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FOREWARD

As part of its on-going activities to foster research in undergraduate mathematics education and the
dissemination of such research, the Special Interest Group of the Mathematical Association of America on
Research in Undergraduate Mathematics Education (SIGMAA on RUME) held its sixteenth annual Con-
ference on Research in Undergraduate Mathematics Education in Denver, Colorado from February 27 -
March 1, 2014. The conference is a forum for researchers in collegiate mathematics education to share results
of research addressing issues pertinent to the learning and teaching of undergraduate mathematics. The
conference is organized around the following themes: results of current research, contemporary theoretical
perspectives and research paradigms, and innovative methodologies and analytic approaches as they pertain
to the study of undergraduate mathematics education. The program included plenary addresses by Dr. Anna
Sfard, Dr. Ron Tzur, and Dr. Andrea diSessa and the presentation of over 130 contributed, preliminary, and
theoretical research reports and posters. In addition to these activities, faculty, and students contributed to
displays on Art and Undergraduate Mathematics Education. The Proceedings of the 17th Annual Conference
on Research in Undergraduate Mathematics Education are our record of the presentations given and it is our
hope that they will serve both as a resource for future research, as our field continues to expand in its areas
of interest, methodological approaches, theoretical frameworks, and analytical paradigms, and as a resource
for faculty in mathematics departments, who wish to use research to inform mathematics instruction in the
university classroom.

RUME Conference Papers, includes conference papers that underwent a rigorous review by two or more
reviewers. These papers represent current work in the field of undergraduate mathematics education and
are elaborations of selected RUME Conference Reports. The proceedings begin with the winner of the best
paper award and the papers receiving honorable mention. These awards are bestowed upon papers that make
a substantial contribution to the field in terms of raising new questions or providing significant or unique
insights into existing research programs.

RUME Conference Reports, includes the Poster Abstracts and the Contributed, Preliminary and The-
oretical Research Reports that were presented at the conference and that underwent a rigorous review by
at least three reviewers prior to the conference. Contributed Research Reports discuss completed research
studies on undergraduate mathematics education and address findings from these studies, contemporary
theoretical perspectives, and research paradigms. Preliminary Research Reports discuss ongoing and ex-
ploratory research studies of undergraduate mathematics education. Theoretical Research Reports describe
new theoretical perspectives and frameworks for research on undergraduate mathematics education.

Last but not least, we wish to acknowledge the conference program committee and reviewers, for their
substantial contributions to RUME and our institutions, for their support.

Sincerely,

Tim Fukawa-Connelly, RUME Conference Chairperson

Gulden Karakok, RUME Conference Local Organizer

Karen Keene, RUME Program Chair

Michelle Zandieh, RUME Coordinator
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WHAT IS A PROOF? A LINGUISTIC ANSWER TO AN EDUCATIONAL 
QUESTION 

Keith Weber 
Rutgers University 

Proof is a central concept in mathematics education, yet mathematics educators have failed 
to reach a consensus on how proof should be conceptualized. I advocate defining proof as a 
clustered concept, in the sense of Lakoff (1987). I contend that this offers a better account of 
mathematicians’ practice with respect to proof than previous accounts that attempted to 
define a proof as an argument possessing an essential property, such as being convincing or 
deductive. I also argue that it leads to useful consequences for research and teaching. 

Key words: Cluster model; linguistics; proof 

Defining proof 
Proof is an essential part of mathematical practice and a central construct in mathematics 

education. Contemporary goals of mathematics instruction include having students produce 
deductive proofs, attend to and critique the proofs of others (NCTM, 2000), distinguish 
between proofs and invalid arguments (Selden & Selden, 2003), appreciate the importance of 
proofs and the limitations of other types of evidence (Harel & Sowder, 1998), and understand 
and learn from the proofs that they observe (Mejia-Ramos et al, 2012). While students are 
expected to do these things throughout their education (e.g., NCTM, 2000; Schoenfeld, 1994; 
Stylianides, 2007), proof assumes even greater importance in advanced mathematics course 
at the university level. In these courses, proofs are a primary way that mathematical content is 
conveyed to students (Raman, 2004; Weber, 2004) and students’ grades in these courses are 
largely determined by their ability to write proofs about the course content (Weber, 2001). 

It is a great irony that there is a consensus amongst mathematics educators that we need to 
help students understand, appreciate, and construct proofs yet we ourselves cannot agree on 
what a proof is (Balacheff, 2002; Reid & Knipping, 2010; Weber, 2009). Further, it is 
undeniable that this has had a negative impact on our research as this has hindered our 
collective ability to build upon each other’s work (Balacheff, 2002; Weber, 2009).  

In this theoretical paper, I first observe that previous attempts to define proving in 
mathematics education have sought to delineate essential properties that all proofs in 
mathematical practice share and then use these properties to distinguish proofs from non-
proofs. I then argue that such properties cannot be found as there is not a consensus amongst 
mathematicians on what arguments are proofs. I propose instead that proof can be viewed as 
a linguistic or discursive category that is not defined analytically; in particular, proof can 
profitably be viewed as a cluster concept in the sense of Lakoff (1987). Finally, I discuss the 
implications that this characterization of proof can have more mathematics education 
research and teaching. 

Previous attempts to define proof 
Defining proof in terms of sense and referent 

CadwalladerOlsker (2011) distinguished between two broad ways that proof has been 
defined. For most of the 20th century, philosophers in the analytic tradition define proof as a 
formal and syntactic object. More recently, philosophers seeking to provide a descriptive 
account of mathematical practice have characterized proof as the types of proofs that 
mathematicians actually read and write. For the most part, mathematics educators have 
preferred the latter approach. 
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To frame the distinction between these perspectives, I draw on Frege’s themes from the 
philosophy of language. To understand the meaning of a concept, Frege (1892) distinguished 
between Sinn and Bedeutung, or sense and referent. As a simplification, we might regard the 
sense of a concept is our understanding of what the term means and the referent of a concept 
is the object(s) signified by the concept. Frege’s classic example to distinguish between sense 
and referent is the claim that “the morning star is the evening star”. This was a genuine 
scientific discovery in the ancient world, yet if we view this sentence in terms of referents, it 
reduces to the trivial tautology that “Venus is Venus”. 

Those who define proof as a formal object are providing an unambiguous sense of what a 
proof is. A proof is a linear sequence of well-formed formulae in a formal language with 
explicitly specified axioms, rules of inference, and conditions for well-formed formulae. 
Every formula in the proof is either an axiom or derived from previous statements via a rule 
of inference and this sequence concludes with the theorem being proven. There are several 
objections to this characterization of proof. The first is that the intersection of the referent for 
this sense and the proofs that mathematicians actually produce (i.e., what mathematicians 
practically mean by proof) is small. Consequently, this description of proof cannot really 
explain how mathematical knowledge is justified or generated since mathematicians rarely 
produce such proofs (see, for instance, Pelc, 2009). Second, from an educational point of 
view, this view of proof encourages students and teachers to think of proof as a rule-based 
technical object, leading students to focus on form over function (e.g., Harel & Sowder, 
1998; Schoenfeld, 1988). 

The alternative approach is to define proof as the collection of artifacts that 
mathematicians have labeled as proofs. Here proof is defined by its referent rather than its 
sense and thus has immediate relevance to mathematical practice, and perhaps to classroom 
practice as well. However, by itself, this description is pedagogically limited. What does it 
mean to desire that students produce the types of proofs that mathematicians produce? A 
crude (and useless) interpretation might be to ask students to write their proofs using LaTeX, 
the text processing system used by most mathematicians. Clearly advice of this nature is not 
what mathematics educators have in mind. One critique against this recommendation is that 
proofs being written in LaTex is a nominal feature of proof-- i.e., a property that most proofs 
happen to share-- rather than an essential property-- i.e., the property that causes these 
arguments to be proofs. If mathematics educators are to base descriptions of proof on 
mathematical practice, as CollandwallerOlsker (2011) urged, then it is imperative that we 
define proof in terms of essential properties that can inform classroom practice. 
Definitions of proof in mathematics education  

In this sub-section, I provide a partial list of the ways that different mathematics 
educators have defined proof. It is common to characterize proof as a convincing argument. 
Most notably, Harel and Sowder (1998) defined a proof as an argument that convinces an 
individual that an assertion is true1 and a mathematical proof as an argument that would 
convince a mathematical community. This is consistent with Davis and Hersh (1981) who 
defined a proof as an argument that would convince a mathematician who knew the subject, 
Volminik (1990) who described a proof as an argument that would convince a reasonable 
skeptic, and Mason, Burton, and Stacy (1982) who called proof an argument that would 
convince an enemy. Balacheff (1987) also thought of proving as convincing, but he sought to 
highlight the relative and socially contextual nature of proof by defining it as an argument 
that would convince a particular community at a particular time.  

                                                
1 Harel and Sowder also define a proof as an argument that one would use to persuade others about the truth of 
an assertion, but this will not be relevant in this paper. 
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Other researchers have suggested that proving is not merely convincing. Duval (2007) 
noted that, as opposed to argumentation that seeks to convince an audience of a claim, a proof 
aims to show that a certain statement is a logically necessary consequence of things known to 
be true. In the same vein, Hoyles and Kuchemann (2002) treated a proof as a deductive 
argument, one that does not admit qualification or rebuttals (in the sense of Toulmin (2003)). 
Weber and Alcock (2009) characterized proof as an argument within the representation 
system of proof, where there are socially recognized rules (albeit rules that are often 
ambiguous and implicit) for how assertions can be expressed and how new statements can be 
derived. Stylianides (2007) made a notable attempt to merge the logical and formal 
perspectives described in this paragraph with the socially situated nature of proof by saying a 
classroom argument was a proof if it satisfied three criteria: (a) the argument begins with 
facts that are both true and known to the classroom community, (b) the argument employs 
reasoning that is both valid and within the conceptual grasp of the classroom community, and 
(c) the argument is represented appropriately given the sophistication of the audience. 
Stylianides (2007) argued that this perspective honored the mathematical integrity of proof 
while also considering the social context of proof in the classroom. 

While these different conceptions of proof are useful in that different researchers are 
addressing different parts of this multi-faceted construct, this has the undesirable effect of 
producing inconsistent research findings and limiting the field’s ability to develop a 
cumulative body of knowledge (Balacheff, 2002; Weber, 2009). Consider the surprising 
observation that undergraduate mathematics majors cannot write proofs (e.g., Moore, 1994; 
Weber, 2001; Weber & Alcock, 2004) with the claim that young children placed in 
supportive environment can write proofs (e.g., Maher & Martino, 1996). This can be 
explained when one realizes the proofs in Maher and Martino’s (1996) study are being judged 
against a different standard than the ones in the undergraduate studies. Stefanie’s well-known 
proof by cases was a convincing deductive argument that convinced her peers and it was a 
surprisingly sophisticated piece of reasoning from a fifth-grade student. However, Stefanie 
did not carefully attend to the logical status of the different statements in her proof (which 
Duval (2007) finds paramount in his conception of proof). She also used everyday language 
and pictures, rather than the precise verbal-symbolic representation systems that Weber and 
Alcock (2009) have called for in a proof. I do not think it is wrong to call Stefanie’s argument 
in Maher and Martino’s (1996) paper a proof, nor do I think it is problematic for Duval 
(2007) or Weber and Alcock (2009) to hold the standards for proof that they do. But this 
analysis does show that researchers investigating proof will have different goals for 
instruction and different views about student success. 
Proving is not convincing 

A central claim in this paper is that none of the characterizations above offer an accurate 
description of how proof is practiced in the mathematical community. Every description fails 
to permit arguments that mathematicians would accept as proofs. For the sake of brevity, I 
will not provide counterexamples for all proofs, but instead I will illustrate this with 
conviction, as this seems to be the most common way to treat proof in the mathematics 
community. 

Philosophers have used Goldbach’s Conjecture to illustrate how mathematicians 
justifiably gain certainty in statements by empirical evidence. Goldbach’s Conjecture asserts 
that every even number greater than 2 can be written as the sum of two primes. For instance, 
4 can be expressed as 2 + 2, 6 can be expressed as 3 + 3, 8 can be expressed as 3 + 5, 10 can 
be expressed as 3 + 7 or 5 + 5, and so on. This conjecture is unproven and, indeed, 
mathematicians do not anticipate a proof in the foreseeable future (Baker, 2009). However, 
there is strong empirical evidence in favor of Goldbach’s Conjecture. First, the conjecture has 
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been empirically tested for an extremely large number of cases (4 x 1018, at the time that this 
paper was written). Second, we can define a function G(n) to express the number of distinct 
prime pairs that add up to n; for instance, G(10) = 2 because there are exactly two prime pairs 
that sum to 10, 3 + 7 and 5 + 5. G(n) tends to increase as n increases, although not 
monotonically. For all numbers n greater than 100,000 that have been empirically tested, 
G(n) is greater than 500. The notion that for some extremely large untested n that G(n) would 
not only dip below 500 but have a value of 0 (which is what would be needed to disprove the 
Goldbach Conjecture) seems inconceivable. Most mathematicians believe this empirical 
evidence is overwhelming and regard Goldbach’s Conjecture as true, even in the absence of a 
proof (e.g., Baker, 2009; Echeverria, 1996; Paseau, 2011). Echeverria claimed, “the certainty 
of mathematicians about the truth of GC [Goldbach’s Conjecture] is complete” (p. 42).  

The notion of proving as convincing becomes even more problematic when one 
recognizes that mathematicians often do not obtain complete conviction from the proofs they 
read and write. Paseau (2011) made this point nicely as follows: 
“That we are in possession of a proof of p does not imply we should be certain of p […] The 
proof may be long and hard to follow, so that any flesh-and-blood mathematician should 
assign a non-zero probability to its being invalid. The longer and more complex the proof, the 
less secure its conclusions” (p. 143).  

Indeed, some argue that empirical evidence can sometimes be more persuasive than a 
deductive proof (e.g., Fallis, 2002; Paseau, 2011); if so, this would seem to completely refute 
the notion that proving is tantamount to convincing. For further elaboration of this point, see 
Weber, Inglis, and Mejia-Ramos (2014), where my colleagues and I have an extended 
discussion of this issue, including a summary of empirical studies that support these points. 
None of these perspectives is completely right but all have some merit 

While none of the previous definitions accurately discriminates proofs from non-proofs, it 
is important to note that each provides important insights into the nature of proof. For 
instance, while it is not the case that a proof is merely a convincing argument, it does seem to 
be the case that statements that seem obviously true need not be justified in a proof, even if 
they are difficult to justify deductively (cf., Devlin, 2003). None of the other approaches 
listed can account for why we have softer justification standards for claims that seem likely to 
be true than those that do not. Likewise, while some proofs are not purely deductive in the 
sense that they may admit qualifiers and rebuttals (e.g., computer-assisted proofs may yield 
false results due to poor programming or computer malfunctions), this approach does explain 
mathematicians’ reluctance to sanction empirical or probabilistic arguments as proofs. 
Dismissing these perspectives because they do not provide a perfect description of proof 
would be throwing out the proverbial baby with the bathwater. 

Why proof cannot be defined in terms of shared properties 
To illustrate the difficulty of finding properties shared by all proofs, consider the 

following three theorems and proofs that were published in the mathematics literature. 
Theorem 1: If n is a number of the form 6k-1, then n is not perfect. 
Proof 1: Assume n is a positive integer of the form 6k-1. Then (mod 3) and hence n is 
not a square. Note also that for any divisor d of n, (mod 3) implies that 

(mod 3) and (mod 3) or (mod 3) and (mod 3). Either way, 
(mod 3) and (mod 3). Computing 2n=2(6k-

1) (mod 3), we see that n cannot be perfect.     (from Holdener, 2002) 
Theorem 2:  
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Proof 2: Here is a proof using Mathematica to perform the summation. 
FullSimplify[TrigtoExp[FullSimplify[ 
 ]]/. 
a_Log[b_]+a_Log[c_]:>a Log[b c]]. 
π     (from Adamchik and Wagon, 1997)  
Theorem 3: (Fixed Point Theorem) Let f(x) be continuous and increasing on [0, 1] such that 
f([0,1])⊆[0,1]. Let  f2(x)=f(f(x)) and fn(x)=f(fn-1(x)). Then under iteration of f, every point is 
either a fixed point or else converges to a fixed point. 
Proof 3: The only proof needed is: 

(from Littlewood, 1957) 
It is difficult to imagine properties shared by these three proofs that distinguish them from 

non-proofs. In particular, these proofs vary widely in the type of argumentation used, the 
warrants justifying claims within the proof, their level of transparency, the representation 
system in which these proofs are couched, and the amount of detail added to justify each 
claim within these proofs. 

A few things should be noted about these proofs. First, some observed that the standards 
of proof vary across time and mathematical communities (Kleiner, 1991; Rav, 2007). If one 
accepts this claim, asking whether an argument constitutes a proof is not a well-defined 
question; one would also need to specify when the argument was given and for what 
community the argument was intended. Even conceding this point, I do not believe that it is 
relevant here. These three proofs were intended for a broad mathematical audience-- Proof 1 
and Proof 2 appeared in the American Mathematical Monthly, an expository journal. Proof 3 
appeared in a published volume by J.E. Littlewood (1957). The content of these proofs does 
not extend beyond the undergraduate curriculum. Specialists’ standards of proof do not seem 
to apply here. There also does not appear to be a reason for why these proofs might be 
accepted at the time of publication but would be rejected today.  

Second, one might argue that these proofs are anomalous. This is true. While Proof 1 was 
chosen to be fairly representative, I deliberately chose Proof 2 and Proof 3 to be provocative. 
Still, although these proofs might be atypical, they are nonetheless representative of a class of 
proofs in mathematics. Proof 2 is analogous to other computer-assisted proofs2. Proof 3 is a 

                                                
2 The authors noted that, at the time of writing, recent advances had shown that computing the types of sums 
that they have computed on Mathematica has been and can be certified, as with other computer-assisted 
computations.  
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picture proof, which is common in domains such as knot theory and topology, as well as with 
general mathematical audiences (see Nelsen, 1993). 
Proofs* and accounting for heterogeneity in mathematical practice 

One might dismiss Proof 2 and Proof 3 as non-proofs. But this is a not a fair argument if 
we wish to provide a descriptive account of proof. The issue at hand is not whether these 
arguments ought to be proofs. The fact is that these are proofs as they were published as such 
in the mathematics literature. A critic could still make the argument that although these 
proofs were published, this was due to an error on the part of the authors and the editors. 
Indeed, it should be noted that these proofs are regarded as controversial in the mathematics 
community. In Adamchik and Wagon’s (1997) paper in which their proof was presented, the 
authors admitted that, “Some might even say this is not truly a proof! But in principle, such 
computations can be viewed as proofs” (p. 852). In an experimental study, Inglis and Mejia-
Ramos (2009) empirically demonstrated that mathematicians collectively find Proof 3 
significantly less convincing than more conventional proofs. Still if these proofs represent 
mathematicians’ errors, it would not be due to performance error (e.g., we are not saying that 
Adamchik and Wagon’s (1996) proof contained a typo in the command for Mathematica) nor 
would it be due to a matter of degree (e.g., we would not accept the proof had they used 
Maple instead or checked their results on multiple computers). This would be a stable 
epistemological error and would represent a fundamental difference between how they, and 
their critics, viewed proofs. I contend these disagreements have an important consequence for 
how we should understand proof. 

Aberdein (2009) coined the term, “proof*”, as “species of alleged ‘proof’ where there is 
no consensus that the method provides proof, or there is a broad consensus that it doesn’t, but 
a vocal minority or an historical precedent point the other way” (p. 1). As examples of 
proof*, Aberdein included “picture proofs*, probabilistic proofs*, computer-assisted proofs*, 
[and] textbook proofs* which are didactically useful but would not satisfy an expert 
practitioner”. As Proof 2 is a computer-assisted proof and Proof 3 is a picture proof, these 
qualify as proofs*. 

Proofs* do not pose a problem for analytic philosophers who attempt to pose normative 
judgments for what should be considered a proof. Recently, there have been arguments that 
picture proofs, such as Proof 3, are perfectly valid and ought to be on par epistemologically 
with the more traditional verbal-symbolic proof (for instance, Azzouni (2013); Feferman 
(2012); and Kulpa (2009)). Granted there may be some mathematicians who disagree, such as 
the mathematicians in Inglis and Mejia-Ramos’ (2009) experimental study, but the 
proponents of picture proofs can argue that these mathematicians are simply mistaken. That 
many mathematicians might make epistemologically erroneous judgments is a sociological 
matter and why individuals do so is a psychological matter. Neither is of normative concern 
for what constitutes a proof. 

However, proofs* do pose a problem for philosophers and mathematics educators who 
wish to describe the proofs that mathematicians actually read and write. Take picture proofs*, 
for instance. A proposed criteria of proof must either admit some picture proofs* as proofs or 
claim that all picture proofs* are not. If the former occurred, one could challenge this claim 
by citing the large number of mathematicians who do not produce such proofs and reject such 
proofs when they read them. At the very least, such a perspective could not account for the 
genuine controversy that picture proofs* have caused. If the latter occurred, one could rebut 
the claim by citing the picture proofs in the published literature as well as the large number of 
mathematicians (or at least the vocal minority) who accept such proofs. Similar arguments 
could be made for all types of proofs*. In short, it seems impossible to propose properties that 
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mathematicians believe proofs must share if mathematicians do not themselves agree on what 
constitutes a proof. 

Clustered models of concepts 
Lakoff (1987) noted that “according to classical theory, categories are uniform in the 

following respect: they are defined by a collection of properties that the category members 
share” (p. 17). This perspective has dominated the way that mathematics educators (and 
philosophers) have attempted to define proof. However, Lakoff’s thesis is that most real-
world categories and many scientific categories cannot be characterized this way. In 
particular, he argued that some categories might be better thought of as clustered models, 
which he defined as occurring when “a number of cognitive models combine to form a 
complex cluster that is psychologically more basic than the models taken individually” (p. 
74). I will argue that mathematical proof should be regarded in the same way 

As an illustrative example of a clustered concept, Lakoff considered the category of 
mother. According to Lakoff, there are several types of mothers, including the birth mother, 
the genetic mother, the nurturance mother (i.e., the adult female caretaker of the child), and 
the marital mother (i.e., the wife of the father). These concepts are highly correlated-- the 
birth mother is nearly always the genetic mother and more often than not the caretaker. In the 
prototypical case, these concepts will converge-- that is, the birth mother will also be the 
genetic mother, the nurturance mother, and so on. And indeed, when one hears that the 
woman is the mother of a child, the default assumption is that this woman assumes all of 
these roles. However, we are aware that this is not always the case. 

Lakoff raised two points that will be relevant to this paper. First, there is a natural desire 
to pick out the “real” definition of mother, or the true essence of motherhood. However, 
Lakoff rejected this essentialist disposition. Different dictionaries list different conceptions of 
mother as their primary definition. Further, sentences such as, “I was adopted so I don’t know 
who my real mother is” and “I am uncaring so I doubt I could be a real mother to my child” 
both are intrinsically meaningful yet define real mother in contradictory ways. Second, in 
cases where there is divergence in the clustered concept of mother (e.g., a genetic but not 
adoptive mother), compound words exist to qualify the use of mother. Calling one a birth 
mother typically indicates that she in not the nurturance mother; calling one an adoptive 
mother or a stepmother indicates that she is not the birth mother.  
A clustered model characterization of mathematical proof 

The main thesis of this paper is that it would be profitable to consider proof as a clustered 
concept. The exact models that should form the basis of this cluster should be the matter of 
debate, but I will propose the following models as a working description to highlight the 
utility of this approach. 

(1) A proof is a convincing argument that persuades or ought to persuade a 
knowledgeable mathematician that a claim is true. 

(2) A proof is a perspicuous argument that provides the reader with an understanding of 
why a theorem is true. It provides the reader with an intuitive feeling of necessity. 

(3) A proof is a deductive argument that shows a theorem is a necessary deductive 
consequence of previously established claims. A key feature of a proof is that if a proof is 
correct, there are no potential rebuttals to the argument. The lack of potential rebuttals 
provides the proof with the psychological perception of being timeless. Proven theorems 
remain proven. 

(4) A proof is a transparent argument where a mathematician can fill in every gap (given 
sufficient time and motivation), perhaps to the level of being a formal derivation. In essence, 
the proof is a blueprint for the mathematician to develop an argument that he or she feels is 
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complete. Since the mathematician in this description is arbitrary, a proof has the 
psychological perception of being impersonal. Theorems are objectively true. In this sense, a 
proof is a replicable demonstration for a given mathematician. 

(5) A proof is an argument within a representation system satisfying communal norms. 
That is, there are certain ways of transforming mathematical propositions to deduce 
statements that are accepted as unproblematic by a community and all other steps need to be 
justified. 

(6) A proof is an argument that has been sanctioned by the mathematical community.  
Of course, these criteria are not original. Indeed, many are reinterpretations of the definitions 
of proof given by other mathematics educators and discussed earlier in this paper. What is 
novel here is claiming that one cannot demarcate proofs from non-proofs by saying that 
proofs must satisfy some subset of the criteria above.  

I argue that each of these more basic models do not, by themselves, characterize proof 
completely. (1) fails because there are instances in which inductive arguments may be more 
convincing than deductive arguments (Paseau, 2011). (2) fails because, as Azzouni (2013) 
noted, lengthy and technical proofs often cannot be meaningfully grasped holistically but are 
regarded as proofs nonetheless. (3) fails because computer-assisted proofs depend upon the 
reliability of the software that was used (for a discussion, see Fallis, 2002). (4) fails because, 
as argued by Fallis (2003), some proofs contain gaps that have not been traversed by any 
mathematician and that can be extremely difficult to complete.  

(5) and (6) are more interesting, since some might argue that these criteria are irrelevant 
to proofs. Yet if we denied (5) and (6) as being relevant to a proof, we would deny the fact 
that the standards of proof have clearly changed over time. We would also be compelled to 
claim that few theorems were proven before 1850 as they would not meet modern day 
standards of rigor of proof. On the other hand, (5) seems inadequate by itself as a basis for 
proof because it does not explain why mathematicians permit the transformations that they 
do. In a sense, (6) appears to be a circular tautology-- the arguments that mathematicians call 
proofs are the arguments that they sanction as proofs. The point here is that the social act of 
sanctioning plays a role in the status of an argument beyond logical and psychological 
considerations. This accounts for the empirical observation that mathematicians are often 
willing to accept a proof as correct without reading it because it was published in a 
respectable outlet (see Auslander (2008) and Weber and Mejia-Ramos (2011, 2013), for 
instance). In short, (5) and (6) describe important social aspects of proof, but do not define 
proof completely; although proof is necessarily a sociological construct, sociological 
standards are based in large part on logical and psychological considerations.  

If we accept proof to be a clustered concept as defined above, we would expect the 
following to occur: (a) proofs that satisfied all of these criteria should be uncontroversial, but 
some proofs that satisfy only a subset of these criteria might be regarded as contentious; (b) 
compound words exist that qualify proofs that satisfy some of these criteria but not others; (c) 
it would be desirable for proofs to satisfy all six criteria. 

Regarding (a) and (b), Aberdein’s (2009) discussion of proofs* supports these points. He 
explicitly highlighted compound words delimiting the sense that arguments are proofs. 
Computer-assisted proofs* are not transparent and it is not clear how a mathematician can fill 
in every gap of the proof. Probabilistic proofs* are not deductive. Picture proofs* are only 
proofs* in some areas in mathematics-- picture proofs are not controversial in knot theory, 
among other domains. But in general, picture proofs* are not written in a conventional 
representation system satisfying the communal norm of being the verbal-syntactic sentences 
that are accepted as signifying logical propositions. One might add to this list unpublished 
proofs* that have yet to be sanctioned, heuristic proofs* or incomplete proofs* that require 
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considerable work to fill in gaps, and technical proofs or lengthy proofs that cannot be 
perceived as a whole (although these proofs seem to be regarded as less controversial than the 
other types of proof*). Not only do these qualifying compound words exist, but, as Aberdein 
(2009) argued, there are a significant number of mathematicians who accept such arguments 
as proofs and a significant number of mathematicians who reject such arguments. 

For (c), that it is desirable for proofs to meet all the criteria above, we can consider 
Dawson’s (2006) analysis of why mathematicians re-prove theorems. Proof can be viewed 
both as a source of knowledge and as justification for knowledge. Some of the reasons for re-
proving theorems highlighted by Dawson concern proof as a source for knowledge, such as 
new proofs can illustrate new methods or extend a previously proven result. But other reasons 
concern providing a better justification for a proven theorem. Dawson notes that one often 
reproves theorems to remedy perceived gaps and deficiencies in a previous proof. Here, 
Dawson highlights avoiding non-constructive proofs or proofs that rely on controversial 
hypotheses, but one could easily extend this argument to avoid proofs that are computer-
assisted or are not probabilistic. (It seems intuitively obvious that mathematicians would 
prefer a proof of the four-color theorem that is not computer-assisted or a deductive proof in 
lieu of a probabilistic proof*. But the converse would not be true. There would be less 
demand for a computer-assisted proof* or probabilistic proof* to supplement a 
conventionally proven theorem). Dawson (2006) further noted that new proofs sometimes 
“employ reasoning that is simpler, or more perspicuous, than previous proofs” (p. 276), 
where the new proof is shorter and reduces computations. Dawson also argued that additional 
proofs provide confirmation or additional conviction that theorems are true, citing Peirce who 
claimed that trust in mathematical results stems from the multitude and variety of deductions 
rather than the conclusiveness of any one demonstration alone. Dawson’s analysis aligns with 
the first four criteria in the proposed proof model above: one reproves theorems to avoid 
controversial methods, fill in perceived gaps, become more perspicuous, and increase 
mathematician’s conviction. In his paper, Dawson appeared to implicitly view the issue of 
whether an argument was a proof or whether a theorem was proven as a binary question. 
However, if we accept a cluster model of proof, we see that some arguments are better 
representative of the concept of proof than others and the issue of whether a theorem is truly 
proven might be regarded as a matter of degree. If so, we might say that sometimes theorems 
are not so much re-proven as more proven. 

Significance 
What this means for mathematics education research 

There is a natural desire amongst mathematics educators to specify unambiguous criteria 
to distinguish proofs from non-proofs. However, if we accept that proof is a cluster concept, 
this desire cannot be obtained (any more than we can develop a set of rules that would tell us 
if a study in mathematics education was sufficiently rigorous). I describe what this might 
mean, first in terms of theory and then in experimental design. 

With respect to theory, current definitions of proof generally privilege one aspect of the 
cluster concept while minimizing or ignoring the other aspects of the cluster concept. This is 
problematic for the following reason. While the components of the proof cluster are 
correlated with each other (e.g., an argument that is more explanatory or more based on 
deductive reasoning will usually be more convincing or more transparent), this is not the case 
when we take any individual criteria to the extreme. If proving is only about convincing, then 
demonstrations using Geometer’s Sketchpad should constitute proofs, as these 
demonstrations are completely convincing both to students and mathematicians (de Villiers, 
2004). Indeed, students likely will find Sketchpad demonstrations to be more convincing to 
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than deductive proofs because proof is still a foreign notion to this population of students. 
Similarly, if proof is only about explanation, then there does not seem to ever be a reason to 
move beyond picture proofs. (Even if mathematics educators believe that picture proofs 
should be proofs, we would still want students to be aware that, and understand why, other 
mathematicians disagree).  Rather than create contrived explanations for why certain types of 
proofs* are not convincing or explanatory (e.g., we can’t trust Sketchpad since the computer 
might malfunction), we can instead say that the best proofs satisfy multiple aims and the 
proofs* in question only meet a subset of these aims. 

 In terms of experimental design, a cluster conception of proof implies researchers must 
be cautious when participants (students, mathematicians) are required to make dichotomous 
judgments on whether a specific argument constitutes a proof. First, while researchers 
frequently act on the assumption that there is a right answer, this might not be the case, 
especially if a proof* is used. This renders normative judgments about participant’s responses 
to proof evaluation tasks problematic. Second, it may be the case that the argument is a proof 
in some respects but not others; compelling the participant to make a binary choice could 
provide a misleading view of what the participant actually believed. 

I illustrate this dilemma by re-interpreting a finding from studies that my colleagues and I 
conducted (e.g., Inglis & Alcock, 2012; Weber, 2008; for a synthesis of these studies, see 
Inglis et al., 2013). In these studies, the researchers sought to investigate how mathematicians 
determined if a proof was correct by using materials from Selden and Selden’s (2003) classic 
study on proof validation. One argument, which Selden and Selden labeled “the real deal”, 
aimed to show that “if 3 divides n2, then 3 divides n”. The proof began with the lines, 
“suppose to the contrary that n is not a multiple of 3. We will let 3k be a positive integer that 
is a multiple of 3 so that 3k+1 and 3k+2 are not multiples of 3”. Despite the somewhat 
awkward presentation of the beginning of this proof by contradiction, the logic in the proof 
was essentially correct. It turned out that the mathematicians in our study disagreed on the 
validity of this proof; 14 mathematicians judged the proof to be valid while six judged the 
proof to be invalid. We concluded that mathematicians may have different standards when 
evaluating proofs (Inglis et al, 2013). 

If we view proof as a cluster concept, then one might say that there may have been no 
disagreement between the mathematicians at all. Rather, what we observed was the 
consequence of asking an invalid decontextualized question. The argument was a proof in the 
sense that it was convincing and deductive, but not a proof in the sense of it being couched in 
an appropriate representation system. It might not be that mathematicians have different 
standards of proof-hood so much as they had a different interpretation of an artificial 
decontextualized question when they were forced to give a binary response (in the same way 
that we might give different responses if asked if a birth mother is the real mother of an 
adopted child). Selden and Selden (2003) found it problematic that three of the eight 
mathematics majors participating in this study initially could not make a judgment on 
whether this argument was a proof, but indeed, given the mathematicians’ repsonses, that 
may have been the most appropriate judgment. 

