PROCEEDINGS OF THE
16™ ANNUAL CONFERENCE ON
RESEARCH IN UNDERGRADUATE
MATHEMATICS EDUCATION

EDITORS

STACY BROWN
GULDEN KARAKOK
KYEONG HAH ROH
MICHAEL OEHRTMAN

DENVER, COLORADO
FEBRUARY 21 - FEBRUARY 23, 2013

PRESENTED BY

THE SPECIAL INTEREST GROUP OF THE MATHEMATICS
ASSOCIATION OF AMERICA (SIGMAA) FOR RESEARCH IN
UNDERGRADUATE MATHEMATICS EDUCATION



Copyright @ 2013 left to authors
All rights reserved

CITATION: In (Eds.) S. Brown, G. Karakok, K. H. Roh, and M. Oehrtman, Proceedings
of the 16th Annual Conference on Research in Undergraduate Mathematics Education, 2013,
Denver, Colorado.

ii



FOREWARD

As part of its on-going activities to foster research in undergraduate mathematics education
and the dissemination of such research, the Special Interest Group of the Mathematical Associ-
ation of America on Research in Undergraduate Mathematics Education (SIGMAA on RUME)
held its sixteenth annual Conference on Research in Undergraduate Mathematics Education in
Denver, Colorado from February 21 - 23, 2013.

The conference is a forum for researchers in collegiate mathematics education to share results
of research addressing issues pertinent to the learning and teaching of undergraduate mathe-
matics. The conference is organized around the following themes: results of current research,
contemporary theoretical perspectives and research paradigms, and innovative methodologies
and analytic approaches as they pertain to the study of undergraduate mathematics education.

The program included plenary addresses by Dr. Patrick Thompson, Dr. Koene Gravemeijer, Dr.
Loretta Jones, and Dr. Keith Weber and the presentation of over 117 contributed, preliminary,
and theoretical research reports and posters. In addition to these activities, faculty, students
and artists contributed to displays on Art and Undergraduate Mathematics Education.

The Proceedings of the 16th Annual Conference on Research in Undergraduate Mathematics
Education are our record of the presentations given and it is our hope that they will serve
both as a resource for future research, as our field continues to expand in its areas of interest,
methodological approaches, theoretical frameworks, and analytical paradigms, and as a resource
for faculty in mathematics departments, who wish to use research to inform mathematics in-
struction in the university classroom.

Volume 1, RUME Conference Papers, includes conference papers that underwent a rigorous
review by two or more reviewers. These papers represent current work in the field of under-
graduate mathematics education and are elaborations of selected RUME Conference Reports.
Volume 1 begins with the winner of the best paper award and the papers receiving honorable
mention. These awards are bestowed upon papers that make a substantial contribution to the
field in terms of raising new questions or providing significant or unique insights into existing
research programs.

Volume 2, RUME Conference Reports, includes the Poster Abstracts and the Contributed,
Preliminary and Theoretical Research Reports that were presented at the conference and that
underwent a rigorous review by at least three reviewers prior to the conference. Contributed
Research Reports discuss completed research studies on undergraduate mathematics education
and address findings from these studies, contemporary theoretical perspectives, and research
paradigms. Preliminary Research Reports discuss ongoing and exploratory research studies of
undergraduate mathematics education. Theoretical Research Reports describe new theoretical
perspectives and frameworks for research on undergraduate mathematics education.

Last but not least, we wish to acknowledge the conference program committee and reviewers,
for their substantial contributions to RUME and our institutions, for their support.

Sincerely,

Stacy Brown, RUME Conference Chairperson
Gulden Karakok, RUME Conference Local Organizer
Kyeong Hah Roh, RUME Program Chair

Michael Oehrtman, RUME Coordinator
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UTILIZING TYPES OF MATHEMATICAL ACTIVITIES TO FACILITATE
CHARACTERIZING STUDENT UNDERSTANDING OF SPAN AND LINEAR
INDEPENDENCE

Megan Wawro David Plaxco
Virginia Tech Virginia Tech

The purpose of this study is to characterize students’ conceptions of span and linear
(in)dependence and to utilize mathematical activities to provide insight into these conceptions.
The data under consideration are portions of individual interviews with linear algebra students.
Grounded analysis revealed a wide range of student conceptions of span and linear
(in)dependence. The authors organized these conceptions into four categories: travel, geometric,
vector algebraic, and matrix algebraic. To further illuminate participants’ conceptions of span
and linear (in)dependence, the authors developed a framework to classify the participants’
engagement into five types of mathematical activity: defining, proving, relating, example
generating, and problem solving. This framework proves useful in providing finer-grained
analyses of students’ conceptions and the potential value and/or limitations of such conceptions
in certain contexts.

Key words: Span, Linear Independence, Linear Algebra, Mathematical Activity, Concept Image

The purpose of the study is to investigate student thinking about the important ideas of span
and linear independence in linear algebra and to contribute to the body of knowledge regarding
how individuals understand undergraduate mathematics. In particular, our research goals are:

1. To classify students’ conceptions of span and linear (in)dependence.

2. To investigate how students use these conceptions to reason about relationships between

span and linear (in)dependence.

The present study focused on interview data that elicited student reasoning about span and
linear (in)dependence. We oriented our analysis through a grounded theory approach (Glaser &
Strauss, 1967) in order to identify student conceptions of span and linear (in)dependence. We
noticed that in coding students’ conceptions, for which we made use of Tall and Vinner’s (1981)
construct of concept image, our analysis was facilitated by noting the type of mathematical
activity in which the students were engaged as they were sharing their ways of reasoning. In
other words, the interview question to which a student was responding had the potential of
eliciting different aspects of the student’s concept images. This is consistent with Vinner’s
(1991) notion of evoked concept image. For example, students’ reasons why a claim was true or
false revealed ways of thinking about the associated concepts differently than did their response
to “how do you personally think about this concept?”” As such, we identified within the data set
five mathematical activities in which students engaged during the interviews: defining, proving,
relating, example generating, and problem solving. We use these activities as a means through
which to extend and further clarify the broader concept image framework. Thus, within this
study we show how these mathematical activities can be used as a lens to further refine
characterizations of students’ concept images of span and linear (in)dependence.

Given this framework, our refined research objectives are (a) to investigate students’ concept
images of span, linear (in)dependence, and relationships between the two concepts and (b) to
utilize the mathematical activities of defining, proving, relating, example generating, and
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problem solving, to provide insight into these concept images. Our results section details the four
concept image categories that grew out of our data: travel, geometric, vector algebraic, and
matrix algebraic. We also define the five mathematical activities and provide examples of how
coordination of the frameworks informed analysis of student thinking.

Literature Review

There exists a growing body of research regarding multiple modes of description or
reasoning within linear algebra. Two of the most cited are those by Hillel (2000) and Sierpinska
(2000). Hillel suggested three possible modes of description for vectors and vector operations,
namely geometric, algebraic, and abstract. The abstract mode utilizes language of generalized
theory, including terms such as dimension, span, linear combination, and subspace. The
algebraic mode uses concepts more particular to the vector space R”, such as matrix, rank, and
systems of linear equations. Finally, the geometric mode uses language that is familiar from our
lived experiences, such as point, line, plane, and geometric transformation (p. 192). Hillel details
difficulties students have within a given mode (such as confusion potentially caused by
describing vectors as both arrows and points, both a geometric description of vectors), as well as
difficulties moving between modes (such as how the difficulty in change of basis problems
within R"” may relate to switching between algebraic and abstract modes). Attributing them to the
historical development of linear algebra, Sierpinska (2000) suggests three modes of thinking in
linear algebra: synthetic-geometric, analytic-algebraic, and analytic-structural. The first mode
focuses on spatial reasoning, the second on algebraic manipulation and representation, and the
third on formal, theorem-based and axiomatic thinking.

In other research in linear algebra, Stewart (2009) and Stewart and Thomas (2010)
coordinated APOS Theory (Dubinsky & McDonald, 2001) with Tall’s (2004) Three Worlds of
Mathematics to characterize the various possibilities for student understanding of linear
independence, span, and basis according to the authors’ genetic decomposition of the concepts.
That is, the authors described possible conceptions along each level of the APOS framework—
action, process, and object—and within the three worlds of mathematics—Embodied, Symbolic,
and Formal. They classified and analyzed students’ responses (from two different classes) using
to this framework. The authors found that students in the more traditional course relied heavily
on matrix manipulation (classified as a process-symbolic matrix conception at best) with little
connection being drawn between the matrix manipulation and the associated concepts. Also, the
participants in the study seemed to have limited understanding of the concept of linear
combination, upon which the concepts of span and linear (in)dependence (and hence basis) rest.
The authors recommended instruction that focuses on geometrically grounded development of
the concepts (specifically linear combination), cautioned against too much reliance on the
embodied aspects of linear algebra, and suggested that an appropriate balance would develop the
concepts from a more geometric approach and relate these concepts at a more formal level.

This literature has informed and shaped the research we present in this paper. We drew
inspiration with respect to the various modes of description that are possible within linear algebra
as an aspect of student reasoning to be sensitive to within our analysis. While these studies
expand our knowledge of student conceptions of span and linear (in)dependence, the current
study differs in that our analysis of student conceptions are grounded with no a priori
categorizations. As such, we also draw from the notion of concept image (Tall & Vinner, 1991),
which has been utilized and adopted as an analytical framework to characterize students’
conceptions of ideas within linear algebra. This approach allows categorizations to surface from
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the data through grounded theory, rather than through a priori classifications. For example,
Zandieh, Ellis, and Rasmussen (2012) investigated students’ conceptions of function and linear
transformation and discovered five concept image categories for linear transformation within
their data, such as morphing (an input morphs into an output) or machine (a transformation acts
on an input to produce an output). Wawro, Sweeney, and Rabin (2011) document concept image
categories for students’ conceptions of subspace within linear algebra, namely part of whole,
geometric object, and algebraic object. Although these categories were grounded in data, there
exist points of compatibility with Hillel’s and Sierpinska’s groupings.

Setting and Participants

The data for this study come from a semester-long classroom teaching experiment (Cobb,
2000) conducted in an introductory linear algebra course at a large public university. Classroom
instruction was guided by the instructional design theory of Realistic Mathematics Education
(RME) (Freudenthal, 1991), with the goal of creating a linear algebra course that built on student
concepts and reasoning as the starting point from which more complex and formal reasoning
developed. The class engaged in various RME-inspired instructional sequences focused on
developing a deep understanding of key concepts such as span and linear independence (Wawro,
Rasmussen, Zandieh, Sweeney, & Larson, 2012), linear transformations (Wawro, Larson,
Zandieh, & Rasmussen, 2012), Eigen theory, and change of basis.

The five students analyzed in this research - Abraham (a junior statistics major), Giovanni (a
senior business major), Justin (a sophomore mathematics major), Aziz (a junior chemical physics
major), and Kaemon (a senior computer engineering major) - participated in semi-structured
individual interviews (Bernard, 1988) the week after final exams. Each interview lasted
approximately ninety minutes. The purpose of the interview was to investigate how students
reasoned about the concept statements that comprise the Invertible Matrix Theorem; the entirety
of the interview protocol can be found in Wawro (2011). The current study considered only a
portion of this data: students’ conceptions of span, linear (in)dependence, and how they relate to
each other. The interview questions analyzed in this study are given in Figure 1. Video
recordings and transcripts of the interviews served as primary data sources, with all written work
serving a secondary role.

Methods

Videos and transcriptions of the participants’ responses to Questions la and 1b were
iteratively analyzed. In the first analysis, the researchers focused on the logical progression of the
participants’ argumentation and what mathematical objects the participants attributed as ‘acting’
in different parts of their discussion (i.e., “the matrix spans R*” or “the vector moves in this
direction”). A summarizing process that described the participants’ general progression followed
this analysis. A second analysis parsed out students’ conceptions of linear (in)dependence and
span, and we oriented our analysis through a grounded theory approach (Glaser & Strauss, 1967).
We also separated general discussion of a concept from instances in which the interviewer
directly asked the student to define the given concept. Quotes were drawn from the transcript and
grouped by which concept the student was arguing with or describing. It was in this iteration of
analysis that distinctions between types of activity became clear and led to the formation of the
five categories of activity. In the next iteration of analysis, the researchers categorized student
quotes according to these five activities and separated the quotes according to span, linear
independence, or linear dependence. These quote collections were then compared for categorical
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similarities and differences. At every stage of this process, the two researchers continually
questioned and challenged each other’s decisions, such as motivation for choice of categorization
or interpretation of a student’s quote (Denzin, 1978).

“Suppose you have a 3 x 3 matrix 4, and you know that the columns of A span R®. Decide if the following
statements are true or false, and explain your answer:”
Question 1a
The column vectors of 4 are linearly dependent.
Follow-ups. Skip if redundant:
o “How do you think about span?”
o “How do you think about what it means for vectors to be linearly dependent?
o  “How does linear dependence relate to span of a set of vectors?
Question 1b
The row-reduced echelon form of 4 has three pivots.
Follow-ups. Skip if redundant:
o “How do you think about what a pivot is?
o “How do pivots of a matrix relate to span of a set of vectors?”

Figure 1. Interview questions analyzed for this study.

Results

The participants in this study used a variety of language to describe their understanding of
span, linear (in)dependence, and how the two concepts relate to each other. We organized this
variety into four concept image categories: travel, geometric, vector algebraic, and matrix
algebraic (see Table 1). We also identified five mathematical activities in which students
engaged during the interview: defining, proving, relating, example generating, and problem
solving (Table 2). Within this section, we first detail the concept image category framework and
the mathematical activity framework. We then illustrate the dual coding with an example from
Justin’s interview. The remainder of the section illustrates how the dual framework lends insight
and nuance to characterizations of students’ ways of reasoning about span and linear
(in)dependence.

Table 1. Summary of the concept image framework for span and linear (in)dependence.
Category Description

Travel * Language indicative of purposeful movement
*  Captures notions of “getting to” or “moving to” locations in the vector space
Geometric * Language indicative of spatial reasoning or graphical representations without use

of travel-oriented language
* Included sketches of vectors and/or discussion of objects such as lines and planes
Vector * Participants use operations on algebraic representations of vectors to describe
Algebraic concept
* Includes linear combination of vectors written as n X 1 matrices or designated by
variables (i.e., 2v + 3w)
Matrix * Involves explicit attention to the form or properties of a matrix (e.g., size, actual
Algebraic values, pivots)
* Participants focus on operations on matrices (e.g., Gaussian elimination)

Categories of student conceptions
The travel category captures students’ description of span and linear (in)dependence in terms
indicative of purposeful movement. While this category is consistent with spatial and geometric
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reasoning, it is more specific in that it captures notions of “getting to” or “moving to” locations
in the vector space under consideration. The participants’ travel conceptions of span were
indicated by phrases such as “everywhere you can get” (stated by Justin when describing the
span of a set of vectors) or “the vectors can take you anywhere [in R*]” (stated by Giovanni
when describing what it means for vectors to span R®). With respect to linear independence,
participants’ travel conceptions included phrases such as “[the vectors] only move farther away”
(Justin). A travel conception of linear dependence was generally indicated by phrases such as
“then that would make that linearly dependent because I can, I can kind of get there and take that
vector back” (Abraham), and “you can move one way on one vector, second way, and then take
the third one back to the origin.” (Aziz). These were often given as the inverse of phrases used to
describe sets of linearly independent vectors.

The geometric category is used to capture language indicative of spatial reasoning or
graphical representations without use of travel-oriented language. This includes student
explanations in which vectors are represented graphically on 2- or 3-dimensional axes, or when
explanations include sketches or mention of objects such as lines, planes, or areas. For instance,
when asked to discuss the span of three linearly dependent vectors he had given as an example,
Kaemon stated, “So since it's, like you're on this one line, you can't really get all the
combinations that are in these quadrants.” When asked how he thinks about what span means,
Aziz replied, “Span is just the area that it covers. It could be a plane in R?, it could be a line in

R*.” Most examples of the geometric category with respect to linear dependence consisted of

students showing either two collinear vectors or three vectors placed head to tail to form a
triangle with one vertex at the origin. For instance, Abraham constructed an example of three
vectors in R” and an associated sketch (see Figure 2) to explain geometrically why the three

vectors are linearly dependent.
t > 3
>4 6 N
S il

Figure 2. Abraham’s geometric explanation of three linearly dependent vectors.

The vector algebraic category captures participants’ use of operations on algebraic
representations of vectors to describe span and linear (in)dependence. This includes scalar
multiplication, vector addition, and linear combination of vectors written as » x 1 matrices,
vectors designated by variables (i.e., 2v + 3w), as well as the use of the equation Ax = b. Vector
algebraic conceptions of span included “every vector you can make with linear combinations of
the columns” (Justin) and “in order to span R®, vectors have to be different” (Giovanni). Vector
algebraic conceptions of linear independence consisted of some form of the notion that only the
trivial linear combination of linearly independent vectors would equal the zero vector. An
example of a student description of linear dependence that we coded as vector algebraic is, “But
if it's linearly dependent, then there wouldn't be enough vectors because at least two of them are
going to be maybe multiples of each other or just the zero vector” (Kaemon). Here, Kaemon
attends to the quality of vectors being multiples of one another (as opposed to, say, vectors being
collinear) to justify their linear dependence. One participant, Abraham, described linear
independence as when the equation 4x = b has one unique solution. This notion is included in
this category because Abraham tended to focus on the product as a linear combination of column
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vectors of A4 rather than on the matrix as an entity mapping x to b or as a system of linear
equations (Larson & Zandieh, in press). Vector algebraic conceptions of linear dependence
include when a nontrivial linear combination yields the zero vector and also the process of
scaling one vector or taking a linear combination of vectors in order to produce a linearly
dependent set.

