as relating, forming, and extending. While we maintain that such a focus on 
students’ generalization is important, in our conversations with instructors we gained insights 
into broader ways in which they were conceiving of generalization, and we identified additional 
ways in which generalization might actually arise in classroom settings. We acknowledge that 
our current understanding of this distinction is not comprehensive (and we discuss limitations 
below). However, this distinction sheds light on nuanced ways in which generalization might 
emerge in a postsecondary classroom, and we found it compelling and enriching to consider. 

As the instructors described generalization in their classrooms, it became clear that there was 
variety in the extent to which students themselves had opportunities to engage in generalizing 
activity. This distinction was most clearly articulated by Participant C. The following exchange 
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shows Participant C initially describing a distinction he saw between two different ways in which 
generalization might be presented – whether he or the students were doing the generalizing. This 
exchange occurred toward the beginning of his interview when he was reflecting on 
characterizations of generalization: 

Participant C: … the tension is between generalization as a pedagogical strategy, which is what I 
think about most of what I do in the classroom to bring students to the stage of understanding more 
general idea framework context by starting with simpler such things. And there is separately teaching 
students to generalize themselves. In one case I'm doing the generalizing –  
Int. 1:  Yeah. 
Participant C: – in order to give students something, to anchor their understanding of the more 
complicated scenario too. In the other case, you're trying to get students to recognize some new 
situation as a generalization of some old situation. Those are, those are at least subtly different 
because in one case I'm doing the generalizing for them and the other case they're doing it.  

This underscores the idea that there may be two separate objectives for generalization in the 
classroom – one is to help students think about and handle general ideas or concepts, and the 
other is to teach students to generalize themselves. Participant C was clearly thoughtful in his 
own consideration of these different objectives, and he went on to say that in much of his 
teaching he tends to do more of the former and less of the latter.  

This distinction was borne out in other interviews, too (not as explicitly, but participants did 
share whether they or their students engaged in generalizing activity). Overall, two participants 
said that they attempted to give students opportunities to engage in generalizing, two said that 
they as instructors generalized or discussed generalization but their students themselves did not 
generalize, and two indicated that they did not bring up generalizing in their classes at all. We 
now provide three examples from different participants (one that is instructor generated, one that 
is student generated, and one in which both parties engage in generalization) to highlight this 
distinction between instructor generated and student generated generalizations. 
 

Example 1: instructor generated. The following example with Participant B demonstrates 
an instance of the instructor, and not the students, doing the generalizing activity. In this 
example, Participant B described a conversation she had with students during lecture about the 
nature of equivalence classes; that conversation prompted her to model generalizing by showing 
how a broader statement can sometimes be made when we notice a common feature of particular 
examples. As Participant C described, she was making a general connection for her students.  

Participant B: … Um, but it's sort of interesting because I, one other thing that sort of popped in my 
head was something a little bit different, um, where you can today, like today in [discrete 
mathematics], I, I, I was talking about equivalence classes, and I, I wrote down an example of an 
equivalence relation and then I, I s- sort of picked out some elements from the set and said, "Let's 
write down the equivalence class for this guy, and the equivalence class for this guy, and I went 
through a couple of them. Um, and then I said, you know, "Notice that if two of the elements of the 
set are equivalent to one another, then they have the equivalence classes." Um, and then I said, "Oh, 
it turns out that this is always true," and I wrote down the statement of the theorem and I, I sort 
of s- we didn't really manage to get through the proof, but we started talking about the proof a little 
bit. Um, so like I mean, I guess that in some sense is generalization, right, because you're 
starting with sort of a specific example where a certain thing is true, but then you're 
immediately jumping to, obviously, this broad class of equivalence relations. Um, so, so, in that 
case, the generalization kind of happened in an instant.  
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Example 2: student generated. As an example of student generated generalization, we share 
a case where Participant D described intentionally giving students chances to generalize. In this 
example, he discussed scaffolding tasks in which students might relate (in the sense of Ellis et 
al.’s (2017) framework) other proofs of irrationality to their initial experience with the square 
root of 2, ultimately extending ideas to more general cases. Here, we interpret that the instructor 
was attempting, through a choice of tasks, to provide opportunities for students to engage in 
generalizing activity and to formulate generalizations for themselves. 

Participant D: So for, for another example, in my eCampus course, um, I have the students do 
discussion board posts with each other where they're kind of required to work with each other on 
some exercises. And I think like in one of my videos, I, I go through the classic proof that the square 
root of two is irrational by contradiction. And some of the exercises I'll put on the activity are like, 
okay, can you prove the square root of three is irrational? Can you prove the square root of five is 
rational? Can you, can you generalize this to proving other things are irrational? This is as a, as 
something where, okay, I've, I've done the exercise for square root of two. Can you now see that this, 
this, this, these ideas generally apply to other, other proofs of irrationality of square roots? 
 
Example 3: instructor and student generated. Finally, we offer an example in which both 

instructors and students together contribute to a generalization in the classroom. Participant A 
described his idea of “ungeneralizing” a math concept to a more concrete scenario that students 
could then use to help rebuild the more general concept themselves. In this case, we see the 
instructor’s generalization served to support and direct student generated generalizations. In 
particular, he worked to find relevant examples and analogies, with the hope that students could 
then generalize from them. He also commented that up until the interviews with us, he had been 
thinking of these as analogies as opposed to instances of generalization, but during the interview 
he realized that generalization more accurately described his teaching intentions.  

Participant A: Well, it's, i-it, this is like hard 'cause I feel like what my, part of my role as the 
teacher is, is, is to, is to take the abstract idea and provide specific examples to, that I choose 
carefully so that the students can then generalize from them, to like to gain that deeper, intuitive 
understanding of the abstract concept through my ungeneralizing it. 
Int. 1: Mmm. So like, you're doing the ungeneralizing for them, is what you're saying? 
Participant A: So I think about – so that they can regeneralize themselves. 
Int. 1: That's interesting. 
Participant A: So thinking about like some multivariable calculus, I think is a great subject for this 
conversation because there's almost no new math to learn. There's just those concepts you've already 
known, but now applied in 3D. 
Int. 1: Mmm. 
Participant A: And so, so much of the class is like, remember how it used to work? Now it works this 
way and here are the differences. And so there's great ways to, (laughs) at least I think there's great 
ways of ungeneralizing the idea of what is a parameter in a vector valued function, and how does, 
what does it mean for a parameter to represent arc length versus represent time. And ungeneralizing 
that into different ways that different types of vehicles keep track of how, of their age. So if you look 
at like a car like you and I own, it has an odometer and its age is how many miles it's driven. But if 
you go to a construction site and you look at like an excavator, it doesn't have an odometer, it has an 
hours. How many hours has this machine been operated? And so there's these anti-generalizations, 
these analogies that I try to use so that the students can understand the abstract concepts so that they 
can begin to generalize. 

 
While these are just brief examples of different ways that generalization might arise in 

postsecondary classrooms, we think that they highlight potential ways in which students may 
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gain access to ideas related to generalization, even if instructors are making or describing 
generalizations. This distinction highlights that generalization might arise in a variety of ways – 
it does not only have to involve students themselves generalizing, but it might also involve 
instructors making clear attempts to explain general concepts, make connections, or generalize 
ideas for students. This is particularly noteworthy for some of the specific mathematical content 
that these instructors teach, which involves abstract concepts.  

We want to emphasize that when instructors (and not students) generalized, this did not 
always suggest that instructors did not think it was worthwhile for students to generalize. Rather, 
they attempted to do some of the work with generalizing for interesting and nuanced reasons. 
Participant A’s use of analogies involved him making connections, but it was for the purpose of 
setting up students to be able to engage in generalizing activity. As another example, Participant 
C gave an example of wanting their students to not overgeneralize in geometry, and he explained 
that focusing on 3 dimensions was a worthwhile use of their class time (and not, say, 17 
dimensions, which would be a valid generalization but not one he wanted students to explore 
given the scope of his class). Thus, while he was supportive of the idea of generalizing and saw 
its value for students, in teaching that course, he was more inclined to direct students’ 
generalizing so they would not get too far afield in their explorations. 

As a final note, two of the instructors had not thought about whether or not they or their 
students had opportunities to generalize in class, but they were reflective about it once we raised 
the idea in the interviews. For example, Instructor F was able to reimagine the way she taught 
optimization problems to her calculus students as engaging in generalization of a procedure from 
a set of examples, and she noted that thinking of this activity in terms of generalization gave her 
new insight into how to explain optimization to her students.  
 

Discussion and Limitations 
We believe our initial instructor interviews raise questions for subsequent research about the 

effectiveness of student versus instructor generated generalizations in the classroom. That is, 
while it is clearly desirable to have students engage with generalizing activity, this distinction 
suggests opportunity for explorations into what (if anything) students gain from instructor’s 
attention to generalizing. Based on prior work about students’ experiences in lectures (e.g., Lew 
et al., 2016), it is likely that students may not necessarily pick up on points that instructors are 
trying to make about generalization. However, it is worth investigating whether there might be 
any benefit to instructors making explicit comments about generalization in their postsecondary 
classrooms, particularly as students encounter advanced, abstract concepts. Further, from a 
professional development perspective, it is worth investigating productive ways to engage 
instructors with exploring ways to incorporate generalization in their classrooms. 

One limitation of this work is our reliance on instructor reports on their teaching, rather than 
observing their teaching (this is due in part to the pandemic and remote instruction); it would be 
good to observe teachers to see how generalization occurs in their classes. However, as we have 
seen, we contend that their self-reported data still offers useful insights in thinking about the 
nature of generalization and how it might be incorporated into postsecondary classrooms. We 
also acknowledge that we only interviewed six instructors, and more distinctions and nuances 
may arise by interviewing or observing more university instructors. 
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Helping students see conceptual connections between content areas is important for the 

development of flexible understanding, yet research on ways in which notions of sameness 

throughout math can be connected is limited. This study examines survey responses from 

mathematicians on the relevance of sameness to topics in abstract algebra and connections 

between sameness in algebra and other courses. Common connections are highlighted as are 

themes in the types of connections provided.   
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A common motivation behind initiatives in math education is to see how content can be 

made relevant to students, especially pre-service teachers. Recent initiatives in undergraduate 

mathematics have largely approached this task by connecting K-12 content to advanced courses 

like analysis (e.g., Wasserman et al., 2018) and abstract algebra (e.g., Suominen, 2018) or by 

examining defined mathematical topics such as functions (e.g., Melhuish & Fagan, 2018; 

Melhuish et al., 2020) and binary operations (e.g., Melhuish et al., 2020) at various levels. In this 

paper, we take a slightly different approach by considering how an undefined concept, sameness, 

appears across math. Specifically, we address the following research question: What connections 

do algebraists see between sameness in abstract algebra courses and other math content?  

Literature Review and Theoretical Perspectives 

From the beginning of students’ mathematical experiences, they are introduced to the notion 

of mathematical equality. Students are directed to attend to equal counts of objects already in 

Kindergarten (National Governors Association Center for Best Practices, 2010, p. 11) and 

continue utilizing notions of equality throughout their mathematical careers. Despite the 

centrality of equality to mathematics, students do not always have a conceptual understanding of 

equality. Multiple studies have examined students’ conceptions of equality and have connected 

students’ modes of understanding to their ability to do algebra (e.g., Alibali et al., 2007; Kieran, 

1981). Specifically, students’ ability to manipulate expressions while maintaining equality is 

aided by understanding equations as two expressions that relate to each other in a specific way 

instead of viewing the equal sign as an indication to compute something (Alibali et al., 2007). As 

students mature mathematically, notions of sameness are expanded from equality to congruence 

in geometry and verifying equivalence in trigonometric expressions (e.g., sin2 𝜃 + cos2 𝜃 = 1).  

As students reach college mathematics, more complex ideas of equivalence arise such as 

isomorphism and homomorphism in abstract algebra. While some research has examined 

students’ methods of verifying isomorphism (e.g., Dubinsky et al., 1994; Leron et al., 1995; 

Melhuish, 2018), recent work has examined students’ understanding of isomorphism and 

homomorphism in other ways. For example, Hausberger (2017) considered how students 

understand “structure-preservation” of homomorphisms and other authors have examined 

isomorphism and homomorphism through the lens of conceptual metaphors (e.g., Melhuish et 

al., 2020; Rupnow, 2017; 2019).  

However, work on mathematicians’ views of isomorphism and homomorphism remains 

limited. Weber and Alcock (2004) highlighted algebraists’ notions of isomorphism as meaning 
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groups were “essentially the same” (p. 218) or that groups being isomorphic meant “one group 

was simply a re-labelling of the other group” (p. 218). When speaking with algebra instructors, 

we have found four major categories of metaphors used to describe isomorphism or 

homomorphism: mappings, sameness, sameness/mapping, and formal definition (Rupnow, 

2021). Nevertheless, the prevalence and extent to which algebraists connect isomorphism or 

homomorphism to other notions of sameness in math and how such connections are made in 

instruction are unknown. 

A pair of theoretical lenses for examining how knowledge in different contexts might be 

connected comes from Lobato (2012). In her paper, Lobato contrasts the mainstream cognitive 

perspective on transfer with actor-oriented transfer (AOT) and highlights places in which each 

can be effective. The mainstream perspective characterizes transfer as “how knowledge acquired 

from one task or situation can be applied to a different one” (Nokes, 2009, p. 2) and generally 

takes an observer’s perspective: an outside party determines whether or not transfer of some 

“desired” knowledge occurred. In contrast, AOT characterizes transfer as “the generalization of 

learning, which can be understood as the influence of a learner’s prior activities on her activity in 

novel situations” (Lobato, 2012, p. 233). Thus, AOT instead takes an actor’s perspective, where 

any expansion in the use of knowledge is viewed as transfer, even if the “desired” knowledge 

was not what transferred. Both of these perspectives can be useful in examining which concepts 

of sameness mathematicians transfer from lower-level classes through abstract algebra. 

Methods 

Data was collected via a survey that was sent to every 4-year college or university math 

department that offers abstract algebra in the United States. This survey addressed how 

algebraists think about sameness in general and in specific mathematical contexts. Participants 

were 197 mathematicians from 173 institutions who had taught at least one abstract algebra or 

category theory course in the last five years. For this paper, only the following three open-ended 

questions regarding sameness connections will be discussed: 

1. Which abstract algebra topics lend themselves to deepening students’ understanding 

of mathematical sameness? 

2. What connections do you see between sameness in abstract algebra and in prior math 

courses? 

3. What sameness connections between abstract algebra and other courses do you (or 

could you) help students make when teaching? 

These were the last non-demographic questions asked in the survey. Prior questions had asked 

about participants’ broad views of sameness in math as well as their specific views about 

isomorphism and homomorphism. We noted that many participants answered questions 2 and 3 

similarly or referenced their answer to question 2 in their answer to question 3. For this reason, 

these two questions were grouped together for analysis.  

Two independent coders used thematic analysis (Braun & Clarke, 2006) which included 

multiple iterations of coding (Anfara et al., 2002). First, responses were open-coded using 

descriptive coding (Saldaña, 2016) for words indicating any connection to sameness. For 

questions 2 and 3, an effort was made to also code the particular course in which the sameness 

connection was made. Responses could receive multiple codes. Any discrepancies between the 

two coders were discussed before coming to an agreement. Second, codes were organized 

according to theme. Third, responses coded within a given theme were examined as a group for 

consistency within the theme and to determine trends in general ideas captured by particular 

codes. Finally, the above steps were repeated to refine the codes and assure consistency. 
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Results 

Connections to Sameness in Abstract Algebra 

This section involves codes related to the following survey question: “Which abstract algebra 

topics lend themselves to deepening students’ understanding of mathematical sameness?” The 

list of codes and number of participants who were coded in such a way are presented in Table 1. 
 

Table 1: Connections to Sameness in Abstract Algebra 

Category Code Participants 

Equivalence Relations 

Equivalence relation 29 

Bijection 7 

Isomorphism 113 

Automorphism 3 

Homomorphism 47 

Quotients 37 

Modular Arithmetic 13 

Group Actions 5 

Fundamental Theorems 23 

Organization/Schema 
Category Theory 9 

Classification Theorems 20 

Broad Statements 
No connections 5 

Everything 13 

 

Equivalence relations. The majority of participants answered this question by referencing an 

equivalence relation or sets of equivalence classes. Several mentioned equivalence relations 

explicitly, e.g., “Equivalence classes. They are the essence of elemental sameness. Once 

[students] understand that different elements can be the same (under the right lens), then it comes 

naturally to view structures as being the same.” Codes related to examples of equivalence 

relations were broken into three subcategories: renaming, structure loss, and relating the two. 

Renaming. This subcategory involves codes related to a simple renaming of a structure: 

bijection (renaming sets), isomorphism, and automorphism (renaming algebraic structures). 

Although there is some debate in the literature about the level of equivalence implied by a 

renaming (Mirin, 2019), renaming (and its cousin relabeling) have previously been documented 

as ways mathematicians describe isomorphism (Rupnow, 2021; Weber & Alcock, 2004). 

The most common code to appear in answers to this question was isomorphism, being 

mentioned by 113 participants (57%). Some suggested that isomorphism and sameness were 

linguistically interchangeable in the context of abstract algebra, e.g. “I want my students to think 

of ‘the same’ as ‘isomorphic.’” Indeed, many highlighted its centrality to the study of algebra: 

Arguably, the concept of isomorphism is central to everything in the course. The whole 

point of teaching it to undergraduates is to help them see that the numbers and operations 

they grew up with are actually instantiations of more universal properties of a wide range 

of mathematical objects...that some of their intuition about the way numbers work 

translates into theorems about other cool objects. 

Structure loss. This subcategory involves codes related to sameness that may involve some 

structure loss: homomorphism, quotients, modular arithmetic, and group actions. For example, 

many participants mentioned homomorphisms to refer to sameness of parts of structures. Often, 

2021 Research in Undergraduate Mathematics Education Reports 240



participants noted that the sameness here lies in the relationship to quotients: “Homomorphism is 

useful in that it says something about being structure-preserving and you can find sameness in 

the fibers.” In fact, one participant discussed the idea of quotients as an opportunity to explore 

and make precise various notions of sameness: 

In examining the fundamental set theoretic construction of passing from a set with an 

equivalence relation to the quotient set (set of equivalence classes) we have occasion to 

pay attention to different but related concepts: “two elements of X are the same”, “two 

elements of X are equivalent”, “two equivalence classes in X are equal.”  This should 

help the students to understand that there are different concepts related to “sameness” that 

need to be understood precisely. 

Relating the two. This subcategory includes the code fundamental theorems, which refers to 

what are commonly called “the isomorphism theorems” and/or “the fundamental homomorphism 

theorem.” This family of theorems provides a bridge between two types of sameness discussed 

above: isomorphism and homomorphism. The theorems involve using a homomorphism between 

groups to create an isomorphism between related groups and using isomorphisms to reinterpret 

quotients, thereby permitting both loss of some structure and a renaming of subparts to occur. 

For example, one participant mentioned “the idea of the first isomorphism theorem, that 

[homomorphisms] are the same concept as quotient groups.”  

Organization/schema. Codes in this category give a way of classifying ideas about 

sameness in abstract algebra. For example, category theory provides general language with 

which to talk about structures and morphisms beyond just abstract algebra and can be used to 

define sameness more generally: “I introduce a little bit of category theory… to emphasize the 

‘context independent’ way to say when two objects are the same.” The code classification 

theorems is also categorized here because these types of theorems give a way to organize 

algebraic structures according to isomorphism classes or other broader classes. 

Broad statements. A small number of participants were coded as no connections when they 

indicated that the idea of sameness was not well-defined enough for them to identify it with 

concepts from abstract algebra, e.g., “There is no such thing as mathematical sameness outside of 

specific context.” In contrast, others were given the code everything when they indicated that all 

of the concepts in abstract algebra are related to sameness in some way, e.g., “All of them, in a 

sense. In all of algebra, the point is to distinguish between features that matter and features that 

don’t.” This idea of sameness being dependent on context was something that was frequently 

mentioned in answers to the questions featured in the next section. 

Connections to Sameness in Other Courses 

This section involves codes based on answers to the following survey questions: (1) “What 

connections do you see between sameness in abstract algebra and in prior math courses?” (2) 

“What sameness connections between abstract algebra and other courses do you (or could you) 

help students make when teaching?” The list of codes and number of participants who were 

coded in such a way are presented in Table 2. 

Equivalence relation. The explicit mention of equivalence relations appeared more often in 

reference to other math courses than in answers to the abstract algebra specific question. This is 

likely because, as some participants pointed out, equivalence relations are often students’ first 

experience with sameness beyond literal equality: 

The best reference point I can think of that most students will have had is the idea of an 

equivalence relation - we sometimes use an equivalence relation to regard two objects as 

the “same” (or related) even if they are not precisely the same object in the domain of the 
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relation.  But abstract algebra takes that view of objects and applies it to entire structures, 

which themselves are composed of many objects. 

Codes for specific types of equivalence relations are split up into the two subcategories below, 

which are analogous to the renaming and structure loss subcategories from the previous section. 
 

Table 2: Connections to Sameness in Other Courses 

Category Code Participants 

Equivalence 

Relations 

Equivalence relation 49 

Bijection 26 

Identities 4 

Equality 14 

Arithmetic—representations of numbers 21 

Geometry—congruence/isometry 31 

High school algebra—algebraic manipulation 5 

High school algebra—log/exponential function 10 

Calculus—limit 7 

Calculus—change of variables 3 

Calculus—coordinates  2 

Linear algebra—change of basis 7 

Linear algebra—isomorphism 26 

Graph theory—isomorphism 9 

Differential geometry—diffeomorphism 6 

Topology—homeomorphism 20 

Functions--one-to-one/onto 6 

Modular arithmetic 23 

Geometry—similarity 17 

High school algebra—graph transformations 3 

Calculus—derivatives and antiderivatives 18 

Differential equations—solving differential equations 4 

Linear algebra—transformations/homomorphisms 25 

Linear algebra—similar matrices 7 

Linear algebra—RREF 4 

Topology—continuous maps 3 

Analysis—almost everywhere 3 

Language/ 

Organization/Schema 

Category theory 13 

Proof techniques 7 

Broad Statements 
No connections 10 

Deepen understanding of sameness 53 

 

Renaming/change of perspective. This subcategory involves codes related to a renaming of 

an object or a change of perspective that does not change the object itself. Some codes included 

here are direct analogs to abstract algebra’s isomorphism that appear in the undergraduate 

curriculum, such as linear algebra—isomorphism, graph theory—isomorphism, or topology—

homeomorphism. These are all fairly obvious connections to make, though some pointed out that 

the notions of isomorphism that students tend to see prior to abstract algebra are much more 
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straightforward. For example, one participant noted: “Sometimes there is a graph theory unit in a 

discrete mathematics course, but somehow that’s still too intuitive. (Isomorphic graphs don’t 

really look like different objects...someone just drew them a little differently.)” 

Others reached further back in the curriculum and included examples from high school (e.g., 

geometry—congruence/isometry) or elementary school (e.g., equality, identities). An interesting 

connection that many made was to arithmetic—representations of numbers, where participants 

pointed out that equivalent fractions can be reinterpreted as sets of equivalence classes. Still 

others made connections to renamings that provide a clear change of perspective or additional 

insight, such as linear algebra—change of basis: “For example, most students are familiar with 

change of basis before taking abstract algebra, and understand that using different coordinates (in 

calculus also) makes the problem look different, but is mathematically equivalent.” 

Structure loss/change of object. This subcategory involves codes related to sameness that 

may involve some structure loss. For example, many made the connection to linear algebra—

transformations/homomorphisms, which are a direct analog of homomorphisms in abstract 

algebra. Others mentioned modular arithmetic as one of the first places where students see more 

abstract notions of sameness and suggested it as a starting point for equivalence classes and 

quotients: “Modular arithmetic is really ‘the same’ as arithmetic on quotients (groups, rings, etc), 

so whenever we have a quotient, we should be able to define a modular arithmetic.” One 

interesting connection was to calculus—derivatives and antiderivatives, where participants noted 

an antiderivative is actually an equivalence class of functions that all have the same derivative. 

Language/organization/schema. Codes in this category give a way of organizing and 

thinking about ideas of sameness within and across disciplines, such as category theory. One 

participant noted that “most (possibly not all) [connections to sameness] are captured by 

morphism-related notions in a suitable category.” The code proof techniques is also categorized 

here because the language and techniques used to write mathematical proofs provide ways to 

think about mathematical objects across disciplines. 

Broad statements. A large number of participants (53 participants, 27%) indicated that 

abstract algebra is an opportunity for deepening understanding of sameness, although many did 

not explicitly state that they make attempts to deepen this understanding with their students. 

Some participants coded here said that the ideas of sameness in abstract algebra generalized or 

made more precise earlier concepts of sameness, e.g., “I think that students have to take a 

somewhat more liberal view of ‘sameness’ in abstract algebra than in most prior math courses.” 

Others stated that the idea of sameness is a thread that shows up throughout math, only with 

changes to what count as relevant characteristics: 

Emphasizing that “sameness” is context-dependent: what is and what is not “the same” 

depends on what we consider to be important for our purposes. I encourage [students] to 

keep an eye out for this in other courses and contexts, and to try to figure out what [are] 

the “essential characteristics” that are important in any given subject. 

Again, some participants indicated that they do not focus on sameness or are not sure what 

connections they can make to sameness. Others indicated that they believe that abstract algebra 

is students’ first encounter with the idea of sameness, saying things like “I don’t think we have 

previously covered sameness in a way that would shed light on the topic.” 

Discussion 

 Participants tended to equate sameness with concepts based on equivalence relations. 

Isomorphism was the most frequently mentioned abstract algebra concept that was linked to 

sameness, and homomorphism was a distant second. While this may be partially explained by 
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prior questions in the survey directly asking about isomorphism and homomorphism, the fact that 

so many participants voluntarily cited them again and cited related concepts in other subjects 

suggests some importance placed on isomorphism and, to a lesser extent, homomorphism.  

Codes classified as renaming, including geometry—congruence/isometry, linear algebra—

isomorphism, bijection, and arithmetic—representations of numbers, were the most common 

connections to other courses. While it is not surprising that individuals would highlight 

analogues of isomorphism, especially in another form of algebra, the variety of specific types of 

renamings and the number of connections to K-12 topics were surprising. 

Codes in the structure loss subcategory were mentioned less often than those in the renaming 

subcategory. This is likely because codes there refer to similar objects that may have some 

properties or partial structure in common, but do not share as many properties or structure as the 

renaming examples. These included connections to transformations in linear algebra, modular 

arithmetic (number theory/discrete math) or antiderivatives (calculus).  

A few mathematicians resisted making sameness connections, suggesting that isomorphism 

was a “richer” type of sameness than students experienced previously. However, this opinion 

was expressed by a clear minority of respondents. In contrast, roughly a quarter of respondents 

viewed abstract algebra as deepening students’ understanding of sameness and made connections 

to a variety of prior math content, suggesting a view that sameness permeates mathematics. 

While some participants only highlighted “obvious” examples of sameness, many made 

connections across multiple branches and/or levels of mathematics, suggesting sameness is 

relevant to much of the math curriculum. This highlights the importance of students transferring 

prior knowledge and experiences with sameness to the new contexts of isomorphism and 

homomorphism in abstract algebra (e.g., Lobato, 2012). However, the extent to which students 

transfer this knowledge independently or based on explicit classroom experiences remains an 

open question. Prior research in analysis (e.g., Wasserman et al., 2018) suggests that pre-service 

teachers are more likely to connect fully formed explanations to future teaching than general 

concepts. However, they also acknowledge that their pre-service teachers may not have 

“developed the web of connections to appreciate the conceptual insights that the explanations in 

our study (and perhaps real analysis in general) may provide” (p. 87). We suggest that taking a 

larger grain size, such as examining sameness across mathematics, may provide a way to create 

the “web of connections” necessary to support students’ transfer of big ideas across courses.  

Conclusions and Future Work 

In this study, we used actor-oriented transfer (AOT) to examine what mathematicians 

transferred across contexts with respect to sameness (Lobato, 2012). In accordance with 

mainstream transfer (Lobato, 2012), we also laid a foundation for future research by soliciting 

mathematicians’ views of what “should” transfer across contexts. Specifically, future research 

can examine what notions of sameness students are already transferring independently or based 

on instruction. Furthermore, some mathematicians did not claim to explicitly connect notions of 

sameness in abstract algebra while others did. Future research could examine how connections 

are made in class and see if some methods are more effective for encouraging transfer than 

others. In so doing, we hope to help math majors make meaningful connections across their 

studies and better prepare students to apply their knowledge flexibly in their future careers. 
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Students have demonstrated difficulties in adopting the various techniques of proof in
their upper-level mathematics coursework. One of these techniques of proof which
students struggle with is mathematical induction. In this paper, we present an analysis of
three groups of students in an Introduction to Proofs course as they made sense of and
analyzed two sample induction arguments. To aid in our analysis, we utilized Stylianides'
(2007) definition of proof with three components (accepted statements, modes of
argumentation, modes of argument representation) to describe the components of proof
students focus upon when they encounter induction arguments for the first time in an
Introduction to Proof course.

Keywords: Mathematical Induction, Intro to Proof, Proof, Proving

While the transition to formal proof is difficult for many (Moore, 1994; Harel &
Sowder, 2007; Stylianides et al., 2017), students have shown that there are unique
challenges to adopting individual techniques of proof (e.g., direct proof, contradiction).
One of these techniques of proof which can be particularly troublesome for students is
mathematical induction. There are a few potential reasons for students’ trouble. First,
induction relies on the well-ordering principle, which has puzzled mathematicians into
the 20th century (Hellman, 2010). Second, and potentially more importantly to novices of
proof writing, induction uses the conditional statement in unique ways relative to other
techniques of proof (See Table 1), with an embedded conditional as part of the proof
structure (i.e., the induction step) and with the notion that proof by induction is utilized
when proving an infinite sequence of conditional statements. This, combined with
induction’s necessary reliance on a particular example (i.e., the base case), has the
potential to leave students confused about both the form and function (Stylianides et al.,
2007; 2016) of proofs by mathematical induction.
Table 1
Conditional Use Per Proof Technique

Proof Technique Conditional Use
Direct Proof P → Q
Proof by Contraposition ~Q → ~P
Proof by Contradiction (P and ~Q) → F
Mathematical Induction [P(1)] and [P(n) → P(n+1)]
Disproof by Counterexample T → F

Studies on students’ use and understanding of mathematical induction are limited.
Students have expressed that proofs by mathematical induction lack explanatory power
(Stylianides et al., 2007), although Stylianides and colleagues (2016) found that students’
example use promoted such understanding when proving conjectures with mathematical
induction. In regards to the components of mathematical induction, students have
demonstrated a lack of understanding about the necessity of the base case (Dubinsky,
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1986; 1990; Stylianides et al., 2007), and use circular reasoning when describing the
inductive hypothesis (Harel, 2001; Palla et al., 2012). Stylianides and colleagues (2007)
surveyed over 100 preservice elementary and secondary mathematics teachers and
analyzed their response to two sample induction arguments as to whether or not the
proofs were mathematically valid.  In their conclusion, the authors suggest that the two
tasks that they used in their survey could also potentially be used within classroom
contexts and that future research would benefit from investigating such in-class
experiences with the tasks. We continue their line of research by investigating
small-groups of students in an Introduction to Proof course as they work together to
evaluate two sample induction arguments. Our goal is to understand, within a natural
classroom setting, how students make decisions about mathematical induction. In
particular, we seek answers to the following research question: When students are asked
to evaluate sample proofs by mathematical induction, what do they base their decisions
upon with respect to whether the induction argument is valid?

Theoretical & Analytic Framework
In order to frame the ways in which students evaluate and make sense of induction

proofs, we utilized Stylianides’ (2007) description of mathematical proof, which is parsed
into three categories: (i) Set of Accepted Statements; (ii) Modes of Argumentation; and
(iii) Modes of Argument Representation (p. 292). Our adaptation is summarized in Table
2 below.
Table 2
Proof Component Framework and Description (Stylianides, 2007, p. 292)

Stylianides Definition Example Quotes: Group Proving

Set of Accepted
Statements (S)

● Definitions, axioms, theorems
● Prior proven results

Billy: “I think it's important to look at the base
case. So we should check to make sure it works
for N equals one.”

Modes of
Argumentation (A)

● Modus ponens/ Modus tollens
● Listing of all possible cases (if finite), or

methods like contradiction, contrapositive,
induction

● Logical derivations of statements

Zoren: “I'm saying you move to K plus one, the
left side is multiplied by something, K plus one
has to be greater than five. I mean, that's the left
side, the right side. You're just multiplying it by
two.”

Modes of Argument
Representation (R)

● Language to describe arguments
● Physical representation of arguments (i.e.

pictorial or symbolic representation)

Billy: “It looks like a good proof. It does look
like it works out due to the algebra. But they
didn't check the very starting case. “

We used this framework as a way to categorize the statements made by students as
they worked in small groups to evaluate sample induction arguments. Our coding allowed
us to determine if students were basing their decisions upon accepted statements, modes
of argumentation, and/or modes of argument representation. Through categorizing
student responses in this way, we hoped to better understand what students find most
relevant in their process of evaluating sample induction arguments.

Methodology
Task & Participants

The data for this study came from the 1st Author’s (in progress) dissertation data on
undergraduate students in an Introduction to Proofs course as they completed small-group
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proving tasks. The study took place at a large, public university, in the southeast United
States. Of the 11 students in the study, 2 were women and the remaining 9 were men, and
all students were either majoring or minoring in mathematics. The small-group proving
task used in this study was modified from Stylianides et al. (2007) study on preservice
teachers' understanding of proofs by mathematical induction. The task (replicated in
Figure 1) prompted students to discuss two sample induction arguments and to explain
why or why not the given arguments prove the stated claims. The task differs from
Stylianides et al. (2007) in that the students were not asked to choose from a list of
predetermined options on the proof’s validity.
Figure 1
Sample Induction Arguments

Students in this course had already been introduced to direct and indirect modes of
proof, but were yet to be introduced to mathematical induction. Before class, students
were asked to examine the two sample arguments and to be ready to discuss their initial
thoughts. Prior to launching this task, the instructor (3rd Author) introduced students to
the definition of mathematical induction shown in Figure 2.
Figure 2
Definition of Mathematical Induction Presented to Students

Students then connected this definition to the domino analogy and graphic of S(1) → S(2)
→ … S(K) → S(K+1) →.... Thus, we were able to analyze students' initial conceptions
and understandings of mathematical induction, whether they recognized the components
of mathematical induction and could connect them to the definition, and whether they
found this argument form convincing.
Data Analysis
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Three videos, 19 minutes each, were transcribed by talk turn where small groups of
students (3-4 students each) analyzed the induction arguments outlined in Figure 1. The
three authors then independently applied Stylianides’ (2007) framework (described
above) to code each talk turn, where applicable. Each line could be coded with any
combination of the three modes described in Stylianides’ frame, and we decided to code a
line if students appeared to be making a comment, asking a question, or making a
decision related to the set of accepted statements (S), the modes of argumentation (A) or
the modes of argument representation (R). After independent coding, the three authors
met to come to unanimous agreements on each talk turn’s code.
Limitations

This introduction to proof course was conducted entirely online due to Covid-19. As
such, students worked in groups through their personal computers in Zoom breakout
groups. We feel that this may have had an impact on their discussion when analyzing the
sample arguments, as the difficulties of online learning and writing of proof are unknown.
Further, no students were interviewed regarding their discussions and understanding of
induction. We may have interpreted some student interactions in a manner different than
they intended.

Results
We present the results for this study in two sections. First, we show how the various

groups responded to Argument 1, in particular highlighting how they made sense of the
base case (or lack thereof). Next, we present the various groups' responses to Argument
2, in particular highlighting how the groups of students made sense of the inductive step.
Students in this study discussed the base case (for argument 1) in two main ways: (a) as
something that needed to be confirmed as part of a checklist for performing mathematical
induction, and (b) as a specific example that can aid in determining the truth value of the
given claim.  Likewise, students in this study focused on certain aspects of the inductive
step (in argument 2): (a) algebra and the inductive hypothesis, and (b) why they switch
variables between “N” and “K”.
Base Case Theme 1: Confirming the Base Case: A Checklist

The first sample argument which students were asked to analyze is one for which the
claim is not true, and the proof is also missing the base case. A student (or group of
students) in all three groups recognized both of these inaccuracies in the proof and
conjecture. Table 3 shows the percentage of the talk turns related to the base case in
Argument 1 that were coded as S, A, or R.
Table 3
Percentage of talk turns related to the base case in Argument 1 coded as S, A, or R

S A R # Talk Turns in Arg 1 Related to Base Case

Group 1 43 57 0 7

Group 2 36 93 0 14

Group 3 39 77 31 13

In our analysis, we found that students’ discussions around the first sample argument
relied heavily on sets of accepted statements (S), seeing the base case as a necessary step
to check from the given definition of induction as opposed to the first true statement in an
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infinite series of implications (i.e., S(1) → … → S(K) → S(K+1) → …). Example quotes
from the various groups with this checklist-type language are shown in Table 4.
Table 4
Student Checklist-Type Language Quotes

Group 1 - Zoran Group 1- Eliza Group 2 - Taylor Group 3  - Billy

Student
Quote

For induction proof, you
have to start with proving
like the N equals one case
and then the N equals one
case is false. So you can't
even go on from there.

I think the first
one is false
because they
didn't check for a
base case.

Well, I don't
know.... Aren't you
supposed to prove
the first step is true
and then prove K.
And then..

I think it's
important to look at
the base case. So
we should check to
make sure it works
for N equals one

Base Case Theme 2: Disproving by Counterexample
While discussing the base case in Argument 1 some students also noted that the

statement is not true in general. These discussions are shown in Table 5. Here their talk
was different than when discussing the lack of a stated base case, as their attention turned
to the validity of the claim given an initial value (e.g., n=1; n=4). In these instances,
students argued that the given argument could not be a valid proof because the claim
itself could be shown to be false through a single counterexample.  Note, this rationale
for why the proof is invalid does not require any understanding of proof by mathematical
induction; however, the need that students felt above to check the base case within a
proof by induction allowed students to quickly discover that the given claim was indeed
false for that case (and hence in general).
Table 5
Students Disproving by Counterexample

Group 1 - Zoran Group 2 - Alex Group 3- Billy and Tim

Student
Quote

So I looked up the first one and it's not
even true when you plug in
values...Like I mean, if you plug in
n=4, it will be 1+3+5+7, and that
1+3+5+7 is equal to 16, but if you look
at the right side, n^2+3 is equal to 19.
So without even thinking if it counts as
induction, the statement is not even
true. It's not true for n=1 either.

Yeah, and I
don't really
think there's a
way to modify
it to make it a
proof because
the statement is
not true.

Tim: Does it work at [one] though?

Billy: No, because would have to equal1
12 + 3.

Tim: Yeah, so is the whole thing just false
then?

Billy: Yes.

Inductive Step Theme 1: Algebra and the Inductive Hypothesis
The second proof, a valid proof by mathematical induction, caused students to have

some unique trouble. In particular, two of the groups had a detailed discussion about their
struggle to understand the logical steps of the inductive hypothesis, similar to the results
of Stylianides et al., (2007). Table 6 shows the percentage of the talk turns related to the
inductive step in Argument 2 that were coded as S, A, or R.
Table 6
Percentage of talk turns related to the inductive step in Argument 2 coded as S,. A, or R

S A R # Talk Turns
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Group 1 50 75 16.67 12

Group 2 85.71 71.43 14.23 7

Group 3 25 100 100 4

In this table we see the heavy reliance on both “S” and “A” for groups 1 and 2.  In
both of these groups, there seemed to be a tension between the logical and algebraic steps
(A) and whether the argument satisfied the criteria for induction (S) with respect to the
inductive step. For example, consider the following exchange between members of
Group 1 as they worked together to determine if the inductive step was satisfied:

Eliza: I think they want you to assume that you're going to be using some additional power of two.
I think is the assumption that they're making here and why it's OK for them to say that K+1 is
greater than two, that you can replace K+1 with two, because the assumption is on the right hand
side, we're operating with powers of two.
Zoren: I mean, say, like the left hand side is like four and the right hand side is three. If you
replace that three with something smaller, it doesn't change whether the equality is true or false? I
guess that is the idea.
Eliza: Yeah.. That's I think that's part of it.
Zoren: My question was like, so what if it's like three? Three is greater than four? And then you
replace four with like two or something smaller. That would definitely change it from false to true.
I guess. So, like switching something on the right hand side does. It could change the truth value.
In this exchange we see the group trying to make sense of whether or not these

algebraic manipulations are logically valid (i.e., focusing on “A”). To these students,
there seems to be a tension between the logical and algebraic steps (A) and whether this
satisfies the accepted criteria for induction and the inductive step (S). To Zoren, it is not
clear that each algebraic manipulation is its own implication statement. We observed this
issue with other students in the algebraic manipulations and assumptions of the inductive
step.
Inductive Step Theme  2: Why Switch Variables?

Table 6 demonstrates that when Group 3 was discussing the inductive step, they were
primarily focused upon “A” and “R.”  The following conversation depicts the team’s
dilemma, considering why a switch from “N” to “K” is useful and/or warranted for a
valid argument by mathematical induction:

Joe: Oh, these two. OK. Over here. I still don't like that, what do you call it, let's say the
problem is written in N. And then the first thing you do is put it a K, then K is equal to N,
I never really understood that like. Why why would you substitute, like wouldn't working
with N be just
Billy: So what's the question.
Joe: I'm just trying to figure out. So. I guess they would. What is it, they had N equals K?
Billy: Yeah
Joe: But I guess that's just like a framing thing, so you can get N=K+1
Billy: Yeah. I mean, I guess it's just so you separate the original argument which had N's
with the ones you're modifying.

In this exchange, we see a tension between the mode of argumentation (A) and mode
of argument representation (R) in the necessity of replacing N with K. We see that the
student, Joe, is focusing on the logic of the substitution (A), while Billy points out that
this is a useful way to make a distinction between the statement of the conjecture and the
representation of the inductive step (R).
Discussion & Conclusion
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We pursued this research in an effort to understand, within a natural classroom
setting, how students make decisions about mathematical induction. By studying
small-groups of students as they worked together to evaluate sample induction
arguments, we were able to gain insight about the students’ decision-making and
sense-making in real time, and through peer-to-peer discourse.  Methodologically, we
found this approach quite revealing in terms of the understandings exposed through peer
discussions.

When analyzing students’ small-group evaluations of Argument 1, we were able to
identify two ways that students discussed the base case: (a) as something that needed to
be confirmed as part of a checklist for performing mathematical induction, and (b) as a
specific example that can aid in determining the truth value of the given claim.  Our
coding scheme brought these two themes to light, as (a) students focused on their
perception of the two-part definition of induction (i.e., check off the base case), which we
captured through our S (set of accepted statements) codes, and (b) students utilized
specific numeric examples, including n=1 from the base case, in order to justify why the
given conjecture must be false, which we captured through our A (modes of
argumentation) codes.

When analyzing students’ small-group evaluations of Argument 2, we identified two
themes in terms of the students’ focus on the inductive step: (a) algebra and the inductive
hypothesis, and (b) why they switch variables between “N” and “K”.  Our coding scheme
was likewise useful in supporting the identification of these themes as (a) students
wrestled with how the algebraic and logical underpinnings of an argument (e.g., debating
the transitivity of inequalities in Group 1), which was captured with A codes, aligned
with the accepted process of the inductive step (i.e., P(k) implies P(k+1)), which was
captured with S codes, and (b) students pondered the utility of substituting “K” for “N” in
terms of the benefit to the argument (A codes) and in terms of the benefit to the
communication and representation of the argument (R codes).

Note that in Stylianides et al. (2007), the authors posit that “by breaking the
boundaries of students’ normal experience, the[se] two tasks set up situations where
procedural knowledge of the induction method is not enough for successful performance”
(p. 164).  Our findings suggest through discussing these tasks with their peers, students
persisted in relying on their understood ritual (procedure) of induction. However, these
tasks also allowed students to make connections beyond their initial procedural
understanding of the definition of induction  (S codes) and to the important aspects of the
argument (A) and the representation of the argument (R). We believe that using such
tasks in classroom discourse, as depicted in this study, could be beneficial as a starting
point for introducing mathematical induction.  We suggest that future research investigate
the possible use of these tasks in classroom settings without first introducing the formal
definition of mathematical induction. In this way, students may be less prone to rely upon
the accepted ritual, and the environment could potentially further students’
non-procedural understanding of mathematical induction.
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Predicting mathematics exam-related self-efficacy as a function of prior achievement, gender, 

stress mindset, and achievement emotions 
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Addressing student affect around assessment is vital, given it is tightly interwoven with 

cognition. This study seeks to describe the relations between exam-specific affect and stress 

mindset in a university mathematics course. Participants (N = 356) completed a survey 

assessing their exam-related self-efficacy, achievement emotions, and stress mindset. The study 

demonstrated significant correlations between a stress-is-enhancing mindset with positive affect 

and a stress-is-debilitating mindset with negative affect. When controlling for prior achievement 

and gender, stress mindset was significant, and student exam-related emotions were dominant in 

explaining exam-related self-efficacy. The results are discussed with opportunities to adapt 

learners’ stress mindset and the development of exam-related self-efficacy.   

Keywords: self-efficacy, achievement emotions, stress mindset, affect, assessment 

It is now well established that student performance on assessment is not exclusively a 

product of their understanding but, additionally, a function of their beliefs and emotions (Zan et 

al., 2006). Therefore, research should address and unpack the relationships between affect and 

cognition, to design mathematics assessments or interventions that promote an equitable 

experience for all students under exam conditions.  

Literature Review 

Self-Efficacy 

Bandura (1997) defines self-efficacy as "the beliefs in one's capabilities to organize and 

execute the courses of action required to produce given attainments" (p. 3). Self-efficacy has 

been demonstrated to be a predictor of academic achievement (Pajares & Graham, 1999; 

Zimmerman, 2000). Reciprocally, in educational contexts, experiences of success positively 

influence the development of self-efficacy while experiences of failure impair it (Usher & 

Pajares, 2009). Since most postsecondary institutions measure students’ progress through 

summative assessment, understanding and operationalizing student assessment-related self-

efficacy is important for researchers and educators. Most research to date focuses on content-

specific self-efficacy when considering assessment but not students’ self-efficacy pertaining to 

context (such as beliefs around their ability to emotionally regulate). University mathematics 

educators do not generally have control over the prior achievement or past assessment 

experiences of students entering the course, so other potential factors that may contribute to 

explaining student self-efficacy to succeed in an exam environment must be investigated.  

Achievement Emotions 

Achievement emotions are emotions experienced by learners, which are related to 

achievement activities or outcomes (Pekrun, 2006). Research has demonstrated that positive 

emotions, like enjoyment, correlate positively with engagement, motivation, and performance, 

and negative emotions, like hopelessness, demonstrate the inverse relationship (Mega et al., 

2014; Peixoto et al., 2017; Pekrun et al., 2017; Pekrun et al., 2019; Schukajlow & Rakoczy, 
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2016). Self-efficacy has been shown to associate positively with positive emotions and 

negatively with negative emotions (Pekrun et al., 2011; Luo et al., 2016). Further, it has been 

shown that high anxiety can undermine self-efficacy (Usher & Pajares, 2009). Pekrun et al. 

(2004) argue that self-efficacy relates to positive test-related emotions. Research is needed to 

understand how greatly students’ emotions in and around mathematics assessments contribute to 

explaining their assessment-related self-efficacy.  

Stress Mindset 

Crum et al. (2013) challenge the view that stress is inherently negative and argue for the new 

construct of stress mindset, which is defined to be the extent of one's beliefs that stress has 

enhancing or debilitating consequences for stress-related outcomes. There is evidence to suggest 

that stress mindset may correlate with performance and the amount of stress psychologically 

experienced (Crum et al., 2013). However, there is limited research that investigates stress 

mindset in educational contexts, and particularly its relationship with affect. Keech et al. (2018) 

report stress mindset directly predicted perceived stress and indirectly predicted academic 

performance. Kilby and Sherman (2016) report a significant negative correlation between 

positive stress mindset with both perceived stress and trait anxiety. They did not find significant 

relationship between stress mindset and mathematics self-efficacy or mathematics anxiety. 

Research is needed to deduce whether assessment-specific stress mindset has relationships with 

achievement emotions and assessment-specific self-efficacy.  

Procedure 

Participants 

This study is a cross-sectional analysis of the first time point in a longitudinal study over the 

course of a semester. The study was conducted during the second semester, 2020 at a major New 

Zealand university in a standard second year service mathematics course, designed to support 

other majors such as computer science, finance, physics, and other sciences. There were 410 

students enrolled in the course at the start of the semester. Out of these, 379 provided their 

consent to the use of their data from the course and 364 consenting students completed the first 

survey. Participants were removed from the analysis if the survey was less than 50% completed 

or demonstrated sufficient evidence of straight-lining (N = 356). Included in the analysis were 

193 students who reported their gender as male, 157 as female, three as gender diverse, and one 

who declined to answer. Missing data was inserted using EM-imputation.  

Measures 

The instruments employed in this study were first subject to pilot testing through a cross-

sectional research design involving the completion of an anonymous survey by a sample of 

university students (N=301) procured through Prolific (a crowdsourcing platform based in the 

UK that pays individuals a nominal fee for participating in research projects). 

Achievement Emotions Questionnaire (AEQ). The AEQ (Pekrun et al., 2011) contains 

five-point Likert items ranging from Strongly Disagree to Strongly Agree designed through the 

lens of the control-value theory to measure achievement emotions. This study focused on four 

emotions – enjoyment, hope, anxiety, and hopelessness. During pilot testing, confirmatory factor 

analysis on the four-factor adapted exam-related AEQ scale suggested the need to incorporate 

the temporal component of exam-related emotions. We proceeded with exam-related before 

emotions and during emotions as separate measurements. Several items were removed and four 
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new items to measure hope and enjoyment during the assessment were introduced, based on the 

multi-component structure of achievement emotions as theorized in the control-value theory 

(Pekrun et al., 2011). Confirmatory factor analysis in this study demonstrated our before model 

offered an acceptable fit (χ/df = 2.627, CFI = .907, RMSEA = .068). The during model was 

acceptable with the inclusion of our four new items (χ/df = 3.067, CFI = .907, RMSEA = .076).  

Measure of Assessment Self-Efficacy (MASE). The development and validation of this 

scale was reported in Riegel et al. (2020). The MASE items were developed following Bandura’s 

(2006) recommendations and were designed to assess the participant’s beliefs in their ability to 

understand, perform, and emotionally regulate while studying for and during an assessment. 