The main point here is that it might not be best to present proof validation tasks as a 
binary choice in research settings. If we asked participants to say in what respects they 
thought the argument was a proof and in what respects it was not, we would gain both a more 
accurate and more detailed understanding of how they thought about proof. 
What this might mean for mathematics instruction 

Clearly a theoretical analysis cannot offer direct consequences for instruction. However, 
the ideas in this paper can offer a starting point for future teaching experiments. If proof is a 
mathematical concept or an analytic concept, then it is important for students to be able to 
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know, interpret, and apply the definition of proof. But if proof is a linguistic or discursive 
concept, then students might best learn the meaning of proof the way they learn any new 
word-- based on enculturation. A key role of the instructor is call students’ attentions to 
critical aspects of arguments, both aspects that are proof-like and non-proof-like (and not just 
formal criteria). Also, in classroom discussions, once an argument is sanctioned as a proof, 
the debate is often settled and the claim is sanctioned as true. What this paper suggests is that 
even if an argument passes a threshold and is judged as a proof, there is often still room for 
improvement. Gaps can be filled in, dubious methods can be replaced by more sound ones, 
arguments can be made more perspicuous and comprehensible, and greater agreement among 
classmates can be reached. Proofs can be made better and, in doing so, learning opportunities 
can be created. Whether these suggestions will actually improve students’ appreciation and 
understanding of proof should be treated as an open question and investigated in a classroom 
study. Still, the cluster does offer some interesting and unusual ways to treat proof in 
undergraduate mathematics classrooms. 
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GENERALIZING CALCULUS IDEAS FROM TWO DIMENSIONS TO THREE: 
HOW MULTIVARIABLE CALCULUS STUDENTS THINK ABOUT DOMAIN AND 

RANGE 

Allison Dorko & Eric Weber 
Oregon State University  

 
We analyzed multivariable calculus students’ meanings for domain and range and their 
generalization of that meaning as they reasoned about domain and range of multivariable 
functions. We found that students’ thinking about domain and range fell into three broad 
categories: input/output, independent/dependent variables, and/or as attached to specific 
variables. We used Ellis’ (2007) actor-oriented generalizations framework to characterize 
how students generalized their meanings for domain and range from single-variable to 
multivariable functions. This framework focuses on the process of generalization – what 
students see as similar between ideas in multiple contexts. We found that students generalized 
their meanings for domain and range by relating objects, extending their meanings, using 
general principles and rules, and using/modifying previous ideas. Our results about how 
students understand and generalize the concepts of domain and range imply that the domain 
and range of multivariable functions is a topic instructors should explicitly address.  

Key words: Calculus, function, generalization  

Introduction 
This paper focuses on (a) how multivariable calculus students think about domain and 

range in two and three dimensions and (b) how they generalize their meaning of domain and 
range from single to multivariable functions.  We have two foci because how students 
generalize their ideas cannot be studied without first identifying what those ideas are. While 
it is clear to experts that multivariable calculus topics are natural extensions of single-variable 
calculus topics, how students come to see the relationship between ideas like function and 
rate of change in single and multivariable contexts is not well understood. Though some 
recent advances have been made with regard to student thinking about these ideas, these 
studies are only preliminary (Kabael, 2011; Martinez-Planell & Trigueros, 2013; Trigueros & 
Martinez-Planell, 2010; Yerushalmy, 1997). Additionally, while there is a large body of 
knowledge about how students understand various single-variable calculus concepts, far 
fewer studies exist regarding students’ understanding of topics in multivariable calculus. For 
instance, there is a wide body of knowledge about students’ understanding of derivatives of 
single-variable functions (Asiala, 1997; Orton, 1983; Zandieh, 2000), but not much about 
students’ understanding of derivatives of multivariable functions. This scarcity creates two 
issues: one, we do not know how students in multivariable calculus think about the concepts 
presented to them and two, we do not understand how they develop those understandings 
through the process of generalization.  

Gaining insight into these two issues is crucial to many STEM fields, as most 
mathematics used in the real world involves functions of many variables. For instance, in 
thermodynamics, energy is a function of pairs of pressure, temperature, volume, and entropy; 
in engineering, density may be a function of x, y, and z. If the mathematics STEM students 
are to use involves functions of many variables, it makes sense to study how students 
understand these functions so that instructors can use that knowledge to address specific 
difficulties and misconceptions. It is likely that students’ understanding of single-variable 
functions plays a role in their understanding of multivariable functions. Thus this study aimed 
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at not only describing one particular aspect of students’ multivariable function understanding, 
but how that thinking relates to their prior knowledge: in short, what they see as similar 
between domain and range of single and multivariable functions. More broadly, knowing 
how students generalize in mathematics is useful for instruction in that we can better build on 
students’ prior knowledge and exploit the connections they naturally see between 
mathematical ideas.  

We use domain and range as a ‘case study’ of how students generalize the meaning of a 
concept learned with single-variable functions to its meaning for multivariable functions. 
While domain and range appear in initial instruction about functions, they receive little to no 
attention in multivariable calculus. For instance, McCallum et al. (2009) do not discuss the 
domain and range of a function at all. Rowgawski (2008) and Thomas (2010) define and give 
a few examples of the domains and ranges of multivariable functions. None of these standard 
texts, however, talk about domain and range in terms of inputs and outputs or independent 
and dependent quantities, as is commonly done in algebra. Thus most of our subjects had not 
thought about domain and range in three dimensions, and we were able to observe their initial 
fits and starts with the ideas and observe detailed and sudden generalizations. This paper 
centers on the following three organizing themes:  
1. What meanings do multivariable calculus students have for domain and range in two 

dimensions? 
2. What meanings do multivariable calculus students have for domain and range in three 

dimensions? 
3. How do multivariable calculus students generalize the concept of domain and range from 

two dimensions to three dimensions? 
Background Literature 

There are few articles that discuss students’ understanding of domain and range. We 
searched for articles about students’ understanding of domain and range, and when that 
yielded nothing, we switched to associated terms like ‘function machines,’ ‘input and output,’ 
and ‘students’ notion of variable’. We searched for ‘independence and dependence’ in both 
function literature and statistics education literature. None of these searches resulted in 
articles that explicitly discuss domain and range, though there are some findings in the 
function literature related to students’ understanding of functions that are relevant to the 
present study. For instance, one way to define domain and range is the set of inputs and 
outputs of the function, respectively. According to Oehrtman, Carlson, and Thompson 
(2008), thinking about a function in terms of an input and corresponding output is the 
beginning of a robust function conception. Monk (1994) found that most calculus students 
have developed this pointwise view of function but fewer develop an across-time view of 
function, in which students’ conception of function progress to thinking about the function 
for infinitely many values and understanding how the a change in one variable affects the 
other(s). That is, a robust function conception involves not only the ability to pair an input 
with an output, but an understanding of the relationship between quantities. Confrey and 
Smith (1995) say the beginning of this understanding occurs as students form connections 
between values in a function’s domain and range. However, as function is introduced in 
algebra and/or precalculus, the functions instructors ask students to reason about are single-
variable functions. How students build an understanding of multivariable functions is not 
known. Our investigation of students’ meanings for domain and rage contributes to the 
function literature by documenting how students think about domain and range of single- and 
multivariable functions, and how they generalize the ideas of domain and range.   
Generalization  
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We chose to study this sense making in terms of generalization because the ideas in 
multivariable calculus are connected to those in single-variable calculus (and, in the case of 
domain and range, to ideas from algebra), and it is widely believed that students use their 
prior knowledge in making sense of new topics. More specifically, the ideas in multivariable 
and single variable calculus are similar and students are likely to pick up on similarities such 
as terms (e.g., function, domain, range, variable) and symbols (e.g. notations like f(x) and 
f(x,y); integral symbols). Studying the extension from single to multivariable calculus allows 
us to see the nature of the connections students make and how they make them. Though there 
have been many studies about generalization in algebra (e.g. Amit & Klass-Tsirulnikov, 
2005; Carpenter & Franke, 2001; Cooper & Warren, 2008; Ellis, 2007), these studies are 
largely about generalizing patterns, and there are fewer studies of generalization of 
undergraduate mathematics topics, or studies of the generalization of meaning. As 
generalization is a critical component of mathematical thinking (Amit & Klass-Tsirulnikov, 
2005; Lannin, 2005; Mason, 1996; Peirce, 1902; Sriraman, 2003; Vygotsky, 1986), it is 
important to extend knowledge of how students generalize in higher mathematics, and in 
particular how they generalize conceptual meanings.  

Theoretical Framework 
We studied generalization from an actor-oriented perspective. The actor-oriented 

perspective attends to what students see as similar in mathematical situations. This is in 
contrast to an observer-oriented perspective in which students’ ideas are compared to what an 
expert would see as similar across situations. Such perspectives often find that students 
cannot or do not generalize ideas from one setting to another, and focus on the product – the 
final general rule or principle – as opposed to the generalization process itself. The actor-
oriented perspective allows us to privilege students’ perceptions of similarity, and thus their 
generalization process, even if their perceptions are not necessarily consonant with what an 
expert would see as similar. We follow Ellis (2007) and Lobato (2003) in thinking about 
generalization as “the influence of a learner’s prior activities on his or her activity in novel 
situations” (Ellis, 2007, p. 225). This was a useful lens for looking at how students viewed 
domain and range, a topic they had experienced prior with single-variable functions, in the 
novel situation of multivariable functions.  
 Our corresponding analytic framework is Ellis’ (2007) generalizations taxonomy. The 
taxonomy distinguishes between generalizing actions, or “learners’ mental acts as inferred 
through the person’s activity and talk” (Ellis, 2007, p. 233) and reflection generalizations, 
which are students’ public statements about a property or pattern common to two situations. 
Generalizing actions include relating, searching, and extending (Figure 1). Reflection 
generalizations include identifications and statements, definitions, and influence (Figure 2). 
We used this framework to analyze how students generalized their meanings for domain and 
range.   

GENERALIZING ACTIONS 

Ty
pe

 I:
 R

el
at

in
g 

 

1. Relating situations: The 
formation of an association 
between two or more 
problems or situations. 

Connecting Back: The formation of a connection 
between a current situation and a previously-
encountered situation. 
Creating New: The invention of a new situation  
viewed as similar to an existing situation. 

2. Relating objects: The 
formation of an association 
between two or more present 
objects. 

Property: The association of objects by focusing 
on a property similar to both. 
Form: The association of objects by focusing on 
their similar form.  
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Ty
pe

 II
: S

ea
rc

hi
ng

 1. Searching for the Same Relationship: The performance of a repeated action in 
order to detect a stable relationship between two or more objects. 
2. Searching for the Same Procedure: The repeated performance of a procedure in 
order to test whether it remains valid for all cases. 
3. Searching for the Same Pattern: The repeated action to check whether a detected 
pattern remains stable across all cases.  
4. Searching for the Same Solution or Result: The performance of a repeated action 
in order to determine if the outcome of the action is identical every time.  

Ty
pe

 II
I: 

Ex
te

nd
in

g 
 

1. Expanding the range of Applicability: The application of a phenomenon to a 
larger range of cases than that from which it originated. 
2. Removing Particulars: The removal of some contextual details in order to 
develop a global case.  
3. Operating: The act of operating upon an object in order to generate new cases. 
4. Continuing: The act of repeating an existing pattern in order to generate new 
cases.  

Figure 1. Generalizing actions for domain and range. Adapted from Ellis (2007).   
 

REFLECTION GENERALIZATIONS 

Ty
pe

 IV
: I

de
nt

ifi
ca

tio
n 

or
 

St
at

em
en

t 

1. Continuing Phenomenon: The identification of a dynamic property extending 
beyond a specific instance. 
2. Sameness: 
Statement of 
commonality 
or similarity. 

Common Property: The identification of the property common to 
objects or situations. 
Objects or Representations: The identification of objects as similar 
or identical. 
Situations: The identification of situations as similar or identical.  

3. General 
Principle: A 
statement of 
a general 
phenomenon. 

Rule: The description of a general formula or fact.  
Pattern: The identification of a general pattern. 
Strategy or Procedure: The description of a method extending 
beyond a specific case.  
Global Rule: The statement of the meaning of an object or idea.  

Ty
pe

 V
: 

D
ef

in
iti

on
 1. Class of Objects: The definition of a class of objects all satisfying a given 

relationship, pattern, or other phenomenon. 

Ty
pe

 V
I: 

In
flu

en
c

e 

1. Prior Idea or Strategy: The implementation of a previously-developed 
generalization.  
2. Modified Idea or Strategy: The adaptation of an existing generalization to apply 
to a new problem or situation. 

Figure 2. Ellis’ (2007) reflection generalizations  
 

Data Collection Methods 
We interviewed 20 students enrolled in multivariable calculus at a mid-size university in 

the northwestern U.S. The students were volunteers selected from all the multivariable 
calculus students enrolled during that term, and were compensated for their participation. The 
course topics included vectors, vector functions, curves in two and three dimensions, 
surfaces, partial derivatives, gradients, directional derivatives, and multiple integrals in 
different coordinate systems. Each student participated in a semi-structured interview that 
lasted about an hour. We recorded audio and written work from each of the interviews using 
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a LiveScribe Echo Pen, which provides a recording consisting of synced audio and written 
work. These recordings also allowed us to create dynamic playbacks of the interviews during 
data analysis. The tasks and rationale for their inclusion are shown in Table 1.  
Table 1. Interview tasks and rationale 
Task Rationale 
1. What does domain mean? What does 
range mean? 

 

The purpose of this question was to elicit 
how students thought about domain and 
range, and what they associated with the 
terms, when they were not tied to a specific 
problem or function.  

2. What are the domain and range 
of f (x) = 4+1/ (x −3)? 

This question was included to gain insight 
into how students operationalized their 
definitions for domain and range as they 
worked with a single-variable function.  

3. What are the domain and range of 
f (x, y) = x2 + y2 ? 

This question was included to gain insight 
into how students thought about domain 
and range for a multivariable function. We 
used this task as one way to investigate 
how students generalized their meanings 
for domain and range.  

4. What are the domain and range of 
x2 + y2 + z2 = 9 ? 

This question was included to gain insight 
into how students thought about domain 
and range for a multivariable function, and 
how they thought of domain and range for 
a function written in a different form than 
f(x,y).  

We had two research foci and thus preformed two separate data analyses. We used a 
constant comparative analysis (Corbin, 2008) to answer our first two questions, (what are 
students’ meanings for domain and range of single- and multivariable functions?) then did a 
second analysis using Ellis’ (2007) generalizations framework to answer the second (how do 
students generalize those meanings?). We present the analysis methods, findings, and 
discussion of students’ meanings for domain and range first, then we turn to the analysis, 
results, and discussion about students’ generalizations.  

Data Analysis I: Students’ Meanings for Domain and Range 
We used a constant comparative analysis (Corbin, 2008) to identify what meanings 

students held for domain and range. Researcher 1, who had done all but two of the 
interviews, randomly selected half of the interview transcripts and highlighted phrases 
relating to how students thought about domain and range. Students used words like input, 
output, result, function as a whole, independent variable, dependent variable, domain goes 
with x (or x and y), range goes with y (or z), domain goes with the horizontal axis (or plane), 
range goes with the vertical axis, codomain, and so on. Researcher 1 then read the other half 
of the transcripts, marking the same words and looking for any other words or phrases 
students used in thinking about and explaining domain and range. Researcher 1 then looked 
for themes in this collection of students’ phrases, and found that they fit the following 
categories: (a) Domain and range are associated with specific variable symbols in an 
equation, (b) Domain and range are inputs and outputs, and (c) Domain and range relate to 
independent and dependent variables. Researcher 1 created coding criteria for each of these 
categories for both single and multivariable functions, and both researchers coded all of the 
data independently. The two researchers compared their results, discussed any differences, 
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and agreed upon the set of codes shown in Table 2. They then used the data within each 
category to form descriptions of the meanings students held for domain and range. In the next 
section, we give examples of data for each category and describe students’ meanings.    
Table 2. Codes and criteria for meanings of domain and range  
 Criteria 
Code  Single-Variable Multivariable 

D
om

ai
n 

is
 x

, 
R

an
ge

 is
 y

 
 

Student says that domain is the x 
values and range is the y values 
without reference to the notion of 
function. That is, the student does 
not mention input, output, 
independent variable, or dependent 
variable.  

Student is answering a question about f(x,y) 
and gives a domain for x and a range for y. The 
student may talk about the f(x,y) or the z value, 
but still identifies domain as corresponding to 
x and range as corresponding to y.   

In
pu

t /
 O

ut
pu

t 
 

Student talks about domain as an 
input, a value that goes into a 
function, or a value that “satisfies” 
the function. Student talks about 
range as an output value, a ‘return 
value’, or the ‘result value.’ There is 
a clear reference to the notion of 
function.   

Student is answering a question about f(x,y). 
Student talks about domain as inputs and 
identifies that there are multiple inputs because 
it is a function of more than one variable. 
Student talks about range as the output, the 
result of the function, the ‘function value,’ or 
the function ‘as a whole’. There is a clear 
reference to the notion of function.   

In
de

pe
nd

en
ce

 / 
D

ep
en

de
nc

e 
 

Student identifies that domain 
corresponds to the independent 
variable and range corresponds to 
the dependent variable.  

Student is answering a question about f(x,y). 
Student identifies that domain corresponds to 
the independent variables and range 
corresponds to the dependent variable. The 
student may use the phrase ‘determined by’ 
rather than the terms independent / dependent 
(e.g., “z determined by x and y”)  

Results & Discussion I: Students’ Meanings for Domain and Range of Single and 
Multivariable Functions 

The three broad categories in Table 1 correspond to students’ meanings for domain and 
range. Below, we consider each of these meanings in detail. 
Domain is x, range is y 

One meaning that students had for domain and range was that domain meant the possible 
values for x and range means the possible values for y. This meaning was based on the 
presence of symbols in the equation rather than a notion of function. That is, probing 
questions about why domain was x or range was y did not yield any underlying explanations 
of x and y as inputs, outputs, or independent/dependent variable.  

The strongest evidence that some students think of domain and range as related to specific 
symbols is that many students said that the domain was x and the range was y for f(x,y). For 
instance, Adam and Gabe both defined domain as the possible x values and range as the 
possible y values for a single-variable function. For f(x,y) = x2 + y2, they said  
Adam:  It’s a helix, or spinny spring looking thing. Domain and range, so the domain of 

this would be all real numbers for x values, so x can equal any number, and it 
changes what z equals, but even negative numbers squared equal positive z. And 
the range is all real numbers because there is no value of y for which the graph is 
undefined. 

Gabe:   So the domain [of f(x,y) = x2 + y2,] is all real numbers because it’s a square so 
 there’s no restrictions. And it’s the same thing with y, it’s the same as the x2. 
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Int.:  What would it mean if I said 4 is in the domain? 
Gabe:  You’d just plug it in. 
Int.:   But do I have to say it for x and y? If I just say 4 is in my domain and I haven’t  
   specified if it’s x or y? 
Gabe:  I look at the domain as just being x values. 
Int.:  So if I said 4, it would mean that x = 4 is in the domain? 
Gabe:  Yeah. 
Int.:   What if I made that same statement about the range, if I said 4 was in the range?  

  What would I be looking at? 
Gabe:  The y value.  
Adam talked about changes in x causing changes in z, indicating he understood there was a 
relationship between x and z. However, he said that the range was y. Thus ‘range’ seemed to 
be attached to a specific symbol, rather than the idea of the dependence of one value on 
another, as he had mentioned earlier. Gabe associated domain with only x values, and range 
with only y values for both f(x) and f(x,y). In summary, the meaning of domain and range for 
these students was that domain corresponds to x and range corresponds to y, whether the 
function was a single variable function or a multivariable one.  
Input/Output 

One way to think about function is as a machine that takes inputs and returns outputs. 
Many students thought about domain and range as related to this notion of function. To these 
students, domain meant the possible inputs to a function and range meant the possible 
outputs. For single-variable functions, students identified a singular output. For multivariable 
functions, students explained domain as corresponding to multiple inputs, as Jim did by 
identifying an x input and a y input. The input-output meaning often included a link between 
the inputs and outputs, such that each choice of input produced a particular output. For 
instance, Deb talked about ‘return values for each x in the domain’.    
Deb:  In terms of f(x) = y, domain would be all the value that go into the function. The  
   domain will be all of the values for x that return a unique, I think, value for y. The 
   range would be all the return values for each x in the domain. 
Jim:  Domain is your input values, otherwise known as your x values. It could also   
   represent your independent values. The range is your output, your dependent   
   variables, y values. 

[Q3] There would be two different domains. You have your x input and your y 
 input. Your x domain and your y domain give you a range of a different variable. 
 It’s the range of z or f(x,y). 

Note that Jim talked about both inputs/outputs and independence and dependence, so his 
answer was coded as belonging to both categories. It was fairly common for students to 
understand domain and range in terms of both input and output and independence and 
dependence.  
Independence / Dependence 

A function may be thought of as a relationship in which the value of one variable depends 
on the value of another variable. For students who thought about function this way, domain 
meant the possible values of the independent variable and range meant the possible values of 
the dependent variable. Kathy gave a good example of this with equations, and Leah talked 
about independence and dependence graphically by thinking about a “y plane” as determined 
by x values. Both Leah and Phillip identified that a multivariable function has multiple 
independent variables.  
Kathy:  Domain is the range of x values that a function can have. And I guess x is just the  

  independent variable. If the function were f(y), the domain would be y. Range is  
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  the values that a function has for the given domain. Usually it’s f(x) = y. Then y  
  has the range. 

Leah:  Domain is the range of values the dependent variable can take. No, it’s the 
 independent. It’s the y plane determined by the x value, or the z determined by the  
 x and y.  

Phillip: [Q3] It’s a function of two variables. X and y are both independent variables, 
rather than the dependent variable. You could say the domain is the independent 
variable and range is the dependent variable. 

In summary, the meanings students held for domain and range included ‘domain is x and 
range is y’; domain as input and range as output; and domain and range as related to 
independent and dependent variables. In the next section, we describe how we analyzed 
students’ generalizations of these meanings from their meaning in f(x) to their meaning in 
f(x,y).  

Data Analysis II: Coding Students’ Generalizations 
Our second analysis was to determine how students generalized their meanings for 

domain and range as they moved from working with f(x) to thinking about f(x,y). We based 
this analysis on Ellis’ (2007) generalizations framework. The framework distinguishes 
between generalizing actions, which are “students’ activity as they generalize” (Ellis, 2007, 
p. 198), and reflection generalizations, which are “final statements of generalization (verbal 
or written) or the use of a result of a prior generalization” (Ellis, 2007, p. 198). In the next 
subsections, we explain how we used this framework to code our own data.  
Generalizing Action: Relating 
Relating is a generalizing action in which “students form an association between two or more 
problems, situations, ideas, or mathematical objects. They relate by recalling a prior situation, 
inventing a new one, or focusing on similar properties or forms of mathematical objects” 
(Ellis, 2007, p. 198). We only found two instances of relating situations. One student who 
defined domain and range as relating to independent and dependent variables connected back 
to a physics lab in which an experiment had had such variables. A different student, who 
defined domain and range in terms of inputs and outputs, engaged in creating new by 
describing temperature in California as a function of temperature in Oregon, and explained 
that the temperature in Oregon would be the input.  
 Relating objects was far more common. We found that students related both equations 
and graphs or coordinate axes. For instance, both Leah and Mimi related the coordinate axes 
of R2 to the coordinate axes of R3: 
Leah:   Range is the y plane determined by the x value, or z determined by x and y.    
   [Relating objects: property] 
Phillip: Lets call z the dependent variable here and move the x and y to the other side. 

Now the domain is x and y.  
   [Relating objects: property] 
Mimi:   You can’t have negative z but I don’t know if that’s the domain or the range. I’m  
   going to say it’s the range, and treat the z axis like the y axis of the function. 
   [Relating objects: form]  
Leah and Phillip related the coordinate axes based on the property of independence and 
dependence, which Leah called ‘determined by.’ Mimi did not use a mathematical property to 
relate the axes, but instead seemed to see as similar the vertical position of the y axis in f(x) 
and the z axis in f(x,y).  
 One clear instance of relating objects by their form was the category of students who said 
that domain was x and range was y for both f(x) and f(x,y). In these cases, the presence of x 
and y in an equation seemed to trigger students to say that domain was the possible x values 
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and range was the possible y values. Ian and Gabe’s descriptions of domain and range are 
good examples: 
Ian:   [Q1] [Domain] is whatever the x value can be. The values the x component can be 
   composed of. [Range] would pretty much be the same thing except for the y   
   component.  

[Q3] so whatever x is, it would be whatever values z is because that would   
 be the radius [writes ‘domain: -z < x < z’]. And the y is the same [writes   
 ‘range: - y < z < y’].  

   [Relating objects: form]  
Gabe:   So the domain [of f(x,y) = x2 + y2,] is all real numbers because it’s a square so 

 there’s no restrictions. And it’s the same thing with y, it’s the same as the x2. 
Int.:  What would it mean if I said 4 is in the domain? 
Gabe:  You’d just plug it in. 
Int.:   But do I have to say it for x and y? If I just say 4 is in my domain and I haven’t  
   specified if it’s x or y? 
Gabe:  I look at the domain as just being x values. 
Int.:  So if I said 4, it would mean that x = 4 is in the domain? 
Gabe:  Yeah. 
Int.:   What if I made that same statement about the range, if I said 4 was in the range?  

  What would I be looking at? 
Gabe:  The y value.  
For Ian and Gabe, domain meant x and range meant y. Thus what they saw as similar in f(x) 
and f(x,y) was that both had an x and a y. They generalized their meaning for domain and 
range based on the presence of the variables in the equation. This was true of all students in 
the ‘Domain is x, Range is y’ category: students who thought domain was x and range was y 
in both single-and multivariable functions seemed to have made that generalization based on 
the presence of the variables in the equations rather than based on a conceptual meaning for 
domain and range.   
Generalizing Action: Extending 

Ellis (2007) defines extending as a generalizing action that “involves the expansion of a 
pattern, relationship, or rule into a more general structure. Students who extend widen their 
reasoning beyond the problem, situation, or case in which it originated” (Ellis, 2007, p.198). 
Our students extended the range of applicability and removed particulars. The following 
excerpts are representative of the ways in which students engaged in extending. 
Jim:  [Q1] Domain is your input values, otherwise known as your x values. It could also 
   represent your independent values. The range is your output, your dependent   
   values, your y values.   

[Q3] There would be two different domains because there are two different inputs. 
I guess the range could be any number just dependent on the domain, like you 
could put anything into the domain and you would get a range number out. Your x 
domain and your y domain give you a range of a different variable. So it would be, 
the range would be of f(x,y). 

   [Extending: removing particulars] 
Bailey:  I think in 2 dimensions, whatever your domain is, you put that in and that’s what  
   your output is. I suppose that’s the same in 3D as well: the array of possible   
   values I can get out of the function.  
   [Extending: removing particulars] 
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Deb:  [Q1] The domain is all the values for x that return a unique value for y. The range  
   would be all of the return values. In 3D, the domain is all values for x and y and  
   the range is all values for z. 

[Q4] I am going to use a graph because I know it’s a sphere. So the domain would 
be all the values between… it’s like R but it’s kind of limited between 3 and -3 on 
each part. So -3 to 3 for x, y, z. Those are domains. The range, it won’t be 3 any 
more because we have… I am not sure about the range. What are the return 
values. I’ll write it as . Now the range would be, that is R.  

   [Extending: expanding the range of applicability]  
What Jim saw as similar between the domain of f(x) and f(x,y) was that in each case, domain 
meant input. He thus extended his idea of domain-as-input to domain-as-inputs, and likewise 
extended the idea of ‘getting a range number out’ to f(x,y) representing that number just as 
f(x) did. We coded this as extending: removing particulars because Jim removed the 
contextual details of the problem (that is, the function f(x,y) = x2 + y2) in order to develop a 
global case: domain is the input(s) and range is the output. He put the actual equation while 
foregrounding the meaning of domain and range. Likewise, Bailey extended the idea of range 
being “the array of possible values I can get out of the function” to decide that range was “the 
same in 3D.” In stating this, she removed the particulars of the specific equation as Jim had. 
Deb also removed particulars, extending the idea of range as a “return value” when she 
worked with the equation for the sphere. Deb’s meaning for range in 2D had been a return 
value or a z value. However, the equation for the sphere was written differently than the other 
equations. Deb extended by asking herself what the return value was, then solved the 
equation for z so she could apply her meaning for range. In doing so, she extended the range 
of applicability because she applied a meaning to something different from which it had 
originated.    
Reflection generalization: Identification or statement: General principle 

Ellis (2007) defines a general principle as “a statement of a general phenomenon” (Ellis, 
2007, p. 200). General principles come under the categories of ‘identification or statement’ in 
which students make their generalizations public by explicitly writing or stating them.. Our 
students frequently stated global rules as they tried to think about the meaning of the domain 
and range of f(x,y). That is, one way in which they made meaning of the concepts “domain of 
f(x,y)” and “range of f(x,y)” was to state their meaning of the concepts “domain of f(x)” and 
“range of f(x)”, linking the meaning in each context to form a description of the general 
phenomenon. For example,   
 
Mimi:  Like you’ve got x, you’ve got y, and z is kind of like the function value. It equals  
   f(x,y) kind of like y = f(x). It’s the dependent variable, not the independent.  
Philip:  The range… is the result of the function, so I guess that would be z. The range is  
   … the dependent variable. X and y are both independent  variables. You could give 
   a better definition than in question 1 and say domain is the independent variable  
   and range is the dependent variable. 
Mimi and Phillip used two ideas in their meaning of range: that of the “function value” or 
“result of the function” and that of dependency. The function value meaning allowed Mimi to 
see z = f(x,y) as analogous to y = f(x). Likewise, Phillip saw z as the “result” of the function 
of x and y. He stated a global rule that domain corresponds to the independent variables and 
range corresponds to the dependent variable. In talking about the function’s value or result 
and independence/dependence, the students were stating the meaning of domain and range.  
 Phillip’s statement is a good example of the relationship between generalizing actions and 
reflection generalizations. Ellis (2007) notes that reflection generalizations often come on the 
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heels of generalizing actions. Phillip extended his idea about “the result of a function” from 
the single-variable to the multivariable case, and this extension was immediately followed by 
a synthesizing comment about the meaning of domain and range in general.    
Reflection Generalization: Influence  
There are two reflection generalizations classified as Influence. The first is prior idea or 
strategy, in which a student implements a previously developed generalization. The second is 
a modified idea or strategy, in which a student adapts an existing generalization to apply to a 
new problem or situation. Quincy and Neil’s statements illustrate the difference well: 
Quincy: [Q1] Range is how far the function spans. Range is the set of numbers the function 
   can have. 
   [Q4] I think the range is 9 for this one… because that's the value on the other side  
   of the equal sign. So it can't really range to any other values.  
Neil:  [Q1] Domain is the span that the x value can take on. Range is the span that the y  
   value can take on. 

[Q3] In this instance the range is z, the output value. So I would say the variables  
 applied to the function doesn’t necessarily correspond to domain as x, range as y. 
 So if I looked back to my definitions in question one, I could define domain and 
 range in 3D space with domain as the span of values that can occur on the 
 horizontal plane and I would define range to be the span of values that are 
 dependent on the domain and span the vertical plane.   

Quincy directly applied his generalization that “range is the set of numbers the function can 
have” to the equation for the sphere, noting that the only number the x, y, and z could add to 
was 9. Thus the “set” of numbers that function had consisted of one element (namely, 9). In 
contrast to Quincy, who implemented an existing generalization, Neil modified his existing 
generalization that domain was x and range was y. Since that generalization did not seem to 
apply to f(x,y) = x2 + y2, he adapted his idea such that to domain was the horizontal plane and 
range was a dependent quantity, illustrated graphically as the vertical plane.   

Results & Discussion II: How Students Generalize Their Meanings for Domain and 
Range 

We found that students generalize their meanings for domain and range by relating 
situations, relating objects, and extending their meanings beyond the cases in which they had 
originated. However, our students did not engage in all of the generalizing actions or 
reflection generalization that Ellis (2007) identifies. We think that this is likely an artifact of 
how the data were collected: Ellis’ data come from a problem-based teaching experiment 
focused on deriving linear relationships, while our data comes from a single interview.  
Table 3. Generalizing actions for domain and range.  

Ellis (2007) framework Example in domain/range data 

T
yp

e 
I:

 R
el

at
in

g 

1. Relating 
situations: 
The 
formation 
of an 
association 
between 
two or more 
problems or 
situations. 

Connecting Back: The 
formation of a 
connection between a 
current situation and a 
previously-
encountered situation. 

Domain is your input values. It could also 
represent your independent values. I am 
trying to think like in terms of my physics 
lab where there are independent and 
dependent variables and you plug in the 
numbers that you use. 

Creating New: The 
invention of a new 
situation viewed as 
similar to an existing 
situation. 

Say you need to calculate temperature and 
you have the temperature relative to 
California and you have some conversion, 
so the input values are the temperatures in 
Oregon and the output values are the 
temperature in California.  
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2. Relating 
objects: The 
formation 
of an 
association 
between 
two or more 
present 
objects. 

Property: The 
association of objects 
by focusing on a 
property similar to 
both. 

Lets call z the dependent variable here and 
move the x and y to the other side. Now the 
domain is x and y. 

Form:  The association 
of objects by focusing 
on their similar form. 

You can’t have negative z but I don’t know 
if that’s the domain or the range. I’m going 
to say it’s the range, and treat the z axis like 
the y axis of the function. 

T
yp

e 
II

I:
 E

xt
en

di
ng

 

1. Expanding the range of 
Applicability: The application of a 
phenomenon to a larger range of 
cases than that from which it 
originated. 

Domain is your input values, otherwise 
known as your x values. It could also 
represent your independent values. The 
range is your output, your dependent values, 
your y values. 

2. Removing Particulars: The 
removal of some contextual details in 
order to develop a global case. 

I am a little fuzzy on range in 3D. I think in 
2 dimensions, whatever your domain is, you 
put that in and that’s what your output is. I 
suppose that’s the same in 3D as well: the 
array of possible values I can get out of the 
function. 

Relating objects was a common way that students generalized their meanings of domain 
and range. When students related equations, some saw the symbols f(x) and f(x,y) as serving 
a similar purpose in the equation, namely as the output or the “result” of the function. This 
allowed them to justify that range, meaning the output or result of a function, would apply to 
f(x,y). Others related coordinate axes, some incorporating an independence/dependence 
meaning (e.g., Leah’s y axis determined by the x axis and z axis determined by the xy plane) 
and others seeming to see as similar the axes’ orientation in space (e.g., range applies to 
whatever axis is vertical and domain to whatever axes are horizontal). A final relation of 
objects was students’ seeing as similar that both f(x) equations and f(x,y) equations contained 
the same variables. Students who used this relation often said that the domain of f(x,y) was x 
and the range was y because that was true for f(x,y).   