Finally, the matrix algebraic category captures participants’ explicit attention to the form or
properties of a matrix, or on procedural operations on matrices. With respect to form or
properties of matrices, instances in which students referenced the size or dimension of matrix
when reasoning about span or linear (in)dependence were coded as matrix algebraic conceptions
of span or linear (in)dependence. For instance, Giovanni’s statement of, “I mean I would see it as
being linearly dependent because you have more columns than rows” is an example of a matrix
algebraic conception of linear dependence because he attended to the form of the matrix (more
columns than rows). Instances in which participants made use of matrix-oriented algorithms such
as Gaussian elimination through elementary row operations were also coded as matrix algebraic
conceptions. For example, Aziz stated, “If it [a 3x3 matrix] doesn't reduce to the identity then it
means it doesn't span all of R In fact, in our data, this was most prevalent occurrence of a
matrix algebra conception—that is, participants’ reliance on the row-reduced echelon form of a
matrix either equaling the identity matrix or containing a row or column of zeros.

Types of Mathematical Activity

The construct of types of mathematical activity emerged from our grounded analysis of the
data. As we analyzed students’ understanding of span and linear (in)dependence in light of the
concept image construct, we found ourselves continually drawn to notice the #ype of activity in
which students were engaged as they responded to the interview questions. For instance, if a
student spoke of span using a phrase such as “get everywhere,” was that student engaged in
explaining how span related to linear independence, explaining how he thought about the
concept of span itself, or some other activity? As such, we identified five mathematical activities
within the interview data: defining, proving, relating, example generating, and problem solving
(see Table 2). We contend that considering the five mathematical activities provides insight into
a student’s understanding of a concept. We can consider these facets of a student’s interaction
with the world based on what s/he understands a concept to be. These activities do not always
occur in isolation. Furthermore, an activity may arise naturally based on the interview prompt or
may occur spontaneously. Here we provide descriptions and examples of each category of
mathematical activity.

Table 2. Summary of the mathematical activity framework.

Mathematical Activity | Definition

Defining The act of describing a concept’s essential qualities

Proving The act of providing a justification to a claim

Relating The act of comparing, contrasting, or explaining relationships between
different concepts or between different interpretations of the same concept

Example Generating The act of creating cases of certain concepts or properties (e.g., a set of three
linearly dependent vectors in R’)

Problem Solving The act of engaging in some calculation or reasoning with a specific goal to
determine a previously unknown result
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We use the term defining to mean the act of describing a concept’s essential qualities. During
the interviews, students were not asked to create definitions for concepts that were new to them,
but rather to explain their notion of a concept that had been defined during their linear algebra
course. As such, this use of defining may be of a slightly different connotation than the
discipline-specific practice of defining (e.g., Zandieh & Rasmussen, 2010). For example,
Giovanni, when prompted to explain in general how he thought about span, replied, “The way
that I think of span is just being able to reach anywhere in, like in R?, like in that dimension, like
you're able to get to all points in R>.” Also, if students spontaneously (i.e., without prompting)
described a concept, we coded that as a “defining” activity. An example of this is given in the
next section, in which Justin spontaneously describes the concepts of linear independence and
linear dependence in service of explaining how the two concepts are similar and different.

We use the term proving to mean the act of providing a justification to a claim. This
reasoning process may be of various levels of mathematical rigor, and it may be carried out for
the participant’s personal conviction or to convince the interviewer. This justification may be of
a variety of forms, such as a chain of reasoning or a coordination of more than one justification
to support a claim. As such, we use “proving” similarly to Harel and Sowder’s (1998) use of “the
process of proving,” which included the subprocesses of ascertaining and persuading. For
example, in response to Question la in Figure 1, Giovanni states:

That's false, because in order to have a 3 by 3 matrix that spans all of R’, the column vectors

have to be linearly independent. And so that's how, basically that's the definition, so I think

of it that way.
In response to the same question, Aziz asserts, “The matrix 4 is a 3 by 3 ... and since it spans all
of R®, the columns, the column vectors of A are linearly independent.” As implicitly illustrated
by this quote, the proving code is not meant to determine levels of acceptability or correctness of
the student’s statement; rather, it is solely meant to convey when students are engaged in the
mathematical activity of proving.

We use the term relating to denote any participant activity that compares, contrasts, or
explains relationships between two concepts or between different interpretations of the same
concept. The activities of proving and relating are similar, but distinct. We distinguish between
these activities by attending to the overarching purpose of the student’s utterance. For instance,
participants might provide a statement of two concepts’ relationship in support of claims during a
proving activity. In the next section, we provide an example of relating activity. The activity of
example generating denotes when participants create cases of certain concepts or properties (e.g.,
a set of three linearly dependent vectors in R?). As with the other activities, this may be
prompted by the interviewer explicitly or spontaneously done by the interviewee. Finally, the
activity of problem solving is engaging in some calculation or reasoning with a specific goal to
determine a previously unknown result; this is consistent with the NCTM Process Standard
definition of problem solving (NCTM, 2000). For example, to glean more information about a
student’s conception of span or linear (in)dependence, the interviewer occasionally would pose a
problem about span or linear (in)dependence to a student and have him solve it. The activity of
problem solving did not occur as frequently as the other codes within the data set; we attribute
this to the nature of the interview questions, which were created to have students engage in
justifying a true/false conclusion and explaining their understanding of the related concepts.
Thus, by virtue of the interview questions, the mathematical activities of defining, proving, and
relating were most common in the data set.
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Coordinated Analysis: Using the Two Frameworks

We first illustrate, with one short section of transcript, how we made use of the two
frameworks within our analysis. The given transcript comes from a portion of Justin’s interview
in which he was describing the differences and similarities between linear independence and
linear dependence:

Justin: They're exactly the same as in it's where you can get, it's just different
rules in how you get there, and if you can get back and whatnot.

Interviewer: Can you say some more about the difference in the rules?

Justin: The difference is huge! You know, uh, the difference is that with
independence, you can only go farther away and maybe kind of
sideways, but you can't come back. Dependence, you can make it back
to where you started.

And, um, so even though I know they're not the same at all really, it's
just they are the same because it's describing where you can get to, just
0 it says different things about them.

— O 001N DN K W~

In lines 1-2, we code Justin’s discourse as the mathematical activity of relating, and the
underlined portions indicate an image category of travel. In response to the interviewer’s inquiry
in line 3, Justin elaborates. In line 4, Justin relates linear independence and dependence by
saying “the difference is huge.” In lines 5-7, he then, in order to substantiate that claim, engages
in the activity of defining. That is, he gives what, to him, is an essential quality of linear
independence by stating, “You can only go farther away and maybe kind of sideways, but you
can’t come back.” He then engages similarly for linear dependence, stating, “You can make it
back to where you started.” Both of these activities of defining are marked with language
consistent with travel imagery, as indicated by the underlined portions of lines 5-7. Finally, we
code Justin’s discourse in lines 8-10 as relating as he concludes his explanation of the
similarities and differences between linear independence and dependence, all which again using
language consistent with the travel image category.

The remainder of the results section is dedicated to three examples that illustrate how
coordinated analyses using the two frameworks lends insight into the research results. That is, we
consider how three participants (Abraham, Kaemon, and Aziz) engaged in Question 1a (see
Figure 1). Each participant’s response provides a unique opportunity to observe how
coordinating the two frameworks is useful. First, we show how Abraham’s problem solving
activity provides insight into how he related his varied conceptions of span. We then show how
Kaemon’s restricted conceptions of span and linear dependence possibly prevented him from
meaningfully relating the two concepts. Finally, we describe Aziz’s process of ‘refiguring out’
how his notions of span and linear dependence are related through an example generating
activity.

Abraham. We begin by providing the first portion of transcript of Abraham’s initial
response to Question la:

1 Abraham: That would be false. Let's see. [7-sec pause] So if, the way I think of it is,
2 if it, if it's spanning a 3 by 3 matrix [draws the outer brackets for a matrix],
3 um, then it's going to have like, you know, three pivot positions here

4 [writes three ones in on the diagonal of his matrix]. And for like a square
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matrix, [ just think like if this is three pivots in each row, then it's also
going to be, automatically going to be 3 pivots in each column. And that
way you're always going to have a linearly independent set of...of, um, like
x equals something, y equals something, z equals something, because of
that. And then that’s, so that's going to be, basically a unique solution for
every output. So let's see, so [writes Ax = b], for every b there's a unique x
vector.

— = O 00 0 O\ W

—_ O

After (correctly) commenting that the given statement is false, Abraham began by writing an
empty matrix with 1’s on the main diagonal (lines 1-4) and claimed that “if it’s spanning a 3x3
matrix” (line 2), there would be three pivots down the diagonal. We note that Abraham did not
directly address whether the matrix is given in this form or whether it must be manipulated to fit
this form (via elementary row operations). He went on to claim that such a set of vectors would
be linearly independent because the equation Ax = b has a unique solution (lines 6-11). We
categorize these initial statements as the mathematical activity of proving. We further coded this
as matrix algebraic because his language indicates that Abraham utilized matrix algebraic
conceptions of span and linear independence within his justification. Later, however, while
explaining why he drew the three 1°s down the diagonal of the matrix, Abraham said, “if it's
spanning something, it kind of needs to, I think of it like it needs to go in every direction.” Here,
Abraham provided an essential quality of span, so this was coded as a defining activity. Notice
also that the language of this defining activity indicates a travel conception of span, distinct from
his previous use of a matrix algebraic conception of span.

The interviewer probed Abraham to further explain the connection between the 1’s and
“going in every direction”:

12 Interviewer: How is it that those 3 pivot positions allow you to do those 3 directions?

13 Abraham: I go in this direction and then I can kind of pivot up, you know to go to this
14 direction ... so I can kind of go any direction, based on these 3 pivots, like
15 pivoting in each direction, to get to any point.

16 Interviewer: That's interesting, I like that language. So like if, say you had an example
17 like, I don’t know, 3,4,5, can you explain how you would use that language
18 of pivoting to get to 3,4,5?

19  Abraham: I'm, ’'m saying that I could use, you know, three [writes “3<1,0,0>"] of

20 that one, a linear combination of this guy [writes “+ 4<0,1,0>"] and then
21 this [writes “+ 5<0,0,1> =""]. I could write that out as a linear combination
22 of 3,4,5 [writes “<3,4,5> to the right of the equals sign]. And so you can

23 see, I can do that for a lot of different vectors, and so if I think of it in these
24 terms, the basis vectors, that I could, you know, whatever I put here [points
25 to the 3’ in his first vector’s scalar], is going to be at the top [points to the
26 ‘3’ in the <3,4,5> vector]. So I can get to any point there, I can get to any
27 point there [repeats the analogous gestures for the “4” and ‘5] and so forth
28 to get to that point.

3
Within lines 19-28, Abraham showed, for the given vector [4], how the columns in the
5
matrix with spanning column vectors (standard basis vectors) could be used in linear
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combination “to get to that point.” In lines 23-28, Abraham alluded to being able to do this for
any given vector. The mathematical activity within lines 23-28 is coded as problem solving

3

4] is a specific instantiation of a general vector in R, and because Abraham

5
engages in his demonstration through an algorithmic process. What is notable about this process

is that Abraham’s actions focused on each column of the matrix as an individual vector, whereby

he calculated a scalar multiple for each vector so that the resulting linear combination would
3

4

5
conceptions of span (in lines 1-11) to a vector algebraic conception of span, within which his

actions were oriented around linear combinations of vectors (lines 19-28).

Through the problem solving activity, Abraham demonstrated relationships between his
travel and matrix algebraic conceptions of span. This could be thought of as a “meta-relating”
activity, within which — although the immediate purpose of his work was to solve a closed-ended
problem — Abraham used a linear combination of vectors to relate how the matrix with spanning
column vectors (his matrix algebraic conception of span) indeed reaches everywhere in R? (his
travel conception of span). We can view this as Abraham’s active coordination of his many
conceptions of span, in which the various parts of his understanding come together to produce a
meaningful (to Abraham) way for him to think about what it means for vectors to span a vector
space. Thus, by using the dual framework to consider Abraham’s engagement in this specific
mathematical problem, the researchers gained deeper insight into his conceptions of span and
linear independence than when merely stating an essential quality — an insight into how Ae
operationally coordinated his own varied understanding.

Kaemon. In his initial response to Question 1a, Kaemon said the following:

because the vector

yield the vector |4 |. That is, Abraham’s focus shifted from matrix algebraic and travel

1 Kaemon:  Ok. [6-sec pause] Uh, I say that this is false because the key is that it's 3

2 by 3 and it’s, it says you know that the columns of 4 span R?, so, um, like
3 the minimal amount of vectors you could have to span R’ is at least three.
4 But if it's linearly dependent, then there wouldn't be enough vectors,

5 because at least two of them are going to be maybe multiples of each other
6 or just the zero vector. So that's why I say it is false.

Kaemon engaged in this proving activity using a matrix algebraic conception of span (focusing
on the size of the matrix, lines 1-3) and a vector algebraic conception of linear dependence (how
individual vectors relate to each other, lines 4-6). The interviewer then asked Kaemon to
generate an example of a matrix with linearly dependent column vectors, to which he responded

1 2 0
with the matrix [1 2 0]. This example generating activity shows Kaemon attended to the
1 2 0

relationships between the individual vectors, also indicating a vector algebraic conception of
linear dependence. When asked to explain why these columns vectors are linearly dependent,
Kaemon stated that these vectors are “all on the same line”” and added, “they won't be able to
span, it's dependent.” This first statement shows that Kaemon is attending to a geometric
conception of linear dependence when discussing the example he generated. The second
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statement 1s coded as relating activity, although there is no clear indication of what conception of
span and linear dependence Kaemon is attending to when stating this relationship.
The interviewer then asked Kaemon to define span, prompting the following dialogue:

7  Kaemon: I think span is, I think it's all the possible linear combinations of the matrix.
8 So since it's, like you're on this one line, you can't really get all the

9 combinations that are in these quadrants [moves pen around the coordinate
10 system], so that's how I think ofit.

11 Interviewer: Ok. So you just said a second ago the way you think of span is all of the

12 linear combinations of the columns? That's good. Um, how do you think
13 about linear dependence in general?

14  Kaemon: Um, dependence for me is just, first I just try to look with, if there's a

15 matrix to see if it's, like, if it's already reduced, then I see if there's a

16 variable, or I see that they're multiples, that they're 0 vector, just something
17 to show it's dependent. And then if I can't find that, like, right away, then
18 maybe I'll try to then, I don’t know, try to reduce it, whatever, just until I
19 could figure it out.

We categorize lines 7-10 as defining activity indicative of a vector algebraic conception of span.
This is a slight shift from Kaemon’s earlier focus on the dimensions of the matrix (taken to mean
height and width of an array, not necessarily the formal, vector algebraic dimension, lines 1-2).
This dialogue also indicates a shift from vector algebraic and geometric conceptions of linear
dependence to a matrix algebraic conception, because his focus changed from scalar multiples of
vectors to the row-reduced echelon form of a matrix. Notice, though, that part of Kaemon’s
defining activity explicitly addresses scalar multiples of column vectors, as well as the presence
of a zero vector, but necessarily requires the elementary row operations involved in row
reduction before considering vector algebraic relationships between the column vectors. Kaemon
similarly defined linear independence in the context of a row-reduced matrix. We note here that
this definition of linear dependence (and hence linear independence) is restricted to a single
algorithm carried out on a specific, given matrix.

In Kaemon’s initial response (lines 1-6), he correctly answered that the statement in Question
la was false, but he never explicitly stated or demonstrated a relationship between the concepts
of span and linear independence. We notice that Kaemon had multiple conceptions of span and
linear (in)dependence but failed (at least during the interview) to meaningfully coordinate these
conceptions through any of his mathematical activity. We attribute part of this limited ability to
relate the two concepts to Kaemon’s matrix algebraic conceptions of linear independence and
linear dependence. Specifically, Kaemon’s definition of each concept necessitated a given matrix
upon which he could carry out the elementary row operations. We note here that Kaemon alluded
to, but never engaged in, problem solving activity, which may have provided deeper insight into
how he might have coordinated his conceptions (as in Abraham’s case). Also, consider
Kaemon’s conceptions of linear dependence: collinearity when discussed geometrically, scalar
dependence when discussed vector algebraically, and inclusion of the zero vector in a row-
reduced matrix when discussed matrix algebraically. These are restricted forms of the
mathematical definition, for instance, neglecting coplanarity and its higher dimensional
analogues or restricting the context to a problem-solving situation, dependent on the row
reduction algorithm.
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Aziz. In our discussion of Aziz, rather than concentrating on his response to Question la, we
focus on a specific episode wherein he established a relationship between linear dependence and
span. Aziz described a specific type of linear dependence in which “two, three completely
different matrices (sic) that are not in combinations of each other, but they combine in a way to
equal zero.” He was contrasting this type of linear dependence with an earlier example he had
generated that contained three vectors, two of which were collinear. Formally, Aziz is trying to
generate a set of three coplanar vectors in R?, none of which is pair-wise collinear with another.