Responses to statements were measured using a slider scale from 1 to 100 (where 1 = Cannot do 

at all, 50 = Moderately sure can do, and 100 = Highly certain can do). Pilot testing supported a 

two-factor model of eight items, with latent factors “performance and comprehension abilities” 

and “emotional regulation”. The model offered an acceptable fit in our study (χ/df = 3.015, CFI = 

.980, RMSEA = .075). Participants in the study responded to the scale under the following 

assessment scenario.  

Mathematics exam scenario  

Imagine that you've enrolled in a mathematics course like Maths 2XX that has a final 

EXAM worth 50% of your final grade. The exam contains short and long answer 

questions. The exam is invigilated and is two hours long.  

Stress and Stress Mindset Measure (SMM). The stress mindset measure (Crum et al., 

2013) measures the extent of participants beliefs that stress is enhancing or debilitating. 

Participants responded on a five-point scale from Strongly Disagree to Strongly Agree. Students 

were prompted with the exam scenario described previously. As this was hypothetical, the verb 

“are” in each statement was rephrased to “would be,” for example, the effects of this stress would 

be negative and should be avoided. Pilot testing suggested that exam-related stress-is-enhancing 

and stress-is-debilitating mindsets were separate latent factors, and that one item should be 

removed from the scale. This two-factor model offered an acceptable fit in our study for exam-

related stress (χ/df = 3.750, CFI = .957, RMSEA = .088). Additionally, we measured stress 

amount through asking participants How stressful do you perceive this mathematics EXAM to 

be? Responses were indicated on a nine-point scale ranging from Not stressful at all to 

Extremely stressful. 

Academic achievement. Self-reported prerequisite grades for the course were collected. 

Research Questions 

• How does stress mindset associate with exam self-efficacy and achievement 

emotions? 

• Do gender or stress mindset make independent contributions to predicting exam self-

efficacy when controlling for prior achievement and emotions?  

• How greatly do achievement emotions contribute to explaining exam self-efficacy 

when controlling for prior achievement?  

Results 

Table 1 presents a summary of the descriptive statistics and correlations of all latent factors.  

We conducted two hierarchical multiple regression analyses to explain the two factors 

comprising exam self-efficacy (performance/comprehension and emotional regulation), 
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Table 1. Descriptive statistics and correlations of latent factors 

Note. **Correlation is significant at the 0.01 level; *Correlation is significant at the 0.05 level; SE = self-efficacy, (B) = before, (D) = during, SMS = stress 

mindset – specific (exam); Prior achievement (9 = A+, 1 = C-); N=356.

Variables M SD α 1 2 3 4 5 6 7 8 9 10 11 12 13 

1. SE - performance 65.19 17.21 .89              

2. SE - emotional 64.45 19.52 .86 .77**             

3. Anxiety (B) 3.34 0.75 .66 -.42** -.45**            

4. Anxiety (D) 2.87 0.88 .86 -.37** -.43** .67**           

5. Hope (B) 3.27 0.67 .79 .55** .52** -.42** -.28**          

6. Hope (D) 3.26 0.67 .73 .55** .50** -.43** -.41** .69**         

8. Hopeless (B) 2.41 0.79 .85 -.51** -.54** .53** .53** -.50** -.52**        

8. Hopeless (D) 2.42 0.70 .85 -.53** -.53** .48** .64** -.41** -.52** .73**       

9. Enjoyment (B) 2.93 0.73 .73 .45** .44** -.43** -.26** .69** .54** -.37** -.31**      

10. Enjoyment (D) 2.96 0.71 .73 .40** .41** -.37** -.33** .56** .57** -.35** -.31** .70**     

11. SMS enhancing 3.11 0.80 .83 .26** .35** -.27** -.20** .33** .29** -.23** -.23** .37** .31**    

12. SMS debilitating 3.11 0.69 .70 -.31** -.41** .42** .38** -.23** -.23** .35** .34** -.31** -.28** -.59**   

13. Stress amount 6.42 1.76 - -.29** -.27** .58** .49** -.30** -.34** .32** .35** -.30** -.29** -.23** .38**  

14. Prior achievement 6.48 2.21 - .38** .29** -.16** -.11* .29** .31** -.28** -.24** .22** .18** .16** -.20** -.12* 
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summarized in Table 2. The full models were statistically significant for both performance and 

comprehension self-efficacy 𝑅𝑎𝑑𝑗
2  = .45, F(13, 338) = 23.21, p < .0005, and emotional regulation 

self-efficacy 𝑅𝑎𝑑𝑗
2  = .44, F(13, 338) = 22.29, p < .0005. Prior achievement, which is known to 

have reciprocal effects with self-efficacy, significantly explained students’ beliefs in their 

performance and comprehension abilities around an exam, 𝑅𝑎𝑑𝑗
2  = .14, F(1, 350) = 58.10, p < 

.0005, though not as greatly for their beliefs they could emotionally regulate during an exam, 

𝑅𝑎𝑑𝑗
2  = .09, F(1, 350) = 33.88, p < .0005. We next included the demographic variable gender (the 

four students who identified as gender diverse or declined to answer were removed from the 

analysis). This variable was not significant for student performance/comprehension self-efficacy 

but made a small contribution of 𝑅𝑎𝑑𝑗
2  = .01, F(1, 349) = 4.40, p = .037 to explaining emotional 

regulation self-efficacy, with females feeling slightly less efficacious.  

The third step added stress mindset as variable. A stress-is-debilitating mindset made a 

significant contribution to explaining both factors, whereas stress-is-enhancing was only 

significant for self-efficacy around emotionally regulating. Overall, stress mindset led to a 

significant increase for performance/comprehension self-efficacy in 𝑅𝑎𝑑𝑗
2  of .06, F(2, 347) = 

14.84, p < .0005, and to emotional regulation self-efficacy in 𝑅𝑎𝑑𝑗
2  of .13, F(2, 347) = 32.22, p < 

.0005. After this we included stress amount during an exam, which significantly increased 

performance/comprehension self-efficacy in 𝑅𝑎𝑑𝑗
2  by .03, F(1, 346) = 12.25, p = .001, and 

emotional regulation self-efficacy in 𝑅𝑎𝑑𝑗
2  by .01, F(1, 346) = 5.73, p = .017.  

The next four steps added the four different emotions (anxiety, enjoyment, hope, and 

hopelessness). The anxiety experienced before and during an exam were both significant, and 

resulted in increases of 𝑅𝑎𝑑𝑗
2  by .06, F(2, 344) = 15.25, p < .0005 for performance/ 

comprehension self-efficacy and 𝑅𝑎𝑑𝑗
2  of .08, F(2, 344) = 19.26, p < .0005 for emotional 

regulation self-efficacy. Enjoyment made a significant contribution to both performance/ 

comprehension self-efficacy of 𝑅𝑎𝑑𝑗
2   of .06, F(2, 342) = 16.01, p < .0005 and emotional 

regulation self-efficacy by 𝑅𝑎𝑑𝑗
2  of .04, F(2, 342) = 14.23, p < .0005. However, only enjoyment 

before an exam was significant. Hope increased self-efficacy for both performance/ 

comprehension by 𝑅𝑎𝑑𝑗
2  of .07, F(2, 340) = 22.19, p < .0005 and emotional regulation by 𝑅𝑎𝑑𝑗

2  of 

.05, F(2, 340) = 14.49, p < .0005. Only hope experienced before an exam was significant for 

explaining emotional regulation self-efficacy. Finally, hopelessness also significantly contributed 

to the model for performance/comprehension self-efficacy by 𝑅𝑎𝑑𝑗
2  of .03, F(2, 338) = 32.22, p < 

.0005 and for emotional regulation self-efficacy by 𝑅𝑎𝑑𝑗
2  of .03, F(2, 347) = 10.36, p < .0005. For 

both variables, only hopelessness experienced during the exam was significant.  

In the final models, prior achievement, hope before an exam, and hopelessness during an 

exam are significant predictors of exam self-efficacy. The final model of emotional 

regulation self-efficacy is also significantly explained by a stress-is-debilitating mindset.  

Discussion 

This study first sought to understand the relationship between exam self-efficacy, stress mindset, 

and emotions. The correlations between variables were in line with existing literature and theory. 

Self-efficacy correlated positively with positive emotions and achievement, and negatively with 

negative emotions and stress amount. As expected, a stress-is-debilitating mindset correlated 

positively with the reported amount of stress experienced, while a stress-is-enhancing mindset 

correlated negatively (Crum et al., 2013). Additionally, our results show that a stress-is- 
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Table 2. Hierarchical regression coefficients for exam self-efficacy 

Note. ***p < .0005; **p < .005; *p < .05; (B) = before, (D) = during, SMS = stress mindset – specific (exam), N = 352.

 β for exam performance and comprehension self-efficacy β for exam emotional regulation self-efficacy 

Variable Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 

Prior achievement .38*** .38*** .33*** .32*** .30*** .27*** .19*** .17*** .30** .31*** .23*** .22*** .21*** .18*** .12* .09* 

Gender  -.06 -.06 -.05 -.01 -.02 .02 .01  -.12* -.11* -.11* -.06 -.07 -.05 -.06 

SMS enhancing   .11 .11 .10 .03 -.03 -.02   .18** .18** .17** .10 .06 .07 

SMS debilitating   -.18** -.12 -.04 -.05 -.11* -.08   -.25*** -.21** -.12* -.13* -.18** -.14* 

Stress amount    -.18** -.02 .00 .03 .02    -.12* .05 .07 .09 .08 

Anxiety (B)     -.22** -.12 -.09 -.09     -.19** -.11 -.08 -.06 

Anxiety (D)     -.14** -.14* -.10 .04     -.20** -.19** -.17** -.05 

Enjoyment (B)      .20** .03 .04      .17* .02 .03 

Enjoyment (D)      .11 .01 .03      .12 .05 .07 

Hope (B)       .27*** .23**       .26*** .21** 

Hope (D)       .19** .12       .11 .04 

Hopeless (B)        -.04        -.12 

Hopeless (D)        -.25***        -.17* 

𝑅𝑎𝑑𝑗
2  .14*** .14*** .20*** .23*** .29*** .35*** .42*** .45*** .09*** .10*** .23*** .24*** .32*** .36*** .41*** .44*** 

Δ𝑅𝑎𝑑𝑗
2   .00 .06*** .03** .06*** .06*** .07*** .03***  .01* .13*** .01* .08*** .04*** .05*** .03*** 
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enhancing mindset correlated positively with exam self-efficacy, positive achievement emotions, 

and prior achievement, and negatively with negative emotions, while stress-is-debilitating did the 

opposite. These correlations provide motivation to further investigate if stress mindset 

contributes to shaping exam-related beliefs and emotions, which in turn influence students’ 

performance and experience of mathematics.   

We also sought to understand the role of gender and stress mindset for exam self-efficacy 

when controlling for prior achievement. Nearly 50% of all exam self-efficacy variance is 

explained by prior achievement, stress mindset, and student emotions. Prior achievement is a 

known predictor of academic self-efficacy, however, our study indicates that it is not as great a 

predictor of students’ beliefs they can emotionally regulate in exam conditions as it is for the 

belief in their ability to understand and perform. This could mean that repeated experiences of 

success do not as greatly develop beliefs they can remain calm or optimistic in the face of 

assessment, suggesting it may be important to separately address students’ affect on assessments. 

Gender accounted for a small but significant decrease in self-efficacy for women around 

emotional regulation. This distinction between performance/comprehension self-efficacy and 

emotional regulation self-efficacy may contribute to explaining why there have been mixed 

findings with this relationship historically (Hackett & Betz, 1989).  

Stress mindset made a meaningful contribution to explaining both self-efficacy factors when 

controlling for prior achievement and gender, but more greatly for the emotional regulation 

factor of self-efficacy. A stress-is-debilitating mindset remained significant in the final model for 

explaining this factor. Self-efficacy has been shown to have reciprocal effects with academic 

achievement but can be slow to change through methods such as the accumulating mastery 

experiences. On the other hand, stress mindset has been shown to be malleable through short 

video interventions (Crum et al., 2013; Crum et al., 2017). Manipulating students away from a 

stress-is-debilitating mindset may provide a realistic opportunity to develop exam-related self-

efficacy more rapidly. This would need to be investigated through a longitudinal study to 

determine if there is a causal relationship.  

Finally, we were interested in the contribution of emotions to predicting exam self-efficacy. 

On both factors of exam self-efficacy, the addition of the four emotions accounts for around 20% 

of the variance, emphasizing the importance of considering student emotions when addressing 

self-efficacy. Hope before and hopelessness during an exam stayed significant in the final 

models for exam self-efficacy. Optimism before an exam aligns with the belief that they can 

succeed, but this perhaps also suggests that what influences the development of self-efficacy is 

how hopeful students have historically walked into exams and how despairing they have felt 

while taking an exam. This highlights how greatly a single assessment can damage the 

development of a learner’s self-efficacy.  

Limitations and Future Research 

The MASE will be further validated using the data from the longitudinal study, specifically 

testing for measurement invariance. Our regression analysis has not yet considered possible 

interactions between variables, which could reveal nuanced relationships in the data. Finally, the 

data was collected during the Covid-19 pandemic and the previous semester had a lockdown, 

possibly influencing students’ academic affect. However, we think it is unlikely it dramatically 

altered the relationship between the variables in this study. Stress mindset may have played a 

role in how students coped with these events, which we aim to understand in future research. 

Analysis of the longitudinal data will inform potential causal effects between these variables and 

relationship with exam performance in that semester.  
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Abstract: In response to calls for more investigations of teachers’ mathematical meanings for 

teaching (MMT) and the need to improve US mathematics teachers’ and students’ mathematical 

meanings, I investigated mechanisms for advancing post-secondary instructors’ mathematical 

meanings and teaching practices in the context of their teaching precalculus mathematics using 

a research-based curriculum. This report presents results from clinical interviews with graduate 

teaching instructors (GTIs) to illustrate the impact of a video-reflection intervention on teachers’ 

MMT and image of effective teaching practices. More specifically, I present two GTIs’ expressed 

meanings for angle measure and image of effective teaching before and after attending a 

professional development seminar where a trigonometry video-reflection intervention was used. 

I conclude by hypothesizing that video-reflection interventions may orient teachers toward 

reflecting on the degree to which they are impacting student thinking by providing examples of 

high-quality teaching (Musgrave & Carlson, 2017) interactions. 

Keywords: mathematical meanings for teaching, video-reflection intervention, quantitative 

reasoning 

Introduction and Review of Literature 

Although many math educators have investigated teachers’ mathematical knowledge for 

teaching (MKT) (Ball, 1990; Ball & Bass, 2003; Ball, Hill, & Bass, 2005), and how it relates to 

students’ learning (Ball, Thames, & Phelps, 2008; Hill & Ball, 2004; Hill, Ball, & Schilling, 

2008; Hill, Schilling, & Ball, 2004; Hill et al., 2008), few researchers have investigated teachers’ 

mathematical meanings for teaching (MMT). More concerning is the results of the few studies 

that have. As one example, Byerley and Thompson (2017) reported that most secondary 

mathematics teachers they studied provided formulaic or chunky descriptions of slope in contrast 

to thinking of slope as a rate of change that involves a multiplicative comparison between 

changes in two quantities. Other researchers who have investigated teachers’ MMT have 

reported similar findings highlighting the impoverished nature of US teachers’ mathematical 

meanings (Musgrave & Carlson, 2017; Yoon & Thompson, 2020; Thompson & Milner, 2018).  

A teacher’s meanings constitute her image of the mathematics she teaches (Thompson, 

2013), her pedagogical decisions, and the language she uses to cultivate similar images in 

students’ thinking (Thompson & Thompson, 1996), ultimately influencing the meanings her 

students are able to develop (Thompson, 2016). Prior research has shown that teachers’ MMT 

develop in concert with their development of coherent mathematical meanings and reflection on 

the effectiveness of their instructional practices in supporting students’ development of coherent 

meanings (Silverman &Thompson, 2008). Others have shown that teachers’ meanings for 

foundational mathematical ideas can become more productive if they are engaged in 

interventions designed to support their development of coherent mathematical meanings 

(Musgrave & Carlson, 2017). However, little is known about the mechanisms for advancing 

instructors’ teaching practices. Some researchers’ have proposed implementing video-based 

professional development seminars (video clubs) (Sherin & Han, 2004; Seidel et al., 2009; 

Sherin & van Es, 2009; van Es, 2012; van Es et al., 2014). However, this research has been 
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focused on the K-12 level and it has been shown that simply bringing teachers together does not 

ensure community development of desirable practices and norms (van Es, 2012). As such, 

investigating interventions for developing teachers’ MMT and mechanisms that result in 

teachers’ engagement in reflection on practice is of vital importance. This report addresses the 

following question: what is the impact of video-reflection intervention on teachers’ MMT and 

image of teaching? 

Theoretical Perspective 

The problematic nature of trigonometry teaching and learning has been documented by many 

(Moore et al., 2016; Tallman, 2015; Thompson, 2008; Thompson et al., 2007; Weber, 2005). 

Researchers (Hertel and Cullen, 2011; Moore, 2012, 2014; Tallman, 2015; Thompson, 2008) 

have responded by leveraging quantitative reasoning (Thompson, 1990, 2011), to support 

students in conceptualizing angle measure. Within the theory of quantitative reasoning, a 

quantity is a quality of an object or situation that one conceives of as admitting a measurement 

process. Quantification is the process by which one assigns numerical values to qualities 

(Thompson, 1990). A quantity’s value is the numerical result of a quantification process. It is 

crucial to distinguish between numerical operations and quantitative operations. Numerical 

operations are used to calculate a quantity’s value, whereas a quantitative operation is the 

conception of two quantities taken to produce a new quantity (Thompson, 1990). Although 

quantitative reasoning has been shown to support students in conceptualizing angle measure, 

students and teachers often develop meanings that do not involve this way of thinking 

(Thompson, 2008).   

Tallman and Frank (2018) described a productive meaning for angle measure grounded in 

quantitative reasoning. Namely, “a quantitative understanding of angle measure involves 

identifying an attribute of a geometric object to measure and conceptualizing a unit with which—

and process by which—to measure it” (Tallman & Frank, 2018, p. 5). Many students and 

teachers recognize that measuring an angle involves quantifying the openness between two rays 

that meet at a common vertex. “However, the “openness” of an angle is a quantity only for those 

who can specify a particular attribute of a geometric object to measure, identify an appropriate 

unit of measure, and envision a measurement process” (e.g., iteration, multiplicative comparison) 

(Tallman and Frank, 2018, p.5). Thus, one may conceptualize measuring the openness of an 

angle by measuring the length of the arc of a circle subtended by the angle whose vertex lies at 

the center of the circle in a unit proportional to the circle’s circumference that contains the 

subtended arc.  

 

 

 

 

Figure 1. Angle Measure 

For example, we could measure the angle in Figure 1 by multiplicatively comparing the 

subtended arc length to the length of the circle’s circumference. As such, the angle would have a 

measure of 1/3 in units of the circle’s circumference. Namely, the subtended arc length is 1/3 

times as large as the length of the circle’s circumference. One could also imagine measuring the 

angle’s openness in Figure 1 by multiplicatively comparing the length of the subtended arc to the 

1

6
 th of circumference  
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length of 1/6th of the circle’s circumference. The angle would have a measure of 2 in units of 

1/6th of the circle’s circumference since the length of the subtended arc is two times as large as 

1/6th of the circle’s circumference. Thus, a productive understanding of angle measure involves 

conceptualizing angle measure as a measurement process that defines a multiplicative 

relationship between the subtended arc length and some unit proportional to the circle’s 

circumference (Moore, 2014).  

Methods, Subjects, and Data Collection 

This study aimed to investigate the degree to which teachers’ MMT and image of effective 

teaching shifted as a result of engaging in video-reflection tasks at a weekly professional 

development seminar. To accomplish this goal, I conducted two rounds of clinical interviews 

(Clement, 2000) with three graduate teaching instructors (GTIs) and recorded their engagement 

in a video-reflection task during a professional development seminar. At the time of the study, 

the GTIs were in their first semester of teaching using research-based Pathways to Pre-Calculus 

materials. The first round of clinical interviews took place a week before the instructors taught a 

lesson on angle and angle measure and attended a PD seminar where they discussed the video-

reflection tasks. The second round of clinical interviews took place within three days of the 

instructors’ lesson and the PD seminar. The analysis of the clinical interviews occurred in three 

phases as described in Simon (2019). The first phase involved my listening to the interviews to 

generate hypotheses about the teachers’ ways of thinking. The second phase involved a more in-

depth, line-by-line conceptual analysis aimed at describing aspects of the teachers’ MMT for 

ideas of angle and angle measure. The third and final phase of this analysis involved identifying 

themes in the conceptual analysis to characterize the teachers’ MMT. 

The Intervention 

The GTIs involved in this study participated in a professional development seminar that met 

once per week for one semester. During the 11th week of the semester, the GTIs were engaged in 

a video-reflection intervention designed to support instructors in implementing the Pathways to 

Pre-calculus curriculum with fidelity. The angle measure video-reflection intervention contains 

six video clips of an instructor teaching a lesson on angle and angle measure. The selected clips 

include segments of teaching in which the instructor demonstrated strong MMT, decentering 

abilities (Steffe & Thompson, 2008), teaching practices that involve speaking with meaning 

(Clark et al., 2008), mathematical care (Hackenburg, 2010), attending to student thinking, and 

conceptually-oriented explanations (Thompson & Thompson, 1996). The video-intervention also 

includes a set of questions that correspond to each of the video clips. We designed these 

questions to promote teachers’ reflection on their mathematical meanings for angle and angle 

measure and practices they might engage in to support students’ construction of coherent 

meanings for the ideas central to the lesson.    

As one example, the trigonometry video-reflection intervention includes a clip of an 

interactive class discussion surrounding a task that asks students to determine which of three 

given angles has the largest measure. In this clip, the instructor poses multiple questions to 

students to elicit their meaning for angle measure and what they consider to be an appropriate 

unit for measuring angles. The video reflection intervention includes the following reflection 

questions for instructors to discuss after watching this clip.  

1. In the video clip, the teacher asked, “what are you guys looking at when you’re talking 

about angle measure?” Discuss with your partner (1) what you think the teachers’ 

purpose for this question may have been? (2) What might be a more productive way the 
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teacher could have posed the question “what are you guys looking at when you’re talking 

about angle measure”?  

2. At the end of clip two, the instructor draws three circles such that the angle’s vertex lies 

on the center of each circle. What might have been the teachers’ purpose for doing this? 

Discuss with a partner, what you might do next in your own class to help students 

develop the conception that an appropriate unit of angle measure is proportional to the 

circumference of a circle.  

We hypothesize that the video-reflection interventions may orient teachers toward reflecting 

on the degree to which they are impacting student thinking by providing imagery of the ways of 

thinking the teachers need to develop in their students, and by providing examples of teachers 

listening to students’ thinking and asking questions to gain insight into students’ thinking. 

Results 

This section includes results from the pre/post interviews that highlight the GTI’s expressed 

meanings for angle measure and image of effective teaching. The participants were asked to 

complete multiple tasks designed to elicit their meanings for angle and angle measure in each of 

the clinical interviews. This section shares two instructors, Emani and Maliya’s, responses to the 

angle measure task in Figure 2.    

 

 

 

 

Figure 2. Angle Measure Task- Interview 1 

GTIs’ Pre-Intervention Meanings for Angle and Angle Measure 

Angle Measure as parts of a whole- the story of Emani 

Emani’s expressed meaning for angle measure before engaging in the video intervention is 

best exemplified by her response (see Excerpt 1) to the task in Figure 2. It is noteworthy that 

Emani was the only instructor who consistently expressed that angle measure is a measure of 

openness between the two rays formed by the angle. Emani also expressed that she could 

determine the measure of an angle by counting how many units of measure are cut off by the 

angle’s rays. Thus, it appears as though Emani conceived of angle measure as fitting parts (some 

unit) into a whole (subtended arc).  

Excerpt 1: Emani’s expressed meaning of angle measure prior to intervention. 

Emani: Angle measure should be measuring how much openness we can measure between  

the rays. And measuring a length is not the same as measuring an amount of  

openness. So, the ways that jump out at me right now for measuring this angle, I could 

make up other ones, I guess, but are degrees or radians. Measuring in degrees would be  

like finding out how many 1/360ths [highlights portion of subtended arc] are cut  

off by the angle marked with 1.2 inches [traces over subtended arc]. 

While Emani was able to identify the attribute (length of the subtended arc) and a process by 

which to measure it (fitting pieces into a whole), she struggled to describe an appropriate unit for 

measuring the angle and why it was appropriate. In Excerpt 2, we can see that Emani correctly 

In class, a student tells you that the measure of a given angle is 1.2 inches. Is this an appropriate 

measure for an angle? Why or why not? 
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identified degrees and radians as appropriate units of measure, and she was also able to create 

her own unit of measure diametans. However, Emani was unable to provide a meaningful 

explanation for why degrees, radians, and diametans were appropriate units of measure.   

Excerpt 2: Emani’s discussion of an appropriate unit for measuring angles. 

Interviewer: So earlier, I am going to take you back to the beginning when you first read this. 

You immediately read this task and you said, “oh like it could be degrees, or it could be 

radians, or I could make something up.” So, what did you mean by “I could make 

something up”? 

Emani: Hmm, umm, so, radians are measured by looking at the radius of the circle. Degrees 

are measured by looking at some portion of the circumference of the circle centered 

where the rays meet. So, I think we can measure any angle, or come up with any kind of 

angle measure as long as we’re measuring in terms of some portion of the… like 

anything constant with the circle? Like we could come up with an angle measure instead 

of radians that is like diametians. So, you measure with the diameter of the circle. So, 

radians look at how many radius lengths are being subtended, are being cut off [indicates 

with hands that she is laying lengths next to each other] by the angle. So, we can do the 

same thing but with the diameter. 

Angle Measure- the result of a quantitative operation: the story of Maliya 

Maliya consistently expressed a meaning for angle measure as a comparison of the "distance 

you walk along that portion of the circumference that you marked with the two rays to the entire 

circumference of the circle" (see Excerpt 3).  

Excerpt 3: Maliya’s expressed meaning for angle measure prior to intervention. 

Maliya: Ok this is harder than I thought it would be. An inch is not a unit that I would use to 

measure an angle because an angle would be umm, so an angle is going to measured in 

some unit relative to the circumference of the circle. So, to be more specific, if I have a 

circle and I want to know the angle between two rays, then I would say that you can 

measure an angle by comparing how far I have walked from the horizontal ray to this 

slanty ray (traces over the terminal ray) compared to the size of the circumference of the 

circle.  

Thus, it appears as though Maliya conceived of angle measure as a multiplicative comparison 

of the subtended arc length and the circumference of the circle for which the angle is centered. I 

interpret Maliya’s meaning for angle measure to be that of a quantitative operation as she 

consistently identified (see Excerpt 4) the result of the multiplicative comparison as the measure 

of a specific attribute (length of the subtended arc) in a particular unit (the circumference of the 

circle).  

Excerpt 4: Maliya’s discussion of the angle measure task. 

Maliya: So, the endpoint of the angle (points to the angle’s vertex) is going to be the center 

of the circle. So, I can say that 1.5 inches is the radius of the circle. So, if I want to know 

the circumference of the circle that’s going to be 2 pi times as large as the length of the 

radius, so 1.5 times 2 pi. So, the 1.2 inches, I would say that is a measure of the length of 

that portion of the circle’s circumference that is taken up by the arc between those two 

rays. But the measure of the angle would be a comparison of the length of the arc, 1.2 

inches, divided by 1.5 times 2 pi inches. 

Interviewer: So, what does 1.2 divided by 1.5(2pi) represent? 

Maliya: To me it represents the measure of the length of the arc between the two rays given 

in the diagram in units of the circumference of the circle with radius 1.5 inches. 
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While Maliya expressed a quantitative meaning for angle measure, her descriptions of angle 

measure were limited to using the circumference as a unit of measure. Maliya did not recognize 

that she could measure the length of the subtended arc in radius lengths or any other unit 

proportional to the circumference of the circle.   

GTIs’ Post-Intervention Meanings for Angle and Angle Measure 

Overall, the instructors’ expressed meaning for angle measure remained consistent with their 

expressed meaning before engaging in the video-reflection intervention and teaching a lesson on 

angle and angle measure. Maliya continued to describe angle measure as a multiplicative 

comparison of the subtended arc and the length of the circumference. Emani’s meaning for angle 

measure also remained consistent with the meaning she expressed before engaging in the video-

reflection intervention. However, Emani was more closely able to provide a quantitative 

description of angle measure that involved identifying the attribute (length of the subtended arc) 

of the angle, and a process by which to measure it (fitting pieces into a whole), and a unit by 

which to measure the length of the subtended arc (fractional portions of the circumference). 

Although Emani was able to identify a unit of measure, she struggled to express what a correct 

unit of measure is meaningfully and was aware of her difficulty doing so. As one example, 

Emani expressed in the second interview, “I need to work on my own understandings and a 

better way to say this.”  

GTIs’ Image of Effective Teaching Before the Intervention 

The instructors were asked to describe their image of good/effective teaching before and after 

engaging in the video-reflection intervention. The instructors’ image of good teaching expressed 

in the first interview is shown in Table 1. It is noteworthy that both Emani and Maliya expressed 

that good teaching involved attending to student thinking, awareness of how students are feeling 

in relation to their learning, and ensuring students are comfortable contributing to class 

discussions.  

Table 1. Teachers’ response to prompt: describe your image of good/effective teaching. 

Teacher  Sample Excerpts from Clinical Interview 1 

Emani Good teaching is trying to understand where…how the students are understanding 

what is going on. I try to ask questions of my students like as we work through 

problems to try to find out how they’re thinking so I can try to address how they’re 

thinking about the problem.  
Maliya I would say, asking students questions really trying to get students input. It’s a good 

practice that I tried to implement that exemplifies good teaching and I think really 

trying to help students to think for themselves and articulate their thinking as much as 

possible.   

GTIs’ Image of Effective Teaching After the Intervention 

During the post interview, Maliya and Emani described asking questions to elicit student 

thinking as an essential quality of a good teacher. However, Maliya’s response is particularly 

interesting as she described multiple practices that were exemplified in the video clips and 

reflective discussions included in the video-reflection intervention (see Excerpt 5). One goal of 

the video-reflection intervention is to promote a reflective discussion about the instructors’ goals 

for students’ learning. After participating in the video-reflection intervention, Maliya described 

“having clear expectations for what you want the students to learn” as an essential quality of 
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good teaching. Maliya also expressed the importance of having a discussion-oriented classroom 

and an iterative conversation with students. Maliya’s expression of the importance of having an 

iterative conversation with students is also interesting as the video-reflection intervention 

provided examples of a teacher eliciting, attending to, and responding productively to student 

thinking. Moreover, Maliya also mentioned, “really trying to speak with meaning in the class.” It 

is noteworthy that speaking with meaning emerged as a practice that all three instructors 

identified as important throughout their second clinical interview.  

Excerpt 5: Maliya’s response to the prompt “describe your image of good/effective teaching” 

Maliya: I do think having clear expectations for what you want the students to learn what you 

want the students to be able to master in terms of content and having clear expectations 

for assignments and assessments is important. But I do really like having the discussion-

oriented classroom…and I’m really digging into their thinking when class is discussion 

oriented. I also do like having the visualization, especially because this course is so 

focused on quantitative reasoning that can be one of the most powerful ways to try to 

convey meaning to students and help students kind of convey their meaning…and just 

kind of like having an iterative conversation of, like, revising, okay, so this is what I think 

you said and then the student can correct you if that’s not an accurate representation of 

what they said. So sometimes doing that can be useful to you like reiterating what you 

think the students said that can also help with students feeling comfortable revealing their 

thinking and really making clear and really trying to speak with meaning in the class. 

Conclusions and Discussion 

Overall, both of the instructors’ meanings for angle measure remained relatively consistent 

with their meanings before engaging in the video-reflection intervention. Following their 

teaching of the section and their participation in a PD seminar, the instructors were more likely 

to distinguish between and angle and the measure of the angle. However, Maliya and Emani did 

not advance in their ability to describe a more general way of thinking for measuring an angle 

using a unit (such as a circle’s radius length) that is proportional to a circle’s circumference. 

 While the instructors’ meanings for angle and angle measure did not shift after engaging 

in a video-reflection intervention, their image of effective teaching did. The instructors’ 

participation in the video-reflection intervention appeared to have an impact on their image of 

teaching, including their recognition of the importance of speaking with meaning and posing 

questions to reveal student thinking. It is noteworthy that the one-hour video-reflection 

intervention had little impact on the instructors’ conceptions of angle and angle measure. 

However, this result is not surprising as it supports others’ findings (Thompson and Thompson, 

1996; Thompson, 2016; Musgrave & Carlson, 2017; Tallman and Frank, 2018) that shifting 

teachers’ conceptions is a gradual process that requires sustained and repeated opportunities to 

reason in new ways. Although we have developed video-reflection interventions for many units 

in the Pathways to Pre-calculus curriculum, this was the first time they were used with GTIs. In 

future semesters we plan to engage the GTIs more video-reflection interventions to investigate 

how teachers’ MMT and image of effective teaching shift over the course of a full semester. As 

we continue to develop and refine the video-reflection interventions, we plan to include more 

video clips that show teachers’ promoting students’ engagement in quantitative reasoning since 

prior research has shown that teachers’ attention to/focus on referencing quantities, including the 

starting point and directionality of the measurement, is useful for advancing student learning 

(Moore & Carlson, 2012; Joshua, 2019). 
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Mathematical Sameness: An Ill-Defined but Important Concept 
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Sameness is a notion that pervades mathematics through concepts like equality and 

isomorphism, but limited research has examined how mathematicians perceive sameness in 

mathematics. This study examines survey responses from mathematicians on the nature of 

mathematical sameness. Themes highlighted from responses include philosophical, proof-based, 

and informal notions of mathematical sameness. 
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Background and Literature Review 

Math educators have been studying students’ understanding of equality for many years (e.g., 

Renwick, 1932; Kieran, 1981). Research on students’ understandings of higher-level notions of 

sameness, such as isomorphism, began more recently (e.g., Dubinsky, Dautermann, Leron, & 

Zazkis, 1994) and are still being studied (e.g., Melhuish, 2018; Rupnow, 2017). Nevertheless, 

research on types sameness, their utility, and problems for students’ thinking have only recently 

been examined (Melhuish & Czocher, 2020). In this paper, we solicit experts’ perspectives as we 

address the research question: How do algebraists describe mathematical sameness? 

Prior research on equality, isomorphism, and homomorphism have largely focused on 

students’ conceptions. Extensive research on students’ understanding of equality in numerical 

contexts has connected students’ understanding of the meaning of the equal sign to their later 

ability to understand and manipulate algebraic equations (e.g., Alibali, Knuth, Hattikudur, 

McNeil, & Stephens, 2007; Kieran, 1981). Research on isomorphism has examined how students 

determine if groups are isomorphic (e.g., Dubinsky et al., 1994; Leron, Hazzan, & Zazkis, 1995; 

Rupnow, 2017) as well as the use of properties of functions to draw conclusions about 

isomorphism and homomorphism (e.g., Melhuish, Lew, Hicks, & Kandasamy, 2020).  

However, limited research has examined experts’ conceptions of types of sameness. Weber 

and Alcock (2004) noted mathematicians’ descriptions of group isomorphism as “re-labelings” 

or meaning groups were “essentially the same”. Rupnow (2021) expanded on these notions with 

other instructor metaphors for isomorphism or homomorphism, such as “matching” and 

“structure-preservation”. However, these descriptions related only to isomorphism and 

homomorphism, not to general descriptions of sameness in mathematics. 

Cross-concept examinations of sameness have barely been examined. Melhuish and Czocher 

(2020) noted the context-dependent nature of sameness in mathematics that is not always fully 

elaborated when students are asked to respond to prompts related to sameness. For example, 

though Z3 is isomorphic to a subgroup of S3, we may not want students to suggest that Z3 is a 

subgroup of S3 because we want to attend to the elements or operations defined in the groups, not 

just structural similarity. However, the concepts that mathematicians think should be aligned has 

not been examined nor the ways in which they elaborate on the nature of sameness. 

Conceptual Framework 

Our theoretical lens for analysis is conceptual metaphors (e.g., Lakoff & Núñez, 1997), in 

which a source domain is used to structure understanding of a target domain. For example, 

“Happiness is an equation” and “Happiness is a warm summer’s day” are metaphors that might 
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be used to describe the target domain (happiness) in terms of two different source domains (an 

equation and a warm summer’s day). The two metaphors provide different ways of 

understanding happiness: happiness as a concept that can be broken into constituent pieces and 

combined in standard ways, or happiness as a concept that is focused in-the-moment. 

Conceptual metaphors have previously been used in math education to examine functions in 

high school and linear algebra (Zandieh, Ellis, & Rasmussen, 2017) as well as to examine 

isomorphism and homomorphism in abstract algebra (Rupnow, 2021). Here we examine the 

nature of sameness (target domain) through a variety of metaphors addressing philosophical 

notions of sameness, proof-based notions of sameness, and informal notions of sameness. For 

example, “Sameness is a context-dependent concept” is a philosophical description of sameness 

that emphasizes sameness has many interpretations. 

Methods 

Data were collected from a survey sent to every 4-year college or university math department 

that offers abstract algebra in the United States. This survey addressed how algebraists think 

about sameness in general and in specific mathematical contexts. Participants were 197 

mathematicians from 173 institutions who had taught at least one abstract algebra or category 

theory course in the last five years. For this paper, only the first three questions from the survey, 

which broadly regard the nature of sameness in math, are discussed: 

1. What does it mean to be the same in a math context? (Q1) 

2. How do you know two things are the same in abstract algebra? (Q2) 

3. How is “sameness” in abstract algebra similar or different from “sameness” in other 

branches of math? (Q3) 

Responses to each question were coded independently, but each response could receive 

multiple codes. Descriptive coding (Saldaña, 2016) was used to formulate conceptual metaphor-

based codes for use in thematic analysis (Braun & Clarke, 2006). In keeping with this approach, 

we used multiple rounds of coding (Anfara, Brown, & Mangione, 2002). Both authors coded 

independently, then came to consensus for each participant’s response. Next, codes were 

organized according to theme. In this process, we concluded some codes should be split or 

combined. We then revised codes, regrouped codes, and recoded responses as necessary. Finally, 

we discussed revised codes to ensure consensus and consistency. 

Results 

We highlight three categories of response that we observed in our coding: philosophical, 

proof-focused, and informal notions of sameness. We characterize types of responses in each of 

these broad categories. Frequencies of codes are provided in Table 1. 

Philosophical Notions of Sameness 

In this section, we highlight participants’ descriptions of sameness that relate to philosophical 

notions about the nature of sameness: sameness as context-dependent and sameness as context-

bridging. Because all but 5 participants (97%) referred to sameness as context-dependent and 

67% highlighted context-bridging, we showcase multiple responses characterizing these stances. 

Context-dependence. We highlight five main flavors of context-dependent answer. These 

include general context-dependent responses, a focus on specific concepts that transcend 

disciplines, comparisons of sameness in different disciplines, and a focus on different strengths 

of sameness. Some responses combine these ideas. 

A number of respondents wrote generally about sameness being context-dependent. A few 
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believed that mathematical sameness was too vague of a concept to engage with in the survey. 

Many of these responses were also given the code vague/don’t engage. For example, Participant 

20 wrote, “I don’t know because it’s entirely unclear what “same” means here as you are using it 

in this survey or what it means in abstract algebra.” Others elaborated; for instance: “First you 

need to decide which kind of “the same” you mean. Typically there is a list of features that need 

to be compared, either directly or by constructing the appropriate function” (Participant 92). 

Both of these responses highlight the variety of meanings that could be associated with sameness 

and emphasize the importance of ascertaining the correct type of “sameness” to respond.  

 

 

Other participants highlighted differences between general terms used for sameness in math. 

For example, Participant 10 attended to which differences were important: “Same can mean 

many things—equal, isomorphic, equivalent. It’s important to know what differences matter and 

what don’t to determine what ‘same’ means.” Here they listed three concepts that relate to 

sameness, while noting that “what differences matter” is central to knowing sameness.  

Many participants highlighted specific types of sameness in different disciplines to illustrate 

context-dependence. For example, when responding to Q1, Participant 149 wrote: 

Many branches of mathematics concern themselves with classifying objects up to some 

notion of sameness. These notions vary by mathematical context. Topology, for example 

uses such notions as homeomorphic, homotopy equivalent and the like. Abstract algebra 

generally uses isomorphic….In general, when the objects are “sets with structure,” sameness 

means that the sets map bijectively and the structures are respected by this mapping. 

A key aspect here is examples of defined concepts to show that the contextual meaning of 

sameness is given by well-defined notions in various disciplines.  

A number of participants focused on distinguishing between stronger and weaker types of 

sameness. Participants did this in two main ways: by discussing the strength of one or more 

Table 1. Code Counts for Each Question and Across Questions 

Group Codes Q1 n(%) Q2 n(%) Q3 n(%) Distinct n(%) 

 Vague/don’t engage 12(6%) 5(3%) 4(2%) 16(8%) 

Philosophical 
Context-dependent 107(54%) 47(24%) 146(74%) 192(97%) 

Context-bridging 19(10%) 3(2%) 123(62%) 131(67%) 

Proof Based 

Bijective 17(9%) 30(15%) 18(9%) 50(25%) 

Cardinality 3(2%) 9(5%) 6(3%) 16(8%) 

Same properties 8(4%) 3(12%) 10(5%) 19(10%) 

Logically equivalent 19(10%) 30(15%) 10(5%) 46(23%) 

Computation 4(2%) 28(14%) 7(4%) 37(19%) 

Invertibility 2(1%) 7(4%) 1(1%) 9(5%) 

Mutual subsets 2(1%) 2(1%) 1(1%) 5(3%) 

Informal 

Same behavior 52(26%) 24(12%) 29(15%) 77(39%) 

Indistinguishable 8(4%) 1(1%) 3(2%) 11(6%) 

Mutual replaceability 2(1%) 1(1%) 0(0%) 2(1%) 

Equivalence 22(11%) 5(3%) 8(4%) 28(14%) 

Structure-preservation 18(9%) 29(15%) 22(11%) 50(25%) 

Operation-preservation 1(1%) 15(8%) 8(4%) 19(10%) 

Matching 5(3%) 15(8%) 8(4%) 21(11%) 

Relabeling 16(8%) 13(7%) 6(3%) 27(14%) 
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notions of sameness from a particular part of mathematics or by contrasting the relative strength 

of notions of sameness in different disciplines. For example, Participant 15 noted:  

The main difference lies in what properties we want the sameness to capture, and whether we 

want a strong or weak notion. In category theory, for example, a weak notion of “sameness” 

(categorical equivalence, or isomorphism of skeletons) turns out to be much more 

fruitful/useful than the stronger version requiring a complete correspondence between them. 

In addition to discussing the relative strength of two notions of sameness within the discipline of 

category theory, this participant is also discussing the utility of different strengths of sameness 

for gaining insight. An example contrasting strengths in different disciplines comes from 

Participant 42’s response to Q3: “Compared to more classical subjects, isomorphism is similar to 

“congruence” in classical geometry but more flexible than “equality” in classical algebra.” This 

participant seems to imply that equality is a stronger notion of sameness than isomorphism and 

congruence, but that isomorphism and congruence signify similar levels of sameness. 

Other participants combined multiple aspects of context-dependence. For example:  

As in my earlier answers, “sameness” in abstract algebra is often taken to be the existence of 

an isomorphism. Sometimes, and especially in category theory, it is taken as a canonical 

isomorphism given by a universal property. Depending on the particular category used in 

another subject (e.g., homotopies in topology), we might get what appears to be a more 

flexible notion of sameness. In set theory, equality gives a much more rigid notion of 

sameness based on equality: having precisely the same elements. Having a bijection is 

typically not considered enough for sameness. Similarly, in geometry sameness is often 

treated more rigidly: points may look alike but are not the same. In computational problems, 

such as in public key cryptography, one only has sameness if the isomorphism can actually 

be computed in acceptable time. (Participant 14) 

Here, the respondent listed six types of sameness and compared their relative strengths.   

Context-bridging. Most explicit references to sameness as a context-bridging concept 

occurred in response to Q3, which prompted participants to compare and contrast sameness in 

abstract algebra with other math sameness. Some of these responses were brief, such as 

Participant 7’s response: “Not different at all,” suggesting that sameness has a universal meaning 

of some sort. Others elaborated on their view of sameness: “At the undergraduate level, I think 

it’s not that much different from other classes like topology. Sameness usually means 

preservation of structure, and what abstract algebra is studying [is] structure” (Participant 3). 

Here the participant focused on structure-preservation as a cross-disciplinary idea.  

A number of other responses, especially for the first question on sameness in math, 

connected to category theory: “If you have two objects in a category, they are the same if there is 

an isomorphism between the objects” (Participant 22). Although one might say that category 

theory is its own subject, we viewed this type of reference to category theory as a way to view 

math holistically. Thus, abstract references to objects being linked by an isomorphism within a 1-

category were viewed as a way to view sameness in math as a unified concept. 

Both. Many participants invoked ideas that combined context-bridging and context-

dependent perspectives. Some invoked category theory to provide a framework for comparing 

sameness in different disciplines, such as Participant 21:  

If we’re talking about isomorphism in a given category, then the similarity is through the 

definition of isomorphism, and the differences will be encoded in the properties of the 

category. Algebraic isomorphisms must preserve algebraic structures, while this is not a valid 

notion for homeomorphisms of space…. 

2021 Research in Undergraduate Mathematics Education Reports 277



The participant starts by writing about sameness as a consistent concept interpretable across 

various places in mathematics via category theory, which implies a context-bridging aspect of 

sameness, but they also focus on sameness notions in different disciplines, highlighting their 

differences and therefore the contextual dependence on discipline for these notions of sameness. 

Others wove context-bridging and context-dependent notions together through highlighting 

the specific shared and distinct aspects of types of sameness.  

As noted above, this notion of structural equivalence appears in many areas of mathematics. 

Isomorphism in abstract algebra is, for instance, analogous to homeomorphism in topology, 

similarity in geometry, equivalent statements in formal logic. It is distinct from these it that it 

is defined based on how binary structures behave under their operations. 

Here, Participant 132 equates sameness with “structural equivalence”, which is a topic relevant 

across mathematics. However, they acknowledge that the specific objects differ in each 

discipline (e.g., binary structures with operations in algebra). 

Proof-focused Notions of Sameness 

Some participants used language associated with uniqueness proofs or sameness of object 

including same properties, establishing a bijection or same cardinality, deduction of logically 

equivalent statements, verification via computation, finding inverse mapping pairs, and finding 

mutual subsets. Although these codes were rare (each in under 15% of responses to each 

question), as a group they provide another way of viewing mathematical sameness. 

We first address the single property metaphors: bijection, cardinality, and same properties. 

These relate to determining a specific well-defined characteristic is shared by two objects: 

numerosity (for bijection and cardinality) or other properties like being abelian (for same 

properties). For example, finding a bijection was a common aspect of describing isomorphism in 

abstract algebra for question two: “For most purposes in abstract algebra, two objects are the 

same if they are isomorphic, i.e., if there exists a structure-preserving bijection between the two 

objects” (Participant 46). These notions of sameness generally relate to a given definition of 

sameness (e.g., isomorphism) or can apply to simple contexts like sets to provide something to 

consider when determining sameness of objects. Lack of alignment in such cases would be 

useful in a proof context to verify objects are not the same. 

The broad verification metaphors observed include deducing logically equivalent statements 

and verification via computation. These can be viewed as two ways of proving equivalence of 

objects: being able to use theorems and logic to show uniqueness or equivalence and exhibiting a 

mapping or invariant that satisfies a definition. For example, consider Participant 21, who 

highlighted both logical equivalence and verification by computing an invariant:  

…to be exactly the same, they would have to be identical, which would require proving 

something that equates the definitions of the two objects.…Or alternatively, you can invoke 

classification theorems, for example all groups with two elements are isomorphic. Or you 

may be able to classify an object up to isomorphism by computing its invariants, for example 

by finding the dimension of a vector space. 

Notice, logical equivalence appears through “equating the definitions of the two objects” and 

“classification theorems” while computation appears through computing invariants. Both 

techniques can provide full proofs of sameness. 

Two narrow verification metaphors also arose: finding inverse pairs and finding mutual 

subsets. While not prevalent in the data (5% and 3% of respondents), these metaphors can be 

viewed as specific techniques for demonstrating equivalence. For example, Participant 19 noted, 

“To prove two sets are the same, then we show that each is a subset of the other,” which can be 
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viewed as a technique for demonstrating sameness of sets. Similarly, for isomorphism, mutual 

inverses were described as a technique for demonstrating sameness of structures: “By 

constructing the two morphisms that are inverses.  Widely used constructions are formulated as 

theorems, like the First Isomorphism Theorem” (Participant 108). While these techniques can 

lead to proofs of sameness of objects, they only apply in certain disciplines. Mutual inverses are 

only sensible in a function context whereas mutual subsets are only sensible in a set context. 

Informal Notions of Sameness 

Participants used a number of informal terms to highlight sameness: same behavior, 

indistinguishable, mutual replaceability, equivalence, operation-preservation, structure-

preservation, relabeling, and matching. These notions appeared in over 40% of responses.  

Same behavior was the most common of the informal notions, occurring in 39% of 

responses. Same behavior was coded when participants spoke generically about shared properties 

or behavior without specifying what was meant by these terms. For example, Participant 34 

wrote: “I tell my students that two mathematical objects are “the same” if they have the exact 

same properties. That is, if you know how one of them behaves, then you know how the other 

behaves.” While this explanation highlights what should be the same, attributes and behavior of 

two objects, it is not clear what those attributes or behavior are. Similarly, indistinguishable, 

mutual replaceability, and equivalence were used almost as synonyms for sameness, largely 

when addressing mathematical sameness in general. For example, Participant 72 wrote: “It 

depends on the situation! In a given situation, it means that for all purposes related to that 

situation, the two entities are indistinguishable.” This response seems to suggest mathematical 

sameness is about being similar enough to put objects in the same class for a given situation.   

Other participants highlighted preservation of operation or structure when describing 

mathematical sameness. References to operation-preservation and structure-preservation largely 

seemed to refer to the homomorphism property (or its analogue in another branch of math). For 

example, Participant 157 described sameness in algebra in a way that seems to refer to 

isomorphism, with operation-preservation describing the homomorphism property: “For groups 

and rings, there must be a one-to-one onto map (i.e., a bijection) that preserves the operation(s).” 