Our students also generalized by extending their meanings of domain and range in the 
single-variable case to the multivariable case. These extensions often involved expanding the 
range of applicability, such as extending the ideas of an independent x and a dependent y to 
an independent x and y and a dependent z or extending the idea of an input x and an output y 
to an input of x and y and an output z. For some students, extending involved removing 
particulars (like the actual equation) to focus on the meaning of domain and range (e.g., as 
input and output). When students extend, they place in the background the equations they are 
reasoning about and foreground the meaning of the concepts.  

The reflection generalizations our students stated came in the form of general principles, 
prior ideas, and modified ideas. Ellis (2007) notes that students’ reflection generalizations 
often mirror their generalizing actions, and it makes sense that our students’ extensions 
(generalizing actions) often resulted in statements of global rules, or statements in which they 
used or adapted a previous generalization to incorporate the new case of multivariable 
functions. As with generalizing actions, not all of Ellis’ (2007) categories for reflection 
generalizations were present in our data. The omissions are continuing phenomena, sameness, 
and definition. The reflection generalization taxonomy for these data are in Table 4.  

 
 

17th Annual Conference on Research in Undergraduate Mathematics Education 25



Table 4. Reflection generalizations for domain and range.  
Ellis (2007) framework Example in domain/range data 

T
yp

e 
IV

: I
de

nt
ifi

ca
tio

n 
or

 
St

at
em

en
t 

3. General 
Principle: A 
statement of 
a general 
phenomenon. 

Rule: The 
description of a 
general formula 
or fact. 

[Q3a] Domain of this would be all real 
numbers for x values, so x can equal any 
number, and it changes what z equals, but even 
negative numbers squared equal positive z. 
And the range is all real numbers because there 
is no value of y for which the graph is 
undefined. 

Global Rule: The 
statement of the 
meaning of an 
object or idea. 

Z is kind of like the function value. It equals 
f(x,y) kind of like y = f(x). It’s the dependent 
variable, not the independent. 

T
yp

e 
V

I:
 In

flu
en

ce
 

1. Prior Idea or Strategy: The 
implementation of a previously-
developed generalization.   

[Q1] Range is the set of numbers the function 
can have. [Q3b] I think the range is 9 for this 
one… because that's the value on the other side 
of the equal sign. So it can't range to any other 
values.  

2. Modified Idea or Strategy: Z 
is kind of like the function value. 
It equals f(x,y) kind of like y = 
f(x). It’s the dependent variable, 
not the independent. 

In this instance the range is z, the output value. 
So I would say the variables applied to the 
function doesn’t necessarily correspond to 
domain as x, range as y. So if I looked back to 
my definitions in question one, I could define 
domain and range in 3D space with domain as 
the span of values that can occur on the 
horizontal plane and I would define range to be 
the span of values that are dependent on the 
domain and span the vertical plane.   

That our data contained many of Ellis’ (2007) categories for how students generalize supports 
the framework as useful for analyzing students’ generalizations.  

Implications for Instruction 
Devoting Time to Domain and Range 

The actor-oriented transfer theoretical framework is useful for exploring generalization 
because it characterizes what students see as similar without comparing students’ 
perspectives to those of experts. However, judging whether students’ generalizations are 
congruent with experts’ ideas becomes useful when thinking about implications for 
instruction. For instance, some of the ways in which students related objects allowed them to 
generalize that the domain of f(x,y) = z was x and y and the range was z. Students who formed 
this generalization commonly used a meaning for domain and range as input and output or 
independent and dependent variables along with their generalizing action of relating objects. 
In contrast, students who generalized incorrectly –(relating f(x) = y to f(x,y) = z by 
concluding that the x and y were present in both equations, and thus played the same role in 
both) seemed to not have a conceptual meaning for domain and range, but rather a definition 
that was a link between a word and a symbol (that is, x is domain, y is range). As it seems to 
be the underlying meaning the first set of students had that allowed them to relate objects in a 
productive way, instructors might focus on the meaning of f(x,y) as a function with multiple 
inputs, similar to f(x) (a function with one input). Many of our students stated that the 
interview was the first time they had thought about the domain and range of multivariable 
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functions. Given some students’ incorrect generalizations, it would likely be beneficial for 
instructors to devote time to talking about the domain and range of multivariable functions.  
Complementing with a Focus on Covariation 

 We also recognize that a strong notion of input and output is not necessarily enough 
for students to think about function in the ways instructors intend. A generalized notion of 
input and output has limitations because it relies on the notion that one quantity is dependent 
on another. In most real world situations, the notion of independence and dependence is 
contrived because one quantity’s value is not actually determined by another quantity’s value. 
While it may be useful to treat one quantity as dependent for ease of calculation of 
simplification of some physical situation, thinking about functions in terms of covariation is 
crucial to students’ success in calculus (Thompson & Silverman, 2008). In short, thinking 
covariationally means the student thinks about a function as an invariant relationship between 
quantities’ values not necessarily coupled with a notion of input and output (Thompson, 
2011). For example, consider a situation in which a person is moving and there are two 
quantities: the amount of distance she has traveled and the amount of time elapsed since she 
began traveling.  One would be reasoning covariationally if a) she conceived of both 
quantities and their individual variation (i.e. time varies, distance varies) and b) she 
conceived of those quantities varying simultaneously, so that when she thinks about a 
person’s distance traveled, she has an image of the amount of time needed to travel that 
distance. There is no sense of input or output required (though it may be present) within 
covariational reasoning. Inputs, outputs, independence, and dependence ideas may (i.e. 
elapsed time causes elapsed distance, or vice versa) arise because of the person’s conception 
of the situation, not because one quantity has been designated as an input and one as an 
output. It is important to note that covariational reasoning does not preclude an approach 
involving input and output. Instead, it focuses on a quantitative relationship as the basis for a 
function from which an input-output metaphor may or may not be drawn. Thus, while this 
study shows ways in which one might generalize notions of input and output, it is important 
that multivariable functions not be presented and talked about solely in terms of input and 
output. While it maybe a useful way to think about domain and range, it does not guarantee 
that students think about functions as they need to (that is, in terms of covariation) as is useful 
for calculus.    
 

Suggestions for Further Research 
Our tasks included functions of one and two variables. It would be interesting to include 

functions of more than two variables, such as f(w,x,y,z). A task including this might yield 
interesting results with students who have the ‘variable perspective’ (i.e., domain is x and 
range is y) as they must now think about variables which do not appear in f(x) = y. That is, 
the symbol w does not appear in this equation and thus as students try to explain its place in 
f(w,x,y,z), they might reveal things about their concepts of domain and range which were not 
revealed in our tasks.  
 This study was done with multivariable calculus students, but the concepts of domain and 
range are used in mathematics outside of calculus. For instance, domain and range are critical 
in linear transformations. Thus how linear algebra students generalize ideas of domain and 
range would provide an additional opportunity to study generalization, as well as the 
meanings for domain and range students have after a higher mathematics course.   
 Finally, as noted earlier, domain and range were a ‘case study’ of generalization in higher 
mathematics. There are many more single- and multivariable calculus ideas in which to 
explore students’ generalizations; of particular interest to us are how students generalize ideas 
of derivatives and integration.  

17th Annual Conference on Research in Undergraduate Mathematics Education 27



References 
Asiala, M., Cottrill, J., Dubinsky, E., & Schwingendorf, K. E. (1997). The development of 

students' graphical understanding of the derivative. . (1997). The development of 
students' graphical understanding of the derivative. The Journal of Mathematical 
Behavior, 16(4), 399-431.  

Confrey, J. S., E. (1995). Splitting, covariation, and their role in the development of 
exponential functions. Journal for Research in Mathematics Education, 26(1), 66-86.  

Corbin, J. S., A. L. (2008). Basics of qualitative research: Techniques and procedures for 
developing grounded theory. CA: Sage Publications  

Ellis, A. B. (2007). A taxonomy for categorizing generalizations: generalizing actions and 
reflection generalizations. The Journal of the Learning Sciences, 16(2), 221-262.  

Kabael, T. U. (2011). Generalizing single variable functions to two-variable functions, 
function machine and APOS. Educational Sciences: Theory and Practice, 11(1), 16.  

Lobato, J. (2003). How design experiments can inform a rethinking of transfer and vice versa. 
Educational Researcher, 32(1), 17-20.  

Martinez-Planell, R., & Trigueros, M. (2013). Graphs of functions of two variables: results 
from the design of instruction. International Journal of Mathematical Education in 
Science and Technology, 44, 663-672.  

McCallum, W. G., Hughes-Hallet, D., Flath, D., Osgood, B.G., Gleason, A.M., Quinney, D., 
Frazer Lock, P., Tecosky-Feldman, J., Mumford, D., & Tucker, T.W. (2009). 
Multivariable Calculus (5th Edition ed.). Hoboken, NJ: Wiley. 

Monk, G. S. (1994). Students' understanding of function in calculus courses. The Humanistic 
Mathematics Network Journal, 27, 21-27.  

Oehrtman, M. C., Carlson, M. P., & Thompson, P. W. (2008). Foundational reasoning 
abilities that promote coherence in students' understandings of function (M. P. C. C. 
Rasmussen Ed.). Washington, DC: Mathematical Association of America. 

Orton, A. (1983). Students' understanding of differentiation. Educational Studies in 
Mathematics, 14(3), 235-250.  

Rowgawski, J. (2008). Calculus: Early Transcendentals New York, NY: W.H. Freeman and 
Company. 

Thomas, G. B. (2010). Calculus: Early Transcendentals. Boston, MA: Pearson. 
Thompson, P. W. (2011). Quantitative reasoning and mathematical modeling. In L. L. 

Hatfield, S. Chamberlain & S. Belbase (Eds.), New perspectives and directions for 
collaborative research in mathematics education (pp. 33-57). Laramie, WY: 
University of Wyoming. 

Thompson, P.W. & Silverman, J. (2008). The concept of accumulation in calculus. In M.P. 
Carlson & C. Rasmussen (Eds.), Making the connection: Research in teaching in 
undergraduate mathematics (pp.43-52). Washington, DC: Mathematical Association 
of America.  

Trigueros, M., & Martinez-Planell, R. (2010). Geometrical representations in the learning of 
two-variable functions. Educational Studies in Mathematics, 73, 3-19.  

Yerushalmy, M. (1997). Designing representations: Reasoning about functions of two 
variables. Journal for Research in Mathematics Education, 28(4), 431-466.  

Zandieh, M. J. (2000). A theoretical framework for analyzing student understanding of the 
concept of derivative. 

 
  

28 17th Annual Conference on Research in Undergraduate Mathematics Education



3

17th Annual Conference on Research in Undergraduate Mathematics Education 29



 

 

STUDENTS’ CONCEPTION OF THE TEMPORAL ORDER OF DELTA AND EPSILON 

WITHIN THE FORMAL DEFINITION OF A LIMIT 

 

Aditya P. Adiredja and Kendrice James 

University of California, Berkeley 

 

Studies about students’ understanding of the formal definition of a limit, or the epsilon delta 

definition suggest that the temporal order of delta and epsilon is one of the most challenging 

aspects of the formal definition. While multiple studies have documented this difficulty for some 

students, patterns of students’ reasoning about the temporal order are largely unknown. This 

study investigates ways that students make sense of the temporal order by focusing on the 

justifications students provided for their claim about the temporal order. diSessa’s Knowledge in 

Pieces provides a suitable framework to explore the context specificity of students’ knowledge as 

well as the potential productivity of their prior knowledge in learning. 

 

Keywords: limit, formal definition, students’ prior knowledge, Knowledge in Pieces 

 

In February 2012, the President’s Council of Advisors on Science and Technology (PCAST) 

called for 1 million additional college graduates in Science, Technology, Engineering, and 

Mathematics (STEM) fields based on economic forecasts (Executive Office of the President, 

PCAST, 2012). Within STEM, mathematics is severely underrepresented. For example, the UC 

Berkeley Common Data Set (University of California, Berkeley, 2011) reported that 

mathematics accounted for 3% of the degrees conferred, whereas engineering and the biological 

sciences accounted for 11% and 13% respectively.
1
 Calculus is the first opportunity for students 

to engage with theoretical mathematics and make the transition into advanced mathematical 

thinking. While calculus courses often act as a gatekeeper into mathematics and other STEM 

majors, some exemplary mathematics programs have successfully used them as the primary 

source for recruiting mathematics majors (Tucker, 1996). 

The formal definition of a limit of a function at a point, as given below, also known as the 

epsilon-delta definition, is an essential topic in mathematics majors’ development that is 

introduced in calculus. We say that the limit of f (x) as x approaches a is L, and write  

   
   

       

if and only if, for every number  > 0, there exists a number   > 0 such that for all numbers x 

where 0<|x-a|< then |f (x)-L|<.
2
 The formal definition provides the technical details for how a 

limit works and introduces students to the rigor of calculus. Yet research shows that thoughtful 

efforts at instruction at most leave students – including intending and continuing mathematics 

majors – confused or with a procedural understanding about the definition (Cottrill et al., 1996; 

Oehrtman, 2008; Tall & Vinner, 1981). 

                                                 
1
 Stanford University reported similar numbers with 3.3% for mathematics and 15.1% for 

engineering (Stanford University, 2011). 
2
 In this paper, we will often refer to the first part of the statement (for every number  > 0, there 

exists a number   > 0), the for-all statement, and the later part (if 0<|x-a|< then |f (x)-L|<), the 

if-then statement for brevity.  
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Although studies have sufficiently documented that the formal definition is a roadblock for 

most students, little is known about how students actually attempt to make sense of the topic, or 

about the details of their difficulties. Most studies have not prioritized students’ sense making 

processes and the productive role of their prior knowledge (Davis & Vinner, 1986; Przenioslo, 

2004; Williams, 2001). This may explain why they reported minimal success with their 

instructional approaches (Davis & Vinner, 1986; Tall & Vinner, 1981). Thus, understanding the 

difficulty in the teaching and learning of the formal definition warrants a closer look – with a 

focus on student cognition and with attention to students’ prior knowledge. It also calls for a 

theoretical and analytical framework that focuses on understanding the nature and role of 

students’ intuitive knowledge in the process of learning.  

A small subset of the studies have begun exploring more specifically student understanding 

of the formal definition (Boester, 2008; Knapp and Oehrtman, 2005; Roh, 2009; Swinyard, 2011, 

Swinyard and Larsen, 2012). They suggest that students’ understanding of a crucial relationship 

between two quantities,   and   within the formal definition warrants further investigation. Davis 

and Vinner (1986) call it the temporal order between   and  , that is the sequential ordering of   

and   within the formal definition where   comes first, then   (p. 295). They found that students 
often neglect its important role. Swinyard (2011) found that the relationship between the two 

quantities is one of the most challenging aspects of the formal definition for students. Knapp and 

Oehrtman (2005) and Roh (2009) document this difficulty for advanced calculus students. This 

difficulty is also prevalent among the majority of calculus students who struggled with the 

formal definition in Boester (2008). How students reason about the temporal order still remains 

an open question. 

This study is a part of a larger study investigating the role of prior knowledge in student 

understanding of the formal definition. It specifically explores the claim that students struggle to 

understand the temporal order of   and   within the formal definition. We aim to answer the 
following research questions:  

1. What claims do students make about the temporal order of   and  ?  

2. How do students reason about the temporal order of   and  ? 

 

Theoretical Framework 

 

The Knowledge in Pieces (KiP) theoretical framework (Campbell, 2011; diSessa, 1993; 

Smith et al., 1993) argues that knowledge can be modeled as a system of diverse elements and 

complex connections. From this perspective, uncovering the fine-grained structure of student 

knowledge is a major focus of investigation, and simply characterizing student knowledge as 

misconceptions is viewed as an uninformative endeavor (Smith et al, 1993). Knowledge 

elements are context-specific; the problem is often inappropriate generalization to another 

context (Smith et al, 1993). For example, “multiplication always makes a number bigger” is not a 

misconception that just needs to be removed from students’ way of thinking. Although this 

assertion would be incorrect in the context of multiplying numbers less than 1, when applied in 

the context of multiplying numbers greater than 1, it would be correct. Paying attention to 

contexts, KiP considers this kind of intuitive knowledge a potentially productive resource in 

learning (Smith et al., 1993). This means that instead of focusing on efforts to replace 

misconceptions, KiP focuses on characterizing the knowledge elements and the mechanisms by 

which they are incorporated into, refined and/or elaborated to become a new conception (Smith 

et al., 1993). Similarly, we view students’ prior knowledge as potentially productive resources 
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for learning. We focus our investigation on students’ reasoning as potentially productive 

resources, and we focus our attention on the context specificity of students’ knowledge. 

 

Methods 

 

The data for this report comes from a larger study with 25 students (18 new students, and 7 

students from the pilot study reported last year) investigating the role of prior knowledge in 

student understanding of the temporal order. Each of these students has received some form of 

instruction on the formal definition during their first semester calculus course. We anticipate 

some knowledge about the definition to be a part of their prior knowledge. Participants of the 

study were racially diverse (1 African American, 11 Asian, 6 Hispanic/Latino, 1 Native 

Hawaiian, 5 White (Non-hispanic), 1 North African) and have different majors. In the 

presentation of the analysis, whenever we discuss an utterance from a student, we include the 

student’s gender and race with the student’s quote in order to give a better representation of the 

student whose knowledge we are discussing. This also helped us to stay mindful of any other 

resources outside of past instruction that might be relevant (e.g. home language). Students’ 

names are all pseudonyms. 

The protocol was designed to elicit student understanding of the formal definition, but more 

specifically their understanding of the relationship between delta and epsilon. To explore the 

stability and context specificity of students’ knowledge across different contexts, we asked 

students about the temporal order of the two variables in four different contexts: dependence, 

their temporal order, set, and lastly we asked students to order x, f (x),  and  according to the 
definition. The actual interview questions are included in the appendix. Each individual 

interview lasted about 2 to 3 hours. These interviews were videotaped following 

recommendations in Derry et al. (2010).  

The first part of the analysis categorized students’ response to each question about the 

temporal order. The three categories were: epsilon first, delta first or no order. Students 

responded to four questions related to the temporal order. The response to each question was 

given a score from 0 to 2 (delta first=0, no order=1, epsilon first=2). The sum of the score ranged 

from 0 to 8 and their total score placed them along a continuum between the claim of delta first 

and epsilon first. For students from the pilot study, scoring 2 on all the questions that were asked 

would lead to a total score of 8. In the first round of pilot study, students were asked only one 

question about the temporal order (question 1, above). In the second round of pilot study, 

students were asked three of the four questions (questions 1, 2 and 4). In those cases, the total 

would be normalized to 8 based on the number of available questions.  

The second part of the analysis identified reasoning patterns from students’ justifications for 

the temporal order. To identify reasoning patterns, we started by recording students’ justification 

for each temporal order question. A justification included details about what the student attended 

to and the meaning they attached to it. We first sorted justifications according to the temporal 

order they supported: epsilon first, no order or delta first. At times a student started with one 

claim for the temporal order, but changed their mind afterwards. In this case, the justification for 

each claim was recorded as two different justifications and was sorted accordingly. Some 

students provided contradicting justifications to support the claim that there was no order. In this 

case, we would treat the two justifications as one reasoning pattern. The catalogue of reasoning 

patterns was developed through an iterative process of open coding (Glaser & Strauss, 1967). In 

documenting reasoning patterns, it was important to not infer the origin of the justification. We 
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relied as much as possible on the particular thing the student said and attended to. For example, 

if a student were to say that epsilon depended on delta because we use delta to find epsilon, we 

recorded it as a reasoning pattern without investigating where the student could have gotten that 

idea. The student might have gotten the idea from the if-then statement, but unless the student 

explicitly attended to it, we would not include it as part of the reasoning pattern. The goal of the 

analysis was to show the diversity in justifications for the temporal order, and not to come up 

with an exhaustive list of justifications for any student in calculus.  

 

Results 

 

Relationship Between the   and   
The table below shows how each student in the study answered each question about the 

temporal order. The table is split into two. The top half includes students from the current study 

and the bottom half are students from the pilot study whose results were reported last year. Red 

marks questions answered with delta first. Yellow marks no order. Green marks epsilon first. 

Blue marks questions that were not asked or were not available.  

 

Student Dependence Temporal Set Order Total 

Chen 0 0 0 0 0 

Sheila 0 0 0 0 0 

Spencer 0 0 0 0 0 

Veronica 0 0 0 0 0 

Patricia 0 0 0 0 0 

Julia 0 0 1 0 1 

Aruna 0 0 1 0 1 

Jane 1 0 1 0 2 

Milo 0 0 2 0 2 

Jose 1 2 0 0 3 

Katrina 0 2 1 0 3 

Simon 1 0 2 0 3 

Ryan 0 2 2 0 4 

Guillermo 2 0 0 2 4 

Silvia 1 2 1 0 4 

Bryan 0 1 2 2 5 

Roberto 2 2 1 2 7 

Erin 2 2 2 2 8 

David 0 N/A N/A N/A 0 

Jacob 0 N/A N/A N/A 0 

Adriana 0 0 N/A 0 0 

Sophia  0 0 N/A 0 0 

Anwar 0 0 N/A 0 0 

Adam 2 2 2 N/A 8 

Dean 2 N/A N/A N/A 8 

Table 1. Students’ responses to each question about the temporal order sorted from lowest to 

highest total and separated by current study vs. pilot study 
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Whereas last year we found consistency of responses across the contexts, the latest iteration of 

the study shows that students’ conception of the temporal order is context specific. Some 

students were consistent across all questions. But the majority of students were able to answer 

with epsilon first in some context, but answered delta first in others. For example, Katrina, a 

female Hispanic/Latina student claimed that epsilon came first by remembering the proof 

procedure of breaking down the epsilon inequality. However, when she was asked to order x,      

f (x),  and , she put delta first because “the definition says that if you have delta then you have 
epsilon.”  

As we reported last year, during the pilot not all of the questions were asked. Adam and 

Dean scored an 8 without answering the other three questions because they answered the 

questions that were asked normatively, and was able to explain the formal definition accurately. 

To assist in parsing the table above, we charted the number of questions that students answered 

with epsilon first (score=2).  

 

 
Figure 1. The distribution of students in answering the four temporal order questions with 

epsilon first. 

 

Fifty two percent (52%) of students (13/25) answered none of the questions with epsilon first, 

while only 12% of students (3/25) answered with epsilon first on all the questions. The 

percentages of the rest are as follows: 1 question-20%, 2 questions-12% and 3-questions-4%. 

This chart shows that the majority of students in the study struggled with the temporal order of 

delta and epsilon. 

Reasoning Patterns for the Temporal Order 

The table below shows the different reasoning patterns that emerged from the data. As we 

said, each reasoning pattern is a type of justification students provided to support their claim 

about the temporal order. The table is organized by the temporal order claim for which the 
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students used the justification. We include the number of students who used each reasoning 

pattern. The total number of students would exceed 25 because some students included more 

than one justification per question.   

 

Temporal Order Reasoning Pattern Students 

 

 

 

 

 

 

 

 

Delta comes 

first, or  

depends on , or 

 is set first 

1) Because the statement, "for every  >0, there exists  >0" 
means that there needs to be a delta (greater than zero) for the 

epsilon to exist. 4 

2) Because of a procedural understanding of a limit. That is, find 

x values close to a and check the f (x) values. 6 

3) Because the if-then statement suggests that delta needs to be 

satisfied first then epsilon.  

Note: students might be reading the first-part of the definition, 

but their focus is on satisfying the delta inequality to satisfy 

epsilon 

Variation: the if then statement says if delta then epsilon          11 

4) Because we use delta to find epsilon. 3 

5) Because delta is related to x and epsilon is related to f (x) and 

since f (x) depends on x epsilon depends on delta.  

Variation 1: Epsilon depends on delta because f (x) depends on 

epsilon and x depends on delta and f (x) depends on x.  

Variation 2: Epsilon depends on delta because output depends on 

input, and delta constrains our input and epsilon constrains our 

output.  11 

6) Epsilon is not set because epsilon is arbitrary. So delta is set 

first. 4 

7) Because x and a are known, but not L. So we can use the delta 

inequality but not the epsilon inequality.  7 

8) Because the definition follows the order x then get delta then   

f (x) and then epsilon. Notes: This is different from focusing on 

the if-then because students do not interpret the if-then question 

but just follow the location of each variable. 

6 

Note: Students may look at the if-then statement but focus on the 

order of the quantities. 

9) Because of recall from the epsilon delta proof procedure, the 

answer is epsilon over some number. 2 

10) Because of recall from epsilon delta proof procedure, we 

start with the delta inequality and it will come out in the epsilon 

inequality.  2 

 

 

 

 

No order, or  

11) Because we have to find both of them.  

Variation 1: We are not given both epsilon and delta. 

Variation 2: If one is set, the other one is also set 7 

12) Because the for-all statement says delta depends on epsilon 

and the if-then statement says epsilon depends on delta 2 
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and  are 

dependent on 

each other 

13) Because the if-then statement suggests that they depend on 

each other. 3 

14) Because if the limit exists then as delta gets smaller epsilon 

gets smaller and if the limit doesn’t exist then delta getting 

smaller has no effect on epsilon 1 

15) Because of proof procedure and getting a number times delta 

is less than epsilon 1 

 

 

 

 

 

 

 

 

 

 

Epsilon comes 

first, or  

depends on , or 

 is set first 

16) Because the definition reads for every number epsilon, there 

exists a number delta, such that if 0<|x-a|< then |f (x)-L|<,  (a 
normative reading of the statement). 1 

17) Because of the spatial location of the variables, starting with 

for all. 1 

18) Epsilon is given.  

Variation: Epsilon comes first and then you find delta. 4 

19) Because of the statement for all epsilon there exists a delta 2 

20) Because of recall from the epsilon delta proof procedure, we 

break down the epsilon inequality to get it to look like the delta 

inequality or the answer is epsilon over some number. 5 

21) Since you know a and f (x) you can find L, then you can set 

epsilon, and find delta 1 

22) Because of a counterexample where the limit does not exist 

and thus for a given epsilon there is no delta. 1 

23) Epsilon is set and that constrains the output which then 

constrains the input.  

Variation: Because we want epsilon to be really small because 

we want f (x) to be very close to L we would want delta to be 

really small because we want x to be close to a. 2 

24) Because epsilon no longer depends on delta since the if then 

statement is about x and f (x) 1 

Table 2. Students’ reasoning patterns about the temporal order questions. 

 

Broad Themes About the Types of Reasoning Patterns 

We found quite a large number of reasoning patterns for the temporal order across the four 

contexts. This shows the diversity of knowledge about the temporal order. Quite a number of 

reasoning patterns (8/24) relied on an interpretation of different parts of the statement of the 

formal definition (e.g. reasoning pattern 1, 13, 16). Almost as common was those that involved a 

recall of the proof procedure from instruction (reasoning pattern 9, 10, 15, 20). Notice that even 

though students attended to the same procedure, they concluded different temporal order. Some 

reasoning patterns relied on a more intuitive understanding of a limit, where one would select 

values of x close to a to determine the limit (e.g. reasoning pattern 2, 7). Some students justified 

their claim using spatial location of the different variables (e.g. reasoning pattern 8, 17). So while 

many of these reasoning patterns might have originated from instruction, others were students’ 

interpretation of the formal definition during the interview.  

Common Reasoning Patterns in Different Contexts 
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One of the most common reasoning pattern, with 11 students using it as a part of their 

reasoning was the same justification we saw most often in our pilot study: epsilon depends on 

delta because delta is related to x and epsilon is related to f (x) and since f (x) depends on x 

epsilon depends on delta (reasoning pattern 5). Bryan, a White male student provided a very 

clear description of this reasoning pattern. He argued, “[Epsilon depends on delta] because delta 

is the independent variable which would be x in the f (x)=y relationship /…/ that spits out y, 

which is our epsilon [dependent variable] /…/ because delta is like x and epsilon is y.” Brian was 

drawing on his knowledge of functional relationships and applying that to the delta epsilon 

relationship. And like most students who used the functional dependence idea, Brian treated 

delta like x and epsilon like y.  

Another reasoning pattern that was equally as common (11 students) relies on an 

interpretation of the if-then statement. Reasoning pattern 3 says that the if-then statement 

suggests that delta needs to be satisfied first before epsilon can be satisfied. So delta comes first. 

For example, Ryan, a male Asian student said, “For every number epsilon there is a number delta 

such that if the delta thing is satisfied then the epsilon is satisfied /…/ the delta has to happen for 

the epsilon to be satisfied. Because it goes if this, then the epsilon is satisfied. Delta needs to be 

satisfied before the epsilon can be.” Ryan was reading the whole statement of the definition, but 

he clearly focused on the if-then part of the statement. He then concluded that delta came first in 

the temporal order. This reasoning pattern is an example of one, which relied on an interpretation 

of the statement. Next we explore a common reasoning pattern, which relied on students’ 

intuitive understanding of a limit.   

Seven of the 25 students argued that since the x and a were known then they could use those 

to find delta, whereas the limit was unknown so they could not find epsilon (reasoning pattern 7). 

Veronica, a White female student, argued, “Um, I would say delta [is set first] because the delta 

equation includes a whereas the components of the epsilon equation include L and you may or 

may not know what the limit is yet because you might be solving for the limit. But they give you 

a so I would assume that would be a better tool to use to solve.” Veronica treated the delta and 

epsilon inequalities (0<|x-a|< and |f (x)-L|<) as equations. This was quite common among the 
students we interviewed. Doing so led her to conclude that with x and a known, she could find 

the delta, whereas the existence of the limit was in question. So far we have explored common 

reasoning patterns that support the claim that delta comes first. We explore a common one 

students used to argue that there was no order for epsilon and delta. 

Seven students focused on the fact that they needed to find both epsilon and delta to conclude 

that neither was set, so there was no order (reasoning pattern 11). For example, Roberto, a male 

Hispanic/Latino student argued that neither epsilon nor delta were set because “you have to sort 

of find them or figure them out.” Silvia expressed a similar opinion, “neither set because you 

have to solve for both of them.” These students attended to whether epsilon and delta could be 

set, instead of which of the two was set first. We will return to his subtlety in the discussion.  

It is worth noting that the most common reasoning pattern that supported students to 

conclude that epsilon came first was students’ recall of the proof procedure (reasoning pattern 

20). They were able to infer the temporal order appropriately from the proof. We will now close 

with one very interesting finding related to this pattern. As we mentioned earlier many students 

recalled voluntarily the epsilon delta proof from instruction. While five of them concluded the 

appropriate temporal order, many did not. In fact, many of them recalled the same procedure, 

attended to the same information and concluded different temporal order. For example, both 

Veronica (White), and Katrina (Hispanice/Latina) remembered that the “delta” would “come 
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out” from the epsilon inequality. But Veronica concluded that delta came first, while Katrina 

concluded epsilon came first! Veronica said, “I'm thinking delta [comes first] because for some 

reason I feel like because these [0<|x-1|< and 3|x-1|<] look kinda similar, like you can take /…/ 
this equation with delta and plug it in for the epsilon equation. So I'm thinking maybe you should 

check out delta first possibly.” Katrina explained, “Oh, the one that comes first is epsilon and 

you figure out delta because you're gonna take this f of x minus L [f (x)-L] is less than epsilon 

and you're gonna manipulate it, and then you'll get it to look like x minus a [x-a] and depending 

on that, you know what delta is.“ The two students were both examining the inequalities and 

getting them to look the same, something that is commonly talked about in calculus classes, and 

something that they spontaneously produced during the interview. However, Veronica concluded 

that from this delta came first while Katrina concluded that epsilon came first. This goal of this 

comparison is not to compare the student’s ability, but to make the point that this warrants a 

deeper, perhaps a more fine-grained analysis to explore what was truly underlying these 

conclusions and the ways in which these justifications arose.  

 

Discussion 

 

This study confirms the finding from our pilot study last year. We found that students 

struggle with the temporal order of epsilon and delta within the formal definition. Thirteen of the 

25 students in this study were not able to answer one question about the temporal order correctly. 

The methods that we employed in this study allowed us to see more variability of student 

conceptualization of the temporal order. Ten students received a total score of 0 across the four 

different contexts and three students scored 8, but the majority of students were somewhere in 

between. The finding that some students scored a 2 in one context but a 1 or 0 in others shows 

that student knowledge about the temporal order is not quite stable across the different contexts. 

This supports our theoretical assumption that knowledge is context specific, and also highlights 

the importance of assessing student knowledge in multiple contexts in research and practice.    

With respect to students’ justifications, the functional dependence between x and f (x) along 

with delta is with x while epsilon is with y remain the most common reasoning pattern for the 

temporal order this year. We discussed the nature of that reasoning and its implication in 

Adiredja and James (2013). However, the current study also found another common reasoning 

pattern that relied on an interpretation of the if-then statement within the definition. In Adiredja 

and James (2013) we found that most of what we called “knowledge resources” were 

mathematical in nature, and hypothesized that either this indicated lack of access into the formal 

definition using intuitive knowledge or it was a product of using too large of a grain size to find 

intuitive knowledge resources. The findings from this study suggest that it might be both.  

The findings from this study confirmed that students use their interpretation and experiences 

with formal mathematics to make sense of the temporal order. At the same time, a microgenetic 

case study of Adam (White male) as part of the larger project revealed that many of what we 

found in the pilot study were reasoning patterns, and were not quite knowledge resources. One of 

the authors found that a reasoning pattern is made up of different knowledge resources, making it 

larger in grain size. However, these reasoning patterns are useful in that it point us in a direction 

to locate knowledge resources. For example, the case study explore a very interesting 

phenomenon of a student interpreting the inequality 3|x-1|< from the proof. Sometimes Adam 

read that inequality to say epsilon must be greater than three times the interval around 1. Other 

times he read it as saying three times the interval around 1 must be smaller than epsilon. And 
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depending on his read, he concluded the temporal order differently. The study looked into the 

underlying knowledge resources that influence the way he read the inequality. Perhaps the 

finding of that study might be informative to tease out what happened with Veronica and Katrina 

earlier.   

We recognize one potential limitation of the current study. Four of the 19 students (Jane, 

Katrina, Roberto and Silvia) who were asked the set question did not interpret the question as we 

intended. Instead of focusing on which of the two quantities had to be set first, they were focused 

on whether epsilon and delta could be set. We recognize that this was a reasonable interpretation. 

We still coded them as no order for consistency instead of creating a new category for them. One 

option that we could have done but did not do was to not code their response at all, and 

normalize their scores much like we did with the students in the pilot study who was not asked 

the question. We did not do so, because we do believe that ultimately this would not dramatically 

change the general finding that we reported here about a lot of students struggled with the 

temporal order and the diversity of their reasoning patterns.  