Aziz then engaged in the following example generating activity:

1 Aziz: So C equals say 2,2,2; this is 1,2,3. And then, you know, I don't know

2 how to calculate it right now.

3 Interviewer: Ok. What would you, just off the top of your head, what would you do—
4 Aziz: 2,2v,2vi+ vy -v3=0.

5  Interviewer: Hmm. Ok [—

6  Aziz: So that way you can move one away on one vector, second way and then
7

take the third one back to the origin.

Initially, Aziz attempted to generate specific column vectors in R? but stalled (lines 1-2). He
then attempted to describe what such a linear combination would be, but he was unable to use
this algebraic representation with the first two vectors he had produced to generate the third
vector. Throughout this example generating activity, Aziz’s discussion focused on linear
combinations of vectors, first representing them as columns in a 3x3 matrix, and then writing
them as the abstract vectors vi, v, and v;. This indicates a vector algebraic conception of linear
dependence under two different representations. Aziz then used travel language to describe the
linear combination (lines 6-7), indicating a travel conception of linear dependence. He followed
up this activity with a geometric representation of this travel conception of span (Figure 3). We
note that this is not explicitly a geometric conception of linear dependence, which would use
geometric representations of vectors but would not use the travel language of movement.

Y
~

Figure 3. Aziz’s geometric representation of three linearly dependent vectors.

When asked whether these vectors span R?, Aziz was perturbed (lines 8-10). Aziz’s
mathematical activity shifts here from example generating to relating activity (lines 14-15) and
proving activity (13-14). He outlined a seeming contradiction, which we reorder and paraphrase
for clarification: vectors that span R’ “move in three different directions™ (9-10), a set of linearly
dependent vectors does not span R* (14-15), and this example shows vectors that “move in three
different directions and get back to the origin [are linearly dependent]” (12-14). Notice that the
second of these statements is possibly false if the set under consideration contains more vectors
than the dimension of the vector space.
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8  Aziz: They're linearly dependent. Um...that's a problem I always thought,

9 because if it’s they move in 3 different directions, they should technically
10 span R?, but I never got clarification on that.

11 Interviewer: Say a little bit more about what's confusing to you about that?

12 Aziz: Because if they uh, they move different directions from each other,

13 [Interviewer: Hm-mm)] but they're linearly dependent, because you can
14 use a combination of all 3 to get back to the origin. So linear dependence
15 means it doesn't span all of R". Right?

Aziz made sense of this seeming contradiction by pointing out that the linearly dependent vectors
he generated move three different directions on the same plane and not outside of that plane.
Drawing a distinction between two ways of “moving in three directions,” Aziz was able to
reason that his generated vectors did not span R®. In this episode, Aziz began with an example
generating activity that utilized a vector algebraic conception of span. After shifting his example
generating activity to draw on a travel conception of linear dependence, Aziz was perturbed by a
seeming contradiction to a relationship he held between linear dependence and span. Finally,
Aziz made sense of this contradiction through his proving activity that drew upon a travel
conception of each.

Conclusion

This paper describes our work in categorizing students’ concept images of span and linear
(in)dependence and our use of the construct of mathematical activity to provide insight into these
conceptions. We note that the concept image categories that arose may be an artifact of the type
of instruction and curriculum that these students experienced; as such, we would expect that with
different data sources (such as whole class discussion rather than individual interview data) or
different participants (such as students from a more advanced, proof-based linear algebra course),
additional or alternative categories for student conceptions would arise from the data. We also
note that the five types of mathematical activity within our framework—defining, proving,
relating, example generating, and problem solving—are not meant to be exhaustive; rather, these
five activities were determined from analysis of this small data set. Analysis of classroom data or
problem-solving interviews, for instance, would likely give rise to additional types of
mathematical activity. As such, our future work involves a further examination and refinement of
the framework of mathematical activity as a way to gain insight into students’ conceptions of
mathematical ideas. In addition, we also plan to examine additional data (e.g., classroom video
data at the whole-class and small-group level, mid-semester interviews) of these same five
students to gain a more complete analysis of their understanding.

This being said, we have found the coordination of the two frameworks to provide deeper,
richer descriptions of student’s conceptions of linear (in)dependence and span that would not
have been possible through only one of the frameworks. Specifically, our results utilizing these
frameworks have shown how students’ engagement in different activities provides useful
descriptions of the varied facets of the students’ conceptions. For instance, Abraham’s defining
and proving activity, while mathematically appropriate and sound, did not provide insight into
how he coordinated his varied conceptions of span. It was not until his problem solving activity
that he demonstrated his deeper understanding of span — more precisely, until he was able to
coordinate his matrix algebraic and travel conceptions of span. Similarly, Kaemon’s defining
activity demonstrated a restricted understanding of linear independence and linear dependence —

16™ Annual Conference on Research in Undergraduate Mathematics Education — 1-13



restricted in the sense that his understanding of the concepts depended on a specific context in
which he could perform an algorithm to test for a specific trait in the row-reduced matrix.
Without Kaemon engaging in such problem solving activity during the interview, we are unable
to determine if his conceptions of linear independence and linear dependence are informed by
more meaningful connections (as we saw with Abraham).

Generally, for each of our participants, a given participant utilized different conceptions
when engaging in different activities. This is distinct from the notion of using different
representations (e.g., vectors as arrows, n-tuples, or abstract v) in different activities. For
instance, Aziz used n-tuple and abstract representations with his vector algebraic conception of
linear dependence, but he used a geometric representation with his travel conception of linear
dependence — all of which occurred during example generating activity. Further, it was not until
Aziz represented linear dependence geometrically while utilizing his travel conceptions of span
and linear dependence that he was able to discover and make sense of a seeming contradiction of
his perceived understanding of the relationship between the two concepts. From this, we see that
the activity framework extends the focus of research that examines students’ conceptions into
activities other than defining.

Given the power that a coordinated analysis has provided within this initial small data set, we
have begun research that further explores this framework. In particular, we designed a new
interview protocol for semi-structured individual interviews that is composed of tasks that (a)
purposefully aim to engage students in the five various mathematical activities, and (b) make use
of a variety of vector representations (e.g., arrows, specific vectors in R* and R, or abstract
vectors such as v and w). The mathematical content of the interview protocol focuses on student
understanding of span, linear (in)dependence, and relationships between the two concepts. As
such, Question 1a (analyzed in this paper) is included in the new interview protocol. We
conducted interviews with seven, first-year, honors STEM majors, and the analysis of these data
is ongoing.
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MATHEMATICIANS’ EXAMPLE-RELATED ACTIVITY
WHEN PROVING CONJECTURES

Elise Lockwood, Amy B. Ellis, & Eric Knuth
University of Wisconsin — Madison

Examples play a critical role in mathematical practice, particularly in the exploration of
conjectures and in the subsequent development of proofs. Although proof has been an object of
extensive study, the role that examples play in the process of exploring and proving conjectures
has not received the same attention. In this paper, results are presented from interviews
conducted with six mathematicians. In these interviews, the mathematicians explored and
attempted to prove several mathematical conjectures and also reflected on their use of examples
in their own mathematical practice. Their responses served to refine a framework for example-
related activity and shed light on the ways that examples arise in mathematicians’ work.
Hllustrative excerpts from the interviews are shared, and four themes that emerged from the
interviews are presented. Educational implications of the results are also discussed.

Keywords: Examples, Proof, Mathematicians

Introduction

Proof is a perennial topic in mathematics education, and while many cases have been made
for its importance among students across age levels (e.g., Ball, Hoyles, Jahnke, & Movshovitz-
Hadar, 2002; Knuth, 2002a, 2002b; Sowder & Harel, 1998; Yackel & Hanna, 2003; CCSS, 2010;
NCTM, 2000), students’ difficulties with proof seem to be persistent (Kloosterman & Lester,
2004). Some researchers have suggested that students’ struggles with understanding the nature of
evidence and justification may be due, in large part, to their views concerning the role and status
of examples. In particular, students tend to be overly reliant on examples and often infer that a
(universal) mathematical statement is true on the basis of checking a number of examples that
satisfy the statement (e.g., Healy & Hoyles, 2000; Knuth, Choppin, & Bieda, 2009; Porteous,
1990). Much of the current literature on teaching proof in school mathematics underscores the
goal of helping students understand the limits of such example-based reasoning (e.g., Harel &
Sowder, 1998; Stylianides & Stylianides, 2009; Zaslavsky, Nickerson, Stylianides, Kidron, &
Winicki, 2012) and typically characterizes example-based reasoning strategies as obstacles to
overcome. However, given the essential role examples play in mathematicians’ exploration of
conjectures and subsequent proof attempts, we propose that example-based reasoning strategies
should not be positioned only as barriers to negotiate. Indeed, the field may benefit from a
greater understanding of the ways in which those who are adept at proof, such as
mathematicians, critically analyze and leverage examples in order to support their proof-related
thinking and activity. While the role of examples in learning mathematics more generally has
received attention in the literature (e.g., Bills & Watson, 2008), there is still much to learn about
the specific roles examples play in exploring and proving conjectures. In this paper, we examine
mathematicians’ example-related activity as they explore and develop proofs of several
conjectures. We report themes that arose during the interviews and discuss potential implications
for the teaching and learning of proof. The research question we attempt to answer in through
this study is: What roles do examples play for expert mathematicians in the context of exploring
and proving mathematical conjectures?
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Relevant Literature

As a preliminary note, we briefly provide definitions for what we mean by examples and
proof. In this paper, we define an example as Bills and Watson (2008) do, as “any mathematics
object from which it is expected to generalize” (p. 78). In defining proof, we draw on Harel and
Sowder’s (1998) definition, which is “the process employed by an individual to remove or create
doubts about the truth of an observation” (p. 241). Harel and Sowder further distinguish between
two kinds of activity associated with proving — ascertaining, which they define as “the process
an individual employs to remove her or his own doubts about the truth of an observation” (p.
241), and persuading, which is “the process an individual employs to remove others’ doubts
about the truth of an observation”(p. 241). We follow their lead and consider proof as
considering both kinds of activities. For further clarification, we use inductive and empirical
interchangeably to refer to example-based arguments. We also use deductive and proof
interchangeably to refer to arguments comprised of a series of logically connected assertions that
one makes to justify a mathematical claim.

It is generally accepted that students’ understandings of mathematical justification are “likely
to proceed from inductive toward deductive and toward greater generality” (Simon & Blume,
1996, p. 9); that is, students’ justifications are expected to progress from empirical arguments to
proofs. However, in this progression, caution must be made so that students do not view
examples as constituting a proof or as being a valid substitution for a proof. There is a trend in
the literature, then, toward helping students understand the limitations of examples as a means of
justification and thus recognize the need for a proof (e.g., Sowder & Harel, 1998; Stylianides &
Stylianides, 2009; Zaslavsky, Nickerson, Stylianides, Kidron, & Winicki, in press). Perhaps
because of this predominant view, less work has been done that investigates useful ways in
which students can actually use examples productively as they reason about conjectures and
explore proof.

In recent years, there has been an increase in attention on examples in mathematics education
literature. This is evidenced in part by a special issue on the topic of examples in Educational
Studies in Mathematics (Bills & Watson, 2008). In their introduction to this issue, the editors
note the goals of the issue as being to “raise the profile of this field as an important domain of
research; focus attention on some issues concerning the role and effective use of examples in
teaching and learning mathematics; bring these into a coherent articulation from which future
directions for research may be formulated” (p. 78). In this issue and elsewhere, researchers on
examples have included the study of: example generation in the context of novel definitions
(Zazkis & Leikin, 2008), example spaces (Goldenberg & Mason, 2008), non-examples (Tsamir,
Tirosh, & Levenson, 2008), examples in teaching (Rowland, 2008), and the importance of prior
knowledge when comparing examples (Rittle-Johnson, Star, & Durkin, 2009), and more. This
growing interest in examples in mathematics education research suggests that focusing on
examples is a potentially fruitful line of research, worthy of study in its own right.

It is clear that examples play a critical role not only in mathematicians’ development of and
exploration of conjectures, but also in their subsequent development of proofs of those
conjectures. Epstein and Levy (1995) contend that “Most mathematicians spend a lot of time
thinking about and analyzing particular examples,” and they go on to note that “It is probably the
case that most significant advances in mathematics have arisen from experimentation with
examples” (p. 6). Several mathematics education researchers have accordingly examined various
aspects of the interplay between example-based reasoning activities and deductive reasoning
activities among both mathematicians and mathematics students (e.g., Antonini, 2006;
Buchbinder & Zaslavsky, 2009; Iannone, Inglis, Mejia-Ramos, Simpson, & Weber, 2011; Harel,
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2008; Knuth, Choppin, & Bieda, 2009; Weber, 2008, 2010). More specifically, Harel (2008)
notes that, “the empirical proof scheme does have value. Examples and non-examples can help to
generate ideas or give insight” (p. 7). He goes on to caution, “The problem arises in contexts in
which a deductive proof is expected, and yet all that is necessary or desirable in the eyes of a
student is a verification by one or more examples” (p. 7), but the point is that Harel
acknowledges some potential value in example-related activity. Additionally, in a discussion of
proofs by mathematical induction, Harel (2002) suggests that certain process pattern
generalizations, even if based in specific examples, can suggest transformational and not just
empirical proof schemes. Weber (2008) has similarly reported that mathematicians at times drew
on example-based arguments in determining the validity of an argument. Proponents of the
notion of cognitive unity (e.g., Garuti, Boero & Lemut, 1998; Pedemonte, 2007) also distinguish
between argumentation (conjecturing activities) and proof, and make the case that argumentation
could involve work with examples and may help in the proving process. In addition, some
researchers have begun to notice that perhaps students’ are more sophisticated in their uses of
examples than teachers and researchers give them credit for. For example, undergraduate
students studied by Weber (2010) seemed to realize that even though they, at times, used
examples when proving, they recognized that examples were not sufficient as proofs. At the
middle school level, Knuth and his colleagues (e.g., Ellis, et al., 2012) have begun to explore
students’ uses of examples when examining conjectures, recognizing that perhaps students
display some sophisticated uses of examples that contribute to meaningful mathematical
reasoning, even reasoning that may contribute directly to proof.

Two additional example-related studies grounded the present study. First, Antonini (2006)
interviewed advanced graduate students, asking them to generate examples with specific
mathematical properties. His work yielded an initial categorization for producing these strategies
(trial and error, transformation, and analysis). While our study ultimately differs in its emphasis,
his categorization of these mathematicians’ strategies provides a starting point for developing our
themes. Indeed, Antonini had pointed out that

“Further research is also needed to study how the identified strategies are intertwined with

processes enacted in different situations where subjects produce examples. We also believe

that these strategies may be useful to observe processes of production of examples in tasks

involving a careful exploration in order to produce conjectures and proofs” (p. 63).

Iannone, Inglis, Mejia-Ramos, Simpson, and Weber (2011) studied the effects of example
generation on proof production in undergraduate students. They build upon Antonini’s (2006)
framework discussed above and categorized students’ strategies in example generation. lannone
et al. indicate that they were surprised to find that example generation did not seem to have a
positive effect on proof production tasks. Their work underscores the complexity of studying
examples, and they suggest that there is a need for further research in the area of examples
(specifically to better understand example generation).

In the work presented in this paper, we build upon the studies mentioned above with the
belief that there may be more to the role of examples in proof than simply signifying an
unsophisticated line of reasoning. These aforementioned studies suggest that by conducing
research that specifically targets how examples might be used meaningfully in the proving
process, researchers may gain a more robust understanding of the role of examples in proof. To
accomplish this, we carefully examine mathematicians, who we take to be experienced provers.
Our work extends such research by focusing particularly on the role of examples as expert
mathematicians’ explore and attempt to prove mathematical conjectures.
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Theoretical Framework

Theoretically, the study presented in this paper builds directly upon a framework developed by
Lockwood, et al. (2012) that categorizes types of examples, uses of examples, and example-
related strategies reported by mathematicians in a large-scale open-ended survey. The framework
is presented in Figures 1, 2, and 3 below. This framework guided the coding of the interviews in
this study and served to situate the themes presented below. To some extent, the interviews were
conducted in order to test the viability of these surveys, providing some qualitative support of the
quantitative findings. We thus were interested in the extent to which the interview results aligned
with this existing framework of mathematicians’ example-related activity.

Example Type

Definition

Simplicity Expert appeals to an easy, simple or basic example. Includes “trivial” and “small.”
Counterexample Expert picks an example that might disprove the conjecture. The expert might explicitly say “a
/Conjecture Breaking counterexample,” but this can also be inferred.
Complex Expert picks a complex example in order to test whether the conjecture holds for tricky ones;

synonyms include “non-nice,” “non-trivial,” or “interesting.”

Easy to Compute

Expert chooses an example that is easy to manipulate. The difference between this code and
“Simple” is that the expert says something about working the example out.

Properties Expert takes into account some specific mathematical property — he or she might reference a
“property” or “features,” or might mention particular properties.
General/Generic Expert uses general or generic examples, or describes examples that are seen as representative of

a general class of cases or otherwise lack special properties.

Boundary Case

Expert picks an extreme example or number, or a “special” case, such as the identity.

Familiar/Known case

Expert chooses an example with which he or she is familiar, or in which properties related to the
conjecture are already known.

Unusual Examples Expert picks an unusual number, which would be described as something that does not come up

often. “Rare,” “obscure,” “strange,” and “weird” are also synonyms.