Participant 16 used structure-preservation in a similar way when describing mathematical 

sameness: “We identify structures we think are important or that somehow characterize the 

object, and declare that things are the same if they share those structures. This is usually 

formalized by the concept of a structure-preserving map.” This example seems to imply that 

“structure” is the homomorphism property or an analogous idea in another discipline. Note, even 

though “structure” is often used to refer to objects like groups, rings, and other algebraic objects, 

this did not seem to be the structure intended in “structure-preservation.” 

Relabeling and matching were used to describe sameness in a way that aligned with 

isomorphism in algebra contexts. For example, Participant 196 described sameness in abstract 

algebra as “Effectively you can relabel one using the labels from the other and the structures will 

be maintained (i.e., we can define an isomorphism between them).” Essentially, we can interpret 

this “sameness” as being able to interchange the names of elements without fundamentally 

changing the underlying object. Although similar to relabeling, we described responses as 

“matching” when more emphasis was placed on the act of pairing elements in different objects 

instead of looking at structural relationships as a whole. For example, Participant 172 wrote: 

You know that they are the same if you can prove that an isomorphism between them 

exists. There are many ways to do this: for instance, for small enough groups, finding a 

way to organize the elements in two groups so that their group tables correspond suffices. 
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Note that the act of matching elements in Cayley tables was highlighted as a verification method, 

which has a qualitatively different sense from changing names to create a new, equivalent group. 

Discussion and Future Work 

Mathematicians talk about sameness in a variety of ways. Notions of sameness are present 

throughout math, have many names, and have many subtle distinctions. Sameness connects to 

much of what we do in math, whether verifying objects all satisfy a shared definition or verifying 

objects are the “same” up to a sufficient level, which permits reasoning about the object in a new 

way. Mathematicians’ responses highlighted this balance through the general views of sameness 

as context-bridging and context-dependent. Mathematicians emphasized that “sameness” needs 

to be clearly defined. However, this emphasis on qualifying sameness leads to questions of 

motivation: is emphasis placed on precise definitions because this is a mathematical norm, or do 

mathematicians view students as too inexperienced to determine what needs to be the same in a 

given context? Potentially, both factors are important. Certainly, evidence suggests students can 

attend to unintended aspects when considering sameness (Melhuish & Czocher, 2020). 

While not as common as the philosophical codes, a number of ways of thinking of sameness 

applicable to proof settings were highlighted. Though students often consider specific properties 

that hold for isomorphic groups (Dubinsky et al., 1994; Leron et al., 1995), it is less clear how 

much they examine context-limited notions like mutual inverses in algebra and mutual subsets in 

analysis. This aligns with the need to consider content-based differences when examining 

students’ understanding of proof (Dawkins & Karunakaran, 2016). 

Mathematicians used many types of informal language to discuss sameness, including same 

behavior, structure-preservation, and relabeling. While these types of language have been used 

for isomorphism and homomorphism previously, seeing them employed in a broader participant 

pool is encouraging (Rupnow, 2021). Furthermore, the use of informal language sets up an 

interesting contrast with the emphasis on the context-dependence of sameness. On one hand, a 

majority of respondents highlighted the importance of context to making sense of sameness and 

emphasized context clarity in discussing sameness. However, informal language, by definition, 

introduces ambiguity into statements. Future research should examine how mathematicians 

balance precise language with their informal language, both for themselves and when teaching. 

Furthermore, what students take away from informal expressions is unclear. Hausberger 

(2017) specifically notes that “structures” are often left undefined, leaving students to determine 

for themselves what precisely is preserved in a given context. Although mathematicians in this 

study seemed to refer to relationships between elements when referring to structure-preservation, 

their uses of the word structure were not always clear. Recall Participant 3’s statement 

“Sameness usually means preservation of structure, and what abstract algebra is studying [is] 

structure”. The “preservation of structure” seems to refer to relationships between elements, but 

“what algebra is studying is structure” could be interpreted in an object (e.g., groups) sense.  

This study suggests mathematicians have a variety of philosophical approaches to sameness, 

including math as both context-dependent and context-bridging. Furthermore, mathematical 

sameness can refer to discipline specific notions like isomorphism or general notions related to 

proof, such as logical equivalence. Finally, mathematicians invoked a number of informal ideas 

to describe sameness, despite emphasizing the importance of precision in mathematics.  
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Student Mathematical Reasoning and Construction in a Digital Environment with Regard to
Conceptions of Circles

Noelle Sakauye
Arizona State University

Kyeong Hah Roh
Arizona State University

This study addresses what students’ conceptions of circles are and how students’ interaction with
a digital environment influences their development of those conceptions.  Two undergraduates
from calculus 1 courses participated in exploratory teaching interviews for two one-hour
sessions in fall 2019.  In this study, we focus on moments in which the students’ mathematical
reasoning in regard to circles was on display.  The two students demonstrated similar
conceptions of and construction of circles on a physical medium at the start of Day 1.  However,
they interacted differently with the digital environment in the rest of the teaching interviews..
Consequently, their conceptions at the end of Day 2 were markedly different.  We will discuss the
progression of each student and how their interactions with the digital environment influenced
their conceptions of circles, paying particular attention to the students’ reasoning throughout.

Keywords: Geometry, digital environment, Euclidean construction, circle conception, teaching
geometry

Visualization plays an important role in the teaching and learning of geometry as geometry
pertains to the study of shapes and figures.  On the other hand, research has reported that many
students struggle with visualizing geometric shapes and figures that properly convey specific
mathematical concepts (Walcott et al., 2009).  As guiding  students from a general conception
(e.g. “This is an equilateral triangle because it looks like one”) to a very specific conception of
shapes (e.g. “This is an equilateral triangle because all sides of the triangle are equal”) is a key
element of geometry education (Jones, 2000), digital software and environments are considered
devices to combat students’ conceptions of geometric shapes and challenge students to rely on
specific properties of shapes instead (Walcot et al., 2009).  In particular, mathematics education
research has shown that the use of digital manipulatives developed from dynamic geometry
software such as GeoGebra could be helpful to improve their visualization skill (Baki et al, 2011;
Dogan & Içel, 2011; Laborde, 2006).  In line with this standpoint,this study focuses on students’
conceptions of circles and how digital environments may influence students’ development of
conceptions of circles. To be specific, we developed GeoGebra applets and implemented them to
see how digital environments may influence students’ development and conception of circles. By
analyzing two undergraduate students’ construction and use of circles in the GeoGebra applets
during two days of exploratory teaching interviews (Castillo-Garsow, 2010; Moore, 2010;
Sellers, 2020) we address the following research questions:

1. What are students’ conceptions of circles as they are evoked in geometry construction
problems?

2. How are students’ conceptions of circles evoked as they interact with the digital
environment?

Theoretical Framework
When we analyzed students’ conception of circles in the digital environment, we took for

granted that different students may conceive of circles in different ways. Indeed, we noticed that
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students mainly used two conceptions.  In some moments, students’ reasoning and construction
were based on circles as a geometric shape and in other moments, their reasoning and
construction were based on circles as a geometric object (Sakauye, 2020).

Geometric shape.  Students who think of circles as a geometric shape do not appear to
consider the properties of circles in their reasonings or constructions.  That is, they describe and
construct circles simply as a shape and do not take into account any properties of the circle in
doing so.  We can categorize students’ conceptions of circles as a geometric shape if their
explanations and constructions do not include the use of the properties of a circle.

Geometric object. Students who think of circles as a geometric object include the properties
of circles in their reasonings and constructions. We can categorize students’ conceptions of
circles as a geometric object if their explanations and constructions include the use of the
properties of a circle, such as that all points on the circle are a fixed length from the center.

Our categorization of students’ conceptions of circles is in line with the van Hiele levels of
geometric understanding (Mason, 2009).  In particular, the conception of circles as a geometric
shape corresponds to van Hiele level 1 because students at van Hiele level 1 recognise shapes by
their appearance, not by their properties (Mason, 2009).  The conception of circles as a geometric
object also corresponds to van Hiele level 2 or higher since students at that level recognise
shapes by their properties (Mason, 2009).

Methodology
Two undergraduates from calculus 1 courses individually and voluntarily participated in

exploratory teaching interviews (ETIs) (Castillo-Garsow, 2010; Moore, 2010; Sellers, 2020) for
two days in fall 2019.  We selected students from calculus 1 classes because they were already
introduced to geometry concepts like circles and equilateral triangles, but would not have learned
the formal constructions yet - if they had already learned the constructions, their responses in this
study would be reports of what they learned in class, not authentic reactions to the digital
environment.  The first author of this paper acted as the teacher-researcher, while the second
author and another researcher served as witnesses of the ETIs.  Data included videotapes of
sessions, audio recordings, copies of students’ written work, as well as screen recordings on a
tablet used to access the digital software (a GeoGebra web page designed by Fischer (2019)).  In
this study we focus on moments in which the students’ reasoning in regard to circles was on
display, both in the digital software and on a physical medium.

Structure of the ETIs
The experiment took place over two days.  A list of the tasks and the accompanying diagrams

are included in the table below.

Task name Diagram Task instructions

Pretest
Day 1

Given a segment AB,
construct an equilateral
triangle using a ruler and
compass on paper.
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True or false
statement
Day 1

Answer whether the question
about circles is true or false.

Triangle
exercise
Day 1

Check if each triangle is an
equilateral triangle using the
circle tool.

Circle exercise
(original)
Day 1

For the diagram with the
curve of the circle drawn: Are
the points on the circle
equidistant from the center of
the circle?
For the diagram without the
curve of the circle drawn: Are
the two segments equidistant?

Circle exercise
(revised)
Day 2

For each of the diagrams with
the curve of the circle drawn:
Are the points on the circle
equidistant from the center of
the circle?
For each of the diagrams
without the curve of the circle
drawn: Are the two segments
equidistant?

Construction of
equilateral
triangle in
GeoGebra
Day 2

Given a segment, construct an
equilateral triangle using the
circle tool and the segment
tool in GeoGebra.
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Posttest
Day 2

Given a segment, construct an
equilateral triangle using a
ruler and compass on paper.

Table 1.  A list of the tasks used in this study, including the instructions given.  The original circle exercise can be
accessed here https://www.geogebra.org/m/kmwyaua8 and the rest of the tasks in GeoGebra can be accessed here

https://www.geogebra.org/m/hfqxjr4k

Data Analysis
The data collected was part of a larger study.  In this paper, we report only our analysis

related to student conceptions of circles.  Drawing from recordings of the ETIs, we analyzed the
students’ words, gestures, and diagrams they produced by moments, to capture changes in
students’ reasoning.

Ongoing analysis was done spontaneously in the ETIs, described by Steffe and Thompson
(2000, p. 276) as “creat[ing] new hypotheses and situations on-the-spot” in exploratory teaching.
Thus, we formed hypotheses about the students’ reasoning, and tested those hypotheses
immediately in the form of questions.  Our ongoing analysis also informed our decision to
include additional exercises for Day 2, as described in the methodology.

After the ETIs were completed, we used Corbin and Strauss’s (2014) grounded theory in the
sense that two categories of students’ conception of circles emerged from the data analysis: circle
as a geometric shape and circle as a geometric object (see theoretical framework).  We relied on
these two categories to analyze our data and arrive at our results. Then, we examined what the
students’ conception of circles were and how they were evoked in each stage of the ETIs.
Finally, we compared the two students in terms of their conception of circles and how their
interactions differed in the digital environment.

Results
We found that the two students demonstrated similar conceptions of circles in the pretest as

they constructed circles in the physical medium. During Day 1, they also displayed similar
conceptions of circles in the digital environment. However, on Day 2, they displayed different
trajectories of conceptual development in regard to circles.  In this results section, we report our
analysis on the different progression of each student and how their interactions with the digital
environment influenced the development of their conceptions of circles differently.

Pretest Results
The main task in the pretest was to construct an equilateral triangle using a ruler and

compass.  A typical way to construct an equilateral triangle is constructing the intersection
between two circles, each centered at one endpoint of the segment and with the segment as the
radius.  Neither student constructed the triangle in this way.

When constructing an equilateral triangle during the pretest, both students first checked the
tick marks on the ruler to measure the length of the given segment, then attempted to construct
two other sides of a triangle from each endpoint of the given segment.  Both also checked the
length of each segment with the use of a ruler as a measuring tool.  Athena explained that what
she had constructed was an equilateral triangle because all of the sides were “the same length
AB”, which was the length of the given segment she had measured.  Faith had similar reasoning,
that she only needed to measure segment AB in order to replicate the same measured length on

2021 Research in Undergraduate Mathematics Education Reports 286



the sides of the triangle.  Since they both relied on measurement as their method of construction,
neither seemed to consider the compass (or circles) as a necessary tool for construction of an
equilateral triangle, and thus did not use it.

Day 1 Results
At the beginning of Day 1, the interviewer asked the students if a circle was a set of points on

a plane equidistant from a center point.  Both students verbally accepted the statement as
presented to them in the digital environment.  While completing the triangle exercises, both
students had a specific methodology for constructing circles (shown in Figure 1).  They created a
point, T, in the middle of the triangle, intended to be the center of triangle ABC.  Then, they
dragged their pens back and forth from the point T, (which enlarges and shrinks the radius of the
electronically drawn circle).  When it appeared the shape of the circle included points A, B, and
C, they lifted their pens off the screen, which constructed the circle centered at T.  When they
lifted their pens, they had not chosen a radius, so the pens were not directed to any point in
particular, and the GeoGebra software automatically created a point where the pens were lifted
off the screen.  They both used a similar method to construct circles in the circle exercises.

Figure 1. A flowchart of the method both Athena and Faith used to construct circles on Day 1 (left) and a screenshot
of Athena using the method to construct a circle centered at T (right).

Once the circles were constructed, both students included the property that all points on a
circle are equidistant from the center in their reasoning.

Findings from Day 1. The students’ conceptions of circles remained similar on Day 1.
Athena and Faith’s verbal explanations demonstrated their conception of circles as geometric
objects; however, they did not consider the properties of a circle in their constructions.  Neither
used the property that radii are equal in length to construct a circle, because neither selected a
point on the circle as the endpoint of a radius. They instead dragged their pens across the screen,
which enlarged the electronically drawn circle, so they could determine which points “look like”
they are on the circle.   Both students viewed construction as drawing the geometric shape based
on visual stimulus (GeoGebra) because neither Athena nor Faith included radii in their
construction of circles.  Since they consider the properties of a circle (including equidistant radii)
in their reasoning, but not in their construction of circles, we categorize their reasoning about
circles as conceptions of geometric objects and their conceptions of circle construction as
conceptions of geometric shapes.
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Results of Day 2
In response to the students’ consistent strategies in constructing circles based on the visual

shape of the circle demonstrated in Day 1, the research team developed and implemented a new
requirement for construction in GeoGebra: the instruction “don’t create new points”.  As
GeoGebra will construct a point if the point selected by the user was not previously defined, this
seemed like an effective intervention for the students’ reliance on visual stimulus in construction.
In this section, we describe individually each student’s response to the new requirement in regard
to her reasoning and construction of circles and analyze the major differences between the two
students’ conceptions on Day 2.

Findings from Day 2. We found that during Day 2, two students’ construction of circles
changed differently in regard to their integration of the new requirement.

Athena’s reasoning was similar to her explanations during Day 1.   Although  the interviewer
intervened with a new requirement for GeoGebra use, such instructional intervention did not
have an impact on her conception of circles.  Rather, her verbal reasoning continued to
demonstrate a conception of circles as geometric objects. In regard to construction of circles,
Athena did not seem to change her conception of construction of circles as geometric shapes.
The change in her method (i.e. tracing a circle before selecting a point on the outside of the
circle) seems to indicate that her accommodation of the intervention was to add a step to her
previous method (checking that the point she chose would not create a new point).  Instead of
changing her conception of circles to a geometric object (e.g. including the property that a circle
has a radius), she continued to drag her pen back and forth, relying on the shape of the
constructed circle to determine the size of the circle.

On the other hand, Faith’s verbal  reasoning and construction of circles demonstrated a
conception of circles as geometric objects by the end of Day 2.  Following the new requirement,
to not construct another point when constructing a circle in GeoGebra, she selected a point as the
center of the circle, then dragged her pen across a segment she had chosen as a radius to select
the endpoint of the radius on the circle.  As she had chosen a radius in the construction of circles,
we considered her conception of circles as geometric objects.

Figure 2. A flowchart of the method Athena (left) and Faith (right) used to construct circles in Day 2.

Using the digital environment to adapt their reasoning, the students fulfilled the new
construction requirement.  Athena simply added to her method of constructing circles - her
method is different only in that instead of creating a new point on blank space, she traced a curve
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from the blank space to a previously defined point.  The way she constructed circles in the digital
environment did not include her reasoning about the properties of circles.  Faith, on the other
hand, seemed to change her method in order to  integrate the new requirement.  Instead of
relying on the visual shape of the circle in construction, Faith used the properties of a circle (that
all the radii were equal in length) to construct her circles.

Posttest Results
The research team administered the posttest on paper in order to observe what impact, if any,

the transition back to physical materials would have on the students’ reasoning.  We observed
that students’ reasoning in the posttest had changed significantly from the pretest.

Findings from the Posttest. Both students’ conceptions of circles in construction and
reasoning did not change in the posttest.  Athena’s verbal reasoning about the properties of a
circle demonstrated her conception of circles as geometric objects; however, her use of the
compass without selecting radii of the circle in her construction demonstrates her conception of
construction of circles as geometric shapes.  Faith, on the other hand, selected radii in her
construction of circles, and also reasoned using the property that radii of a circle are equal,
demonstrating her conception of circles as geometric objects both in construction and verbal
reasoning.

Conclusion
The GeoGebra environment created by Fischer (2019) was helpful to the students in this

study as a concrete method of visualization for both their reasoning about and of circles.  Athena
commented on how interesting GeoGebra is and Faith said that GeoGebra “seemed like a cool
program”.  In addition to the students’ positive feedback about the application itself, GeoGebra
seemed to help the students progress in their construction of an equilateral triangle and
influenced their conception of circles.

Although both Athena and Faith began the ETIs with similar conceptions (demonstrating
conceptions of circles as geometric objects verbally, but constructing circles with a conception of
circles as geometric shapes), their conceptions at the end of the ETI were different.  While
Athena accommodated the teaching intervention without changing her conceptions of circle
construction as a geometric shape, Faith incorporated the conception of circles as geometric
objects in her constructions, with the inherent property that all radii of a circle are equal.

In regard to how the students’ conceptions of circles were evoked as they interacted with the
digital environment, our results indicate that the students demonstrated different conceptions of
circles in their reasoning and construction.  While further study is needed, the results of the
students’ changes in reasoning and construction suggest that GeoGebra has the potential to
influence students’ conception of geometric objects, such as circles, which would make it an
invaluable tool in geometry classrooms, both in-person and online.
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How do Mathematics Instructors at Hispanic Serving Institutions Justify their Instructional
Decisions?
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An underutilized strategy for addressing the underrepresentation of Black, Indigenous, and
people of color (BIPOC) in the U.S. STEM workforce is directing more attention to Minority
Serving Institutions (MSIs). Unlike some MSIs, Hispanic Serving Institutions (HSIs) are defined
by the current demographics of their student population rather than the intention of the
institution to serve a specific population. As instructors are the mediators between students that
attend the HSIs and mathematics content, we use the framework of professional obligations
(Herbst & Chazan, 2012; individual, interpersonal, disciplinary, and institutional) to investigate
if or how they are being intentional about the ways their practice can impact BIPOC students.
We found from preliminary analysis of nine interviews that instructors are recognizing the four
professional obligations in some common ways. A tension exists between the disciplinary
obligation to portray mathematics as culture-free and attending to students as individuals while
fostering an inclusive classroom environment.

Keywords: Hispanic-Serving Institutions, Professional obligations

Introduction
The underrepresentation of Black, Indigenous, and people of color (BIPOC) in the U.S.

STEM workforce is a widely recognized issue (NAS, NAE, and IOM, 2011; NSF, 2017; Palmer
et al., 2015). An underutilized strategy to address this problem is to direct more attention to
Minority Serving Institutions (MSIs) that serve large percentages of these students (NASEM,
2019). MSIs provide the primary pathways to STEM careers for minority students and are thus
best positioned to address the urgent STEM workforce supply issue (NASEM, 2019).

There is a large variation in the types of MSIs that exist, so the best ways to bolster support
for the faculty and students are likely not uniform. Postsecondary institutions with an enrollment
of at least 25% or more Latinx undergraduate full-time students can apply for Hispanic Serving
Institution (HSI) status (U.S. Department of Education, 2021). Unlike Historically Black
Colleges and Universities (HBCUs) that are created with the intention of serving a specific
demographic, institutions become HSIs based on the current demographics of their student
population.

In the NASEM (2019) report on MSIs, a literature review of what practices and strategies
best create the most success for students of color revealed the importance of intentionality. This
included the creation of initiatives, policies, and practices that were intended to create a
culturally mindful environment. While the report described several exemplary program-level
initiatives, the review of the literature revealed that little is known about the intentionality of the
faculty and lecturers working directly with students (NASEM, 2019). For instructors, we view
intentionality as the making of instructional decisions with a conscious justification. We suspect,
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due to the designation of HSIs by their student demographics rather than their historical mission,
that instructors at HSIs might not be well prepared to purposefully serve their BIPOC students.
This is consistent with research by Hubbard and Stage (2009) that found few differences between
HSI faculty and their faculty counterparts at predominantly white institutions in terms of
perceptions and attitudes towards teaching and students. Recent and continuing shifts in
demographics (Laden, 2004) have left many institutions to grapple with the implications of being
an HSI.

Instructors are a crucial aspect of students’ experiences and success in mathematics
disciplines because they are the mediators between the content and the students. Mathematics
instructors are used to a sense of autonomy over the content and pedagogy in their classrooms,
even given the constraints of course syllabi and curriculum (Hora & Ferrare, 2012), and while
they have extensive training in their disciplines, they often have little pedagogical training when
they begin teaching (Ellis et. al., 2016). Instructors at HSIs are well-positioned to address the
underrepresentation of BIPOC students in the STEM workforce, but can also replicate the
existing inequities if they rely on their disciplinary enculturation to shape their pedagogical
choices. Thus, we gathered information on the intentionality of faculty at HSIs in making their
instructional decisions. This can inform the types of policies, professional development, and
other strategies that can best support BIPOC students at HSIs.

Theoretical Framing
Given the importance of intentionality, we investigated how instructors made decisions that

explicitly serve the student populations in their institutions. Cohen et al. (2003) posed that
instruction is not merely about what teachers do, but also about how instructors shape the
relationships between the teacher, students, and content, within the environment that surrounds
all three. Very little research exists on instruction in the particular contexts of STEM at HSIs. Yet
we know how important this environment is, in particular, for retaining students in STEM fields
(Hubbard & Stage, 2009; NASEM, 2019).

We draw from the theory of practical rationality (Chazan, Herbst & Clark, 2016; Herbst &
Chazan, 2012), which poses that instructors not only draw from individual resources like content
and pedagogical content knowledge (Shulman, 1986) and individual beliefs for making teaching
decisions, but also from social resources. One such social resource that instructors can use to
justify their actions is professional obligations, which are shared by members of the profession
and are tied to the environments in which they work.

Herbst and Chazan (2012) identified four professional obligations that serve as justifications
for instructional actions (Herbst & Chazan, 2012). The four obligations include: 1) upholding the
policies and practices of the department, institution, or state (the institutional obligation); 2)
attending to the unique psychological, emotional, and other needs of students (the individual
obligation); 3) representing the particular discipline being taught accurately and authentically
(the disciplinary obligation); and 4) maintaining a classroom environment that is socially and
culturally appropriate (the interpersonal obligation). For example, instructors could justify the
decision to use more active learning in their classroom using the obligations: the individual
obligation could motivate them to meet the needs of students who could learn more from instant
feedback on their thinking; the disciplinary obligation could motivate them to give students an
experience practicing science or mathematics in a more authentic way.

With this framing, we ask the following research question: How do faculty recognize their
professional obligations to justify instructional decisions in the HSI context? We hypothesize that
the way instructors recognize their professional obligations might show areas for more instructor
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intentionality in the HSI context. This could inform the ways administrators and researchers
support faculty growth and development.

Methods
We used a random stratified sampling technique to identify the institutions we asked to

participate in this study. This paper is based on nine interviews with undergraduate mathematics
instructors from eight different HSIs. Participants represent a range of institution categories
(associate’s, master’s, doctoral) and locations (West, Southwest, and Southeast). They come from
a larger multidisciplinary (including physics, biology and chemistry) dataset of 40 interviews
still being conducted at the time of this paper’s submission. See Table 1 for participant details.

We coded the transcripts for each of the four professional obligations and looked across
instances of each obligation to see emerging themes. The goal of this process was to create an
organized framework of teacher decision-making in HSI environments.

We report evidence of the various ways STEM faculty at HSIs recognize the four
professional obligations. Our data cannot, however, support causal claims about these themes
being a product of the HSI institution status.

Results
We found that all four professional obligations contributed to the ways that participants in

our study justified their instructional decisions. We highlight ways each professional obligation
manifested in the context of HSI undergraduate mathematics environments.

Institutional obligation: Rare unless mandated by law
Brittany and Jessica noted that part of the institutional obligation that instructors now must

recognize in the state of California is new legislation that prohibits mathematics coursework that
lengthens the time of graduation (Assembly Bill No. 705, 2017). Instead of using placement
exams that sometimes lead students through a lengthy string of remedial mathematics courses,
math departments now progress students through any non-credit remedial mathematics courses
in one year. Jessica explained that she supports the bill because, previously, the timeline to get
through the mathematics courses “weeds out a lot of people”.

The new legislation in California was the only explicit recognition of an institutional
obligation related to instructing at an HSI by any of the nine instructors. Matthew began the
interview by apologizing and asking what an HSI was, indicating that he had likely not made any
instructional decisions based on departmental initiatives or policies related to teaching at an HSI.
Most instructors denied much involvement from the department or institution in shaping their
courses. For example, Francesca said the department reviewed her class, “But after a semester,
they pretty much left me alone, because I know my standards are very high.” Thus, any
recommendations or requirements by the department or institution for policies that would
directly support their BIPOC students went mostly unnoticed by instructors as they made
pedagogical decisions.

Individual obligation: Different identities and assessment
Three instructors recognized the obligation towards meeting the needs of individual students

by acknowledging the different identities that students brought to the classroom. Brittany and
Samuel explained that, in comparison with the students they taught at a non-HSI, the students
they teach at their current institutions more often carry identities beyond their student identity.
Brittany said, “Student is a third title. I mean, we have mom as the first title, or dad, or caretaker
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or, a business owner, construction worker.” Samuel recounted his initial shock when students in
his class talked about teaching the mathematics content to their own children.
Table 1. Demographics, position, institution Carnegie classification, location, and field of each participant

Pseudonym Self-identified
demographics

Position Carnegie classification State Field

Jessica Hispanic or
Latina female

Tenure-tr
ack
Instructor

Associate's Colleges: Mixed
Transfer/Career &
Technical-High Traditional

CA Mathematics

Brittany White female Assistant
Professor

Associate's Colleges: High
Transfer-Mixed
Traditional/Nontraditional

CA Mathematics

Steven Caucasian
male

Professor Master's Colleges &
Universities: Larger
Programs

CA Mathematics

Matthew White male Associate
Professor

Associate's Colleges: Mixed
Transfer/Career &
Technical-High
Nontraditional

TX Mathematics
Education

Samuel White male Assistant
Professor

Doctoral University: High
Research Activity

TX Mathematics
Education

Theresa White female Associate
Professor

Doctoral University: High
Research Activity

TX Mathematics
Education

Francesca White female Adjunct
Professor

Associate's Colleges: High
Transfer-Mixed
Traditional/Nontraditional

CA Mathematics

Niya Indian female Lecturer Doctoral University: High
Research Activity

TX Mathematics

Tomas White, Latino
male

Visiting
Professor

Doctoral University:
Highest Research Activity

FL Mathematics

Samuel and Brittany both expressed that this changed their view of assessment. Samuel said
that, since coming to an HSI, he stopped taking attendance and instead reached out to students
individually if he saw they missed class. Brittany has a nontraditional grading scheme for
homework, so students have opportunities to practice and are not penalized for having other
priorities that make meeting deadlines difficult. We interpreted Samuel and Brittany as not
viewing things like late work as a product of laziness; instead, the students’ complex identities
caused these instructors to view late work as a product of their students’ competing priorities.
Consequently, they were inclined to work with their students to help them fit mathematics in
with the rest of their lives.
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Disciplinary obligation: Utility of content and representing a culture-free topic
Three instructors justified their instructional decisions as helping their students to realize that

mathematics is useful and applicable to other courses and real-life situations. For example,
Brittany explained that she wanted students to be able to critically analyze the statistics they
encounter outside the classroom. Steven worked with undergraduate learning assistants (Otero,
2015) to implement student-centered instruction in his course. One of the learning assistants
pointed out content that was useful in his later coursework. Steven used this knowledge to stress
to students the utility of the content they were learning.

How the instructors represent the discipline depended on how they viewed the discipline.
Two instructors expressed views that their mathematics departments considered mathematics to
be a culture-free subject. Francesca praised her department for this: “We don't see a color or sex
or anything. We see a raw being that you can teach mathematics to. Mathematics has no color.”
Theresa, a math educator, explained that “We have a lot of faculty who are very aware of issues
of identity and professional perception of self in the discipline, but by no means the majority. …
Overwhelmingly, the department leans towards math is math. Math is neutral. Math doesn't
discriminate.”

Two instructors, including Francesca, expressed that they taught and treated all students
similarly due to this understanding of the discipline. Francesca, however, continued that
“mathematics is this infinite number of like sides to it, you know, like a diamond, like more than
a diamond. And the way people understand is different.” So although she felt that mathematics is
an objective subject, she also found herself teaching it differently to different individuals. The
stance that mathematics is culture-free is closely related to instructors’ (lack of) concerns for the
interpersonal environment of their classroom.

Interpersonal obligation: Inclusivity and Student engagement
Three of the mathematics instructors explicitly stated that concerns for the inclusivity of their

classroom did not play a role in their teaching. For example, Jessica stated that the demographics
of her students did not play a role in her teaching. Instead, she relied more on the questions
students asked or the correctness of their answers to adjust her teaching. For those that did have
concerns about inclusivity, one way instructors used this obligation to justify their actions was in
terms of making the course content more inclusive. Matthew and Samuel sought to adjust
examples so they were more relevant to the populations in their class. Theresa tried to be
inclusive by being aware of the experiences that the students who were African American or
Hispanic were having in the class. She tried to give extra attention to whether they were
comfortable sharing their ideas and whether they were feeling heard by herself and the groups
they were working in on a day-to-day basis.

The interview protocol did not directly ask about student engagement, but many instructors
expressed that they aimed to foster an environment that encouraged students to engage with each
other. In response to a question about maintaining an inclusive environment, Jessica said she
facilitated activities on the first day of class to give students a sense of community and
connections to other students within the classroom. For example, she has students discuss in
groups what fears they might have after reading the syllabus. Steven tried to get people working
together inside the class so that they would be more likely to reach out to other students for help
outside the class as well.
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Scholarly Significance
As the primary mediators between the Latinx students that attend HSIs and the STEM

content, instructors have the opportunity to impact students’ experiences as they prepare to enter
the workforce. We asked how faculty recognized their professional obligations to justify
instructional decisions in the HSI context. Instructors at HSIs gave justifications for their
instructional decisions that recognized the four professional obligations (summary in Table 2).
This study highlights where potential might exist for instructors to better serve their BIPOC
student populations. Information about how they are recognizing the obligations revealed
tensions between the belief that mathematics is above culture and wanting to foster an inclusive
community that respects the unique identity of individuals. Without having opportunities to
address this tension, it is likely to remain unresolved.
Table 2. Themes from the ways HSI mathematics faculty recognized their professional obligations in their
instructional decision-making

Professional Obligation Ways the professional obligations were recognized

Institutional ● Adapting classes to the requirements around remedial courses

Individual ● Respecting the varied identities of the students
● Changing view of assessment to better accommodate students’

lives

Disciplinary ● Aiming to show students the utility of the discipline
● Viewing mathematics as a culture-free discipline

Interpersonal ● Using or creating inclusive materials
● Fostering student engagement

These accounts inform three ways to support instructors. First, this work offers clarity about
an unresolved tension that may exist among mathematics instructors’ professional obligations.
Instructors may struggle to treat the discipline as culture-free while recognizing their individual
and interpersonal obligations, and never encountered the opportunity to address it directly.
Second, this work shows what facets of professional obligations instructors are not taking into
account. Policy-makers or departments could use this information to motivate how they try to
direct instructors’ efforts. For example, instructors did not mention practices associated with
culturally relevant pedagogy, either from their own volition or incentivized by the institutions
where they work. To the contrary, some instructors reported that they make decisions to treat all
students similarly. Departments or policymakers could use these results to legitimize professional
development on such a topic. The results from this study show that instructors may be open to
attending to the different ways individual students learn, even if they view mathematics as
culture-free.

Third, if instructors value certain facets of professional obligations, but there are better
actions that could serve those intentions, this could inform the types of resources made available
to those instructors. For example, we found that instructors prioritize student engagement as part
of their interpersonal obligation. If instructors are unaware of practices (or the need for practices)
that make BIPOC students feel a greater sense of belonging so they can engage with their peers,
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professional development can be tailored to those needs by appealing to instructors’
interpersonal obligation.

As we continue this work we will ask if these themes appear in a larger, representative
national sample of STEM instructors at HSIs. We intend to look for patterns of these themes
coupled with the use of evidence-based practices and similarities and differences across
disciplines. For example, in the natural sciences more than mathematics, more instructors
describe giving students authentic disciplinary experiences through activities that model what
scientists do. Involving students in laboratory research to develop their disciplinary identity is
mentioned more often than involving students in theoretical mathematics research. As these
decisions are mediated by content, we expect that even if the professional obligations remain the
same, how instructors instantiate them will vary by discipline.
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Sign Language Variation and Iconicity in Undergraduate Mathematics 

 

Kaki Simmons Smith 

Arizona State University 

Two American Sign Language interpreters and two Deaf instructors were asked to sign various 

undergraduate mathematical terms and definitions. Various types of iconicity were identified in 

the signs and each term had more than one sign demonstrated for it. The participant’s 

preference and choice for signs reflected their mathematical beliefs and prior experience. While 

the motivation for all participants was to accurately translate the meaning of the mathematical 

concepts, not all participants shared the same type of preference for sign type. One out of the 

four participants preferred to use signs that represent the notation used for the concept, while 

the other three participants preferred to use signs that showed some conceptual meaning.  

Keywords: Math Education, Sign Language, Deaf Education, Linguistics, ASL, Iconicity 

Background Literature 

Deaf students drop of out of college at alarmingly high rates (Walter, Foster & 

Elliot, 1987; Walter, 2010). Most deaf undergraduates attend a university where a mainstream 

classroom is the only environment (Stinson, Liu, Saur & Long 1996), and thus might need to 

utilize interpretation services for American Sign Language. American Sign Language (ASL) is 

the primary language of the Deaf Community in the United States. Not all deaf people use ASL 

to communicate, but many students choose to utilize ASL interpreters in the classroom.  

Savic and I conducted an initial qualitative study with the aim of developing an 

understanding for what Deaf and Hard of Hearing (DHH) students’ experience is like in 

undergraduate mathematics (Simmons & Savic, 2018). The students acknowledged struggles 

related to instructor communication and struggles related to incorrect or confusing sings used by 

interpreters with words like “sign” and “function” (which have multiple meanings in English). If 

there is confusion about which signs to use for certain mathematical ideas, the investigation of 

ASL use in higher level mathematics may provide insight into the difficulties DHH students face 

in undergraduate mathematics courses.  

Several researchers have used embodied cognition to analyze how students’ mathematical 

conceptions are grounded in their bodily experiences (Núñez, 2003; Smith 2009). Núñez et al. 

(1999) explain that embodied cognition grounds the situatedness of knowing and learning in 

bodily experience and bodily actions “realized through basic embodied cognitive processes and 

conceptual systems” (p. 46). Embodied cognition also takes the position that mathematics does 

not exist independently from human understanding. “Reality is constructed by the observer, 

based on non-arbitrary culturally determined forms of sense-making which are ultimately 

grounded in bodily experience” (p. 49).   

Theoretical Perspective 

Meir and Tkachman define iconicity as “a relationship of resemblance or similarity between 

the two aspects of a sign: its form and its meaning” (2014). In essence, the opposite of iconicity 

is arbitrariness. 

Embodied cognition has been used to study gesture in mathematical talk (Edwards 2008; 

2009) and sign language use in elementary mathematics (Krause, 2017, 2018, 2019). Krause 

(2019) adopted theoretical constructs from Edwards work on categorizing gestures (Edwards, 
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2009). Iconic-physical reference represents physical objects or actions. For example, the sign 

used for the German word for simplifying uses the dominant index finger to “cross out” numbers 

from what looks like a numerator and denominator in the air. Iconic-symbolic reference 

represents symbolic notation or graphical representations of mathematical ideas. Krause (2019) 

noted that the sign for simplifying had iconic-symbolic elements because the sign represented 

fraction notation spatially: the index finger would be placed horizontally to represent the fraction 

bar. She used her own theoretical construct, innerlanguage iconicity to refer to signs that 

reference other mathematical ideas or concepts by similarity in performance of the sign. For 

example, the German sign for denominator “borrows” the sign for number within the 

performance of the sign for denominator. 

The study provides evidence that sign language influences conceptualizations through what 

the student perceives as iconicity of signs. All three types of iconicity reference were seen to 

influence conceptualization of corresponding mathematical ideas. The author points out that the 

categorization is not “exhaustive” but can “sensitize practitioners to the choice and design of 

signs they use in the mathematics classroom” (p. 15).  

Research Question 

What types of variation and iconicity are there in the way ASL interpreters and Deaf 

instructors sign undergraduate mathematical terms and definitions (and what reasons do they 

express for these choices)?  

Methods 

Because of the lack of information about ASL use in undergraduate mathematics, exploratory 

interview methodology lends itself to provide a basis of information to conduct future studies in 

this area of research. Interviews held through Zoom in a variety of ways helped gather 

information about ASL use by interpreters, DHH students, and a Deaf instructor in 

undergraduate mathematics courses. The participants were able to choose their preferred mode of 

communication: spoken English, text-chat interview, and the use of an ASL interpreter were 

types of communication the participants chose to utilize. They also consented to have pictures 

and videos shown in reports including their faces for the purpose of retaining the meaning of the 

signs (as facial expression is an important element of ASL).  
  The four participants of this study (all residing in different states and given pseudonyms) 

consist of two ASL interpreters and two Deaf mathematics students/instructors. Martha and 

James are the two ASL-interpreter participants. James has been interpreting ASL for 27 years 

and is hired through an agency to interpret at a large Southwestern university. Martha has been 

interpreting for 35 years and is currently hired on as staff at a community college known for 

having a large population of deaf students.  

The other two participants of the study are Deaf and have had experience learning and 

teaching mathematics in college: Andrew and Thomas. Andrew has a BS in mathematics from 

Gallaudet (a university for deaf students) where he was able to take mathematics from Deaf 

instructors and all his classes were taught in ASL. He is currently a PhD student and has taught 

45 credits worth of mathematics in ASL. Thomas majored in four STEM fields and chose to 

have some of his mathematics and physics courses interpreted in ASL. He taught an 

undergraduate applied mathematics course in ASL and had an interpreter for his all-hearing 

class.  

The interviews were one-hour in length and consisted of two phases: general experience 

discussion and term card signing. During the first half of the interview, participants were asked 
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questions about their general experience with ASL and mathematics, sign creation for non-

standardized terms, and techniques used when signing about mathematics in the classroom. 

During the second phase of the interview, participants were presented with term cards that 

contained a mathematical term they have probably experienced (based on their response about 

which math courses they are familiar with) along with a definition for the term. The definitions 

were pulled from a variety of sources to simulate encountering a new topic in the classroom and 

account for course variety across institutions. All four participants were given the same 

instructions: to show the signs they use and have seen for the term and to sign the definition 

written below it.  

The analysis of the data consisted of identifying each sign given for the term cards and 

categorizing those signs by iconicity categories: innerlanguage iconicity and iconic-symbolic 

iconicity. Innerlanguage iconicity has three subcategories: conceptually-linked signs, English-

linked signs, and initialized signs. Iconic-symbolic reference has two subcategories: notational 

signs and graphical signs. While the main categories are drawn from Edwards (2009) and Krause 

(2019), the subcategories were created as themes found during data analysis and are defined in 

the results section.  

Results 

I have categorized the variation of sign use leaning on Krause’s iconicity construct, 

innerlanguage iconicity (2019) and Edwards gesture iconicity construct, iconic-symbolic 

reference (2009). I first define the category, give an example of a sign in the category, and 

provide transcript of a participant’s explanation or reasoning for their sign choice.  

Innerlanguage Iconicity 

Leaning on Krause’s definition of innerlanguage iconicity, an innerlanguage iconic sign is a 

sign that shows reference to another sign. This type of reference can show a linkage of the 

referenced concepts to the concept that the sign represents. This could be in the form of 

borrowing the same handshape, movement, or position of the reference sign.  

Conceptually-linked sign: A sign that has iconicity to another sign with the intention of 

showing conceptual relation between the two ideas, I refer to as a conceptual sign. Out of the 

nine term cards, conceptually-linked signs were given for only one of the main terms, Derivative. 

However, four of the eight variations of signs given for Derivative were conceptually-linked 

signs.  

Figure 1 illustrates how Martha uses the same motion to the sign for “change” but uses the 

handshape for the letter “d”. The use of the same motion as “change” is intentional in that it links 

the related concept of change to the concept of derivative.  

   
Fig. 1 Martha (interpreter) is shown demonstrating the sign they use for Derivative.  
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In Figure 2, Thomas uses the sign “derive-from” for Derivative. This is an intentional linking 

of the concept to-derive-from and the concept of Derivative. 

 
Fig. 2 Thomas (Deaf student/instructor) is shown demonstrating one of the signs he uses for derivative. He uses the 

sign “derive-from” for Derivative.   

English-linked sign: I use the term English-linked sign to refer to signs that incorporate 

signs from another concept that uses the same English word but can be considered a separate 

concept. Figure 3 shows Andrew using the sign “line” for Linear, and Figure 4 shows him using 

the sign “independent/independence” for Independence.  

 

 
Fig. 3 Andrew (Deaf student/instructor) is shown demonstrating the first half of the sign for Linear Independence, 

also “line”. 

 
Fig. 4 Andrew is shown demonstrating the second half of the sign for Linear Independence, also 

“independence/independent”. 

Andrew explained that he doesn’t think the sign shown above is a very good sign because the 

sign for line doesn’t exactly mean “linear”, but it is the sign that is used for the term “linear”. It 

is the sign typically used for Linear Independence and was given by all the participants who 

were shown the card.  

Initialized sign: The discussion of initialization came up during Martha’s interview, but is 

seen throughout the language of ASL. If a sign is initialized, it uses the fingerspelled version of 

the first letter of the word. For example, the sign for “mathematics” uses the handshape for the 

letter “m” on both hands facing in as they brush across each other with the dominant hand on top. 

Different mathematics topics will use the same motion but with the handshape of the first letter 

2021 Research in Undergraduate Mathematics Education Reports 303



of the topic: algebra uses the “a” handshape and calculus uses the “c” handshape. Out of the nine 

term cards, an initialized sign was given by at least one participant for four of the main terms 

(this does not include completely fingerspelled signs which lie outside the iconicity categories).  

While signing the term card for function, Martha discussed different signs she uses for 

Domain as seen in Figure 5.  

 
Fig. 5 Martha (interpreter) is shown demonstrating two different signs she uses for Domain. 

The first sign for Domain uses an open dominant hand moving side to side across the other 

arm, and the second sign uses the handshape for “d” with the same motion. She demonstrated 

similar signs for Range using the handshape for “r” and moving her hand up and down (versus 

side to side). 

Martha described her use of initialization in the classroom for the purpose of helping the 

student learn the vocabulary term:  

I sometimes include more initialization if it has to do with terms that are going to come 

up on the test… As a technical interpreting tool, I will sometimes bring that into my 

interpreting to help students. 

Iconic-Symbolic Reference 

A sign with iconic-symbolic reference shows reference to symbolic notation or graphical 

representation of the signed concept. It can use motion, handshape, and position to mimic how 

the notation or graph looks.  

Notational Sign: A notational sign has iconic reference to the symbolic notation used to 

reference the concept.  

As illustrated in Figure 7, James (interpreter) uses the handshape for “d” and motions a “z” 

shape in the air. While interpreting for a physics student, he collaborated with other ASL users to 

create a unique sign for Derivative. He mentioned that the sign “is definitely not standard. [It’s] 

something that the physics student, a linguist and [himself] worked on and came up with.” It was 

influenced by the notation of  . Andrew, during his interview, described a sign used by many 

people at RIT that resembles this sign.  

 
Fig. 7 James (interpreter) is shown demonstrating his primary sign for Derivative. 
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Graphical sign: A graphical sign has iconic reference to how a mathematical idea can be 

represented graphically.  

 
Fig. 8 James is shown demonstrating a sign for slope. 

Both versions of the sign (seen in Figure 8) might be used for slope generally, however, the 

left picture, would be used to represent positive slope; the right picture would be used to 

represent negative slope. Notice, this is signed from the signer’s perspective (rather than the 

audience’s perspective).  

Category Summary 

Table 1 illustrates whether or not a sign in the given iconicity categories was presented by at 

least one participant for the term.  

 

Discussion 

There were not only differences in the way each participant signed the terms and definitions 

presented to them in the study, there were also different ways the signers translated the cards, 

often offering various ways to sign each term and definition. As ASL is not standardized at the 

undergraduate mathematics level, sign variation documentation can help bring awareness to 

alternative ways of signing mathematical ideas. Students may struggle with unfamiliar signs if 

they attend college in a different region than where they learned mathematics in high school.   

Krause found that iconicity can influence how a student can conceptualize corresponding 

mathematical ideas (2019). The data from this study suggests that an interpreter, or Deaf 

Table 1. Category breakdown of given signs for term cards.      

 Innerlanguage Iconicity  Iconic-Symbolic Reference     

Terms 

 

Function 

Limit 

Derivative 

Rate of Change 

Slope 

Span 

Linear Independence 

Concavity 

Continuous Function 

Conceptually-

Linked 

No 

No 

Yes 

No 

No 

Yes 

No 

No 

No 

 

English-

linked 

No 

Yes 

No 

No 

No 

No 

Yes 

No 

Yes 

Initialized 

 

Yes 

No 

Yes 

Yes 

No 

No 

Yes 

No 

No 

Notational 

 

No 

Yes 

Yes 

No 

Yes 

No 

No 

No 

No 

Graphical 

 

No 

No 

No 

No 

Yes 

No 

No 

Yes 

No 
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instructor might choose or prefer a sign as a result of their mathematical experience, not only 

with exposure to certain signs, but their conceptions of the mathematics as well. This inevitably 

will impact the sign usage and mathematical conceptions of DHH students (it may not be clear in 

exactly what way). This is an important result, as there is no mathematics education requirement 

for interpreters to interpret at the university level. It is up to the interpreter to be prepared to 

accurately translate the material, which possibly shouldn’t be expected from interpreters who are 

paid by the hour of interpreting (rather than additionally being paid for time spent preparing).  

While there were two categories of innerlanguage iconicity and iconic-symbolic reference, 

there were two major themes that seemed to underly sign choice or sign preference among the 

participants. Martha, Andrew, and Thomas tended to use or prefer signs that referenced the 

concept directly or a related mathematical concept in the performance of the sign. Typically, 

these signs would lie in the Conceptually-Linked and Graphical Sign categories. James, on the 

other hand, stated and demonstrated that he preferred signs that represented the notation of the 

concept (Notational Sign category). While his sign preference was different, his motivation was 

the same as the other three participants. They all emphasized the importance of accurately 

translating the mathematical concepts’ meaning. James believes that a sign which bears 

resemblance to a related concept’s sign (innerlanguage iconcity) won’t always be conceptually 

accurate across multiple contexts. He stated that by avoiding using more conceptual signs, you 

can avoid attributing misconceptions to mathematical ideas. Martha believed initialization could 

help students with the translation of concepts from ASL back to English for test preparation. 

While the interpreters had more inclination of including more notation and English-related signs, 

their motivations were grounded in how certain signs could offer more support for the students’ 

conceptual understanding in the classroom. 

Conclusion 

The ability to express mathematics in a language that can represent three-dimensional space 

has a great opportunity for future study. Understanding the different ways signers choose to 

express mathematics in ASL and why they choose to express it in a certain way can provide 

insight into how language plays a role in conceptualizing certain mathematical ideas. Sign 

Language is different to spoken language in that it provides a way to fluently discuss graphical 

spaces in a way that is unavailable to spoken language. Iconicity plays a big role in sign 

languages, and its role in undergraduate mathematics might help us understand how DHH 

students think about mathematics. This, in turn, could lead us to a new or deeper understanding 

of how all students might think about mathematics.  
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Two Students’ Conceptions of Solutions to a System of Linear Equations 
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Systems of linear equations (SLE) comprise a fundamental concept in linear algebra, but there is 
little research regarding the teaching and learning of SLE, especially students' conceptions of 
solutions. In this study, we examine students’ understanding of solutions to SLE in the context of 
an experientially real task sequence. We interviewed two undergraduate mathematics majors, 
who were also preservice teachers, to see how they thought about solutions to SLE in ℝ3, 
especially linear systems with multiple solutions. We found participants used their knowledge of 
SLE in ℝ2 to think about systems in higher dimensions, sometimes ran into algebraic 
complications, and initially did not find the third dimension intuitive to think about 
geometrically. Our findings highlight students’ ways of reasoning with infinite solution sets, such 
as moving toward the notion of parametrization.  
 
Keywords: linear algebra, systems of linear equations, student thinking, solution 
 

Systems of linear equations (SLE) are a core concept in linear algebra. Having a deep 
understanding of this concept helps in understanding many applications, as well as other topics 
in linear algebra. Instruction often foregrounds solving methods that focus first on unique 
solution cases, before moving to the much more common cases of no solution or infinitely many 
solutions. There is evidence that such procedural instructional approaches to SLE are often 
inadequate for helping students make sense of SLE in these more common cases (Litke, 2020; 
Vaiyavutjamai & Clements, 2006). Procedural instruction links to memorization of rules for 
knowing when a system has no solution or infinitely many solutions and what that means for the 
geometry of the SLE (Huntley et al., 2007).  