 

Conclusion and Implications 

 

The list that we provided in this paper is not exhaustive, but it shows the diversity and range 

of student reasoning patterns. It is too early to turn our findings into some form of instructional 

intervention, but we believe it is important to reiterate the point we made in Adiredja and James 

(2013). The goal in instruction should not be to replace some of the unproductive reasoning 

patterns. Instead, any instructional intervention should help students reorganize these reasoning 

patterns while recognizing the contexts in which they might be useful (e.g. the productivity of 

the functional dependence relationship in multiple contexts in mathematics). More importantly, 

we argue that we need to get to the level of resources to truly understand how students reason 

with the temporal order, and the ideas that they prioritize. Then we can begin to think about a 

possible instructional approach to assist students in understanding the temporal order, and the 

formal definition more broadly. We would do so by honoring their prior knowledge.  
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Appendix 

 

Now I am going to ask you some specific questions about epsilon and delta, and after each 

question I am going to ask how sure you are of your answer.  

 

1. In the definition, with epsilon and delta, what depends on what, if anything you think? 

Delta depends on epsilon? Epsilon depends on delta? They depend on each other? Or they do 

not depend on each other? And why? 

Follow up: Where did you get that from? OR How does that relate to your idea that ____ 

depends on _____?  

 

2. In the definition, between epsilon and delta, which one do you think comes first and which 

one do you figure out as a result? And why? 

 

3. In the definition, between epsilon and delta, which one do you think is set? Epsilon? 

Delta? Both? Or neither? And why?? 

 

4. How would you put the four variables, epsilon, delta, x and f(x) in order in terms of which 

comes first in the definition? And why?  

Follow up: Why did you order it that way? 

Follow up: In terms of the process within the definition, how would you put the four 

variables in order?  
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We studied students’ understanding of the Fundamental Theorem of Calculus (FTC) in graphical 
representations that are relevant in physics contexts. Two versions of written surveys, one in 
mathematics and one in physics, were administered in multivariable calculus and introductory 
calculus-based physics classes, respectively. Individual interviews were conducted with students 
from the survey population. A series of FTC-based physics questions were asked during the 
interviews. The written and interview data have yielded evidence of several student difficulties in 
interpreting or applying the FTC to the problems given, including attempting to evaluate the 
antiderivative at individual points and using the slope rather than the area to determine the 
integral. The interview results further suggest that students often fail to make meaningful 
connections between individual elements of the FTC. 

Key words: [Fundamental Theorem of Calculus, Physics, Difficulties, Problem-solving] 

Introduction 
We have been exploring the effect of student understanding of various concepts in 

mathematics on their understanding of physics concepts and vice versa. Learning physics 
concepts often requires the ability to interpret and manipulate the underlying mathematical 
representations (e.g., equations, graphs, and diagrams). A proper understanding of 
representations of physics concepts often requires identification of the relationship between the 
physics and the mathematics built into the representation as well as subsequent application of the 
mathematical concepts (Chi et al., 1981; Redish, 2005). Several studies in physics education 
research (PER) indicate connections between students’ understanding of mathematics concepts 
and their understanding of physics concepts. Some PER findings suggest that some of the student 
difficulties categorized as physics difficulties may be related to the mathematics and its 
representations in addition to, or instead of, being difficulties with the physics (Christensen & 
Thompson, 2010; Christensen & Thompson, 2012; Meltzer, 2002; Pollock et al., 2007).  

One interesting aspect of student understanding is the ability to relate mathematical concepts 
learned in a mathematics class to various physics concepts. One topic that plays a significant role 
in physics is the Fundamental Theorem of Calculus (FTC). The FTC is relevant in determining 
various physical quantities such as displacement, potential difference, work, etc. In order to fully 
understand the FTC, a working understanding of many concepts, such as function, rate of 
change, antiderivative, definite integral, etc., is needed. Research in undergraduate mathematics 
education attributes student difficulty with the FTC primarily to students’ difficulty with the 
function concept (Carlson et al., 2003; Thompson, 1994; Thompson, 2008) and rates of change 
(Thompson, 1994).  

Connecting student understanding of mathematics and physics is relevant to mathematics 
educators as well, since many mathematics courses use various basic physics topics for 
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applications of mathematics concepts.  In calculus, topics such as displacement, velocity and 
mechanical work are used as contexts for understanding integrals and derivatives. Studies have 
shown students using physics concepts while attempting to understand or interpret mathematical 
concepts (Bajracharya et al., 2012; Marrongelle, 2004). In fact, researchers have suggested the 
use of physical contexts (e.g., displacement, velocity, etc.) when introducing the FTC 
(Rosenthal, 1992; Schnepp & Nemirovsky, 2001). However, it may be that students who are 
unable to understand the physics concepts in the applied context may have more difficulty 
understanding the mathematical concepts being taught.  

Similarly, physics students are often expected to be able to find connections between the rate 
of change (derivative) and the accumulation (definite integral) of a physical quantity (function), 
particularly based on graphical representations. However, to our knowledge there is no explicit 
research on student understanding of FTC concepts in physics, despite its ubiquitous use in 
various physics contexts. Researchers in physics education have studied student interpretation 
and use of graphs in kinematics. Beichner (1994) found that students did not recognize the 
physical meaning of areas under kinematics graph curves, and that students often performed 
slope calculations or subtracted axis values when an area calculation was required, regardless of 
what was graphed. We are exploring the extent to which students’ understanding of the FTC 
affects their basic physics problem solving. Being able to distinguish whether students are 
struggling with the physics ideas or the underlying mathematics (or both) can inform instruction 
in both disciplines to help students connect the mathematics and the disciplinary contexts in 
which that mathematics is applied. 

Theoretical Perspective 
Our initial assumption about student learning was based on the constructivist perspective 

(Ernest, 2010). According to this perspective, students actively construct their knowledge during 
problem solving and reasoning using internal (e.g., concept images) and external (e.g., symbols, 
equations, graphs, etc.) representations. We also consider the notion that student knowledge 
comprises of all the information that is stored in their long-term memory, which could act as 
resources for executing various tasks such as problem solving and reasoning (Hammer, 2000; 
Redish, 2004). Depending on the way they use their mental resources, students may or may not 
solve a problem correctly. In particular, we are interested in probing the instances where students 
fail to correctly solve problems as a result of their conceptual difficulties. We have been 
investigating the conceptual difficulties that students have with the FTC, specifically in graphical 
representations, using the notion of specific student difficulties (Heron, 2003). According to this 
perspective, students manifest their difficulties through incorrect or inappropriate ideas, or 
flawed patterns of reasoning to specific questions. Specific difficulties are typically identified 
through empirical studies and are crucial for building theoretical models of student thinking 
because they could be used to verify those models. 

The specific difficulties perspective does not necessarily speak to the origins of the 
difficulties being identified. There are other physics-based theoretical frameworks that address 
this to varying extents (e.g., misconceptions, knowledge in pieces, resources) (Chi, et al., 1981; 
diSessa, 1983; Hammer, 2000; Redish, 2004) Difficulties have different origins. Some can be 
due to the misapplication of a reasonable idea to an inappropriate context, e.g., students in a 
thermodynamics class sometimes treat thermodynamic work as a process-independent quantity; 
this is true for work done by forces associated with conservative fields, a situation commonly 
encountered in introductory physics. Some can be traced to an undeveloped distinction between 
two related concepts, e.g., the difficulty that students associate net force with velocity rather than 
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acceleration could be accounted for by a confusion between the concepts of velocity and 
acceleration (Trowbridge and McDermott, 1981). Still others may be due to students believing 
an incorrect naïve “theory,” e.g., having a conception of impetus in a moving body and 
associating that with net force (Clement, 1982).  

Identification of specific student difficulties is a pragmatic approach that has led to the 
development of research-validated instructional strategies and materials that have improved 
students’ conceptual understanding in many contexts across the physics curriculum (e.g., 
McDermott, 2001; McDermott et al. 2002). 

Methodology 
The data we report on here was collected through written surveys, individual clinical 

interviews, and mini-teaching interviews.  Data were collected in second semester introductory 
calculus-based physics, introductory calculus, and multivariable calculus courses. 

Written surveys.  We constructed questions, often with parallel versions in both mathematics 
and physics, that either explicitly or implicitly requires the application of the FTC in a graphical 
interpretation. These questions were administered as written surveys in lecture sections of 
second-semester calculus-based introductory physics and multivariable calculus for two 
consecutive semesters. A total of 159 mathematics and 90 physics students participated during 
the first survey. During the second survey administration, 92 mathematics and 120 physics 
students participated. Here we focus on only one pair of questions (Fig. 1).  

         
FIGURE 1.  Analogous (a) mathematics and (b) physics versions of the written surveys. 

Interviews.  We also conducted 14 individual interviews to probe the depth and breadth of 
students’ understanding and application of the FTC in physics that were not revealed in the 
survey results, as well as the robustness of the explanations and lines of reasoning seen in the 
written responses. Subjects were asked four FTC-based problems in physics contexts of varying 
familiarity, ranging from unfamiliar to very familiar. However, these problems could be solved 
using the FTC without any prior knowledge of the physics. (Figure 2 depicts an example 
question.) The solutions to the first two problems required explicit use of the given graphs (i.e., 
determination of the area under the curve between the integration limits). The next two could be 
solved either graphically or analytically, using a given algebraic function.  

(a) (b) 
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Mini-teaching interviews.  Once the participants solved all four interview problems, they 
were asked a series of calculus questions to refresh their understanding of the specific concepts. 
The purpose of this mini-teaching interview was to find out whether or not students could solve 
the problems when they were explicitly reminded of the relevant mathematics concepts required. 
One example of the questions asked in this part of the interview was to define, notationally, the 
derivative of a function f(x) with respect to x. Then they were asked to describe the process for 
getting the function f(x) back from the derivative. 

 

 
FIGURE 2.  An interview problem requiring explicit use of the graph. 

The initial purpose of the interviews was to probe student specific difficulties in more depth. 
However, as the interviews were analyzed using grounded theory (Strauss & Corbin, 1997) 
different kinds of interesting problem-solving strategies emerged. Thus, we also focused on the 
students’ problem-solving strategies in our analysis in addition to any specific difficulties. 

Survey Results 
In the written surveys, about half of the students in both the mathematics and physics classes 

gave correct responses. Students used various reasoning strategies. Five strategies are described 
below; four of these indicate student difficulties with the FTC.  

           
FIGURE 3. Students connecting the integral, antiderivative, and area under the curve. 

 

1. The curve on the right shows how the pressure of a gas 

changes as the volume changes at constant temperature.  

For this curve (process), we can define pressure as the rate 

of change of internal energy with respect to volume, i.e.: 

! = !"
!" 

Find the change in internal energy (∆U) when the volume 

changes from V1 = 2×106 cm3 to V2 = 6×106 cm3. 

 
 

 

1"

2. The figure below shows the rate of change of 

temperature with respect to time (i.e. dT/dt). 

a. Between time t = 0 and t = 1hr, how much has the 

temperature changed? 

b. Between t = 1hrs and t = 2hrs, how much has the 

temperature changed?  

 

  

2. The figure below shows the rate of change of 

temperature with respect to time (i.e. dT/dt). 

a. Between time t = 0 and t = 1hr, how much has the 

temperature changed? 

b. Between t = 1hrs and t = 2hrs, how much has the 

temperature changed?  
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1. Connecting the integral, antiderivative, and area under the curve. (Fig. 3.) Most students 
who provided correct responses used the FTC explicitly or implicitly. These students equated 
F(b) – F(a), the area under the curve, and the definite integral ( 𝑓 𝑥 𝑑𝑥!

! ), effectively counting 
the squares under the curve between the limits to find the desired quantity. While most students 
used the correct area, a few (<5%) chose the base for their area calculations as the horizontal line 
that passes through the endpoint of the curve (e.g., y=1 in Fig. 1(a)) rather than the x-axis. 

2. Evaluating of individual antiderivative values at endpoints. (Fig. 4.)  One group of 
students evaluated the individual values of the antiderivatives at endpoints (e.g., F(b) and F(a)). 
Finding the individual antiderivatives leads to a correct answer when they consider each of them 
to be equal to the areas under the curve between a common lower limit (here F(0)) and the upper 
limits as shown in Fig. 4a. However, this was not a consistently correct approach, as students 
also used other computational approaches to find the individual antiderivatives, as in Fig. 4b. 
This suggests difficulty recognizing that the difference in antiderivative values at the endpoints 
(e.g., F(b) – F(a)) is the definite integral of the given function between the given limits, and is 
related to the area under the curve in the given interval. 

       
FIGURE 4.  Students evaluating individual antiderivative values at endpoints. 

3. Confusing antiderivative and function. (Fig. 5.) One of the most common responses was to 
use the difference of the original function at the endpoints (i.e. f(b) – f(c)) rather than the 
difference of the antiderivative at the endpoints (i.e. F(b) – F(c)), suggesting an operational 
confusion between the antiderivative and the function in a graphical context. This is consistent 
with earlier findings in upper-division thermodynamics courses in which students used the 
difference of endpoint values to compare the works done on a system during two different 
thermodynamic processes (Pollock et al., 2007).  

      
FIGURE 5.  Students confusing antiderivative and function. 

4. Using slope or derivative inappropriately. (Fig. 6.) A few students provided their 
responses using slope-based computational reasoning. Some students evaluated the slope over 
the interval (i.e., ∆y/∆x) as the required answer, whereas others tried different slope-based 
properties, such as F(1) = F(0), in their responses.  

        
FIGURE 6.  Students confusing slope or derivative with area. 

5. Reasoning analytically. (Fig. 7.) Students in this category approached the problems in two 
distinct ways: approximating the given curve with an algebraic function, inserting that function 
as the integrand, and integrating; or considering the given numerical value of the integral as a 
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function. We cannot claim to know the extent to which they understand the FTC, since their 
computations do not reflect relevant operations in these problems. Previous studies have also 
documented students’ difficulties with problems without algebraic functions (Selden et al., 1989; 
Selden et al., 2000). This type of solution is also consistent with Dubinsky’s action view of 
function (Dubinsky & Harel, 1992; Oehrtman et al., 2008). 

        
FIGURE 7.  Students using analytical reasoning. 

Interview Results 
Our preliminary interview analysis revealed three different strategies to solve the graphically 

based FTC problems in physics contexts. In the first strategy, students used simple algebraic 
skills to rearrange the given rate equation and computational skills to produce a numerical 
answer. In the second strategy, students solved the problems by using graphical features, such as 
the area under the curve, the slope of the curve, or the difference in height of the curve at the 
given values. Those who used the third strategy applied their integration skills to solve the 
problem. In addition to integration, some of these students also used the relevant graphical 
feature (area under the curve), as demanded by the first two questions, whereas the others mostly 
did not attend to the graph. Below we illustrate three cases, each representing one type of 
strategy.  

1. Algebraic strategy. (Fig. 8.) Although the P–V problem implicitly required the use of 
integral concepts, particularly the FTC, two-thirds of students did not use any integral concept to 
solve the problem. These students simply rearranged the given equation to isolate the required 
quantity, i.e., dU = PdV, and transformed it to ∆U = P∆V without showing any of the 
intermediate steps. In the following excerpt, Monica first quietly solved the P–V problem; when 
the interviewer asked her to explain the solution, she responded: 

Monica: Umm, well, I rearranged the equation so that dU equals the pressure times 
change in volume [pointing to dU = PdV] and then you have the change in volume and… 
Well, and I got change in volume [sic, energy] equals pressure times 4 × 106 cm3 and 
then I looked at the graph for what the pressure would be at that point and then I 
multiplied it by approximately what the pressure looks like at that point to find ∆U. 

  
FIGURE 8.  Monica’s algebraic strategy to solve the P–V problem. (The values of V1 and V2 were 
given, whereas the value of P was extracted from the graph.) 
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In this example, Monica evaluated the value of ∆V using the given values of V2 and V1. Next, 
she extracted the value of P at the volume corresponding to the value of ∆V, from the graph, i.e., 
P(V=4×106 cm3). The required quantity (∆U) was evaluated by taking the product of P · ∆V. 
While the specifics of Monica’s strategy were unique, several students used an algebraic 
approach. Instead of the product of P · ∆V, some students found (∆P · ∆V) or (P1V1  – P2V2) to 
determine ∆U. 

2. Graphical strategy. The following excerpt demonstrates how the student with pseudonym 
Alex responded to the P−V problem. He began the solution quietly by counting the squares; 
when the interviewer asked him to explain what he was doing, he responded: 

Alex: I don’t remember exactly how to do this problem. Umm, but, whenever there is a 
derivative and you are trying to find some kind of change in whether it’s a pressure or 
depth or something like that and that’s between two points... Umm, normally whenever I 
was in calculus, I was always taught to, basically, find the area in between. So an easy 
way to do that, if whenever I didn’t remember how to do the problem correctly, was I 
always count the squares in between... 
In the above example, although Alex correctly invoked the area under the curve notion to 

find the change in internal energy (∆U) between the given volumes (V1 and V2), he seemed to be 
using the notion merely as a rule – given the graph of rate of change (derivative) of a quantity, 
the change in quantity could be evaluated by finding the area under the rate curve. Furthermore, 
Alex did not use or mention anything about integration in his reasoning, further signifying his 
use of area under the curve merely as a rule. 

Besides the area under the curve, some students also picked up on irrelevant features of the 
graph to solve the problem. These students determined either the average slope of the curve or 
the difference in height of the curve between the given values. These uses of irrelevant graphical 
features were also commonly seen responses to the written surveys. 

3. Integral strategy. (Fig. 9.) In the following excerpt, Andrew immediately identified that 
the temperature problem could be solved by evaluating the area under the curve. When the 
interviewer asked him to explain why the area under the curve would give the required quantity, 
he responded by writing:   𝑑𝑇!

! , then he erased dT to replace it by !"
!"

!
! .  After a while, he added 

the missing term dt to make the integral as !"
!"

!
! 𝑑𝑡. The interviewer then asked him: 

Interview: So how do you find the value, if I ask you to find some numerical value for 
change in temperature between 0 and 1?   
Andrew: I could estimate the area under the curve, assuming that that is nearly a straight 
line, to make a triangle and that’s square [pointing over the graph]. 
In order to elicit Andrew’s understanding of the connection between the integral and the area 

under the curve, the interviewer asked him why he thought the integral that he wrote was exactly 
what was being asked in the question and how the area under the curve would give the required 
quantity. His response was as follows: 

Andrew: dT/dt represents this curve [pointing over the graph], you integrated over time 
to give you change in temperature.   
Interviewer: So what does this [showing the integral] represent in the graph?   
Andrew: This part right here [showing the area under the curve between 0 and 1 hour].   
Interviewer: Can you mark that with the pen? 
In response, he drew a boundary on the graph encompassing the space under the curve 

between 0 and 1 hour time, to show the area that represented the integral of dT/dt. Since there 
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was not an equation in this problem, Andrew directly integrated the rate term (dT/dt) with respect 
to time (i.e., !"

!"
!
! 𝑑𝑡). However, in the P−V problem, almost all the students who chose an 

approach similar to Andrew’s first rearranged the given rate equation (P = dU/dV) and then 
integrated on both sides. 

 
FIGURE 9.  Andrew’s integral-based strategy for solving the temperature problem. He drew the 
border to represent the definite integral. 

Like Andrew, most of the students who correctly solved the problem using the integral 
approach identified that the integral could be evaluated by finding the area under the curve. Once 
they realized that they needed to determine the area under the curve to solve the problem, they 
either counted the number of squares under the curve and multiplied that number by the value of 
a unit square or constructed some geometric shape(s), such as right triangles and/or squares, to 
find the area. 

Not all the students who used the integral approach evaluated the area under the curve; some 
determined the integral analytically. Those who chose the analytical path either approximated the 
given curve with an algebraic function or inappropriately considered the integrand (e.g., P) to be 
a constant to execute their integrals analytically.  

Three Important Findings From The Interview Results 
Besides the student problem-solving strategies discussed above, the analysis of interview 

data also revealed several other interesting results. These findings did not unexpectedly emerge 
like the student problem-solving strategies; the instruments were designed to explore the effect 
of the variables of interest, such as contexts, representations, knowledge elicitation, etc. Below 
we discuss three main findings manifested in the interviews. 

1. Effects of context familiarity on student problem-solving. Since most of the interview 
participants were in introductory physics, they did not have any formal classroom experience on 
the thermodynamics context (P−V). The majority of students chose incorrect strategies, mostly 
the algebraic strategy in particular, to solve the P−V problem. Some students also used the 
graphical strategy, i.e., area under the curve, to find the required quantity. However, most of 
these students did not exhibit conceptual competency in explaining why the area under the curve 
gives the required quantity. On the other hand, although the integrand in the temperature 
problem, i.e., dT/dt, was also not expressed in an algebraic form, a few students who used the 
inappropriate strategy for P–V problem successfully solved the temperature problem. Although 
the underlying mathematical structures in both the questions were same, individual students 
treated the two problems quite differently indicating the attribution of the context familiarity in 
student problem-solving at least to some degree.  
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2. Effects of including integrands in algebraic forms in addition to graphical representations. 
The third interview problem was based in an electrostatic context, which the students had 
recently dealt with in their physics class. Like the first two problems, the third problem also 
involved a graphical representation, of electric field versus position (E-x). The fundamental 
difference between the second and the third problems was that the latter integrand was expressed 
as an algebraic function, whereas the former integrand was not. In the interview sample, we saw 
more correct solutions by a given student for problems in which both the algebraic and graphical 
representations were provided relative to problems with only a graphical representation. 
Although most of the students solved the E-x problem analytically in the beginning, when asked 
to think about alternative approach, they readily connected their analytical solution to the 
relevant graphical resource, i.e., the area under the curve and/or a Riemann sum representation.  

Previous research on calculus concepts indicated that even those students who excel at 
routine problem solving often struggle with non-routine problems (Selden et al., 2000). Our 
results from the P-V problem suggest that problems involving graphical representations may be 
considered non-routine in this context.  The E-x problem results further suggest that the use of 
algebraic representations can serve as a bridge to help students interpret graphs. Although 
students initially solved the E-x problem analytically using the integration algorithm, they 
seemed to be capable of dealing with the non-routine (graphical) part of the problem also once 
they approached it algorithmically or routinely.  

3. Effects of elicitation of mathematical concepts in problem solving. In the mini-teaching 
interviews, almost all the students seemed have good competence with the basic calculus 
concepts. During this part of interview, the interviewer guided them until they arrived at the 
expression for the Fundamental Theorem of Calculus, and its connection with the area under the 
curve, either explicitly or implicitly. We found that at the end of the mini- teaching interviews, 
most of the participants were able to apply their mathematical knowledge to solve the physics 
problems. Although students initially approached the first two problems completely differently, 
mostly incorrectly, once their mathematical knowledge was refreshed, during the mini-teaching 
interviews, they were able to not only see the mathematical similarities between the two 
problems, but also solve them correctly. This suggests the importance of elicitation of students’ 
mathematical knowledge relevant to the target physics contexts. 

Conclusions 
The preliminary results of this study describe specific student difficulties with the 

Fundamental Theorem of Calculus common to both mathematics and physics contexts. Some of 
our findings agree with previously reported difficulties, e.g., difficulties with graphical 
representation of integrals, relations between rate and accumulation, etc. (McDermott, et al. 
1987; Beichner, 1994; Thompson, 1994). Interview results generally supported written data. The 
majority of students failed to use the FTC to determine the physical quantities, e.g., the change in 
internal energy, when the question did not include an algebraic function explicitly. For problems 
explicitly involving functions, most students took the antiderivative immediately and solved the 
problem correctly. When subsequently prompted to answer these questions using a different 
approach, they concluded that the solution could be represented by the area under the curve.  

The interview results also revealed that the majority of the physics students – who had 
completed two semesters of calculus – had a reasonable grasp of most of the individual 
components (e.g., function, Riemann sum, definite integral, rate, etc.) of the FTC. We find that 
some of the specific difficulties manifested in the written surveys were the consequences of 
students’ inabilities to access the right connections in their existing knowledge between the 
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elements of the FTC, rather than lacking the knowledge or having a flawed understanding of 
these ideas, as reported previously (McDermott, et al. 1987; Beichner, 1994).  Particularly, when 
dealing with unfamiliar physics contexts and without an analytical expression from which to 
start, either students struggle to meaningfully connect the individual elements of the FTC or their 
difficulties with even one element hinder their attempts to find these meaningful connections. 
We are analyzing the interviews in greater depth to see where in the protocol students recognize 
the appropriate connections as well as the extent to which the familiarity of the physics context 
affects their performance.  

Our interview analyses also indicate that students use different strategies to solve the FTC-
based physics problems. Although attempted initially, we did not analyze our data using the 
notion of transfer as preparation for future learning (e.g., Schwartz et al., 2005) because the 
interviews we conducted were not quite teaching interviews as suggested by Schwartz et al. Our 
ongoing work includes interview analysis using the lens of epistemic games, which are defined 
as a set of rules and strategies that that are guided by a specific purpose, e.g. learning a concept 
(Collins & Ferguson, 1993). Our approach consists of comparing our grounded-theory-based 
problem-solving strategies to existing, identified epistemic games to look for consistencies and 
inconsistencies with previous findings (Collins & Ferguson, 1993; Tuminaro 2004). 
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PROSPECTIVE SECONDARY TEACHERS’ CONCEPTIONS OF PROOF AND 
INTERPRETATIONS OF ARGUMENTS 

AnnaMarie Conner, Richard T. Francisco, Ashley L. Suominen, Carlos Nicolas Gomez, & 
Hyejin Park 

University of Georgia 

We analyzed the interviews of three prospective secondary mathematics teachers to examine 
their conceptions of proof and how they validated arguments in the context of students’ 
answers. Our participants had differing views of the definition of proof and its role in 
mathematics, and they operationalized their conceptions of proof through differing emphases 
on generality, logical structure, and form or appearance of arguments. Their work when 
validating arguments in large part aligned with their professed views of proof, with some 
deviations on the part of one participant. Further research must examine whether this 
consistency is prevalent across prospective teachers and how this relates to teachers’ work 
with proof in classrooms. 

Key words: Proof validation, Conceptions of proof, Prospective secondary teachers, 
Conviction 

The role of proof in mathematics has been clearly established as significant. "Proving is 
one of the central characteristics of mathematical behavior and probably the one that most 
clearly distinguishes mathematical behavior from behavior in other disciplines" (Dreyfus, 
1990, p. 126). Current national recommendations establish the desirability of elementary and 
secondary students engaging in reasoning and proof (National Council of Teachers of 
Mathematics, 2009; National Governors Association Center for Best Practices & Council of 
Chief State School Officers, 2010). Teachers’ conceptions of proof, beliefs about the role of 
proof in mathematics, and their abilities to facilitate argumentation are related to how well 
they can implement these kinds of experiences (see, e.g., Conner, 2007). Little research has 
been devoted to how prospective secondary teachers develop and modify their conceptions of 
proof in their university curricula. In this paper, we report results of a study in which we 
interviewed several prospective secondary mathematics teachers during their mathematics 
education coursework to examine their conceptions of proof and how they engaged in 
argument validation when arguments were situated in the context of student responses.  

Relevant Literature  
Teachers’ conceptions of proof are inherently influenced by their experiences with proof 

in their mathematics coursework. Even though proof plays a central role in the undergraduate 
mathematics curriculum, numerous studies depict students’ difficulties with proof production 
(e.g., Healy & Hoyles, 2000; Harel & Sowder, 1998). Students’ lack of confidence with proof 
may be influenced by the fact that the field of mathematics cannot agree on a definition of 
proof (Hersh, 1993). However, even if students cannot give a formal definition of proof, 
many students have concept images of proof (Moore, 1994). Many studies have been 
conducted in which students at various levels were asked to construct proofs (see Reid, 
2010), but as mathematics educators looked for more fine-grained explanations, some 
researchers have begun to examine students’ validations of proofs (e.g., Knuth, 2002a; Selden 
& Selden, 2003; Weber, 2010).  

Studies of proof validation have been conducted with various populations, including 
undergraduate students, practicing teachers, and research mathematicians. The results 
demonstrate that determining whether an argument is a valid proof is not straightforward. 
Selden and Selden (2003) asked undergraduate mathematics students whether given 
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arguments proved a number theoretic statement. The aggregate of students’ responses 
indicated a random response pattern. In another study, only six of thirteen undergraduate 
mathematics majors were able to determine that a real analysis proof was invalid (Weber & 
Alcock, 2005). A recent study on proof validation found that undergraduate students who 
completed an introduction to proofs course were often able to reject empirical arguments as 
proofs but again performed variably when asked whether a deductive argument (valid or 
invalid) was a proof (Weber, 2010). Research with practicing secondary teachers found that 
some teachers accepted non-proof arguments as valid mathematical proofs (Knuth 2002a). 
Finally, Weber (2008) found that even practicing mathematicians do not always agree about 
whether an argument is a valid mathematical proof, even for relatively uncomplicated proofs 
(a couple of lines long). This ambiguity has important implications for teaching, as the final 
verdict of a proof’s correctness is often determined by social norms (e.g., Hanna, 1991). It is 
therefore important to examine teachers’ views of proofs, what they consider to be 
convincing, and how they validate arguments from students.  

Theoretical Perspective 
Our larger study coordinates a situative perspective on learning to teach mathematics 

(following Peressini, Borko, Romagnano, Knuth, & Willis, 2004) with current research on 
teachers’ beliefs about teaching, mathematics, and proof (e.g., Cooney, Shealy, & Arvold, 
1998; Ernest, 1988, 1993; Knuth, 2002a; Liljedahl, Rolka, & Rosken, 2007; Thompson, 
1992). As we narrowed our focus for this particular part of the study, we coordinated several 
perspectives related to proof to provide guidance for our analysis. 

The primary lens for our analysis of participants’ conceptions of proof was the multiple 
roles that have been proposed for proof in mathematics. Proofs provide conviction that an 
assertion is true (e.g., Harel & Sowder, 1998) and justify mathematical assertions. De Villiers 
(1990) asserted that proofs play an important communicative role in mathematics and 
systematize the field. Other researchers have argued that proofs should also explain why an 
assertion is true (e.g., Hanna, 1990; Hersh, 1993). Following from these roles of proof in the 
discipline of mathematics, Knuth (2002b) contended that we must consider the following 
roles of proof in school mathematics: verification, explanation, communication, discovery, 
and systematization. In Knuth’s (2002b) study, practicing secondary mathematics teachers 
reported some of these beliefs about the role of proof, including explaining why a statement 
is true, communicating mathematical knowledge, verifying the truth of a statement, and 
systematizing the field of mathematics, but lacked emphasis on promoting understanding. In 
this study, we examined what our participants viewed as roles of proof in mathematics and in 
the classroom. 

An important goal for students in teacher education programs is the development of the 
ability to critically reflect upon students’ thinking (Ball, 1988). One prominent way that 
mathematical knowledge is communicated in school mathematics is through written 
assignments and examination. Therefore, it is essential that teachers develop proficiency at 
reading and analyzing mathematical arguments and proofs. We asked prospective teachers to 
validate mathematical arguments (after Knuth, 2002a; Selden & Selden, 2003; Weber, 2010) 
by stating whether they qualify as mathematical proofs and whether they find them 
convincing. Our analysis of our participants’ argument validations was informed by Selden 
and Selden’s (2003) description of proof validation as a process by which someone reads and 
reflects on an argument in order to determine the extent to which it is correct. “Validation can 
include asking and answering questions, assenting to claims, constructing subproofs, 
remembering or finding and interpreting other theorems and definitions, complying with 
instructions (e.g., to consider or name something), and conscious (but probably nonverbal) 
feelings of rightness or wrongness” (Selden & Selden, 2003, p. 5). Because we were 
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interested in participants’ views of proof in the context of teaching mathematics, we situated 
our interview questions and proposed arguments as answers from hypothetical secondary 
students. The situative perspective was useful in making sense of their responses, as they 
often cited norms from undergraduate mathematics classrooms or referenced classroom 
teaching situations when giving their evaluations.  

Methodology 
This paper reports a subset of results of a larger study in which we followed sixteen 

prospective teachers through their mathematics education coursework. For this smaller study, 
we purposefully selected three prospective teachers and examined their perspectives on proof 
during their first year of mathematics education coursework. During this time, the prospective 
teachers were concurrently enrolled in mathematic courses that required regular engagement 
with proof (e.g., Abstract Algebra and Foundation of Geometry). Data collection for this 
study included three video-recorded semi-structured interviews of varying length (45 – 90 
minutes each). In the first interview, conducted during the first two weeks of the participants’ 
first semester of mathematics education coursework, participants (sophomore and junior 
mathematics education majors) were asked for their initial thoughts on the definition of proof, 
its role in mathematics, and its role in the mathematics classroom. In the second and third 
interviews, conducted at the end of the participants’ first and second semesters in the 
mathematics education program respectively, we asked students additional questions about 
proof and asked them to complete sets of proof validation tasks we had developed and 
adapted from other studies (see Table 1 for a summary of tasks). For example, we asked 
participants to examine a question or claim and then read and analyze several arguments 
related to the claim. For each argument, we asked the participant to state whether or not the 
argument was convincing and decide whether or not it proved the statement. Some of the 
tasks were set in the context of a classroom in which different students had proposed the 
different arguments. Our protocol was based in part upon Knuth’s (2002b) examination of 
practicing teachers’ beliefs about the role of proof in mathematics and in their practice, with 
the argument validation tasks informed by other proof validation studies as well (e.g., Weber, 
2010). Each interview was transcribed by a member of the research team and checked by 
another member to verify accuracy.  

Table 1: Summary of Arguments Presented to Prospective Teachers 

Problem/Claim Argument Argument Summary 

Exponent Problem: Is it 
possible to select real 
values for a and b such 
that (2a + 1)b would be an 
even number? Why or 
why not? (Interview 2) 

Cathy’s 2 to any power is even so 2a
 + 1 will always be 

odd. An odd number to any power is odd because 
if “foiled” the addition of one is consistent. 

David’s 2 to any power is even so 2a
 + 1 will always be 

odd. An odd number to any power is odd because 
the last digit follows a cyclic pattern of odd 
numbers. 