Random Expert describes the example as randomly chosen; this includes mathematical randomness, such
examples chosen with a random number generator.

Exhaustive Expert looks for “all” of the examples in an exhaustive manner. This can be by testing all possible

examples or by using a computer.

Common Expert describes the example as typical, common, or one many would choose.

Dissimilar Set Expert indicates that he or she purposely selects a variety of types of examples.

Figure 1 — Types of Examples

Example Use

Definition

Check

Expert selects examples to make a judgment about the correctness of a conjecture; “test,”
“verify,” and “check” are all synonyms.

Break the Conjecture

Expert tries examples to break the conjecture; this can include specifically looking for a
counterexample.

Make Sense of the

Expert uses an example to deepen his or her understanding of why the conjecture might be true or

Situation false, or to gain mathematical insight.
Proof Insight Expert indicates that his or her production of examples (or counterexamples) might have a direct
bearing on understanding how to prove the conjecture.
Generalize Expert mentions using the example to generalize or to allow the expert to work in a more general

situation.

Understand Statement of
the Conjecture

Expert uses an example to better understand the statement of the conjecture.

16™ Annual Conference on Research in Undergraduate Mathematics Education

Figure 2 — Uses of Examples

1-19




Strategy Subcategory Definition
(Frequency) (Frequency)
Increasing in Expert begins with simple or easy examples and shifts to more complex or
Multi-Stage Complexity complicated examples.
Example Increasing in Extremity | Expert begins with simple or typical examples and builds to boundary cases,
Exploration special cases, or conjecture-breaking cases.
Increasing in Expert begins with simple or special examples and shifts to more general or
Generality generic examples.
Supporting or Non- Expert attempts to determine the properties of examples that either support
Property Analysis Supporting the conjecture in particular ways, or to determine the properties of examples
that do not support the conjecture.
Test Cases Expert analyzes special test cases depending on the critical properties of the
examples related to the conjecture.
Generalize From Expert proves related conjectures or lemmas and attempts to generalize to the
Analysis of Attempis to Prove conjecture at hand. Or, proves the conjecture for specific examples and
Related Proof attempts a general proof. Or, attempts to generalize from examples related to
Activities unsuccessful proof attempts.
Generalize From Expert attempts to generalize from examples that disprove related
Attempts to Disprove conjectures. Or, attempts to generalize from properties of examples that failed
to disprove the conjecture.
Systematic Known Case Expert takes a known case and makes small adjustments to the example’s
Variation Adjustment properties, inputs, or characteristics.
Multiple Property Expert varies multiple properties or characteristics simultaneously or
Vanation independently in a systematic fashion.

Figure 3 — Example-Related Strategies

While the literature and framework presented above provides theoretical backing for our
paper, we make a final comment about the perspectives that have influenced our work. We agree
with Weber (2008) who notes that, “Investigations into the practices of professional
mathematicians should have a strong influence on what is taught in mathematics classrooms
(e.g., RAND, 2003); the link between the behaviors of mathematicians and the teaching of
mathematics, however, is not straightforward” (p. 451). We are working under an assumption
that we, as mathematics education researchers, might intrinsically care about what expert
mathematicians do. This does not mean that we necessarily believe that all novices should
automatically adopt expert practices (this could be problematic for a number of reasons), nor that
mathematicians’ activity is somehow inherently superior to what a novice might do. However, it
stands to reason that better understanding how mathematicians think about and use examples can
better inform us about how examples can potentially be utilized. Particularly given the fact that
there is more to learn about how examples can be effectively used in proof, looking to
mathematicians seems to be a reasonable starting point. Additionally, there are a number of other
instances in which researchers have examined expert mathematicians in a variety of contexts
including as problem solving (e.g., Carlson and Bloom, 2005) and proof (e.g., Savic, 2012).

Methods

The data presented in this paper come from interviews that were conducted with six
mathematicians as they explored and attempted to prove several mathematical conjectures
(Figure 4). Five of the mathematicians have a doctorate in mathematics, and one has a doctorate
in mathematics education; all are currently faculty in university mathematics departments. All of
the mathematicians were given Conjectures 1 and 2, and three each did one of Conjectures 3 and
4, which were randomly assigned. After working on each conjecture, the mathematicians were
asked clarifying questions about their work. In addition, at the end of the interview they were
asked reflective questions about their example-related activity, both that they had done during
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the interview, and more generally in their personal work. They were given approximately 15-20
minutes to explore each conjecture; although typically they were not able to complete proofs for
each of the conjectures in the time allotted, they were able to make progress toward that end.
(Note that our interest was in their example-related activity while exploring and attempting to
develop proofs, not in the proofs they may have produced given more time.)

Conjecture 1
Let S be a finite set of integers, each greater than 1. Suppose that for each integer » there is some s € §
such that ged(s,n) =1or ged(s,n)=s- Prove that there exist 5,7 € S such that ged(s,7) is prime.

Conjecture 2

Let n be an even positive integer. Write the numbers 1, 2, ..., n? in the squares of an » x n grid so that
the kth row, from left to right, is (k—1)n+1,(k—1)n+2,...,(k—1)n +n . Color the squares of the grid so
that half of the squares in each row and in each column are red and the other half are black.

Prove or disprove: For each coloring, the sum of the numbers on the red squares is equal to the sum of
the numbers on the black squares.

Conjecture 3
Let S denote the set of rational numbers different from {-1, 0, 1}. Define f:S§—§ by f(x)=x-1/x.

Prove or disprove: F]] F"(8)=3, where f™ denotes f composed with itself » times.

Conjecture 4

All the numbers below should be assumed to be positive integers.

Definition. An abundant number is an integer » whose divisors add up to more than 2n.
Definition. A perfect number is an integer n whose divisors add up to exactly 2n.
Definition. A deficient number is an integer » whose divisors add up to less than 2n.

Conjecture 4a. A number is abundant if and only if it is a multiple of 6.
Conjecture 4b. If n is deficient, then every divisor of » is deficient.

Figure 4 — The conjectures given to the mathematicians

Conjectures 1-3 were taken from Putnam Exams, and Conjecture 4 was adapted from tasks in
Alcock & Inglis (2008). We chose these problems for two primary reasons. First, the conjectures
were accessible to the mathematicians (regardless of their area of expertise), but were not so
clearly obvious that they could be proven immediately. Second, the conjectures were also
accessible to the interviewer, allowing her to follow the mathematicians’ work as well as to ask
meaningful follow-up questions. While the choice of such conjectures may result in something of
an inauthentic situation for the mathematicians (in that these conjectures are not representative of
their personal research), the choice did enable us to observe what mathematicians do as they
actually explore and attempt to prove conjectures.

The interviews were transcribed, and a member of the research team analyzed them using the
aforementioned framework (Lockwood et al., 2012). The process involved coding both
mathematicians’ observable example-related activity and their reflections. The entire research
group reviewed data excerpts that were difficult to code. These codes served to refine the initial
framework, and the organizing of the codes in turn resulted in a number of themes about
mathematicians’ example-related activity in exploring and proving conjectures (Strauss &
Corbin, 1998). We present these themes as the major results of this paper, as they shed light on
how people who are adept at proof interact with examples as they consider conjectures.

Results

In this section, we share four main themes that arose from our analysis of the interview data.
Some of these themes (Themes 1 and 2) confirm what is seen in the literature (e.g., Schoenfeld,
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1985; Weber, 2008), providing further details that flesh out prior findings. Theme 3 also has
some precedence in the literature (e.g., Weber, 2008), but our particular example provides
additional insight into the precise nature of how a proof might emerge out of a particular
example for an expert mathematician. We highlight Theme 4 highlight it both as a particular
aspect of the relationship between examples and proof, but also as a metacognitive action that
suggests mathematicians’ overall awareness of their proving activity. These themes not only
illuminate the role examples play in the proving process for mathematicians, but also suggest
implications regarding the role examples might play in classroom settings.

Theme 1 — Domain expertise and knowledge of mathematical properties directly influence
example choice

The notion of domain knowledge affecting mathematical practice is brought up by a number
of researchers. For example, in his discussion of problem solving resources, Schoenfeld (1985)
notes “the successful implementation of heuristic strategies in any particular domain often
depends heavily on the possession of specific subject matter knowledge” (p. 92). Within proof,
Weber (2008) found that “some participants’ validation standards and strategies were dependent
on their familiarity with the domain that they were investigating” (p. 447). Regarding examples,
Rittle-Johnson et al. (2009) indicate that prior knowledge was an important for middle school
students’ as they compared examples. Also, a number of other researchers (e.g., Sandefur, et al.,
2013; Stylianides & Stylianides, 2009) argue for the importance of familiarity and domain in
examples via Watson & Mason’s (2005) notion of students’ personal example space. The below
insights gleaned from our interviews corroborate such findings that report the importance of
domain knowledge, but we also provide some new ways of thinking about how prior
mathematical knowledge affects example choice in the proving process.

We see this theme affect example choice in two primary ways, first in terms of domain
knowledge (or lack thereof), and second regarding knowledge of mathematical properties. In
terms of domain knowledge, four of the mathematicians noted that context and familiarity have a
direct impact on their selection of examples, often enabling them to make well-informed choices.
Specifically, in some cases mathematicians indicated that if they were working in domain they
knew well, they would regularly draw upon familiar, or “stock,” examples. For instance, on the
deficient number problem (Conjectures 4a and 4b), Dr. Hickson clearly used his familiarity with
the fact that 6 is a perfect number to make progress on that task, as seen in Dr. Hickson’s
exchange below.

Dr. Hickson: Conjecture 4a: A number is abundant if and only if it is a multiple of six. Hmmm
ok. So an example immediately comes to mind. Six is a perfect number and so
that’s going to be false if you are allowed to take a trivial multiple of six. So....

Interviewer: ...Ok. And that you knew six was a perfect number from experience.

Dr. Hickson: Yeah, that one I just happen to know.

In other cases, if the domain was less familiar, the mathematician might rely on examples to
make sense of the conjecture. This is exemplified in Dr. Aldridge’s reflection. Here he indicates
that in a familiar domain he might simply launch into a proof without having to consider
examples, but that when he is “completely clueless” he tries to generate examples. This exchange
provides evidence that mathematicians may use examples to ground their work in something
concrete, particularly when they need to make sense of a given situation or conjecture. Dr.
Aldridge’s activity described below puts a slight twist on the manipulation stage of the
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manipulating-getting-a-sense-of-articulating (e.g., Sandefur, et al., 2013), because while he talks

about manipulating a concrete example to get a sense of the conjecture, he does so in a domain

with which he is less familiar (although the example he may choose may be familiar).

Interviewer: ... Can you describe the role of examples in your work with mathematical,
mathematical conjectures? How do you choose then? Do you have strategies for
example-related activity? Like if you were to have to reflect on how you would
use examples?

Dr. Aldridge: So, well, first of all, it depends on the, the domain. I mean, there’s some domains
when I know, very familiar with all of the, like the more algebraic, formal
techniques...and I can kind of recognize if it’s a situation where I can actually get
by without even really understanding...the problem, because I can just throw the
tools at it...and it’ll fall out... Other than that, I usually try to, I go in a couple
different ways. Especially if I'm completely clueless about what’s going on, then
I will usually use an example to try to figure out what’s the conjecture is saying.

Another feature of the role of examples was that the mathematicians capitalized on their
understanding of mathematical properties as they selected their examples. This supports related
findings by Weber (2008), who reports that some mathematicians drew upon mathematical
properties as they validated proofs (p. 441). In our interviews, the mathematicians took into
account the domain to which the conjecture pertained (such as number theory or algebra), and
they used that knowledge to pinpoint examples with certain properties. Their mathematical
expertise came through as they spoke about mathematical features of their examples, such as
choosing a number that is highly divisible or creating a set with no primes. This emphasis on
properties came out most frequently with Conjecture 1, as the mathematicians tried to consider
examples or counterexamples of the conjecture. In this case, the mathematicians clearly drew
upon their knowledge of mathematical topics such as primeness, common divisors, the
fundamental theorem of arithmetic, etc.

As an example, Dr. Leonard constructed a set {4, 8, 12, 20} in an attempt to derive a
counterexample. He had recognized that a counterexample must not have primes in it, and the
excerpt below highlights his consideration of specific mathematical properties as he attempted to
construct a possible counterexample and proceed with the problem. In considering what might be
needed to make a counterexample, Dr. Leonard displays knowledge of elementary number
theory as he carefully selects four numbers that are not prime and that all have a composite
number as a greatest common divisor. Facility with specific mathematical properties enabled him
to make sophisticated decisions in constructing an example.

Dr. Leonard: The greatest common divisor between the two of them [looking at the statement
of the conclusion] is not prime...Okay, it would have to be some set like 4 [writes
{4, 8, 12, 20}]. That would be...their greatest common divisor is not prime.

In another example of the use of mathematical properties, again on Conjecture 1, we
highlight Dr. Hickson’s language, which is interspersed with words like prime, relatively prime,
divides, etc. These are not especially sophisticated mathematical ideas, but he clearly has easy
access to and facility with these concepts, and they are having an effect on how he is
constructing his examples in this case.

Dr. Hickson: Let’s see if a number n were relatively prime to let’s say a power of two and a
power of three....I was going to say I just need there to exist a number in S that
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the number is relatively prime to. So suppose the number has no 2s in it, then it
could be relatively prime to a 4. If it had no 3s in it would be relatively prime to a
9. And if it’s not relatively prime to either of those then it’s got at least one 2 in it
and at least one 3 in it. And if it fails to be relatively prime to both of those
numbers, then it would actually have to have 2 and a 3 in it. So, you could say 6
divides it. So that may be an example of a set that contains no primes and yet
satisfies the conditions.

In both of the data excerpts above, we see that mathematical properties are a driving aspect
that influences how mathematicians chose and constructed examples. It is worth speculating
whether or not this differs from school-aged students’ work with examples. It may be the case
that with limited knowledge of mathematical properties (particularly compared with
mathematicians), students simply may not have the mathematical knowledge to develop
examples and make well-informed decisions about examples as the mathematicians.

Theme 2 — Multiple examples can lead to meaningful patterns, resulting in conjecture
generation and proof development
This theme builds on work by Harel (2002), who discussed patterns in his presentation of

DNR-based instruction of mathematical induction, and Weber (2008), who reported a handful of

instances in which mathematicians accepted a statement as valid based on a pattern that emerged

from several examples. In our study, five of the mathematicians demonstrated an explicit
awareness of the relationship between examples and patterns in their work. As they worked
through the conjectures, they suggested two different ways in which multiple examples could
yield meaningful patterns that could shed light on their work with a conjecture.

First, Dr. Leonard reflects a use of patterns that has more to do with the act of conjecturing.

He notes that rather than using examples while trying to prove a conjecture (as he did in the

interviews), in his own research patterns of examples tend actually to lead to the formulation of

conjectures.

Dr. Leonard: First of all, I wouldn’t come up with a conjecture without an example...Again,
some conjectures can come from just putting in a number of examples. You start
thinking maybe it is true because I’ve seen it enough times, and I cannot conceive
clearly of an argument of why this fails.

Dr. Hickson also shared some insightful comments about a certain way in which generation
of examples and patterns can emerge in his own work. Below, he describes a building up of
patterns that serve the purpose of shedding some light on an existence proof. He indicates that
examples can serve a very specific purpose for him in this way, and that patterns he notices in
multiple examples can give some particular insight about the nature of the family of objects he
needs to construct (and prove that exists).

Dr. Hickson: So, this might be of interest to you because it’s a quirky use of examples. So |
believe that a certain thing exists for all values of n. And um the existence proof,
it baffles me. But as far as I look, these things exist...I need to come up with an
infinite family of them. And so it’s very worth it to me to look for examples
because I’'m hoping by looking at the examples I’ll notice a pattern of them...And
I’1l be able to say, ‘oh actually you can build these things in this way and it will
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always satisfy the conditions.” But I feel like without the inspiration coming from
the examples I won’t know what that is going to look like.

This theme is also tangentially related to the problem solving heuristic of solving smaller,
similar problems (e.g., Lockwood, 2013; Polya, 1945, Schoenfeld, 1979), which suggests a
building up of instances of a given phenomenon or situation. The common idea between the
theme and this heuristic is that someone might use multiple examples (or smaller instances of a
problem or situation) to formulate a pattern in a systematic way.

Theme 3 — Examples can lead to proof insights, both into whether the conjecture is true or
false, and into how a proof might be developed
There were two ways in which mathematicians seemed to use examples to gain some insight
into their proving process. First, examples served to inform whether or not a given conjecture
might be true or false, and at some point each mathematician used an example to decide whether
he should go about trying to prove or disprove the conjecture. As noted above, Harel and Sowder
(1998) refer to this as ascertaining, which they define as “the process an individual employs to
remove her or his own doubts about the truth of an observation” (p. 241). Below, Dr. Wells’
exploration with multiple examples suggests to him that the conjecture seems true.
Interviewer:  And, at this point, do you have a sense of whether you think it’s true?
Dr. Wells: It seems pretty true. I’ve constructed two simple examples. Uh, and I can see, it
looks like I see a pattern here because, you know, the squares are just off by one,
and so that’s why you’re getting the sums are equal.

Another episodes with Dr. Wells highlights this phenomenon as well, as he concludes that
coming up with a particular example that satisfied the conjecture suggested that he should go
about proving (as opposed to disproving) the conjecture.