In the current study, we examine two students’ understanding of solutions to SLE, from both 
algebraic and geometric interpretations. We used two research questions to guide our analysis: 
(1) How did students reason about solutions in the context of the system of equations task 
sequence? (2) What did students wonder about in this same context? We discuss the ways 
participants consider solutions to SLE and questions they voice as they work through a task 
sequence designed as part of a research-based curriculum design project in linear algebra. 
 

Literature 
Research regarding SLE is limited but growing. In this small pool of research, some regard 

solutions to SLE, whether through task development (e.g., Possani et al., 2010; Sandoval & 
Possani, 2016) or examining students’ understanding of solutions algebraically and 
geometrically (e.g., Harel, 2017; Huntley et al., 2007; Oktaç, 2018; Zandieh & Andrews-Larson, 
2019). For SLE instruction, Possani et al. (2010) developed a task about a set of streets, asking 
students which streets could be closed for road work without disrupting the flow of traffic. Major 
parts of this task were modeling the context, using variables to represent important quantities, 
and then writing a system based on those understandings. Possani and colleagues argue that their 
task helped students create a solid foundation for understanding SLE and their solutions, and that 
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students were able to transfer what they learned in this task to other problems regarding SLE. 
Sandoval and Possani (2016) developed a task to see when moving between representations in ℝ3 

(e.g., graphs versus equations of vectors or planes) makes sense for students. They found 
students could naturally interpret geometric representations of solutions to SLE but that 
connecting geometric representations to algebraic representations to be less natural. 

In regard to student thinking about SLE, several authors have found single solutions to SLE 
to be more intuitive for students to interpret than systems with no or infinitely many solutions 
(Harel, 2017; Huntley et al., 2007; Oktaç, 2018). Oktaç (2018) and Huntley et al. (2007) noted 
that when students worked to interpret results of algebraic manipulation like 8x = 8x or 2 = 4, 
students often rely on memorized rules to decide which had infinitely many solutions or no 
solution. Huntley and colleagues also noted these rules were unhelpful to students in deciding 
whether parallel lines or the same line in a graph meant no solution or infinitely many solutions. 
Zandieh and Andrews-Larson (2019) found that, when solving SLE, students tended to row 
reduce on matrices or manipulate the given systems. Students who used the row reduced echelon 
form were generally successful in solving, but connections between row reduced forms and their 
geometric representations were not straightforward for them to interpret. Thus, the research 
points to a need for more tasks that provide opportunities for students to algebraically and 
geometrically examine SLE with infinitely many solutions, especially those in ℝ3.  
 

Theoretical Framework  
We drew from Realistic Mathematics Education (RME) when designing the task sequence. 

RME is a theory used to design mathematics tasks and involves Freudenthal’s (1973, 1991) 
framing of mathematics as a human activity. Three core heuristics of RME are guided 
reinvention, emergent models, and didactical phenomenology (Larsen, 2018). The first refers to 
which aspects of a concept students are to reinvent along with an instructor’s guidance. The 
second refers to models students develop to organize their mathematical activity. The third refers 
to the selection and use of phenomena in a task sequence to build toward a mathematics concept. 
We wanted students to develop reasoning about what the collection of solutions to an SLE looks 
like and how those solutions relate to one another (both numerically and geometrically). We 
hoped students would be able to build imagery for that collection of things (solutions) by 
working through our task sequence. Our goal is to understand our participants’ reasoning related 
to this reinvention of infinite solution sets.  

Another important heuristic in RME is the use of experientially real starting points 
(Gravemeijer, 1999), an aspect of didactical phenomenology. These starting points are intended 
to help students engage in the development of a mathematical idea, rather than have them simply 
apply prescribed procedures to a situation. In our task context, students find valid combinations 
of meals in a meal plan. We assume most students are either familiar with having a meal plan 
that requires a limited number of meals, or, at least, familiar with experiences less specific, like 
using a limited amount of money to make purchases. Historically, SLE have been used in 
agricultural and economic situations (Andrews-Larson, 2015), which present contexts for 
reasoning about SLE (i.e., didactical phenomenology). In terms of the mathematics in the tasks, 
we assume students have prior experience writing equations that represent a situation, listing 
solutions (e.g., to at least one or two equation equations), graphing (more in 2d than in 3d), and 
manipulating equations using substitution and elimination.  
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Methods 
This study is part of a broader NSF-funded project (1914793, 1914841, 1915156) focused on 

the development of curricular materials in inquiry-oriented linear algebra. This particular task 
sequence was designed to help students create or reinvent ways of thinking about solutions to 
SLE, especially infinite solutions sets. Participants were two undergraduate students at a large 
public university in the Southeastern United States. Both were mathematics majors and 
preservice secondary mathematics teachers. Both participants were white; one was a woman 
(“R”), and one was a man (“L”). The students were recruited by asking faculty in a local 
secondary teacher preparation program to identify two math majors preparing to be secondary 
math teachers who had taken Calculus I but not linear algebra, were neither atypically “strong” 
nor “weak” in terms of their mathematical preparation and would be willing to explain their 
reasoning. Two of the authors interviewed the participants across four consecutive days on 
Zoom, working through as much of the designed task sequence as possible. We used a paired 
teaching experiment (PTE) to see how students reasoned with the tasks (Steffe &Thompson, 
2000) and to allow for discussion between the participants and the interviewer. When working 
through the task sequence, participants briefly worked individually before discussing their 
reasoning. The interviewer prompted participants to think about a problem and explain their 
ideas, asking questions to further their thinking at some points. 
 
Task Sequence 

The tasks posed to participants in the PTE begins with an experientially real situation focused 
on a university meal plan (see Figure 1). During the first session, both participants worked to 
identify numbers of breakfasts, lunches, and dinners satisfying the given constraints, as well as 
estimate the number of options. During the second session, the pair of participants worked to 
represent the set of solutions they identified in a three-dimensional space using the corner of a 
cardboard box. During the third session, they explored the geometry of linear systems with three 
unknowns using Geogebra. During the fourth and final session, they generated examples of 
systems of equations with specified numbers of solutions and developed generalizations based on 
this work. In this proposal, we focus on participants’ work during days 1 and 2 of the PTE.  

PTE Day 1. Participants were first prompted to consider a constraint regarding the number 
of meals that can be purchased in the context of the meal plans (Figure 1, Part 1). They were 
asked to list a few different choices for the 210-meal plan and estimate the total number of 
possible 210-meal plans. The goal for this part of the task was to have the participants reason 
about and organize a large solution set (not to treat it as a combinatorics problem).  

Participants were then asked to consider an additional constraint related to the cost of meals 
(Figure 1, Part 2). Participants were asked to write equations corresponding to each constraint, 
and to identify a solution that satisfied the constraints for the number of meals but not the cost 
(and vice versa) as well as a solution that simultaneously satisfied both constraints. This pressed 
participants to consider solutions that would simultaneously satisfy two different equations. 

PTE Day 2. Participants were first asked to predict what it would look like if all of the 
solutions to the number of meals constraint (b+l+d=210) were graphed. (Note: here b, l, and d 
are the number of breakfasts, lunches, and dinners, respectively.) They were then asked to find a 
way to represent (algebraically and geometrically) all of the “no dinner” meal plans (ignoring the 
105-meal maximum from day 1), and to make similar predictions corresponding to the cost 
constraint equation (5b+7l+10d=1500). Finally, they were asked to consider the graph of both 
sets of solutions simultaneously using the corner of a cardboard box to represent ℝ3. 
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Part 1: Number of Meals. A university meal plan called the “210-meal plan” requires that a 
student purchase exactly 210 meals for a 15–week semester (i.e., on average 2 per day for 15 
x 7=105 days).  
Part 2: Costs of Meals. You just made an estimate of how many different choices would fit 
the requirements of the 210-meal plan. As you read the brochure more carefully, you noticed 
that the cost of your 210 meals must add up to exactly $1500. Breakfasts cost $5 each, 
lunches cost $7 each, and dinners cost $10 each.  

Figure 1: The Meal Plans Context. 
 
Data Sources, Analysis, and Limitations 

Data sources consisted of video recordings of the interviews, field notes, and participant 
work. The four authors watched the video recordings of the interviews together, taking notes 
regarding what we each noticed regarding participants’ reasoning about solutions to linear 
systems as we watched the participants work through the task sequence. Two of the authors used 
an emergent coding method (Glaser & Strauss, 2017) along with researcher notes to locate 
moments that offered insight into participants’ conceptions of solutions. These instances were 
selectively transcribed and recordings were reviewed for additional details. Due to space 
constraints, we limit our analysis to the first days of the PTE. Though our interpretations were 
triangulated across data sources and study authors, we do not make broad claims about the 
generalizability of these findings. Rather, our findings document possible reasoning paths and 
productive starting points of students engaging in the described task sequence. 
 

Findings 
In the first day, participants first with the SLE algebraically, one equation at a time. In 

connecting finding solutions to counting solutions of the first equation, participants wondered 
about how solutions might be ordered. Participants then considered solutions to the entire SLE 
and started down a path toward parametrization. On day 2, participants began connecting their 
algebraic work to the graph of the SLE. 
 
“Are we thinking about (105, 105, 0) being different from (105, 0, 105)?” 

In this part of the task, participants looked for solutions to a linear equation (b + l + d = 210) 
and estimated the number of solutions to that equation in the context of the given “real world” 
constraints. In trying to estimate the number of solutions, Student R asked, “Are we thinking 
about (105, 105, 0) being different from (105, 0, 105)?” Student L replied, “Does it matter?” 

Here, we saw participants reasoning with and wondering about order in solutions. When 
adding three numbers, order does not matter, but when counting solutions, order does matter. We 
saw both participants wonder how solutions with the same three values might count as the same 
or different solutions. This question prompted the development of a shared notation, that 
breakfast is the first value, lunch the second, and dinner the third. 
 
“Get all the variables in terms of one variable” 

In the second part of the task, an additional constraint was added., and participants began to 
use algebraic manipulation they learned in secondary school, primarily substitution. We found 
that, because the system had many solutions, both participants ended up in some circulation of 
algebra, seemingly looking for a single value (as evidenced by Student L’s comment that the 
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result was “probably going to be a positive number”). Both ended up plugging different things 
into equations but found “the variables will cancel” (Student L) or “everything zeroed out” 
(Student R), as shown in Figures 2 and 3. Student L articulated a goal for plugging things in: 
“I’m just trying to get all the variables in terms of one variable like [R] was doing, but every 
time I try it I guess they’ll either cancel or like I’ll run into another issue where I just can’t. 
Pretty much what I’m trying to do is try to relate all the quantities to like one specific variable.”  

              
 Figure 2. Student R’s algebra.       Figure 3. Student L’s algebra. 
 

After both participants used specific solutions they had found to the first equation to see if 
they work for the second equation, the interviewer prompted Student R to try using an equation 
she found in conjunction with her previously identified solutions to the first equation. Student R 
had found dinner in terms of lunch, d = 90 – 2/5 l, shown at the bottom right of Figure 2.  

I: Okay, so talk me through. How did you put those two ideas together?  
R: [Shows work] Okay, so I have the d = 90 – 2/5l and I plugged in 70 and I got d = 62. So 

then I plugged that into the price equation with my 70 times 7 and I got 5b + 1110 = 
1500. And then I got b = 78, which is how many breakfasts there are. So then I added 78 
+ 62+70 and that equals 210. 

I: And then did it satisfy the 1500? Or I guess you plugged into the 1500 one, didn’t you?  
R: Right. 
I: Okay, so you found one that works. 
R: Yes. The ordered triple is (78, 70, 62). Which is a very random number. So I’m like how 

are we supposed to find more. So does it work like that, well obviously every number 
doesn’t work. So do you have to like get lucky with the number you choose to plug in? 

I: What do you mean every number doesn’t work? 
R: Because we know that some, like (70, 70, 70) doesn’t make both equations true but then 

when lunch is 70, there is a solution. So like, if I just like plugged in 75 for lunches like, 
how are we supposed to know which number works or is it just guess and check? 

 

 
Figure 4. Student R finds d in terms of l. 
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Student R used information from her solution to the first equation, (70, 70, 70), that she 

found earlier in the interview to find a solution to the SLE. By plugging 70 in for lunch into an 
equation for d in terms of l (Figure 4) and using the second equation to find b, she found that (78, 
70, 62) was a solution for both equations. Student R had also previously stated that “because [the 
equation] has to equal exactly 1500, and lunch is $7, we have to make sure that whatever 
number, however many lunches we have, is a multiple of 5.” She planned to plug 75 in for l in 
her next iteration because she knew all values of l in the solutions needed to be a multiple of 5. 
Through this process, Student R was able to find many solutions to the SLE but said she did not 
“know why they worked.” Here, both participants were heading toward the notion of parameter 
and using that parameter to find solutions. Student R wondered why plugging in values for one 
variable led to finding multiple solutions to the SLE. 

 
“They would intersect because we found… numbers that will satisfy both equations” 

On day two, participants were asked to think about the graph of each equation of the SLE, 
especially considering each line corresponding to skipping a certain meal throughout the 
semester. In thinking about how to graph a ‘no dinners’ line, both participants drew on their prior 
knowledge of graphing a line in the xy-plane: 

R: I first started listing out some of the triples with d equaling 0 but then I was like wait, I 
think there is an easier way to do this… b+l is 210 … and then I just graphed that which 
was a line with the y and x intercept both being 210 and connected them. 

L: I kind of did the same thing where I just plugged in 0 in the equation and I got b+l=210 
but then from there I wasn’t really sure what to do. Obviously, b or l can be any number 
between 0 and 210 including 0 and 210. ... But ... I’m not really sure how to even display 
that geometrically either. 

 

      
Figure 5. Student R’s work in the plane. Figure 6. Student R’s work on the box. 

 
Student R showed L her graph (see Figure 5) to which he replied, “Ok, so just a line.” To this 
point neither participant had tried to illustrate the “no dinners” meal plans or any other solutions 
in the box. After some help from the interviewer in setting up a coordinate system in the corner 
of a box, the participants started using their knowledge of lines in 2-dimensions, to create the “no 
dinners,” “no lunches,” and “no breakfasts” lines in the box (see Figure 6). The participants then 
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wondered what all the solutions to the b+l+d=210 equation would be. They considered a pyramid 
or a triangle and whether it would be hollow. L suggested that “the d would get higher, but the b 
and the l would get closer in” and R recognized that if we considered all real numbers (not just 
integers) then “it would be flat and all the points would be connected.” 

The interviewer next prompted the participants to consider the second equation starting with 
the “no dinner” line for that equation. Student R added this to her box (see Figure 6) and noted 
that the triangle is no longer equilateral. The interviewer asked, “What do you think it means that 
the lines don’t intersect?” Student R initially noted “the first equation is inside the graph of the 
second equation. So, in that way they do intersect, or they overlap.” When the interviewer asked 
for clarification, Student L stated a different perspective, then analogized to equations of lines. 

L: I would think that eventually they would intersect because we found that there are 
numbers that will satisfy both equations. [Student R: Hmm. That’s true.] 

I: Why would that tell you that they would meet?  
L: Because if there’s two lines that intersect at a certain point, then that point is a solution … 

then that x value that they hit at will be able to be plugged in and you get the same y for 
both of them. 

The participants made substantial progress in building their geometric understanding of 3D 
solution sets using the box, but still wondered about the exact shape of the intersection of these 
two equations. That question would not be answered until Day 3.  
 

Discussion 
We focus our discussion on the potential of our task sequence to support participants’ 

reinvention of infinite solution sets. Our task setting functioned as an accessible entry point for 
participants to anchor their algebraic and graphical approaches. Students’ prior knowledge of 
SLE acted as productive beginnings of students’ reasoning toward our goal of guided reinvention 
of infinite solution sets. Asking participants to count possible solutions pressed them to organize 
their reasoning and notation, identifying the meaning of the order in listing solutions as ordered 
triples. Participants leveraged their prior knowledge about systems, particularly substitution, 
when the second equation was introduced. Students began by looking for a single unknown 
value. When participants linked solutions they had identified to the first equation to their 
algebraic manipulation working with the pair of equations, Student R identified a type of 
parameterized solution. Finding values for b and d in terms of l seemed to broaden Student R’s 
prior algebraic reasoning to allow her to generate solutions more easily by varying values of l. 
Initially, the parameterized solution was not as intuitive for students in understanding why it was 
generating solutions, but this was alleviated through a discussion. Finally, using a box and no-
dinner lines, participants extended their understanding of lines in a plane to a three-dimensional 
context. This linked their prior conceptions of solutions as numbers that satisfy the given 
equations to points of intersection. They also algebraically reasoned with points of intersection as 
x-values that will get the same y-values in both equations. Here, we found that students’ 
conceptions of solution and what they wondered about largely related to the context of the task 
and drew from students’ prior knowledge. The task allowed students to extend their reasoning 
about solutions to less familiar situations (i.e., from a single solution to a large solution set), 
leading to their reinvention of infinite solution sets. 
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Student Understandings of Properties of Linear Transformations 

 

Sarah Sparks 
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Student understanding of linear algebra concepts is a growing research area. This study explores 

students’ conceptualization of linear transformations and the various ways in which they use 

such conceptualization to reason through linear transformation problems after they have 

completed a linear algebra course. Three students participated in a task-based interview. Through 

analyzing interview data using a grounded theory approach, emerging themes were found 

indicating that students’ exposure to linear transformations in other courses and the nature of 

these experiences impacts how they further conceptualize linear transformations. Notably, the 

way that the participants were engaged with linear transformations within their other courses for 

their major seemed to influence their use of geometry, algebra, and proofs in determining 

whether a given transformation is linear. One implication of this study is a need to engage 

students with more real-life applications of linear transformations in linear algebra courses. 

Keywords: Linear algebra, linear transformations, representation, reasoning. 

Introduction 

Linear algebra is a course that many students are required to take as a prerequisite for other 

mathematics courses as well as courses in other disciplines. It is important to consider with what 

conceptions students leave their linear algebra courses to determine how they will view and 

interact with linear algebra concepts in future courses. Knowing students’ potential conceptions 

can inform instructors of both linear algebra and other courses that utilize linear algebra topics 

on how to develop research-based learning opportunities on these topics for improved 

understanding. 

There has been a large amount of research investigating student reasoning in the areas of 

span, linear independence, eigenvectors, and eigenvalues. (See Stewart, Andrews-Larson, & 

Zandieh, 2019 for a recent overview.) However, these studies focus on mostly students’ 

geometric reasoning of these topics (Stewart, Andrews-Larson, & Zandieh, 2019). To have a 

robust conceptualization of linear transformations, a student needs to perceive them as more than 

just geometric movements. “Linear transformations are functions from one vector space to 

another, often ℝ𝑛 to ℝ𝑚, with particular linearity properties (they preserve addition and scalar 

multiplication)” (Bagley et al., 2015, p.36). In other words, a robust conception that connects the 

geometric with these algebraic and abstract descriptions of linear transformations is important. 

Other studies have shown that students need more opportunities to make connections between 

their geometric descriptions of linear transformations and the algebraic representations of 

transformations (Bagley et al., 2015; Andrews-Larson et al., 2017). Thus, there is still a need for 

more research to gain deeper knowledge on student understanding of properties linear 

transformations: what they represent (for students) and how they can be used (Stewart, Andrews-

Larson, & Zandieh, 2019). By determining more about this understanding, the Mathematics 

education community can further the design practices of linear algebra topics to incorporate 

existing student conceptions and challenges that would move these conceptions forward. The 

purpose of this research is to further investigate the conceptions and reasoning used by students 

who have taken a linear algebra course to utilize linear transformations. My research questions 

are: What conceptualizations do undergraduate students have of linear transformations? In 
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particular, what mathematical reasoning do students implement in problem-solving situation 

related to linear transformations? 

Literature Review 

How to implement geometric ideas about linear transformations in the classroom has been a 

focus of research, and studies have shown benefits for student understanding by having 

geometric representations and application problems in related lessons. Bagley, Rasmussen and 

Zandieh (2015) considered students conceptions of linear transformations as functions. They 

specifically explored ways in which students made connections between the concept of function 

they learned in previous algebra courses with the concept of transformations they learned in their 

linear algebra course. Bagley et al. (2015) described student conceptions that were not 

necessarily productive as pseudostructural conceptions (Sfard, 1991). The authors stated this 

type of conception seemed to cause students to struggle to identify the need for vector notation or 

how it was involved in linear transformations. Andrews-Larson, Wawro, and Zandieh (2017) 

also emphasized that students’ conceptions of linear transformations needed improved flexibility, 

and the authors offered a hypothetical learning trajectory to help build this flexibility.  

Stewart, Andrews-Larson, and Zandieh (2019) provided a summary of existing research in 

Mathematics education pertaining to linear algebra and gave directions for future research. They 

found that in the research regarding student reasoning and understanding, there was significant 

work considering geometric representations in linear algebra, proofs, and eigen theory. However, 

the authors pointed out that there was less research regarding students’ algebraic reasoning with 

linear transformations and other properties of linear transformations. They called for research in 

the teaching of linear transformations and claimed that further research needs to be conducted to 

determine what claims from these studies can be further generalized. In knowing this, research in 

the teaching of linear algebra can grow and change. 

Turgut (2019) does specifically study student understanding of linear transformations and 

explores student reasoning regarding matrix representations using geogebra, and the implications 

for teaching linear transformations. This study focused on different matrix and geometric 

representations of linear transformations and investigated how students interacted with 

technology modelling linear transformations. Turgut (2019) found that students had a difficult 

time transitioning to matrix representations of linear transformations from other forms of 

representations. This, the most current research on linear transformations available to my 

knowledge, indicates a need for further exploration of student understanding that encompasses 

contexts outside of the use of technology. The study I present in this paper aims to consider 

student understanding of linear transformations in a different way from Turgut (2019) by 

exploring students’ reasoning involving different representations of linear transformations, as 

matrices, as functions, geometrically, and so forth. Furthermore, this study differs from the 

existing research by incorporating grounded theory methodology to explore not only students’ 

differing conceptions and use of representations but also to investigate their ways of reasoning 

with representations after completing a linear algebra course. 

Methodology 

Due to the limited nature of existing studies that capture students’ conceptions of linear 

transformations and students’ uses of properties of linear transformations after students complete 

a linear algebra course, this study is designed to develop a substantive theory (as opposed to 

“grand” theory) to expand on the existing research. The grounded theory methodology (Merriam 

& Tisdell, 2015) guided this qualitative inquiry to address the research questions: What 
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conceptualizations do undergraduate students have of linear transformations? And, what 

mathematical reasoning do students implement in problem-solving situation related to linear 

transformations? The interview data from three students were analyzed using themes and a 

constant comparative method and a core category emerged in the data, building to a substantive 

theory.  

Theoretical Framing 

I utilized the theoretical framework of constructivism that assumes students construct their 

knowledge through their experiences in various settings and with others (Crotty, 2015). Centered 

in this perspective a conception is defined as “a theoretical construct within ‘the formal universe 

of ideal knowledge’; the whole cluster of internal representations and associations evoked by the 

concepts” (Sfard, 1991, p. 3). This theoretical construct together with Sfard’s (1991) duality 

principal of conception shaped my overall design of the study. Students’ conceptions at the time 

of the interview were assumed to be displayed through their utterances including written outputs 

and gestures. During the constant comparative stage of data analysis, I operationalized Sfard’s 

(1991) operational and structural conceptions descriptions to understand the ways in which 

participants performed “processes, algorithms, actions” (p. 4) on the notion of linear 

transformations as well as their (flexible) use of representations of linear transformations.  

Methods 

In this grounded theory study, semi-structured in-depth interviews were conducted to explore 

participants’ current conceptions of linear transformations by asking them to identify whether 

given transformations were linear or not. Participants were asked to solve linear transformation 

problems and provide their reasoning. Interviews were 30-90 minutes in length and were audio 

and video recorded and transcribed after the interview. The interviews were conducted during 

Spring 2020 semester at a mid-sized university in the Rocky Mountain Region of the United 

States. At this university physics and mathematics majors are required to take the linear algebra 

course offered by the Mathematics Department. The department offers only one linear algebra 

course every semester and the course is matrix-oriented that covers the core topics including 

eigenvalues and eigenvectors with limited focus on proofs. The linear algebra course serves as a 

pre-requisite for several undergraduate courses including abstract algebra, numerical analysis, 

and modeling courses.  

Students from mathematics courses for which linear algebra is a prerequisite were invited to 

participate in the study. To select participants, students were given a survey with questions about 

their year in school, when they took linear algebra, their mathematics course history, their 

majors, available times for interview, and their preferred pseudonyms and pronouns. Three 

participants, Perry, Jed, and Summer (preferred pseudonyms) were selected for the study 

according to their availability for an interview, their year in school, mathematics course history 

and major to include a varying range of experiences. All three students participated individually 

in one interview. Perry (pronouns:they/them) was a junior secondary education mathematics 

major and took linear algebra in Fall 2019 semester. Jed (pronouns: he/him) was a senior physics 

major and took linear algebra in Fall 2018 semester. The third participant, Summer (pronouns: 

she/her), was a senior mathematics major with an emphasis in applied math and applied statistics 

and took linear algebra in Spring 2017 semester.  
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Data Collection and Analysis  

Each participant was given a series of transformations to consider in matrix, function, 

graphical, and descriptive formats. These included 2x2 matrices, linear functions, and geometric 

depictions of images transformed on a set of axes. The interview included a variety of the types 

of interview questions listed in Zazkis and Hazzan (1998) to address the research questions. For 

example, I used “give an example and non-example of a linear transformation” tasks.  

Within a grounded theory approach, open and axial inductive coding processes are 

fundamental to develop a substantive theory. This study followed these processes to analyze the 

interview transcripts. In the first cycle of coding, transcripts were categorized according to their 

relevance to each research questions. There was some overlap where participant responses 

applied to both research questions. Open descriptive coding was then used to assign words and 

phrases to these transcript “chunks”. In the second cycle of coding, axial coding was used to 

relate these chunks of transcript based on their open codes. Through this axial coding, themes 

emerged. Some of these themes were about students’ conceptions that were reported in existing 

research studies such as geometric and algebraic interpretations. New themes that emerged were 

related to the students majors and other courses they had taken. 

 

Results 

The analysis of the interview data indicates that three participants had three different 

conceptions of linear transformations and approached the problems in different ways. There were 

common themes in some of their approaches to individual problems, and the type of notations 

they used including geometric examples, algebraic examples, and informal algebraic proofs. In 

addition, there were commonalities among participants’ reasoning and the ways in which they 

made connections to their coursework and majors in such reasoning instances.  

Insight into participants conceptualizations of linear transformations 

Perry seemed to have an evolving conception of linear transformations. Jed’s conception 

seemed to be more robust, and Summer’s conception seemed to be process oriented (Sfard, 

1991). Perry’s interview began with them struggling to recall what a linear transformation was. 

They relied on their concept of lines and transformations of lines specifically. As the 

conversation continued, Perry began to recall some of the types and properties of linear 

transformations: 

Perry: Like vectors always start from the origin. Or they act like they always start from the 

origin so reflecting them over a line doesn’t really do anything to the vector. 

Interviewer: Can you draw what you are talking about? 

Perry: Yeah I guess I could also just flip it over a line like this and have it  

be there (draws picture reflecting a vector over line y=x). Oh it’s like we can alter the 

magnitude of the vectors…so we can multiply this vector by two and get wow ok, bigger 

vector. 

Recalling what you can do with a vector geometrically and the realization of vectors “starting 

at the origin” helped Perry to reconstruct their understanding of linear transformations and 

properties such as the zero (vector) has to be mapped to zero (vector). They often updated their 

definition along the way. The following exchange occurred when they were unable to come up 

with a matrix representation when asked whether 𝑇 [
𝑥
𝑦] = [

|𝑥|
|𝑦|

] is a linear transformation: 
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Perry: Because I am getting the idea that I need to write a matrix to have a linear 

transformation, which breaks my definition, in this case at least. 

Interviewer: What’s giving you that idea? 

Perry: I could do it for all the other ones. Why can’t I do it to this one? I don’t like it. 

Jed was able to recall almost immediately what a linear transformation was and used a formal 

mathematical definition of linear transformations. He said, “I mean algebraically I would say that 

it is a, any function t that satisfies this [pointing at the last line in Figure 1 is linear. And then 

generally if we're acting on an n dimensional space, these are represented by n by n matrices.” 

 
Figure 1. Jed's definition for linear transformations 

Jed also gave a correct example and non-example of linear transformations and was able to 

articulate why these did and did not meet the definition for linear transformations. Overall, Jed 

seemed to have a more connected conception of linear transformations. 

Summer had difficulty recalling linear transformations. She referred to her statistical 

knowledge and she said, “Coming from my stats background…linear is usually what I think of 

with like, linear regression. So relating things to one another in just like, one degree, not 

necessarily multiple, that’s where my mind goes.” Without further prompting she was unable to 

produce a working definition for linear transformation, so without indicating that it was the 

definition for a linear transformation (to determine if she would recognize it as such) I provided 

her with a copy of “rules” and asked her to determine if the transformations aligned with these 

rules. She did not say anything at this point about whether she recognized this to be a linear 

transformation, although towards the end of the interview she said she had wondered if that was 

the case. Overall, Summer’s conception of linear transformation was limited to processes, rather 

than being abstract. 

Insight into student reasoning in problem solving 

As Perry refined their definition of linear transformations, they relied less on geometric 

interpretations and the more they used algebraic and matrix notations and their arguments 

became mathematically formal with resemblance of a mathematical proof. When presented with 

matrix representations of linear transformations they seemed to be hesitant. However, they 

conjectured that multiplying that matrix by a vector would transform the vector. They initially 

did not recall how to multiply matrices, but after giving it some thought, they correctly 

multiplied the given matrix by a generic vector to determine how the matrix transformed the 

vector both algebraically and geometrically. In this process their work resembled the notation 

and reasoning used in formal mathematical proofs. 

Jed gave examples and non-examples of linear transformations as discussed in the previous 

section. He was able to use his formal definition to prove using algebraic methods whether a 

transformation was linear or not and give a matrix representations and determine the type of 

transformation geometrically without using specific examples of vectors and was able to give 
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geometric interpretations when prompted. Jed also noted that he felt his knowledge of linear 

algebra was more from his physics (major) courses rather than the linear algebra course he took:  

Jed: [M]ost of my knowledge comes from the functional analysis that is used in quantum 

mechanics. So we use a lot of stuff with basically finding the eigenfunctions and 

eigenvalues of differential operators. And then another decent chunk of it comes from 

knowledge from Tensor analysis and differential geometry that I did with an independent 

study. 

Summer used a combination of geometric ideas and algebraic ideas to determine whether the 

transformations were linear or not but did not use formal algebraic notation. She also did not 

view matrices as representations of linear transformations. When presented with the matrix 

representation 𝐴 = [
1 2
1 2

] of a linear transformation she attempted to construct her own 

definition for that notation, referring to the first column as the “input vector” and the second 

column of the matrix as the “output vector”. 

Summer: Oh, okay. So if it's doing the transforming, what I would assume is that your first 

column is your input vector essentially, and then your second column, the on the right 

hand side is your output vector. So we'd have a linear transformation of multiplying that 

vector by two would be my assumption, and that's also coming from thinking of matrices 

from a neural network standpoint. Because we've been doing that with our project in 

Math 437. And that's how I've kind of been remembering matrices is lots of like input-

output kind of stuff.  

With significant prompting from the interviewer, she was able to recognize that if the matrix 

itself was the transformation, then matrix multiplication would be how it transformed something 

a vector or any matrix with exactly two rows. Additionally, the excerpt from Summer’s interview 

above provides another example of experience in other, more recent coursework having an 

influence on a participant reasoning with linear transformations. 

Discussion 

Both Summer and Perry appear overall to have pseudostructural conceptions (Sfard, 1991) of 

linear transformations. Perry demonstrating a pseudostructural conception of matrix 

representations of transformations aligns with the results of Bagley et al. (2015) This seemed to 

impact their ability to use matrix representations to determine what the transformation does and 

whether it is a linear transformation. These preliminary results also show a tendency of these 

students to rely on concepts from their most recent coursework rather than recall their linear 

algebra course specifically and for Jed and Summer this was specifically courses related to their 

major and interest areas. Summer often drew on her statistical knowledge to reason through 

linear transformations until she was given a different definition of transformation. Jed 

specifically described his experience in physics courses as having a large impact on his 

knowledge of linear algebra and how he was able to reason through these linear transformations. 

Both Perry and Summer are math majors, and both utilized geometric interpretations more 

frequently than Jed. Summer however was more likely to use examples rather than proof 

techniques which seems to align with her applied math major. She has not taken proofs-based 

courses that Jed and Perry have, and considered examples enough to support her arguments. 

Perry would use generic examples as can be found in formal mathematical proofs and used 

formal algebraic notation. Jed was able to answer these questions about linear transformations 

seemingly without much difficulty. He had a significant amount of recent coursework that 

required ideas from linear algebra specifically. He also had coursework involving formal proofs 
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of linear algebra related concepts. These experiences seemed to lead to his default approach of 

formal algebraic proofs. He demonstrated flexible switch between geometric and algebraic 

explanations when asked. Overall, Jed seemed to have more than a pseudostructural conception. 

This theme aligns with results of Karakok (2019) in that students’ conceptions continue to evolve 

particularly in their future courses. Karakok (2019) noted that physics students’ conception of 

eigen-values and -vectors showed changes from completion of a linear algebra course to 

completion of a series of quantum mechanics courses. 

Conclusion 

The purpose of this research study was to explore students’ conceptions of linear 

transformations and their reasoning during problem-solving situations that involved properties 

and representations of linear transformations. The themes observed in this study lead to the 

substantive theory that at this university the conceptions of students whose main exposure to 

linear transformations has been the introductory linear algebra course are likely to remain at most 

at the pseudostructural level without further coursework. This prevents them from drawing 

connections between the matrix representations of linear transformations and their geometric 

implications. It seems that the ways in which students are exposed to linear algebra concepts 

beyond the introductory linear algebra course impact their conceptions of linear transformations 

and the ways that they reason in problem-solving situations with linear transformations. 

This study is limited in scope due to the small sample size of three students. However, the 

findings have many implications specific to this university and for future research. The results of 

this study could be used to inform instruction not only of linear algebra but also of other 

mathematics courses. As prior research studies suggest that pseudostructural conception of linear 

transformations is problematic for students of all majors, more research should be done in 

alterations that can be made to help students restructure their conceptions of linear 

transformations. An alteration similar to that presented in Andrews-Larson et al. (2017) might be 

implemented to improve the flexibility of the students’ conceptions. Because this course is 

required for many students of different backgrounds and majors, attention should be placed on 

making sure all representations of linear transformations are being addressed and that 

connections between these representations are made clear to students. In follow up courses 

within certain majors, adjustments may need to be made in understanding what type of 

conceptions of linear transformations those students may have when entering the course. When a 

robust, coherent conception of linear transformations is the goal for students in a mathematics 

program, it is important that students are given opportunities to make connections between and 

among many representations and contexts of linear transformations frequently in linear algebra 

courses and future courses. Linear algebra is viewed as essential for many students, and we need 

to equip them to be prepared to use these concepts in future courses and careers. 
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Discourse Patterns in a Small Group “Collaboration”: The Case of Uma and Sean 
 
 Allison S. Theobold Derek A. Williams 
 California Polytechnic State University Montana State University 

In this study we present the results of a discourse analysis of the interactions between two 
partners, Uma and Sean, through a lens of positional theory. During nearly five hours of small 
group work in a teaching experiment, the way in which each partner used language to position 
each other’s thinking as mathematically significant and establish a collaborative environment 
varied dramatically. Specifically, Uma shouldered the burden of continuously working to 
maintain collaboration, oftentimes at the expense of having her thinking positioned as 
mathematically significant. On the other hand, Sean regularly offered little opportunity for Uma 
to engage openly with his thinking, while simultaneously positioning his own thinking as 
mathematically significant. Language enacts and constructs identification with social groups 
and positions of privilege; thus, we also describe the role of Uma and Sean’s identities, 
particularly gender-roles, in potentially explaining the nature of their interactions. 

Keywords: discourse analysis; gender-identities; group work; attitude, affect, and beliefs 
 

Collaborative group work in undergraduate mathematics has become an essential 
pedagogical feature of active learning (CBMS 2016), was deemed an element of ambitious 
teaching in college calculus (Sonnert, Sadler, Sadler, & Bressoud, 2014), and has been associated 
with undergraduate students’ positive attitudes (Sonnert et al., 2014) and interest (Williams, 
2016) towards learning mathematics. Research examining what students say during class 
discussions with a lens focused on mathematical ideas and reasoning is essential for 
understanding collective and individual development. Such research has demonstrated the 
importance of interacting with peers’ thinking for students’ own learning (Rasmussen, Apkarian, 
Tabach, & Dreyfus, n.d.), and aligned mathematical development with the nature of collective 
mathematical argumentation during class discussions (e.g., Rasmussen, Wawro, & Zandieh, 
2015). Additionally, language does much more than establish normative ways of reasoning about 
mathematics. In fact, discourse allows conversants to enact and construct their identities—
consciously and subconsciously (Gee, 2014; Langer-Osuna & Esmonde, 2017). Therefore, 
discourse occurring within small groups simultaneously offers students opportunities to learn 
mathematics and enact or construct their identities. The purpose of this study is to re-examine the 
collaboration between two students—Uma and Sean—attending to how their use of language 
positioned each other’s mathematical thinking as significant and established a collaborative 
working environment.  

Theoretical Framework 
This study is guided by positioning theory (Davies & Harré, 1999) which posits “individuals 

construct subject positions in relationship with others during interactions, in particular through 
talk, that make claims about who people are within particular social contexts” (Langer-Osuna & 
Esmonde, 2017, p. 639). Within the positioning theory framework, we draw on Gee’s (2014) 
discourse analysis, which asserts that language is used for seven building tasks. Specifically, this 
study attends to the language used for the tasks of building significance and communal practices. 
In the context of small groups working on a mathematical task, discourse analysis together with 
positioning theory offers a lens to examine how language is used by individuals to position 
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members’ mathematical thinking in relation to each other and how—or perhaps whose—
language is responsible for maintaining communal practices. Positioning theory also considers 
the role of broader societal norms and expectations that may manifest in local contexts, 
discerning “how power and privilege are distributed, enacted, and taken up” (Davies & Harré, 
1999, as cited in Langer-Osuna & Esmonde, 2017, p. 639). 

Methods 
The purpose of this study is to investigate discourse within a small group partnership while 

problem-solving to explore how collaborations take place. Specifically, we address the following 
research questions: How do partners working on a mathematical task use language and actions 
to: (1) position others’ thinking as significant, and (2) establish a collaborative environment?   

Setting and Participants 
Data for this study come from a larger study investigating the relationships between student 

engagement and emerging mathematical development. The larger study had six preservice 
teachers participating in a teaching experiment focusing on concepts of logarithms. Participants 
were recruited from the elementary and secondary mathematics education majors taking 
mathematics courses during the semester of data collection. Participants attended 5 one-hour 
sessions, held weekly, which were not affiliated with any course. For this study, we focus on the 
interactions of one small group: Uma and Sean.  

All participants were in their junior year of a secondary mathematics education program. 
Sean identified as a White man and was a “non-traditional” student with previous military 
experience. Uma identified as a White woman and was a “traditional” undergraduate student, 
who had recently changed majors from elementary education. Of the six participants, Uma was 
the only participant who was not enrolled in a course taught by the teacher-researcher. 

Each of the student groups formed a heterogendered pair, and Uma and Sean self-selected to 
work together. During the study it came to our attention that across all groups, it appeared that 
the ideas of the men were held in higher regard than the ideas of the women, and that the men 
had authority to decide which—if any—of the women’s ideas were pursued. The rationale for 
selecting Sean and Uma was twofold. First, the themes identified in the group interactions were 
the most salient with this pair. Second, the contrasting identities of Uma and Sean speak to the 
role that student identity plays in group interactions. 

Background from Previous Study 
Additional aspects of the larger study also informed this secondary analysis and discussion of 

our results. The larger study included semi-structured post interviews with participants in 
conjunction with the teaching experiment sessions. Individual interviews with Uma and Sean 
shed light on their experiences. Specifically, Uma expressed the important role Sean played in 
her ability to fully engage with the mathematical tasks. Uma explained, “without [Sean], I 
probably would have just sat there like staring… I would have picked some points and put them 
on there, but I wouldn’t be very confident… I didn’t necessarily know what to put on my own 
papers, I was like before I do anything I wanted to see where [Sean] was going with it.” On the 
other hand, Sean described the nature of their partnership as, “I tend to work alone very well… 
and I don’t think we were necessarily working together, we may have agreed on some things, but 
I don’t think we were truly, you know, working in unison.” In the context of this study, we take 
this aspect of their individual experiences to suggest that Uma and Sean may have had 
contrasting desires for establishing a collaborative working relationship. 
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Data Collection & Analysis 
The teaching experiment sessions were recorded using a Swivl. This technology allowed for 

each small group of students and the teacher-researcher to have designated microphones, one 
main camera to capture the entire room, and one hand-held camera carried by the teacher- 
researcher. Cloud-based software allows viewers to specify microphones and cameras on 
playback, allowing us to listen to group conversations, and toggle between two cameras to view 
participant actions. We transcribed all of the small group interactions involving Uma and Sean. 

Data analysis of the video and audio data took place in four stages. First, we identified every 
meaningful interaction between Uma and Sean, which became our unit of analysis. We define a 
“meaningful interaction” as an exchange of one or many talk-turns around a common on-task 
topic, idea, or subject. Interactions may contain one or many brief intervals of silence as long as 
subsequent talk-turns continue to concern the same subject and no changes to interlocutors occur. 
We considered instances when the teacher-researcher entered or left the conversation to 
constitute new interactions. Next, we transcribed every interaction and coded talk-turns using a 
codebook of verbs. Due to space constraints, our codebook can be viewed as an external 
document.  

Depending on whether we were considering positioning mathematical thinking as significant 
or establishing collaborative environments, we categorized verbs based on the level of 
participation or whether the interaction was open or closed. For example, one student agreeing 
with another’s mathematical thinking without offering an explanation for their agreement, 
indicates a low participation in positioning the other’s thinking as significant. Moreover, stating 
claims without data or warrant is a closed form of collaborating because it does not offer 
opportunity for continued interaction. On the other hand, revoicing a partner’s thinking indicates 
a higher level of participation in positioning the other’s thinking as significant, and offers the 
opportunity for a continuation of the conversation. We discuss our codes further as we unpack 
transcripts presented in the results. 

Then, for each interaction we created summaries surrounding how each student used 
language and actions to position other’s mathematical thinking as significant and establish a 
collaborative environment. We analyzed these summaries to identify patterns of language that 
Uma and Sean tended to employ for each of the two discourse tasks (Gee, 2014). 

Results & Discussion 
We will discuss how each partner, Uma and Sean, used language to (1) position the other’s 

thinking as significant, and (2) establish a collaborative environment during the study.  

Positioning Other’s Thinking as Significant 
As the group worked through the mathematical tasks in the five sessions, each member made 

mathematical contributions which moved the group forward. However, how each member 
positioned the other’s thinking as significant differed substantially. Generally, Uma’s strategy 
for elevating Sean’s thinking as mathematically significant was to agree with his ideas, ask 
clarifying questions, and revoice Sean’s ideas in her own terms. In contrast, Sean seldom 
outwardly positioned Uma’s thinking as mathematically significant. Instead, if Sean viewed 
Uma’s ideas as significant, he would either immediately begin implementing Uma’s idea 
(without agreement or acknowledgement), promptly make a mathematical statement building off 
of her idea (again, without explicit agreement), or provide a simple acknowledgement of Uma’s 
speaking.   
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Interactions 1 and 2 below highlight how each student used these strategies. In Interaction 1, 
Uma contributes an idea to the group, in the form of a question posed to Sean. Her question is 
met by Sean asking a clarifying question, so he can immediately begin implementing her idea, 
punching numbers into his calculator. In Interaction 2 we see an example of how Uma responds 
to Sean’s ideas by agreeing and revoicing his ideas in her own language. Meanwhile, Uma’s 
ideas are met by Sean either solely acknowledging that he was aware of Uma speaking, or with a 
mathematical statement, neither of which suggest Sean engaged with any of Uma’s arguments.   
 

Uma: Would it help to change these...so that they are all in the same [notation]?  
Sean: So, write it like, 5 times 10--squared [concurrent with Uma below] 
Uma: --to the second. Yeah.  
Sean: 1 times 10 to the 3 [head down, saying what he is writing]. 1 point 8 [trailing off, 

punching numbers into calculator] 
 

Interaction 1: Uma presents a mathematical idea in the form of a question, which Sean then implements 

 
Uma:  Um, so, like the concerns for too much paper? Is that what the concerns that we 

were, like the space? 
Sean:  Yeah. So, either the two concerns were either the clustering or having to 

extrapolate that line out so far. And, you know, our model and the student’s 
model are really similar, right? 

Uma: Mmmhmmm. 
Sean: [looks at cell phone while Uma is talking] 
Uma: It’s just the different interval, kind of yeah. I mean, it makes it so that you can get 

an idea of the whole thing on one sheet of paper, so it doesn’t feel like too much. 
[Uma looks at Sean and realizes he is looking at his phone] 

Sean: I think, um… 
Uma: I think if it were, if it was linear and was on a whole thing, it might look a little bit 

more overwhelming with how long it would have to be.  
Sean: I think it, it’s kind of important…the thing that drives you to use our model is that 

there are so many dates that are recent, right? So, that allows us to spread some 
things out, and towards the end they are kind of compressed.  

Uma: Yeah, it kind of puts them back.  
 

Interaction 2: Uma presents an open mathematical argument, which is met with a (closed) mathematical statement. 

 
As seen above, the interactions between Uma and Sean during the group collaboration have 

very different tones. Uma presents mathematical arguments as a way of inviting Sean to interact 
with her reasoning, whereas Sean makes statements about his mathematical thinking, which are 
closed for further conversation. Uma accepting and revoicing Sean’s ideas demonstrates a wish 
to reach a consensus on another’s ideas, reiterating her desire to build a collaborative 
community.  
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Building a Collaborative Environment  
Analogous to the strategies by Uma and Sean when positioning the other’s ideas as 

significant, each student had vastly different approaches to building a collaborative community. 
In general, the ways Uma used language to build a collaborative partnership with Sean were 
open, whereas Sean’s language was relatively closed. Each student relied on two primary 
strategies for building a community. Uma posed direct invitations to Sean for him to explain his 
reasoning, or phrased her ideas as questions, as an invitation for collaboration. Sean, on the other 
hand, frequently made statements or simply answered Uma’s questions without offering further 
explanation unless asked. Sean invited Uma to share her mathematical thinking in noticeably few 
interactions. Yet, when he did, he used the same strategy, but its intention depended on whether 
he was confident in his thinking or not.  

Interaction 2 provides an example of how these two used one of their strategies. Uma 
initiates this interaction by inviting Sean to engage with her idea of what concerns their solution 
took into account—which was actually revoicing Sean’s ideas from a prior interaction. This 
invitation is then met by Sean asserting his ideas in closed statements. In Interaction 2, we see an 
example of how Sean poses questions that outwardly appear to be invitations but are not open for 
Uma to voice her thoughts. Instead, Sean’s statement, “Our model and the student’s model are 
really similar, right?”, only allows for Uma to agree or disagree with his idea—with a clear 
expectation of agreement.  

Alternatively, in the moments where Sean was unsure of his mathematical thinking, he posed 
genuine invitations for Uma to engage with his thinking. In Interaction 3, we see both Sean and 
Uma working through a task which has them both stumped. Again, Uma begins the conversation 
by inviting Sean to explain his thinking. Sean then provides a closed statement, which Uma uses 
as another starting point for an invitation. During their conversation, it becomes clear that Sean is 
unsure of how to approach the problem. However, Sean’s actions change after he voiced his 
confusion, as he began to pose genuine invitations for Uma to engage with his thinking. 
  

Uma: So, now the question is, when you take in the overlapped time, does this still 
preserve the same amount? 

Sean: As that 10 to 1? That is the question. I don’t think that it is.  
Uma: Mmmhmm. Do you have any thoughts leaning you more towards why it’s not... 
 [15 seconds of silence] 
Sean: If we graphed them longer, we would end up with something like that.  
Uma: Mmmhmm. 
Sean: We’re saying then that is equal with that, or this is 10 times that, but I think this.  
Uma: That overlap takes away from it being able to be 10 times that? 
Sean: Yeah, I just don’t know how to… 
Uma: Yeah, how to explain… 
 [Sean states what he is thinking, Uma agrees] 
Sean: You know what I mean? If I keep overlapping more and more, then they become 

the same time period. So, I don’t think any overlapping is… 
Uma: It conflicts. I guess, yeah, that is a good way to… 
Sean: Does that make sense?  

 
Interaction 3: Uma invites Sean to explain his reasoning, Sean and Uma voice their confusion, Sean invites Uma to 

engage with his idea. 

2021 Research in Undergraduate Mathematics Education Reports 328



Discussion & Conclusion 
This study outlines discourse patterns emerging within small group partnerships while 

solving mathematical problems. The themes identified illustrate how interactions within a group 
can elevate or diminish other's thinking, as well as build or demolish collaborative environments. 
Furthermore, these results illuminate the role a student’s identity plays in these interactions.  

Throughout the study, Uma actively sought out a collaborative community, while Sean 
appeared ambivalent in their collaboration. Uma used language as a tool when attempting to 
create the collaboration she desired, consistently inviting Sean to share his ideas, posing 
questions about the tasks, and clarifying his ideas. Meanwhile, Sean voiced that he viewed their 
collaboration as simply “working in the same space,” and thus appears to have paid little 
attention to the environment his actions produced. Rarely does Sean provide Uma with a genuine 
invitation to share her thinking about mathematics. Instead, the “invitations” Sean provides Uma 
are followed by a statement of his thinking, disregarding any argument or question Uma made. 
The few instances that Sean acknowledges Uma’s thinking, he does not probe her thinking any 
further, whereas Uma repeatedly asks Sean questions about his thinking. Notably, how Uma 
cultivated collaboration simultaneously positioned Sean’s mathematical thinking as significant.  