The law of cosines states 
that given ∆ABC with 
sides of length a, b, and c 
respectively, then 
c2=a2+b2–2ab cos C 
(Interview 2) 

A Pre-constructed dynamic geometry sketch, steps 
through a series of constructions, including a 
circle in which are two similar triangles. A chain 
of equations, written from proportional 
relationships, concludes the argument.  

B Dynamic geometry sketch, user can move any 
vertex of the triangle ∆ABC and observe 
measurements and calculations.  

C Two cases using Pythagorean theorem: C is 
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obtuse or C is acute.  
D Distance formula on a coordinate plane with one 

vertex of triangle at (0, 0).  

The sum of the first n 
odd natural numbers is 
n2. ℕ = {1, 2, 3…} 
(Interview 3) 

Bart’s Proof by example: First 10 cases shown. 
Daphne’s Visual proof with use of multi-colored dots in 

square arrays. 
Charlie’s Algebraic manipulation of sum of the first n odd 

natural numbers: 𝑆 𝑛 = 1+ 3+⋯+ 2𝑛 − 1. 
Eva’s Algebraic manipulation of summation formula of 

the first n natural numbers: 1+ 2+ 3+⋯+ 𝑛 =
!(!!!)

!
. 

Archie’s Proof by induction. 

Number Theory 
Problem: For any 
positive integers a and b, 
if a + b is an odd number, 
then one a or b is an odd 
number and the other is 
an even number 
(Interview 3) 

A Argument has unnecessary algebraic 
manipulation to demonstrate that an even number 
plus one is an odd number. 

B Proof by contradiction. Assumes a and b are even, 
finding an even sum. Then assumes a and b are 
odd, finding an even sum.  

C Proof of converse.  
D Three cases: a is odd and b is even, a and b are 

both odd, and a and b are both even. 
 

To analyze the data we first identified parts of the data in which participants talked about 
proof and proving in general, separating these from parts in which the participants were 
working on the proof tasks. Next, we summarized the participants’ views of proof from their 
statements about proof and proving in general, and we summarized the participants’ work 
with proof, paying attention to the characteristics of proof that our participants seemed to 
value. We coded the data on conceptions of proof and the data involving participants’ 
validations of arguments separately. Our codes and themes were both analytic and inductive, 
as we began with knowledge of the purposes and characteristics of proof from the literature, 
but remained open to (and found) other purposes and descriptions mentioned by our 
participants. 

Results 
Our analysis of data was guided by the following questions: What are the prospective 

teachers’ views of proof and its role in mathematics? How do the prospective teachers 
analyze arguments from students? What are consistencies or inconsistencies in their talk 
about proof and analysis of students’ arguments? Our participants had differing views of the 
definition of proof and its role in mathematics. Their work when validating arguments in 
large part aligned with their professed views of proof, with some deviations on the part of one 
participant. In this section, we introduce Jill, Jason, and Vanessa, describe their views of 
proof, and briefly describe some of their argument validations.  
Jill: Focus on Showing and Knowing You Are Correct 

Jill focused primarily on issues of accuracy and being correct in her general talk about 
proving. In interview 1, she described proving as “showing that it’s correct and that it works.” 
However, she does not believe she knows “the formal definition of proving” (Interview 1), 
implying that there is a correct formal definition. Jill believes that we prove things in math 
because otherwise we would just have to take someone’s word for mathematical results, so 
we prove things to establish mathematical certainty:  
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Well if we don’t prove it and somebody just says hey, this is, this works, and then 
they don’t prove it and then how do we ever know it really does work. Because if you 
just, you can take anyone’s word for it, but if they don’t prove it and show you why it 
works then you might never know if it’s right or not. (Interview 1) 
In her examination of arguments for various statements, Jill focused on examining the 

details of the various steps that were given. In particular, she examined the accuracy of the 
algebra within three of the arguments for the law of cosines, specifically questioning how the 
authors obtained various lines. Likewise, she questioned a particular notation in Charlie’s 
argument for the sum of the first n odd natural numbers, and she verified that she could see 
the differently sized squares in Daphne’s argument for the sum of the first n odd natural 
numbers. Similarly, Jill paid attention to what was being proved in recognizing argument C 
for the number theory prompt proved the converse rather than the given statement. She also 
referenced specific proof techniques or notations when she was talking about her own 
proving as well as examining students’ arguments. For instance, she stated, “Because, when 
we are doing, like, proofs, and we have to talk about even and odd numbers, we would 
usually write 2x for an even number and then 2x plus 1 for an odd, for an odd number.” She 
was uncomfortable with Charlie’s argument for the sum of the first n odd natural numbers, 
saying, “they just went about it in an odd way.” This argument seemed to be different from 
what she expected, and even though she concluded that it was a proof, she seemed to be 
looking for a trick of some sort that would make it not a proof. In addition, Jill emphasized 
the need to prove all possibilities, such as in Bart’s argument for the sum of odd numbers she 
clarifies that the student was supposed to prove if the pattern keeps going rather than working 
for a small set of numbers. Likewise, she said Cathy’s solution to the exponent problem did 
not prove for all cases.  

When Jill talked about proof in the context of teaching and learning, she emphasized 
another aspect of proof: proof as a way to understand how and why something works. In 
interview 1 she said proving “helps you have a reason behind things.” Her explanation is 
similar to that of Knuth’s (2002b) participants who expected their students to learn “where 
statements come from or why they are true rather than accepting their truth as given” (p. 80). 
Accordingly, Jill believes students and teachers should prove in both middle and high school 
when it would aid in the students’ comprehension of particular concepts. Her prime example 
of something to be proved is the quadratic formula:  

The quadratic formula to some kids is just like a bunch of letters, and they’re like, 
“What do I do with these letters?” I don’t get it. They just plug it in and it doesn’t 
make, they are just like, “Okay, this is what I am doing. Plug it in, blah.” They don’t 
really understand what it, what’s going on, but maybe if they proved it, they would 
see where those letters are coming from, where the numbers go in. (Interview 3) 

Jill also sees proving as useful in secondary math classes for students’ understanding of a 
concept as well as preparing them for future mathematical ideas. She had limited proving 
experiences in high school; she wished she had proved more prior to college, stating, “So I 
think that if I had started proofs earlier or at least seen them earlier besides just geometry, 
then I think it would be easier and it would make more sense” (Interview 3). For her, proofs 
take time to understand, so students should begin proving at an earlier age than she 
experienced. However, despite this additional view of proof in the context of teaching and 
learning, when evaluating arguments, even arguments from students, Jill focused on the 
accuracy of the arguments, including their generality, their logical structure, and line-by-line 
analysis rather than the explanatory power of an argument. 

When asked whether or not an argument is convincing, Jill’s answers seem to be 
independent of whether or not she thinks the argument is a proof. For her, these are two 
separate questions. For instance, argument B of the law of cosines convinced her that the 
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formula is true, especially if everything was measured correctly, but she stated that it was not 
a valid way to prove it. David’s solution to the exponent problem was also convincing to her, 
but it lacked the specific proof structure or appearance to make this solution a proof. 
However, any argument Jill identified as a proof was also convincing to her. 
Jason: An Argument is Convincing Iff it is a Proof 

Jason’s conceptions of proof as illustrated by his answers to general questions about proof 
and proving and his examination of students’ arguments were very consistent. He believes 
that proof and proving are integral parts of mathematics. In fact, Jason brought up the idea of 
proof during his first interview when asked about what he thought were important aspects of 
math, prior to the interviewer mentioning proof. He defined proving as “demonstrating why 
something is the case, not just saying that’s the case. So you’re building up your argument” 
(Interview 1). Jason mentions several purposes for proof in mathematics: verification in 
stating, “we want to make sure we’re correct” (Interview 1); explanation in stating, “it helps 
to know why; it helps to break it down” (Interview 1); and logic outside of mathematics in 
stating, “it helps think logically; you use that type of reasoning [the reasoning specifically 
referred to is the reasoning involved in proving that the square root of two is irrational] just 
all over the place” (Interview 1). In particular, he stressed the importance of proofs in relation 
to logic, stating “I think proving is important because then you’re able to think very 
logically” (Interview 1) and “They [proofs] are fundamental to mathematics, understanding 
logic, really. It’s essential to higher mathematical thinking” (Interview 2). Furthermore, in a 
description of a debate between graduate students discussing their relative values, Jason said 
he prefers a proof that is more explanatory to one that is more concise or condensed 
(Interview 3). This is consistent with Hersh’s (1993) contention that mathematicians are more 
interested in why something is correct than in whether it is correct. 

When he analyzed the students’ arguments, he pointed out what was being proved in their 
arguments, investigated if the arguments included all cases and examined each step of the 
arguments to determine if they made sense. He distinguished between illustrating a theorem 
and proving it when he analyzed the dynamic geometry argument for the law of cosines 
(argument B), Bart’s argument for the sum of the first n odd natural numbers, and Cathy’s 
solution to the exponent problem. This is consistent with his definition of proving as 
demonstrating why something is the case. In several cases, Jason criticized an argument for 
proving something other than the requested claim, showing he paid attention to the logical 
structure of the arguments. This was true for two of the number theory arguments (A and C). 
(He critiqued both A and C as proving something not equivalent to the claim.) In his proof 
validations, he tended to look for generality in an argument; for instance, he critiqued Bart’s 
argument as not proving the claim in general. He also critiqued argument B for the law of 
cosines: “Technically you’d have to drag the cursor over an infinite amount of screen to 
prove it, so no, that’s not proving it” (Interview 2). Jason’s view of the verification role of 
proof was illustrated by his answers to questions about how convincing the arguments were 
to him. In every case, Jason was either convinced by an argument and said it was a proof or 
was not convinced by an argument and said it was not a proof. This consistency was not 
observed in the other focus participants, and is contrary to the general trend of the findings of 
Segal (2000) and Weber (2010). 

When asked whether or not students should participate in proving, Jason’s answers were 
unequivocal. In the second and third interviews, he said, “Yes” (Interview 2) students should 
prove things, and “Absolutely” (Interview 3) students should prove things. When asked what 
students should prove, Jason focused more on the general concept of proving than on specific 
things to prove:  
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I think they should come across the idea of proving something is true in all cases, that 
just proving that something works isn’t the same as proving that something is always 
true. I think that’s an excellent concept to teach students. (Interview 2) 

The specifics he mentioned regarding what students should prove, “formulas” (Interview 3) 
and the “quadratic formula” (Interview 2; Interview 3), seem to serve as examples, not as the 
totality of kinds of things students might prove. Jason also mentioned a sense-making 
function of proof in the classroom: “I’d say I want them to be able to come up with typical 
solutions that we’re used to in education but also with why the solutions make sense, why the 
process of getting to the solutions make sense. So that’s when a proof might be necessary” 
(Interview 3). When asked if teachers should prove, he said: 

I think teachers should prove some concepts to create a model for the students to use, like 
‘okay this is kind of line of thought. This is how you go about proving some 
mathematical context,’ I mean, problems. Because it’d be hard for students to come up 
with ‘okay I’m going to come up with a counter example that is kind of clear’ or 
contrapositive, these things need to be demonstrated. But, then once demonstrated, 
students can really try to do it on their own. (Interview 3)  

Vanessa: Definition of Proof Depends on Audience 
Vanessa’s views of proof seemed to depend on her understanding of what a proof is or 

involves and how that coincided with the views of the instructor or the requirements of the 
course. Of the focus participants, Vanessa was the most accepting of arguments, including 
empirical arguments, as proofs. For instance, she accepted argument B for the law of cosines 
as a proof. In her examination of students’ arguments, Vanessa did have some specific views 
about what a proof should look like. For instance, when examining David’s solution to the 
exponent problem, she said that it was not what a formal proof should look like, but it made 
sense and was pretty convincing. She said that Archie’s argument for the sum of the first n 
odd natural numbers was what she was used to seeing, so “I’m guessing” it’s a proof 
(Interview 2). She critiqued Daphne’s argument for the sum of the first n odd natural numbers 
as not a complete proof because she was used to “seeing a lot more writing and a lot more 
variables involved” and ultimately you cannot draw a picture for a proof (Interview 3). 
Vanessa also emphasized that proofs must include a generalization for all cases. In particular, 
she considered Cathy’s argument for the exponent problem not a proof because Cathy did not 
generalize for all cases, whereas Vanessa was more accepting of Daphne’s argument for the 
sum of the first n odd natural numbers since Daphne generalized the pattern of dots.  

Unlike the other participants, Vanessa’s definition of proof was flexible and considered 
the audience of the proof as an important factor, even at the beginning of her mathematics 
education coursework:  

To prove something is when…you’re able to explain the concept or an idea to 
someone so that they can, like, understand it. It doesn’t have to be ambiguous and like 
just mathematically jargon-filled and, like, complicated. It can be as simple as, like, a 
middle school person could understand it. So it’s just a way for you to be able to 
explain something very well, so that somebody that it’s not familiar with it can be 
able to really understand, I think. That’s when you know that you’ve achieved the 
goal of proving something. (Interview 1)  

When examining Eva’s argument for the sum of the first n odd natural numbers, she 
essentially said that it was a proof for her but not for a high school student:  

But if, if I was like a high school student reading this. It wouldn’t…make sense to me. 
It doesn’t justify anything. Because I didn’t know this fact [points to 1 + 2 + 3 +…+ 
n-1 + n = n(n+1)/2], so you’re telling me to assume that fact, and then once I assume 
it then I should believe the rest. So to a high school student this is not a proof, this 
doesn’t explain this statement right here, this claim right here. But to me, it makes 
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sense as proof, because I know that [points to 1 + 2 + 3 +…+ n-1 + n = n(n+1)/2], 
and the whole thing just follows. (Interview 3)  

When she examined Bart’s argument in interview 3, she distinguished that it is a justification, 
which is appropriate for middle school, but it is not a proof. Vanessa’s flexible definition of 
proof could be compared to Stylianides’ (2007) definition of proof in K-12 mathematics, 
capturing the idea of considering classroom communities, even though she does not seem to 
acknowledge the deductive structure implied by Stylianides. 

In addition, Vanessa mentions an explanatory role for proof, both for proving in general 
and for why it is important in the classroom, “So I think proving, even though you understand 
the material, proving it makes you like know why it is true” (Interview 1) and “it’s more like 
showing why something works, why it’s true” (Interview 3). Vanessa believes that proofs can 
also help students to remember and retain the content. She stated, “[proof is] one of the things 
that help you like not just memorize a random fact but actually retain it” (Interview 1) and 
“once you’re able to explain how you get your answer, how you got your answer, and what 
your thought process are, then you’ll tend to remember the material that you learned better” 
(Interview 3). Finally, for high school students, she sees proofs as helping with making 
connections between concepts: “for high school I think making all that connection and seeing 
how everything is connected would be like the proof” (Interview 3). 

Vanessa sees a continuum of proving experiences throughout middle and high school, 
which aligns with her classroom communities view of proof. She says: 

High school, yeah, they should have some proofs to kind of like have meaning to what 
they’re doing. But in middle school, I wouldn’t say ‘proving,’ I would say ‘justifying.’ 
There should be more assignments where students can’t just give an answer, they should 
be able to justify the answer and explain the answer. And then with that they’ll progress 
into proving their answers when they get to high school. (Interview 3)  

Vanessa also sees an additional reason that teachers should prove: to demonstrate that the 
teachers “actually know what they’re talking about” (Interview 3). However, she does not 
think that teachers should prove everything, “so I think teachers should prove some stuff but 
not prove other stuff so students get confused” (Interview 3). Likewise, teachers should not 
always use formal proofs: “if you’re introducing new ideas or new concepts to students it’s 
good to like maybe not a formal proof but to like explain why this formula works or why we 
have this” (Interview 3). 

Unlike the other two participants, when asked whether or not an argument is convincing 
and whether or not it is a proof, Vanessa answered these two questions completely 
independently, i.e. a proof may or may not be convincing and a convincing argument may or 
may not be a proof. For instance, Vanessa believes Archie’s argument for the sum of the first 
n odd natural numbers “might be a bit confusing for a middle school” student and thus it was 
not convincing despite her classifying it as a proof. However, David’s argument for the 
exponent problem was considered to be convincing by Vanessa, but she did not consider it to 
be a proof.  

Discussion 
Although their conceptions of proof differed, we found some commonalities in our focus 

participants’ descriptions of proofs and the roles of proof in school mathematics. However, 
Jason, Jill, and Vanessa operationalized these characteristics and roles differently in their 
validations of students’ arguments. This suggests that it is important to examine multiple 
aspects of a teacher’s conception of proof when considering how a teacher may act in the 
classroom; it is not enough to suggest that it is fruitful, for example, for a teacher to 
acknowledge an explanatory purpose for proof or to suggest that if a teacher has an 
explanatory view of proof, he or she will act in a particular way.  Participants mentioned 
explanation, verification, and communication as possible role of proof, and they each 
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mentioned an additional role that linked to life outside of the immediate course. In addition, 
our participants paid attention to characteristics of proof including generality, logical 
structure, and the form or appearance of a proof. However, their analyses of arguments led to 
different conclusions about whether arguments were proofs, were convincing, and were 
appropriate for students at different levels. 
Conceptions of Roles of Proof  

 All of our participants mentioned an explanatory role for proofs in the context of school 
mathematics, as they believed that this function of proofs helps students’ understanding of 
mathematical ideas. This finding is markedly different than Knuth’s (2002b) finding in a 
study in which he interviewed seventeen secondary teachers: “Noticeably missing in the 
teachers’ discussions was an explicit recognition of proof serving an explanatory capacity” 
(p. 80). However, Jill’s focus was primarily, like some of Knuth’s participants, on 
understanding how a formula or other result worked rather than on obtaining mathematical 
insight from viewing or writing a proof, even though some of her statements, such as how it 
would aid in the comprehension of particular concepts, could be interpreted as hinting at a 
more ‘proof as generator of insight’ function. Jason’s description of the explanatory role of 
proof included a desire for the proof to be less concise if it explained the concepts more 
clearly. He seemed to be explicitly aware of a possible explanatory role of proof or that 
proofs could be written in ways that were or were not explanatory. 

Jill and Jason both mentioned that proofs verify mathematical results, but we did not find 
any evidence of Vanessa conceiving of proof in this role. Verification appeared to be Jill’s 
primary view of proof; she focused on proofs establishing the truth of a mathematical claim. 
Jason seemed to view verification as one of many roles of proof in mathematics: he 
mentioned establishing results and verifying correctness along with several other descriptors 
of why proof is important. In previous studies, such as Knuth (2002a, 2002b), verification has 
been an often-mentioned role of proof in mathematics and school mathematics. 

Like some of Knuth’s (2002b) participants, Jason saw a role for proof in life outside of 
mathematics: he wanted students to learn logic that they could apply outside of mathematics. 
Jill and Vanessa also mentioned wanting students to learn to prove for reasons outside of 
their immediate coursework. Jill wanted them to be prepared for future mathematics courses 
or mathematical ideas, and Vanessa wanted students to be better able to remember the 
content, which relates to her focus on explanation as a very important role of proof.  

Finally, all three participants emphasized the communicatory role of proofs, but each 
emphasized a different aspect of communication. Jill emphasized communication in order to 
establish the truth of a statement, whereas Jason stressed the role of logic in mathematics and 
considered that such logical thinking supports students’ reasoning in communication with 
others. Compared to Jill and Jason, Vanessa was much more attentive to the communication 
or social aspect of proofs, considering the audience of the proof as an important factor, and 
desired that proofs be as accessible to the intended audience as possible. 
Operationalization of Conceptions in Analysis of Arguments 

Although Jill, Jason, and Vanessa had similar perspectives with regard to the purposes of 
proof, each operationalized his or her conceptions differently. These differences came to the 
surface when the participants were asked to analyze student work. When we compared their 
validations of arguments, we found that our participants’ drew on different aspects of their 
conceptions of proofs in their analyses of arguments. They all focused on generality, form or 
appearance, and logical structure to different extents in their analyses of arguments; these foci 
seemed to be consequences of each participant’s operationalization of the roles of proof. 

Jill, while paying attention to logical structure, focused more on the familiar forms and 
line-by-line details of arguments. Her attention to generality extended to particular notations 
that she associated with generating a general argument. Our interpretation of Jill’s analyses of 
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arguments shows that Jill prioritized the verification role of proof in her analysis, focusing 
more on whether the argument was correct and proved the correct statement than on whether 
the argument was explanatory or communicated to a particular audience. This was also 
visible in her decisions about which arguments were convincing to her. Any argument that 
Jill judged to be a proof she also stated was convincing; additionally, Jill was convinced by 
other arguments, such as argument B for the law of cosines because it verified the formula as 
long as everything was measured correctly. Even though she emphasized an additional aspect 
of proof (explanation) in the context of teaching and learning, she relied on her initial 
conceptions of proof (prioritizing verification) by focusing on the accuracy of students’ 
arguments, including their generality, their logical structure, and a line-by-line analysis, 
rather than the explanatory power of the argument 

Vanessa rarely mentioned logical structure and focused more on generality and 
appearance as they related to the audience of a proof. This corresponds to her emphasis on 
the communication and explanation roles of proof. When Vanessa analyzed Eva’s argument 
for the sum of the first n odd numbers, she mentioned that the argument would be a proof for 
her, but not for middle school students or even high school students unless students were 
familiar with the formula for the sum of the first n natural numbers. To Vanessa, the key 
assumption (the formula for the sum of the first n natural numbers) in the argument was left 
unjustified, thereby diminishing the explanatory power of the argument. Vanessa was very 
consistent in her conceptions of proof and her examination of students’ arguments in focusing 
on the audience of the proof for both cases. 

Jason’s view of proof as fundamental to mathematics perhaps supersedes his other views 
of proof in that he seemed to invoke each of his mentioned roles of proof as he analyzed 
arguments. His argument validations were consistent with his conceptions of proof, with 
different aspects of his conception of proof being apparent in his validations of different 
arguments. He mentioned generality, logical structure, and form or appearance as necessary 
in his critiques, most frequently in terms of the argument not being general, proving 
something different than intended (such as the converse of the statement), or not being in a 
form accepted by mathematicians. His analysis of Daphne’s (visual rather than verbal) 
argument for the sum of the first n natural numbers is a case in point. He rejected this as not 
meeting the standards of the mathematical community (being in the wrong form), thus 
prioritizing the verification role of proof. However, he liked the argument as fulfilling an 
explanatory purpose for students. His conception of proof seems to be flexible as he called on 
relevant aspects of his conception of proof for critiques of the different proposed arguments. 

Implications for Future Research 
Even though our participants’ conceptions of proofs were varied and individual, we found 

that their conceptions seem to have developed from their past school experiences and 
previous college-level mathematics courses. They applied such conceptions of proofs as 
valuation criteria when they evaluated students’ arguments, considering issues of generality, 
logical structure, and form or appearance. Even though each participant mentioned several 
similar roles of proof, their analyses of arguments depended on how they prioritized and 
operationalized those roles. This implies that teachers’ conceptions of proof are complex and 
develop over many years of different experiences. It will be difficult to conceptualize 
productive and unproductive conceptions of proof for teachers, yet clearly these conceptions 
matter at least in their analyses of students’ arguments. 

If we, as mathematics educators, want teachers to use proofs in ways that will promote 
students’ understanding, we should provide opportunities for prospective teachers to consider 
the attributes of proofs and how they can be used to promote understanding. Our study shows 
that prospective secondary teachers validate students’ arguments in ways that are consistent 
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with the conceptions of proof they have developed during their school and university 
experiences. However, their developed conceptions seem to be individual, ranging from a 
flexible conception that is context-dependent and considers the audience to be an important 
factor, to a view that is focused on the accuracy and form of an argument, to a view that 
focuses on generality and the logical structure of a proof. This is true even though the 
participants had shared experiences in the same mathematics department and mathematics 
education coursework. Each of these views of proof has aspects that would be useful to 
teachers of secondary mathematics, but each also contains aspects that could hinder teachers’ 
assessments of student arguments. Future research should examine if teachers’ validations of 
students’ arguments remains consistent with their views of proof when larger numbers of 
participants are considered. In addition, future research must examine what views of proof 
allow teachers to assist students in constructing and critiquing arguments in effective ways.  
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We conducted an analysis of 17 modern, introductory linear algebra textbooks to investigate 

presentations of matrix multiplication.  Using Harel’s (1987) textbook analysis framework, we 

examined the sequencing of matrix multiplication and its accompanying rationale. We found two 

principal sequences: one which first defines the operation as a linear combination of column 

vectors before introducing the dot product method (LC to DP), and another which invokes the 

dot product method before linear combinations (DP to LC).  The rationale for these two 

trajectories varied in interesting ways.  LC to DP demonstrates that solving a system of linear 

equations is equivalent to solving its corresponding matrix equation Ax=b.  The rationale for DP 

to LC was less focused, opting in several cases to postpone the explanation until linear 

transformations are covered. We hope to initiate a discussion about the effectiveness of and 

pedagogical implications for these two contrasting approaches.      

 

Key words: linear algebra, matrix multiplication, textbook analysis 

 

Matrix multiplication is likely the first abstract multiplication that students encounter in 

undergraduate mathematics. It is a multiplication that does not ‘multiply’ in the literal sense (as 

with scalar multiplication or the multiplication of integers). Rather, matrix multiplication is a 

multiplication (in the sense of ring theory) because it is associative and distributes over matrix 

addition.  As such, it seems reasonable to expect some hesitancy from students to accept this 

more abstract operation (even though the computations are relatively straightforward).   

Larson and Zandieh (2013) offered three different methods students use to interpret the 

matrix equation Ax=b:  (1) as a linear combination of the columns of A, (2) by viewing the rows 

of Ax as the equations in a system of linear equations, and (3) as a linear transformation acting 

on a vector.  There are still more methods that can be used (see, for example, Carlson, 1993).  

Since matrix multiplication can be interpreted and defined in many different ways, how is it 

presented in undergraduate classrooms?  How is it being explained and motivated?   

While no studies were found directly examining teaching practices of matrix multiplication, a 

possible avenue of potential insight is to investigate presentation of matrix multiplication in 

linear algebra textbooks.  Harel (1987) presented an analysis of linear algebra textbooks, yet our 

work is distinct in two important ways.  First, Harel’s analysis was nearly three decades ago, a 

significant period of time in which impactful attempts at linear algebra curriculum reform have 

been made (for example, Carlson, Johnson, Lay, & Porter, 1993) and an array of new textbooks 

have been published.  Second, Harel makes no direct mention of how matrix multiplication is 

defined or explained.  Harel’s findings, however, provide a useful framework with which to 

conduct our analysis.  He found that linear algebra textbooks varied on the basis of sequencing of 

content, generality of vector space models, introductory material, embodiment, and 
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symbolization.  Those tenets of Harel’s framework that inform our analysis are detailed in the 

next section. 

This paper seeks to use Harel’s (1987) framework to investigate the presentation of 

matrix multiplication in modern, introductory linear algebra textbooks.  In doing so, we sought 

answers to the following research questions: 

 How is matrix multiplication defined in modern textbooks?   

 What rationale is given for the proposed definition(s)? 

 What are the pedagogical implications of any differing approaches? 

 

Theoretical Framework 

We employ Harel’s (1987) framework for textbook analysis.   However, as Harel’s paper 

presented a macro-analysis (of the content presentation on a general scale throughout entire 

textbooks) and this paper presents a microanalysis (of the presentation of one specific topic), we 

adapted the framework to fit the parameters of this study.  Those tenets relevant to our very 

specific analysis of matrix multiplication are sequencing of content and introductory material.  

We restrict ourselves to these two to form the basis of our analysis.   

 

Sequencing of content   

Harel noted that introductory textbooks typically follow a computation-to-abstraction 

approach, in which systems of equations and matrix multiplication are used to necessitate vector 

spaces and more general mathematical structure.  Restricting our focus specifically to matrix 

multiplication, however, we hoped to glean insights into the overall focus and structure of the 

textbook by examining the sequencing of the different methods of multiplying matrices.   

 

Introductory material  

Harel found that introductory material, attempting to bridge the intellectual gap between 

prior knowledge and the new mathematics to be learned, was presented by means of four primary 

strategies:  

(1) analogy:  describing similarities between familiar notions and new ideas;  

(2) abstraction: introducing students to specific examples before making general claims; 

(3) isomorphization: presenting a familiar concept or structure that is isomorphic to the 

new one at hand
1
; 

(4) postponing: stating that the significance of a topic will be realized later when it is not 

currently obvious. 

Indeed, matrix multiplication is an introductory topic in a first-semester linear algebra course 

(regardless of whether a textbook explicitly characterizes it as such).  To this end, these four 

techniques provide an effective means with which to classify the rationale and explanations 

given for matrix multiplication.  Any trends in this regard would provide insight not only into the 

overall pedagogical philosophies employed in these textbooks, but would also provide 

preliminary indications of how this topic is being taught in undergraduate classrooms.   

 

Method 

 We narrowed our focus to introductory linear algebra textbooks (as advanced books are 

less likely to explicitly detail matrix multiplication) that had been published within the past 

                                                             
1 Note that analogy and isomorphization seem quite similar.  We shall distinguish the two by reserving 

isomorphization for literal cases of mathematical isomorphism; analogy is reserved for all other comparisons. 
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decade (as these books are more likely to be in use in undergraduate classrooms).  We compiled 

an initial list of recently-published textbooks by (1) examining syllabi available online for 

introductory linear algebra courses at more than 20 large universities around the United States, 

(2) conducting online searches of textbook provider websites, and (3) examining the textbooks in 

our own respective university libraries.  Overall, our list includes 17 modern, introductory linear 

algebra textbooks.  Due to their propensity for introducing topics in very similar (if not identical) 

ways, textbooks sharing an author were deemed equivalent (and only counted once).   

For each textbook, we examined any sections involving matrix arithmetic or matrix-vector 

products and also scanned the table of contents and index for any mention of these topics.  

Relevant pages were photocopied (or, for online books, printed out).  Once all data had been 

collected in this manner, each textbook was analyzed using the framework detailed above.  The 

framework then enabled us to identify trends and common themes across the entire data set. 

 

Results 

 Though there are many methods that can be used to multiply two matrices, two primary 

methods of defining matrix multiplication emerged
2
:  (1) the linear combination of the columns 

method (LC) (in which the matrix vector product Ax is defined as a linear combination of the 

columns of A), and (2) the vector dot product method (DP).  Accompanying these trajectories 

were varying forms of explanations and rationale. Those trajectories initiating with the LC 

method favored isomorphization, whereas those initiating with DP were more varied.  The 

details corresponding to these results are explicated in this section.   

 

Sequencing of content   

We examined the sequencing in which the textbook authors proceeded with the different 

methods of defining this operation.  Two primary sequences emerged
3
 that were very nearly 

evenly split amongst the examined textbooks.  The most common method defined matrix 

multiplication first in terms of dot products of row and column vectors; we refer to this as the dot 

product method (DP) (e.g., DeFranza & Gagliardi, 2008; Poole, 2011).   

Another trajectory initiated with a system of linear equations and proceeded to offer 

equivalent alternatives in terms of a vector equation and the matrix equation Ax=b, wherein Ax 

was defined (almost purely as a matter of notation) as a linear combination of the columns of A 

(e.g. Lay, 2011; Leon, 2010; Strang, 2009).  The more general matrix product AB was then 

defined in terms of the matrix-vector product.  We refer to this sequencing as the linear 

combination of the columns method (LC).    

Rarely was matrix multiplication defined first in terms of linear transformations, though it 

did appear (e.g. Bretscher, 2012; Holt, 2012).  The concept of linear transformations often 

appeared towards the letter half of an introductory course and thus did not play a prominent role 

in the definition of matrix multiplication in most texts that we examined.   The following table 

classifies each analyzed textbook according to the sequencing of these two methods: 

 

                                                             
2
 There are, of course, other methods that can be used to multiply two matrices.  Those listed are the most prevalent 

among the textbooks we examined.  For additional information about the nonstandard methods, see Carlson (1993) 

and Strang (2009).  A common method usually occurring amongst the more advanced material in these texts is to 

link matrix multiplication to preserving the composition of linear transformations.   
3
 It is beyond the scope of this paper to detail the exact trajectory of each of the 17 textbooks.  Rather, here we 

provide the trajectories that proved to be the most common overall.   

72 17th Annual Conference on Research in Undergraduate Mathematics Education



 

Sequence Textbooks Employing Specified Sequence 

LC to DP          

(7 total) 

Cheney & Kinkaid (2012); Holt (2012); Lay (2011); 

Leon (2010);    Nicholson (2013); Spence, Insel, & 

Friedberg (2007); Strang (2009) 

 

DP to LC 

(10 total) 

Andrilli & Hecker (2009); Anton & Rorres (2010); 

Bretscher (2012); DeFranza & Gagliardi (2008); 

Kolman & Hill (2007); Larson (2012)
4
; Poole (2011); 

Shifrin & Adams (2010); Venit, Bishop, & Brown 

(2013); Williams (2012) 

 

 

Textbooks invoking one approach typically followed with the other, though with less 

emphasis.  For example, those introducing the operation with DP often used it to verify the LC 

method as an alternate method of calculation, referring to it when necessary (to introduce such 

concepts as the image of a matrix, for instance) but otherwise sparingly.  On the other hand, 

those defining multiplication using LC tended to use the idea of linear combinations of column 

vectors as means with which to frame the entire text (or at least significant portions of it).  In this 

sequencing, the DP method arose as a means to perform calculations more quickly or to calculate 

a single entry.    To this end, the sequencing of these two methods reflected the larger focus and 

pedagogical strategies of each textbook. 

 

Rationale   

There were examples of each of the four categories of rationale.  Typically, the rationale for 

the LC method invoked isomorphization, noting that defining matrix multiplication in this 

manner enables a system of equations to “be viewed in three different but equivalent ways: as a 

matrix equation, as a vector equation, or as a system of linear equations” (Lay, 2001, p. 36).  The 

rationale for this approach, therefore, are almost purely theoretical.  In contrast (and somewhat 

interestingly), the DP to LC method was decidedly less consistent and spanned the remaining 

three categories. 

Analogy was usually invoked in terms of a real-world application (e.g. Larson, 2012, which 

uses matrices for quantities and prices at a concession stand).  One particular instance of 

abstraction, opting for a purely mathematical motivation, framed the matrix multiplication as “a 

generalization of the dot product of vectors” (Andrilli & Hecker, 2009, p. 59).   