Interviewer: Okay. Okay, so, um, came up with a small example. And when you came up with
that example were you trying to make sense of the conjecture? Were you looking
for whether it might be true or false?

Dr. Wells: Well, first I was trying to make sense of the hypothesis, to make sure the
hypothesis was even possible.

Interviewer: Okay. Okay. Right.

Dr. Wells: And then once I convinced myself that they hypothesis was possible, in the
example of the set being two... Then I was able to use that example to, um, to
show that in the case of that example, the conjecture worked.

Interviewer: Okay. Okay.

Dr. Wells: And so that convinced me to try to prove the conjecture rather than to disprove it.

Second, examples served a richer purpose than simply shedding light on whether a statement
was true or false. On several occasions mathematicians used specific features of an example in
order to make significant steps toward a proof. In these instances, the mathematicians seemed to
ground their thinking in a particular example, and by manipulating that example they developed
an idea for how a more general proof might develop. A number of researchers have suggested
that proofs can emerge from work with examples (e.g., Sandefur, et al., 2013; Weber, 2008), and
more specifically in terms of a generic example (e.g., Pedemonte & Buchbinder, 2012). We
contribute further support to these findings, and we also add to it by showing a mathematician
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using actually using an example to formulate a proof in the context of exploring a conjecture.

We see in this example that Dr. Aldridge’s work with a particular example allowed him to make

general arguments and ultimately formulate a valid proof of the conjecture.

As a particularly rich example of how examples led to proof insight in the interviews, we
highlight Dr. Aldridge’s work Conjecture 4b as he tried to prove the contrapositive of the
statement (that a number with not deficient factors must itself not be deficient). Dr. Aldridge had
been examining what he called “test cases,” in which he drew upon the perfectness of 6 to
examine numbers in which 6 was a factor. His rationale for this is seen below.

Dr. Aldridge: And then the real reason why I went after it with examples, not so much that I
thought these would be counterexamples, as I thought they would be good test
cases. And they’d maybe give me a feel for how, more information as to maybe
why this is true.

Interviewer: Okay, and what do you mean by test case?

Dr. Aldridge: Um, test case because the six, like I said before is perfect. So it’s going to be, it’s
a, it’s a pretty decent, uh, example of maybe, it’s, so if anything has a chance to
be a divisor that’s not deficient inside of number that is deficient... I would guess
it would be a perfect number.

Continuing to focus on 6, after trying to see if 6*2 and 6*3 would have to be abundant, he
chose an example of 6*11. While working through this example, he had the following insight.
Dr. Aldridge: 1t’s almost like you get, like a duplication of the perfect-ness of six that shows up
in this piece here.

Interviewer: Okay, how s0?

Dr. Aldridge: So, so, like this one, two, three adds up to six. Eleven, twenty-two, thirty-three
actually adds up to sixty-six. So I’'m feeling like I probably ought to be able to
prove that this is a true statement.

His work with this example not only confirmed that he thought he could prove the
conjecture, but using 6*11 as a generic example ultimately led him to a correct sketch of a proof.
For the sake of space we briefly summarize his proof, but in his work he wrote out the sketch of
proof and simultaneously referring back specifically to his example in doing so. He was able to
prove the contrapositive, arguing that that if a factor of b, a, is not deficient, then it has factors f7
through fk whose sum is greater than a. Then d*f1 through d*fk must also be factors of b that are
distinct from those factors of a (and since f7 through fk are strictly less than a, d*f1 through d*fk
must be distinct from b). He noted that the sum of d*fI through d*fk must be greater than or
equal to d*a, which is itself already a copy of . The sum of b’s factors, then, includes d*f7
through d*fk, which is greater or equal to d*a, and b itself. This is greater than or equal to two
copies of b, and thus by the definition of deficient, b itself cannot be deficient. What is most
interesting to us is not that he proved the conjecture, but rather the precise role that his example
6*11=66 played in his development of this proof. In reflecting on his proof, he made several
statements that highlighted the importance of the example. Specifically, the nature of the
multiplication by 11 allowed him to see that certain factors (the multiples of 6) would show up in
the complete list of factors. While this is a property that he asserted, “is clearly always going to
work out,” he acknowledged that the nature of the number 11 made that particularly salient for
him. The structure of the example enabled him to recognize a key piece of the proof.
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Theme 4 — There is a back and forth interaction between proving and disproving

A final theme is that mathematicians seemed to report a complementary relationship between
proving and disproving. All six interviewees discussed the role of counterexamples in their
proving process, noting that as they attempt to develop a proof, they engage in a back and forth
process of formulating a proof and considering counterexamples. They described starting out by
attempting to prove a conjecture, but then may get stuck, stop, and search for a counterexample.

This search for (or inability to find) a counterexample might then provide insight into the

development of the proof. An example of this is seen in Dr. Barton’s reflection about his work

with examples. He articulates in great detail exactly how the search for a proof and a

counterexample interact in his work on a conjecture.

Dr. Barton:  You’re trying to prove something and you go ahead and you try to prove it. And
you realize that you’re stuck at some point...Here’s this gap. I start saying let’s
try, out of that gap, to build a counter example...Then you spend some time trying
to build that object. And if you can’t, then you try to sort of distill why can’t you?
And do the reasons why you can’t build that, does that now fill in the gap in your
proof? If it does, great. You’ve now pushed your proof further or maybe you’ve
completed the proof entirely. And if it doesn’t, then it refines what...the counter-
example would have to look like...And so it’s this sort of back and forth trying to
use that. You know build a counter example and the failure or success of that to
go back and look at what that says about your proof. And that dynamic back and
forth can sometimes bear some fruit.

In reflecting on the role of examples at the end of the interview, Dr. Hickson said the
following, which highlights the back and forth relationship that a mathematician may go through,
even if he or she suspects that the conjecture may be true.

Dr. Hickson: You know the height a folly is to assume you know the answer when you don’t.
And so um, you might have a feeling or whatever that makes you spend more
time one side of the problem. But, in my mind it’s very important to not pretend
you know something you don’t. So you should always give some effort to both
sides of the problem. And so I try to go back and forth. I'm like any other person
though. I’'m going to avoid work when I can. I’'m going to pursue the easier option
first... if [ run out of gas then I’'m going to reluctantly try the other one.

This back and forth dynamic provides some specific insight into the mathematicians’ ways of
viewing examples in the proving process in particular, but it is representative of a broader kind
of metacognitive activity with which the mathematicians engaged. The mathematicians are able
to recognize that a strategic choice of a counterexample or example could play a significant role
in their understanding and proof of the conjecture. Other researchers (e.g., Savic, 2012) have
indicated the importance of such metacognition among mathematicians. We suspect that this is a
potentially important distinction between how mathematician mathematicians handle examples
and how novice mathematics students handle them.

Conclusion and Implications
In this paper, we have highlighted particular ways in which work with examples manifest
itself as mathematicians explore and prove conjectures. Our results point to the power of
intentional example exploration in supporting one’s understanding of conjectures and their
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proofs. Although the results presented here are based on a small set of interviews with
mathematicians, the results are consistent both with the results from our large-scale survey of
mathematicians’ responses about their work with examples (Lockwood et al., 2012) and with
aspects of existing literature (e.g., Harel & Sowder, 1998; Sandefur, et al., 2013; Weber, 2008).
The interview data highlight the powerful role examples can play in exploring, understanding,
and proving conjectures, as well as the ability to implement example-related activity in
meaningful ways.

While we focus on mathematicians’ work with examples and make no significant
pedagogical claims, we cannot help but make some comments about how example-related
activity we observed in experts might differ from students. The mathematicians’ example-related
activity stands in contrast to the role examples typically play in the work of mathematics
students. The four themes listed represent aspects of mathematicians’ example-related activity
that could imply certain practices for students. For example, it might behoove students to explore
the back and forth relationship between proving and disproving, and students might benefit from
being exposed to various kind of examples in particular mathematical domains. And, too, pattern
recognition or work with generic examples might be productive avenues that can lead students to
successful proofs. Specifically, such activity might include having students answer reflective
questions about their example choices as they explore a conjecture, or teaching them how a
generic example differs from, but can lead to, a valid proof. A stronger understanding of the
strategies mathematicians employ as they use examples to develop, explore, and prove
conjectures may ultimately inform the design of instructional practices and curricula that
effectively foster students’ abilities to prove.
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STUDENTS’ CONCEPTS IMAGES AND MEANINGS FOR AVERAGE AND
AVERAGE RATE OF CHANGE

Eric Weber
Allison Dorko
Oregon State University

In this paper, we model students’ concept images and meanings for average and for two- and
three-dimensional average rate of change. We use these characterizations to describe how
students use their meanings for average to interpret and reason about rate of change. We
describe the importance of everyday meanings for average in students’ conceptions of rate, and
propose how instruction and activities might address this link. We conclude by discussing the
significance of this work for mathematics education, and propose important directions for future
research focus on students developing the meanings that instructors intend.

Keywords: rate of change, function, meaning, concept image, quantities

Background

The purpose of this paper is to characterize the role of students’ meanings for average
and the implications of the meanings for their understanding of average rate of change. To do so,
we use students’ concept images to model students’ meanings for average, average rate of
change, and instantaneous rate of change. Our focus on average rate of change takes into account
students’ meanings for both parts of the phrase: that is, their meanings for average and their
meanings for rate of change. We argue that students construct understandings for average rate of
change based on their meanings for average, and we discuss ways to use this tendency
productively.

We think about rate of change as foundational to calculus because it allows a student to
represent how fast a quantity changes with respect to one or more other quantities. We might
imagine that a coherent understanding of rate of change relies on students imagining
instantaneous rate of change as result of multiplicatively comparing the change of one quantity
with respect to another over an infinitesimally small interval of change in the independent
quantity. However, students do not always have the meanings we intend or think they have even
though they use language similar to ours. Consider average as an example. The definitions of
average and images associated with it come from everyday experience, language, statistics and
calculus. These multiple meanings create what Barwell (2005) termed lexical ambiguity, which
results when a common word is coopted by a technical domain. For instance, average can mean
the arithmetic mean, the median, or the mode; it can also mean something ‘typical’ or ‘normal.’
Consider that the Japanese and Chinese words for average are translated as ‘equal sharing’, ‘per-
unit quantity’, and ‘smoothing out’ (Cai, Lo, & Watanbe, 2002). The lexical ambiguity of
average, and the variety of elements in concept images for it, may lead to situations in which
students use meanings that might not be productive in calculus.

We hypothesized that students rely on images of average because researchers have found
that students bring their everyday meanings for average to both mathematics and statistics
(Kaplan, Fisher, & Rogness, 2009). These understandings of average range from average as a
balance model (Hardiman, Well, & Pollatsek, 1984; Strauss & Bichler, 1988), to average as
representative (Mokros & Russell, 1995), to average as typical (Kaplan et al., 2009). However,
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only one study (Cortina, Saldanha, & Thompson, 1999) has proposed a meaning for average (as
a unit-rate) that seems productive for thinking about rate in calculus. No previous studies
documented how students’ interpretation of average affects student thinking about average rate
and subsequently, rate of change “at a point”. Given the prevalence with which students use their
everyday meanings for average, it is likely that students interpret average rate of change in a way
that leverages their everyday meaning for average. This suggests that many calculus students
might rely on a meaning for average that does not allow them to think about average rate of
change as a comparison of quantities varying, a meaning many instructors assume students
possess. Exploring this avenue of research has potential to shape how we think about instruction
about average in statistics and calculus, and more broadly, brings up the issue of attending to the
meanings students have, in contrast to the meanings instructors assume exist for them.
Motivation for Study

Based on interviews with students in multivariable calculus, and our interpretations of the
literature related to students’ interpretation of mean and average, we hypothesized that students’
understanding of average created incoherence for them as they learned about average rate of
change in the calculus sequence. Specifically, we believed the meanings they constructed for
average rate of change were based on their meanings (both everyday and mathematical) for
average. We hypothesized that students relied on their meanings of the word average to interpret
rate and derivative. We sought to characterize what students know about rate of change by
focusing on their meaning for average and their subsequent ways of thinking about average and
instantaneous rates of change.

In the following sections, we describe previous work regarding students’ understanding
of average, highlight the theoretical underpinnings of the study, identify how our assumptions
about student thinking drove the study’s design, illustrate our methodology and coding, and
present a framework that characterizes students’ concept images of average and average rate of
change and the meaning we inferred from those images. We argue that specifically addressing
the different uses of average in mathematics, statistics, and everyday language is crucial to
students developing a coherent understanding of average and instantaneous rate of change in
calculus. We close by suggesting a meaning for average that may help students develop the
conceptions of rates of change that instructors intend.

Literature Review

Average Rate of Change

Students’ thinking about rate of change as a measurement of how fast quantities are
changing is foundational to calculus, yet many students possess difficulties reasoning about rate
(Carlson, Larsen, & Jacobs, 2001; Rasmussen, 2000; Thompson & Silverman, 2008). Students’
difficulties include problems interpreting the derivative on a graph (Asiala, Cottrill, Dubinsky, &
Schwingendorf, 1997), and focusing on cosmetic features of a graph (Ellis, 2009). Thompson
(1994) found that the difficulties students displayed in understanding the fundamental theorem
arose from impoverished concepts of rate of change and incoherent images of functional
covariation. Thompson (1994) described a coherent way of thinking about average rate of change
of a quantity as, “if a quantity were to grow in measure at a constant rate of change with respect
to a uniformly changing quantity, then we would end up with the same amount of change in the
dependent quantity as actually occurred” (p. 239). We observed that this way of understanding
was difficult for students to achieve.
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The observation that Thompson’s way of understanding rate of change is difficult for
students to achieve is not novel. A number of researchers have proposed that difficulty might
arise for students in understanding rate because of their inattention to quantities (Carlson, Smith,
& Persson, 2003; Thompson & Thompson, 1994), from the students’ association with rate as
only a slope on a graph (Weber, 2012) or not understanding that a rate is a comparison of
changes in quantities (Weber, 2012). However, no previous studies have suggested that students
understanding of average could affect their interpretation of average rate of change, and
subsequently their way of thinking about derivative in both single and multivariable calculus. In
the next section, we characterize the literature to suggest how the student’s meaning for average
could affect their understanding of rate.

Meanings for Average

Students’ meanings for words used in technical domains are connected to past
experiences with the word (Lemke, 1990). It is not surprising that students have various
meanings for the word average, as the introduction and use of the word average varies across
country, textbook, and classroom (Cai et al., 2002). Cai (2002) found that the meanings that
textbooks promote for average are similar to “equal-sharing”, and “per-unit quantity”, but that
these meanings are specific to textbooks in China and Japan. In contrast, United States textbooks
tend to focus on the calculation to determine the average rather than students’ interpretations of it
(Cai, et al., 2002). The meanings Cai’s study identified are consistent with the results from a
number of researchers who have focused on characterizing students’ understanding of average
across mathematics and statistics (Kaplan et al., 2009).

Some early work about students’ understanding of average identified students’ “fair-
share” or “balance” model of the mean (Hardiman et al., 1984; Pollatsek, Lima, & Well, 1981).
By fair share, they meant a student thinking about the total magnitude being redistribtued across
all elements such that each has an equal magnitude. Strauss (1988) described an example of the
fair-share model using a balance beam in which values are placed an appropriate distance from
the mean so the deviations from the mean are minimized. The mean as balance or fair-share
model is consistent with the meaning of the word average from both Japanese and Chinese (Cai,
2002).

Mokros and Russell (1995) built on this work to propose that average is a tool for
summarizing and describing a data set, and is thus context dependent (Mokros & Russell, 1995,
p- 21). They interviewed 21 middle school students to characterize students’ notions of average.
They found that students’ understandings of average include ideas like representative, reasonable
or typical and that these understandings result from their everyday experiences. While they
identified new categories for student thinking about average, we found that none of their
categories were inconsistent with the fair-share model.

Consistent with the work in the 1980s and 1990s, Kaplan et al. (2009) found that
students’ meaning for average include ordinary, normal, typical, mediocre, not extraordinary,
common, neither outstanding nor poor, standard, mean, median, in the middle, overall summary
on something, general value that represents most of the data, overall outcome, mode, most
common number, majority, a value we can use to compare one person’s performance to the
group, and the division of two statistics to get a whole answer. This group of studies suggests
that both mathematics and statistics students have understandings of average that drew from
colloquial language. It is also noteworthy that none of the studies identified an understanding of
average as a unit rate, which is a foundational meaning for average in Chinese and Japanese
textbooks.

b
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Cortina et al. (1999) is the only study we know of that focused on students’
understanding of average as a unit-rate that measures a group characteristic. These researchers
suggested that characterizing the mean as typical of individual scores is vague because students
may think the mean quantifies something about individual scores (Cortina et al., 1999, p. 1).
They conducted teaching experiments with four middle school students as the students engaged
in tasks intended to help them think about the mean multiplicatively. They found that their
students’ understanding of average was more than procedural and shared commonalities with
Mokros and Russell’s (1995) conception of “fair share”. Furthermore, they determined even with
the students’ sophisticated understandings, it was difficult for the students to think about a mean
as a measure of group performance. Cortina et al. (1999) concluded that it was key for students
to 1) think of group performance as measurable attribute and 2) think about the mean as a
measure of that attribute.