While Uma repeatedly invited Sean to share his thinking, she also constantly agreed with the 
statements Sean would make. Hand in hand, these actions positioned Sean’s thinking as 
significant. Moreover, Uma would often pose questions to Sean to which she appeared to know 
the answer, implying that Uma positioned Sean’s thinking above hers. Yet, Sean never elevated 
Uma’s thinking in the same way. Rather, if Sean agreed with Uma’s argument, he would respond 
with another statement. It is important to note that some of the questions Sean posed to Uma 
position his own thinking as significant. As seen in Interaction 2, Sean often posed questions to 
Uma seeking agreement with his ideas. Additionally, these questions would frequently occur 
after Uma had a discussion with the teacher-researcher about her own mathematical ideas. Sean 
would undercut the ideas Uma had voiced to position his own thinking as significant. For 
example, after the teacher-researcher checked in on the pair’s progress in the first session and 
Uma explained her reasoning for their work, Sean asked Uma, “But we do agree that this block 
has more time in it than this block, right?”—repositioning his own thinking over the ideas she 
had voiced. 

In these interactions we see inequities for both how students build a collaborative space and 
how they position another’s thinking as significant. While Sean spent little to no effort building a 
collaborative space, Uma used a myriad of different methods to do so. Impressively, Uma 
managed to position Sean’s thinking as significant even though he provided very few openings 
for her. Uma created and maintained a collaborative environment by posing direct invitations to 
Sean and regularly applauding Sean’s mathematical contributions—actions which were never 
reciprocated. We discourage readers from ascribing a lower mathematical ability to Uma based 
on her actions. Instead, we believe Uma is an inspiration—single handedly building a 
collaborative environment, while also demonstrating her effort in thinking about the 
mathematical tasks.   

Inequities in a group collaboration could arise from a variety of factors, not least of which are 
the identities of the students involved. Uma and Sean’s identities differed in three notable ways: 
(1) their age, (2) major, and (3) gender. Uma was a “traditionally” aged undergraduate student 
and Sean was an older, “non-traditional” student. The differences in their age could have led 
Uma to view Sean as more of an authority figure than a peer, and thus defaulted to his thinking 
over her own. Second, Uma had just changed her major from elementary education, while Sean 
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had been in the secondary program since he started. Because of this, Uma and Sean had not 
interacted previously. Additionally, Uma was the only student in the study who had not taken a 
course with the teacher-researcher. Each of these factors could have left Uma feeling like an 
outsider, not having established an identity with the group prior to the study. Finally, Uma 
identified as a woman and Sean as a man. In addition to the other factors, this difference in 
gender holds the potential to explain a large part of Uma’s interactions, as they align with 
societal expectations for women and the identities women in mathematics are known to inhabit.  

Although the members of the other groups did not share as substantial of differences in 
backgrounds as Uma and Sean, the impetus for this investigation came from interactions of all 
groups participating in the study. Every group shared one common characteristic: heterogendered 
pairs. It is well documented that, compared to the men in their major, women in STEM 
experience a lower sense of belonging (e.g., Good, Rattan, & Dweck, 2012; Holmegaard, 
Madsen, & Ulriksen, 2014), confidence (e.g., Ellis, Fosdick, & Rasmussen, 2016; Fennema & 
Sherman, 1978; Steel & Ambady, 2005), and self-efficacy (Dweck, 2008). However, society also 
dictates that women should be polite, accommodating, and reassuring. These “desirable” 
characteristics substantially impact the way women engage in discourse in the mathematics 
classroom. As evidenced by Uma’s hesitancy to share her own ideas, these societal expectations 
suggest that women should not be overly confident, as that can be seen as assertive. Instead, 
Uma sought reassurance of her ideas by posing them to Sean as questions, inviting him to 
engage, and more frequently positioning his thinking above her own. 

A student’s ability to learn in a [mathematics] classroom should not be tied to any aspect of 
their identity. Our research has demonstrated the inequities that can arise from group 
collaborations, both in whose ideas are acknowledged as significant and the effort that is placed 
on building a collaborative environment. Additionally, we have explored the role a student’s 
identity plays in these collaborations, and the expectations placed on the ways students interact.  

These findings hold broad implications for the mathematics education community. First, the 
inequity in Uma and Sean’s collaboration, and the remainder of the groups in the study, 
necessitate the thoughtful inclusion of group work by mathematics teachers. As teachers, we 
cannot blindly assume that group work will increase student learning, when the cognitive lifting 
required of some students in these spaces may inhibit their ability to learn. While Rowe’s (1988) 
study saw a dramatic increase in student confidence with same-sex pairs, we do not believe there 
is a quick “fix” to this issue. Students’ identities are multifaceted and each component impacts 
the way they walk through the world and through a mathematics classroom.  

This lack of understanding of how to build equitable group collaborations in an 
undergraduate mathematics classroom demands attention from the mathematics education 
community. The findings of this study came from a larger study which was not designed to 
investigate discourse patterns in group collaborations. Yet, our insight into how language was 
used in these collaborative spaces is poignant. Research on building group norms for 
collaborations that value all mathematical contributions as significant and create spaces for every 
student to share their thinking is of utmost importance to the field. Moreover, equitable group 
collaborations at the undergraduate level have yet to be explored and are of critical importance to 
increasing diversity and inclusivity in mathematics. 
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Low Engagement Explained by the Satisfaction/Frustration of the Basic Psychological Needs: 

The Case of Uma 
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Student engagement is one of the most robust predictors of student achievement and behavior 

(Klem & Connell, 2004). Therefore, a larger study was conducted to investigate undergraduate 

students’ engagement while learning mathematics. A pre-service mathematics teacher, Uma, 

reported drastically lower levels of engagement in the larger study. Given that the satisfaction of 

the basic psychological needs for autonomy, competence, and relatedness facilitates the 

internalization of motivation and, consequently, students’ engagement (Ryan & Deci, 2009), a 

case study was conducted to examine Uma’s low engagement through the Basic Psychological 

Needs Theory (BPNT) in a 5-week teaching experiment focused on developing notions of 

logarithmic change. Nine themes emerged from the analyses of the videos and an interview, 

which explain the low levels of engagement through the BPNT. The case of Uma provides rich 

information about how the satisfaction/frustration of the BPNs is related to engagement levels.    

Keywords: Basic Psychological Needs Theory, engagement, case study 

Engagement in mathematical activity and learning mathematics are inseparable (Middleton, 

Jansen, & Goldin, 2017). Moreover, engagement is inseparable from the context in which 

learning takes place, which includes the mathematical context, the social context, and the 

individuals’ emotions, beliefs, and values associated with mathematical activity (Middleton et 

al., 2017). As such, student engagement is an essential factor in students’ mathematics learning 

experiences.  

We conceptualize engagement from the perspective of flow theory (Csikszentmihalyi, 1975, 

1990). This theory considers engagement as the collection of interest, enjoyment, and 

concentration (Shernoff, Csikszentmihalyi, Schneider, & Shernoff, 2003). Student engagement is 

deeply intertwined with motivation and some of its theories. One of those theories is Ryan and 

Deci’s (2017) Self-Determination Theory, in specific, the sub-theory named the Basic 

Psychological Needs Theory (BPNT). According to Ryan and Deci (2007), the BPNT explains 

that autonomy, competence, and relatedness are universal basic psychological needs in humans 

that drive motivation and whether we are motivated by intrinsic or extrinsic factors. The BPNT’s 

main assumption is that optimal motivational function is achieved with the satisfaction of all 

three needs. Therefore, in mathematics education, the satisfaction of the needs for autonomy, 

competence, and relatedness will facilitate the internalization of motivation and, consequently, 

students’ engagement, achievement, and adjustment (Ryan & Deci, 2009). Conversely, it has 

been found that the frustration of these needs contributes to amotivation and disaffection, which 

could be described as a lack of engagement (Ryan & Deci, 2009). 

Considering the importance of engagement and its strong relation to the basic psychological 

needs, the purpose of this case study is to examine Uma’s low engagement in a 5-week teaching 

experiment focused on developing notions of logarithmic change through the lenses that the 

BPNT provides. Therefore, the research question that we address is: How does the satisfaction 

and/or frustration of Uma’s basic psychological needs of autonomy, competence, and relatedness 

explain Uma’s engagement? 
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Background 

This case study focuses on Uma, a junior in secondary mathematics teaching who had 

recently changed majors from elementary education. Uma, along with five other pre-service 

secondary mathematics teachers (PSMTs), participated in a 5-week teaching experiment focused 

on developing notions of logarithmic change for one hour each week. The purpose of the larger 

study was to investigate undergraduate students’ engagement while learning mathematics 

(Williams, López Torres, & Barton Odro, under review). The PSMTs worked in self-selected 

heterogender pairs on a problem-solving task previously used to investigate students’ thinking 

about multiplicative change (Confrey, 1991). Uma’s partner was Sean; however, the pair was 

joined by Frank for the final session to work as a group of three. 

Sean was a non-traditional secondary mathematics teaching candidate also in his junior year. 

Sean had returned to university after a successful career in the military. All participants except 

Uma had multiple courses together as a cohort of PSMTs, including a course taught by the 

second author of this paper. The teaching experiment was not associated with any course. 

Uma regularly reported lower levels of engagement than her peers throughout the teaching 

experiment and was the only student to report many instances of exceptionally low engagement - 

operationalized as one standard deviation below her mean. The whole group’s average level of 

engagement was 10.8 (out of 15). Uma’s average was 5.9. Uma’s drastically lower levels of 

engagement prompted us to delve into her experience using the BPNT. 

Theoretical Framework 

The three BPN of autonomy, competence, and relatedness are defined as follows: 

[Autonomy] refers to feeling willingness and volition with respect to one’s 

behaviors…The need for autonomy describes the needs for individuals to experience self-

endorsement and ownership of their actions – to be self-regulating in the technical sense 

of that term…Competence refers to feeling effective in one’s interactions with social 

environment – that is, experiencing opportunities and supports for the exercise, 

expansion, and expression of one’s capacities and talents…Relatedness refers to both 

experiencing others as responsive and sensitive and being able to be responsive and 

sensitive to them – that is, feeling connected and involved with others and having a sense 

of belonging. (Ryan & Deci, 2017, p. 86). 

The satisfaction and frustration of each of these BPNs look very different at the functional level. 

For example, students who satisfied their need for autonomy in a teaching experiment will very 

likely feel that they have been doing what interests them in the experiment, whereas a student 

whose need for autonomy is frustrated will very likely feel that the activities in the teaching 

experiment are just things they have to do. Students who satisfied their need for competence in a 

teaching experiment will very likely feel confident in their contributions to the mathematical 

task, especially within their small group; whereas a student whose need for competence is 

frustrated will very likely have a lack of confidence in their contributions. Finally, students who 

satisfied their need for relatedness in a teaching experiment will very likely feel a sense of 

belonging to that group of students, whereas students whose need for relatedness is frustrated 

will very likely feel that they do not belong to that group. 
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Methods 

This case study intends to develop an in-depth description and analysis of Uma’s low 

engagement through the BPNT (Creswell & Poth, 2017). The data for this study consists of a 

stimulated recall interview and video recordings of the teaching sessions, which were 

transcribed. The interviews began with a discussion of students’ overall engagement experiences 

during the experiment and then focused on three clips – one depicting an instance of personally 

high or low engagement, a second showing an instance when the interviewee made a meaningful 

mathematical contribution, and a third (the same third clip was used for each pair) of an instance 

when the woman partner made a potentially meaningful mathematical contribution that was not 

pursued seemingly at the man’s discretion. 

Transcripts from stimulated recall interviews were analyzed using Ryan and Deci’s BPNT. 

Significant statements were identified, which were coded according to which psychological need 

they referenced and whether it suggested that the need was satisfied or frustrated. Then, codes 

were condensed to themes which emphasized how satisfied or frustrated psychological needs 

were related to students’ interest, enjoyment, and/or concentration (i.e. engagement). The authors 

then collaborated to review the coding and settle any discrepancies.  

Results 

A total of nine themes emerged related to the satisfaction/frustration of Uma’s basic 

psychological needs. The themes follow a chronological pattern to tell a coherent story where we 

can see a progression of her needs rather than being divided into the different BPN.  

Uma's Shock by the Frustration of her Need for Relatedness 

One of the first things Uma realized once she joined the first session, as she put it, was the 

following: “It became obvious pretty quickly that they all had a relationship and past 

experiences, and they had been in a lot of classes together. So, I initially felt out of place and was 

like ‘Why am I a part of this?’” This realization came as a shock to her. She described feeling 

“apprehensive” and “fearful”. Uma further explained that she started asking herself why she 

volunteered for the teaching experiment and described that initial moment in the first session as 

“nerve-wracking”. In addition, she expressed that it did not help that the mathematical tasks were 

about logarithms because it had been a long time since she has worked with them. Therefore, not 

only did she feel socially disconnected and with a low sense of belonging, but she also felt 

misplaced when it came to the mathematical content. Thus, the frustration of the need for 

relatedness (both socially and mathematically) may explain her self-reported low levels of 

engagement during the first session, which placed her levels of engagement significantly lower 

than her peers.  

Uma’s need for relatedness was clearly frustrated at the beginning of the teaching 

experiment. As she mentioned: “It did take a while to get comfortable with the group.” In fact, 

she explained that her enjoyment levels could have been higher had she not “felt so out of place 

with the group.” Therefore, it seems that Uma’s frustration of the need for relatedness obstructed 

feeling higher levels of enjoyment and, consequently, overall engagement in the mathematical 

task. Unfortunately, fitting in the group and trying to feel more comfortable around the rest of the 

participants seemed to be an additional struggle that she would have to overcome in order to 

become more engaged in the mathematical activity.  
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Uma's Lack of Familiarity with the Concept of Logarithms and Uma's Frustration for the 

Need of Competence 

As stated before, Uma’s need for relatedness was frustrated at the beginning of the teaching 

experiment. Additionally, she mentioned: “It's been a long time since I have done log work. So, 

it's kind of like pushing the envelope of what I remember and what I've done. So, it was a little 

difficult on that aspect of things.” Uma also expressed: “I think like there were times where I was 

like ‘I don't know what's going on. I can't keep up. I don't know what's happening.’” Therefore, it 

seems that her need for competence was frustrated. Moreover, she expressed: “The interest was 

like losing a little bit because it wasn't an immediate like ‘Oh, I know what the answer is’ kind of 

thing.” This suggests that her interest in the mathematical activity seems to be mostly based on 

whether she can immediately succeed in it or have a clear solving strategy. In summary, initially, 

she had a low level of familiarity with logarithms, which made the task more challenging. In 

turn, this frustrated her need for competence and reduced her levels of interest and enjoyment. 

Thus, the initial frustration of her need for competence also seems to explain her low levels of 

engagement.    

Low Autonomy due to lack of Familiarity with both the Social and Mathematical Contexts 

The need for autonomy is also crucial when it comes to motivation and engagement (Ryan & 

Deci, 2009). Regarding this, when Uma felt out of place both socially and mathematically, she 

mentioned: “I felt like I was outside of it or something. That made me question like what's the 

purpose, like what I was doing there. The interest kind of wasn't there to begin with because I 

was like I don't know if this is like the right, the best place for me.” Notice that the hallmark of 

autonomy is that one’s behaviors are self-endorsed and/or congruent with one’s authentic 

interests and values. However, Uma was experiencing incongruence and conflict and was 

behaving contrary to her volition. As such, her need for autonomy was frustrated.  

Initially, when she felt like she did not belong, her interest in the activity was depleted, and 

so her autonomy withered. Although the fact that she joined the group voluntarily was an 

autonomous decision, she was no longer behaving autonomously. Again, it feels like her sense of 

belonging explained this change in autonomy, which emphasizes how important feeling related 

can be. Moreover, the relationship between Uma’s autonomy and interest appears to have been 

interdependent - one does not influence the other “first”, instead Uma’s interest and sense of 

autonomy were intertwined. 

Considering the first three themes, we can conclude that Uma’s basic psychological needs for 

autonomy, competence, relatedness were all frustrated at the beginning of the teaching 

experiment. These needs especially influenced her interest and enjoyment during the teaching 

experiment. Therefore, it seems that all these needs explain, at least partially, her low levels of 

engagement at the start of the experiment.  

The Mediating Effect of the Satisfaction of the Need for Relatedness on the Relationship 

Between Uma's Enjoyment and Engagement 

As Uma got to interact with Sean, her partner, she realized that “It was nice to have 

somebody to bounce ideas off them and go ‘Oh, yeah! That makes sense.’” This was especially 

true for her because of her lack of recent experiences working with logarithms. By that time, 

Uma had opportunities to interact with Sean as a team, and they showed sensibility toward each 

other. Thus, Uma started to consider Sean as a responsive partner, which increased her sense of 

belonging at least within the pair.  
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Being part of a smaller group may have helped her navigate her way out from feeling like an 

outsider to feeling a greater sense of belonging and enjoyment. Particularly, she felt like she 

could ask for help and discuss ideas with her partner. This was still not the case between Uma 

and the rest of the group. Therefore, her need for relatedness seemed to have been partially 

satisfied (or frustrated) at this time as she felt more comfortable with Sean but not yet with the 

rest of the group.  

Adjusting to a new group often requires time and interactions. This seems to have been 

Uma’s case. For example, she explained: “through each session, [enjoyment] went up because 

every time we came in and we were looking at the same problem, and we were talking about 

previous sessions and I was like ‘Okay. Yeah.’ So, like I am a part of what’s going on here.” 

Therefore, with time, there was an increased familiarity with the group and with the 

mathematical activity. As she explained, that helped her to slightly satisfy her need for 

relatedness and increase her levels of enjoyment.  

Therefore, for Uma, the association between enjoyment and engagement seems to be 

mediated by the need for relatedness in such a way that, when the need for relatedness is 

frustrated, her enjoyment in the mathematical activity is low. Consequently, she reports low 

overall levels of engagement. On the other hand, when the need for relatedness is satisfied then 

she can feel higher levels of enjoyment and allow for greater engagement with mathematics.  

The Initial Effects of Having a Partner on Uma’ Needs for Competence 

As described earlier, Sean partially satisfied Uma’s need for relatedness but having a partner 

influenced her other BPNs as well. Uma considered Sean a good resource to seek scaffolding 

from whenever she felt stuck. When talking about her partner, she described that it was nice to 

have that “assurance” that she was “going down the right path”. She often talked to him for 

“guidance" and to “set an example of where his thoughts were and where he was planning on 

going.” Therefore, two things seemed clear. First, she was not very confident in her own ideas. 

Second, she considered Sean as the most knowledgeable one of the pair. Although the second 

does not necessarily contribute to the frustration of her need for competence, the first one does. It 

was this lack of confidence that often impeded her to continue making progress in the task 

without Sean’s help during the first few sessions. In turn, this interruption in the flow due to 

what seemed to be a frustration of the need for competence may have decreased her 

concentration, which could also explain her low level of engagement.  

A Phenomenon of Autonomously Motivated Dependence  

As it was explained earlier, Uma often relied on Sean’s understanding of the problem and 

help when she began to struggle. Like she mentioned:   

So, I was trying to look for his guidance and see what my thought was before I would be 

like ‘Okay. That makes sense.’ Cuz I know I was just kind of like watching as he like put 

things down on the paper because I think I didn't necessarily know what to put on my 

own papers. I was kind of like, before I did anything, I wanted to see where he was going 

with it. 

Up to this point, it seems like she could not self-regulate her behavior concerning the task. Also, 

she is not confident in her competence and in her ability to make much progress in the task by 

herself, making her seem to depend on Sean. However, as a team, Uma wanted their thinking to 

converge and she consistently checked on Sean’s progress and thinking. In fact, she was the one 

who initiated most of the conversations intended to share their understanding. As expressed 

before, she was interested in those interactions and she also valued them. She decided to rely on 
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him, which she considered being very beneficial for their progress on the task. Therefore, her 

dependence on him up to this point seems to be autonomous. That is, it was an action congruent 

to her authentic interest in group work and with her values of what having a partner means. After 

all, autonomy does not refer to independence (Ryan & Deci, 2017). Thus, this seems to be an 

interesting phenomenon of an autonomously motivated individual who is dependent on others. 

The Effect of Uma's Higher Familiarity with the Mathematical Task in Uma's Satisfaction 

for the Need of Competence, and its Consequences 

Familiarity or relatedness is again another important factor in Uma’s levels of competence. It 

got to a point when she became more confident. As she stated: “It was starting to seem a little bit 

familiar and I could like pick out things that I had previously done. So, I could kind of see where 

to go and how to like get somewhere knowing what I knew previously.” She also mentioned that 

her highest level of interest was at this moment when she became more familiar with the 

mathematical activity which Uma attributed to increased interest, enjoyment, and concentration. 

Therefore, higher familiarity with the mathematical tasks led to higher levels of competence 

which led to higher levels of engagement. 

Greater familiarity also led her to greater understanding and enjoyment, and perhaps 

independence. Like she mentioned, higher familiarity “built up that confidence a little bit I think 

because I felt like I actually knew what was going on and so I could feel that like interest level 

was higher.” Therefore, as she became more familiar with the logarithmic tasks, she felt more 

confident, allowing the need for competence to be satisfied as she felt that she could be 

successful given that, as she stated, “it actually made it to make sense to me.” 

Satisfying the Basic Psychological Needs 

Around the third session, Uma explained that she started to feel part of the group as the 

sessions progressed; thus, slightly satisfying her need for relatedness. Additionally, she 

mentioned: “I was at my highest level of interest because it was starting to seem a little bit 

familiar and I could like pick out things that I had previously done...So I was like ‘Oh. I actually 

kind of want to know what's going on because it actually started to make sense to me.” 

Understanding what was going on mathematically, made her interest increase. Therefore, her 

behavior was more autonomously regulated in that her actions were not only self-endorsed but 

were also driven by her interest. Hence, her need for autonomy seemed to also be satisfied. 

Afterward, she expressed: “I actually knew what was going on.” This suggests that she also felt 

competent. In sum, it seems that Uma’s basic psychological needs were at least slightly satisfied 

by the third session, the session in which she reported the highest level of engagement.  

The Fragility of Uma’s Basic Psychological Needs 

The satisfaction of a BPN does not guarantee that it will remain satisfied. One can feel 

competent around some people and incompetent around others; one can feel related to someone 

but later feel out of place, and one can behave autonomously and then lose interest. The state of 

having the BPNs satisfied can be fragile, especially when the context changes. This is the case of 

Uma in the last session when Frank joined her and Sean. 

Based on video recordings and transcripts of the final session, the nature and amount of 

contributions Uma made to the small group diverted from the progress she had made through the 

experiment to that point. As mentioned before, Sean and Frank were in multiple courses together 

without Uma and the two seemed to have a comfortable working relationship. Throughout the 

final session, Sean and Frank routinely discussed with each other while problem-solving and 
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would check in with Uma to see “what [did] you get for problem 2?” (Frank, session 5). In this 

regard, Uma was displaced socially and mathematically, where her involvement was limited and 

her mathematical contributions were not sought after or included during problem-

solving. Therefore, Uma may have not felt as comfortable working with Sean as before and may 

have not had the opportunity to create a connection with Frank. Moreover, Uma may have also 

felt less competent as before given that her contributions were not recognized by her partners. 

Thus, although she seemed to have at least slightly satisfied her BPNs by session 3, it seems that 

adding Frank to the pair may have slightly frustrated her needs for relatedness and competence 

again. In turn, this may explain her low levels of engagement.   

Conclusion and Implications 

Uma’s reported levels of engagement in an undergraduate mathematics teaching experiment 

were drastically lower than her peer’s levels of engagement. As stated in these nine emergent 

themes, Uma’s lower levels of engagement may be explained by the satisfaction/frustration of 

the basic psychological needs of autonomy, competence, and relatedness. Specifically, Uma’s 

BPNs were all frustrated at the beginning of the teaching experiment, and this formed the starting 

point of her motivational and engagement process which placed her at a drastically lower level 

than her peers.  

The need for social and mathematical relatedness was the first to be frustrated, which also 

seemed to mediate her enjoyment and engagement. Later on, she developed autonomously 

motivated dependence on her partner. Then, familiarity with her partner and logarithms helped to 

slightly satisfy her needs for relatedness and competence, particularly when Uma realized she 

belonged in the sessions and could contribute in mathematically meaningful ways. It was then 

when she finally engaged slightly autonomously and independently. However, none of these 

needs were satisfied strongly as the introduction of another student to the small group made her 

needs to be frustrated again, demonstrating how fragile the satisfaction of her needs was.  

In the end, we see that Uma could not enjoy the tasks when she did not feel related to her 

partners, her concentration declined when she did not feel competent, and she would lose interest 

when she perceived a lack of competence which affected her autonomy negatively. Since 

engagement is defined as the collection of interest, enjoyment, and concentration, we can say 

that the satisfaction/frustration of the BPNs explains, at least partially, her engagement levels. 

The case of Uma provides rich information about how engagement works in undergraduate 

students. As it can be seen, the need for relatedness is crucial for engagement in the classroom. 

As such, instructors should create opportunities for students to create connections among 

themselves, with the instructor, and with the content. Also, it is important to identify and 

integrate students who might feel alienated. This is especially important now in the context of 

COVID-19 as students tend to feel like they are not creating social connections. On the other 

hand, it should always be a goal to satisfy students’ need for competence as it allows students to 

behave more wholeheartedly and autonomously. However, students may feel competent but not 

autonomous. Therefore, it is important to integrate students’ interests in the mathematical tasks 

and provide opportunities for them to make choices. That is, students should not feel that 

everything that is done in the classroom has been imposed on them as it frustrates their need for 

autonomy. Finally, the frustration of any of these needs will risk withering students’ engagement, 

and ultimately their opportunities to learn. After all, an optimal motivational function is achieved 

with the satisfaction of all three needs.  
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Virtual Reality Applications of Math Education in Calculus: Visualizing Triple Integrals 
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California State University, Bakersfield 

This study details the embodied, symbolic, and formal reasoning of an undergraduate student 

when determining proper bounds for a triple integral problem within a virtual reality program 

called Calcflow. While the participant initially had difficulty inputting valid bounds, once he 

learned the appropriate constraints, he gradually connected various aspects of his symbolic 

reasoning with his embodied reasoning through progressive experimentation in Calcflow. 

Results suggest a virtual reality environment can help ease students’ difficulties in visualizing 

three-dimensional shapes and thereby provide them the opportunity to develop deeper reasoning 

about these shapes and their corresponding equations.   

Keywords: Bounds, Triple Integral, Virtual Reality, Embodied, Symbolic 

Introduction and Literature Review 

Research on difficulties with students’ understanding of single variable calculus is extensive 

(e.g., Cottrill, Dubinsky, Nichols, Schwingendorf, Thomas, & Vidakovic, 1996; Oehrtman, 2009; 

Tall & Vinner, 1981), and some of these difficulties might generalize to multivariable calculus 

(Dorko & Weber, 2014). Similar studies (e.g., Orton, 1983; Mahir, 2009; Nguyen & Rebellow, 

2011) have indicated that visualizing a 3D object and setting up an integral may be the most 

difficult part of the solution (Sheikh & Fray, 2017). Students appear able to evaluate given 

integrals analytically but struggle to make connections between the integral bounds and the given 

2D or 3D object. Thus, Sheikh and Fray (2017) asked students to use MATLAB to generate and 

view 3D solids, and to sketch projections, contours, and cross-sections of the solid, hoping these 

tasks would help students set up triple integrals to find volume for a given object. They found not 

many students mastered these tasks, particularly for cases where split integrals were required, or 

multiple bounding surfaces were involved. By utilizing Zazkis, Dubinsky, and Dautermann’s 

(1996) Visualization-Analysis model, they reported that students’ conversions between 

representations were problematic. Similarly, Kashefi, Ismail, Yusof, and Rahman (2012) wrote 

“for most students, imaging and sketching in 3-dimensions were the greatest difficulties that they 

encountered when doing non-routine problems in multivariable calculus” (p. 5537). 

Habre (2001) reported that while computer programs assisted visualization, they did not 

develop students’ ability to visualize without assistance. In contrast, Purnomo, Winaryati, 

Hidayah, Utami, Ifadah, and Prasetyo (2020) concluded a sequence of tasks completed in Maple 

helped students improve in multivariable calculus. Perhaps this distinction can be partially 

explained by the nature of the tool utilized. Zbiek, Heid, and Blume (2007) noted that the 

usefulness “of a cognitive tool becomes most apparent in the area of multiple representations 

when it is used to establish a ‘hot link’, that is, a dynamic connection between two 

representations such that an action taken in one representation is automatically reflected in the 

other” (p. 1174). The tool should also have a high degree of mathematical fidelity: the ability for 

the technological rendering to correctly match the underlying mathematical principle it is 

representing. They note it is important to encourage students both to play with the tool and 

reflect on the actions they took with it, to discover and develop mathematical meaning.  

Kang, Kushnarey, Pin, Ortiz, and Shihang (2020) tested a program designed to help students 

visualize multivariable calculus concepts and found participants in the experimental group felt 
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using a virtual reality (VR) program was more helpful to them than the control group’s slides. 

However, the control group outperformed the experimental group. The authors suggested this 

may have occurred because the VR group learned without instructor guidance, while the slide 

group was paced. This hypothesis implies VR “cannot be a panacea for understanding advanced 

mathematics, and some form of intervention (whether via better implemented technology, or via 

in-person diagnosis of the student’s ability) is required” (p. 58945). In a study on spatial 

visualization via VR, Herrera, Abalo, and Ordóñez (2019) claimed that VR helped students 

visualize mathematical concepts, especially for visualizing intersections between surfaces, noting 

increased average class score and reduced failure rate. Thus, usage of VR may help remove one 

of the primary obstacles to multivariable integrals-visualization of 3D objects. The current study 

thus attempts to establish whether a similar result holds in another mathematical context. 

This study investigated whether utilizing a VR program as a visual aid in a series of directed 

tasks can help resolve difficulties in visualizing 3D graphs and finding bounds for a double or 

triple integral. This is an exploratory study designed to investigate some of the qualitative 

phenomena that learning math in VR is likely to elicit. Participants were asked to complete tasks 

involving double and triple integrals while utilizing Calcflow, a VR program. The research 

question is: What kinds of reasoning do students use as they attempt to find bounds of integration 

for a triple integral while working in a VR environment using multiple representations? 

Theoretical Framework 

The main principle of embodied cognition is that reasoning is inextricably linked to the 

physical environment. There are a variety of interpretations of this statement (see Alibali & 

Nathan, 2012; Lakoff and Nuñez, 2000; Nemirovsky, Rasmussen, Sweeney, & Wawro, 2012; 

Wilson, 2002), but for the author, this assumption carries with it the corollary that “learning is 

doing.” Thus, speech, gesture, or technological actions all serve as evidence for the types of 

reasoning the participants might utilize. Thought processes are invisible, though we might 

speculate on potential thought processes based on physical action. Notably, in a VR 

environment, the lines between gesture and technological actions are significantly blurred.  

Tall (2010) details a world of embodied mathematical thinking, which shares some overlap 

with the embodied cognition perspective. The embodied world is described by Tall (2010) as 

consisting of “our operation as biological creatures, with gestures that convey meaning, 

perception of objects that recognize properties and patterns…and other forms of figures and 

diagrams” (p. 22). The author thus considers the embodied world to consist of reasoning about 

geometric shapes, graphical phenomena, and connections of abstract mathematical phenomena to 

real-world contexts. Thus, the embodied world bears resemblance to both embodied cognition 

and NCTM’s (2009) definition of geometric reasoning. The symbolic world, as described by Tall, 

consists of “practicing sequences of actions until we can perform them accurately with little 

conscious effort. It develops beyond the learning of procedures to carry out a given process (such 

as counting) to the concept created by that process (such as number)” (p. 22) So, the author 

characterizes the symbolic world as consisting of reasoning about algebraic or algorithmic 

processes, similar to NCTM’s definition of algebraic reasoning (2009). Finally, Tall writes that 

the formal world “builds from lists of axioms expressed formally through sequences of theorems 

proved deductively with the intention of building a coherent formal knowledge structure” (p. 22) 

Thus, the author considers the formal world to consist of structural relationships between 

mathematical concepts, and so includes proofs, theorems, conjectures, and formal logic. This 

study investigates how participants engaged with each of these worlds.  
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Method 

Participants consisted of two undergraduate students who had previously completed the 

entire calculus sequence (Calculus I-IV) at a southwestern university and are referred to as Mike 

and Connor in this paper. Connor had completed the calculus immediately before the interview 

took place, while Mike was a senior who had completed the calculus sequence two years before 

the interview. Each participant was interviewed separately. This paper focuses on Connor. A 

one-hour task-based interview was conducted, immediately after the spring semester had 

concluded. In this interview, participants were to use Calcflow to determine proper bounds for a 

given shape. Calcflow allowed participants to enter bounds via a virtual keyboard, and generated 

the surface corresponding to those bounds. Thus, Calcflow requires symbolic input and displays 

corresponding embodied output. The left side of Figure 1 shows the bounds already entered 

when the program starts, and the corresponding surface as a blue graph within a transparent 

cube. This cube can be picked up, moved, dilated, and rotated. Participants could also summon 

virtual chalk to draw freely in the virtual environment in full 3D, though this action generates no 

other embodied output. The right side of Figure 1 shows such equations drawn with the chalk. 

 
Figure 1: A snapshot of Calcflow 

Interviews were recorded with screen-capture software to record participants’ interactions 

within the virtual environment, and an external camera to record their gesture and other 

movements within the real physical world. These videos were analyzed, with particular attention 

paid to which of the three worlds participants were utilizing at any given point. All recorded 

speech, gesture, and technological actions were transcribed to an Excel spreadsheet, and each 

line coded according to which world or worlds the participant appeared to be utilizing. 

Summaries were then written detailing the participants’ progression through each task. Finally, 

referencing the Excel spreadsheet and raw data as needed, I performed a cross-case and within-

case (Merriam, 2009; Patton, 2001) analysis on these written summaries. 

Results and Discussion 

The interviewer started the interview by helping Connor fit the headset and introducing the 

VR controls. Then, the interviewer read the following question: Find the bounds for ∭ 𝑥𝑦𝑑𝑉
𝐸

, 

where E is the solid bounded by 𝑧 = 2𝑥2 + 2𝑦2 − 5 and 𝑧 = 1. 

Connor made the connection between the symbolic expression 𝑧 = 1  and its corresponding 

embodied planar shape immediately and recognized 𝑧 = 1 as the upper bound. He observed: 

And, so I'm writing out the 𝑥, 𝑦, and 𝑧 plane, and I know that it's bounded at least (Creates 

dotted lines in VR at 𝑧 = 1 above the y-axis and above the x-axis) by z equals 1. So I made a 

plane (Moves hand over the dotted lines, back and forth a few times) at z equals 1 as the 

upper part of it.  

When the interviewer asked Connor what the resulting shape should be, he said “paraboloid.” 

Connor began sketching a graph by hand by plotting individual points, then instead wrote several 

symbolic algebraic equations, including what appears to be 2 − 5 = 2𝑥2 − 2𝑦2. Connor divided 
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this equation by 5 and then erased it. When the interviewer asked him about his algebra, he said, 

“I tried moving the 5 to the other side, but that’s for an ellipse.” This attempt at symbolic 

reasoning suggests Connor had some trouble finding the intersection of the two bounding 

equations. The interviewer asked about the cross-section of the bounds, and after a short pause, 

Connor answered “2𝑥2 + 2𝑦2? That’d be like a circle.” Connor wrote 2𝑥2 + 2𝑦2 and claimed 

after a longer pause, “so that is a circle with radius √2, or something like that”. Connor may 

have thought 2𝑥2 + 2𝑦2 − 5 = 1 would become 2𝑥2 + 2𝑦2 = 5 − 1 = 4 when combining 

constants, so this mistake may have been just a sign error. Connor drew a circle of radius √2 on 

the 𝑥𝑦 − plane, suggesting he was making connections between his symbolic and embodied 

reasoning regarding the shape of the cross-section, but not its positioning. So, at the beginning of 

the interview Connor appeared to have difficulty coordinating aspects of his symbolic and 

embodied reasoning when multiple bounding surfaces were involved, as in Shiekh and Fray 

(2017). Notably, he was sketching by hand at this stage, so he did not have the benefit of 

immediate computer-generated output, which might explain some of his difficulty. Similar 

partial correspondences are evidenced by his completed sketch, as he identified 𝑧 = 1 as the 

upper bound but drew an inverted paraboloid and reflected it across the 𝑥𝑦 −plane. (Figure 2).  

 
Figure 2: Virtually hand-drawn paraboloid and its reflection across the 𝒙𝒚 −plane 

 The interviewer noted Calcflow fixes the order of integration as 𝑑𝑧𝑑𝑦𝑑𝑥, so the 𝑥 bounds 

must be constant, the 𝑦 bounds can only involve the variable 𝑥, and the 𝑧 bounds can involve 𝑥 

and 𝑦. Connor still input many bounds that violated these constraints, perhaps because Calcflow 

rendered output even for some of these expressions. For instance, the bounds 𝑥2 ≤ 𝑥 ≤ 2, 0 ≤
𝑦 ≤ 2, and 1 ≤ 𝑧 ≤ −1, generated output that Connor called a “cube” (see Figure 3), and 𝑥2 ≤
𝑥 ≤ 2, 2𝑥2 ≤ 𝑦 ≤ 2 created a blue graph that showed a sequence of vertical blue lines stretching 

back and to the right (see Figure 4).  

 
Figure 3: Self-referencing bounds  

Figure 4: Infinite blue graph 

This behavior reduces Calcflow’s mathematical fidelity (Zbiek et al., 2007), which can cause 

a learner to have difficulty distinguishing which aspects arise from the mathematics and which 

arise from the tool. Connor avoided further self-referential bounds only after a second warning 

from the interviewer. He entered 2 ≤ 𝑥 ≤ −2, 2𝑥2 ≤ 𝑦 ≤ −2, and 1 ≤ 𝑧 ≤ −1. This input 

generated a rectangular prism with a parabolic cylinder cut out (see Figure 5). Connor observed: 
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2 is less than 𝑥 is less than negative, I got a parabola. That's pretty cool. Um, so that's 2𝑥. 

Okay then I have, understood, okay. So the 𝑦 part, so this, this part right here (Waves cursor 

over trough shape along the axis stretching to the right) must be the y-axis. 

Connor thus connected his symbolic input to the embodied output. By changing the lower 𝑦 

bound to 2𝑥2 and observing the resulting graph, Connor inferred the parabola must lie along the 

𝑦 −axis. He extended this connection between his embodied and symbolic reasoning, saying, “to 

make it a circle, I'd have to put the circle equation into 𝑦 maybe.” Connor thus entered the 

bounds 2 ≤ 𝑥 ≤ −2, (2 − 𝑥2)
1

2 ≤ 𝑦 ≤ −2, and 1 ≤ 𝑧 ≤ −1, producing a blue graph that Connor 

called “something kind of circular” (Figure 6).  

 
Figure 5: Connor’s “parabola” 

 
Figure 6: “Kind of circular” 

Note he continued this pattern of making embodied observations and changing the symbolic 

bounds to address that observation. He said, “The back half is not circular though, so I need to 

figure out how to fix that. The back half is straight.” Connor typed (2 − 𝑥)
1

2 into the lower 𝑦 

bound and −(2 − 𝑥2)
1

2 into the upper 𝑦 bound, which resulted in a full cylinder output.  

Hey there we go. (Looks at blue graph which now displays a full cylinder instead of a half 

cylinder. And then you need to shift it. (Changes lower y bound to (2 − 𝑥2)
1

2 − 5. Looks at 

blue graph, which now displays a rectangular prism with cylinder shapes cut out of either 

end. Highlights upper 𝑦 bound and upper 𝑧 bound.) Okay. (Changes upper y bound to 

−(2 − 𝑥2)
1

2 − 5, looks back at graph which is now a cylinder centered on the 𝑦 axis (not the 

origin), but pointing in the 𝑧 direction.) 

Thus, Connor connected the symbolic −5 to a graphical embodied “shift”. When he changed the 

upper 𝑧 −bound from 0 to −(2𝑥2 + 2𝑦2 − 5), he noticed that “when I put in the negative it just 

reflected over the axis,” as seen in Figure 7. 

 
Figure 7: Reflection over axis 

Afterwards, Connor observed that he had added a −5 onto the 𝑦 bounds. He removed these and 

seemed excited by the result (see Figure 8). The bounds at this stage were 2 ≤ 𝑥 ≤ −2,  
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 (2 − 𝑥2)
1

2 ≤ 𝑦 ≤ −(2 − 𝑥2)
1

2, and 0 ≤ 𝑧 ≤ 2𝑥2 + 2𝑦2 − 5.  

Oh, and then I put a minus 5 and a plus 5. Let me delete this see what happens to 

(Backspaces -5 out of lower y bound) Ooh okay. (Looks at blue graph which looks like a 

paraboloid on one side but fanning upward infinitely on the other side. Backspaces -5 out of 

upper bound. Looks back at blue graph, which was an upward facing paraboloid with a 

cylinder on top, as shown in Figure 9.) Now we’re getting somewhere.  

 
Figure 8: Cylinder on paraboloid 

 
Figure 9: The very thin line 

Connor deleted the −5 out of the upper 𝑧 bound as well, which resulted in a cylindrical output. 

He then changed the lower 𝑧 bound to the same as the upper 𝑧 bound, and again connected his 

“thin line” embodied output to the identical expressions for 𝑧 in his symbolic input: 

I got a very thin, Oh! I understand why. It's doing a very thin line (Looks over at blue graph.) 

because I made the z, and it's the same thing. (Mouses cursor over lower z bound. Moves 

cursor back and forth between upper and lower z bounds) 

The interviewer asked whether this shape matched his sketch, and Connor laughed and said no.   

Interviewer: What's wrong with it?  

Connor: So, I thought it was more spherical in shape, but this is definitely like, this 

makes more sense that it's paraboloid shaped.  

At the end of the task, the bounds read 2 ≤ 𝑥 ≤ −2, √2 − 𝑥2 ≤ 𝑦 ≤ −√2 − 𝑥2, and 2𝑥2 +
2𝑦2 − 5 ≤ 𝑧 ≤ 0. Although at this stage of the interview the upper 𝑧 bound was not correct, 

recall Connor recognized the plane 𝑧 = 1 as an upper bound at the beginning of the interview. 

Circular equations bound 𝑥 and 𝑦; they just use an incorrect radius. The 𝑥 − and 𝑦 − bounds are 

backward, likely because Calcflow makes no observable distinction in its rendering based on this 

ordering. So, Connor came close to correct bounds through experimentation, observation, and 

coordination of symbolic and embodied expressions in Calcflow. 

 

Qualitative Post-Interview 

Connor independently described the experience overall in a way that reads like a natural 

summary of the embodied cognition theoretical perspective, saying:  

[Calcflow] allow[s] you to, um, play around, and see the shapes you’re getting towards as 

you get to your final function that you want to see. And it gives you a sense of how each one 

of the different variables and their placement in x, y, or z is helpful in, you know, making the 

graph the way it is. 

Similarly, Connor contrasted the difficulty of making sense of 3D figures on paper with the 

comparative ease of making sense of these same figures in a VR environment. He explained: 

When it’s depicted in the calculus book that we use, it uses, like, shading in lines, but it’s 

difficult to find the difference between, um, let’s say a plane is coming toward you and 
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sloping down. It’s hard to see whether they’re saying that that is an edge or whether the lines 

are coming toward you so close that they’re not an edge, but it’s slightly sloping up, and so 

this, this allows me to grab it and actually, you know, manipulate it and move it around. 

Connor remarked it was easier to draw 3D shapes in Calcflow than on paper, probably because to 

do so in Calcflow one need only move their hand through the air in the same way they would as 

if they were tracing an actual 3D object of the same shape. On the other hand, Connor seemed 

discouraged from experimenting by the input mechanism, asking the interviewer on one occasion 

to verify he had the correct bounds before typing them. 

 

Concluding Remarks 

The results of this investigation highlighted that Connor developed connections between his 

symbolic and embodied reasoning with the help of Calcflow, that he was misled at times by 

some breaches in mathematical fidelity, and that he felt he could draw, manipulate, visualize, and 

comprehend 3D objects more easily in Calcflow’s VR environment than on paper. By gradually 

connecting aspects of embodied and symbolic reasoning, Connor was able to come close to 

finding correct bounds. Calcflow likely helped him connect these two forms of reasoning by 

requiring symbolic input and producing corresponding embodied output, and aided by this “hot 

link”, Connor eventually appeared to attend to both representations in tandem. This dynamic 

enabled Connor to experiment and determine how the graph changed in response to the input 

bounds, and it further enabled him to test the validity of his inferences and generalizations 

immediately. Like the coordination between algebra and geometry seen in Zazkis et al. (1996), 

the coordination between embodied and symbolic reasoning itself may have helped drive 

Connor’s progress. Early on, Connor appeared to have difficulty attending to multiple 

representations, while later he discovered and leveraged connections between them. In the 

qualitative post-interview, Connor claimed it was easier to visualize the 3D shapes with VR than 

with other 2D representations, even interactive ones, suggesting both that such visualization 

might be one of the primarily obstacles in determining these bounds and that Calcflow can help 

alleviate this burden. There were no identified instances of Connor utilizing formal reasoning as 

described by Tall (2010).  Given Connor’s repeated struggles avoiding self-referencing bounds, 

the author agrees with Zbiek et al. (2007) that high mathematical fidelity in a program is 

desirable, and Kang et al. (2020) that “technology itself cannot be a panacea for understanding 

advanced mathematics, and some form of intervention (whether via better implemented 

technology, or via in-person diagnosis of the student’s ability) is required” (p. 58945). 

Most of Connor’s praise seemed to revolve around the embodied graphical output of 

Calcflow, and most of his criticism around the symbolic input mechanism, which proved difficult 

to use. Thus, future research could focus on whether a similar VR program that improves on this 

aspect would help further. For example, Geometer’s Sketchpad allows direct manipulation of the 

shapes, as well as their corresponding equations. Troup (2018) suggests that moving from 

embodied to symbolic reasoning can offer different affordances than moving from symbolic to 

embodied reasoning. Thus, it may be beneficial to allow for similar manipulation of these shapes 

in Calcflow, so that students can change the embodied representation to see changes in the 

corresponding representation, to allow for a bi-directional “hot link”. One could also find and 

investigate tools that further leverage the affordances of VR, such as those that would allow 

investigation of cross-sections obtained from slicing a solid, or various projections. 
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Exploring Affective Dimensions of Women’s Experiences in the Secondary-Tertiary 

Transition in Mathematics 

 

 Seyda Uysal Kathleen M. Clark 

 Florida State University Florida State University 

This report describes a pilot study conducted in Spring 2019. We set out to accomplish two tasks. 

First, through semi-structured interviews, we sought to understand characteristics of women and 

underrepresented minority (WURM) undergraduate mathematics majors’ experiences pertaining 

to the secondary-tertiary transition (STT) in mathematics. Second, we designed and implemented 

a supportive intervention to address aspects of the STT that emerged from the outcome of the 

interviews. We draw upon Di Martino and Zan’s (2010) three-dimensional model of attitude, 

which reifies the role of affect in the STT, and focuses on students’ vision of mathematics, 

perceived competence in mathematics, and emotional disposition towards mathematics. In this 

report, we present data from three WURMs’ perspectives to document three related dimensions 

in the STT and discuss whether and how our intervention supported these students’ transition. 

Keywords: affective dimensions, secondary-tertiary transition, women in mathematics 

The secondary-tertiary transition (STT) in mathematics learning has attracted many 

researchers’ attention from a variety of contexts (e.g., Clark & Lovric, 2008; De Guzman et al., 

1998; Gueudet, 2008; Tall, 2008; Thomas et al., 2015). The STT has been commonly attributed 

to the knowledge gap in mathematics that students experience when introduced to advanced 

mathematics. These difficulties, cited as the “transition problem”, have been predominantly 

connected to cognitive difficulties relevant to conceptual-epistemological change (Witzke et al., 

2016) and/or under-preparedness in school mathematics (Wade et al., 2016). De Guzman et al. 

(1998) identified potential difficulties that impact students’ success during the STT in 

mathematics education from the perspectives of (a) cognitive and epistemological, (b) social and 

cultural, and (c) didactical, all of which helped to scrutinize numerous challenges that 

undergraduate mathematics majors face. Further, Di Martino and Gregorio (2019) investigated 

the STT from affective dimensions, which added a new perspective to explore the phenomenon. 

Considering affective aspects of learning, the intersectionality in one’s identity increases the 

complexity of the STT phenomenon. Investigating affective factors can shed light on how 

gender, race, ethnicity, and educational backgrounds can play a role during the STT. 

Recognizing mathematics as a historically masculine-dominated academic community 

(Solomon, 2012), the current report aims to explore the salient elements of women and 

underrepresented students’ (WURMs) lived experiences by addressing the affective aspects. 

Literature Review 

After more than two decades, the STT in mathematics has been problematized as 

discontinuities in institutional levels between secondary school and university mathematics 

related to changes in the nature of mathematics (Gueudet et al., 2016), advanced and formal 

mathematical thinking (Tall, 2008), mathematical discourse (Sfard, 2007), and learning and 

teaching practices between the two institutions (Bosch, 2014). Alcock and Simpson (2002) 

expressed the complexity of difficulties in the STT as an amalgam of multiple transitions. 

Kajander and Lovric (2005) referred to the STT as a complex phenomenon involving multiple 

issues that need to be addressed. Gueudet (2008) articulated the STT almost as a rupture. 
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Recently, Di Martino and Gregorio (2019) reflected on it as a crisis that students undergo from a 

perspective of affective domains by taking beliefs, attitudes, and emotions toward mathematics 

into account. Various underlying factors during the STT may lead students to feel alienated 

(Hernandez-Martinez, 2016; Solomon & Croft, 2016) and even drop out (Andrà et al., 2011; Di 

Martino & Gregorio, 2019; Rach & Heinze, 2017). Rarely, the challenges in the STT compelled 

students to develop diverse strategies for sense of belonging and attainment to be able to persist 

in the major (Holmegaard et al., 2014; Solomon, 2012).  

Institutional inequity, gender gap, and stereotype threat constitutes barriers for WURMs to 

persist in STEM majors (Master & Meltzoff, 2016). Recognizing the multi-layered nature of 

identity, several studies recommended looking at experiences of WURMs in mathematics with 

an emphasis on the intersectionality (Eddy & Brownell, 2016; Starr, 2018). In this paper, we 

discuss various experiences of WURMs who have been traditionally positioned as 

underrepresented participants of mathematics communities in institutions of higher education in 

the US. Yet, the body of literature which examines how gender and intersectionality play a role 

during the STT is limited. To address this issue, our research question was: In what ways do 

WURM students articulate their vision of mathematics related to their perceived competence and 

emotional response to the STT in mathematics? 