Curiously, the most common method for motivating the DP method was to postpone its 

motivation altogether, presumably until the students have learned more about a particular topic 

(such as linear transformations).  For example, Kolman and Hill (2007) intoned that “only a 

thorough understanding of the composition of functions and the relationship that exists between 

matrices and what are called linear transformations would show that the definition of 

multiplication given previously is a natural one” (p. 24).  Others employing the same strategy 

acknowledged the fact that it is not defined component-wise, remarking that “mathematicians 

have introduced an alternative rule that is more useful” (Williams, 2012, p. 71) and that 

                                                             
4 Larson, Edwards, & Falvo (2008) proceeded identically. 
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“experience has led mathematicians to the following more useful definition of matrix 

multiplication” (Anton & Rorres, 2010, p. 28). 

 

 

Rationale Method Example 

Analogy DP to 

LC 

“Another basic matrix operation is matrix 

multiplication.  To see the usefulness of this 

operation, consider the following application in which 

matrices are helpful for organizing information.  A 

football stadium has three concession areas …” 

(Larson, 2012, p. 42)  

 

Abstraction DP to 

LC 

“Another useful operation is matrix multiplication, 

which is a generalization of the dot product of 

vectors.” (Andrilli & Hecker, 2009, p. 59) 

 

Isomorphization LC to 

DP 

“Theorem 3 provides a powerful tool for gaining 

insight into problems in linear algebra, because a 

system of linear equations may now be viewed in 

three different but equivalent ways: as a matrix 

equation, as a vector equation, or as a system of linear 

equations.” (Lay, 2011, p. 36) 

 

Postponing DP to 

LC 

“Only a thorough understanding of the composition of 

functions and the relationship that exists between 

matrices and what are called linear transformations 

would show that the definition of multiplication given 

previously is a natural one.” (Kolman & Hill, 2007, p. 

24) 

 

 

 

Discussion 

The sequencing in the two primary approaches to matrix multiplication can provide insight 

into the overarching pedagogical strategy of a textbook.  The corresponding rationale provided 

for these two sequences predictably varies.  Of particular note, however, is that the postponing 

technique invoked by authors using the DP approach seems to be in direct contrast to the 

theoretical rationale for the LC method.  On one hand, the method of postponing seems to assert 

that “only a thorough understanding” of the composition of linear transformations could explain 

this definition.  On the other, authors employing the LC method explain that using matrix 

multiplication to reframe a system of linear equations allows it to be examined from three 

different (yet equivalent) perspectives.   

Harel (1987) asserted that “if the student does not see the rationale for a definition, the 

concept being defined seems very arbitrary.  This has a negative motivational effect on the 

learning of the definition” (p. 31), suggesting that the postponing method may not be particularly 

effective.  While a comprehensive understanding of matrix multiplication might indeed be 
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elusive at such an introductory stage, the LC approach seems to offer an accessible, 

mathematically sound alternative to serve as a holdover until the complete picture can be 

revealed.    

Additionally, Larson and Zandieh (2013) argued that viewing the matrix-vector product Ax 

as a linear combination of the columns of A is absolutely critical to understand span and linear 

independence (leading directly to vector spaces and their bases), lending credence to the value of 

the LC method.  They also asserted that being able to move between the different interpretations 

is crucial to understanding the concepts at the heart of linear algebra.  Though the pedagogical 

effectiveness of the two methods has not been directly investigated, the current literature seems 

to support a strong emphasis on viewing matrix multiplication in terms of linear combinations.   

It is worth noting that the LC and DP approaches are not altogether incompatible.  Those 

texts employing the LC method emphasized that the dot product definition is particularly useful 

for computation, and a textbook making use of the DP sequence first could very well afford 

ample focus to the linear combinations definition (even if it does not appear first).  Thus, 

drawing significant conclusions from only the sequencing of matrix multiplication in an 

introductory textbook should be avoided.  But on a more general level, the fact that the two most 

conspicuous methods of rationale for these respective approaches directly contradict each other 

suggests that this is not the case in general and that the linear combinations approach might not 

be adequately emphasized in many modern texts. 
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DIFFERENTIAL PARTICIPATION IN FORMATVE ASSESSMENT AND 
ACHIEVEMENT IN INTRODUCTORY CALCULUS 

Rebecca-Anne Dibbs University of Northern Colorado 
 Michael Oehrtman University of Northern Colorado 

Prior formative assessment research has shown positive achievement gains when classes 
using formative assessment are compared to classes that do not. However, little is known 
about what, if any, benefits students that are not participating regularly in formative 
assessment gain from these assignments. The purpose of this study was to investigate the 
achievement of the students in two introductory calculus courses using formative assessment 
at the three different participation levels observed in class. Although there was no significant 
difference on any demographic variable other than gender and no significant difference in 
any achievement predictive variables between the groups of students at the different 
participation levels, there were significant differences in achievement on all but the first 
activity write-up and the final exam.  

Key words: approximation framework, calculus, formative assessment 

Students that leave STEM majors are most likely to do so during or immediately after 
completing the first semester of introductory calculus (Bressoud et al, 2013). One of the 
reasons participants in that study gave for leaving STEM was that they did not feel 
academically connected with their instructor (Bressoud et al, 2013). A possible solution to 
addressing this perceived disconnection is using more formative assessments in introductory 
calculus courses. Recent qualitative studies that flexible pedagogy and meeting students 
where they are at can help to build success and begin to overcome low self-efficacy (Wyatt, 
2011). This psychological support is the first step to increasing the success and retention of 
at-risk students (Elliot & Gillen, 2013). 

Formative assessments, low stakes assignments given to assess students’ current level of 
understanding, increase student achievement (Black & Wiliam, 2009; Clark, 2011), but little 
is known about how implementing formative assessments facilitates this achievement gain. 
Regardless of the content area or age of participants, the effect size on most quantitative 
formative assessment studies is around 0.5 (Briggs, Ruiz-Primo, Furtak, Shepard, & Yin, in 
press; Karpinski & D’Agostino, 2012). These studies show that classes where formative 
assessment is used do better on average on common summative assessments than those 
classes where no formative assessment is used; however, even in classes where formative 
assessment is used, not all students will regularly complete the formative assignments.  

Almost all of the research on formative assessment has been quantitative quasi 
experimental studies (Black & McCormick, 2010; Black & Wiliam, 1998; Briggs, Ruiz-
Primo, Furtak, Shepard, & Yin, in press; Clark 2010, 2011) where a treatment class is 
compared to classes that do not use any formative assessment on some common summative 
assessment. However, there are two studies that suggest participation in formative assessment 
may be a predictor of student success. In the first study, low-ability math students on an 
aptitude pre-test that were taught using formative assessment outperformed high-ability 
students =who were taught with general lesson plans from the textbook on a common unit 
test (Chiesa & Robertson, 2000). Other studies of have found using formative to inform 
teaching decisions raises all students’ achievement levels, though low-achieving mathematics 
students show the most gains in a precision taught course (Gallagher, 2006; Gallagher, 
Bones, & Lombe, 2006).  

Although these studies are intriguing, there are several caveats. All of the research in the 
prior paragraph was conducted in primary schools in Great Britain and Ireland, and the 
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mathematics content was multiplication tables, so computational fluency was the metric used 
to measure success. Chisea and Robertson were studying the efficacy of formative 
assessment for special education students, so neither the population nor the measures for 
success resemble undergraduate calculus students. Gallagher (2006) acknowledges these 
difficulties and calls for larger formative assessment studies with different student 
populations.  

The purpose of this study was to investigate if there were achievement differences on 
summative assignments in a novel calculus curriculum between students completing different 
numbers of formative assessments during the semester. For this paper, we will distinguish 
between three different low participation levels: regular, sporadic, and non-participation. 
Students regularly participating in the formative assessments missed no more than five 
formative assessments during the semester; students in the sporadic participation group 
completed at least one but no more than six of the 12 formative assessments in the semester, 
while non-participants did not complete any formative assessments.  
 

Methods 
Black and Wiliam’s (2009) formative assessment framework and Vygotsky’s (1987) 

Zone of Proximal Development (ZPD) were used as the theoretical perspective of this 
project. There are several characterizations of the ZPD (Vygotsky, 1987); this report will 
focus on the scaffolding; where a learner is in their ZPD if they can complete a problem with 
assistance they could not complete independently. This characterization of ZPD dovetails 
with the second purpose of Black & Wiliam’s framework (2009): formative assessment is 
used to engineer effective classroom discussions; where scaffolding may be given to a group 
of students in an efficient manner.  

The study was conducted at a mid-sized doctoral granting university in the Rocky 
Mountain region. Sixty percent of the undergraduate population is female and 20% of the 
undergraduates self-identify as a member of an ethnic minority. 55% of the students at the 
university self-report that they are the first person in their family to attend college. Most of 
the students enrolled in introductory calculus major in elementary mathematics education, 
secondary mathematics education, mathematics, chemistry, meteorology, or geology; 
occasionally business majors or biology majors intending to pursue graduate work enroll in 
Calculus I instead of the suggested topics courses for their majors. There are a few graduate 
students from other disciplines enrolled in Calculus I each year to complete the admissions 
requirements to their programs as well. The gender distribution of Calculus I is similar to the 
university proportions, but there are generally fewer minority students enrolled in calculus. 
Approximately half of the students enrolled in Calculus I have prior experience with the 
course content; either by taking AP Calculus and failing to earn the credit or by failing the 
course at this or another post-secondary institution. 

Participants were recruited from two introductory calculus courses taught using the 
approximation framework. This framework is built upon developing systematic reasoning 
about conceptually accessible approximations and error analyses but mirroring the rigorous 
structure of formal limit definitions and arguments (Oehrtman, 2008, 2009). This study 
focused on the three multi-week labs developing the most central topics in the course: limits, 
derivatives, and definite integrals. Each approximation lab consists of 20 questions designed 
to help students understand their context in terms of approximating a limit (Figure 1). 
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 Contextual Graphical Algebraic Numerical 
Unknown 
Value 

    

Approximation     
Error     
Error Bound     
Desired 
Accuracy 

    

Figure 1. Approximation framework  
 

The limits lab is a typical example of the approximation labs. Students are given a 
function with a removable discontinuity that cannot be found algebraically. For the first row, 
students are asked to explain why algebraic techniques will not be sufficient to solve the 
problem, graph the function, give a variable name to the unknown y value of the removable 
discontinuity, and make a plan for approximating the y value of the removable discontinuity. 
Reading the lab and completing this unknown value row before class was the pre-lab 
assignment. During class, students worked in their groups to approximate the unknown y 
value and represent their approximation within the context, graphically, algebraically, and 
numerically. Most groups would end the first day of the lab working on error or error bound 
representations. The postlab asked students to describe what their group did in class, do a 
computation students who were comfortable with the first half of the lab would be able to 
complete, and write a short paragraph about what they did and did not understand about the 
lab. The next time students worked on the lab, they were expected to have completed all of 
the questions in their original context before class. During class, students would be regrouped 
so that each group member had worked on a different context the prior week – in this case 
every student would have had a different function. Students then presented the solution to 
their context to their group in class. The post-lab after class had a similar computation by was 
otherwise the same as the first week, and students were required to write up their original 
solution and compute an overestimate and underestimate within a given error bound for one 
of the other contexts presented during the Jigsaw on the second week. 

During the week, instructors lectured over new material on Mondays and Fridays. On 
Tuesday, students work in groups on the approximation framework activity that week; an 
undergraduate teaching assistant and I help the instructor facilitate the group activities by 
circulating through the room, asking probing questions of students’ understandings, and 
providing hints when groups get stuck. Students complete a formative assessment that night, 
and the class on Wednesday spends part of the class on discussing the formative assessment 
and the rest of the time covering new material. In addition to the weekly formative 
assessments, students complete 20 Webwork assignments throughout the 15 week semester, 
prepare a written report of their own answers to the approximation framework activities, and 
have five chapter exams and the final. Instructors meet once a week to discuss the schedule 
and activities for the next week. Students’ individual reports of the approximation activities 
were group graded during the weekly coordination meeting. Instructors wrote their own unit 
tests, but the final exam was written and graded by all of the calculus instructors.  

The courses were taught at the same time and on the same schedule by two equally 
experienced instructors. All of the lab questions were scored dichotomously so the inter-rater 
reliability of the lab write-ups was perfect, and the final exams were co-graded by the 
instructors.  The content validity of the assessments was checked by the course coordinator 
and an additional expert on the approximation framework.  
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Before using participation level as the grouping variable in the analysis, demographic and 
grade predictive variables were investigated to see if there were any significant differences 
between participation groups. Gender, race, native language, and class were the demographic 
variables considered. Chi squared tests for differences were performed on all four variables. 
There was only one significant demographic difference between the participation levels; 
female students were significantly more likely to be regular participants (Table 1). Since 
asynchronous formative assessment, like the ones used in this study, require a greater level of 
organization and engagement, these assignments tend to slightly favor female students 
(DiPrete, 2013). 

 
Table 1  
Summary of demographic variable analysis 

Demographic Variable p value 
Gender (Male/Female) 
 

.004 

Race (White/Nonwhite) 
 

.355 

Native Language (English/Not English) 
 

.651 

Class (Freshman/Non-Freshman) 
 

.802 

 
 Four variables known to predict student performance in introductory calculus were 

also measured: cumulative grade point average, ACT math score, Calculus Readiness Exam 
Score1 , and the number of months between the end of the last math class a student took and 
the beginning of calculus. The final measure was self-reported, but the other three scores I 
obtained from the students’ records. I performed ANOVA tests on each of these four 
quantities to see if the mean score differed across participation levels. The summary of the 
ANOVAs appears in Table 2. Although a Bonferroni was used correction on these and the 
preceding analyses, none of the p-values were significant, even without said correction. 
Based on the available information, there was no reason to suspect at the beginning of the 
semester that students participating in formative assessment at different levels would have 
markedly different outcomes in the course. 

 
Table 2 
Summary of Analysis of mean grade predictive variable grouped by participation level 

Grade-Predictive Variable p value 
ACT Math Score 
 

.192 

Cumulative GPA 
 

.294 

CRE Score 
 

.563 

Months Between Courses 
 

.741 

 

                                                
1 The Calculus Readiness Exam is a multiple choice pre-calculus exam all calculus students take on the second 
day of class 
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All assessments had reliabilities within acceptable levels (Gall, Gall & Borg, 2007), and 
the assumptions for the statistical tests were satisfied. The limit, derivative, and definite 
integral labs had KR-20 values of 0.83, 0.72, and 0.78 respectively; the final exam had a 
Cronbach Alpha of .68. For the quantitative analyses of the whole class data, I conducted a 
preliminary analysis of the data to confirm that the assumptions for the statistical tests were 
met. The results of the normality tests for each sample used in an ANOVA appear in Table 3.  
Although one set of scores was not normal and these samples are not random, ANOVA is 
robust to these assumption violations and is still an appropriate analysis. Normality was 
checked using the Shapiro-Wilks Test, and all analyses were conducted with SPSS. 

 
Table 3  
Normality tests for ANOVA 

 Limits, 
Items 
Discussed 
in Class 

Limits, 
Items Not 
Discussed 
in class 

Limits, all 
items 

Definite 
Integrals; 
Items 
Discussed 
in Class 

Definite 
Integrals; 
Items Not 
Discussed 
in Class 

Definite 
Integrals, 
All Items 

Regular 0.53 0.69 0.76 0.03 0.23 0.12 
 

Sporadic 0.13 0.38 0.28 0.19 0.49 0.30 
 

Nonparticipant 0.17 0.07 0.12 0.72 0.41 0.51 
 
 The data for the derivatives lab sufficiently satisfied the assumptions of an ANCOVA. 

For the ANCOVA analysis of the derivatives lab, there was no need to test for 
multicollinearity since only one covariate was used. The homogeneity of variance assumption 
was satisfied , as was the homogeneity of regression slopes . All of 
the covariate and dependent variable samples were sufficiently normal using the Shapiro-
Wilks test (Table 4).  

 
Table 4  
Normality tests for ANCOVA 

 Initial Submission Revised Submission 
Regular 0.33 0.52 

 
Sporadic 0.45 0.56 

 
Nonparticipant 0.12 0.75 
 
There were 66 students that consented to participate in the study; 13 of the students were 

removed from the sample because they had prior exposure to the labs that could confound the 
results. Of the 53 students that were new to the approximation framework labs, only seven 
had no prior exposure to limit concepts in a prior course, and 27 of the students had AP 
Calculus in high school. There were 14 students classified as sporadic participants in 
formative assessment and 16 students classified as non-participants; the remaining 23 
students participated regularly in the formative assessments (Table 5). Although students that 
earned A’s in the course tended to be regular participants and students that failed the course 
tended to be nonparticipants, there was a participant at almost every combination of final 
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grade/participation level2, and students that earned C’s in the course show no clear 
participation pattern.  

 
Table 5 
Final Grade by Number of Formative Assessments Completed 

 A B C D/F Total 

8-13 10 6 5 1 23 
 

1-7 2 2 5 7 16 
 

0 0 0 5 10 15 
 

Total 12 8 16 18 54 
 

The limits and definite integral labs were analyzed using one way ANOVAs, as was the 
final exam. During the derivative lab, students asked few questions, and since the previous 
limits labs were generally good, the discussions following each lab day were very short. 
However, only 8/54 students answered 14 or more items correctly on the lab write-up. Rather 
than recording those grades, the instructors gave all of the students that turned in a derivative 
lab individual written feedback on all of the questions they either answered incorrectly or left 
blank. The instructors told students that their first attempt would be considered a draft. 
Students were then given a week to revise and resubmit their derivative lab based upon the 
formative feedback; this became the final version of the derivative lab. In order to account for 
students’ initial scores on the derivatives lab, an ANCOVA was used. The statistical results 
are given for each lab after providing a brief description of each lab and which portions were 
discussed in class based upon the formative post-labs. 

 
Results 

The limit lab asked students to approximate the location of a removable discontinuity 
where there were no obvious algebraic manipulations that would allow the discontinuity to be 
calculated exactly. Much of the lab depended on familiarity with function concepts. Given 
that there was only one formative assessment based discussion and there were no significant 
differences between the participation levels in any prior knowledge measure available, it is 
not surprising that the ANOVA found no significant differences in group achievement on the 
lab write-up (Table 6); the context of the lab was equally familiar to all students and there 
were not enough instructional interventions to make a difference. Eleven of the 20 
components of the approximation framework were discussed in at least one of the postlab-
based instruction sessions the class after the lab, which is indicated by asterisks in Table 6.  
 
 
 
 
 
 
 
 

                                                
2 Completion of the formative pre-lab and post-labs was 5% of the final course grade, so it was unlikely that a 
student would fail to complete any of these assignments and earn an A or a B in the course. 
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Table 6  
Questions Discussed in Post-lab Based Instruction 

 Contextual Graphical Algebraic Numerical 
Unknown Value  *   

Approximation 
 

* *   

Error 
 

* * * * 

Error Bound 
 

* * * * 

Desired 
Accuracy 

 *   

 
An ANOVA of student performance on the items discussed in class revealed that there was a 
significant difference in mean performance between at least two groups (Table 7).  
 
Table 7  
ANOVA of Items Discussed in Class, Limits Lab 
Source of 
Variation SS df MS F P-value   
Between Groups 208.734 2 104.367 19.59 0.000 

  
Within Groups 271.701 51 5.327 

   
       Total 480.436 53         

 
The Tukey Post-hoc analysis (Table 8) showed that the regular participant group had a 

significantly higher mean than the other two groups, but that the sporadic and nonparticipant 
groups were not significantly different from each other. Given the low mean scores of these 
groups, this suggests that the students that were not in the regular participant group did not 
benefit greatly from the post-lab based instruction. 
 
Table 8  
Tukey Post-Hoc Analysis, Limits Lab (Critical Q Value = 3.44) 

 Calculated Q Value 

Groups Count Mean Score Sporadic Nonparticipant 

Regular 23 7.78 7.60 7.10 

Sporadic 16 3.67  0.5 

Nonparticipant 15 3.94   

 
There were three different contexts for the derivatives lab. In the first, students were 

asked to calculate the rate of change of surface area of a sphere whose radius was expanding, 
the second context dealt with radioactive decay, and most difficult context asked students to 
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calculate the instantaneous rate of change of the gravitational force between the earth and an 
asteroid at a given distance. The postlabs on the derivatives lab had the lowest completion 
rate of any of the seven labs during the semester; this is likely because the derivatives 
gateway and the application of derivative chapter test were given during this lab. On the post-
labs, students asked few questions, and since the previous limits labs were generally good, 
the discussions following each lab day were very short. However, only 8/54 students 
answered 14 or more items correctly on the lab write-up. Rather than recording those grades, 
the instructors gave all of the students that turned in a derivative lab individual written 
feedback on all of the questions they either answered incorrectly or left blank. The instructors 
told students that their first attempt would be considered a draft. Students were then given a 
week to revise and resubmit their derivative lab based upon the formative feedback; this 
became the final version of the derivative lab.  

In order to investigate if there were differences in student performance after feedback, 
students from all participation levels that did not receive written feedback were eliminated 
from consideration. This left 21 regular participants, 10 sporadic participants, and five 
nonparticipants. One regular participant, the only regular participant that failed the course, 
was an outlier and eliminated from the sample, leaving 20 cases in the group.  

The ANCOVA showed that there was a significant difference in mean performance on 
the revised derivatives lab write-ups after controlling for the score on the write-up where 
students received initial feedback (Table 9).  
 
Table 9  
Analysis of Covariance; Derivatives Lab 
Source of 
Variation SS df MS F 

P-
value 

Adjusted Means 252.17 2 126.08 6.38 .005 
 
Adjusted Error 651.86 33 19.75   

 
     

Adjusted Total 904.03 35    
  
For the post-hoc analysis, I used simple contrasts with a Bonferroni correction to account 

for the multiple comparisons. The regular participants’ mean performance was significantly 
higher than the mean of the non-participants. The sporadic participants’ mean performance 
was also higher than the mean of the non-participants. Although the difference between the 
regular and sporadic participants is not significant, the relatively low p-value suggests that 
further exploration may be warranted (Table 10). 
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Table 1  
Post-hoc Analysis of ANCOVA 

(I) 
Group 

(J) Group Mean 
Difference  

(I-J) 

Std. Error Sig. 95% Confidence 
Interval for Difference 
Lower Bound Upper 

Bound 

Regular 
Sporadic 2.642 1.790 0.0501 -1.005 

 
6.288 
 

Nonparticipant 7.555 2.138 0.0003 3.200 11.909 
 

Sporadic Regular -2.642 1.790 0.0501 -6.288 
 
1.005 
 

Nonparticipant 4.913 2.292 0.0130 .245 9.581 
 
 Since students received written feedback for every incorrect or blank response on 

their derivatives draft, the nonparticipants received the most instructor feedback. However, 
even when students’ initial derivatives lab write-up scores are accounted for in the 
ANCOVA, students in the other participation groups were significantly outperforming the 
Nonparticipant group on the derivative lab rewrite. This suggests that even with more 
extensive written feedback, the Nonparticipants were not able to increase their mean scores as 
much as the Regular and Sporadic participant groups did. 

The definite integration labs asked students to model a given quantity with a definite 
integral and then approximate their quantity with Reimann sums. The contexts for the 
problem were volume of a portion of a sphere, mass of an object with non-constant density, 
probability with a continuous density function, force to stretch a spring, and water pressure 
on a dam. There were two formative assessment-based discussions during this lab; these 
discussions focused on summation notation and assistance with the technology required to 
calculate large Riemann sums. The ANOVA results shown in Table 11 revealed a significant 
difference in achievement between the three participation levels.  
 
Table 11  
Items Discussed in Post-Lab Based Instruction, Integrals Lab 
 Contextual Graphical Algebraic Numerical 
Unknown 
Value 

  *  

Approximation   *  
Error   *  
Error Bound   *  
Desired 
Accuracy 

  * * 
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The ANOVA of student performance on these six items that were discussed during the 
post-lab based instruction revealed significant differences in mean performance between at 
least one pair of groups (Table 12). 
 
Table 12  
ANOVA of Items Discussed in Post-lab Based Instruction, Integrals Lab 

Source of 
Variation SS df MS F 

P-
value 

Between Groups 99.531 2 49.765 63.387 0.000 
 
Within Groups 40.04 51 0.785 

  
      Total 139.571 53       

 
The Tukey Post-Hoc Analysis revealed that all three groups had significantly distinct 

mean performances on these items (Table 13). The three participation groups all had 
significantly different mean total scores on the definite integral lab: R > S (Q = 4.21),     R > 
N (Q = 19.65), S > N (Q = 7.48). The three participation groups also all had significantly 
different mean scores on the items not discussed in class on the definite integral lab: R > S (Q 
= 9.37), R > N (Q = 19.02), S > N (Q = 9.32). 
 
Table 13  
Tukey Post-Hoc Analysis, Integrals Lab (Critical Q Value = 3.44) 

 Calculated Q Value 

Groups Count Mean Score Sporadic Nonparticipant 

Regular 23 4.1 3.60 15.94 

Sporadic 16 3.5  9.34 

Nonparticipant 15 1.2   

 
The final exam was written by the calculus instructor and course coordinator; it was 

administered to all introductory calculus students during a common final exam time. The 
cumulative common final exam ANOVA had similar results to the definite integral lab; all 
three groups had significantly different levels of achievement from each other, and were in 
the same order (Table 14). 
 
Table 14  
Results of the final exam ANOVA 

 SS Df MS F p 
Between 19881.53 2 9940.77 20.968 0.000 

 
Within 24179.40 51 474.09 

 
  

Total 44059.92 53    
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The post-hoc analysis (Table 15) revealed that students that never participated in the 
formative prelabs and post labs did significantly worse on the final than the students at the 
other two participation levels. The mean final exam score between students regularly 
participating in the formative prelabs and postlabs was not significant, but the Q value is 
large enough to suggest the difference in mean score between students at the regular and 
sporadic participation levels suggests the difference in mean score on the final exam is 
approaching significance. 
 
Table 15  
Tukey Post-Hoc Analysis, Integrals Lab (Critical Q Value = 3.44) 

 Calculated Q Value 

Groups Count Mean Score Sporadic Nonparticipant 

Regular 23 79.56 3.37 7.39 

Sporadic 16 67.98  4.02 

Nonparticipant 15 40.96   

 
 The results of the study indicate that the students not participating in formative 

assessments are able to answer fewer questions on average than those students that do 
participate in the formative assessments. This is surprising because the students that did not 
complete any formative assessments attended class for the post-lab based instruction on the 
day after lab, and the students that did no formative assessments did not have significantly 
lower levels of prerequisites knowledge than those students participating in the formative 
prelabs and postlabs. The evidence is more equivocal on if the amount of formative 
assessments completed results in significantly higher achievement; further research is needed 
in this area. 

Discussion 
While these results indicated that there were measurable achievement differences between 

the three participation groups, the more interesting, and more difficult, question is why these 
differences exist. There appear to be two plausible explanations based on the available data. 
The first is that the formative assessment-based instruction was more effective for the 
students participating in the formative assessments. The theoretical learning trajectory for 
introductory calculus is that students have a great deal of trouble mastering derivatives 
because they tend to not have strong models for limits, but as students’ model for limits 
improves, their achievement tends to improve (Gravemeijer & Doorman, 1999). Although the 
students sporadically participating in the formative assessments appear to follow this 
trajectory in the course, the other two participation levels do not (Figure 3); the regular 
participants show almost no drop in achievement between limits and derivatives. 
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Figure 3. Achievement trajectories on the approximation labs by participation level 
 

Another plausible explanation is these achievement patterns are indicative of a lurking 
variable, such as calibration differences between students at different participation levels. 
Calibration is considered to be a general metacognitive skill; it is the ability of a learner to 
accurately assess what they do and do not know (Hacker, Dunlosky, & Graesser, 1998). In 
this study, the opportunity for calibration occurred on the limits, first derivative lab, and the 
definite lab. In all three cases there was a set of questions that no student asked about on their 
postlabs. Since none of the students asked for help on the post-lab for these items, I 
considered an item to be well-calibrated if the student produced the correct solution.  

In the labs, the statistical evidence for differences in calibration is not clear. In all cases 
the p value was smaller than 0.001, and the post hoc test showed the same significant mean 
differences as were found between the groups on the items discussed in class. However, there 
is no way to determine from the numerical data if these differences were due to differences in 
calibration across the groups.  

Although the whole class data has no definitive answers, the qualitative case study data 
suggests that the three participation levels followed a similar calibration trajectory throughout 
the semester (Figure 2). It is likely that familiarity with the approximation framework labs 
accounts for much of the improvement with calibration. However, this is one of the only 
indications in the data I conducted that provided any insight for why the regular participants, 
who were not significantly better than the other students on the grade-predictive measures at 
the beginning of the semester, had much higher grades by the end of the semester: the regular 
participants maintained high calibration levels throughout the semester. Whether this was 
because completing formative assessments on a regular basis helped the regular participants 
maintain a high calibration level or if the formative assessments helped students improve 
their calibration throughout the semester is an area for future research. 
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Figure 3. Percentage of well calibrated items on case study labs 
 
Although these results are interesting, there is no data on students’ initial calibration 

levels. There is a missing category in this analysis, since there were not enough students in 
this sample that completed between five and eight formative assessments to be analyzed as a 
separate group. More work is needed to investigate how amount of formative assessments 
completed affects students’ achievement, and if formative assessments support students to 
develop better calibration skills.  
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MATHEMATICS CLASSROOM OBSERVATION PROTOCOL FOR PRACTICES 
RESULTS IN UNDERGRADUATE MATHEMATICS CLASSROOMS 

 
 Jim Gleason Leah D. Cofer 

 The University of Alabama The University of Alabama 

The purpose of this study is to determine the reliability and validity of the Mathematics 
Classroom Observation Protocol for Practices (MCOP2) in undergraduate mathematics 
classrooms, an observation instrument designed to measure the degree to which a mathematics 
classroom aligns with the standards put forth by national mathematics organizations.  To 
examine the reliability and validity of the MCOP2 in the undergraduate setting, over thirty 
undergraduate mathematics classrooms at a large southeastern university were observed during 
the fall semester of 2013.  The exploratory factor analysis conducted from the data collected 
indicates there are two main factors to consider in an undergraduate mathematics classroom: 
“lesson content” and “student engagement and classroom discourse”.  The internal reliability of 
each of these factors was verified using classical test theory to measure well at the group level. 

Key words: Classroom Teaching, Evaluation, Standards 
 

The Mathematics Classroom Observation Protocol for Practices (MCOP2) is a K-16 
mathematics classroom instrument designed to measure the degree of alignment of the 
mathematics classroom with the Standards for Mathematical Practice from the Common Core 
State Standards in Mathematics (NGACBP & CCSSO, 2010); “Crossroads” and “Beyond 
Crossroads” from the American Mathematical Association of Two-Year Colleges (AMATYC 
1995; AMATYC 2006); the Committee on the Undergraduate Program in Mathematics 
Curriculum Guide from the Mathematical Association of America (Barker et al., 2004); and the 
Process Standards of the National Council of Teachers of Mathematics (NCTM, 2000).  The 
instrument contains 17 items intended to measure three primary constructs (student engagement, 
lesson content, and classroom discourse) as validated by a review of over 150 individuals self-
identified as mathematics teacher educators from a mixture of mathematics departments and 
departments or colleges of education (Gleason, Zelkowski, Livers, Dantzler, & Khalilian, 2014).  
Each of the 17 items also contains a full description of the item with specific requirements for 
each rating level; see Appendix B for sample items descriptions. 

Purpose and Proposed Uses 

Using peer reviews to evaluate faculty members’ teaching effectiveness is a policy that is 
currently “gaining momentum” in higher education (Harris, Farrell, Bell, Devlin, & James, 
2008).  Seldin (1999) best defends this type of evaluation in higher education by claiming a 
teacher’s performance in the classroom should be considered comparable to their publications 
and thus held to the same review process.  If  a faculty member’s peers are supposed to reliably 
evaluate his or her teaching performance through classroom observations, peer review requires 
the “essential ingredient” of a rating scale “with scale items (that) typically address the 
instructor’s content knowledge, delivery, teaching methods, learning activities, and the like” 
(Berk, Naumann, & Appling, 2004).  If observing faculty members use such a reliable classroom 
observational protocol, peer review has potential to better measure an instructor’s teaching 
abilities than student evaluations since there are features of a lesson that peers are better qualified 
to evaluate than students (Harris et al., 2008; Berk, Naumann, & Appling, 2004).    
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There are many universities already utilizing some version of a classroom observation 
protocol during their faculty peer reviews.  However, these preexisting protocols are very 
generic, lengthy, and subjective.  For instance, University of New Mexico, Tallahassee 
Community College, and California State University, East Bay all have observation forms online 
that have been adapted from  A Guide for Evaluating Teaching for Promotion and Tenure by 
Centra, Froh, Gray,& Lambert (1976) where the observing faculty member can fill out an 
extensive forty-five item form with only three potentially biased scoring options available: “not 
observed”, “more emphasis”, or “accomplished very well” (University of New Mexico, 2006; 
Tallahassee Community College, 2012; California State University, East Bay, 2013; Centra et 
al., 1976).  Since these preexisting college level protocols are not subject-matter specific, they do 
not necessarily draw an observer’s attention toward more specific aspects of the lesson, 
classroom, or students “thereby resulting in potentially different kinds of teacher evaluation 
practice” (Spillane, Halverson, & Diamond, 2001).   Spillane, Halverson, & Diamond (2001) 
compare ‘Protocol A’ consisting of a checklist of generic teaching processes with a content-
specific ‘Protocol B’ which includes items such as “how students were required to justify their 
mathematical ideas” to justify why a subject-matter specific instrument would allow faculty 
members to identify more precise details of a teacher’s performance.  Instead of a generic form, a 
reliable content-specific observational protocol like the MCOP2 should be used during peer 
observations to measure a teacher’s effectiveness and thus help generate a discussion on quality 
teaching in college undergraduate classrooms throughout the United States.  

This review process is also useful for generating discussion among future and current college 
mathematics faculty about teaching.  It can be used to help new graduate students better prepare 
for the classroom, help departments to decide goals for teaching and how well those goals are 
being met, and be used while observing classes as a group to generate discussion about what the 
standards look like in the college setting. 

Since the MCOP2 is grounded in the national recommendations of organizations focused on 
post-secondary education, it is useful to explore the current practice of mathematics teaching and 
its relationship to student learning.  This instrument allows for a quantification of different 
aspects of college mathematics teaching that could then be used to explore teachers’ choices in 
the classroom, effects of different teaching styles with different types of students, how a 
teacher’s practice in the classroom changes with the different topics and situations throughout a 
semester, and many more.   