Together, these studies suggest that students’ meanings for average are varied, reliant on
context, focus on a characteristic of a group or set, and are often incoherent with each other.
While none of the studies extend their students’ understanding of average to thinking about
average rate of change, they provide a basis for thinking about how a student might do so. For
example, it is logical that a meaning for average as a unit rate would be productive for students
thinking about average rate of change as a constant rate of change. It is also possible that
thinking about average as a smoothing out or equal sharing could support a productive image of
rate of change. However, it is also plausible that these ways of understanding average could
result in misconceptions about rate, and thus lead to difficulty as students progress through
calculus. This study contributed to filling this gap in research by focusing on characterizing the
meanings students have.

Theoretical Framework

This section describes what we mean when we say we are interested in meaning, and how
we studied meaning using students’ concept images. Thompson (in press) traced the
development of meaning as a construct throughout the 20™ century to suggest that coherent
meanings are at the heart of the mathematics that we want teachers to teach and what we want
students to learn. Thompson built on Grice (1957) to argue that meanings reside in the minds of
the person producing it and the person interpreting it (Thompson, in press, p. 4). As an extension
of this assumption about where meanings reside, Thompson described how Dewey (1910)
considered meaning and understanding as the product of thinking, and that coherence is an
outcome of thinking (Thompson, in press, p. 5). This led Thompson to focus on what it means to
understand. He relied on Piaget’s notion of understanding as synonymous with assimilation to a
scheme, where a scheme is an organization of operations and images. Thompson characterized
Piaget’s meaning for assimilation as similar to imbuing something with meaning, which goes
beyond the standard description of assimilation as absorption of information. He concluded that
constructing a meaning is similar to constructing an understanding, and that constructing a
meaning occurs by repeatedly constructing understandings anew (Thompson, in press, p. 7).
We drew from Thompson’s characterization of meaning by focusing specifically on students’
assimilations, in which they imbue meaning to something. We focus on the meaning they imbue
to the word average and the phrase average rate of change.

We hypothesized that we could observe the products of students forming meaning by
studying their images, definitions and representations for an idea. To do so, we relied on concept
images (Vinner, 1983) as an orienting framework because we hypothesized that students’
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meanings for average were largely imagistic in nature or could be represented in that way. We
drew on Vinner’s (1983) definition of concept image as the set of properties associated with a
concept together with the mental picture of the concept. However, we were not interested in
using the characterization of a concept image as ‘everything that comes to mind about a
particular idea’. We were interested only in those elements of the concept image that helped us to
infer the meanings that students had for average and average rate of change. Specifically, we
wanted to understand the meaning that students imbued to these ideas by studying their concept
images. We found Vinner’s distinction between the concept image and the concept definition
(the verbal definition typically used to introduce a concept) important because a concept requires
both image and definition, “in thinking, almost always the concept image will be evoked”
(Vinner, 1983, p. 293). That is, while engaging in mathematical thinking, students tend to use
their mental pictures of a concept rather than a symbolic or verbal definition. However, they are
only products of meaning, not meaning itself. Thus, to create models for students’ meaning for
average and average rate of change, we focused on their concept images.

Method

We hypothesized that students’ understanding of average created incoherence for them as
they learned about average rate of change in the calculus sequence, and they dealt with that
confusion by relying on their everyday understanding of the word average to interpret rate and
derivative. As a result, we sought to characterize what students know about average rate of
change by focusing on their ways of thinking about average and their subsequent ways of
thinking about average and instantaneous rate of change. We did so by creating tasks that would
investigate the concept images students had for the word average and subsequent tasks that asked
them to reflect on how their concept images and concept definitions affected their understanding
of average rate of change.
Subjects and Setting

We interviewed sixteen multivariable calculus students from a pool of volunteers from
four sections of multivariable calculus during the fall term at a large northwestern university. We
chose this course because it was the students’ first exposure to functions of more than one
variable in mathematics. This allowed us to observe the students’ initial fits and starts with
systems with more than one quantity, and to adjust our subsequent questions to more clearly
understand their thinking with particular regard to rate of change. Each student participated in a
pre and post interviews occurred in the first and last two weeks of their course. The interview
questions were designed to gain insight into students’ understanding of function and rate of
change. The pre-interview questions were open-ended and focused on single-variable functions
and rates. The post-interview questions were also open-ended and consisted of questions about
both single and multivariable rates of change, in addition to three tasks in which students were
asked to compute the average of a given set of data.
Analytical Method

Data analysis was multi-phased. We used the pre-interviews to characterize students’
understanding of function and rate of change. We identified common responses across interviews
using grounded theory (Corbin & Strauss, 2008) and characterized students’ concept images for
average, average rate of change, and instantaneous rate of change. Our analyses from the pre-
interviews suggested that some students relied on definitions of average in their representations
of average rate of change, and that those definitions were prevalent in both two and three
dimensions. We designed the post-interviews to gain insight into students’ meanings for average,
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average rate of change, and their thoughts about how those uses of average were related. We
constructed a set of concept images for both average and average rate of change using open and
axial coding (Figures 1 and 2) to describe a model for the meanings we believed students had.

Results

Concept Images

Figures 1 and 2 represent the outcome of open and axial coding of students’ concept
images for average and average rate of change. Each individual word in the category column
resulted from the open coding of students responses during the interviews. During process of
axial coding, we determined that a number of categories were representative of a similar concept
image, and we grouped them together to create five categories for average and four categories
for average rate of change. We created specific criteria for an instance of an interview to be
coded as a particular category, and used examples from the data to demonstrate what we meant
by particular criteria for other coders (inter-rater reliability K> 0.70). These categories provided
the basis for describing students’ meanings for average and average rate of change, often
involving multiple categories for an individual student.

Category

Criteria

Normal, typical, mediocre,
common

Student uses the word ‘normal,” ‘mediocre,’
‘typical,” or ‘common’ to describe ‘average.’

Mean

Student uses the word ‘mean’ to describe
‘average’ or as a synonym for ‘average’

Median, middle, center,
balance point

Student uses the words ‘median,” ‘middle,’
‘center,” or ‘balance point’ or talks about the
average as being the middle or center of the data

Overall summary,
representative value, value
used to compare, estimate,
expected value

Students talk about the average as a number that
presents an overall summary of the data; a
number that is representative of all the data; the
average as an estimate/approximation or expected
value for a new data point; or talk about using the
average to compare data

Mode, most common number

Student uses the word ‘mode’ as synonymous for
‘average’ or talks about average as the most
common number

Smoothed-out value

Student talks about the average as a smoothing
out of all the values or redistributing the data
equally across n pieces

Unit rate

Student discusses average the constant rate at
which a quantity would need to change to
produce the same overall change that was
originally observed

Figure 1. Students’ concept images for average
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Category Criteria

Arithmetic mean of slopes Student talks about summing slopes and dividing
by number of slopes summed whether it is a finite
or infinite number of slopes is irrelevant to the

student.
Expected or most common Student uses the word ‘most common’,
slope ‘expected’, ‘typical’ to describe average rate of

change. The student expects the average rate of
change provides information about ‘all’ of the

slopes.

Representative slope or rate of | Student describes the average rate of change as

change representative of all the rates or slopes. May
describe providing information about each of
them.

Constant rate of change Student describes average rate of change as the

constant rate of change required to produce the
same change in the function over the original
interval of input.

Smoothing out of all the Student describes the average rate of change as

slopes the all of the slopes smoothed out. Student
describes decreasing the ‘choppiness’ of the
slopes.

Figure 2: Students’ concept images for average rate of change

Example of Coding for Concept Images

In this section, we present excerpts to illustrate the coding process. The following results
are representative of our findings for the sixteen students, which we expand on further in
subsequent results. We have included students’ responses to highlight major categories of the
concept images we identified. We share our coding and inferences by focusing on excerpts from
student responses to the following three tasks:

(1) The data given below represent the masses of six fishing lures. What would the

average mass of the lures mean?

(2)  Suppose we define a function f; so that f(x)=e “*?" . Discuss the process you

would use to determine the average rate of change of the function with respect
to x over the interval [2.0, 2.2].

(3)  Suppose we define a function f, so that f(x,y)=e ™. Discuss the process you

would use to determine the average rate of change of the function. What
information do you need to know to complete this process?

Figure 3: Selected Interview Tasks

These tasks are representative of the semi-structured tasks that we presented. We asked
students this sequence of questions in order to have them describe average and average rate of
change within five interview minutes. We then asked them to reflect on the similarities and
differences in the use of average in each question. Our analysis of students’ responses allowed us
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to construct descriptions of their concept images and to make inferences about their meanings.

Below, we present three students’ responses to the previous tasks to demonstrate our coding of

students’ discussions.

Student 1

Brian: [Response to 1] I see the average as kind of like adding everything up into a
big ball, and then smoothing it out into equivalent pieces.

[Response to 2] I see the average rate of change like a constant rate of
change. Like, how fast the function would need to change to produce the
same change in y over the same change in x, but at a constant rate. You take
the change in y over the change in x, that kind of smooths it out to determine
it for you.

[Response to 3] Now, well, this is harder but I still know I am finding a
constant rate of change. However, to pick a constant rate, you have to specify
a direction in space, or there would be infinite average rates of change. So,
you still have a change in the function on top, but divided by a change one
variable or the other. It tells you a constant rate of change.

We characterized Brian’s concept image for average as a “smoothing out” of all the
values in the data set or the function. A number of students’ concept images included this idea, in
particular as a response to the average mass of a lure. These students discussed the average mass
as what one would find it one melted all the lures into one piece of metal and divided it into six
equal parts. Brian used “smoothing out” to discuss the average rate of change as the constant rate
at which the function would need to change to produce the same change in y over the same
change in x. His idea of smoothing out for a function seemed to be the function “smoothed” into
a secant line. Brian thus used his ‘smoothing out’ idea productively because he could connect it
to variation in quantities and, we inferred, a secant line. It is telling that he did not use the phrase
‘smoothing out’ in talking about rates of change in three dimensions; rather, he discussed the
constant rate of change in a particular direction. Thus, while his verbal description of average
and average rate of change seemed to be focus on smoothing out, he still retained a meaning for
rate as a comparison of changes in quantities.

Student 2
Jordan: [Response to 1] Well, I sum the masses, then divide by how many there are, which
tells me what their mass was mostly, or typically.

[Response to 2] Well, I am finding the slope between two points here Right, so |
find the change in y over the change in x. That just tells me a typical slope.

[Response to 3] Again, I probably am finding a slope, an average slope, so I need
a change in something over a change in something else. Probably a combination
of z, x and y? Again, it would just tell me a typical slope.

We characterized Jordan’s concept image as of a “typical” value, an idea that prevented
her from thinking about average rate of change as the constant rate of change needed to have the
same change in y over change in x. In other words, ‘typical’ prevented her from thinking about
rate of change as a rate as instructors might expect. However, Jordan appeared think about
quantities changing, as evidenced by her comments about a change in y over change in x, but her
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meaning for comparison of these changes did not extend beyond finding a change in a quantity to
divide by a change in another quantity. We believed this for two reasons. First, it seemed that she
was reciting a definition of slope that had meaning in terms of computation — “change in y over
change in x”” seemed to be a command to calculate that would tell her about a typical change.
Second, when she tried to extend finding the changes in y over the change in x to three space, she
concluded the denominator would be “some combination of x, y, and z.”

We constructed concept images and coded them in similar ways for each of the sixteen
interview participants. After we coded for concept images, we noted that many students appeared
to hold multiple concept images of average in mind, and applied those understandings depending
on the context of a particular task. This suggested to us that students’ meanings were flexible and
resulted in the student imbuing the phrase “average” with a particular meaning depending on the
elements of the task. In the next section, we provide a broader overview of our results by
describing how we used students’ concept images to make inferences about the meanings they
possessed.

Representative Excerpts

Mathematically, average may refer to mean, median, or mode and colloquially it may
refer to a value that is typical, common, representative, or expected (among others). It was not
surprising that students’ concept images reflected these multiple meanings. We gained insight
into students’ concept images by introducing tasks that pushed them to describe things with
which they were unfamiliar. For example, we asked them to describe the meaning of average
void of a particular context. Many students expressed difficulty with explicitly defining average
(“everyone knows what average means”), and we think that forcing them to search for words
with which to define it made for particularly clear snapshots of their concept images.

We noticed in our analyses that while many students held multiple understandings of
average in mind simultaneously and without incoherence, the meanings they appeared to possess
for average were robust across tasks. By robust, we mean that they found creative ways to apply
their understanding of average to interpret both average and instantaneous rate of change in two
and three dimensions. By extending this meaning for average to multiple situations and tasks, we
believed that the students were seeking coherence in their understanding. They appeared to think
that if average meant the same thing in each context, then their understanding of average was
accurate. Thus, their desire for coherence resulted in them attempting to apply similar meanings
for average across problem situations. In the following table we present an overview of student
responses that demonstrate the coherence they created for thinking about average and average
rate of change.

Key Issues

The selected excerpts suggested to us that students’ meanings for average centered on a
measure of central tendency, typicality, or representativeness. The data also supports that
students think about average rate of change as a measure of central tendency of the rates or
slopes. More broadly, they think about average and average rate of change as the measure of a
characteristic of a group that also provides information about the individual observations in that
group. While we believe that these meanings for average can be leveraged in the context of
instruction, our interpretations of the data suggest that the students' meanings allow them to
believe their understanding is coherent, even when an expert may seem these as inaccurate.
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STUDENTS’ KNOWLEDGE RESOURCES ABOUT THE TEMPORAL ORDER OF
DELTA AND EPSILON

Aditya P. Adiredja and Kendrice James
University of California, Berkeley

The formal definition of a limit, or the epsilon delta definition is a critical topic in calculus for
mathematics majors’ development and the first chance for students to engage with formal
mathematics. Research has documented that the formal definition is a roadblock for most
students but has de-emphasized the productive role of their prior knowledge and sense making
processes. This study investigates the range of knowledge resources included in calculus
students’ prior knowledge about the relationship between § and € within the definition. diSessa’s
Knowledge in Pieces provides a framework to explore in detail the structure of students’ prior
knowledge and their role in learning the topic.

Key words: limit, formal definition, students’ prior knowledge, fine-grained
analysis

In February 2012, the President’s Council of Advisors on Science and Technology (PCAST)
called for 1 million additional college graduates in Science, Technology, Engineering, and
Mathematics (STEM) fields based on economic forecasts (Executive Office of the President,
PCAST, 2012). Within STEM, mathematics is severely underrepresented. For example, UC
Berkeley Common Data Set from this past year (University of California, Berkeley, 2011)
reported that mathematics accounted for 3% of the degrees conferred, whereas engineering and
the biological sciences accounted for 11% and 13% respectively.' Calculus is the first
opportunity for students to engage with theoretical mathematics and make the transition into
advanced mathematical thinking. While calculus courses often act as a gatekeeper into
mathematics and other STEM majors, some exemplary mathematics programs have successfully
used them as the primary source for recruiting mathematics majors (Tucker, 1996).

The formal definition of a limit of a function at a point, as given below, also known as the
epsilon-delta definition, is an essential topic in mathematics majors’ development that is
introduced in calculus. We say that the limit of £ (x) as x approaches a is L, and write

jlci_r% flx)=1L
if and only if, for every number ¢ greater than zero, there exists a number § greater than zero
such that for all numbers x where 0 < |x — a| < § then |f(x) — L| < €. The formal definition
provides the technical details for how a limit works and introduces students to the rigor of
calculus. Yet research shows that thoughtful efforts at instruction at most leaves students —
including intending and continuing mathematics majors — confused or with a procedural
understanding about the formal definition (Cottrill et al., 1996; Oehrtman, 2008; Tall & Vinner,
1981).

Although studies have sufficiently documented that the formal definition is a roadblock for
most students, little is known about how students actually attempt to make sense of the topic, or
about the details of their difficulties. Most studies have not prioritized students’ sense making

! Stanford University reported similar numbers with 3.3% for mathematics and 15.1% for
engineering (Stanford University, 2011).
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processes and the productive role of their prior knowledge (Davis & Vinner, 1986; Przenioslo,
2004; Williams, 2001). This may explain why they reported minimal success with their
instructional approaches (Davis & Vinner, 1986; Tall & Vinner, 1981). Thus, understanding the
difficulty in the teaching and learning of the formal definition warrants a closer look — with a
focus on student cognition and with attention to students’ prior knowledge. It also calls for a
theoretical and analytical framework that focuses on understanding the nature and role of
students’ intuitive knowledge in the process of learning.

A small subset of the studies have begun exploring more specifically student understanding
of the formal definition (Boester, 2008; Knapp and Oehrtman, 2005; Roh, 2009; Swinyard,
2011). They suggest that students’ understanding of a crucial relationship between two
quantities, € and § within the formal definition warrants further investigation. Davis and Vinner
(1986) call it the temporal order between € and &, that is the sequential ordering of € and &
within the formal definition where & comes first, then & * (p. 295). They found that students often
neglect its important role. Swinyard (2011) found that the relationship between the two quantities
is one of the most challenging aspects of the formal definition for students. Knapp and Oehrtman
(2005) and Roh (2009) document this difficulty for advanced calculus students. This difficulty is
also prevalent among the majority of calculus students who struggled with the formal definition
in Boester (2008).