Theoretical Perspectives 

Many scholars have recognized the importance of affective factors that play a part in learning 

mathematics (e.g., DeBellis & Goldin, 2006; Di Martino & Zan, 2010; McLeod, 1992). Previous 

studies in mathematics education attempted to include affective factors in examination of 

cognitive processes (e.g., Mandler, 1989), yet a few of them focused on the interplay between 

these affective and cognitive aspects. Even though several scholars have taken the affective 

domains into consideration, the majority of research is primarily concerned with the role of 

beliefs during problem-solving activities (e.g., Schoenfeld, 1985) rather than investigating the 

interaction among beliefs, attitudes, and emotions. Di Martino and Zan (2011) conceptualized 

attitudes as a bridge between emotions and beliefs in a three-dimensional model of attitude 

(TMA). The TMA views attitudes as an outcome of interconnections among and between the 

subjective components of vision of mathematics (i.e., beliefs on the nature of mathematics), 

perceived competence (i.e., beliefs about self), and emotional disposition toward mathematics 

(Di Martino & Zan, 2010). Di Martino and Zan (2010) described the vision of mathematics 

based on whether students refer to the role of reasoning (i.e., relational understanding) or sets of 

rules for memorization (i.e., instrumental understanding) in reflecting on their mathematics 

engagement (Skemp, 1978). Next, the perceived competence in mathematics is related to 

students’ beliefs about their success, which depends on different factors such as grades, teachers’ 

appreciation, and/or understanding. Finally, the emotional disposition toward mathematics 

captures positive or negative feelings when students reflect on their relationship to mathematics 

(Di Martino & Gregorio, 2019). Students describe their experiences with mathematics by using 

expressions such as like, dislike, apprehension, or joy when they tell their story (Di Martino & 

Zan, 2010). Investigating the underlying reasons for these emotional expressions is a useful 

method in understanding students’ attitudes. Di Martino and Zan (2010) claimed that students 

often refer to one or more of these dimensions when elaborating on their story of mathematics. 

Students tend to connect their cognitive difficulties to affective factors such as interest, 

enjoyment, and perceived competence (Di Martino & Gregorio, 2019; Furinghetti et al., 2013; 

Liston & O’Donoghue, 2010). Beliefs about mathematical competence and feelings about 
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mathematics become even more critical when looking at the experiences of women (Sax et al., 

2015; Solomon et al., 2011) in gendered mathematical environments. 

Method 

Settings and Participants 

We conducted a small pilot study in 2019 Spring with 12 participants who were either pure 

mathematics (PM) majors or double majors in PM and secondary mathematics teaching (SMT). 

In this report, we present findings from three female students (Table 1), whose experiences 

highlight the key aspects of our findings. Our aim was to gain insight into the salient features of 

the STT for students enrolled in a southeastern university in the US, particularly from WURMs’ 

standpoint. First, we interviewed students to capture their STT experiences along three 

dimensions of interest (emotional disposition towards mathematics, vision of mathematics, and 

perceived competence in mathematics). Next, an analysis of the interviews aided our design of a 

supportive intervention, which confronted aspects of the STT via an examination of the 

(historical) changes in the nature of mathematics (in this case, related to the concept of 

derivative). Data collected during the four-session seminar (each session was three hours in 

duration) include survey responses, video recordings of seminar sessions, and student reflection 

diaries. In this study, we focused on a small portion of data from the interview and seminar 

(reflection diaries from days 1 and 4) to report our initial observations related to the three 

aforementioned dimensions of the STT. In our analysis, we adopted a grounded theory approach 

by following open, axial, and selective coding to group students’ responses according to three 

dimensions of our theoretical framework (Charmaz, 2006). We reduced the raw data into smaller 

units to take analytical descriptive notes for “explicating implicit actions and meaning” 

(Charmaz, 2006, p. 50). Next, we recorded useful quotes from the participants to illustrate their 

affect-related experiences. In the next section, we highlight our initial findings on how WURM 

students articulated their STT experiences with university mathematics, as well as how our 

intervention contributed to their perception of the STT. 

 

Table 1. Selected participants and data sources (WURM pilot study, 2019). 

Students 

Karine 

Malya 

Evelyn 

Major/Year 

PM/Sophomore 

PM & SMT/Junior 

PM & SMT/Senior 

Data Sources 

Interview, Reflections, Survey 

Interview, Reflections, Survey 

Interview, Reflections, Survey 

 

 

Preliminary Findings 

In this report, we present episodes from Karine, Malya, and Evelyn to address the three 

dimensions from the perspectives of WURMs. We note that Karine identified herself as Latina, 

Malya as Black, and Evelyn as White. We first discuss the vision of mathematics to capture how 

changes in the nature of mathematics impacted students’ emotions. Second, we provide excerpts 

pertaining to students’ perceived competence and highlight their accompanying emotional 

responses. Finally, we discuss the seminar intervention and highlight students’ emotional 

disposition toward advanced mathematics courses and whether and how the seminar contributed 

to their transition experiences. 
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Vision of Mathematics 

In the interview, we asked students to discuss their STT experiences. We observed that 

students expressed certain challenges by emphasizing changes in the nature of mathematics by 

contrasting school and university mathematics. Initially, the students were not aware of the STT. 

After discussing the phenomenon with them, students were able to recognize its impact on their 

experiences. In the following excerpts, Evelyn and Malya similarly articulated that the transition 

had begun when they were introduced to more advanced courses (e.g., after Calculus 3), while 

they perceived lower division courses as an extension of secondary school mathematics. 

 

The real transition didn’t really happen for me until I started to take the major level of 

math classes. Because I feel for the most part like, the [Calculus sequence was] pretty 

much formula-based and the things were still tangible. … we’re still using numbers, 

whereas now I feel it’s a completely different strain of math; it is all theoretical; it is all 

proof-based and it is just something very different. (Evelyn, Interview 2019)  

 

Malya also stated that the STT was rough for her, especially after Calculus 3, despite her 

good preparation in high school. Also, she explicitly reflected her emotional dispositions in 

coping with difficulties during the STT. Later, she found some resources for support. Also, it is 

worth noting that Malya attributed her struggle in the STT to her inner mathematics abilities, 

which also captures her lower perceived competence in mathematics. 

 

I think it [the transition] was rough, but I also think that it wasn’t as rough as it could 

have potentially been. … entering Calc 3 right after [the] first semester here…was bad. 

Like, I know that was bad, but I also think that I had resources here on campus. At least 

the resources that I was able to gain access to and find easily here that made me feel like I 

wasn’t doing as terribly as I could have… I feel like a lot of the transition that was bad 

for me was kind of like a mind thing. It wasn’t that I couldn’t do it. It was just that I was 

thinking I couldn’t do it and thinking that made me feel more reluctant to do my 

homework and more reluctant to ask for help and basically just talk about the things that 

were going on and knowing that I was struggling, but it didn’t feel comfortable enough to 

bring up the struggle to anyone. (Malya, Interview 2019) 

 

We also captured emotionally charged utterances from Evelyn’s interview, which were 

similar to how Malya articulated her experience. Surprisingly, we detected that the professor 

privileged a passing grade rather than understanding of content. The following excerpt illustrated 

Evelyn’s inner unsettled feeling, which also reflected that she valued understanding in 

mathematics for success as opposed to solely receiving a passing grade. 

 

I find that like, every semester, I panic because I think I am failing the class. I get 

stressed out because I am not doing well on these tests. I am getting like 60s. But then, 

the professors are always like: Yeah, that’s average. Don’t worry about it. We are going 

to just curve the grade. So then, I end with these B-plusses, a couple of Cs, and [in] so 

many harder [classes]. And, I feel like, I struggle in the next class because I didn’t do 

well on the first class and then everything builds, and it’s just like a snowball effect. I feel 

like the transition won’t end until I graduate because I am still struggling to really handle 

this new strain of mathematics that I am dealing with. (Evelyn, Interview 2019) 
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Karine’s reflections on the STT in mathematics seemed less emotionally laden compared to 

Evelyn’s and Malya’s. One can expect students to reflect on their emotions more often when 

confronted with the changes in the nature of mathematics, which began after the Calculus 3 

sequence for Evelyn and Malya. As a sophomore, Karine might not have spent as much time in 

the major to make sense of how courses will look as she advances in course taking. In the 

following excerpt, Karine highlighted some changes in her vision of mathematics related to 

university mathematics courses. 

 

I guess this stuff at the beginning of the course isn’t that big of a jump. It’s like functions. 

It’s set theory, which we’ve been using set notation for a long time. The concept of 

functions and mapping and stuff that comes up in Linear Algebra. It’s more theoretical, 

but it’s not like this huge jump. It’s just kind of phrasing it in a different way and looking 

at it from a different angle, [like] the metric spaces… At the beginning of the semester, 

the proofs class was like, ‘Oh my gosh’ But then… I’ve gotten the groove of things. I 

was like, okay, I’m going to start having a schedule for when I’m going to work on this 

homework. … That’s when I started talking with this math friend. … We spend like three 

hours going through this stuff for this class. And then, once we leave that initial kind of 

like, ‘oh gosh, what are we doing?’ sort of thing then, I was like, okay, this isn’t really 

too bad. (Karine, Interview 2019) 

 

Karine’s experiences in dealing with the abstract nature of mathematics showed a necessary 

change in vision of mathematics, as well as learning and studying strategies. It seems that Karine 

was fully cognizant that she needed to put forth more effort to overcome difficulties that arose in 

the STT related to the nature of mathematics. Additionally, it is worth noting that she sought to 

engage in mathematics conversations with one of her peers which might be an indication of her 

need for academic and social support. Overall, considering these three students’ reflections, it is 

reasonable to argue that mathematics majors need social and academic support. They might need 

to share experiences and notice common challenges about mathematics in their program of study. 

These ideas led us to organize a seminar in 2019 to create a small academic space for these 

women to talk about their mathematical experiences and dispositions. 

Perceived Competence in Mathematics 

We noticed that students expressed conflicting beliefs about their perceived competence, 

which seems to be linked to increasing abstractness in the nature of mathematics. Specifically, 

Evelyn and Malya reflected on changes in the nature of mathematics after Calculus 3 and how 

their perceived competence was influenced by this change in upper division mathematics 

courses. Karine also mentioned how this change in the nature of mathematics “[shook] her 

confidence” and led her to seek additional help to cope with the STT. Accordingly, we detected 

that students reflected on their emotions at varying levels. Depending on variances in lived 

experiences of these three women, their emotional reaction levels were also notably different. 

 

In Calc 3, ODE and Linear Algebra, yes, I did feel like that [confident]. Because there 

were clear steps that could help me. And, we were still using numbers. But then in the 

major-related classes, I do not feel competent or confident with my work. I find that I am 

… just writing down stuff that we went over in class. And hoping that somehow it makes 

sense and is a good enough proof to prove something. (Evelyn, Interview 2019) 
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Malya expressed similar sentiments regarding her perceived competence while taking 

Calculus courses. Interestingly, we noticed that Malya pointed out her lower confidence before 

Calculus 3, which seems different from Evelyn’s experience. Considering opportunities and the 

intersectionality, Malya’s high school preparation might not have sufficiently prepared her for 

lower division mathematics courses (Wade et al., 2017). 

 

I don’t know if it’s [my confidence that has] changed because… even though I am 

confident about … anything less than Calc 3 now, I do remember it in the moment while 

taking them, I was not so confident about it. And so, I think, my confidence levels have 

been about the same while I’m taking the courses at least. (Malya, Interview 2019) 

 

We identified similar patterns in Karine’s reflection on perceived competence in her 

mathematics experiences. Even though Karine stated that being surrounded by other good 

students is intimidating, she viewed them as a resource for improving her knowledge. 

 

Sometimes I do feel like, oh my gosh! I made a really dumb mistake on an integral, or I 

had to look up something that I knew where that should have been really obvious. So 

then… that just shakes my confidence. But … I don’t really let it get to me because just 

why would I do that? That’s just a waste of my time. …and then seeing other people… I 

guess better or more advanced in math, sometimes it’s like, oh geez, that’s intimidating. 

But it’s also why am I worried about that? They can help me. (Karine, Interview 2019) 

 

As seen from the excerpts, each of the three women mentioned that at some point there were 

times when they did not feel as confident as they had previously. Interestingly, we observed 

connections between increasing abstractness in mathematics and students’ inclination to question 

their mathematical competence (Di Martino & Gregorio, 2019). This tendency often prompted 

their unproductive emotions. 

The Intervention Seminar: Students’ Emotional Reflections on the STT in Mathematics  

During the first seminar session, we asked students to reflect on their STT experiences in the 

major. We captured evidence of affective dimensions in the STT that influenced our participants’ 

mathematical experiences and emotional dispositions. We observed that the seminar positively 

contributed to their experiences in the STT regarding emotional dispositions when dealing with 

more advanced mathematics. Creating a safe, collegial space for mathematics majors seemed to 

encourage them to engage in mathematical activities such as thinking, feeling, and talking about 

mathematics. Notably, Evelyn expressed loneliness considering the lack of representation of 

women in various mathematical spaces and different hardships in her transition. 

 

Knowing that there is a name to this phenomenon is comforting. When dealing with “the 

transition problem,” I often felt alone in this transition, especially being surrounded by 

mostly men who did not seem to have this problem. (Evelyn, Seminar 2019, Day 1) 

 

Similarly, Malya’s reflection on the first day provides evidence that even though she was not 

aware of a transition phenomenon in mathematics, it resonated with her. Malya touched upon the 

prerequisite knowledge related to secondary school mathematics that did not warrant success to 

proceed to advanced university mathematics (Rach & Heinze, 2017). Malya’s reflections 
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highlighted her views on the different nature of mathematics in the two institutions as well as a 

necessary adjustment of learning strategies (Clark & Lovric, 2008).  

 

I feel like this transition is similar to a well-known undercover secret. A lot of folks 

acknowledge that there is this period of transition between school and university, yet they 

are not doing much about it. There seems to be a lack of effort in attempting to shorten or 

lessen the “transition.” My teachers warned me about how much more studying I would 

need to do and how schoolwork is nothing like university-course work. I understand that 

going to college is not for everyone, but for those who are going to college, I think it is 

important for them to have that exposure (Malya, Seminar 2019, Day 1) 

 

On the fourth day, we asked students how the seminar was useful in dealing with challenges 

in their mathematics program when the changes in the nature of mathematics were considered. 

Karine stated that the seminar was helpful for her to develop more productive attitudes toward 

dealing with advanced mathematics. She also commented on how the academic content of the 

seminar was useful for her to gain a better understanding of an important mathematical concept 

that will benefit her in course work. Karine’s reflection was an exemplar of mathematical 

confidence, which seemed to be uplifted by conceptual support provided in this seminar. 

 

I feel more confident and excited with regards to my 4000-level math classes next 

semester, including Analysis. I definitely feel like I have a better grasp of the derivative 

and differential as a mathematical object, which is a huge relief since deep down there 

was still that last bit of confusion of what a derivative actually was and how it came to 

be. It was amazing! I loved every part of it. (Karine, Seminar 2019, Day 4) 

 

Moreover, Evelyn pointed out her positive attitudes toward advanced mathematics after the 

seminar, which previously did not seem to be so. From a pre-service teacher perspective, Evelyn 

commented on in-class practices that did not benefit her conceptual understanding, especially for 

upper-level mathematics courses. Group discussions and interactions were important for her to 

become more open to abstract mathematics. 

 

This seminar improved my attitudes toward transition. When dealing with formal 

mathematics, I was miserable and struggled a lot. After the seminar, I am a little more 

open to dealing with abstract mathematics. I think if there was a little more discussion, 

explanation, or collaboration, like the seminar, then I think I could have gotten more out 

of the class. I think this seminar was really useful. (Evelyn, Seminar 2019, Day 4) 

Implications 

This pilot study suggests that STT experiences might differ across country contexts. Also, we 

conjecture that WURMs’ STT experiences vary based on high school preparation, year in the 

mathematics major, and gender. Using affective aspects of the STT is promising for capturing 

students’ vision of mathematics and perceived competence. Our research provides valuable 

insights into perseverance strategies and support mechanisms that WURMs need in coping with 

challenges and how they configure their new mathematical space. We posit that future studies 

should examine more deeply how academic and social support interventions can contribute to 

WURMs’ mathematical experiences in STT, while considering the notion of identity. 
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We report the results of a survey of calculus instructors from colleges and universities across the 
US related to their reported awareness and usage of Inquiry Based Learning, instructional 
practices, and beliefs about teaching and learning. Cluster analysis of the data revealed three 
distinct types of self-identified IBL-users based on the proportion of in-class time students spent 
in different activities, including a large number of instructors who lecture for the majority of 
class time. The teaching practices of that sub-group did not differ significantly from those of the 
group of instructors who reported no knowledge of IBL. Variation in level of agreement with 
positive statements about lecture shows some association with in-class instructional practice; all 
four groups indicate strong agreement with statements that inquiry practices support learning.  

Keywords: Instructional practices, Calculus, STEM, Individual Characteristics 

Introduction 
Inquiry forms of instruction have been part of broader educational reforms going back at 

least to the work of John Dewey (Artigue & Blomhøj, 2013) and one manifestation of this in 
mathematics education has been inquiry-based learning (IBL). Broadly, the pedagogical 
approach called IBL has been practically defined as having students engage with each other and 
in actively reinventing mathematics through a carefully constructed sequence of high-level tasks 
while an instructor acts as a ‘guide on the side’ to facilitate students’ activity and discussions 
towards the curricular content agenda (Artigue & Blomhøj, 2013; Ernst et al., 2017; Hayward et 
al., 2016; Laursen & Rasmussen, 2019; Rasmussen & Kwon, 2007). The IBL community 
typically offers guidelines and principles to instructors; with less emphasis prescribed, specific 
pedagogical choices for implementing IBL. While not narrowly defined, IBL is usually 
associated with student-centred instruction and activities such as working in small groups, 
presentations, and whole-class discussions and decreased use of instructor-activities such as 
lecturing and solving problems (Hayward et al., 2016; Kogan & Laursen 2014; Laursen et al. 
2014). The variety in implementations of IBL lends to be conceived of a spectrum of related 
activities, as opposed to a ridged instructional format.  

Given how broadly IBL is defined and how similar the tenets of IBL are to other active 
learning approaches more generally (Ernst et al. 2017; Rasmussen & Kwon, 2007; Rasmussen, 
Marrongelle, Kwon, & Hodge, 2017; Walczyk & Ramsey, 2003), the way in which IBL is 
implemented by individual instructors may be largely dependent on widely varying instructor 
beliefs. While IBL is fairly well-known and promoted among mathematicians (see results in 
Apkarian et al., 2019), there are open questions about whether IBL is being implemented in ways 
that are consistent with the tenets of IBL, something other researchers have questioned as well 
(Stains & Vickery, 2016). We do not know if IBL implementation translates into a clearly 
distinct set of instructional practices within active learning, or the extent to which IBL 
implementations differ from teacher-centred instructional approaches. Thus, the goal of our 
paper is to examine whether self-identified IBL implementors have a clearly definable set of 
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instructional practices and attitudes, and the extent to which they differ from those who have 
never heard of IBL. In this paper we address the following research questions: 

1. What is the range of instructional practices among instructors of undergraduate calculus 
courses who report using IBL in their classes, and how does this compare to the 
practices of those who have no knowledge of IBL? 

2. What attitudes toward teaching and learning are associated with different instructional 
profiles among self-identified IBL users, and how does that compare to those who have 
no knowledge of IBL?  

Literature Review 
Prior research has tracked the evolution of IBL as it has become a more formalized, yet 

broadly conceptualized, pedagogical approach (Ernst et al. 2017; Haberler et al., 2018; Laursen 
& Rasmussen, 2019; Rasmussen & Kwon, 2007; Rasmussen et al., 2017). Earlier work identified 
one, then two, then three, and now four guiding principles which are outlined on the Academy of 
Inquiry Based Learning website (inquirybasedlearning.org). Those principles, reviewed by 
Lauren and Rasmussen (2019) as Inquiry Based Mathematics Education (IBME) were 
synthesized as 1) deep student engagement in rich mathematics, 2) student collaboration with 
peers and instructors, 3) instructor inquiry into student reasoning, and 4) instructor attention to 
equity. In terms of the principle of deep student engagement in rich mathematics, students are to 
make significant contributions to the curriculum progression and math concept development. 
Students may not be provided answers or methods to follow ahead of time but instead have to 
wrestle with ideas before making conclusions; the goal of the instructor is to get the students 
work on activities that are novel and challenging to them. The second principle, collaboration, 
involves students working in groups, as a class, and or individually in order to learn how to 
effectively communicate mathematics and deepen their understanding (e.g. individuals going to 
present a proof for the class to evaluate); the goal of an instructor is to help students engage with 
other students’ thinking and facilitate cross-talk among students). The third principle of IBME, 
instructor inquiry in students’ reasoning, has been operationalized in various ways in prior 
research but generally involves instructors eliciting student ideas publicly and building on them 
(Laursen & Rasmussen, 2019; Rasmussen & Kwon, 2007; Rasmussen et al., 2017); the goal of 
the instructor is to build on and extend student work. Earlier work by Rasmussen and Kwon 
(2007) noted that this instructor inquiry helps instructors construct models of student thinking 
and learning, provides instructors opportunities to gain deeper insight into mathematical ideas by 
reflecting on student activity, and positions instructors to build off student thinking by posing 
follow up questions or tasks. The fourth, most recent addition, calls on instructors to attend to 
classroom dynamics which arise in interactive settings and consciously support an equitable and 
respectful experience for each student. This principle has been put forward as an aspirational 
characteristic of IBME (and IBL), not an inherent one (Laursen & Rasmussen, 2019).  

Given the broad conceptualization of IBL and how innovative instructional practices are then 
taken up (Scanlon et al., 2019; Stains & Vickery, 2016), implementation of IBL is likely to vary 
widely between instructors. One determining factor in how variations in teaching practices arise 
is instructors’ beliefs (Leatham, 2006). Prior research has identified how beliefs, and specifically 
beliefs about teaching and learning, impact instructional practice (Hoyles, 1992; Leatham, 2007; 
Philipp, 2007; Speer, 2008; Sztajn, 2003). We conjecture that while IBL is diffused as an 
innovative instructional practice, the broad nature of IBL will allow instructors to implement IBL 
in various ways, which will be partly determined by instructors’ individual beliefs and goals. 

2021 Research in Undergraduate Mathematics Education Reports 360



 

  

Methods 

Survey Overview and Key Items 
This work is part of a larger study about factors impacting the uptake of research-based 

instructional practices in postsecondary chemistry, mathematics, and physics, which included the 
development and administration of a web-based survey informed by related research in 
undergraduate STEM education (e.g., Apkarian et al., 2019;  Johnson et al., 2018; Gibbons et al., 
2018; Henderson & Dancy, 2009; Lund & Stains, 2015; Walter et al., 2016). The survey is an 
amalgamation and adaptation of items from validated instruments which gathered information 
about instructors’: general instructional practices (Landrum et al., 2017, Walter et al., 2016); 
beliefs about teaching, learning, and students (Aragón et al., 2018; Chan & Elliott, 2004; Dweck 
et al., 1995; Johnson et al., 2018; Meyers et al., 2006; Tollerud, 1990); and departmental climate 
and culture (Walter et al., 2014). The survey also included a section on demographic questions 
related to both professional and personal identities and roles (see Apkarian et al., 2020 for 
additional detail). Survey participants were instructed to consider a particular, recently taught 
course (in mathematics, a single-variable calculus course) when responding. 

In this report we focus on data from a subset of the items related to instructional practice and 
instructor’s beliefs about teaching, learning, and students. Our analysis incorporated two items 
about instructional practice. The first (Table 1A) asked instructors to report the percentage of in-
class time (in a typical week) students spent in four kinds of activity: working individually, 
working in small groups, participating in whole-class discussions, and listening to the instructor 
lecture or solve problems. The second (Table 1B) asked instructors to rate their familiarity with 
IBL1 on a five-point scale from “I have never heard of this” to “I currently use it in this course to 
some extent.” Seven belief items (Table 1C) were queried using a six-point Likert scale from 
strongly disagree to strongly agree, with no neutral option.  

The survey was distributed electronically in Spring 2019, and 3769 instructors of 
introductory STEM courses at 851 postsecondary institutions across the U.S responded. Of these, 
1349 were instructors of undergraduate single-variable calculus courses; here we report only on 
responses from the 967 who responded to all of our target items. We further reduced the dataset 
to include only 366 respondents: those we refer to as IBL users (289 instructors who report 
currently using IBL in their calculus course) and non-IBL (nIBL) instructors (77 instructors who 
report never having heard of IBL).  

 
Table 1. Survey question, in which participants: (A) selected the percentage of class time spent in each of four 
activities from drop-down menus of 0, 5, 10, …, 95, 100; (B) selected one of five options describing their level of 
awareness or experience with IBL; and (C) indicated their level of agreement with seven Likert items. Statements 1-
4 are positive statements about lecture; statements 5-7 are statements aligned with an inquiry perspective on 
learning. These statements were presented to participants as part of a larger set and in a scrambled order. 

[A] During a typical week, what proportion of time during 
regular class meetings (i.e., lecture sections) do students 
spend doing the following? (Answers must total 100.) 

[ ] Working individually 
[ ] Working in small groups 
[ ] Participating in whole-class discussions 
[ ] Listening to the instructor lecture or solve 
problems 

[B] Please indicate your awareness and (if applicable) 
usage of … 
Inquiry-Based Learning (IBL): A broad range of 
empirically validated teaching methods which emphasize 

1. I have never heard of this 
2. I know the name, but not much more 
3. I know about this, but have never used it in this 

course  

 
1 The full survey asked mathematics instructors about 12 distinct RBIS, but for this paper we focus on IBL only.  
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(a) deeply engaging students and (b) providing students 
with opportunities to authentically learn by collaborating 
with their peers  

4. I have tried it in this course, but no longer use it 
5. I currently use it in this course to some extent  

[C] To what extent do you agree/disagree with the following statements?  
Strongly disagree, disagree, slightly disagree, slightly agree, agree, strongly agree 
 
1. I think lecture is the best way to teach.  
2. Students learn best from lectures, provided they are clear and well- organized.  
3. I think lecture is the only way to teach that allows me to cover the necessary content.  
4. The major role of a teacher is to transmit knowledge to students.  
5. I think students learn better when they struggle with the ideas prior to me explaining the material to them.  
6. Making unsuccessful attempts is a natural part of problem-solving. 
7. Learning means students have ample opportunities to explore, discuss, and express their ideas. 

Data Analysis 
Our goal was to investigate how different or similar were the instructional practices of 

calculus instructors implementing IBL in their classes. Specifically, we wanted to classify the 
289 self-reported IBL-users based on their reported breakdown of how class time is spent 
(Fig.1). To accomplish this task, cluster analysis was conducted to identify homogeneous groups 
of participants and the four clustering variables were the instructional practices: working 
individually (WI); working in small groups (WSG); participating in whole class discussion 
(WCD); and listening to the instructor lecture or solve problems (LL).  

To determine the optimal number of clusters, a combination of hierarchical and non-
hierarchical methods was used. Hierarchical cluster analysis using the Centroid Clustering 
method with Euclidean Distance as a measure of distance revealed that the respondents could be 
clustered into three distinct groups. To test for robustness, a k-means cluster analysis was 
conducted. The k-means cluster profiles were in agreement with those obtained from hierarchical 
cluster analysis, thus supporting the three-cluster solution. A one-way analysis of variance within 
the clusters was then performed to examine the difference among the four instructional practices 
across the three clusters. Tukey’s post hoc HSD testing was used to assess pairwise differences 
in the amount of class time spent in each activity between instructor groups.  

The final stage of analysis involved examining individual beliefs about teaching and learning 
associated with instructors across the three clusters of self-reported IBL-users and those who 
reported to have no knowledge of IBL (nIBL). Within each cluster, we examined the 
participants’ beliefs around instruction. We compared the means of the participants’ responses to 
seven Likert items (Table 1C) using Tukey’s HSD test. Participants responded to the items on a 
measuring scale of 1 (strongly disagree) to 6 (strongly agree).  

Results 

Instructional Profiles 
The k-means cluster analysis of the instructional practices of self-declared IBL users 

identified three distinct groups of practitioners. Based on their instructional profiles (Fig. 2), we 
refer to the three clusters of IBL-users as MSG (mostly small group work), MW (mixed ways), 
and ML (mostly lecture). The MSG group report the highest average of class time spent in small-
group work (53%); the MW group do not have a dominant instructional activity; ML is the 
largest group and report the highest average of class time spent in didactic lecture (62%). For 
context, we compare these instructional profiles to of those who report never having heard of 
IBL (nIBL). As shown in Figure 1 and confirmed in Table 2, the nIBL group reports a class time 
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distribution very like that of the ML group (average 65% class time spent in lecture). For each of 
the four instructional activities, group membership has a statistically significant main effect on 
the amount of time spent in that activity (see Figure 2 caption). 

 
Figure 1. Stacked bar charts of the percentage of class time spent in each of four pedagogical activities. ANOVA 
indicate group impacts the amount of time students spend in each activity: working individually F(3,362)=4.07, 

p<0.01, η2=0.03; working in small groups F(3,362)=231, p<0.001, η2=0.66; whole class discussion 
F(3,362)=73.32, p<0.001, η2=0.38; and didactic lecture F(3,362)=196.9, p<0.001, η2=0.62. 

We then compare the instructional practices across these three groups and the non-IBL users 
using (Table 2). The three types of IBL users varied in their instructional practices and there 
were significant differences between the groups. ML and nIBL were distinguished only by a 
medium-sized effect of time spent working in small groups; there are large differences in the 
amount of time these groups spend in lecture compared to MW and MSG (who differed slightly). 
Small group work varied the most across groups, and individual work time the least.   

 
Table 2. Results of Tukey HSD post hoc testing at 95% family-wise confidence intervals between instructor groups 
for each of the four pedagogical activities. Cells show difference of group means. 

 MSG-MW MSG-ML MSG-nIBL MW-ML MW-nIBL ML-nIBL 

Working individually 
(WI) 

-5.0* 
d=0.5[Med] ns ns 5.4** 

d=0.6[Med] ns ns 

Working in small groups 
(WSG) 

31.2*** 
d=2.9[Lrg] 

37.0*** 
d=3.2[Lrg] 

43.3*** 
d=3.4[Lrg] 

5.8** 
d=0.5[Med] 

12.1*** 
d=1.0[Lrg] 

-6.3** 
d=0.5[Med] 

Participating in whole 
class discussion (WCD) 

-18.6*** 
d=1.5[Lrg] ns ns 22.4*** 

d=2.0[Lrg] 
21.1*** 
d=1.5[Lrg] ns 

Listening to instructor 
lecture (LL) 

-7.6** 
d=0.7[Med] 

-41.2*** 
d=3.3[Lrg] 

-44.5*** 
d=2.4[Lrg] 

-33.6*** 
d=2.7[Lrg] 

-36.9*** 
d=2.0[Lrg] ns 

*p<0.05, **p<0.01, ***p<0.001; differences which were not statistically significant (ns) are omitted. 
Effect sizes calculated for significant differences using Cohen’s d: 0.2 < Small < 0.5< Medium < 0.8 < Large. 

Attitudes to Teaching and Learning 
In terms of individual beliefs about teaching and learning, we calculated the group mean 

scores for seven items (Figure 2) and conducted a Tukey HSD test (Table 3).  

11.5%

16.5%

11.1%

12.9%

52.9%

21.7%

15.9%

9.6%

15.4%

33.9%

11.6%

12.8%

20.3%

27.9%

61.5%

64.8%
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Figure 2. Mean and 95% CI of the mean of each instructional group’s responses to each of the seven selected Likert 

items. A vertical line separates the statements about lecture (1-4) and statements about learning through inquiry.  

The MSG and MW groups were indistinguishable in their responses to these Likert items. All 
four groups indicated agreement with statements that inquiry supports learning, with some 
variation. The groups differed in their responses to the positive statements about lecture. MSG 
and MW indicated the strongest disagreement, followed by IBL-users who mostly lecture, and 
the nIBL group reported mild agreement.  

 
Table 3. Results of Tukey HSD testing (differences of group means) at 95% family-wise confidence intervals.  

 MSG –
MW 

MSG –  
ML 

MSG – 
nIBL 

MW –  
ML 

MW –  
nIBL 

ML –  
nIBL 

1. I think lecture is the best way to 
teach ns -1.1*** 

d=0.9[Lrg] 
-1.8*** 

d=1.5[Lrg] 
-0.8*** 

d=0.7[Med] 
-1.5*** 

d=1.2[Lrg] 
-0.7*** 

d=0.5[Med] 

2. Students learn best from 
lectures, provided they are clear 
and well-organized 

ns -1.1*** 
d=0.9[LRg] 

-1.9*** 
d=1.6[Lrg] 

-0.8*** 
d=0.6[Med] 

-1.5*** 
d=1.2[Lrg] 

-0.8*** 
d=0.6[Med] 

3. I think lecture is the only way to 
teach that allows me to cover the 
necessary content 

ns -1.1*** 
d=0.9[Lrg] 

-2.0*** 
d=1.5[Lrg] 

-0.8*** 
d=0.6[Med] 

-1.7*** 
d=1.3[Lrg] 

-0.9*** 
d=0.6[Med] 

4. The major role of a teacher is to 
transmit knowledge to students ns -0.7*** 

d=0.5[Med] 
-1.4*** 

d=1.1[Lrg] 
-0.6** 

d=0.5[Sm] 
-1.3*** 

d=1.1[Lrg] 
-0.7** 

d=0.5[Med] 

5. I think students learn better 
when they struggle with the ideas 
prior to me explaining the material 
to them 

ns 0.4* 
d=0.4[Sm] 

0.9*** 
d=0.8[Lrg] ns 0.7*** 

d=0.6[Med] 
0.5* 

d=0.4[Sm] 

6. Making unsuccessful attempts is 
a natural part of problem-solving ns ns 0.3* 

d=0.5[Sm] ns ns ns 

7. Learning means students have 
ample opportunities to explore, 
discuss, and express their ideas 

ns ns 0.4** 
d=0.5[Med] ns 0.4** 

d=0.6[Med] ns 

Adjusted *p<0.05, **p<0.01, ***p<0.001; differences which were not statistically significant (ns) are omitted. 
Effect sizes calculated using Cohen’s d (rounded to one decimal place) 0.2 < Small < 0.5< Medium < 0.8 < Large 
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Discussion 
The primary objective of this report was to characterise self-identified calculus IBL 

implementors based on proportion of in-class time students spent on four different activities 
alongside their beliefs about teaching and learning. First, we hoped to gain insights into how 
different or similar IBL classrooms would be and examine the differences, which we conjectured 
may exist, between IBL and non-IBL classrooms. Second, we sought to examine to what extent 
instructors’ beliefs about lecture and non-lecture align with their instructional practices.  

Addressing our first research question, we found the instructional practices of IBL instructors 
varied remarkably. Our cluster analysis identified three distinct groups – with significant 
difference in instructional practice. In one cluster small group work dominated the instructional 
time; in one cluster class time was pretty evenly distributed between four different instructional 
practices; and, in one cluster students spent the majority of in-class time listening to the 
instructor lecture. If we take into account the number of IBL instructors in each of the three 
clusters we see that a significant portion of these self-identified IBL users, about 43% of them, 
were sorted into the “mostly lecture” group, where students spent on average 62% of in-class 
time listening to the instructor lecture. In terms of instructional practice, there was limited 
variability reported by this “mostly lecture” cluster of IBL implementors and instructors who 
reportedly have never heard of IBL. Thus, our findings imply that it would be a mistake to 
assume a consistency between IBL courses or to assume that in IBL classrooms the majority of 
class time is spent on student-centred activities. Further, we concur with researchers (e.g., 
Hayward et al., 2016) that future efforts to spread IBL should examine factors that influence 
implementing IBL and support instructors to incorporate IBL practices in their instruction. 

Second, we found statistical alignment across all the IBL clusters (despite instructional 
differences) with regards to their attitudes toward inquiry learning, but these attitudes were also 
shared by those with no knowledge of IBL. Thus, acknowledging inquiry as supportive of 
learning does not appear associated with stated IBL usage or instructional practice. However, 
attitudes toward lecture do appear to have this association. Self-declared IBL users indicated 
more disagreement with positive statements about lecture than the nIBL group, and there is a 
tentative association between agreement with positive statements about lecture and the 
percentage of class time spent lecturing. The responses of self-identified IBL-users whose 
classes are dominated by lecture are intriguing, and further analysis is needed to understand how 
this group describe their understanding of IBL as a pedagogical and/or teaching philosophy, their 
instructional practices, and how their attitudes and beliefs about teaching and learning drive their 
practical pedagogical decisions within and outside the classroom. Our findings suggest that 
beliefs about lecture are more related to pedagogical choices than beliefs about inquiry, and that 
this is an avenue for further investigation by those seeking to shift instructional practice. 
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What is Instantaneous Rate of Change? 

 

Franklin Yu 
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The purpose of this study is to examine students’ meanings for the derivative at a given input value. 

While students may verbally state that the derivative represents instantaneous rate of change, that 

does not imply that they have a coherent meaning for the difference quotient as an average rate of 

change. This study explores students’ responses to a typical calculus 1 problem that requires the use 

of derivatives to determine a linear approximation. This study analyzes student responses about 

instantaneous rate of change and the differences in meanings that students may hold about it. 

 

Keywords: Derivative, Instantaneous Rate of Change, Calculus, Student Meanings 

 

The concept of derivative is foundational to the learning of higher topics in the STEM fields. 

However, researchers report that the learning of derivative is difficult (Tall, 1981; Park, 2013; 

Zandieh, 2000; Oehrtman, 2002; Monk, 1994; Ubuz, 2007; Yu, 2020). Therefore research on 

how students reason about the idea of derivative will be useful for informing efforts to improve 

the teaching of derivative. The seemingly paradoxical issue that students have to resolve is 

interpreting the derivative at a given input value (𝑓′(3) = 6) as regarding a single instance (at 

the input of 7), yet derivatives are about change, so how can you talk about change if there is 

only one instance involved? Perhaps due to this issue, students hold multiple disconnected 

meanings about derivative (Zandieh & Knapp, 2006) as a coping mechanism to get through their 

calculus courses. Since derivatives represent something that we call “instantaneous rate of 

change”, then students’ meanings for rate of change are pertinent to their understanding of 

derivative. Yet, researchers (Byerley et al., 2012; Simon & Blume, 1994; Castillo-Garsow, 2010) 

have shown that students have differing ideas about what a rate of change is. Due to these issues 

related to learning the idea of derivative and rate of change, the purpose of this study is to 

explore students’ meanings about the idea of derivative as instantaneous rate of change. The 

research question this study examines is: 

How do students interpret the derivative in a context as instantaneous rate of change? 

 

Literature Review 

 The literature on derivatives has been extensive thus far, ranging from the limiting process 

(Oehrtman, 2002; Roh, 2008, Ferrini-Mundy & Graham, 1991; Weber et al., 2012), conceptions 

of rates of change (Byerley & Thompson, 2017; Hackworth, 1995; Thompson, 1994, Confrey & 

Smith, 1994), and student understandings of the derivative as a function (Park, 2013; Baker et 

al., 2000; Aspinwall et al., 1997; Asiala et al., 1997; Borgi et al., 2018;  Zandieh, 2000).  

Derivatives are about quantities changing; thus, how students reason about quantities 

changing is central to how students construct a meaning for instantaneous rate of change. 

Castillo-Garsow (2010,2012) investigated how students may be reasoning about change and 

identified two distinct student images of change, chunky and smooth. A student engaging in 

chunky reasoning imagines the value of a quantity changing discretely from one point to another 

but with no imagery of motion between those two points. A student engaging in smooth 

reasoning imagines a change in a quantity as a change in progress by conceptualizing a quantity 
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as taking on values as time flows continuously and smoothly. These different ways of imagining 

changes in quantities would likely influence how a student interprets a rate of change.  

According to Zandieh (2000), there are four representations of derivatives that students tend 

to recall: graphically as the slope of the tangent line, verbally as instantaneous rate of change, 

physically as speed, and symbolically via the limit definition of derivative. Zandieh’s derivative 

framework has been central in calculus education research (e.g., Petersen et al., 2014; Roundy et 

al., 2015; Zandieh & Knapp, 2006) and has led other researchers to hypothesize the desired 

understandings we hope students will hold (Jones & Watson, 2017). While Zandieh’s (2000) 

framework is a useful tool in comparing students’ meanings with a desired meaning, one gap in 

the literature is how students conceptualize the value of an instantaneous rate of change. In order 

to make changes in the standard Calculus curriculum, we need to investigate the meanings that 

students are constructing about derivative and analyze how and why students build these 

meanings. This paper explores how some students explain their meaning for instantaneous rate of 

change and characterizes the ways of thinking that these students employed. 

While a student may verbally explain a derivative as a rate of change, research has shown 

that students have various understandings about what a rate of change is. Byerley et al. (2012) 

investigated calculus students’ understanding of division and found that many students used 

additive reasoning when interpreting a rate's value. These students considered the rate’s value as 

how much they needed to add to the function's output. Simon & Blume (1994) reported that 

additive reasoning does not lead to students’ conceptualizing division quantitatively; instead, 

students use addition to replace thinking multiplicatively. This additive reasoning is also what 

Castilo-Garsow (2010) described when his student explained an interest rate as how much 

money to add to a bank account every year. If students use additive reasoning about in contexts 

that require them to use the idea of rate, this will affect how they approach learning and using the 

idea of derivative and what they imagine instantaneous rate of change at a point represents. 

 

Theoretical Perspective 

The Mathematics of Students  

This study employs Radical Constructivist theories of learning (Thompson, 2000), taking the 

perspective that it is impossible to know another’s thinking. Therefore, investigating student 

thinking aims to build models of students’ mathematics (Steffe & Thompson, 2000) that may be 

used as an explanatory model for why students produce specific responses. The use of this 

approach to build an explanatory model of students’ thinking can then be useful for describing 

the process of developing a productive meaning for instantaneous rate of change. I use ‘meaning’ 

the same way that Thompson (2013) uses it to describe mathematical meaning. It is the 

organization of an individual’s experiences with an idea that determines how the individual will 

act. Meanings are personal, and they might be incoherent, procedural, robust, or productive, but 

individuals use these meanings to respond to mathematics tasks and make sense of and access 

mathematical ideas. For example, a person’s meaning for derivative might only be associated 

with calculating limit of the difference quotient, while another’s meaning for derivative involves 

the slope of a tangent line. Since meanings are personal, if one student writes a response similar 

to another student, it cannot be assumed that they both have the same meaning. 

 

Conceptual Analysis 

In a typical Calculus 1 course, instantaneous rate of change is introduced to students via the 

limit definition of derivative, 𝑓′(𝑥) = lim
∆𝑥→0

𝑓(𝑥+∆𝑥)−𝑓(𝑥)

(𝑥+∆𝑥)−(𝑥)
 (Stewart, 2013; Larson et al., 2006). One 
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productive interpretation of the limit is the multiplicative relationship (the value of 𝑓′(𝑥)) 

between a variation in a function’s output (𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)) and a variation in the input 

((𝑥 + ∆𝑥) − (𝑥)) so long as the variation from the input value 𝑥 is arbitrarily small ( lim
∆𝑥→0

). The 

convergence of this limit is what we call “instantaneous rate of change,” which represents the 

relationship between two varying quantities with respect to one another’s relative size of 

variation. To use a derivative value as a rate of change having some value 𝑚, one must imagine 

the input quantity varying while simultaneously imagining the output quantity varying 𝑚 times 

as much as the input quantity’s variation. This is the same meaning we might attribute to an 

average rate of change over a small interval, in that someone is imagining the necessary constant 

rate of change to achieve the same accrual in one quantity with respect to the accrual size of the 

other quantity. Additionally, a student also has to recognize that the output variation will be 

essentially equal to the actual variation since the quantity is not changing at a constant rate of 

change. In this case, what it means to be essentially equal is that the approximation of the 

variation in the output by assuming a constant rate of change will be so close to the actual 

variation that the difference between the two is imperceptible. 

 

Methodology and Data Analysis 

This study employed clinical interview methodology (Clement, 2000). Clinical interview 

methodology consists of an interviewer, a single student, and a camera to record each interview. 

During these interviews, the interviewer asks the student to engage in a mathematical task. These 

tasks intend to explore how students are reasoning about them. As the interview progresses, the 

interviewer creates models of the student’s understandings and tests their hypotheses by asking 

questions and probing the student’s thinking. Additionally, the interview makes no teaching 

moves since the purpose is to understand how the student is thinking about a particular topic. 

Clinical interviews were conducted with 25 students at a southwestern university who were 

enrolled in a Calculus 2 course or were at the end of their Calculus 1 course. This study was part 

of a larger study that involved tasks designed to help investigate students’ understandings of the 

derivative at a point and their meaning for rate of change. Only the first task is presented here. 

This study was analyzed using Open and Axial Coding for moment-by-moment coding of 

students’ responses and interpretations (Stauss & Corbin, 1998). Using the codes from each 

student, I conducted a thematic analysis (Clarke & Braun, 2013) across moments within each 

students’ moments and across different students’ moments. This thematic analysis aimed to 

identify and analyze the patterns of student responses to model the types of thinking that students 

were engaging in. 
 

Results 

In this study, each student was presented with a task about interpreting the derivative at a 

point and then performing a linear approximation [Figure 1]. 

Given that 𝑃(𝑡) represents the weight (in ounces) of a fish when it is 𝑡 months old, 

a.) Explain the meaning of 𝑃′(3) = 6 

b.) If 𝑃 (3)  =  15 and 𝑃’(3)  =  6 estimate the value of 𝑃 (3.05) and say what this 

value represents. 

Figure 1: The Fish Task 
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18 of the 25 students wrote an interpretation of 𝑃′(3) = 6 as representing instantaneous rate 

of change. By examining the written responses, two types of answers emerged from these 18 

students; one stated the units as ounces per month, and the other stated units as ounces [Figure 

2]. The other seven students did not include rate of change in their explanation. Some of these 

students only explained that it was the slope of the tangent line or the result of differentiation. 

However, they did not express another type of understanding that indicated they were associating 

the derivative at a point with instantaneous rate of change. 

After students wrote their responses, each student was asked to explain their written 

statement. Even within the eight students who chose “ounces per month” as their units, different 

meanings emerged as students attempted to articulate their thinking. Similarly, the other ten 

students who chose “ounces” as their unit also expressed a variety of meanings despite having 

written similar responses. Figure 3 categorizes the meanings that students articulated when asked 

about what instantaneous rate of change meant to them in this situation. About one-third of the 

students chose ounces as their unit and this suggests that these students have not conceptualized 

a rate of change as involving two varying quantities. Some of these students conveyed that they 

interpreted the value of a rate as an additive difference in the weight of the fish (as opposed to a 

ratio between the two quantities of weight and time elapsed), which aligns with other 

researcher’s findings that students confuse rate quantities with amount quantities (Byerley et al., 

2012, Castillo-Garsow 2010). 

Instantaneous Rate of Change with units as “Ounces per Month” (8 Students) 

• 2 students described how weight and time would change in some interval of time 

• 3 students stated “if the rate does not change then the fish will gain 6 ounces in 1 month” 

• 1 explained that 6 ounces per month was found by finding the average rates of change over 

arbitrary intervals involving the time value of 3 months 

• 1 described it as the average rate of change over the entire fish’s lifetime 

• 1 explained it as speed at a moment like “the reading of a speedometer” 

Instantaneous Rate of Change with units as “Ounces” (10 Students) 

• 3 students conveyed that the fish would grow 6 ounces in the entire 3rd month 

• 5 said “if the rate does not change then the fish will gain 6 ounces in 1 month” 

• 1 explained that the fish will grow 6 ounces every 3 months 

• 1 described the average rate of change over the 3rd month. 

Figure 3: Summary of Students' Explanations for Instantaneous Rate of Change 

Figure 2: Students’ Written Interpretation of 𝑃′(3) = 6 
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It is noteworthy that even if cases where students provided the same answer, they did not 

necessarily share the same meanings. Among this pool of 18 students, I identified eight different 

meanings for instantaneous rate of change. The following excerpts exemplify this finding. 

Andrew was a 2nd-year student enrolled in a Calculus 2 course. He explained instantaneous 

rate of change as an amount of change in a 1-unit change in the time [Table 1]. 

 

 

 

 

 

 

 

 

 

 

 

Andrew interpreted instantaneous rate of change as “it’s weight increased by 6 ounces” and 

“that’s how much it grew that month” [Lines 1-2]. He also conveyed that he thought that the fish 

“gained 6 ounces” in the entire third month [Line 5]. This suggests that Andrew interpreted 

𝑃′(3) = 6 as the difference in weight between the 4th month and the 3rd month, i.e., 𝑃′(3) =
𝑃(4) − 𝑃(3). When asked about the units on 6, Andrew said it was a “change in ounces” [Line 

10]. Andrew described the change as the difference in weight between two points in time. For 

him, this value of 6 did not describe a multiplicative relationship between variations in weight 

and time. Instead, it was how much weight to add to the fish’s weight at the 3rd month to get the 

fish’s weight at the 4th month. Andrew’s description is akin to the kind of additive reasoning that 

Byerley et al. (2012) described. If we consider the verb tenses that Andrew employed, we can 

see that Andrew mostly used past tense verbs to describe the variation in the fish’s weight. 

Andrew stated, “it’s weight increased” [Line 1], “that’s how much it grew… it grew 6 ounces” 

[Lines 2-3], and “it gained 6 ounces” [Line 5]. This suggests that Andrew might have thought 

that the values of the fish’s weight were already there, and that 𝑃′(3) was describing the 

variation in the fish’s weight between the 3rd and 4th month. Andrew did not seem to be 

thinking about the value of this rate as describing the multiplicative relationship between the two 

varying quantities; instead, it appeared that Andrew was using chunky reasoning by thinking of 

an entire discrete chunk of change in the entire 3rd month. Additionally, Andrew never 

mentioned that time was passing; in fact, the only instance where he described an interval of time 

was at the beginning where he stated: “that month so for that month” [Line 2]. Andrew’s 

explanations provide evidence that he was thinking about a chunk of time instead of time varying 

continuously. 

Jerry was a 3rd-year Computer Science major at the end of his Calculus 1 course. Jerry 

explained instantaneous rate of change as an average rate of change [Table 2].  

Table 1: Andrew’s Explanation for the Derivative at a Point 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

And: 

 

  

Int: 

And: 

Int: 

 

And: 

Int: 

And: 

So it’s at three months and it’s growing by six ounces… it’s weight increased by six 

ounces… that’s how much it grew that month so for the third month it grew six 

ounces. 

Like in that entire month? 

It gained 6 ounces.  