Preexisting Protocols 
There are many content-specific classroom observation protocols already available for use in 

elementary, middle, and high school mathematics classes (Hill, Charalambous, Blazar, et al., 
2012).  Three existing classroom protocols claim to extend to college level mathematics 
classrooms, and while each of these protocols is described as unique, all three credit Horizon 
Research Corporation, Inc. for their development (Weiss, Pasley, Smith, Banilower, & Heck, 
2003; Wainwright, Morrell, Flick, & Schepige, 2004; Walkington et al., 2012; Sawada et al., 
2000a).  Unlike the MCOP2, these preexisting protocols are not designed specifically for 
mathematics classrooms, but instead are intended for use in both mathematics and science 
classrooms (Wainwright, Flick, & Morrell, 2003; Walkington et al., 2012; Sawada et al., 2000a).   
In order to maintain this dual purpose, logically these protocols use science terminology within 
some of their protocol descriptors such as “Students made predictions, estimations, and/or 
hypotheses and devised means for testing them” (Sawada et al, 2000b), making it difficult for an 
observer of a mathematics classroom to definitively score certain items.  While some of the 
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preexisting protocols have claimed to test for predictive validity in college mathematics 
classrooms (Sawada et al., 2000b), no preexisting protocol has done a study including more than 
a few strictly undergraduate mathematics classrooms so no preexisting protocol has actually 
proven its reliability or validity in college mathematics classrooms. 

One of the most widely used classroom observational protocols in public school mathematics 
classes is the Reformed Teaching Observation Protocol (RTOP), developed by the Evaluation 
Facilitation Group of the Arizona Collaborative for Excellence in the Preparation of Teachers 
(ACEPT) (Sawada et al., 2000a).  While the RTOP is widely praised for its reliability and 
validity  in both math and science public school classrooms, surprisingly the RTOP Reference 
Manual contains very few references to articles in mathematics education yet numerous 
references to articles in science education.  Out of the seventeen references listed, six references 
are strictly for science education, four articles are on learning and the brain, two articles are the 
RTOP’s first Technical Report and Training Guide, one article is from the 1980s on both math 
and science education, and the remaining four are citations to various years of NCTM standards 
from 1989 – 2000 (Sawada et al., 2000b).  The creators of the RTOP admit in the “Test 
Development” section of their Reference Manual that the language of the items in the first draft 
of the instrument was “particularly referenced toward science teaching” and thus hard to 
interpret in a mathematics classroom (Sawada et al., 2000b).   Mathematicians in the ACEPT 
project critiqued and suggested making “an unequivocal request to overhaul the science-
dominated language”; therefore, a mathematics educator then modified the wording of items on 
the instrument without changing the original structure (Sawada et al., 2000b).   While the RTOP 
in commonly used in both math and science public school classrooms, its references and item 
language make it better geared for use in science classes. 

In addition, the instrument was originally tested in 13 “introductory” mathematics classes at 
universities and community colleges, but that is a substantially small portion of the 153 total 
classrooms that participated, particularly when compared to the 63 college level science classes 
observed (see Table 12, Sawada et al., 2000b).   Furthermore, it is interesting to note that the 
college classroom teacher samples consisted of “a large number of faculty who were involved in 
the ACEPT initiative”, thus the authors concluded this could be a reason why the college 
classrooms samples had higher scores on the RTOP than the middle and high school samples 
(Sawada et al., 2000b).   In 2002, the ACEPT program tried to extend their method of reformed 
teaching to the college level by attempting to “incorporate reformed teaching methods in several 
nonmajors’ and majors’ courses”; hence, the RTOP was again tested in certain college 
classrooms.  However, the only mathematics course observed was “Theory of Elementary 
Mathematics”, a course designed specifically for preservice elementary school teachers (Lawson 
et al., 2002).  Unlike the MCOP2, the RTOP does not utilize the most recent national standards 
for mathematics classrooms and the RTOP has not extensively been tested in strictly 
mathematics college level classes taught by ordinary faculty members. 

A classroom observation protocol that supposedly extends to college level mathematics 
classrooms is the Oregon-Teacher Observation Protocol (O-TOP), created by the Oregon 
Collaborative for Excellence in the Preparation of Teachers (OCEPT) as part of the 
Collaborative for Excellence in Teacher Preparation program of the National Science Foundation 
(Wainwright et al., 2003).   According to Wainwright et al. (2004), “A major focus of the 
OCEPT grant was to engage science and mathematics faculty members teaching undergraduate 
courses in institutions across the state in a critical examination of their instructional practices.”  
Even though the O-TOP was allegedly designed for use in both science and mathematics 

17th Annual Conference on Research in Undergraduate Mathematics Education 95



classrooms, their only citations strictly pertaining to mathematics are to various years of NCTM 
standards from 1989 – 2000 (Wainwright et al., 2004).  Furthermore, the only mathematics 
classrooms observed were courses taught by OCEPT Faculty Fellows, so these were not typical 
college mathematics classes: “Of the 10 mathematics observations, two were lecture, one was 
lecture with discussion, and the remaining seven were small group discussion” (Wainwright et 
al., 2004).  Despite its supposed reliability in Faculty Fellows mathematics classes, the OTOP’s 
scientific nature and lack of recent mathematical standards make it undesirable for use in college 
mathematics courses. 

Another classroom observation protocol supposedly appropriate for use in mathematics and 
science classrooms “from kindergarten to college” is the UTeach Observation Protocol (UTOP) 
created by the UTeach program at the University of Texas at Austin (Walkington et al., 2012).  
The protocol was developed to evaluate UTeach graduates, particularly Noyce Scholars, in order 
to fulfill a National Science Foundation requirement (Walkington & Marder, 2013). The 
language used within the UTOP demonstrates it is extremely science-based.  For instance, an 
indicator in the protocol on the pace and flow of the lesson has a science-specific example listed 
with it in the Training Guide: “e.g. most of a science lab is focused on directions instead of 
content development” (Marder et al., 2010).  Besides the science-specific language, another 
drawback to the UTOP is it is solely based off of NCTM standards from 1991 (Walkington et al., 
2012).  Furthermore, even though its authors originally planned to conduct observations at the 
college level in order to refine the instrument, no study has documented testing the UTOP in an 
undergraduate mathematics classroom (Walkington et al., 2012).   The UTOP’s lack of testing at 
the college level, along with its standards deficiency and overuse of scientific language, show its 
inapplicability to college mathematics classrooms. 

MCOP2 Framework 

Since the MCOP2 was formed for mathematics-specific classrooms using Common Core 
State Standards in Mathematics (CCSSM) Standards for Mathematical Practice, the American 
Mathematical Association of Two-Year Colleges’ Crossroads and Beyond Crossroads, the 
Mathematical Association of America’s CUPM Curriculum Guide, and the latest NCTM 
standards, it is the only classroom observation protocol available that is applicable for use in K-
16 mathematics instruction.  After the nation adopted the CCSSM for use in public school 
mathematics classrooms, the Association of Public and Land-grant Universities (APLU) issued a 
brief laying out an “action agenda” with four main points for the role of higher education 
institutions (APLU, 2011).  Point one addresses the issue of aligning curriculum between K-12 
and higher education, and the APLU later indicates disciplinary departments should be 
“transforming introductory courses so that they are aligned with CCSSM (in both content and 
approach)” (APLU, 2011; King, 2011).   College teachers themselves agree that their curriculum 
should be aligned with CCSSM since during a study on the applicability of the Common Core 
State Standards, over 1800 instructors found the Standards for Mathematical Practice to be 
extremely applicable and important to their courses (Conley, Drummond, de Gonzalez, 
Rooseboom, & Stout, 2011).  Furthermore, point three of the APLU’s agenda states higher 
education institutions should be “conducting research on issues of teaching and learning the 
Common Core State Standards, teacher quality, and the implementation of the Common Core 
State Standards” (APLU, 2011; King, 2011).  Thus there is a need for a CCSSM-based 
mathematics classroom protocol and the MCOP2 is the only protocol intentionally designed to 
meet this requirement.  
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Each of the items on the MCOP2 was designed to coordinate with a Standard for 
Mathematical Practice, and in turn thus correlates to a recommendation in the CUPM Curriculum 
Guide.  For instance, Item #9 on the protocol is “The lesson provided opportunities to examine 
elements of abstraction (symbolic notation, patterns, generalizations, conjectures, etc.),” 
matching the second Standard for Mathematical Practice that instructors should be aiming to 
teach their students: “CCSS.Math.Practice.MP2:  Reason abstractly and quantitatively” 
(NGACBP & CCSSO, 2010).   This concept also connects to Part 1 of the CUPM Curriculum 
Guide which gives recommendations for departments, programs, and all courses by Barker, et al. 
(2004):  “For instance, one reason students encounter difficulty in applying mathematics to 
problems in other disciplines is that they have trouble identify appropriate mathematical 
procedures when problems are expressed with different symbols than those used in the 
mathematics classroom….instructors can go beyond conventional x, y notation to use a larger 
collection of symbols for both constants and variables.” (p. 20) 

Therefore, both the CCSSM and CUPM specifically address this important aspect of a 
teacher’s lesson content which Item #9 is designed to measure.  This correlation between the 
teacher and student behaviors detected by the MCOP2, the Standards for Mathematical Practice, 
and the CUPM Curriculum Guide extends to all seventeen items on the protocol. 

Methodology 

A pilot study to field test the MCOP2 in undergraduate mathematics classrooms was 
implemented during the fall semester of 2013, and observations by the research team composed 
of a graduate student in mathematics and a mathematics professor were scheduled based upon 
instructor approval.  Twenty-eight of the fifty-eight teachers agreed to participate in this initial 
study.  Since some of these faculty members teach two completely different courses at the 
university, a total of thirty-six classroom observations occurred throughout the semester.   

From the 36 classrooms participating in the study, 15 classes were taught by Graduate 
Teaching Assistants, 8 classes were taught by non-tenure faculty, and 13 classes were taught by 
tenured or tenure-track.  There was a diverse amount of courses in this sample, ranging from 
college algebra to upper division mathematics.  In the norm section of the results, the observed 
classes are grouped into five main categories: Precalculus, which includes college algebra to 
algebra with trigonometry courses; Applied Calculus which is a business calculus course; 
Calculus including Calculus I and II, differential equations, and computationally focused 
introductory linear algebra courses; Education which contains mathematics courses specifically 
designed for preservice elementary and secondary mathematics teachers; and Proof consisting of 
upper division proof-based mathematics courses.  This study’s observations included 11 
Precalculus classes, 5 Applied Calculus classes, 11 Calculus classes, 4 Education classes, and 5 
Proof classes.  To determine the structure and reliability of the instrument, each class was 
observed once during the semester, and the analysis of the data collected from these thirty-six 
completed MCOP2 forms is analyzed using exploratory factor analysis and classical text theory 
analysis.   

Results  
The seventeen item MCOP2

 was analyzed using observations from thirty-six undergraduate 
mathematics classrooms.  The researchers originally anticipated three factors to appear in the 
analysis with each factor corresponding to one of the three sections of the instrument (Student 
Engagement contains Items 1-5, Lesson Content contains Items 6-11, Classroom Culture and 
Discourse contains Items 12-17) (Gleason et al., 2014).    However, as shown by the Scree Plot 
below (Figure 1), there are actually only one or two applicable factors.  The third potential factor 
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is not a legitimate component, despite its arguable location in the curvilinear region, since it is 
such a low eigenvalue. Furthermore,  the Factor Matrix of a potential 3-Factor Model indicated 
the items from both Student Engagement and Classroom Culture and Discourse were actually 
loading onto the same factor, henceforth called Student Engagement and Classroom Discourse.   
 
Figure 1:  Scree Plot of Entire Protocol 

 
Figure 2: Component Plot in Rotated Space 

 
 
Solutions asking for two principle components to be extracted resulted in a 2-Factor Model 

explaining over 50% of the total variance.  Using a promax rotation with Kaiser normalization, 
the component plot (Figure 2) indicates Items 1-5 and 12-16 are correlated, as expected, to 
Factor 1 (Student Engagement and Classroom Discourse) and Items 6, 7, 9, 10, and 11 are 
correlated to Factor 2 (Lesson Content).  Items 8 and 17 did not load as expected, but instead 
loaded on the opposite factor.  Since Item 8 was “The lesson promoted modeling in 
mathematics”, it does not fit the theoretical construct of Student Engagement and Classroom 
Discourse, and so was removed from the reliability analysis of that subscale, but included on the 
overall instrument.  Since Item 17 (The teacher uses student questions/comments to enhance 
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mathematical understanding) fits well within the construct of lesson content, the results from this 
item are included in that subscale reliability, as well as the entire instrument.   

The subscales of “Lesson Content” and “Student Engagement and Classroom Discourse” 
were both found to be unidimensional with over 50% of the variance contained in a single factor 
and so can be treated as subscales and analyzed for their own Cronbach’s alpha reliabilities of 
0.779 and 0.907, respectively.  In addition, if one considers the entire instrument to be 
unidimensional, then the entire protocol has a Cronbach’s alpha of 0.898.  Therefore, the internal 
reliabilities are high enough for both subscales and the entire instrument to be used to measure at 
the group level, either multiple observations of a single classroom or single observations of 
multiple classrooms.  

Norms from the 36 classroom sample used to create the factor analysis above are shown in 
Figure 3 to give future users of the MCOP2 some standards of performance against which to 
assess the scores achieved by individuals or samples in their own data sets.  In addition, from 
these norms, one can see that the instrument was able to differentiate between types of 
instructors and types of classes. 

Figure 3: Box Plot for MCOP2 Scores by Course and Teacher Type 

 
Conclusions 

The overall instrument’s high coefficient alpha of .898 is noteworthy in that it demonstrates 
that the instrument is measuring something and is able to differentiate between classroom 
settings.  Furthermore, the exploratory factor analysis indicates the MCOP2gauges two main 
factors in an undergraduate mathematics classroom: “Lesson Content” and “Student Engagement 
and Classroom Discourse”.  Thus when the instrument is separated into two sections, the 
MCOP2’s Student Engagement portion demonstrates an exceptionally high level of internal 
reliability, proving the instrument successfully gauges an undergraduate mathematics 
classroom’s culture and student participation.  Although not as remarkably high as the Student 
Engagement portion, the MCOP2’s Lesson Content portion also shows high internal reliability, 
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indicating the instrument also successfully measures the content of a mathematics lesson in a 
college level classroom.   

This initial study has provided results indicating the Mathematics Classroom Observation 
Protocol for Practices (MCOP2) is a reliable observational protocol for undergraduate 
mathematics classrooms.  However, a much larger study of the instrument’s reliability at the 
college level by testing the instrument in undergraduate mathematics classrooms at multiple 
higher education institutions, is needed as the data collected from observations at numerous 
community colleges, liberal arts schools, and other research universities would better examine 
and solidify the MCOP2’s structure and reliability in a more general college mathematics 
classroom setting.   
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Appendix A: MCOP2 Items 

1. Students engaged in exploration/investigation/problem solving. 
2. Students used a variety of means (models, drawings, graphs, concrete materials, 

manipulatives, etc.) to represent concepts. 
3. Students were engaged in mathematical activities. 
4. Students critically assessed mathematical strategies. 
5. Students persevered in problem solving. 
6. The lesson involved fundamental concepts of the subject to promote relational/conceptual 

understanding. 
7. The lesson promoted connections across the discipline of mathematics. 
8. The lesson promoted modeling with mathematics. 
9. The lesson provided opportunities to examine mathematical structure.  (symbolic notation, 

patterns, generalizations, conjectures, etc.) 
10. The lesson included tasks that have multiple paths to a solution or multiple solutions. 
11. The lesson promoted precision of mathematical language. 
12. The teacher’s talk encouraged student thinking. 
13. There were a high proportion of students talking related to mathematics. 
14. There was a climate of respect for what others had to say. 
15. In general, the teacher provided wait-time. 
16. Students were involved in the communication of their ideas to others (peer-to-peer). 
17. The teacher uses student questions/comments to enhance mathematical understanding. 

 
Appendix B:  Sample MCOP2 Item Descriptors 

5. Students persevered in problem solving. 
One of the Standards for Mathematical Practice (NGACBP & CCSSO, 2010) is that students 

will persevere in problem solving.  Student perseverance in problem solving is also addressed in 
the Mathematical Association of America’s Committee on the Undergraduate Program in 
Mathematics Curriculum Guide (Barker et al., 2004): “Every course should incorporate activities 
that will help all students…approach problem solving with a willingness to try multiple 
approaches, persist in the face of difficulties, assess the correctness of solutions, explore 
examples, pose questions, and devise and test conjectures.” 

Perseverance is more than just completion or compliance for an assignment. It should involve 
students overcoming a road block in the problem solving process. 

 
Score Description 

3 Students exhibited a strong amount of perseverance in problem solving. The 
majority of students looked for entry points and solution paths, monitored and 
evaluated progress, and changed course if necessary (NGA & CCSSM, 2010; 
Barker et al., 2004). When confronted with an obstacle (such as how to begin or 
what to do next), the majority of students continued to use resources (physical 
tools as well as mental reasoning) to continue to work on the problem. 
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2 Students exhibited some perseverance in problem solving. Half of students 
looked for entry points and solution paths, monitored and evaluated progress, 
and changed course if necessary (NGA & CCSSM, 2010; Barker et al., 2004). 
When confronted with an obstacle (such as how to begin or what to do next), 
half of students continued to use resources (physical tools as well as mental 
reasoning) to continue to work on the problem. 

1 Students exhibited minimal perseverance in problem solving. At least one 
student but less than half of students looked for entry points and solution paths, 
monitored and evaluated progress, and changed course if necessary (NGA & 
CCSSM, 2010; Barker et al., 2004). When confronted with an obstacle (such as 
how to begin or what to do next), at least one student but less than half of 
students continued to use resources (physical tools as well as mental reasoning) 
to continue to work on the problem. There must be a road block to score 1 -3. 

0 Students did not persevere in problem solving. This could be because there was 
no student problem solving in the lesson, or because when presented with a 
problem solving situation no students persevered. That is to say, all students 
either could not figure out how to get started on a problem, or when they 
confronted an obstacle in their strategy they stopped working. 

 

7. The lesson promoted connections across the discipline of mathematics. 
This item focuses on helping students to see connections between different parts of 

mathematics. For early elementary grades, this could be a connection between measurement and 
counting or area models for multiplication. In the middle grades, this could be a connection 
between area and distributive property, or a connection between operations on different number 
systems. At the high school level an example would be connections between algebraic and 
geometric reasoning, or a connection between the different types of inverses.  In an undergraduate 
classroom, this could be an opportunity for students to explore mathematical ideas from a variety 
of perspectives, or a connection to other subjects (both in and out of the mathematical sciences), or 
a connection to a contemporary topic from the mathematical sciences and its applications.  

 
Score Description 

3 Connections are emphasized throughout the lesson and/or are a major 
component of the lesson. 

2 Connections are frequent throughout the lesson, but the connections are not a 
major component of the lesson. 

1 A few connections are made in the lesson, but it is not frequent. 
0 The lesson just makes no connections between mathematical topics. 
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While a significant amount of research has been devoted to exploring why university students 
struggle applying logic, limited work can be found on how students actually make sense of the 
notational and structural components used in association with logic.  This project borrows the 
theoretical framework of unitizing and reification, which have been effectively used to explain 
the types of integrated understanding required to make sense of symbols involved in numerical 
computation and algebraic manipulation, to investigate students’ conceptualizations of truth 
tables and implication statements.  We use a continuum as a framework to analyze the degree to 
which students’ thinking of each is compartmentalized versus unified.  Results indicate that 
students tend to treat the constituent pieces that make up these mechanisms independently 
without an understanding of each as a whole or an integrated view of the two together.  
Consequently, students manipulate symbols without an appreciation of the overarching meaning. 

Keywords: Unitizing, Reification, Logic, Truth Tables, Proof 
 

Introduction 
For many mathematicians, the essence of mathematics is captured in proofs (Ross, 1998; 

Rav, 1999).  Despite the centrality of proof, however, its role in school mathematics in the 
United States is peripheral at best, with its only substantial treatment in the secondary 
mathematics curriculum occurring in a one-year geometry course (Moore, 1994; Wu, 1996, 
Knuth, 2002).   To reverse this trend, recent reform efforts have significantly elevated the status 
of proof in school mathematics (National Council of Teachers of Mathematics [NCTM], 2000; 
Common Core State Standards in Mathematics, 2012).  Still, for most students going through the 
K-12 US curriculum and even into the first two years of post-secondary studies, mathematics 
involves predominantly carrying out various procedures in order to solve numerically and 
algebraically based problems. Students might be exposed to the idea of proof when a teacher 
presents and explains a theorem that will be used later by the class, but the emphasis is on 
mastery of the result, not on the process that gives rise to the conclusion or its comprehension 
(Herbst, 2002).  Consequently, it is no surprise that students struggle significantly when the 
mathematical focus changes in upper-level university mathematics courses from computation 
based activity to more abstract deductive reasoning and the communication of these ideas.  To 
help bridge this gap and provide students with the requisite skills to successfully generate and 
make sense of mathematical arguments on their own, many universities have begun to 
incorporate the explicit instruction of proof into their curriculum, creating “transition to proof” 
courses (Moore, 1996).   

A common component in transition to proof courses is the introduction of formal logic.  
The inclusion of formal logic is sensible for two interrelated reasons.  First, in order for students 
to write a proof, they must be aware of what is necessary to establish whether a statement is true 
or false (Epp, 2003).  The rules that govern formal mathematical arguments and mathematical 
statements are different from those used in informal everyday speech.  For example, in common 
use the statements, “There is a mother for all children” and “All children have a mother,” are 
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commonly used interchangeably inferring the later mathematical meaning (Dubinsky & 
Yiparaki, 2000).  Teaching logic makes clear to students the exact conventions, approaches, and 
methods employed by the mathematical community and it highlights the precision of 
mathematical thought.  	  Second, logic provides a framework and language to communicate the 
exact requirements necessary for a particular mathematical argument.  As such, it can be viewed 
as a tool that helps students break down complex statements and identify the precise features and 
properties that must be established in order to prove a claim.  For example, mastering the rules of 
negation, students are able to recognize the specific properties involved in producing a 
counterexample.  Epp (2003) highlights that logic, in particular logic tables, can act as a 
scaffolding tool, making the abstract nature of argumentation more tangible.   Logic tables create 
a structure to help students “organize their knowledge about logical principles and gives them 
concrete objects to hang onto while they deal with the abstraction of the logic” (Epp, 2003, p. 
986). 

As compelling as the instruction of logic appears, there is evidence that such a focus 
results in limited to no improvement in student achievement. 	  For example, Cheng, Holyoak, 
Nisbett, and Oliver (1986) found no difference in performance on modus ponens and modus 
tollens tasks between university students who had taken an introductory logic course and a 
control group of students who had not.  Consequently, they hypothesized that students do not 
reason purely abstractly.  As participants did show improvement after training in specific 
functional categories of conditional statements, they conjectured that students use domain 
dependent schemas instead.  Another explanation for this unexpected result is that students have 
difficulty connecting the syntactic rules of logic to real life applications.  Selden & Selden (1995) 
found that students often struggle decoding statements written with a more familiar, colloquial 
structure and translating them into formal mathematical language.   Unable to link the two 
domains, students are unable to tap into the power of formal logic. 

The broad goal of this study was to explore how students coordinate the meaning 
between contextualized statements and the corresponding formal logical symbolic 
representations. What emerged in the analysis, however, was a different phenomenon.  As 
students were asked to operate on symbolically written logical statements and comment on their 
associated contextual interpretation, their explanations revealed how they thought about and 
made sense of the logical tools themselves, which gave rise to the following specific research 
question: How do students make sense of the symbolic expression p⟹q and its related truth 
table? In answering this question, we developed a framework for interpreting and characterizing 
how students make sense of logical statements.  

  
Theoretical Background 

Theorists in mathematics education have put forward various characterizations for how 
mathematical concepts are understood and how mathematical reasoning develops. For example, 
in the early 80’s Steffe (1983) proposed that unitizing and the resultant formation of a composite 
unit constitutes a robust understanding of number. A child is said to view number, such as 12, as 
a composite unit if he or she can simultaneously treat 12 as 12 individual units or as a single 
entity composed of 12 units and be able to partition 12 in multiple ways (e.g., as 10 and 2). 
Lamon (1996) extended this notion into rational number and described unitizing more generally 
as the cognitive assignment of multiple mathematical entities into a combined whole. This newly 
constructed abstract object can then be used to reason with as a single unit.  She emphasized that 
the key with unitizing is the ability to connect multiple pieces and envision them as a single, 
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collective chunk, while at the same time retaining an appreciation of their individual parts 
relative to each other and to the newly conceptualized whole.  Such a mathematical 
conceptualization leads to more sophisticated thinking as “it allows students to think about both 
the aggregate and the individual items that compose it” simultaneously (Lamon, 1996, p. 171). 

Wheatley and Reynolds (1996) further expanded the notion of a composite unit beyond 
number contexts to analyze students’ approach to a geometric tiling problem.  In their study, 
students who combined geometric shapes to create and conceive of the geometric units as a 
single unit were far more successful.  Similar to the observed cases with numbers, these students 
demonstrated the ability to iterate these shapes in productive ways, flexibly partition them, as 
well as describe various resulting patterns.  Having generated their own composite unit, they 
demonstrated the ability to simultaneously see and manipulate the shape as a single whole as 
well as the individual comprising parts.  

The notion of a composite unit is closely related to the construct of reification, which 
explains how mathematical constructs can be understood in two different ways. On the one hand, 
an individual may think about a mathematical idea in an operational way, where notation is 
viewed as a set of instructions for a particular process (Sfard & Linchevski, 1994).  For example, 
the algebraic expression 3(x + 5) – 1 might be interpreted as a collection of procedures, 
specifying that for any number the operations “add 5”, multiply by 3”, and then “subtract 1” be 
applied.  On the other hand, algebraic expressions can embody a structural conception and 
represent the result of these processes.  With this interpretation, the process has been reified and 
each of the various computations is considered as a whole unified and completed object.  As 
such, this newly created mathematical entity can then be treated as a single entity, or in other 
words, as a composite unit.   

As Sfard (1995) points out, this dual role enables mathematical notation to be an 
extremely powerful tool. It allows the user to understand and conceptualize a very complex and 
involved process, while at the same time treat it as a single entity. It can then be manipulated and 
simplified syntactically, without the large burden that the operational mode of thinking places on 
working memory. This capacity, though, can also act as a double edged sword, what Sfard and 
Linchevski (1994) refer to as a pseudostructural conceptualization. Often students are introduced 
to powerful symbolic notation along with various procedures to apply to them, but fail to develop 
an underlying grasp of the processes the notation embodies. As Sfard (1995) highlights, 
notational expressions become viewed as “meaningless symbols governed by arbitrary 
established transformations” (p. 30).   In the end, the manipulation itself becomes the focus of 
the activity and the symbolic results are seen as producing the answer themselves.   

Through the development and use of various symbolically based tools, the richness of 
logic is now able to be represented in compact, easy to manipulate representations.  
Unfortunately, if students compartmentalize different notational pieces of logical symbols 
without simultaneous reference to the composite whole, or treat the symbols without reference to 
the semantics they represent, they fail to appreciate the different layers and meanings which the 
symbols embody. In our analysis of how students make sense of the symbolic expression p⟹q  
and its related truth table, we bring to bear the related notions of composite unit and reification to 
interpret and characterize student thinking. In particular, both of these lenses point to how the 
expression p⟹q  and its related truth table might be understood in a compartmentalized way or 
in a unified way. 
 

Methods 
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The participants for this study were all drawn from a discrete mathematics course	  at a 
large university in the southwest of the United States.  The course served two main populations 
and attempts to balance the achievement of two major goals.  Roughly half the students were 
mathematics majors while the other half were computer science majors. The curriculum aimed to 
expose students to the mathematical content ordinarily associated with discrete mathematics such 
as set theory, logic, combinatorics and graph theory, while at the same time introducing and 
exposing them to the fundamental elements of mathematical proof and communication.  Thus, 
this course functioned as a transition to proof course, using discrete mathematics to illustrate the 
precision of mathematical definitions and the rigorous methods for establishing the truth of 
mathematical statements.  The class size had approximately 80 students enrolled (with only half 
attending on a regular basis), and instruction followed more a modified standard lecture format 
where students were encouraged to ask questions and time was given on occasion for students to 
work through specific problems.   

Six students volunteered to participate in individual, think aloud problem solving 
interviews. The six students, while exhibiting different degrees of academic achievement during 
the class, were all highly successful, scoring above average on all assessments and demonstrating 
more or less mastery of topics on assessments. Zach and Alan received an A for the course, Kate 
and Eduardo received high B’s/low A’s, and Sofia and Cody received B’s.  They were described 
by the professor as engaged and hardworking students, and regular classroom visits made by the 
first author confirmed the instructor’s view.  Each attended class regularly and actively 
participated through diligent note taking and asking questions in class. As such, our analysis 
highlights the mathematical thinking of the more engaged and successful students. 

Each student participated in a 60-minute semi-structured clinical interview (Ginsburg, 
1997).  A detailed protocol was used to guide the interview, but the interviewer followed up with 
clarifying questions to develop a more detailed understanding of each student’s thinking.  The 
interviews took place towards the end of the semester, and while the interview involved content 
introduced during the first three weeks of the course, the instructor continuously revisited this 
material throughout the semester. As such, students were well prepared to deal with the problems 
posed during the interview. 

The interview protocol consisted of two main sections, with the relative data for this 
report taken from the first section that explored how participants interpreted and made sense of 
notation and logical statements in symbolic form.  This section consisted of two main questions.  
First, the participants were asked to analyze the equivalence of various logical statements relative 
to p⟹q and explain whether they were equivalent or not and why. Second, the students were 
asked to simplify the negation of a conditional statement presented in the symbolic form 
~(p⟹q), explain their understanding of the negation, and give an example to illustrate their 
interpretation.  In the second half of the interview, students were asked to negate several 
statements from various contexts and with multiple levels of complexity and explain the 
conditions necessary for the statement to be false. Observations from the second half were used 
to contextualize students’ understanding, but all results reported came out of the first half of the 
interview. 

Each interview was videotaped and transcribed.  Students’ responses were reviewed 
using a grounded theory approach (Strauss & Corbin, 1994).  The initial coding pass relied on 
open coding in which evidence was collected to make sense of how students conceptualized 
logical statements and interpreted logical equivalence.  After a detailed review of the videos and 
their accompanying transcripts, data suggested that it was the degree to which participants 
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viewed logical statements and their associated logic tables in either a unified manner (that is, as a 
composite unit) or in a compartmentalized fashion that distinguished the participants’ approaches 
to making sense of logical equivalence. After the student interviews were fully examined and 
reviewed, the professor of the course was then interviewed on the same questions in order to 
provide a comparison between the students’ conceptualizations to that of an expert. We then 
analyzed his responses as we did for each student. 

 
Results 

While a truth table can be a very powerful organizational tool, analysis of student 
interviews revealed that many participants,	  while able to correctly construct a truth table, 
struggled to coordinate the various cases and to view them as a composite unit.  Far from an 
interconnected entity, these students tended to compartmentalize truth tables,	  viewing each row, 
even each symbol, as discrete and separate pieces.  Such participants showed little appreciation 
that the given compound statements could have four possible truth combinations, translating the 
notation directly or interpreting the symbolic sentences as taking on only the meaning that would 
most obviously make the statement true.  With such a detached view, they struggled to 
understand the meaning of logical equivalence.  Instead, they seemed to view the logic table as a 
mechanism to help produce and match isolated symbols, asserting that only one line of the truth 
table corresponding between two statements was sufficient to establish equivalence.  In addition, 
when asked to interpret the meaning of ~(p⟹q), many participants treated the hypothesis p and 
conclusion q as quite separate entities.  In an attempt to make sense of the negation of a 
conditional statement in symbolic form, every student either incorrectly distributed the negation 
symbol or converted p⟹q to ~p˅q in order to use de Morgan’s law.  Rather than interpreting 
p⟹q as a composite unit, they attempted to manipulate each piece individually, considering 
each component separately. 

Analysis of student reasoning in the interview tasks therefore led to the development of a 
two dimensional framework for characterizing the degree to which students’ conceptualizations 
of both truth tables and implication statements are compartmentalized versus unified.  The ends 
of each of these two dimensions are detailed in Figure 1. 

 

Truth Table 
Compartmentalized Unified 

• Interpreting symbols as only taking on the 
meaning that makes the statement true (for 
example, p⟹q means p is true and q is 
true)  

• Considering symbols literally or as a direct 
translation  (for example:  ~p˄q means p is 
false and q is true) 

• Seeing the truth table as an organizational 
tool to represent the four possible cases, not 
to generate them 

• Ability to consolidate cases when 
strategically useful 

• Connecting semantic meaning to each case 
 

Figure 1a. Compartmentalized and unified views of truth table  
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p⟹q 

Compartmentalized Unified 
• Looking at symbols in an isolated manner 

without making meaning of them as a 
whole piece (for example, negates 
conditional statement by distributing 
negation to both p and q) 

• Comparing statements based on notational 
structure instead of meaning (for example, 
negation of implication must be an 
implication)  

• Tendency to invoke algebraic symbol 
manipulation  

• Comprehending the premise and 
conclusion as one statement   

• Connecting the symbolic representation to 
its semantic meaning 

• Ability to interpret and contextualize four 
cases and see that three of the four satisfy 
the implication.  In other words, 
connecting the understanding of the 
implication statement with the meaning of 
the truth table. 

• Translating symbols into meaningful, 
naturally linked contexts to make sense of 
implication 

Figure 1b. Compartmentalized and unified views of p⟹q and its truth table  

  Based on our analysis of student responses, each student was assessed on the extent to 
which they exhibited a unified or compartmentalized view of truth tables and logical 
implications. A continuum was proposed along each of these two dimensions with 
students falling at different places depending on the number or degree of the various components 
they demonstrated.  Figure 2 depicts the findings for each student.    
 
 
 
 
 

 

 

 

 

 

 

 

 
 
 

Figure 2.  Framework for characterizing student thinking of  p⟹q and its truth table 
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As illustrated in Figure 2, no student demonstrated a unified conception of both logical 
structures.  While almost every student possessed a unified conception of one, the two seemed 
almost inversely proportional.  Also, students seemed to compensate for whichever 
conceptualization was compartmentalized by attempting to use the other mechanism, even when 
it was not productive.   This was in contrast to the professor who demonstrated a clearly unified 
conception of each logical structure.  Not only did he articulate a unified understanding for both, 
but in his description, he was unable to disentangle the idea of an implication from its associated 
truth table.  He quickly alternated between discussing p⟹q holistically, then in parts, then in 
terms of its various possible truth values. 
 