One hypothesis in the literature for the difficulty is that to understand the temporal order of &
and § requires the act of “reversing the function process” (Oehrtman, Carlson & Thompson,
2008). Swinyard (2011) calls it the “y-first” conception because ¢, the error bound for the output
v comes first. This act contrasts with the usual functional relationship that most students are
familiar with, that is input, x first, then output, y. While Swinyard (2011) shows that such step is
crucial in understanding the definition, Zow students arrive at that understanding or begin to
reverse the function process remains an empirical question.

This study is a part of a larger study investigating the role of prior knowledge in student
understanding of the formal definition. It specifically explores the claim that students struggle to
understand the temporal order of € and § within the formal definition. We aim to answer the
following research questions:

1. What claims do students make about the temporal order of € and §?

2. If students in fact struggle with the temporal order, what is the nature of their difficulty?
To explore the nature of the difficulty this study will explore the range of knowledge resources
students use to make sense of the temporal order. Knowledge resources are defined as relevant
prior knowledge that might be used to reason and justify a claim. In this study we focus on
observable knowledge resources, that is knowledge resources that can be inferred through
students’ assertions, gestures and artifacts. For brevity we will use knowledge resources for the
remainder of the document when we talk about the observable knowledge resources.

Theoretical Framework

? Davis and Vinner (1986) used the phrase temporal order to describe the sequential relationship
between € and N in the formal definition of a limit of a sequence. Knapp and Oerhtman (2005)
have used the same phrase to describe the relationship between ¢ and & as they follow the same
sequential ordering.
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The Knowledge in Pieces (KiP) theoretical framework (Campbell, 2011; diSessa, 1993;
Smith et al., 1993) argues that knowledge can be modeled as a system of diverse elements and
complex connections. From this perspective uncovering the fine-grained structure of student
knowledge is a major focus of investigation, and simply characterizing student knowledge as
misconceptions is viewed as an uninformative endeavor (Smith et al, 1993). Knowledge
elements are context-specific; the problem is often inappropriate generalization to another
context (Smith et al, 1993). For example, “multiplication always makes a number bigger” is not a
misconception that just needs to be removed from students’ way of thinking. Although this
assertion would be incorrect in the context of multiplying numbers less than 1, when applied in
the context of multiplying numbers greater than 1, it would be correct. Paying attention to
contexts, KiP considers this kind of intuitive knowledge a potentially productive resource in
learning (Smith et al., 1993). This means that instead of focusing on efforts to replace
misconceptions, KiP focuses on characterizing the knowledge elements and the mechanisms by
which they are incorporated into, refined and/or elaborated to become a new conception (Smith
et al., 1993). Similarly, we view students’ prior knowledge as potentially productive resources
for learning. We also assume that student knowledge is comprised of diverse knowledge
elements and organized in complex ways, and thus learning is seen as the process of
reorganization and elaboration of students’ prior knowledge.

Methods

The data for this study comes from two rounds of pilot study for a larger study investigating
the role of prior knowledge in student understanding of the temporal order. The main source of
data is individual student interviews with seven calculus students. The goal of providing a
detailed account of knowledge structures and learning processes suggests the use of a relatively
small number of research subjects, given the depth and detail of analysis that will be offered.
Each of these students has received some form of instruction on the formal definition, so we
anticipate some knowledge about the definition to be a part of their prior knowledge.

The interview protocol consisted of a task portion to re-familiarize the student with limit and
then an opportunity for the student to explain and define limit in their own words. Next, both
general and specific questions were asked about the parts of the formal definition. Afterwards,
students were asked specific questions about the temporal order of € and §. To explore the
stability of students’ knowledge across different contexts, we asked students about the temporal
order of the two variables in four different contexts: dependence, control, time, and ordering of
the four variables in the definition (for the questions see Table 1 under results). In those contexts,
the relationship between & and ¢ could be described as: § depending on &, one is trying to control
x using 8, € comes first, and an ordering of the four variables in which € comes first before &.
There are multiple ways to order the four variables within the definition. One might argue that €
comes first and § is determined from &, then one uses the x values that are within § of a to see if
they yield function values that are within € of L. So one ordering could be ¢, §, x and f'(x). Each
individual interview lasted about 2 to 3 hours. These interviews were videotaped following
recommendations in Derry et al. (2010).

Analysis
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The first part of the analysis places students in categories based on their claim about the
temporal order of € and §. There will be three categories: epsilon first, delta first, and no order.
For a student to be classified into the category epsilon first, s'/he would respond in the following
way to the four questions. S/he would say that: 1) § depends on &; 2) one is trying to control x
using &, based on a given €; 3) € comes first and then §; 4) the four variables are ordered in such
a way where &€ comes first then §. For a student to be classified into the category delta first, s/he
would respond in the following way to the five questions. S/he would say that: 1) € depends on
§; 2) one is trying to control f(x) using &, based on §; 3) § comes first and then €; 4) the four
variables are ordered in such a way where § comes first then €. For a student to be classified as
no order, there needs to be variance in responses across the different questions. In this study, we
found few inconsistencies between the four different ways of asking the question with these
seven students but we expect more variance with a larger population of students.

The second part of the analysis explores the range and nature of knowledge resources. As
stated earlier, we operationalize knowledge resources as relevant prior knowledge that might be
used to reason and justify a claim that can be inferred through students’ assertions, gestures and
artifacts. We identify knowledge based on what students say in the moment using the Knowledge
Analysis (KA), which is a methodology consistent with KiP (Campbell, 2011; diSessa, 1993;
Parnafes and diSessa, in press; Schoenfeld, Smith & Arcavi, 1993). KA is a combination of top-
down and bottom-up qualitative analysis. This means that emergent knowledge structures must
be held accountable to both empirical evidence and existing theories and literature. The analysis
focuses on discussions around the four questions about the temporal order of §. To hold our
conclusions accountable to the data, reasonable interpretations for the statement will be
considered and be put through the process of competitive argumentation (Schoenfeld et al.,
1993) using other parts of the transcripts. With each of the observable knowledge resources,
particular care will be given to investigate their origin and when it originally came up. Until
there is consistent evidence of stance taken by a student, it would be impossible to make claims
about the stability or how committed the student might be to the specific claim they made.

Results

Relationship Between the € and 6
Five of the seven students we interviewed concluded that & came first, 2 students
concluded that € came first and no student fell into the no order category. These findings are
consistent with the literature’s claim that students struggle with the temporal order within the
formal definition. The table below shows the claims students made about the temporal order
between € and § across the different contexts. We determine the student’s final categorization by
what the student said last about the relationship between ¢ and §.

Table 1

Students Responses Across the Different Contexts of the Temporal Order

Student Question Question 17: Which  Question 18: Question 19: Final

Initial ~ 15: Which  variable are you Which one comes  Order of [the categori
depends on  trying to control? first? four] variables.  zation
which?

DC 6 depends  [Skipped] N/A N/A Epsilon
on & first
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DL € depends 6 youcancontrol, e  N/A N/A Delta
on § you're trying to first
control.
JJ € depends  Control § and N/A N/A Delta
on § [trying to] control €. first
AD 6 depends  [Skipped] € 1is first, you Student decided  Epsilon
on & break down the not to try. first
epsilon to find
delta.
DR € depends  Trying to control § You get delta first  x, f(x),a, L, §, & Delta
on & so that you can geta then you get € as first
smaller €. your result.

SR € depends  Trying to control x Calculate delta x, 6,f(x), € Delta
on & and f'(x), but not first, then used to first
sure. calculate €.
OB € depends  Try to control x and  Delta comes first, 6§, x, @, f(x), €  Delta
on 6 6 to find €. & second. first

The five students who ultimately concluded that § was first were consistent in their inference
of the relationship between the two variables in the other questions. All five concluded the
temporal order by claiming that € depended on §. Four of the five (DL, JJ, DR and OB) believed
that one could control § in order to control €. Three of those five students (DR, SR and OB) were
part of the second round of pilot and their responses to the other order question (question 19)
were also consistent. While one (SR) was unsure whether one would calculate € as a result, the
ordering is consistent in that § comes first and get € second. SR was also unsure of which
variables they were trying to control. It’s worth noting that even the two students who ended up
with the category epsilon first initially thought that delta first made more sense to them. We will
see some of their explanations in the next section. Furthermore, due to time constraints and
different versions of the protocol as it developed, some questions were skipped.

Range and Diversity of Knowledge Resources

The following diagram provides an overview of the knowledge resources that emerged from
the data. We inferred them from the students’ explanations about the temporal order across the
different contexts and organized them into two categories: those that pertain to the formal
definition and those that did not. Each section below will provide an illustration of some of the
common knowledge resources across different students. Most of the resources will support the
claim that € comes first; though some will support the normative claim that § comes first. We
start with the most common knowledge resource, then we continue in order from left to right on
the diagram.
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KNOWLEDGE

RESOURCES
FORMAL NON FORMAL
DEFINITION DEFINITION
Quantities*: Logic: Limit: General mathematical

- Epslion Is related to f(x)
and deta Is related to x

- Interpretation of "For
every number £ >0, there
is a number 30"

- The limit L Is unknown

- Implication of a limit not

knowledge*:
- f(x) depends on x or
output depends on input

existing
- Interpretation of
"O<ix-aled =>1(x)-Ll<e”

Figure 1. Six documented knowledge resources from the seven students. Star indicates
knowledge resources that were often cued together.

The “’f (x) depends on x”” and “6 is related to x and ¢ is related to f (x)” Knowledge Resources

One very common knowledge resource that emerged in the pilot study was the output f (x)
was dependent on the input x. In fact, all five students who ended up in the delta first category
used this particular resource. The two students, who concluded that € was first, also used this
resource at some point in their explanation.

Students often associated this knowledge resource with another knowledge resource that €
was a quantity related to f(x) and § was a quantity related to x. With this combination of
knowledge resources, students often concluded that ' (x) depended on x meant that € must also
depend on &, and thus § was first. In our data, we found two ways that students used this
knowledge. One of the ways was students argued that § was associated with x and € was
associated with f'(x) so since f(x) depended on x, then € depended on §. The second way was
that students said that § was either influencing the input or was the input and ¢ dealt with the
output or was the output. Furthermore, since output depended on input then € depended on §. For
example, DC illustrates the first way below.

Um [inaudible] well given that the, um, delta does generally or does seem to refer to the x
value or the range of x values, the domain of x values that you want to be paying attention to,
generally I think of functions, um, since a function is a relationship between dependent and
independent variables, I tend to think of x as being you know as they are the, uh, independent
variables. And so the y as being the ones that are altered by the x. So that's how you plug in
numbers for functions, that's how you utilize functions in most cases. So it makes more sense
to me to think that as epsilon being dependent on delta, where I'm assuming that delta is
referring to x and epsilon is referring to y values” (turns 137-145).

DC reasoned that § referred to a range of x-values and thus ¢ referred to a range of y-values, and
since f(x) or y depended on x, then it ‘makes more sense to him’ that € depended on 6. In this
case we would argue that DC used the following knowledge resources to conclude that § was
first: 1) the dependence between x and f'(x); 2) & refers to x values; and 3) ¢ refers to y values.
Observe the similarity between what DC said with what DR said in her interview: “Um, see cus |
was looking at it like the x or the f'(x) or the yeah, the f(x) depends on the x and that's how I was
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like saying that epsilon depends on delta because epsilon like is related to the f(x) or whatever”
(turn 578). DR also relied on the dependence between x and f (x), and she, too saw ¢ as “related
to the f'(x).” Note that DC was one of the students who ended up in the epsilon first category.

DL and JJ also reasoned about the formal definition using the knowledge resource of x was
associated with § and f'(x) was associated with €. DL concluded that € depended on § because
“[epsilon] is the f(x) and f'(x) depends on x that epsilon would depend on delta” (turn 170). From
his response it seems that he also had equated € with £ (x). For JJ this way of thinking was
revealed when he discussed question 17, which of § and ¢ he had control over and which he was
trying to control. He argued that he had control over § to control € because, “Cus of x and y. |
equated delta with being x and epsilon y” (turn 260). In sum, four students (DL, JJ, DC, DR),
either understood € and § to be y and x values respectively or at least associated with them. They
then used the dependence between x and y (or f'(x)) to conclude the dependence between € and §.

On the other hand, AD did not explicitly relate § to x and € to f(x), but he still used the
input/output relationship between the function and its domain to make conclusions about the
dependence between € and . He understood § to be a bound that restricted the closeness
between x and a. However, for AD the process started with § restricting the input and seeing
what happened with the output. Below is his response for why € depended on §.

310 AD ... [I]t’s because delta is um, you're saying delta must be greater than the input minu-
subtracted by what you're centered around.

311 AA Uh-hm.

312 AD So you're saying that delta must be, the interval around a number a must be less than
delta, so you're saying, um the input cannot get outside of this region, it cannot be
getting, [inaudible] our region, this interval it, it cannot get exceedingly big.

313 AA Uh-hm.
314 AD And then for epsilon you're evaluating x around q,
315 AA Uh-hm.

316 AD and then you're subtracting 1. When you plug in x for, when you plug in a for x, so
what winds up happening is you're seeing how big the difference [of the function
value] is between a number near a and then « itself.

317 AA Uh-hm. So how does that say that epsilon depends on delta?

318 AD It's, uh, because your input, your delta is influencing your input and then epsilon
must be greater than your input minus your input of a,

319 AA ok, your output [correcting]

320 AD your output [in agreement].

321 AA And since, so since output depends on input..
322 AD Yes.

323 AA epsilon depends on delta...

324 AD Yes.

Here, unlike the four other students, AD did not specifically refer to the dependence between
x and f'(x), instead he was referring to the relationship between input and output. While the
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wording was different, we took these two to represent the same knowledge resource. Moreover,
AD might have had a slightly different conception of § and €. AD stated that § was not just a
quantity related to x, but more specifically, it was “influencing your input” (318). There was a
sense of § constraining the input that the other two students’ interpretation of § did not have.
Furthermore, € was also stated as something more than just dealing with y values or f'(x). AD
stated that € must be greater than your [output] minus your [output] at a. So we see here while
AD might have interpreted € and § differently than DC, JJ, DL and DR, AD still cued the same
knowledge resource, “the dependence between x and f'(x).”

Interpretation of “For every number ¢ >0, there is a number 6 >0" as Knowledge Resource

Another knowledge resource that was used by four of the seven students was interpretation of
part of the statement of the formal definition “for every number ¢ >0, there is a number 0 >0.”
For two of the students, this statement was used to justify that § comes first. We see this in JJ’s
interview when he says “If for every number epsilon, there is a number delta sounds like epsilon
is based on, if there is a number delta or not” (turn 232). In this excerpt, JJ reasons that ¢ is based
on the existence of §; in other words, § comes first. Similarly, DL interprets the statement to
mean that § had to exist in order for an € greater than zero to exist when he says, “It seems that
delta is supposed to affect €, for me. Um, but on here [the statement of the definition] it seems
that, that epsilon is affecting the delta, the way that I'm reasoning it, is that, since it exists, that
epsilon is greater than zero, there must have existed some delta to have made this epsilon greater
than zero” (turn 59). Notice that DL recognized that the statement of the formal definition
suggested that & depended on ¢, or € comes first, but his reasoning used this part of the statement
and he concluded the opposite relationship.

In contrast, a third student, DC, uses his interpretation of the statement to support the claim
that € comes first. He said, “Actually the way I should be saying that, it's actually said in the
form of this text. That for every epsilon there is a delta. Not for every delta there is an epsilon
such that these conditions are met. So delta is dependent upon epsilon. It seems* (turn 123). He
later confirmed that opinion and said, “Because as the, um, definition says, uh it's for every
number epsilon, there is a number delta. So your delta is dependent on epsilon.” (turn 196).

Interpretation of the Statement “If 0<|x-a|< § then |f (x)-L|< & as Knowledge Resource

Three students (JJ, SR and AD) used this part of the statement to conclude that § comes first
in the temporal order. To JJ this part of the formal definition said that a statement about &
implies a statement about &, so € depended on §. He said, “Because if, if this [points at
0|]<x-a|< &] is true then that's [|f'(x)-L|< ] true. Um, and this has to do with delta and this has to
do epsilon” (turn 218).

SR noted that this statement indicated that with the formal definition one would start with the
x value. SR argued that the x had to be within a certain § before the € can be satisfied, and she
used that as a part of her reason for why € depended on §. SR argued,

My reasoning is that um, my reasoning is that you have to first/.../ look at /.../ the x value
that you're approaching and it has to satisfy these conditions and be within a certain delta for
there to even be /.../a/.../ limit, /.../ like your whole deal with the epsilon, it [delta] has to
be satisfied first, so that's why I feel like it depends on delta (turn 319).
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SR later said that she got this idea from the if-then part of the formal definition and confirms
that, to her, the if-then statement is telling her that the § is “there first” (turn 327).

The “limit L is unknown” Knowledge Resource

One student, OB used their knowledge about limit more generally to reject that § depended
on €. Specifically, he believed that in the context of a formal definition one still would not know
what the limit was. That is one would try to find the limit and would do so by evaluating the
function for values of x near a. That is, one would start with values of x near a then find what
happens to the value of f(x). The implication was that one would start with § then compute &.

OB argued that one would start with §. Below he explained why one would not be starting
with ¢ instead. He argued,

Let's just say the contrary. If we had chosen epsilon to be the first number. Then it would
mean that we would, we would have to know L. So it's pretty much just going around, if we
know L then what's the purpose of trying to find an epsilon? Whereas if we first choose delta,
we already know x and a. Uh and then we would find the epsilon so delta comes first (turns
144-152).