So you’re saying that if I have like a calendar month *Draws a calendar*, over the 

course of all this you’re saying that the total change in weight is… 

6 ounces yeah 

Okay, so what are the units for 6? 

Change in ounces. 
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Initially, Jerry struggled to articulate what he meant by instantaneous rate of change and ends 

by saying that it is an average [Lines 2-3]. Next, Jerry explained that he interpreted the value of 

the derivative of 6 as the average rate of change of the fish’s weight over the entire fish’s age up 

to the input value of 3 months [Lines 5-8]. Jerry’s responses convey that he was thinking about a 

slope or a constant rate of change as he moved his hand to motion a straight-line graph when 

describing an average [Lines 5-6]. Afterward, Jerry confirmed that he interpreted instantaneous 

rate of change as referring to an average [Line 10]. Additionally, it appeared that to Jerry, the 

word ‘instantaneous’ referred to an instant of time when he states “that specific time of 3 

months, like instantaneous” [Lines 10-11]. One possibility for Jerry’s explanation is that he may 

be recalling that the derivative involves the slope between two points (
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
) while forgetting 

the limiting process involved. Later on in the interview, Jerry continued to explain rate of change 

only in the context of a graph. This suggests that Jerry's image of change was primarily about the 

physical shape of a function’s graph. 

Randy was a 2nd-year in a Calculus 2 course explained instantaneous rate of change as a rate 

of change over a small interval of time [Table 3]  

Table 2: Jerry’s Explanation for the Derivative at a Point 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Int:  

Jer: 

 

Int: 

Jer: 

 

 

 

Int: 

Jer: 

 

So can you tell me what you wrote means to you? 

At 3 months, the rate that the fish is gaining weight is 6 ounces… so let’s say the fish 

is gaining weight then at 3 months… so when you… it is like the average 

Average? 

Yeah like the 3 is the amount of 3 months if it were to ummm like the average like a 

straight line graph *uses his finger to motion a straight line going up and to the right* 

at 3 months would be 6 ounces per… would be the rate like the average rate over 

those months 

So instantaneous rate of change means average rate then? 

Like it is an average for those 3 months, and we are measuring it at that specific time 

of 3 months, like instantaneous.  

 Table 3: Randy’s Explanation for the Derivative at a Point 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Ran: 

 

Int: 

Ran: 

 

 

Int: 

Ran: 

Like the instantaneous rate of change, so like… that’s how much it’s changing by 

over a process of time. *Slides his hands to motion* 

So like over the first three months it gained 6 ounces?  

No like…let’s say like from…. like 2.9 to 3.1, you can assume like the average rate 

of change is 6, like from there to there it would keep changing by like 6 ounces per 

month. 

So the average rate of change between 2.9 and 3.1 is always going to be 6? 

No, but I mean I’m just like trying to explain it cause it’s not changing if time isn’t 

changing 
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Randy did not initially write “instantaneous rate of change,” but when explaining what he 

wrote, Randy immediately said that it was “like the instantaneous rate of change” [Line 1]. As 

Randy explained what instantaneous rate of change meant to him, he articulated that he was 

thinking about “how much it’s changing over a process of time,” and as he said this, he slid his 

hands to express the imagery of this thinking [Lines 1-2]. As he continued explaining, Randy 

indicated that he was thinking about a variation in the input since he said “like from… 2.9 to 

3.1…like from there to there” [Lines 4-5]. Randy clarified that he was not thinking of 2.9 and 3.1 

as fixed values. Instead, he chose them because he was “trying to explain it cause it’s not 

changing if time isn’t changing” [Lines 8-9]. Here Randy articulated that he thought about 

quantities varying and associated the rate of change with these varying quantities. However, he 

did not explicitly say how the value of the rate of change corresponded to these quantities 

changing. It is important to note that Randy seemed to be thinking about quantities changing 

smoothly through intervals due to his choice in verb tense when he described a quantity 

changing. Randy repeatedly used “changing” when asked about what he meant; “changing by 

over a process of time [Lines 1-2], “keep changing by like 6 ounces per month” [Lines 5-6], and 

“it’s not changing if time isn’t changing” [Lines 8-9]. His repeated use of the word “changing” 

as well as his hand sliding motion, evidence that Randy was engaging in smooth reasoning by 

thinking about a change in progress. 

 

Discussion 

From the results of this study, we can see that students hold differing meanings about 

instantaneous rate of change. With these different meanings, one would expect that students 

would solve part b of the fish task (a linear approximation problem) in various ways as well. All 

but one student produced a correct solution, however, did not engage in the same ways of 

reasoning to do so (Yu, 2020). If a teacher did not inquire into how students produced their 

solutions, they would likely believe that their students understand instantaneous rate of change 

the same way they do. This also indicates that our current assessments on linear approximation 

are insufficient in evaluating students’ meanings about instantaneous rate of change. 

The results of this study indicate that students do associate derivative with instantaneous rate 

of change, yet they may have different meanings about what instantaneous rate of change is. This 

study supports past findings (Zandieh, 2006; Park 2013) that students in a traditional calculus 

course might have unconventional meanings about derivatives and instantaneous rate of change. 

Therefore, teachers should consider what meaning they desire for their students to hold for 

derivative and instantaneous rate of change, and how students may be supported in building 

coherent and productive meanings. In particular, the results of this study suggest that Calculus 

teachers should attend to the meanings that students bring into their classroom about rate of 

change since many students consider rates as an amount to add instead of describing the 

multiplicative relationship between two varying quantities. Typically, most Calculus textbooks 

(Stewart, 2013; Larson et al., 2006) do not explicate a meaning for rate of change and likely 

assume that students understand what a rate of change is. I argue that teachers should 

intentionally spend time to aid students in developing a robust meaning for rate of change so that 

they can better understand a derivative as representing instantaneous rate of change. 
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Adapting a Single Local Instructional Theory into Multiple Instructional Sequences 
 

Anna Marie Bergman  
Simon Fraser University 

Local instructional theories (LITs) are often described as a generalized sequence of steps for 
students’ guided reinvention of some mathematical concept. They consist of a series of tasks and 
the accompanying rationale for the tasks, where the rationale is described in student’s 
mathematical activity. Literature suggests that the rationale can be used to adapt LIT’s into 
different instructional sequences however it fails to provide specifics as to how these adaptations 
are achieved. This report details how the design heuristic of didactical phenomenology can be 
used to create multiple instructional sequences for students with different mathematical 
backgrounds, thus contributing to our understanding of the theory of realistic mathematics 
education. 

Keywords: realistic mathematics education, didactical phenomenology, group theory 

Abstract algebra is a required course for almost every undergraduate mathematics student 
(Blair, Kirkman, & Maxwell, 2013) and it is notoriously difficult for them (Larsen, 2010; Leron, 
Hazzan, & Zazkis, 1995; Weber & Larsen, 2008). In fact much of the literature on student 
understanding in abstract algebra highlights student struggles (Weber & Larsen, 2008). One of 
the many contributing factors to student difficulties in the subject is the abstract nature of the 
content of the course (Hazzan, 1999). In an attempt to help students navigate the abstract nature 
of the content, I recently engaged a variety of students in a real-world application of abstract 
algebra by investigating molecular structures. The findings reported here are from a larger design 
experiment aimed at developing a local instructional theory (Gravemeijer, 1998) for the guided 
reinvention of a classification system (i.e. flowchart) for chemically important symmetry groups 
(Bergman & French, 2019; Bergman, 2020).  

As students begin to develop a system for identifying various symmetry groups, they need to 
decide on a group representation that is encapsulated, or compact, enough to be used as the 
outputs for their classification system. While there are a number of ways to represent the group 
concept (Bergman et al., 2015), one such as Cayley tables would be rather impractical to serve as 
the terminating points of a flowchart. Therefore, students were ultimately encouraged and 
supported in using something like a group name, i.e. ℤ3, D8, ℤ2 x ℤ2. This report gives evidence 
and explanation to how I used the design heuristic of didactical phenomenology to support 
students with different mathematical backgrounds in their use and reinvention of group names, 
thus attending to the research question: What kinds of mathematical activity can promote the 
evolution of the students’ informal knowledge and strategies into more powerful ways of 
thinking, symbolizing, and reasoning? 

Theoretical Framing 
The design study reported here utilized the instructional design theory of realistic 

mathematics education, RME, in order to develop a local instructional theory, LIT (Gravemeijer, 
1998). RME provided both an underlying theoretical perspective and three accompanying design 
heuristics. The notion that mathematics is a human activity instead of a collection of facts and 
procedures is the theoretical foundation of RME (Freudenthal, 1971). The first design heuristic 
of RME, the reinvention principle, suggests that by engaging students in the guided reinvention 
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of a particular mathematical concept, we are creating opportunities for them to meaningfully 
engage in this activity of mathematizing. When used as a design heuristic, the reinvention 
principle promotes the idea of starting the reinvention process in a context that is experientially 
real to students (Gravemeijer & Doorman, 1999). The reinvention/evolution from an informally 
situated student strategy to conventionally recognizable, formal mathematics is evoked using the 
second design heuristic, emergent models. Emergent models help to describe the overall 
evolution of the students’ mathematical activity. Since the formal mathematics that is eventually 
developed is rooted in the students’ approaches, this particular development process helps 
students have a greater sense of ownership over the formal mathematics created. The students’ 
use of the encapsulated group representation described in this report can be seen as the final 
version of the students’ model for their unique symmetry group, which was eventually 
incorporated into their classification system.  

The third and final design heuristic of RME is didactical phenomenology. Larsen (2018) 
states that, “Simply put, didactical phenomenology tells the designer that an instructional 
sequence meant to support the learning of a piece of mathematics should be situated in a context 
that can be productively organized by students using that piece of mathematics.” (p.25) As a 
heuristic it is helpful to the design researcher in two distinct ways. First, didactical 
phenomenology is used to help determine an appropriate context for the students to engage with. 
For example, since the goal of the study was to support students in reinventing a classification 
system for the various symmetry groups of molecules, I began by having them first investigate 
the symmetry groups of specific molecules with a variety of group structures. The second way in 
which didactical phenomenology is useful to the design researcher is in helping the evolution of 
the student’s mathematics from informal to more formal mathematics through progressive 
mathematizing. The specifics of how didactical phenomenology was used to promote this 
evolution in students’ use of group representations are presented as the main results of this 
report. 

Methods 
The overarching design study consisted of three teaching experiments which were conducted 

with pairs of students with varying mathematical backgrounds. The data reported here is from 
the second and third teaching experiments exclusively. The second teaching experiment, TE2, 
involved a pair of senior level undergraduates, Arthur and Stu, who had recently completed a 
traditional proof-based introductory group theory course. The third teaching experiment, TE3, 
was conducted with Ada and Sophie, sophomores majoring in mathematics and engineering, 
respectively. Ada and Sophie had recently completed an introductory linear algebra course and 
neither had any previous experience with group theory or advanced mathematics.  

The corpus of data included video recordings of the teaching experiment, all the written work 
which was scanned into pdf documents, and researcher memos created during ongoing analysis. 
TE2 consisted of 12 sessions lasting 60-90 minutes each, and TE3 was 11 sessions also lasting 
60-90 minutes per session. Between sessions, memos (Maxwell, 2013) were used for recording: 
the goals for each session, a short recap of the students’ mathematical activity after each session, 
and a description of how well the goals were met. During retrospective analysis content logs 
were used to record a description of the students’ activity, highlight places the students moved 
forward in the LIT, and helped organized my understanding of the student’s activity overall.  
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Results 
The results are organized in two cases, each detailing a different instructional sequence 

created in response to the students’ unique mathematical activity. Each case contains a 
description of the student’s initial model of their symmetry groups and an account of the 
transition of this informal model into a model for more formal mathematical activity using the 
notions of didactical phenomenology.  

Case 1: Students with prior group theory experience 
For the students in TE2 who had previous exposure to conventional group theory concepts, 

their goal for representing their symmetry groups was to use “standard group names.” By 
“standard name” I am referring to the paradigmatic representatives of the isomorphism classes to 
which each symmetry group belongs. For example, there is only one algebraic structure that 
satisfies all of the group axioms with three elements. This isomorphism class is often referred to 
as ℤ3 even though the elements in the set are often referring to something other than {0,1,2} 
under modular addition. It is common practice in abstract algebra, and also in chemistry, to use a 
single name to describe an entire isomorphism class. In chemistry, they do it quite explicitly by 
saying ammonia belongs to D6. 

The mathematics offered by the students as a starting point. When asked to identify the 
symmetry groups of water, ammonia, and ethane (in an eclipsed configuration) students in TE2 
seemed to have some access to standard group names. Evidence of student’s mathematical 
activity naming the symmetry group of ethane is given below.  

Stu: I think we could rep… like one way I might wanna think about starting is um, we know 
that we could compare it to this (ammonia) because this half of ethane looks an awful lot 
like ammonia, right? (see Figure 1 below) 
 

 
Figure1. Stu’s visual comparison of ammonia and ethane 

Arthur: yeah 
Stu: So I feel like it might be something like ℤ2 cross ammonia. If that makes any sense? 
How the student’s progressive mathematization was supported using didactical 

phenomenology. Referring to the symmetry group of ethane as “ℤ2 cross ammonia” is 
mathematically inaccurate for a number of reasons; ammonia isn’t technically a group, none of 
the elements in the symmetries of ethane are integers under modulo addition, and there is no 
external direct product between two groups. However, Stu’s suggestion was also quite promising 
for a number of reasons as well. The symmetry group of ethane, which would conventionally be 
considered an internal direct product, is isomorphic to the external direct product D6 x ℤ2 and the 
students were already comfortable with the symmetries of ammonia as they had recognized it as 
equivalent to a more familiar group from their introductory group theory course, the group of 
symmetries of a triangle. This posed the instructional design question: How can students be 
supported in connecting their intuitive notions of different group structures with conventional 
representations? 
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Where’s the D6 and where’s the ℤ2? To better understand the students’ use of a direct 
product, I asked them to explain how they were seeing the groups D6 and ℤ2 in their group of 
symmetries of ethane. Note that after Stu’s previous suggestion of “ℤ2 cross ammonia” we 
discussed that the symmetry group of ammonia could also be referred to by the more 
conventional name of D6. 

Researcher: Last time you said that the symmetry group of ethane was D6 x ℤ2 can you tell 
me, what's the D6 and what's the ℤ2?  Like where is D6 and where is ℤ2? 

Arthur: D6 was the configuration of the three kind of top hydrogen as we were looking at 
them and ℤ2 encoded which face was up. Or in the case of these colorings, just cause we 
needed a way to tell the two triangular faces apart. So it was a case of the six 
combinations and then like a binary dimension to that, which is what crossing ℤ2 
encoded. 

This description of their symmetry group is encouraging. Their portioning of the set into two 
subsets is powerful since the group D6 x ℤ2 can easily be partitioned into two copies of D6 where 
one has a 0 in all the second components and the other has a 1 in all of them. By describing all 
the symmetries as the product of something in D6 and “either color-swapped or not” they seem to 
be capturing the notion that all the elements in the group can be represented as some hk for two 
subgroups H and K, which is a necessary condition of internal semi-direct products.  

Prove that your symmetry group for ethane is isomorphic to a more conventional 
representation of D6 x ℤ2. In order for Arthur and Stu to meaningfully connect their intuitive 
notions of group structures to more conventional representations, they spent a lot of time in TE2 
trying to prove that their symmetries of ethane were isomorphic to D6 x ℤ2. A more detailed 
discussion of how the students’ mathematical activity related to isomorphisms was supported 
using didactical phenomenology is beyond the scope of this conference report. 

How do you know you have a D-something x ℤ2? What would you look for? After having 
spent a lot of time focused on various representations of D6 x ℤ2 and making arguments about 
it’s group structure, the students were asked to consider a similar group structure in a more 
generic context.  

Reseracher: If I just handed you another molecule could you tell if it was going to be a D-
something cross ℤ2? What would you look for? Describe something that you would 
expect to have a D-something cross ℤ2 symmetry group. 

Arthur: I’d look for that regular polygon. I would look to be able to see it, how do I say 
this… looking for regular polygon, I feel good about that part of the process, and then I 
guess saying like how many nested symmetries now, because I can look at this square 
and there’s another square that I can look at that’s indistinguishable from the first. So 
that’s kind of our ℤ-category, our number of color options.  

Researcher: …and then the ℤ2, sorry one more time… 
Stu: Is coming from this plane of reflection, between the two polygons. And it’s not really 

the molecules it’s the plane of reflection. 
The goal for this task was to test the students’ familiarity with identifying groups that are 
isomorphic to external direct products and to see if they had begun to gain more ownership over 
the use of conventional group names. Stu’s understanding that a plane of reflection is necessary 
to pair with a regular polygon is particularly encouraging. Stu’s attention to an independent 
symmetry can be interpreted as evidence of him being at least implicitly aware of the importance 
of the commutativity of rh (the horizontal reflection associated with their “color swap”) with the 
other symmetries.  This symmetry is independent as in it doesn’t have an impact on the 
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orientation, which again is a function of commutativity.  What Stu is seeing is important because 
it is the consequence of this commutativity, and commutativity establishes the equivalence 
between their internal direct product and the external direct product they used to describe their 
symmetries. While a strong argument can be made that Stu is observing the necessary conditions 
for an internal direct product to be met, it is also clear that he faces an obstacle in using the 
formal language necessary to describe why what he is observing is the necessary condition for 
this to have the proper group structure.  

Summary of Case 1. Arthur and Stu start with a representation of a symmetry group that 
was based on their situated activity with ammonia and their previous exposure to external direct 
products.  This informal activity was the motivation for a didactical phenomenological analysis 
aimed at supporting students in the use of more formal group names in a new more general 
mathematical reality. In other words, the students had gone from an informal notion of what a 
direct product represents to being able to describe what kinds of molecules will have this 
particular kind of group structure and why. 
 
Case 2: Students without prior group theory experience  

For the students in TE3 who had no previous exposure to group theory concepts, my goal for 
them was to reinvent a compact representation like group names to use in their flowchart since 
conventional group names were unavailable to them. Early in the teaching while establishing 
geometric symmetries as an experientially real starting point, Ada and Sophie were guided in 
reinviting the group concept by investigating the symmetries of square. This activity led them to 
describe their groups using what are called group presentations. Group presentations are 
comprised of a set of generators, and the relations between them.  

The mathematics offered by the students as a starting point. When asked to identify the 
symmetry groups of water, ammonia, and ethane (in an eclipsed configuration) students in TE3 
created a group presentation for each as seen in Table 1 below.  
Table 1. Student's group presentations for the symmetry groups of water, ammonia, and ethane. 

Water Ammonia Ethane (eclipsed) 

ℤ2 x ℤ2 D6 D6 x ℤ2 

   
How the student’s progressive mathematization was supported using didactical 

phenomenology. While this representation of a group is useful for capturing the structure of the 
group, the students needed a more concise representation to serve as the output for their 
classification system. In this case the student’s mathematical activity posed the instructional 
design question: How can students be supported in transitioning from the use of group 
presentation to a more compact representation like a group name? Since conventional group 
names were unavailable to their students due to their lack of previous exposure to group theory, 
the question became: How can students be supported in the reinvention of group names? 
Fortunately, the students’ mathematical activity of creating group presentations provided a 
context in which to seek solutions to these questions by conducting phenomenological analyses.  

Test out your system on a new set of molecules. Ada and Sophie were given a new set of 
molecules and asked to determine the symmetry group for each, as seen in Table 2 below. This 
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new set of molecules were specifically chosen to give the students an opportunity to work with 
each of the most common group structures found in chemically important symmetry groups: 
cyclic, dihedral, cyclic x ℤ2, and dihedral x ℤ2. It was necessary to expose the students to each of 
the group structures so that they would have sufficient names for each group in their flowchart. 
When given the new molecules, the students quickly and efficiently produced group 
presentations, seen in Table 2. 
Table 2. Student's group presentations for the symmetries of a new and expanded set of molecules. 

Tetra-aza 
copper II 

Hydrogen 
peroxide Boric acid BrF5 cyclobutene 

ℤ4 ℤ2 ℤ3 x ℤ2 D8 D8 x ℤ2 

  
   

Make a ‘score card’ of written rules for each molecule. Once the students had exposure to 
each of the different flavors of symmetry groups, Ada and Sophie were asked to make “score 
cards” for each of the molecules they had encountered so far containing each of their group 
presentations. Creating the score cards involved going though previous work to find each of the 
group presentations; doing so gave Ada and Sophie an opportunity to both standardize their 
notation and streamline their presentations. This standardization can also be interpreted as a 
formalization of their mathematics and therefore evidence of progressive mathematization. 

Sort the score cards into collections/flavors/kinds of symmetry groups. Which seem more 
similar? Which hangout together? When asked to sort the score cards into collections of similar 
groups types Ada and Sophies initially offered two different strategies. Ada started by gathering 
the pure rotational groups together, whereas Sophie gathered the groups with order 3 rotations. 
Sophie speaks first suggesting that they put all the groups with the same order rotation together, 
but then quickly stops saying: 

Sophie: Oh wait, what about the F's and the T's? 
Ada: I kinda inherently wanna be like, oh there are ones that have R's and F's , R's and T's, 

R's, T's, and F's, or just R's.  
Sophie: Yeah, it seems, it's totally grouping them. 
Ada: I think that would be like my gut instinct. 

They quickly work together to arrange the groups into four collections based on the existence of 
symmetries within the group (seen in Table 3).  This categorization was extremely exciting 
because not only were the students one step closer to using a more useful group representation 
for their flowchart, this is precisely how group structures are conventionally categorized in the 
context of chemistry.  
 
Table 3. Student's sorting of group presentation by the existence of symmetries. 

Contain’s R and F 
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Contains R and T Contains R, T, F Contains only R’s 

 

  
 

 

 

 

Come up with a name for each of the collections. Once Ada and Sophie were comfortable 
with their grouping of the groups into four categories, they were asked to come up with a “name” 
each of their categories of groups. The students quickly agreed on naming each collection of 
groups based on the symmetries that exist within the groups. Therefore, they ultimately created 4 
symmetry group types; RT group, RF group, R group, and RFT group. 

Summary of Case 2. In order to support Ada and Sophie in describing symmetry groups 
with concise group representations, the students were provided with supplemental tasks and 
prompts to support their progressive mathematizing. The sequence of tasks used to help the 
students move from group presentations to group names gives evidence to how the students’ 
informal mathematical activity was leveraged into more formal mathematics. 
 

Discussion and Conclusion 
My goal has been to show how didactical phenomenology can be used to create multiple 

instructional sequences for students with different mathematical backgrounds while engaging in 
the same LIT. The pairs of students in the two teaching experiments had access to two very 
different sets of mathematical experiences. For students in TE2 their previous exposure to group 
theory led them to focus on the use of conventional group names. However, the students had 
only an informal notion of the group structures needed to describe molecular structures. For 
students in TE3 their lack of access to conventional groups granted them an opportunity for 
reinvention. Didactical phenomenology was used in both cases to create tasks that could promote 
the transition of the student’s informal ideas into models-for more formal mathematical activity. 
By attending to aspects of the students’ mathematical activity that begged to be further 
mathematized by the use of a group name, individualized instructional sequences were created to 
support students in their reinventing and use of group names.  

Implications 
The implications from these results are twofold. First, this work adds to our collective 

understanding of the theory of realistic mathematics education. Literature describing LIT’s states 
that the sequence of tasks included in a LIT is meant to be general in the sense that it can be 
adapted to work in different instructional sequences (Larsen, 2018). However, when LIT’s are 
presented they are often described in terms of the mathematical activity of students with similar 
mathematical backgrounds (Larsen, 2009; Larsen & Lockwood, 2013; Swinyard, 2011; Wawro, 
Zandieh, Rasmussen, & Andrews-Larson, 2013). This work begins to shed light on how exactly 
these adaptations can be made. Second, this work starts to push on the notion of pre-requisites 
and access in advanced mathematics. Access to advanced math nearly universally comes after a 
long path of calculus and differential equations with no breaks. This is a sequence of 
opportunities to get kicked out with no alternative ways to get back, where we use surviving as a 
gatekeeper. The instructional sequence resulting from TE3 explicitly provides a way for students 
to engage in meaningful advanced math without much previous experience as a pre-requisite 
where they can be supported in building formal mathematics off their own informal activity. 
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Making Connections: Advanced Perspectives on School Algebra 
 

 Keith Gallagher Anna Marie Bergman 
 Simon Fraser University Simon Fraser University 

Fostering conceptual understanding is a main goal of mathematics education. Yet, students do 
not often see connections between topics. The recognition of connections can be fostered by 
making them explicit in instruction and by encouraging students to struggle with the relevant 
mathematics. Instances in which knowledge from one domain is brought to bear in another 
domain are examples of transfer; in particular, backward transfer describes the ways in which 
learning new information influences prior knowledge. We solicited narratives from individuals 
with a strong mathematics background describing instances during which they recognized a 
connection between two mathematics topics. We present two of these narratives which contain 
instances of backward transfer connecting advanced mathematics to the binomial theorem. 
These narratives suggest that backward transfer is also facilitated by explicit instruction and 
productive struggle. We discuss implications for education of backward transfer that is induced 
by learning advanced mathematics, particularly for pre-service teachers. 

Keywords: backward transfer, conceptual understanding, binomial theorem, connections 

Introduction 
Broadly construed, mathematics teaching focuses on two central aspects: conceptual 

understanding and procedural knowledge. Procedural knowledge fixates on students’ abilities to 
accurately apply mechanical techniques, including algorithms and formulas as well as algebraic 
manipulations and routine proof techniques. Conceptual understanding, however, links 
procedures with one another and with deeper meanings. Our research focuses on conceptual 
learning: specifically, we explored the influence of learning advanced mathematics on 
conceptual understanding of school algebra. 

Recent research has explored the formation of cognitive connections between advanced 
mathematics and school mathematics (e.g., Murray et al., 2017; Wasserman, 2018; Weber et al., 
2020). In particular, questions have been raised about the benefits of taking advanced 
mathematics courses such as combinatorics and linear algebra for pre-service teachers who will 
likely never teach the content of these courses. In this paper, we share personal narratives from 
two individuals who recognized connections between advanced mathematics and the binomial 
theorem, a common topic in high school algebra courses. We then discuss factors that may have 
precipitated the formation of these connections and conclude with a discussion of the potential 
impacts of advanced mathematics study on the understanding of fundamental mathematics 
concepts. 

Theoretical Framing and Research Question 

Conceptual Understanding 
We adopt Hiebert and Grouws’ (2007) definition of conceptual understanding as “mental 

connections among mathematical facts, procedures, and ideas” (p. 380). This is distinguished 
from skill efficiency, or “the accurate, smooth, and rapid execution of mathematical procedures” 
(ibid., p. 380). Combined, conceptual understanding and skill efficiency form the backbone of 
modern mathematics instruction, yet Brophy (1997) notes that we have much more knowledge of 
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how learners develop skills than we do of how they build concepts. Although it has been shown 
that different kinds of teaching differentially support the learning of these two aspects of 
mathematics, there is not a simple correspondence between a single method of teaching and a 
single outcome; for example, there is not a causal relationship between expository teaching and 
rote (procedural) learning, nor between discovery teaching and meaningful (conceptual) learning 
(Ausubel, 1963; Hiebert and Grouws, 2007). 

Nevertheless, from their meta-analysis of empirical studies on measures of student learning, 
Hiebert and Grouws (2007) identified two key features of teaching that promote conceptual 
understanding. First, teachers and students should attend explicitly to concepts by “treating 
mathematical connections in an explicit and public way” (p. 383). Examples of these kinds of 
activities include “discussing the mathematical meaning underlying procedures, asking questions 
about how different solution strategies are similar to and different from each other, considering 
the ways in which mathematical problems build on each other or are special (or general) cases of 
each other, attending to the relationships among mathematical ideas, and reminding students 
about the main point of the lesson and how this point fits within the current sequence of lessons 
and ideas” (p. 383). Second, students should struggle with important mathematics. Hiebert and 
Grouws use the term struggle to mean that “students expend effort to make sense of 
mathematics, to figure something out that is not immediately apparent... The struggle we have in 
mind comes from solving problems that are within reach and grappling with key mathematical 
ideas that are comprehendible but not yet well formed” (p. 387). 

Backward Transfer 
Connections among content may be established by means of transfer, the process by which 

“learning in one context or with one set of materials impacts on performance in another context 
or with other related materials” (Perkins & Salomon, 1992, p. 3). In experimentation, transfer is a 
rare phenomenon, especially far transfer, which occurs between contexts that are only distantly 
related in the mind of the learner (Barnett & Ceci, 2002; Perkins & Salomon, 1992; Sala & 
Gobet, 2017). Hohensee (2011) and Hohensee et al. (2019) extended the notion of transfer to 
include backward transfer, defined by Hohensee (2011) as “the influence on prior knowledge by 
the acquisition and subsequent generalization of new knowledge” (p. 13). For example, 
Hohensee et al. (2019) studied the influence of participating in an instructional unit on quadratic 
functions on high school algebra students’ views of linear functions. 

Although transfer is considered rare in experimental settings, two mechanisms for its 
occurrence have been identified (Perkins & Salomon, 1992). Reflexive, or low road, transfer, 
occurs when a well-practiced routine is triggered by familiar stimulus conditions; mindful, or 
high road, transfer, occurs as a consequence of a deliberate search for connections. 

Research Question 
In light of the research on conceptual understanding and transfer, we investigated the 

following research question: How does the learning of advanced mathematics influence 
conceptual understanding of school mathematics? In the coming sections, we discuss the 
personal narratives of two individuals who made conceptual connections between school algebra 
and more advanced areas of mathematics. These connections led to deep mathematical insights 
and new perspectives on elementary mathematics, which we conceptualize as instances of 
backward transfer. We discuss these connections in terms of Hiebert and Grouws’ (2007) key 
features for promoting conceptual understanding as well as Perkins and Salomon’s (1992) 
mechanisms for transfer. 
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Making Connections 
We collected narratives from a total of 14 individuals, all of whom hold at least a master’s 

degree in mathematics or statistics. We asked these individuals to tell us a story about an 
experience in which they have “suddenly recognized a connection between two mathematical 
concepts [they] hadn’t noticed before, particularly an experience that helped [them] understand 
some aspect of mathematics better or in a different way.” Some individuals told of connections 
formed between different parts of the standard K-12 curriculum (e.g., the Pythagorean theorem 
and the Euclidean distance formula) or between different topics from advanced mathematics 
(e.g., Taylor polynomials and the comparison test for series convergence). We took particular 
interest in those narratives that told of connections between advanced mathematics and the basic 
mathematics taught in school. In this section, we share two stories of learners making 
connections between advanced mathematics and basic algebra. Because these stories are unique 
to those who experienced them, we have endeavored to present the following narratives as they 
were presented to us so as to preserve the storytellers’ voices. We withhold our analyses of these 
narratives until the subsequent section, Theoretical Connections in the Literature. 

Robin – Connections to Combinatorics 
At the time when she shared her story, Robin was a graduate student working toward a PhD 

in mathematics education, having already completed a master’s degree in mathematics. Her story 
is about a connection she made between the binomial theorem, which she learned in high school, 
and combinatorics, which she learned later at university. 

The binomial theorem relates combinations ൫௡
௞

൯, often read as “n-choose-k,” with the 

expansion of binomials via exponentiation: (𝑥 + 𝑦)௡ = ෍ ൫௡
௞

൯𝑥௞𝑦௡ି௞
௡

௞ୀ଴
, where 𝑛 ≥ 0. Robin 

learned the binomial formula in her high school algebra course, but she described feeling unsure 
about what role choice played in this equation. She agreed that these combinations produced the 
correct coefficients when she worked out examples, and she could even see that these 
combinations yielded the entries in Pascal’s triangle, but when she thought about ൫௡

௞
൯, she 

wondered: “What are we choosing here? Why does something have to be ‘chosen’?” And was it 
a coincidence that the coefficients in the binomial expansion just happened to correspond to the 
values of ൫௡

௞
൯? 

When Robin was later enrolled in a course in combinatorics at university, she connected the 
“choice” with the “jumps” she made while expanding a binomial expression. She explained this 
by writing (𝑥 + 𝑦)ହ as (𝑥 + 𝑦)(𝑥 + 𝑦)(𝑥 + 𝑦)(𝑥 + 𝑦)(𝑥 + 𝑦), and drawing arcs connecting the 
𝑥 in the first binomial with x’s and y’s from the later binomials, as in Figure 1. It became clear 
that the combination was, in fact, counting the number of ways one could “choose” exactly 𝑘 𝑥’s 
from the 𝑛 possible ones. She noted the “nice symmetry” that this creates in the resulting 
polynomial. 

 
Figure 1: "Jumps" indicating one way of choosing three x's when expanding a polynomial, as described by Robin. 

This imagery also spurred Robin to notice why it must be true that ൫௡
௞

൯ = ൫ ௡
௡ି௞

൯ – that one 
can choose k 𝑥’s or not choose n-k 𝑥’s in the same number of ways. Given five copies of (𝑥 +
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𝑦), one can choose exactly 3 𝑥’s in the same number of ways that one can not choose exactly 5-
3=2 𝑥’s. Furthermore, Robin already knew the fact that the coefficients generated using the 
binomial theorem corresponded with the entries in Pascal’s triangle, but this realization helped 
her to see the connection between the rule for generating the terms of Pascal’s triangle and the 
combinatorial statement of Pascal’s formula: ൫௡

௞
൯ +  ൫ ௡

௞ିଵ
൯ =  ൫௡ାଵ

௞
൯. 

Martin – Connections to Linear Algebra 
Martin holds a PhD in mathematics and is a university professor of mathematics and 

statistics. Martin, like Robin, saw the binomial theorem from a new perspective: linear algebra. 
At the time of his epiphany, Martin was a graduate student, preparing a lesson on the binomial 
theorem for his college algebra students. Martin’s recent research had involved working with 
families of orthogonal polynomials, and he had spent a lot of time recently switching between 
bases for the vector space of univariate polynomials, ℝ[𝑥]. 

While he was preparing this lesson, Martin “had the familiar feeling of doing something [he] 
had been doing recently elsewhere,” and he suddenly realized the binomial theorem could be 
thought of as “telling us how to expand a vector written in terms of the second basis as a linear 
[combination] of the vectors in the first basis.” In other words, the binomial theorem could be 
thought of as a way to switch between bases of the vector space ℝ[𝑥], just as he had been doing 
in his research. 

Martin gave the following example. The nonnegative integer powers of x (i.e., 1 =
𝑥଴, 𝑥, 𝑥ଶ, 𝑥ଷ, …) are a basis for the vector space ℝ[𝑥] of polynomials with coefficients in ℝ. 
Moreover, the nonnegative integer powers of 1 + 𝑥 (i.e., (1 + 𝑥)଴ = 1, (1 + 𝑥), (1 + 𝑥)ଶ, (1 +
𝑥)ଷ, …) constitute a different basis for the same vector space, ℝ[𝑥]. This means that an equation 

like (1 + 𝑥)ଷ = ෍ ൫ଷ
௞

൯𝑥௞
ଷ

௞ୀ଴
= 1 + 3𝑥 + 3𝑥ଶ + 𝑥ଷ can be thought of as taking the vector 

(1 + 𝑥)ଷ written in terms of the second basis and rewriting it as the linear combination 1 + 3𝑥 +
3𝑥ଶ + 𝑥ଷ of vectors from the first basis. Martin reflected favorably on the experience: “Both 
things got simpler by virtue of their relation to each other. [I was] happy to have seen it, a bit 
surprised that I hadn’t heard it said that way before.” Moreover, because of the connection 
between Pascal’s triangle and the coefficients of the binomial theorem, Martin realized that 
Pascal’s triangle can be thought of as a change of basis matrix by simply writing the entries of 
Pascal’s triangle in a lower triangular matrix (Figure 2). 
 

⎣
⎢
⎢
⎢
⎡
1 0 0 0 ⋯
1 1 0 0 ⋯
1 2 1 0 ⋯
1 3 3 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋱ ⎦

⎥
⎥
⎥
⎤

 

Figure 2: Pascal’s triangle written as a change of basis matrix. 

Theoretical Connections in the Literature 
In our participants’ narratives, we see that the factors identified by Hiebert and Grouws 

(2007) for the development of conceptual understanding may also promote backward transfer. 
We extend Perkins and Salomon’s (1992) nomenclature of mindful transfer and reflexive transfer 
to the case of backward transfer. Furthermore, we argue that making connections explicit during 
instruction may promote mindful backward transfer. 
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We presented two narratives of instances in which individuals made connections between 
topics in advanced mathematics and the binomial theorem, a topic frequently taught in high 
school algebra classes. Neither of these individuals described any procedural change in the ways 
they operationalized the binomial theorem when solving problems, but these connections led to 
conceptual shifts in the ways they understood the binomial theorem. As such, these connections 
are examples of changes in what Hiebert and Grouws (2007) called conceptual understanding, as 
Robin and Martin developed new “mental connections among mathematical facts, procedures, 
and ideas.” (Hiebert & Grouws, 2007, p. 380) as a result of their interactions with advanced 
mathematics – combinatorics and linear algebra, respectively. 

In these two narratives, we also see examples of backward transfer: mindful backward 
transfer in Robin’s case, and reflexive backward transfer in Martin’s. Robin’s connection 
between combinatorics and the binomial theorem originated in her desire to understand the 
connection and her own effort exerted while using the theorem in her combinatorics class. She 
had encountered the binomial theorem in high school and had reason to believe that such a 
connection existed due to the presence of combinations in the formula for binomial expansion 
and direct instruction on the connection to Pascal’s triangle. However, her desire to understand 
why combinations were related to the idea of binomial expansion had caused her to consciously 
seek resolution. Martin’s connection, however, was not tied to his effort exerted toward 
understanding the binomial theorem; rather, it came as a consequence of exerting effort on 
related tasks in his research. Even though he did not realize the tasks were related to the binomial 
theorem while he worked on them, his need to revisit the binomial theorem in his teaching forced 
him to interact with it, and the recency of his work on (unbeknownst to him) related mathematics 
left him primed to make the connection. While Martin was not actively searching for a 
connection, he was surprised to find one as he experienced “the familiar feeling of doing 
something [he] had been doing recently elsewhere.” 

These stories are indicative of the two key features Hiebert and Grouws (2007) identified for 
the promotion of conceptual understanding, namely, the need for teachers to attend explicitly to 
connections in instruction and the need for learners to struggle with the related mathematics. In 
the cases of Robin and Martin, their connections did not take place during direct instruction on 
the binomial theorem, but rather at a later time: either during a later mathematics course or while 
working on research and teaching. Yet, in Robin’s case, explicit instruction had given her an 
awareness that she should search for a connection she had not yet made, thus making mindful 
backward transfer possible. And in each of these stories, we see that the person was actively 
engaged in learning advanced mathematics, yet the connections they realized were to 
mathematics they had encountered much earlier in their careers. Their struggles to understand 
advanced topics induced them to develop new understandings of more basic topics that aligned 
with these advanced ideas. Robin’s struggle was directly related to the binomial theorem and her 
exploration of the role combinations played. In contrast, Martin’s struggle was tangential: he did 
not describe a struggle with the binomial theorem, but rather a struggle with the content he 
related to the theorem, that of changing bases for the vector space of polynomials. Both instances 
of transfer resulted from focused engagement with the mathematics involved in the connections 
that were eventually formed. 

These narratives point to two important implications for education and the training of future 
teachers. The first is that the formation of important mathematical ideas and connections between 
ideas often results from engagement with advanced mathematics. Each of these narratives tells a 
story about an individual who learned something new about a concept long after they were 
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taught the concept. While neither of these individuals was prevented from performing the 
requisite tasks assigned in their coursework, and indeed may have already possessed some 
conceptual understanding of the binomial theorem, each of them developed a deeper 
understanding of how the binomial theorem related to other concepts through participation in 
advanced mathematics. If one of our goals as educators is that our students should possess rich 
conceptual understanding, these stories suggest that, even in cases where connections are made 
explicit, students may benefit from engagement with advanced mathematics. 

Questions are often raised about why prospective schoolteachers are required to take such 
advanced mathematics courses as combinatorics and linear algebra if the reality is that they will 
never teach the advanced topics contained in those courses. The second implication of our 
analysis is that these advanced courses provide learners with an environment in which they must 
see basic mathematical ideas from a new perspective through engagement in productive struggle. 
Each of these stories tells us about how moving on to more advanced mathematics allowed these 
individuals to see how the basic mathematical procedures they had learned in school fit into the 
larger context of mathematics. The benefit of advanced mathematics courses for teachers may 
not lie in the advanced mathematics, itself, but rather in the advanced perspectives that teachers 
develop about the fundamental mathematics they will one day teach to others. 
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Examining Instructor Decision-Making Using Two Frameworks in the Context of Inquiry-Based 

Learning  
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In this paper, I use two frameworks—Schoenfeld’s theory of teaching in context (2010) and 

Herbst and Chazan’s practical rationality theory (2012)—to make sense of an undergraduate 

mathematics instructor’s decision-making when teaching with inquiry-based learning (IBL) 

methods. After providing a brief review of the relevant literature and the frameworks, I illustrate 

the analysis of one decision-making situation. I then discuss the affordances and challenges of 

the theories. The goal is to better understand what each framework offers in relation to the 

context and the nature of the analyzed data, and how findings from each framework can 

contribute to research on decision-making in the context of undergraduate teaching and IBL. 

Keywords: teacher decision-making, university mathematics teaching, inquiry-based learning 

Explaining why teachers do what they do has been a fundamental research problem on 

teaching, built on the central assumption that teachers are professionals who make reasonable 

decisions (Herbst & Chazan, 2017; Shulman, 1986a). Investigating teacher decision-making has 

mainly taken place in K-12 mathematics education settings. In a review of 60 articles on 

mathematics teachers’ decision-making, perception, and interpretation, Stahnke, Schueler, and 

Roesken-Winter (2016) found only two articles assessing teacher decision-making in higher 

education. Given that postsecondary settings are distinctly different (e.g., faculty in general have 

more autonomy), I conjecture that faculty decision-making is different from that of K-12 

teachers, thus, an important area of research in its own right. 

In this study, I deliberately focus on teacher decision-making when implementing inquiry-

based learning (IBL) methods in university mathematics courses1. While IBL has been appraised 

as a promising alternative to lecturing (Kogan & Laursen, 2014; Yoshinobu & Jones, 2012), the 

studies on the effects of IBL have not been entirely consistent in showing positive student 

outcomes (e.g., Freeman et al., 2014; Johnson, Keller, & Fukawa-Connelly, 2018; Laursen 

Hassi, Kogan, & Weston, 2014; Sonnert, Sadler, Sadler, & Bressoud, 2015). Moreover, because 

IBL has emerged from mathematicians’ teaching practices rather than research findings, 

conceptualizations of IBL are still under development (e.g., Laursen & Rasmussen, 2019; Mesa, 

Shultz, & Jackson, 2020). Although these conceptualizations provide useful building blocks for 

practitioners, it is not obvious how instructors operationalize them. I propose that one way to 

explain the inconsistent student outcomes associated with IBL is to understand the source of 

differences in IBL implementation: teacher decision-making. This paper is a step in that 

direction. 

I used two theoretical frameworks—Schoenfeld’s theory of teaching in context (2010) and 

Herbst and Chazan’s practical rationality theory (2012)—to illustrate the process of analyzing 

decision-making situations (for more, see Gerami, 2020). My goal through these preliminary 

analyses is to gain insights regarding how studying undergraduate mathematics instructors’ 

decision-making can be approached theoretically in the context of IBL. 

 
1 See Ernst, Hodge, & Yoshinobu (2017), Laursen & Rasmussen (2019), and Yoshinobu & Jones (2013) for 

descriptions of IBL methods in undergraduate mathematics education within the U.S. context. 
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Background on Research on Teacher Decision-Making 

Research on teacher decision-making has two main strands: cognitive and sociocultural. The 

cognitive strand started during the cognitive evolution in psychology in the 1960s and gained 

more traction as a result of Shulman’s (1986b) call for using cognitive psychology in research 

with teachers. This approach assumes that individuals make decisions based on personal and 

idiosyncratic schemas (e.g., what has worked in the past) and as such, focuses on individual 

teachers rather than on teachers as a group (e.g., Bishop, 1976; Borko & Shavelson, 1990; 

Shulman & Elstein, 1975). Because of “theoretical and methodological limitations that keep the 

research at the scale of case studies of individual teachers” (Herbst & Chazan, 2017, p. 110), this 

strand has continued without acceleration in its growth. To address these shortcomings, a 

sociocultural orientation, that assumes teaching as a social activity, has emerged. This strand 

situates decision-making within ecological considerations, allowing researchers to investigate 

teacher decision-making in specific situations, and across teachers, as members of professional 

communities. 

I chose two teacher decision-making frameworks—Schoenfeld’s (2010) theory of teaching in 

context and Herbst and Chazan’s (2012) practical rationality theory—for three reasons: (1) both 

frameworks, while situated within K-12 mathematics education research, have been empirically 

tested and found fitting in investigating mathematics instruction; (2) these theories have been 

increasingly appearing in empirical research in postsecondary settings (e.g., Lande & Mesa, 

2016; Mesa & Herbst, 2011; Paterson, Thomas, & Taylor, 2011; Herbst & Shultz, 2019); and (3) 

each represents a different strand: Schoenfeld’s theory is an individual-centered perspective of 

teacher decision-making, whereas practical rationality takes an ecological perspective and has 

been used to study decision-making across teachers. This allowed me to investigate IBL 

instructor decision-making from two complementary perspectives and reflect on the benefits of 

each framework in the given context. 

Two Theoretical Frameworks to Study Teacher Decision-Making 

Theory of Teaching in Context 

The central claim of the theory of teaching in context is that people’s in-the-moment 

decision-making in well-practiced, goal-oriented and knowledge-intensive domains, such as 

teaching, “can be fully characterized as a function of their orientations, resources, and goals” 

(Schoenfeld, 2010, p. 182). Three constructs—goals, orientations, and resources—are used to 

model, and even predict, teachers’ in-the-moment decision-making in the classroom. By 

modeling, Schoenfeld means that the theory provides explanations of how and why teachers 

make decisions as they teach, with decision defined as the selection of goals and actions that are 

consistent with one’s orientations and resources. The modeling is done with fine-grained 

analyses paired with subjective calculations for each teacher (see Schoenfeld, 2010). 

In Schoenfeld’s (2010) theory, teachers’ decisions are always consistent with a set of goals of 

varying degrees. These goals are not always conscious; the teacher may make decisions that 

serve unconscious goals. When a goal is achieved, the goal with the next highest priority takes its 

place. Orientations, as an inclusive term that “encompass[es] beliefs, dispositions, values, tastes, 

and preferences” (p. 15), shape how teachers perceive different situations, establish their goals, 

and use their resources to achieve those goals. Similar to goals, orientations can be unconscious. 

As the third construct of the theory, resources are brought into a decision-making situation and 

are subjective to the specific teacher. Knowledge is a significant resource; once a piece of 

knowledge is activated, related knowledge and actions are also accessed and activated, resulting 
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in established patterns of behavior such as routines and scripts. Resources can also be non-

intellectual, such as material (e.g., curriculum, learning manipulatives), institutional (e.g., 

computer labs, online teaching platforms), or social (e.g., colleagues’ support) resources. The 

theory assumes that in a contextualized situation, the teacher as an individual with a pre-existing 

set of goals, orientations, and resources, reevaluates their goals and makes decisions that are 

consistent with them. When a situation is familiar, existing routines and scripts are accessed, 

making the process more automated to reduce cognitive load. In unfamiliar situations, the 

subjective expected value of each available option is calculated and the option with maximum 

expected value is picked. Next, the teacher enacts the plan and monitors its effectiveness. 

Decision-making starts again when a goal is achieved or a plan is interrupted. 

Theory of Practical Rationality 

The theory of practical rationality of mathematics teaching uses two main constructs—norms 

and obligations—to unpack mathematics teacher’s justifications behind their actions (Herbst & 

Chazan, 2012.). When teachers are asked to explain the rationality behind their instructional 

actions, norms and obligations are two sources they use. Norms are tacit expectations in 

teachers’ and students’ patterns of behaviors and responsibilities (Chazan, Herbst, & Clark., 

2016); as cultural behaviors, they can go unnoticed, without the need to justify them, because 

they are implicit and typical (Moore-Russo & Weiss, 2011; Webel & Platt, 2015). Nonetheless, 

teachers may make different decisions under the same set of norms. Professional obligations, as 

types of social norms, are a set of resources that teachers, as professionals belonging to 

professional communities, use to justify deviating from the norms. The environments (e.g., 

department, institution) that an individual in the position of a mathematics teacher is placed in 

impose these social norms and values that “constrain and condition the position of mathematics 

teacher” (Chazan et al., 2016, p. 1066). Herbst and Chazan identify four stakeholders that a 

mathematics teacher has obligations to: the discipline of mathematics, including the knowledge 

and its applications, the valid representations of the knowledge, and the disciplinary practices 

(disciplinary obligation); the students and their individual needs (individual obligation); the 

society, including the appropriateness of patterns of interpersonal and social interactions, and 

acceptable societal dynamics (interpersonal obligation); and the institution and its regimes, such 

as policies and scheduling (institutional or schooling obligation). The four sets of obligations 

are, however, not exhaustive, as obligation to other professional groups are possible. The 

framework is considered situative rather than individualistic because it sees “teaching as an 

activity system involving positions, roles, and relationships” (Herbst & Chazan, 2012, p. 601). In 

other words, while teachers can and do make individual choices, these choices have some costs, 

because teaching is a cultural act with environmental constraints on their position as teachers. 

Methods 

This analysis is part of a larger study exploring 20 mathematics instructors’ decision-making 

in IBL lower division courses via a survey and a follow-up interview. The decision-making 

situations section of the survey (the main data source for this paper) asked instructors to choose a 

lower-division course that they have taught with IBL methods and to describe five situations 

where they made a decision: about the content, about the course materials, about the assignments 

and assessments, about methods of teaching, and while teaching. For each situation, participants 

were asked to (1) list all options available to them when making the decision, (2) the desirable 

and undesirable outcomes of each option, (3) explain what they chose and why, and (4) identify 

the use and frequency of various teaching methods (e.g., lecturing, whole class discussion) and 
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their learning objectives for their students. The survey also inquired about instructors’ 

background and demographic information, their definition of IBL, reasons for using IBL, and 

personal gains and concerns about IBL. I followed up their survey’s responses via a semi-

structured hour-long interview. 

Here, I use data from Leah—a full-time untenured lecturer at a PhD-granting public 

university, teaching pre-calculus for the first time, with 13 years of teaching experience—who 

described herself as knowledgeable of IBL and comfortable with implementing it. When asked to 

explain the situation where Leah made a decision about the mathematics content covered in the 

course, she wrote: “[W]hen we were studying trig[onometry] functions, I had to basically skip 

tan[gent] all together so that we could better cover cos[ine] and sin[e]. I showed one single 

example of a graph of the tan[gent] function.” Leah listed four available options she could 

choose from: (1) cover Tangent graphs with some book example in class via short lecture, (2) 

skip Tangent graphs altogether, (3) ask students to read about Tangent graphs on their own, and 

(4) cover Tangent graphs in class like any other topic covered in class. In reflecting on the 

desirable and undesirable outcomes of each option (see Table 1), Leah chose option (1): “I gave 

a short lecture/example and didn't include it in any of their assessments ... I did this so that we 

could spend the extra time on graphs of sin[e] and cos[ine] instead. We needed more time on 

this.” 
 

Table 1. Leah’s options and the desirable and undesirable outcomes of each option 

Options Desirable Outcomes Undesirable Outcomes 

(1) Cover Tan graphs 

via mini lecture 

students see some new examples, 

allows more time on Cos and Sin  

short lecture likely results in the 

students not learning 

(2) Skip Tan graphs 

altogether 

more time to spend on Cos and 

Sin graphs 

students do not see examples of 

the Tan graph, problematic for 

calculus series 

(3) Ask students to 

learn Tan graphs on 

their own 

more time to spend on Cos and 

Sin graphs 

have to follow up (only a couple 

students would read the book), 

students not learning 

(4) Cover Tan graphs 

in class  

reinforce ideas from the Cos and 

Sin graphs 

No more time to spend on to 

better learn Cos and Sin graphs  

Illustration of Analyses 

Using Theory of Teaching in Context 

To use the theory of teaching in context to explain why an instructor chose a specific option 

in a situation, I attended to each participant as an individual instructor by: (1) going through a 

process of “getting to know the instructor” before analyzing the decision-making situations, (2) 

analyzing all the decision-making situations for each instructor at a time, and (3) triangulating 

the findings with other available data. To get to know the instructor and triangulate the findings, 

I listened to the interview, read responses to other parts of the survey, and took notes when I 

found the information relevant to the situation. Analyzing the decision-making situations 

consisted of: (a) deciding whether the situation was familiar or unfamiliar; (b) identifying the 

dimensions that the instructor used to evaluate the options for unfamiliar situations; (c) 

identifying goals, orientations, and resources essential in the situation at hand; and (d) 

triangulating them with other data, describing how the option was chosen in the light of the 

findings from Step (a)-(c). 
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Getting to know the instructor. To teach her pre-calculus course for the first time, Leah 

heavily depended on her colleagues for advice and course materials. As her priority was to make 

the course inquiry-oriented, she adjusted the curriculum, the examination, and the grading 

structure for the course, which she referred to as good learning opportunities for herself. While 

Leah oriented herself towards promoting inquiry into mathematics for her students, she also 

oriented herself towards inquiry into student thinking about mathematics. This is also manifested 

in her beliefs about lecturing; she equates lecturing with “feeding the materials to the students” 

without them “really learning” the materials or her learning about student thinking. Therefore, 

she avoids lecturing unless absolutely necessary. Based on three of the five decision-making 

situations, it became apparent that Leah prefers covering content in class with students because 

she believes that students learn better in class with her support. 

Step (a). The decision-making situation was captured as: whether and how to cover graph of 

Tangent functions. The situation was coded as unfamiliar because it is Leah’s first time making 

this decision as it is her first time teaching pre-calculus. 

Step (b). The desirable and undesirable outcomes were used to determine two dimensions on 

which she assessed each option: (D1) students learning Sine and Cosine graphs deeply, with 

Leah’s support; and (D2) students learning Tangent graphs deeply, with Leah’s support. 

Step (c). I identified three goals for Leah: (G1) covering content efficiently in terms of time, 

(G2) assuring that students learn the concepts deeply, and (G3) preparing students for the next 

course. I identified both material and intellectual resources. The course textbook, as a material 

resource, is discussed when Leah talks about students learning about Tangent graphs by 

themselves using their textbook, or showing them some examples from the textbook via a mini 

lecture. In terms of intellectual resources, Leah had access to a script for teaching graphs of 

Tangents in the form of a short lecture. Moreover, her decision-making was navigated by her 

knowledge of her students’ level of understanding of the graphs of Sine and Cosine functions 

and her knowledge of the future courses. In terms of orientations, Leah believes that spending 

more time on graphs of Sine and Cosine functions in class would allow students to engage with 

the content more “deeply” and learn the materials better. She believes that covering graphs of 

Tangent functions could be an opportunity for students to better understand graphs of Sine and 

Cosine functions. She finds graphs of Sine and Cosine functions as more fundamental and 

necessary to learn. While shying away from lecturing, Leah orients towards covering new 

content in class; this is evident from option (3)’s desirable outcomes, when she says that if she 

asks students to learn Tangent graphs at home, then she would still need to follow up with them 

to make sure that they have learned them. 

Step (d). Because the decision-making situation was unfamiliar, Leah’s decision-making is 

modeled by calculating subjective expected value of each option, where the option with highest 

value is chosen. Instead of assigning numeric values to each dimension for each option like 

Schoenfeld (2010) did, I attributed a satisfaction score (none, low, medium, high) based on the 

degree to which Leah described the options satisfying the dimensions (see Figure 1). Given that 

Leah values both dimensions and her goals, we can predict that she would not choose option (2) 

because it would not satisfy D2. Next, because Leah finds graphs of Sine and Cosine function 

fundamental, we can also predict than she values D1 more than D2, meaning that she would 

choose an option that would satisfy D1 more than D2. This eliminates option (4). So Leah is left 

with options (1) and (3). At this point, I reached a bypass where I could not explain which option 

Leah would choose based on her orientations, resources, and goals. Yet, knowing that Leah 

chose option (1) with both dimensions scored for medium satisfaction instead of option (3), 
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where D1 has a high satisfaction score and D2 has a low satisfaction score, I wondered if the 

“Medium/Medium” combination subjectively sounded better to Leah, than the “High/Low” 

combination. Looking across her other decision-making situations, I found that Leah also chose 

“Medium/Medium” combinations over others. However, because only five decision-making 

situations were elicited from Leah, I cannot confirm that she mostly orients towards options that 

satisfy more dimensions moderately, rather than options that satisfy some dimensions more than 

others. 

Figure 1. Satisfaction score attributed to each option on the dimensions. The satisfaction scores are associated with 

colors: None = red; Low = light pink; Medium = light green; High = dark green. 

Takeaways. The main challenge I encountered using this theory was differentiating between 

goals, orientations, and dimensions, as they overlap or inform one another. Schoenfeld (2010) 

neither defines dimensions, nor describes how he draws them, nor explains the relationship 

between these constructs. To carry out my analysis, I conceptualized: 1) goals as what teachers 

want to be achieved; 2) dimensions as the criterion that teachers think about when weighing 

different options; and 3) orientations as how teachers perceive everything associated with 

teaching and learning, including the goals and dimensions. Although the framework has been 

used to model in-the-moment decision-making, I expanded the framework to include outside-

class situations. It seems that to harness the modeling power of the theory for both types of 

situations, multiple instances of similar decision-making situations are needed; this would allow 

the researcher to unpack automatic teacher decision-making in familiar situations and find more 

accurate satisfaction scores in unfamiliar situations.  

Using Theory of Practical Rationality 

Analyzing the decision-making situations with this framework consisted of three main steps. 

First, I identified the situation’s normative behavior(s) and whether the normative behavior was 

breached by the instructor choosing the option they chose. Second, I determined whether the 

instructor’s choice breached the norms. Third, I identified all instructor’s considerations (why 

the instructor would or would not choose an option) when asked to provide the desirable and 

undesirable outcomes of their available options and explain their reasoning for choosing one of 

the options. Although the theory has been used to examine teachers’ justifications for their 

actions, analyzing instructor’s justifications for considering other options added nuance to the 

findings by showing that instructors may consider a more diverse set of professional obligations. 

Fourth, I coded considerations for types of resources that instructors used to justify breaching or 

not breaching the normative behaviors (norm, the four professional obligations) and open coded 

the ones that did not fit the norms and the four professional obligations. Some considerations 

were coded for multiple justification resources because they did not solely align with one. 

Analyzing the situation. I identified two norms governing the situation: Leah was obliged to 

teach Tangent graphs because of her position as the instructor (obligation to institution) and she 

was supposed to teach new content in class so that students learn the materials deeply 
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(instructional norm and an obligation to students). I identified four considerations from Leah’s 

descriptions of her options’ desirable and undesirable outcomes: students learning graphs of Sine 

and Cosine better (individual obligation); more time should be spent on the graphs of Sine and 

Cosine because they are fundamental materials (disciplinary obligation), covering content that 

prepares students for the next course (disciplinary and individual obligation), and saving class 

time (institutional obligation). Choosing option (1), giving a mini lecture, breached the second 

norm. This was justified by all four considerations. In other words, Leah justified not covering 

Tangent graphs in depth using professional obligations to the students, to the institution, and to 

the discipline of mathematics. 

Takeaways. A major challenge in using Herbst and Chazan’s (2012) theory was identifying 

norms in teaching lower division IBL mathematics courses, as these have not yet been 

documented at the level of detail as in K-12 settings. The framework assumes that teachers who 

teach the same content in similar context (e.g., high school geometry) make decisions under the 

same set of norms within similar didactical situations. I identified the norms underlying each 

situation based on the instructor’s responses, which made it salient that instructors make 

decisions under different sets of norms than those found in K-12 settings, and that these norms 

may not be similar even across the same lower-division undergraduate course (Gerami, 2020). 

Discussion 

Much was revealed about Leah as an individual decision-maker because of Schoenfeld’s 

(2010) framework’s exclusive attention to her goals, orientations, and resources. The theory’s 

attention to individual instructors can be useful in this context because it may help explain the 

diverse implementation of IBL by showing the variety of goals, orientations, and resources. I 

hypothesize that this theory can be used across instructors by positioning them in the same 

situation and investigating their goals, resources, orientations, and dimensions. Nonetheless, the 

way the theory binds these constructs is idiosyncratic to each teacher, making the theory in its 

whole inadequate for studying decision-making across IBL instructors. 

Using Herbst and Chazan’s (2012) theory allowed me to identify the actions that Leah found 

to be normative and the justifications she relied on for diverging from such norms. My 

preliminary findings show that these obligations look different across instructors, possibly 

because of institutional differences or instructors’ diverse perceptions and implementation of 

IBL, and that IBL instructors may be obligated to novel stakeholders, such as the IBL 

community (Gerami, 2020). More research is needed to understand these norms and the sources 

of their differences. 

Given the importance of cultural and social forces in university mathematics teaching 

(McDuffie & Graeber, 2003), Schoenfeld’s (2010) theory will not paint a comprehensive picture 

of college mathematics teacher’s decision-making. On the other hand, Herbst and Chazan’s 

(2012) theory highlights such societal influences. Paying attention to both cognitive and 

sociocultural influences via complementary frameworks appears to be the best way forward; as 

Sfard (1998) puts it, “it seems that the most powerful research is the one that stands on more than 

one metaphorical leg” (p. 10). 
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Foundational Ideas for Understanding the Constant Rate of Change  

Ishtesa Khan 

Arizona State University 

This report presents a conceptual analysis that describes the productive ways of thinking of a 

hypothetical student in learning the idea of constant rate of change. The paper characterizes a 

hypothetical learning trajectory with a hierarchy of ideas that we conjecture to be foundational 

for understanding constant rate of change. The study briefly presents an instructional sequence 

of tasks guided by the hypothetical learning trajectory to promote learning the foundational 

ideas for understanding the constant rate of change.  

Keywords: constant rate of change, conceptual analysis, hypothetical learning trajectory, 

quantitative reasoning, proportional reasoning 

Introduction 

Across the country, most Precalculus curriculum in college repeats the procedural approaches 

that students learn in high school, and therefore, students are less successful in passing Calculus 

in college (Sonnert & Sadler, 2014). Byerly (2016) reported Calculus students' and teachers' 

weak meanings of measurement, fraction, and constant rate of change. Students start building 

their meanings for constant rate of change and proportionality in their early mathematics 

learning. In Precalculus and Calculus, students get the opportunity to build meanings for the idea 

of constant rate of change in a sophisticated way. Thompson (2008) discusses that the constant 

rate of change is foundational to understanding linear functions and supporting ideas like an 

average rate of change, proportionality, and slope. Studies have reported the disconnections 

students and teachers have as they treat these ideas as different sets of actions and as associated 

with unrelated contexts (Lobato, 2006; Lobato & Siebart, 2002; Lobato & Thanheiser, 2002; & 

Coe, 2007). The coherent meanings for ratio, rate, and proportionality are foundational to the 

idea of constant rate of change.  

My goal is to study an instructional sequence that is designed to support students in 

understanding and connecting ideas of a quantity, change in a quantity, variable, formula, ratio, 

rate, linear function, slope, an average rate of change, etc. that are related to learning and 

understanding the idea of a constant rate of change. Reasoning abilities that support students in 

making connections between the ideas related to a constant rate of change involve quantitative 

reasoning (Thompson, 1994), covariational reasoning (Carlson, Jacobs, Coe, Larsen, Hsu, 2002; 

Thompson & Carlson, 2017), and proportional reasoning (Lamon, 2007; Lesh, Post & Behr, 

1988; Thompson, 1994). If we say two quantities have a constant rate of change, then we mean 

that two quantities are varying together; any change in one quantity’s variation remains 

proportional to the corresponding change in another quantity’s variation. Standard precalculus 

curriculum approach to a constant rate of change is often limited to solving linear equations and 

finding the slope of the “equation of the line.” It rarely focuses on the meanings of quantities, 

ratio, rate and constant rate of change. Therefore, it is important to discuss a conceptual analysis 

that discusses the productive ways of thinking to understand the idea of constant rate of change. 

Furthermore, it is relevant to design a hypothetical learning trajectory (Simon, 1995; Simon & 

Tzur, 2004) that presents an order of learning goals for students with a series of tasks that 

promote the specific learning goals to understand the idea of a constant rate of change. The 

primary research question I want to address is- what understandings are foundational to 

understand the idea of constant rate of change?  
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Theoretical Background 

Mathematics educators and researchers have investigated students' understanding of 

proportionality, rate, and ratio at various mathematical grade levels, with findings consistently 

revealing student difficulties in applying proportional reasoning when interpreting the rate of 

change in a modeling context (Tourniaire & Pulos, 1985; Doerr & O'Neil, 2011; Orton, 1983 & 

Yoon, Byerley & Thompson, 2015). Learning the idea of constant rate of change associates to 

the concept of rate, ratio, proportionality, changes in quantities, linear functions, and rate of 

change functions. According to Lamon (2007), early definitions of “ratio was considered a 

comparison between like quantities (e.g. pounds: pounds) and a rate a comparison of unlike 

quantities (e.g. distance: time)” (p.634), and over the years researchers have developed multiple 

definitions and distinctions of ratio and rate (Lesh, Post & Behr, 1988; Kaput & West, 1994). 

After working with students and teachers for a substantial amount of time, Thompson (1994), 

Thompson & Thompson (1994 & 1996) suggested that the distinction between rate and ratio 

depends on an individual’s mental operations on how she comprehends the given rate and ratio 

context. Thompson (1994) defined ratio as a result of comparing two quantities multiplicatively. 

The two quantities that are compared multiplicatively, can be measured in the same unit or they 

can be measured in different units. In either case, if an individual conceives a mental operation of 

comparing two quantities multiplicatively, she conceives the result of the comparison as a ratio. 

Thompson (1994) defined rate as a reflectively abstracted constant ratio. When one conceives the 

idea of rate, she thinks about the rate as a characteristic of how quantities are covarying. A 

person reconceives a ratio as a rate when she applies the ratio to a different situation and think 

about that ratio as a rate that characterizes covariation between quantities. In another words, a 

ratio is a multiplicative comparison of the measures of two non-varying quantities and a rate is 

the proportional relationship between two varying quantities’ measures (Thompson & 

Thompson, 1994).  

Proportional reasoning as a theory interacts with the theory of quantitative reasoning 

(Thompson, 1988, 1990, 1993, 1994, 2011) as one conceives quantity as a measurable attribute 

of an object, then she conceives a multiplicative comparison of two fixed quantities. She 

conceives ratio as a result of the multiplicative comparison of the quantities. She conceives rate 

as a proportional relationship between the measure of two varying quantities. If the value of a 

quantity varies (or changes) in a situation, we say the quantity is a varying quantity, and if the 

value of a quantity does not vary in a situation, we say the quantity is fixed. When two quantities 

vary in relation to each other, the mental operations that support that dynamic images in 

students’ thinking is referenced as covariational reasoning (Carlson et al., 2002; Thompson & 

Carlson, 2017). When a student engages in proportional reasoning, she simultaneously engages 

in covariational and quantitative reasoning. A student engages in proportional reasoning when 

she conceives the invariant relationship of quantities in dynamic situations or applies her 

understanding of proportionality in mathematical modeling situations. Constructing the idea of 

rate involves envisioning two quantities in a situation vary smoothly and continuously, and the 

changes (increases or decreases) in one quantity or variable’s value is a simultaneous result of 

changes in another quantity or variable’s value; and as the two quantities covary, the 

multiplicative comparisons of their measures remain proportional.  

Conceptual Analysis 

I used radical constructivism (Glaserfeld, 1995) as the theoretical perspective of this report.  

Radical constructivism claims that an individual constructs his own knowledge and it is not 

directly accessible to others. Glaserfeld (1995) also made a case that two individuals can reach a 
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certain level of mutual agreement by providing compatible interpretations about each of their 

actions in the conversation. This idea of intersubjectivity seems to support the constructs 

conceptual analysis (Glaserfeld, 1995), hypothetical learning trajectory (Simon, 1995), that are 

relevant to investigate students’ development of the foundational ideas in learning the idea of 

constant rate of change.  

Thompson (2008) considered conceptual analysis as a tool to explain the useful ways of 

thinking for learning an idea. As one example of a conceptual analysis, Thompson (2008) 

described what is involved in understanding and learning the idea of constant rate of change and 

its role in understanding the idea of an average rate of change, linear functions, proportionality, 

and slope. In his conceptual analysis, he discussed the important role of quantitative, 

covariational, and proportional reasoning for learning the idea of a constant rate of change. Thus, 

if a student develops the deep meaning of constant rate of change, she should conceptualize the 

relationship between two quantities as continuous variation in their values, and the relationship 

remains proportional as two values of two quantities vary together.  

I use the candle burning context (Carlson, Oehrtman, & Moore; 2016) to illustrate the 

productive ways of thinking of the idea of constant rate of change. This conceptual analysis 

describes what we have observed and hypothesize to be productive ways of thinking for learning 

the idea constant rate of change. 

An 18-inch candle is lit and burns at a constant rate of 2.25 inches per hour. What is the 

length of the candle when it’s been burning for 4.1 hours?  

After reading the problem statement, it is necessary to realize that as the candle is burning 

since it is lit, the remaining length of the candle (in inches) is decreasing since the number of 

hours the candle is lit. The length of the candle (in inches) does not change if it is not lit. The 

remaining length of the candle (in inches) depends on the number of hours since the candle is lit. 

Therefore, the two quantities covarying together are the remaining length of the candle (in 

inches) and the number of hours since the candle is lit. Let r represents the remaining length of 

the candle (in inches) and let t represent the number of hours that have elapsed since the candle 

was lit. r can be written as an output of a function f, where 𝑓(𝑡) represents the remaining length 

of the candle since it was lit (in inches) in terms of the number of elapsed hours t since the candle 

was lit. We can say, 𝑟 = 𝑓(𝑡) and where 𝑟 is the output of the function 𝑓 and 𝑓 is a function of 𝑡. 

Here, 𝑟 and 𝑡 are variables that represent the varying values of the two covarying quantities- the 

remaining length of the candle since it was lit (in inches) and the number of hours since the 

candle was lit.  

Representing the remaining length 𝑟 of the candle since it was lit (in inches) in terms of the 

numbers of hours 𝑡 since the candle was lit involves conceptualizing how quantities’ values 

change together. The candle was originally 18 inches tall and burns at a constant rate of 2.25 

inches per hour. To elaborate the problem statement, we can say for any change in the number of 

hours since the candle was lit (since 𝑡 = 0) the change in the remaining length of the candle in 

inches is decreasing at a rate of 2.25 inches per hour. After t hours since the candle was lit the 

change in the remaining length would be t times as large as 2.25 inches less than 18 inches. 

There is a continuous variation in the number of hours since the candle is lit and a continuous 

variation in the remaining length of the candle since the candle was lit. The remaining length of 

the candle (in inches) is always the number of hours since the candle was lit times as large as 

2.25 inches shorter than the original length of the candle. The expression −2.25𝑡 + 18 

represents the remaining length 𝑟 of the candle in inches and we can write a formula 𝑟 =
−2.25𝑡 + 18 in terms of 𝑡. 
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We can also write the formula using function notation,  𝑓(𝑡) = −2.25𝑡 + 18, where 𝑡 is the 

input of the function and independent variable that represents the number of hours since the 

candle was lit and 𝑓(𝑡) represents the functional relationship between 𝑟 and 𝑡 in terms of 𝑡, 

where 𝑟 is the output of the function and dependent variable, and 𝑓 is the function name. The 

function formula provides a description of how 𝑡 and 𝑓(𝑡) vary together.  

Moving forward, a student needs to conceptualize what is the length of the candle after it 

burns for 4.1 hours. Here, she needs to imagine the remaining length of the candle (in inches) 

when 4.1 hours have elapsed since the candle was lit. At this point, it is essential to conceptualize 

4.1 hours of burning as a change of 4.1 hours since the candle was lit. In this context, the 

reference point is (𝑡1, 𝑟1) = (0,18) where 𝑟1 represents the length of the candle before it was lit 

and 𝑡1 represents the number of hours since the candle was lit. The reference point is a point in a 

context from which we imagine the variation in variable’s value when the quantities are 

covarying together. As the change in the value of the remaining length of the candle since it is lit 

(in inches) remains constant with the change in the value of the number of hours since the candle 

was lit, we can represent the change in the value of the remaining length of the candle (in inches) 

since it is lit with ∆𝑟 and the change in the value of number of hours since the candle was lit with 

∆𝑡 and ∆𝑟 = −2.25∆𝑡. The change in value of the remaining length of the candle since it is lit is 

decreasing with respect to the change in the value of the number of hours since the candle was 

lit. Therefore, the constant rate of change is -2.25 inches per hour. For any value of 𝑡, the change 

is away from 0 is also the value of 𝑡, ∆𝑡 = 𝑡 − 0 = 𝑡. Any value of 𝑡 can be substituted into the 

function formula and is interpreted as a value of ∆𝑡 changing away from 𝑡 = 0. Similarly, the 

change in the value of the candle’s remaining length (in inches) is a change in value of 𝑟, away 

from 18, ∆𝑟 = 𝑟 − 𝑟1 = 𝑟 − 18. We can write, 𝑟 − 𝑟1 = −2.25(𝑡 − 𝑡1)  → 𝑟 − 18 =
−2.25(𝑡 − 0)  → 𝑟 = −2.25𝑡 + 18 which is an equivalent form of the function formula 𝑓(𝑡) =
−2.25𝑡 + 18, where 𝑟 = 𝑓(𝑡).  

Therefore, if we want to know the length of the candle when it’s been burning for 4.1 hours 

then 𝑡 = 4.1 and 𝑟 = −2.25 ∗ (4.1) + 18 = −9.225 + 18 = 8.775, where the expression 

−9.225 + 18 represents the candle’s length changes by -9.225 inches when the time elapsed by 

4.1 hours and the candle is 8.775 inches long 4.1 hours after being lit.  

The function 𝑓(𝑡) = −2.25𝑡 + 18 represents a linear functional relationship between the 

remaining length of the candle since it is lit (in inches) and the number of hours since the candle 

was lit. As we vary 𝑡, the value of 𝑡 is a change away from 0 and the change in length (in inches) 

is always -2.25 times as large as the change in elapsed time (in hours). The function represents a 

proportional relationship between the change in values of the remaining length of the candle 

since it is lit (in inches) with respect to the change in the number of hours elapsed since the 

candle was lit. The change in both quantities’ values remain proportional for any amount of 

change in one quantities value with respect to another. When changes in one quantity’s value are 

proportional to the corresponding changes in the other quantity’s value there is a constant rate of 

change. Representing the relationship between both quantities values in a graphical context is 

always a straight line. Dynamic images of variation in the value of remaining length of the 

candle (in inches) since it is lit with respect to the variation in the value of the number of hours 

since it is lit is useful to track the proportionality in both quantities’ values along with the linear 

representation of change in their values. 
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Hypothetical Learning Trajectory 

I present a hierarchy of ideas and describe them as I conjecture these ideas to be foundational 

for understanding constant rate of change. Simon (1995) and Simon & Tzur (2004) discusses 

hypothetical learning trajectory (HLT) as an order of learning goals for students with a series of 

tasks that promote the specific learning goals to understand any idea. Based on Simon’s idea of 

HLT we present a hierarchy of the ideas that are foundational to learning the idea of constant rate 

of change (Table 1). Table 1 elaborates the hypothetical order of introducing the ideas, the ideas 

or sub ideas that are foundational for understanding constant rate of change and the required 

student understanding for each of the section.  

Hypothetical 

order of 

ideas 

The foundational 

ideas for 

understanding 

constant rate of 

change 

Desired student understanding 

1. Quantity: 

i. Varying or 

fixed quantity 

ii. Covariation  

iii. Changes in 

quantity’s 

varying values 

Given a problem statement, a student starts thinking about 

identifying fixed and varying quantities in the situation. 

She thinks about which quantities are varying 

independently or with respect to another quantity; or value 

of one quantity that does not change in the context. 

She also thinks about whether the varying quantities in the 

quantity changing together or not; and if two or more 

quantities are changing with respect to one another she will 

think about them as covarying quantities. Then she will 

think about how changes in one quantity’s value is related 

to changes in another quantity’s value. 

2. Representation: 

i. Variables 

ii. Expressions 

iii. Formula 

iv. Variables 

(delta notation) to 

express change in 

quantity’s values 

v. Graphical 

representation 

The student thinks about using variables to represent the 

value of varying quantities. She thinks about using 

variables, numbers or operators to express the value of a 

quantity as an expression. She conceives a formula as a 

tool for expressing the value of one quantity in terms of 

another, when the quantities are covarying.  

She thinks about change in a quantity’s value as it is 

always away from a reference location. She represents the 

changes in quantity’s values with delta notation. 

She thinks about presenting the relationship between 

quantities in a graphical representation. She will think 

about a cartesian coordinate system as a system where she 

can represent the values of the independent quantity in a 

horizontal axis, and the values of the dependent quantity in 

a vertical axis. She then thinks about a graph as a 

representation of how the covarying quantities are varying 

together.  

3. Times as large as 

comparison 

i. Ratio 

ii. Proportionality 

She thinks about two numbers A and B, as A/B is a 

measure of A in units of B. She thinks if A/B as a ratio 

then A is A/B times as large as B (provided 𝐵 ≠ 0) and B 

is B/A times as large as A (provided A≠ 0).  
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iii. Rate 

 

She thinks two quantities are proportional if the measure of 

one quantity’s value in units of the other’s value is a 

constant as the two quantities vary together. Two quantities 

are proportional if the value of one quantity is always the 

same number of times as large as the value of the other 

quantity.  

She perceives rate as an instantaneous image of a constant 

ratio, when one of the two covarying quantity’s value is 

measured in units of another quantity’s value.   

4.  Constant rate of 

change 

She thinks about constant rate of change as relating two co-

varying quantities, when changes in one quantity’s value 

are proportional to the corresponding changes in the other 

quantity’s value.  

She thinks about using variables 𝑥 and 𝑦 to represent the 

values of two quantities that change together, then if the 

quantities are related by a constant rate of change then 

∆𝑦 = 𝑚. ∆𝑥 where ∆𝑦 represents the changes in 𝑦 values 

and ∆𝑥 represents the changes in 𝑥 values. The changes in 

𝑦’s values are 𝑚 times as large as changes in 𝑥’s values.  

5. Linear graph She perceives a graph representing constant rate of change 

is always linear with a slope of the constant rate. Any 

change in one quantity’s value is proportional to the 

corresponding change in the other quantity’s value when 

the quantities are changing at a constant rate. She thinks 

proportionality is a restriction on how the quantities are 

varying together.  

6.  Function 

i. Function 

notation 

ii. Independent 

and dependent 

quantity 

iii. Functional 

representation 

She thinks function 𝑓 defines a rule of a function that 

expresses how a function’s independent quantity and 

dependent quantities are related as their values change 

together.  

If there are two covarying quantities 𝑥 and 𝑦 that possess a 

functional relationship and 𝑓 is a function, then 𝑦 = 𝑓(𝑥) 

and 𝑓(𝑥) is represented in terms of 𝑥. Here, she thinks 𝑥 

represents the independent quantity and 𝑦 is the dependent 

quantity. 𝑓 is a function name, values for 𝑥 are input 

values and values for 𝑦 for corresponding 𝑥 values are 

output values of the function 𝑓.   

7. Constant rate of 

change function 

or linear function 

She thinks a function that represents relationship between 

changes in the values of two covarying quantities and 

changes in one quantities value remain constant with 

corresponding changes to another quantities value, the 

function is a constant rate of change function or linear 

function.  
Table 1. The hypothetical order of ideas that are foundational for understanding a constant rate of change 
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Implications and Limitations 

One of the implications of the proposed HLT (Simon & Tzur, 2004) is to develop lessons and 

homework problems in a way where a student will build her foundational understandings of the 

idea of constant rate of change by reflecting upon her actions and the effects of those actions 

when working on the problems. As a methodological implication the HLT is a sophisticated tool 

to design sequenced tasks to conduct teaching experiments (Steffe & Thompson, 2000). The 

teaching experiment will focus on characterizing students’ ways of thinking as they complete 

tasks designed to support their understanding of the foundational ideas in learning the idea of 

constant rate of change. The episodes of teaching experiments will inform the researchers to 

revise the HLT and make adjustments on the tasks to support new hypotheses as the results will 

unfold. This paper is limited to the theory of conceptual analysis and hypothetical learning 

trajectory in discussing the foundational ideas for understanding constant rate of change. I have 

designed a teaching experiment to investigate students’ thinking of the foundational ideas for 

understanding the constant rate of change. The results of the teaching experiment will be 

addressed in the future. The conceptual analysis and the HLT will be useful to other researchers 

and teachers to design sequenced lessons or tasks to promote learning the idea of constant rate of 

change. The following figure 1. presents an example of an instructional sequence of tasks that 

informs the foundational ideas for understanding constant rate of change- 

 
 

Figure1. A sequence of tasks for learning the foundational ideas of constant rate of change.  
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Relative Size Reasoning: A Cross-Cutting Way of Thinking for Learning Precalculus Ideas 

 

Kayla Lock 

Arizona State University 

The goal of this paper is to describe a cross-cutting way of thinking which may be productive for 

learning precalculus ideas. I describe the construct, “relative size reasoning” which consists of 

thinking about the relative size of two quantities as they change together. This way of thinking 

entails quantitative and covariational reasoning. I describe the mental operations involved in 

relative size reasoning and how it can be used by providing three illustrations of relative size 

reasoning in three precalculus ideas and conclude with future research.  

Keywords: relative size reasoning, relative size, way of thinking, quantitative reasoning  

Introduction  

The ideas of measurement and measurement comparisons (such as fractions or ratios) are 

mathematical concepts introduced to students in elementary school. However, students in 

university mathematics courses struggle with comparing two quantities in terms of their relative 

size (e.g Byerley, 2019; Tallman, 2015). Thinking about the relative size of two quantities entails 

envisioning the measure of one quantity in units of the other, provided the two quantities are of 

the same unit of measurement (the magnitude of one measured in units of the magnitude of the 

other). If they are not of the same unit of measurement, it involves thinking of the measure of 

one quantity in multiples of the measure of the other quantity. For this paper, I introduce the idea 

of relative size reasoning to characterize the dynamic imagery involved in thinking about the 

relative size of two quantities as the two quantities’ values change in tandem (Thompson, 1994; 

Carlson et al., 2002). 

Traditional or conventional mathematics textbook designers create sections and chapters that 

are disconnected and developed without regard to NCTM standards for mathematics teaching 

and learning (Cady et al., 2015). Teachers rely heavily on these disconnected textbooks and 

curriculum to structure their classroom instruction (Valverde, Bianchi, Wolfe, Schmidt, & 

Houng, 2002). As a result, teachers are not equipped to support students in reasoning about these 

connections in the classroom (Thompson & Saldanha, 2003). Thus, students are not supported in 

developing the cross-cutting “way of thinking” that is productive for understanding foundational 

ideas (e.g., rate of change). For example, students who do not view a quotient as representing the 

relative size of the ratio’s numerator and denominator will not be equipped to understand the 

idea of constant rate of change.  

The foundational reasoning necessary for thinking about constant rate of change includes 

quantitative reasoning (Thompson, 1990, 2011), reasoning multiplicatively (Thompson 1994b; 

Thompson and Thompson 1994, 1996; Thompson & Carlson 2017), coordinating two covarying 

quantities and their changes (covariational reasoning) (Thompson & Saldanha, 1998; Carlson et 

al., 2002; Thompson & Carlson 2017), and thinking about the proportional correspondence 

between the changes in the two quantities. Relative size reasoning is useful for thinking about 

constant rate of change because it provides students with an opportunity to approach problems 

with a way of thinking that increases their ability to make meaning for the mathematical 

structures they create, and determine the appropriate operations needed to evaluate some quantity 

in the problem, which entails quantitative and covariational reasoning. Lobato and colleagues 

have reported that many students do not view the idea of proportionality, slope, rate of change, 
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and average rate of change as being connected (Lobato, 2006; Lobato & Siebert, 2002; Lobato & 

Thanheiser, 2002). In fact, it has been documented that university students have difficulty 

modeling function relationships involving rates of change (Carlson, 1998; Thompson 1994a). 

Specifically, understanding ideas such as constant rate of change is central to understanding 

ideas in calculus such as (a) the difference quotient (Byerley & Thompson, 2014), (b) the 

concept of the derivative (Byerley et al, 2012; Zandieh, 2000) and (c) the fundamental theorem 

of calculus (Thompson 1994). These findings suggest that students may need to be supported in 

using relative size reasoning. Comparing two quantities multiplicatively has been documented to 

be important for understanding ideas in specific mathematical topics such as measurement 

(Thompson et al., 2014), constant rate of change (Thompson, 1994a, 1994b, 1995; Thompson & 

Saldanha, 1998; Carlson et al. 2002), rational functions (Pampel, 2017), trigonometry (Moore, 

2014, 2010; Tallman & Frank, 2018; Thompson, 2008), exponential functions (O’Bryan, 2018), 

and difference quotient (Byerley, 2019).  More research is needed to understand the nature of 

relative size reasoning, how it develops in students, and how it contributes to learning other ideas 

in mathematics. Since relative size reasoning has not been an explicit focus of research, this 

study investigated the question: 

What are the mental operations involved in relative size reasoning and how is relative size 

reasoning used? 

  Review of the Literature 

I initially discuss how relative size reasoning is used when learning and understanding 

precalculus level ideas. I follow by providing an overview of prior research that discussed the 

role of relative size reasoning when learning topics in elementary school through calculus.  

Relative Size Reasoning in Rational Functions Literature 

When one has reasoned about rational functions productively, she can “coordinate the 

covarying relationship of the polynomial in the numerator (the input and output quantity of the 

polynomial) and the polynomial in the denominator (the input and output quantity of the 

polynomial)” (Pampel, 2017). This relationship represents the relative size of the value of the 

numerator in terms of the value of the denominator, which also varies with the input quantity. 

Using relative size reasoning to think about rational functions leads to reasoning quantitatively 

about characteristics of rational functions like end behavior, asymptotes, and holes rather than 

relying on algebraic manipulations (Pampel, 2017). 

Relative Size Reasoning in Trigonometry Literature 

Thompson (2008) argued that students’ difficulties in understanding trigonometry lie in the 

essential meanings they construct from grades 5 through 10, such as their meaning for an angle. 
Students are frequently introduced to the idea of angle measure as representing a location of an 

angle’s rays (e.g., a right angle is 90 degrees, and a straight angle is 180 degrees).  It is also 

common for students to have weak or incoherent meanings for what it means to measure an 

angle’s openness in degrees or radians. Measuring an angle’s openness in degrees consists of 

thinking about the angle’s openness in units of 1/360th of any circle’s circumference. When 

measuring an angle in radians, we compare the size of the arc length relative to the circle’s radius 

length (Moore, 2014, 2010; Tallman & Frank, 2018; Tallman 2015; Thompson, 2008). In other 

words, we are measuring the subtended arc of any circle cut off by the angle’s rays in units of its 

respective radius length.  
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Relative Size Reasoning in Exponential functions Literature 

O’Bryan (2018) claimed that understanding the idea of exponential functions relies on 

comparing two quantities multiplicatively. When one has reasoned about exponential functions 

coherently, she can “conceptualize an exponential function as a function with a constant growth 

factor or constant percent change over all equal sized intervals of the domain” (O’Bryan, 2018). 

In other words, students with a more developed understanding of exponential functions 

recognize that the growth factor for an 𝑛-unit change in the independent variable is a comparison 

of the relative size of two function values over that 𝑛-unit change.  

Relative Size Reasoning in Division and Fractions Literature 

Thompson and Saldanha (2003) characterized a mature understanding of fractions as 

involving multiplicative reasoning and strong meanings for measurement, multiplication, 

division and quotient. When students understand the idea of division (which entails measuring 

and partitioning) they understand that “any measure of a quantity induces a partition of it and 

that any partition of a quantity induces a measure of it” (Thompson & Saldanha, 2003). When 

fractions and division are thought of multiplicatively, “A is 𝑚/𝑛 times as large as B” means that 

A is 𝑚 times as large as 1/𝑛 of B (Thompson & Saldanha, 2003; Byerley & Thompson, 2012; 

Thompson et al., 2014). Thompson and Saldanha (2003) emphasize a direct link to reciprocal 

relationships of relative size to conceptualize fractions. This is similar to a person who is 

thinking with a Steffe Magnitude which Thompson, Carlson, Byerley, & Hatfield (2014) defined 

as one who is reasoning about measurement of a quantity’s size relative to the size of its unit and 

the reciprocal relationship between them. Thompson et al. (2014) described a conceptual analysis 

for developing a mature magnitude scheme that involves ideas such as multiplication, division, 

proportional correspondence, measure, fraction, and quotient as a measure of the relative size of 

two quantities. Conceptualizing division as relative size enables students’ conceptualization of 

divisors that are not-integer values (Byerley, Hatfield, and Thompson, 2012). Understanding 

reciprocal relationships of relative size entails conceptualizing the connectedness between ideas 

of measure, multiplication, fractions, and division. Thompson and Carlson (2017) and Byerley, 

Hatfield, and Thompson (2012) also argued that to understand the concept of rate of change, it 

involves an understanding of quotient, ratio, accumulation, and proportionality, which consists of 

thinking about the comparison of two quantities.  

  Theoretical Perspective 

The theoretical perspective used for this study is radical constructivism (Glasersfeld, 1995) 

which proposes that every individual has their own reality, knowledge is constructed based on 

previous personal experiences, and knowledge lies in the mind of the individual. It is important 

to note that knowledge is not transferable from one person to another. Only through models can 

we portray hypothetical models of students’ schemes and meanings. A scheme is an 

“organization of actions, operations, images, or schemes which can have many entry points that 

trigger action – and anticipations of outcomes of the organization’s activity” (Thompson et al., 

2014). When I say meaning I am referring to the “ideas or ways of thinking that someone intends 

to convey to someone else and uses signs or symbols to do so” (Thompson, 2013). Meanings that 

a person has exist in the mind of that individual and the person that is interpreting them. 

Therefore, my intention is not to classify how all students engage in relative size reasoning, but 

rather provide a model of an epistemic student’s thinking (Steffe & Thompson, 2000).  

Relative size reasoning is a way of thinking that is needed for conceptualizing a wide range of 

mathematical ideas, while engaging in relative size reasoning relies on one having mature 
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understandings of measurement, fractions, multiplication, division, ratio, proportionality, and 

magnitude. Relative size reasoning includes comparing the size of two quantities by envisioning 

the measure of one quantity in units of the other, provided the two quantities are of the same unit 

of measurement (the magnitude of one measured in units of the magnitude of the other). If they 

are not of the same unit of measurement, it involves thinking of the measure of one quantity in 

multiples of the measure of the other quantity. When I refer to a way of thinking, I am referring 

to a pattern that a person developed for utilizing specific meanings for reasoning about specific 

ideas (Thompson et al., 2014). Constructing productive meanings for these ideas involves 

quantitative reasoning (Thompson, 2011) and covariational reasoning (Carlson et al., 2002; 

Thompson and Carlson, 2017). 

To engage in relative size reasoning, one must first engage in quantitative reasoning 

(Thompson, 1990, 1993, 1994, 2011) which begins with conceiving of a quantity. A quantity is a 

“quality of something that one has conceived as admitting some measurement process” 

(Thompson, 1990). Quantification is the process of assigning numerical values to quantities 

(Thompson, 1990, 2011). Thompson (1990, 1994b, 2011) described quantitative reasoning as 

“the analysis of a situation into a quantitative structure- a network of quantities and quantitative 

relationships.” Quantitative relationships are 3 quantities where two quantities and a quantitative 

operation are used to make a third (Thompson, 1990). For instance, constant speed is a quantity 

that determines how many times as large the change in distance traveled is, in comparison to the 

corresponding change in time. In order to make this comparison, the student must also 

conceptualize the change in distance and change in time as quantities. Then the student must 

think about the changes in the quantities as the quantities vary in tandem which entails 

Covariational Reasoning, “the cognitive activities involved in coordinating two varying 

quantities while attending to the ways in which they change in relation to each other.” (Carlson 

et al, 2002). Thompson and Carlson (2017) argued that covariational reasoning entails 

developing the ability to imagine quantities’ values varying smoothly and continuously.   

Three Vignettes of Relative Size Reasoning  

I propose that relative size reasoning is a cross-cutting way of thinking that is used when 

learning and using numerous ideas in mathematics. I provide three vignettes grounded in 

research previously presented above to illustrate a student’s mental operations when engaging in 

relative size reasoning and why it is propitious for conceptualizing these situations.  

Vignette 1  

 
Figure 1. An image to represent the comparison of Haley and Darien’s Heights 

Suppose a student is first asked to compare Haley’s height to Darien’s height and then 

Darien’s height to Haley’s height (see Figure 1). The student must conceptualize the quantities in 

2021 Research in Undergraduate Mathematics Education Reports 413



the situation: Darien and Haley’s heights. When the student compares Haley’s height to Darien’s 

height, she must imagine measuring the magnitude (length) of Haley’s height relative to the 

magnitude (length) of Darien’s height. So the student must conceptualize Darien’s height as the 

unit of measure. Therefore, using her measurement scheme, she imagines Darien’s height as a 

measuring stick to determine Haley’s height in units of Darien’s height. Then using her scheme 

for fraction and division, she may think about how many times as tall Haley’s height is relative 

to Darien’s height. A student who exhibits these mental actions likely understands and can 

express that Haley is 
3

2
 times as tall as Darien. 

Then when comparing Darien’s height to Haley’s height, the student must imagine 

measuring the magnitude (length) of Darien’s height in units of the magnitude (length) of 

Haley’s height. Now she must reconceptualize the situation where Haley’s height is the 

measuring stick. Then the student may think about the multiplicative comparison as Darien is 
2

3
 times as tall as Haley. Engaging in relative size reasoning to compare Haley and Darien’s 

heights entails thinking of each measured height as a measurement unit or measuring stick used 

to measure the other person’s height.  

An example of a student who reasons in a way other than using relative size reasoning to 

think about comparing Haley and Darien’s heights may think about the fraction 
2

3
  or 

3

2
 as “2 over 

3” or as a rule that tells you to divide 2 by 3. This may result in the student seeing a fraction as a 

command to divide, and less likely to conceptualize the result of division as determining the 

relative size of one quantity in terms of another.  

Vignette 2 

 

Figure 2. An image of the sunflower’s height from week 4 to week 5. Task adapted from CCR exam (Carlson,  

Madison, West, 2015). 

Suppose we consider a task adapted from a CCR exam (Carlson, Madison, & West (2015). A 

sunflower is planted and grows by 50% each week as pictured in Figure 2. Given the height of 

the sunflower after 4 weeks, a student must find how tall the plant will be in week 5. Engaging in 

relative size reasoning while responding to this problem entails imagining the quantities in the 

problem context: the time in weeks since the sunflower was planted and the height of the plant. 

The student must visualize both the time since the sunflower was planted and the height of the 

sunflower as measurable attributes of the plant and consider the height of the sunflower while 

imagining the amount of time elapsed since the sunflower was planted.  

 When thinking about this situation the student must have a meaning for percent which 

entails understanding that the size of Quantity A is 𝑛% of the size of Quantity B means that the 

size of Quantity A is 𝑛 one one-hundredths of the size of Quantity B (O’Bryan, 2018). The 
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student’s percent scheme includes the idea that the quotient 
𝐴

𝐵
= 𝑛 ⋅ 0.01; the student interprets 

these symbols as expressing that the size of Quantity A is 0.01 times as large as Quantity B. 

Therefore, she sees that Quantity B is the measuring stick used to determine the size of Quantity 

A. In addition, the student must have a meaning for percent change that entails describing 

the change in the value of a quantity as a percentage of the original value.    

Specifically, for this question, a student must imagine using the height of the plant in week 4 

as the measuring unit. Given that the plant grows by 50% each week, one must conceptualize the 

sunflower growing by 50% and seeing an increase of 50% as the percent change as each week 

passes. So, when comparing the height of the sunflower in week 5 to week 4, she would see that 

the height of the sunflower in week 5 is 150% of the sunflower’s height in week 4. The student 

would see the multiplicative comparison of the height of the sunflower in week 5 as 1.5 𝑜𝑟 (
3

2
) 

times as tall as it was in week 4. Determining the reciprocal relationship of the height of the 

sunflower in week 4 relative to week 5 requires conceptualizing the sunflower’s height in week 5 

as the measuring unit. Understanding the reciprocal relationship in terms of percentage entails 

the idea that the height of the sunflower in week 5 is the reference quantity and the height in 

week 4 is about 66.67% of the plant’s height in week 5. Thus, the sunflower’s height in week 4 is 
2

3
  times as tall as it is in week 5. Engaging in relative size reasoning to compare the heights of 

the sunflower for weeks 4 and 5 entails thinking of the sunflower’s height in a certain week as a 

measurement unit used to measure the sunflower’s height for another particular week.  

Vignette 3 

 

Figure 3. Left: An image of a circle with an angle centered at the circle’s center with a terminal point at 𝑠𝑖𝑛(0.73). 

Right: An image of the height of the terminal point’s vertical distance above the circle’s center relative to the radius 

of the circle.   

Another example of using relative size reasoning to make sense of a situation would be to 

describe the meaning of the output value of the sine function given an angle measure of 0.73 

radians as pictured in Figure 3. Using relative size reasoning to think about the sine function 

entails imagining that, when given an angle whose initial ray is in the 3 o’clock position and 

vertex is at the center of a circle, the sine function will take the angle's radian measure as an 

input and output the terminal point’s vertical distance above the circle's center measured in 

radius lengths. The student would have to conceptualize the radius length as the measuring stick. 

With this meaning the student may reason about the terminal point’s vertical distance above the 

circle’s center in radius lengths given an angle with a measure of 0.73 radians using the sine 
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function: 𝑠𝑖𝑛(0.73) ≈ 0.668 ≈
2

3
. Thus, she must conceptualize the relative size of the terminal 

point’s vertical distance above the circle’s center measured in units of the radius lengths. The 

student must conceptualize that the terminal point’s vertical distance above the circle’s center 

measured in radius lengths is 
2

3
 times as long as the radius length. Understanding the reciprocal 

relationship entails using the terminal point’s vertical distance above the circle’s center as the 

unit of measure for determining the relative size of the radius in comparison to the terminal 

point’s vertical distance above the circle’s center. This conceptualization includes seeing that the 

radius length is 
3

2
 times as long as the terminal point’s vertical distance above the circle’s center. 

An example of a student who views the meaning of the sine function in ways other than 

relative size reasoning may include thinking about “opposite over hypotenuse” or “SOH” in the 

acronym SOH-CAH-TOA. Students who learn trigonometric functions as SOH-CAH-TOA will 

be at a disadvantage when it comes to needing to think about the arguments of these functions 

and what they represent. Especially since recognizing that angle measure in radians represents 

this proportional relationship between the subtended arc of any circle cut off by the angle’s rays 

and the corresponding circle’s radius requires relative size reasoning. Engaging in relative size 

reasoning to compare the terminal point’s vertical distance above the circle’s center to the 

circle’s radius entails thinking of each measured length (either the radius or vertical distance) as 

a measurement unit or measuring stick used to measure the other length.  

Discussion, Limitations & Future Research  

Since conjecturing relative size reasoning is foundational for understanding many ideas in 

mathematics, it is necessary to emphasize this as an important way of thinking for students to 

acquire. When engaging in relative size reasoning, thinking about comparing any two quantities 

(fixed or varying) in the previous situations, one must reason about the relative size of one 

quantity in units of the other and see the reciprocal relationship as well. Students who think 

about fractions and division as a command to divide may be limited to seeing the meaning of the 

result of division and the connections between their ways of thinking while approaching 

problems in different topics. Students who think about trigonometric functions as an acronym 

may be limited when it comes to thinking about measuring an angle in radians. Empirical studies 

are needed to further refine the conceptual analysis presented, to further investigate how students 

spontaneously use (or don’t use) relative size reasoning, and to explore the role of relative size 

reasoning in learning and using other ideas in precalculus and calculus. 

I hypothesize that supporting student’s in engaging in relative size reasoning will strengthen 

their ability to characterize the covariation in two quantities as their values change together and 

understand key concepts (constant rate of change, exponential growth, derivative) in 

mathematics.  

Future Research Questions:  

1. What meanings do students display or exhibit about the concept of relative size across 

multiple precalculus topics: constant rate of change, proportionality, exponential 

functions, rational functions, and trigonometry? 

2. What are ways that a mathematics curriculum and a teacher can support students in 

developing relative size reasoning?  
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