OB was convinced that within the context of the formal definition one would not know what the
limit was. To him this means that one would find ¢ in order to figure out what the limit is. In this
case we see two students who believed that the limit was still unknown in the context of the
formal definition, much like calculating limits usually, and thus € was used to get close to L, so &
comes first.

Implication of the Limit Not Existing as a Knowledge Resource

Another knowledge resource that students used to reason about the temporal order between &
and ¢ is what would happen when the limit did not exist. Two students, DC and AD used the
context of a limit not existing to infer the dependence between ¢ and §. DC came up with a
problem context where the limit did not exist where there was a vertical asymptote at @ and the
left hand limit does not equal the right hand limit.

[I]f you have a divergent asymptote then that means your epsilon will be infinitely large. So
you can't really. It seems that you can't make any statement at all about delta in that
situation... if you can’t, um, like really confine that [¢] then you can't have any kind of
meaningful knowledge about delta, it seems to me. Because as the, um, definition says, uh
it's for every number epsilon, there is a number delta. So your delta is dependent on epsilon,
and if you can't um like really confine that [£] then you can't have any kind of meaningful
knowledge about delta, it seems to me (turn 196-198).

DC argued that in this problem context € would be infinitely large which would deem delta
useless in confining x around a to confine f'(x) around L. As such depending on what ¢ is, &
might be meaningless, hence § depends on &, which is what DC ultimately concluded.

AD referred to the same problem context but only went as far as saying that § and ¢
depended on each other, albeit being a weak relationship. He argued that in the case when the
limit did not exist, then the § being small would not necessarily mean that € would also be small.
He argued,
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So, um, they- they depend on each other a little but not like completely. It's, a weak I'd say
it's more of a weak, um, connection because, uh if the limit exists then there's gonna be some
sort of you know, if, as this [possibly points at 0<|x-a|< §] gets you know smaller this [|f'(x)-
L|< €] is getting, the difference is gonna get smaller. But if the limit doesn’t exist like it did in
4 [problem 4 with diverging limits], where it, it, you know, it doesn't exist then as this [points
at 0<|x-a|< 6] gets smaller this [|f(x)-L|< €] isn't gonna change, this isn’t gonna help
[inaudible]. So it's gonna, still not exist even though the function is getting close [gestures his
two hand coming together] to that point (turns 292-296).

AD seemed to be arguing that when the limit existed then as the § expression (0<|x-a|< §) got
smaller then the € expression (|f'(x)-L|< €) would get smaller as well but sometimes, as in the
case when the limit does not exist, the § getting smaller would not affect the €. But instead of
concluding that then § would be dependent on ¢ like DC, AD concluded that in that case there
would be a ‘weak connection’ between & and ¢.

Summary

We have shown the diversity and range of knowledge resources students used to infer the
temporal order of § and €. We started with the most common resource of “’f(x) depends on x”’
and “6 is related to x and ¢ is related to f(x).” In fact, all students who concluded that § was first
used this resource. We also found particular interpretations of the two parts of the statement of
the definition, and also “the limit L is unknown” and the implications of the limit not existing.
We grouped these resources into two categories, those related to the formal definition and those
who did not. We also saw how some of these knowledge resources were cued together. For
example, students’ understanding of the quantities € and § were cued along with the dependence
relationship between x and f'(x) in inferring the relationship between § and ¢, like with DC and
DR.

Discussion and Implications

The result of the first part of our analysis confirms the literature’s claim that the temporal
order of € and § is difficult for students to understand. The majority of the students in our study
concluded that § came first, and even those who finally concluded that € came first at some point
during the interview stated that § being first made more sense to them. The result from the
second part of our analysis began to uncover the complexity of the issue. The second part of our
analysis explores the diversity and range of knowledge resources students use to make claims
about the temporal order. We showed that students arrived at their conclusion using a variety of
resources, from the most common combination of resource of “f (x) depends on x” and “§ is
related to x and ¢ is related to f'(x),” to the less common “the limit is unknown” with the one
student OB. We also found some knowledge resources that assisted students to conclude that €
came first. “Implications of the limit not existing” and the normative interpretation of the
statement “for every number ¢ > 0, there is a number 6 > 0” were both knowledge resources that
assisted AD and DC to conclude that € came first.

In some ways, the fact that “f'(x) depends on x” is the most common knowledge resource that
conflicted with the temporal order of § and ¢ is not surprising. Students are used to seeing
functions as going from x to f(x), so f (x) depending on x, and the temporal order just follows the
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“opposite” direction, much like what Oehrtman et al. (2008) suggested with the reversal of
function process. But our result elaborates on that conflict. This particular resource on its own is
not necessarily problematic, but when it is cued with a particular understanding of § and ¢, that
is “4 is related to x” and “¢ is related to f(x),” it led many students to conclude that & depended
on §. The natural question is why did so many students have this “gloss” of € and §? What we
found in our data was that most of them relied on the syntax of the definition to make meaning of
the two variables. Specifically, many inferred from the statement “if 0<|x-a|< § then |f'(x)-L|< &”
that “6 is related to x” and “e is related to f'(x),” often ignoring the “less than” symbol. This
tendency relates to our next point.

Notice that the resources are all mathematical inferences and mathematical interpretations,
and there were no intuitive ideas. For example there were no ideas about approximation or error
bounding like ones used in Oehrtman (2008). There are two possible explanations for this. First,
it might be that this shows the lack of access into the formal definition for students. That is, the
statement of the definition as presented in most textbooks provides little space for students to
capitalize on their intuitive knowledge. As a result, many of them only had the syntax (the
symbols and the logical structure) of the formal definition to make sense of it. And as we saw in
our study, students came up with their best interpretation and often it led them to the wrong
conclusion.

Second, the prevalence of mathematical inferences and interpretations might be a limitation
to our current analysis. That is, we have not gone small enough in grain size of knowledge or
specific enough to uncover students’ intuitive knowledge. For example, it might be that the
“gloss” for § and ¢ is indicative of a typical pattern in explaining. That is, while students might
have a more particular view of § and ¢, in explaining the temporal order they might feel that a
“gloss” is sufficient, especially when the gloss would be consistent with their understanding of
how functions usually works. We have evidence that the student AD might be doing just this in
developing his claim. This is a hypothesis that we are currently exploring in the larger study
about students’ intuitive knowledge about the formal definition.

Our results show the importance of understanding students’ prior knowledge in
understanding the learning of the formal definition. We have discussed the implication of the
most common knowledge resource, but from our analysis we also found other knowledge
resources that supported the claim that € depended on §, or § first. It is important for us to
reiterate that these knowledge resources are not misconceptions. For example, no one will say
that the dependence of /'(x) on x is a misconception. For us, the importance lies in understanding
how these resources are cued, how they might interact with others to lead to whichever
conclusion about the temporal order.

The question for practice is then how can we begin to address the issue knowing the diversity
and range of the knowledge resources students use to reason about the temporal order?
Following the recommendations in Smith et al. (1993), we cannot expect to replace these
seemingly unproductive knowledge resources. Instead, in instruction we need to figure out
different ways for students to reorganize these resources, and to help them understand the
appropriate contexts to use them. For example, in the larger study, we are attempting to take
advantage of students’ intuitive knowledge about idea of quality control, to not only assist them
in understanding the formal definition, but also to help them distinguish the difference between
error and error bound, that is the difference between | (x)-L| and € and in turn also help them
distinguish the dependence between the errors and the error bounds. We have some evidence for
the productivity of this approach.

1-50  16™ Annual Conference on Research in Undergraduate Mathematics Education



In conclusion, while we have yet to see other patterns that will be revealed from interviewing
more students, our findings so far suggest that students reason about the formal definition in
particular ways. There is a range of knowledge resources students use to do so, and we expect to
find more as we interview more students. It remains to be seen if we will find more mathematical
interpretations or uncover more intuitive knowledge that students use in reasoning about the
temporal order. Either way, we believe that a better understanding of the nature of these
resources can facilitate the design of instruction that can help students bridge and reorganize
these resources for a better understanding of the formal definition.
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COMPUTATIONAL THINKING IN LINEAR ALGEBRA
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In this work, we examine students' ways of thinking when presented with a novel linear
algebra problem. We have hypothesized that in order to succeed in linear algebra, students
must employ and coordinate three modes of thinking, which we call computational, abstract,
and geometric. This study examines the solution strategies that undergraduate honors linear
algebra students employ to solve the problem, emphasizing the variety of productive and
reflective ways in which the computational mode of thinking is used.

Key words: Justification, Linear Algebra, Problem Solving, Procedural Understanding

A first course in linear algebra plays a pivotal role in the mathematical education of
college students in STEM disciplines. It usually follows a calculus sequence that may be
predominantly computational in focus, and serves as a first encounter with many elements of
more advanced mathematics. These include the emphasis on precise definitions and formal
proofs, the creation of an abstract axiomatic structure, the study of objects that are not easy to
visualize, multiple representations of those objects, and computational methods that require
non-routine choices and interpretations of those representations. The kinds of flexible
thinking required are foreign to many students, for whom “the fog rolls in”” and the subject
remains opaque (Carlson, 1993).

Much of the literature on the learning of linear algebra documents students’ inabilities to
solve basic problems, to move flexibly between the representations, to use abstract theorems
in concrete situations, and even to speak or write the basic language of linear algebra
coherently. Despite much insight into the causes of their difficulties, and creative pedagogical
suggestions, the overall impression remains pessimistic.

Based on our own teaching experience, and consistent with previous work (Hillel, 2000;
Sierpinska, 2000), we hypothesized that students must learn three major ways of thinking,
and how to coordinate them with each other, in order to succeed in linear algebra. We term
these abstract, geometric, and computational thinking. The study reported here was designed
to explore students’ use of these ways of thinking and their ability to coordinate them while
solving a novel linear algebra problem. The initial research questions for the study were:
What strategies do students use to solve a novel linear algebra problem (described below)?
What are the uses, affordances, and constraints of each mode of thinking? In what ways do
students coordinate these modes of thinking?

The students in our study were first year undergraduates enrolled in an Honors linear
algebra course at a large university in the southwestern United States. As such, they do not
form a representative sample of the general population of linear algebra students, and we
would not expect our results to generalize immediately to this larger population. However,
our students successfully used computational thinking to solve the problem in creative ways
and to justify their solutions. Our study shows what successful student thinking in linear
algebra can look like and provides a positive counterpoint to the literature on student
deficiencies in linear algebra.
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Theoretical Background and Literature Review

Drawing upon our own teaching experience, we hypothesize that mastery of linear
algebra requires students to develop, and move flexibly between, three essential ways of
thinking that we term abstract, geometric, and computational thinking.

Abstract thinking treats vectors as abstract objects manipulated according to formal rules,
without reference to components or arrows. It makes use of definitions and theorems stated in
coordinate-free language and applicable to R” for any 7. (Our course did not cover abstract
vector spaces.) It makes assertions of existence or uniqueness on the basis of general
principles rather than resulting from explicit computations. The notion of orthogonality may
be part of abstract thinking if its meaning comes from an abstract inner product rather than
the specifically geometric notion of right angles.

Geometric thinking involves visualization in Euclidean two- or three-dimensional space,
with vectors represented as arrows, and may draw on concrete facts from high school
geometry such as the Pythagorean Theorem. Span and linear independence can be geometric
concepts if based on geometric properties such as collinearity and coplanarity in R* and R®.
“Orthogonal” as a synonym for “perpendicular” is a geometric concept. Systems of linear
equations can be viewed geometrically in terms of the incidence relations among the lines or
planes obtained by graphing each equation. A desirable outcome of a linear algebra course is
for students to learn to extend their geometric thinking to apply in R” for n > 3; we do not
consider “geometric thinking” in such contexts to be an oxymoron.

Computational thinking represents vectors in R" explicitly as n-tuples of real numbers,
and draws conclusions from algorithms such as row reduction of matrices for solving systems
or computing determinants. Assertions of existence or uniqueness come from explicit
computations producing the objects in question. Systems of linear equations are thought of in
terms of their coefficient or augmented matrices. Most importantly, for us computational
thinking is not simply the procedural knowledge of how to execute an algorithm without
errors. It includes choosing the appropriate computation to answer a particular question,
understanding what the result of the computation means in that context, and reasoning about
the steps or the outcome of the computation.

Problems in linear algebra may require an insight or reasoning process that is most
accessible via one specific way of thinking. However, coordination between multiple ways of
thinking is often required. By this we mean the ability to flexibly move from one way of
thinking to another, or more specifically to “import” information acquired via one mode into
another mode for further reasoning. Translation to the geometric mode often provides
intuitive confirmation or understanding of abstract or computational results; a geometric
picture may provide the key idea for an abstract proof or identify a key quantity to be
computed.

Our tripartite taxonomy of modes of thinking is closely related to similar categories
described by Hillel (2000) and Sierpinska (2000). Hillel speaks of three modes of description
of the basic objects of study, namely vectors and operators, and calls these modes abstract,
geometric, and algebraic. He traces many student difficulties to instructors’ propensity for
“constantly shifting modes of description and notation” without alerting students to this. He
points out that choosing a basis, or changing basis, may require students to shift modes of
description, and that over-reliance on a single mode can cause problems for students, for
example when they inappropriately apply geometric intuition in dimensions higher than three.
His three modes roughly correspond to ours, but note that they refer to languages that can
describe the basic objects of study, and not directly to the ways that students think.

Sierpinska (2000), like us, discusses three modes of thinking or reasoning. We will
shorten her names to (analytic-)structural, (synthetic-)geometric, and (analytic-)arithmetic,
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which roughly correspond in order to Hillel’s categories. She says these modes are “equally
useful, each in its own context, and especially when they are in interaction” (p. 233) and
traces student difficulties to “their inability to move flexibly between the three modes” (p.
209). Her structural mode corresponds to our abstract one, and her geometric mode to ours.
However, our computational mode seems to be more inclusive than her arithmetic one. She
gives an example she considers to be intermediate between arithmetic and structural thinking,
in which “the student was not performing calculations, he was reflecting on the properties of
the possible effects of a calculation” (p. 240). We definitely consider this within the scope of
computational thinking. Such computational reasoning, as we call it, will be a central theme
of this paper.

We do not view computational thinking as merely procedural knowledge, in which
students apply rote algorithms without reflection. We see it as an example of what Star
(2005) calls deep procedural knowledge, which he characterizes as “knowledge of procedures
that is associated with comprehension, flexibility, and critical judgment and that is distinct
from (but possibly related to) knowledge of concepts” (p. 408). We will present examples of
our students successfully applying computational thinking to solve the problem we posed in a
variety of creative and reflective ways.

The literature on linear algebra tends to emphasize identification and diagnosis of student
errors and deficiencies. Hillel (2000) and Sierpinska (2000) highlight their inability to utilize
and flexibly coordinate the three modes of thinking. Dorier and Sierpinska (2001) also point
out their unfamiliarity with axiomatic frameworks and the need to think in terms of formal
definitions and general properties. Maracci (2008) studied student work on a challenging
problem about the intersection of subspaces of a vector space of dimension at least 5. He
suggested that their difficulties reflect an insufficiently general “paradigmatic model” of
subspace limited to the span of a selected subset of given basis vectors, like the coordinate
subspaces x; = 0 of R". He also pointed out the need to view a linear combination both as a
process and as an object. Stewart and Thomas (2010) frame their work in terms of APOS
theory and Tall’s three worlds of mathematics (embodied, symbolic, and formal) which they
compare to Hillel’s three modes of description. They point out that students are often not
given time and opportunities to develop links between the three worlds, and that their
procedural knowledge is not deep in the above sense: “students who thought that they should
row reduce a matrix often did not know why, or what to do with the result” (p.186).

Setting and Methods
The students in our study were enrolled in an Honors Linear Algebra course in their first
year at a large university in the southwestern United States. The course forms the first quarter
of a three-quarter Honors Calculus sequence in which linear algebra provides the conceptual
basis for treating multivariable calculus in any number of dimensions. Completion of
Advanced Placement calculus in high school, with the highest possible score of 5 on the AP
calculus BC examination, is a prerequisite for the course. The instructor was not an author of
this paper, although we did observe his class on a few occasions and asked him some
questions about the course content. One of us (JMR) has taught the course in previous years.
Eight students responded to our request for volunteers to participate in a clinical interview; all
of these were accepted. Their course grades ranged from A though C. Although all volunteers
were male, this was not unrepresentative of the class, which included only a few female
students.
The interview revolved around the following task, termed the “Michelle Problem:”
Michelle would like to create a basis for R*. She has already listed two vectors v and
w that she would like to include in her basis, and wants to add more vectors to her list
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until she obtains a basis. What instructions would you give her on how to accomplish
this?

We had included this problem as one among many interview questions in an earlier pilot
project (Wawro, Sweeney, & Rabin, 2011). Based on the responses at that time, it has the
potential to elicit all three modes of thinking. Although some textbooks do prove that a
linearly independent set of vectors can always be extended to a basis, this was not covered in
the course our students took, and the problem was novel to them. The framing in R* rather
than R’ is intended to discourage an immediate appeal to visual geometric intuition, although
geometric thinking is still applicable. Not providing numerical components for the “given”
vectors may facilitate an abstract approach, and by asking for “instructions” for Michelle we
hope that students will reflect on their methods and perhaps present them in algorithmic form.

Most of our students did not make much progress on the problem in t