Compartmentalized view of the truth table 

We begin with Kate whose understanding of the truth table, along with Cody’s, is 
representative of other students with a strongly compartmentalized view of truth tables.  As we 
see in the following excerpt, Kate does not interpret the statements as having multiple possible 
cases.  Instead, she perceives each statement as having only a single true scenario and 
equivalence is a matter of aligning these true situations.   Here she is asked to determine the 
equivalence of  ~p˅q and p⟹q,  
Kate:    Because ‘or’ just means that one or the other has to be true and we were given 

q is true if p is true, so this can be equivalent ‘cause if we just have…yeah we 
can just pick one of those…yeah this wouldn’t be true (writing ~p˄q) because 
we don’t have both of those. 

When asked to explain, she replied  
Kate:    We have q, but we don’t have not p ‘cause p is not (not p).  So we have p then 

q but not (not p and q).	  So that wouldn’t be logically equivalent, but this 
would be (writing ~p˅q) because it is just one or the other or both is what this 
means. 

When asked what it means that both are true, she said,  
Kate:    If you’re given that this is a true statement if, p then q, then you just suppose 

that they are both true.  For it to be a true statement, that if p then q, so p and q 
need both to be true. 

In this last section, Kate clearly states that she interprets the implication statement as having only 
the one case when both p and q are true.  Similarly, in the first part, it appears that she considers 
the symbols in the disjunction quite literally, directly translating ~p˅q to mean p is false or q is 
true.  Since the assumed true p and true q case from the implication aligns with the false p or true 
q, she asserts that the two statements are logically equivalent.  This is in contrast with the 
conjunction (~p˄q) she proposes.  Here the assumed true p and true q case of the implication 
does not match with her literal interpretation of the false p and true q of the conjunction and are 
therefore not logically equivalent.  As this example supports, Kate’ view of logical equivalence 
is quite fragmented, involving the comparison of isolated symbols, interpreted as superficial 
objects, without an appreciation of multiple cases and their necessary correspondence.    
 Later in the interview, after she accurately completes a truth table, her substantially 
compartmentalized view, as well as the subsequent consequences of such an understanding, 
become even more apparent.  Not only does Kate’s surface interpretation of compound 
statements cause her to incorrectly understand logical equivalence, her fragmented view of the 
symbols that make up the truth table prohibits her from correctly interpreting the data it 
represents.   In the following excerpt, although she has stated earlier, based on her previous 
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reasoning, that ~p˄q is not equivalent to p⟹q, she reluctantly decides to change her mind when 
she notices the one case in implication truth table of false p with a true q resulting in true as its 
truth value. 
Kate:     I don’t know if you would be able to call it logically equivalent, but it could still 

make it a true statement to have not p and q. So to have p be false and q be true could 
still create a true statement. 

Intvwr:  So these are logically equivalent? (pointing to p⟹q and ~p˄q) 
Kate:     I guess you could say that. I don’t know if it can be or not. I guess from the truth table 

I guess it could be. 
Intvwr:  So when you say from the truth table can you be more specific? How does that help 

you see that those are equivalent? 
Kate:     Umm… by writing it all out and then knowing, just like by  memorization, that a false 

implies a true can be true and but true implies a false is false.  Then you just see that 
if it’s true, then it can be logically equivalent to it. So I guess if you have p then q, 
then it’s possible for it to be equivalent to a false p and a true q. For it to still be…it’s 
possible for p to be false and q to be true and have the statement still be true.  

Intvwr:  Okay, so this is…(pointing to truth table, in particular the row where p is false and q 
is true)? 

Kate:    Yeah, that’s where I get it from here.  These are all the possible outcomes for p and q 
together, so you have true – true, and false-false, and true and false, so that gives you 
all the different combinations of p and q and then you see what they equal true or 
false over them on the right side according to the different combinations over here. 

As a consequence of her compartmentalized view of the symbols that make up the truth 
table, her correct production of a truth table in the end leads her completely astray.  She does not 
see each of the four combinations working together to inform the possible cases of a single 
statement, but rather as independent pieces.  Her view of these cases lacks any association and 
consequently she interprets each individual case as evidence of equivalence.  For Kate, the truth 
table has no unified meaning.  Produced from memory, it is simply a collection of unconnected 
symbols.  Understanding the process of how the symbols work together is lost on her.  

  
Partially connected view of truth table 
 Moving along the truth table continuum, we arrive at Zach and Alan.  Their responses 
demonstrate the most connected view of the different cases communicated by the truth table of 
any of the students interviewed.  They express a clear understanding that the logic symbols 
representing the various propositions within a given compound statement can take on different 
truth values and both indicate a clear understanding that equivalence requires multiple coupled 
cases to align.  As illustrated in the following example, as Alan justifies why ~p˄q and p⟹q are 
logically equivalent, we can see that he holds a significantly more integrated view of the 
components that make up the truth table.  
Alan:     Alright, if p is something that happens, q has to happen from this statement.  So then 

you can have either if p did not, the first thing did not happen then q could have 
happened or could not have happened or either one.  

In this excerpt, Alan clearly outlines the three cases where the implication is true.  It is evident 
that he recognizes that the propositions, represented by the logic symbols p and q, can take on 
both true and false values.  It appears that as he quickly runs through the multiple cases, he is 
mentally checking to make sure these true cases for the implication also result in true outcomes 
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for the disjunction (~p˄q), first looking when p is true (meaning that not p is false) and then the 
cases when not p is true.   This process demonstrates an awareness that multiple cases must 
correspond in order to ensure logical equivalence.  Interestingly, he does not check the 
correspondence of all four cases, but only those that result in an overall true value.  He seems to 
deem the true cases as the important parts of the truth table and possibly assumes that the other 
cases will consequently correspond.  Overall, his approach, efficiently examining and comparing 
relevant cases without creating a list of symbols, reveals a quite connected view of the truth 
table.  In a sense he creates a partial truth table in his head, coordinating the various cases 
mentally.  While Alan does not elect to generate a formal table, it seems that such an exercise 
would have only served as a way of recording and organizing previously established verbal 
ideas.   

Still, although Alan’s method is quite effective and succinct, it appears that he has not yet 
fully consolidated the various cases into a single unit.  The multiple cases are connected, in that 
he realizes that as a set they must correspond, but he still examines each possibility individually.  
Without seeing the three true cases as a unit, he is unable to recognize and elevate the one false 
case as the complement of this set, explicitly comparing and processing it along with the others.   
 
Fully unified view of truth table 

The final end point of the truth table continuum is exemplified by the professor of the 
class.  He was interviewed subsequent to the six students to provide a point of comparison.   As 
we will see in the following set of quotes, he demonstrated a fully unified view of the truth table.  
His analysis displayed an appreciation of the various cases as a single unit, comparing and 
manipulating them as a collective whole, instead of as a set of separate, independent possibilities.  
We begin with an excerpt of the professor explaining how he understands that ~p˅q is logically 
equivalent to p⟹q.   
Dr. S:    Okay, so under what conditions would p imply q?  If I say, if you do x, I will do y, 

under what conditions would you say I’ve lied; I haven’t kept my part of the bargain?  
And there is exactly one way in which that can happen.  And so I see p implies q has 
a truth table which tells when I have told the truth and when I have been false.  And 
that has one false in it, so that should be the same as some sort of an “or” statement. 

In this selection, it is clear that he compares the four cases of the implication and disjunction 
simultaneously.  Because the combination of three true cases and one false case matches the 
characteristics of an “or” statement, it makes sense that the two compound statements are 
equivalent.  Such an examination differs considerably from that of Alan who compared the two 
statements case by case.  Although Alan knew they were all connected and that multiple cases 
needed to mutually align, he did not evaluate them as a single unit.  At the same time though, the 
professor does simply think about the statements globally.  His use of the word “conditions” 
indicates that he is taking into consideration and analyzing the various cases as well.  While he 
identifies the one false possibility, because he sees the four cases as a unified whole, he knows 
that its complement, the other three cases, must all be true and consequently align as well.  
Furthermore, as we see in the following selection when the professor is asked to give an example 
to expound on his thinking, he is able to attach semantic meaning to each of the four cases.  
While he does focus on the global characteristics to make his comparison, he is also able to 
dissect the unit and give meaning to each of the separate cases.  
Dr. S:    So if we went to court and you were going to build something for me, and you know, 

the deal was that if I paid you a thousand dollars, you would build the thing for me. If 
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I didn’t pay you a thousand dollars, then the contract’s not broken.  And if I did pay 
the thousand dollars and you didn’t build it, then the contract is broken.  If I did pay 
and you built it, it’s satisfied.  So there are three conditions in which it is satisfied and 
one condition in which it’s not….	  So if I didn’t pay you, then we’re okay, or if you 
did do it, we’re okay.  The second one of course is an interesting situation, I don’t pay 
you and you build the house for me... and that’s perfectly fine. The contract is 
satisfied. … Understanding this statement as being either true or false (pointing to 
~p˅q) and it is true even when something kind of ridiculous like I don’t pay you and 
you build the house for me.	  	  

He makes sense of the “or” statement in context, understanding that a contract is valid in the 
cases when payment is made or if the work is completed.  It is only when the house is not built 
and payment is received that the conditions of the contract are violated.  He even explains what it 
means to have a false premise and true conclusion and why this might be counterintuitive, but 
acceptable.  
 
Implication statements 

Implication statements provide the foundation for mathematics.  As we investigate 
mathematical phenomenon, searching for generalities, we naturally come up with questions 
about whether a given set of circumstances lead to certain outcomes, writing any observations as 
implications statements.   Consequently, an appreciation for the conditions in which a given 
conjecture is viable and not viable, seems fundamental to mathematical understanding.  It seems 
reasonable that formal logic would aid in this process as it provides a structure to take a 
complicated statement and transform it into the simple, elementary notational representation 
p⟹q.  Unfortunately, while such a notation allows the user to hone in on the essential pieces of 
implication statements, making, in theory, their exploration and manipulation under different 
conditions much simpler, interviews indicate that students treat these symbols not as a unified 
whole, but as separate, disconnected entities.  Instead of viewing the symbolic form as a 
compound statement composed of two highly associated clauses, they compartmentalize the 
pieces, considering them in an isolated fashion to differing degrees.  This was especially evident 
as students were asked to interpret the negation of an implication statement in notational form 
~(p⟹q).  Two distinct approaches to negation emerged, suggesting two different groupings 
within the participants, with exactly three students in each classification.  The first set of 
participants (Kate, Cody, and Sofia), almost without exception, tended to treat the symbols quite 
superficially and incorrectly attempt to distribute the negation symbol in some way.  Students 
from the second grouping (Eduardo, Zach, and Alan) chose to convert p⟹q into the equivalent 
form ~p˅q in order to use de Morgan’s law and manipulate the symbols as separate pieces.  
While both of these methods indicate a rather compartmentalized view of the implication 
statement, within these two approaches, students’ interpretations still varied in the degree to 
which they viewed the symbols as a composite unit.  In the following section we present 
examples of student responses from each of the two grouping along the proposed continuum, 
beginning with students with the least unified view.   
 
Compartmentalized view of p⟹q 

Looking at students with the most heavily compartmentalized view, we begin with	  
instantiations from the first group, those who focused primarily on superficial features when 
analyzing the conditional statement p⟹q, turning to Sofia and Kate for examples.  As we see in 
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the following excerpt, they seem to hold the belief that equivalent statements must retain the 
same form.  As such, an implication cannot be equivalent to a disjunction and the negation of an 
implication cannot be equivalent to a conjunction.  This view is evident in Sofia’s response as 
she explains why p⟹q  is not equivalent to ~q˅p. 
Sofia:  This is a conditional statement and this is, I think, just a statement.   This is saying, not 

p or q… This one (pointing to p⟹q) you are saying…You are setting conditions for 
and then a possible outcome. So they are two…  In my opinion they are two 
completely different things.   

In this selection we see that Sofia looks to surface features of the individual symbols to compare 
statements instead of looking at the meaning of the implication as a whole.   Consequently, later 
when asked to interpret ~(p⟹q), she distributes the negation without attending to the 
underlying meaning.   
Sofia: I would just distribute the negation.  So, not p then not q, is how I would interpret it.  

I would just distribute the negation throughout the conditional statement. 
Even when asked to illustrate the negation using a contextualized example, she continues to 
struggle to see the implication statement as a unified whole. 
Sofia:  I don’t know how I would write this one (referring to ~( p⟹q)).  But here it could 

be…if I don’t walk the dog then he won’t be happy. Here it’s if I walk… I don’t 
know how I would incorporate that without negating the whole…I can give you a real 
life for this one (referring to ~p⟹~q), but just having the negation kind of 
hovering… I don’t know how to do it in real life. 

She explicitly says to make sense of ~( p⟹q) requires “negating the whole” implication 
statement which she is unable to.  She struggles to coordinate her fragmented understanding of 
the symbolic form ~( p⟹q) to context, where the premise and conclusion cannot be treated 
separately.  Instead she resorts back to her method of distribution which allows her to treat the 
symbols in an isolated manner and then translates them back to words.    

Kate displayed even more difficulty coordinating the symbolic interpretation to a 
meaningful context.  Although she states that ~( p⟹q) means that “p does not imply q”, she 
continues to translate the negation symbolically as the distribution of the negation notation.  
When asked to create a context to illustrate her understanding, she comes up with an example 
where there is no meaningful relationship between the premise and conclusion. Only by 
providing a completely detached example can she relate her interpretation of the symbols to a 
real life situation. 
Kate:    So I guess if p is “I’m mad” and q is “I’m sad,” so if you’re saying if p implies q, so if 

I’m mad, then I’m sad.  But if you’re saying not all of that, you’re saying if, if you’re 
doing what I did by just distributing all of it, then I’m not mad then I’m not sad…To 
me it makes sense to say that if I’m not mad, then I’m not sad, because that’s kind of 
the opposite of what I said before, if I’m mad, then I’m sad.    

In this episode, it seems clear that Kate is simply substituting words piecewise for notation 
without any appreciation of the connection to a unified statement.  Even more disconcerting, in 
the end, the symbolic form, instead of aiding her understanding, actually causes her to 
misinterpret the negation of the implication statement as she construes the meaning to be the 
opposite instead of refutation.  Ultimately, her isolated sense of the conditional statement leads to 
an incorrect, reverse translation from the symbols into the words.   

Looking at students from the other group who used substitution of ~p˅q to negate the 
conditional statement, there were equivalent examples where they treated the symbols in a 
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compartmentalized manner.  First of all, their general method reflects a rather fragmented view.  
It seems the whole purpose of transforming the statement into a disjunction is to students to 
distribute the negation and deal with the pieces separately.  Almost without exception, these 
students negated every implication statement throughout the entire interview using this 
conversion method.  Even when the question was presented contextually or the students were ask 
to provide an explicit real life example, these students consistently changed the statement into 
symbols in order to make this substitution, before translating the final results back into words.    

Still, while in general the approach demonstrated by these students projected a rather 
disjointed understanding of the symbolic structure, there were definitely different degrees 
depending on their ability to make sense of the negation after the substitution.  As we see in the 
following excerpt, Zach represents the most compartmentalized view as he continues to treat the 
clauses as separate entities.  When asked to come up with a context to illustrate his interpretation 
of the symbols he provides an almost absurd example, revealing no connection between the 
premise and conclusion.  
Zach: Whatever p and q stand for, we have to know that for this statement to be true, p has 

to be true and q has to be false. So I don’t know if you would say.  Someone is tall 
and not tall, or something like that.  It’s kind of a really simple example. But…I guess 
it doesn’t make sense, not short.  So if p is tall and q is short. P is true, you are tall 
and they are not short, so that is true as well.  So that would be a true statement, 
logically.  

It is clear in this example that he treats p and q as completely separate entities.  Instead of seeing 
the clauses as interrelated, one implying the other, he focuses on the fact that one is true and the 
other is false.  He is unable to use the symbolic manipulation to aid in his understanding.  In fact, 
the substitution seems to cause an even more disassociated view.   
 
Partially compartmentalized view of p⟹q 

Moving along the continuum we find examples in both groupings of students whose view of 
implication statements is quite connected when considered in context, but then struggle to 
associate this understanding to their interpretation of the symbolic form.  In the first group we 
turn to Cody who is representative of students with inconsistencies between these two capacities.  
He correctly interprets ~(p⟹q) verbally as “if we had p and then, but q did not happen,” further 
explaining his understanding that the implication “would be false...because it didn’t happen,” but 
then writes out his interpretation as p⟹~𝑞.    When asked to provide an example to illustrate his 
understanding, he offers up the following clarification, again demonstrating a unified 
consideration within context, but continuing to make the same error translating his thinking 
symbolically. 
Cody:   You are saying that not that one thing happened and the next thing happened. So like, 

not it’s sunny outside and I went to the beach... So that would mean like it’s sunny 
outside, but you didn’t go to the beach.  So that would be kind of doing what’s in 
parenthesis, making that false.  That’s kind of what I interpret the not as. 

It appears that Cody treats the implication statement as an integral whole, but is unable to 
connect this meaning to and from the associated symbols.  Throughout the entire interview, 
regardless of the context or whether questions were presented contextually or symbolically, he 
repeatedly reported the correct idea verbally but described his interpretation incorrectly in terms 
of notation.  He continued to hold on to the notion that equivalent symbolic forms must sustain a 
consistent structure, treating the notation in a more compartmentalized manner.	  	  Consequently, 
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he was unable to manipulate or make use of the decontextualized symbols in order to guide his 
understanding.  As such, the logical notation is not a tool for Cody, as any support the more 
abstract, simplified presentation could offer is lost on him.  Nonetheless, he does seem to hold a 
fairly unified view of the implication statement in contextual situations. 
  In the other grouping, we turn to Alan as representative of the middle level along the 
continuum in terms of a unified view of the implication statement.  Like the other students in this 
classification, he approached the negation of almost every problem (4 of 5 questions) by 
translating the implication to the equivalent disjunction in order to be able to distribute the 
negation sign.  While this approach, in general, would indicate a rather disjointed view of p⟹𝑞, 
Alan’s understanding differs though from the other’s using the same technique in that he is able 
to connect his final symbolic result back to the original implication in a unified manner through 
context.  In the following excerpt he has just provided an example to illustrate the negation of 
p⟹𝑞 and he is explaining how his final result of p˄~𝑞, arrived at through symbolic 
manipulation, is a sensible outcome.   
Alan:  Okay, so if I studied for the test, then I got an A on the test.  If I didn’t get an A on 

the test then I wouldn’t have studied, because studying would imply that I got the A. 
Through this example we first see that Alan provides a coherent context to illustrate the meaning 
of an implication, allowing him to effectively link his thinking.  Unlike Zach who chose a 
completely dissociated premise and conclusion, Alan’s example is well connected.  This 
provides evidence that he is not simply translating the symbols independently, but sees the 
relationship between the two clauses, seeming to hold a more unified view of the implication.  In 
addition, while he is unable to initially manipulate the symbolic form as a unified unit, he does 
connect his notational translation back to the original problem.  Through his tone as he reads 
through the result, it seems clear that he sees how such an outcome is the reasonable negation of 
p⟹𝑞. Holding a more integrated view of the implication statement allows him to make sense of 
the symbolic representation.   
 
Fully unified view of p⟹q  
 As was the case with the truth table, no student demonstrated a fully unified view of 
p⟹q, with the only such example coming from the professor.  Throughout the interviews each 
of the six students repeatedly attempted to manipulate the different pieces of the symbolic form 
of the implication statement independently.  In addition, not only did the students treat the 
implication statement in a piecewise fashion, none of the participants expressed any 
consideration of multiple cases when negating p⟹q.   This is in contrast to the professor’s 
conceptualization, where both the implication and its associated truth table are completely 
intertwined.  As was seen in the previous examination of the professor’s understanding of the 
truth table, not only does he view the implication as a unified whole, he interpreted it through its 
four associated cases.  Having consolidated these possibilities into a single unit, he is able to see 
negation of the statement as the one false case he has identified.  Consequently, the idea of a 
fragmented view of p⟹q makes no sense, because his interpretation of the implication statement 
is interwoven with the four cases.  Furthermore, the contextual example that the professor 
attaches to the implication statement reinforces his understanding of p⟹q as a unified object.  
The situation of a binding contract depicts the implication statement as a single unit,	  consisting 
of a particular premise and conclusion that may or may not happen.  Negation of the implication 
means breaking the agreement and can only be understood by thinking of what combination of 
initial and resulting conditions would invalidate the contract.  As such, it seems clear that the 
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professor sees the contract as a composite unit, unable to view p and q as completely 
disconnected.  In the end, it is his coordination between the two logical mechanisms along with a 
well-chosen context that supports the professor’s unified view of the implication statement.   
 

Conclusion 
Mathematical notation is a powerful tool.  Representing concepts as concrete symbols 

provides a medium to communicate and reason about abstract mathematical ideas.  An inherent 
feature of mathematical notation is that concepts are represented using discrete characters.  As 
such, individual parts and pieces can be operated on and treated independent of any overarching 
concept or as objects without consideration of their underlying semantic meaning.  While such 
an attribute is an affordance for mathematicians, reducing the associated cognitive demand by 
breaking down complicated concepts and allowing for manipulation	  without constant attention to 
what it references, it can also be a limitation for students who are only beginning to familiarize 
themselves with the notation, hindering their appreciation of the concept as an integral whole and 
enabling them to acquire a compartmentalized view.  It is therefore necessary, when working 
with mathematical notation, to develop the capacity to flexibly contextualize and decontextualize 
the symbols; to simultaneously see the notation representing a unified concept as well as its 
various constituent pieces.  This is true of symbols associated with all areas of mathematics, 
including logic.   Focusing on the degree to which students demonstrated a conceptualization of 
truth tables and implication statements as composite units proved a beneficial perspective to 
characterize the thinking of students.    It provided a framework to interpret and make sense of 
students’ understanding of these symbolic tools and their associated concepts.  Results include 
specific characterizations of what a compartmentalized and unified view of truth tables and 
conditional statements looks like, operationalizing both ends of the continuum.    

The findings of this study suggest that without an appreciation of truth tables as a 
composite unit, students struggle to understand logical equivalence.  Seeing only fragmented 
pieces, equivalence becomes a matching exercise of one perceived representative case or 
multiple independent cases, but lacking a full appreciation of their meaning.  Without a view of 
the	  various truth value permutations as a single element, students are unable to understand how 
structurally different statements can be equivalent and when and why a transformation from one 
form to another is allowed.     

Similarly, interview data indicates that students who fail to consider implication 
statements as a single meaningful unit, struggle to understand negation.  Seeing each symbol as a 
separate entity, many participants carried out incorrect operations, often applying notions of the 
distributive property from algebra, without an appreciation of any underlying meaning.  Even 
students who correctly manipulated the symbolic forms and arrived at a valid notational 
representation of a negated implication statement, often did not demonstrate seeing a connection 
between the premise and the conclusion.  Converting to and from any contextualization of the 
statement appeared to be simply substitution.  These students tended to view syntactical forms of 
implication statements as purely symbols, divorcing their understanding of the logical notation 
from their personal experience reasoning through problems.  Consequently, the symbolic form 
did not appear to be an aid in supporting their understanding. 

Finally, not only did the students possess a compartmentalized view of both truth tables 
and logical statements, their coordination between the two was also disjointed.  They treated the 
two mechanisms as separate and developed a more unified view of one, relative to the other.  
Consequently, students tended to compensate for whichever conceptualization was 
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compartmentalized by attempting to use the other mechanism, even when it was not productive.  
This was in contrast to the professor. The unified view he held of both of these tools converged.   
He could not understand the negation of a unified implication statement, without seeing its 
associated truth table as a composite unit.   
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The primary goal of this work is to articulate a theoretical foundation based on Realistic 
Mathematics Education (RME) that can support the analysis of student learning. I first describe 
two RME design heuristics, guided reinvention and emergent models, and explicate each of these 
heuristics in terms of related theoretical constructs. I then consider how the RME design 
heuristics could inform how one conceptualizes of and documents student learning (where 
learning is viewed in terms of the creation of a new mathematical reality). To do so, I draw on 
two metaphors for learning and, by considering the design heuristics in light of these two 
perspectives, I propose two ways to conceive of “new mathematical reality” and discuss what 
could be considered as evidence for student learning.	  
 
Key Words: Realistic Mathematics Education, Learning, Analytic Methods  
 

Realistic Mathematics Education (RME) is an instructional design theory used to inform the 
development of inquiry-oriented curriculum. The emergence of such instructional approaches 
creates a need to investigate student learning in these contexts. However, as it was designed to be 
an instructional design theory, the current formulations of RME are not articulated in a way that 
readily supports investigations of student learning. Part of the difficulty in using the current 
formulations of RME to investigate student learning is due to variations in the ways that the 
RME design heuristics (specifically guided reinvention and emergent models) are discussed in 
the research literature. For instance, both the guided reinvention and emergent models design 
heuristics are described in terms of the creation of a new mathematical reality. What exactly a 
new mathematical reality is, however, remains unclear. At times, the creation of a new 
mathematical reality is discussed as being equivalent to activity (Rasmussen, Zandieh, King, & 
Teppo, 2005). Other times the creation of a new mathematical reality is discussed in terms of 
object reification. As a result, efforts to document the creation of a new mathematical reality are 
not supported by a clear theoretical foundation. In order to articulate RME in a way that supports 
analytic techniques for documenting student learning, I will first describe two RME design 
heuristics, guided reinvention and emergent models, and explicate each of these heuristics in 
terms of related theoretical constructs. I will then draw on two metaphors for learning, and 
propose ways in which the RME design heuristics can inform the analysis of student learning. 

 
Guided Reinvention and Emergent Models 

RME is grounded in the belief that mathematics is “first and foremost an activity, a human 
activity” (Gravemeijer & Terwel, 2000, p. 780). Accordingly, Freudenthal argued that 
mathematics education should “take its point of departure primarily in mathematics as an 
activity, and not in mathematics as a ready-made-system” (Gravemeijer & Doorman, 1999, p. 
116). Within RME there are a number of heuristics that are meant to guide the design of 
instruction that supports students in developing formal mathematics by engaging them in 
mathematical activity. For both the guided reinvention and the emergent model heuristics, the 
nature of this activity becomes more general as the instructional sequence unfolds.  
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Guided Reinvention  
Guided reinvention is often characterized in terms of the nature of the learning process, 

where the goal is for “learners to come to regard the knowledge they acquire as their own, 
personal knowledge, knowledge for which they themselves are responsible” (Gravemeijer & 
Terwel, 2000, p. 786). To achieve this goal, mathematics instruction is designed around 
mathematical actives intended to expand the students’ common sense. As Gravemeijer (1999) 
describes, “what is aimed for is a process of gradual growth in which formal mathematics comes 
to the fore as a natural extension of the student’s experiential reality” (p. 156).  

The student’s experiential reality includes what a student can access on a commonsensical 
level. As Freudenthal (1991) discusses, “”Real’ is not intended here to be understood 
ontologically (whatever ontology may mean), therefore neither metaphysically (Plato) nor 
physically (Aristotle); not even, I would even say, psychologically, but instead 
commonsensically” (p. 17). Accordingly, the problem context that serves as the basis of the 
reinvention process need not be “real” in the sense that the students would access such scenarios 
in their everyday life. Instead, the students only need to be able to access the problem context on 
an intuitive level. In this way, the movements of a magic carpet may provide a context for the 
reinvention of the formal mathematics of linear algebra (Wawro, Sweeney, & Rabin, 2011).  

Within an experientially real context, the reinvention process progresses through a series of 
instructional tasks that promote mathematizing the problem context. This activity of 
mathematizing, “which stands for organizing from a mathematical perspective” (Gravemeijer & 
Doorman, 1999, p. 116), is viewed as the mechanism through which students reinvent the 
mathematics. In fact, Garvemeiher (1999) asserts that it is “via a process of progressive 
mathematization, the students should be given the opportunity to reinvent mathematics (p. 158). 
Because progressive mathematizing has been described in the RME literature as the primary 
mechanism supporting guided reinvention, my discussion of the connections between guided 
reinvention and student learning will be focus on that mechanism. Progressive mathematizing is 
typically described as consisting of cycles of horizontal and vertical mathematizing.  

Initially, as students mathematize their own experiential reality, they are engaging in 
horizontal mathematizing. Horizontal mathematizing could include activities such as translating, 
describing, and organizing aspects of problem context into mathematical terms (Gravemeijer & 
Doorman, 1999). It is the nature of the artifact of the activity that provides an indication that 
horizontal activity has taken place. The artifacts of horizontal mathematizing, which may include 
inscriptions, symbols, and procedures, are used by the students to “express, support, and 
communicate ideas that were more or less already familiar” (Rasmussen et al., 2005, p. 164).  

While horizontal mathematizing is a crucial step in the reinvention process, reinvention 
“demands that the students mathematize their own mathematical activity as well” (Gravemeijer 
& Doorman, 1999, p. 116-177). As students mathematize their own activity, they engage in 
vertical mathematizing. Vertical mathematizing activities are characterized by the nature of the 
subject matter being mathematized, where it is the student’s mathematical activity that is now the 
subject of vertical mathematizing. This distinction between the context of the mathematizing 
activities, with horizontal mathematizing acting on familiar problem contexts and vertical 
mathematizing acting on mathematical activity, leads to differences in the artifacts resulting from 
these two forms of mathematizing. Instead of using the artifacts to describe already familiar 
situations and ideas (as with horizontal mathematizing), artifacts of vertical mathematizing can 
be used by students in more general settings to describe, express, and create previously 
unfamiliar mathematical ideas. In this way, vertical mathematizing expands what is 
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experientially real for the students by establishing a new mathematical reality. Examples of such 
activity include generalizing, defining, and algorithmatizing (Rasmussen et al., 2005). 

An example of progressive mathematizing in abstract algebra. To illustrate such a 
reinvention process, and the cycles of progressive mathematizing, consider an example from an 
RME inspired, abstract algebra curriculum – Teaching Abstract Algebra for Understanding 
(TAAFU). The TAAFU curriculum was designed to be used in proof based, introductory group 
theory courses at the undergraduate level. The TAAFU curriculum includes three main 
instructional units: groups and subgroups, isomorphism, and quotient groups. Each of these three 
units begins with a reinvention phase, where the students work on a sequence of tasks designed 
to help them develop and formalize a concept by drawing on their prior knowledge and informal 
strategies. The end product of the reinvention phase is a formal definition and a collection of 
conjectures (for a detailed description of TAAFU see Larsen, Johnson, and Weber, 2013).   

The quotient group unit is launched in the context of the symmetries of a square. By this 
point in the curriculum the students have worked extensively with symmetry groups as they 
reinvented the concepts of group and isomorphism (see Larsen, 2013). As a result, the group of 
symmetries of a square (and the associated operation table) is experientially real to the students, 
in that this group is accessible on an intuitive level. Also available within the students’ 
experiential reality is the behavior of the even and odd integers, specifically the pattern that even 
+ even = even, odd + even = odd, even + odd = odd, and odd + odd = even. The students are 
asked if they can find anything like the evens and odds in the symmetries of a square. This task 
represents a horizontal mathematizing activity because the students are being asked to 
mathematize two already familiar contexts, the symmetries of a square and the even/odd pattern.   

One possible artifact of this horizontal mathematizing may be a partition of the symmetries 
of square. In Figure 1 we see a student’s partitioning in which the symmetries of a square are 
divided into the rotational symmetries and the flip symmetries. In the TAAFU curriculum, the 
students are then asked to further mathematize their activity (and the associated artifact) by 
determining if this partition satisfies the definition of a group. Because the students are now 
mathematizing their own mathematical activity, determining if such a partition forms a group is 
an example of vertical mathematizing. In the course of this activity, the students determine that 
this partition could be viewed as a special type of a group – one in which the two elements of the 
group are subsets and the operation between any two subsets is determined by combining each 
element of one subset with each element of the other subset. In this way, the artifact of this 
vertical mathematizing activity is a new way to think about partitions and a new kind of group.  

 

 
Figure 1. An even/odd partition of the symmetries of a square 
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The TAAFU curriculum then asks the students if they can make a larger group by breaking 
the symmetries of a square into four subsets. Notice that this task is not explicitly asking the 
students to mathematize their previous activity (i.e., their new example of group). Instead, this 
task is asked from the perspective that the experientially real problem context has been expanded 
to include this new notion of a partition forming a group. This reflects a perceived shift in the 
mathematical reality, where this new type of group (an artifact of vertical mathematizing) is now 
accessible to the students. Therefore, the task posed to the students (to make a larger group by 
partitioning into more subsets) is an example of horizontal mathematizing. The artifact of this 
task is the symmetries of the square portioned into four subsets. The students are then again 
asked to engage in vertical mathematizing, as they determine if this four-element partition forms 
a group. This round of vertical mathematizing results in a more generalized view of partitions 
that form groups, and ultimately a working definition of (and means for constructing) a quotient 
group - a group of subsets under the operation of “set multiplication”. In this way, the TAAFU 
curriculum guides students in reinventing the concept of quotient group, through a process of 
progressive mathematizing.  
 
Emergent Models  

One approach to supporting students’ reinvention of mathematics is to design starting point 
tasks that can elicit informal student strategies that anticipate more formal mathematics. The 
RME emergent models instructional design heuristic (Gravemeijer, 1999) is meant to support 
this approach. In the emergent model heuristic, informal and intuitive models of students’ 
mathematical activity transition to models for more formal activity. A model is considered a 
model-of when an expert observer can describe the students’ activity in terms of formal 
mathematics that is the target of the instructional sequence (Larsen & Lockwood, 2013). The 
model later evolves into a model for more formal activity. The model is considered to be a 
model-for when students can use the model to support more general reasoning in new situations.  

In describing the progression from a model-of informal activity to a model-for more formal 
mathematics, Gravemeijer (1999) discusses four layers of activity. Initially student activity is 
restricted to the task setting, where their work is dependent on their understanding of the problem 
setting. Referential activity develops as students construct models that refer to their work in the 
task setting. General activity is reached when these models are no longer tied to the task setting. 
Finally, formal activity no longer relies on models. In regards to these four levels of activity, the 
shift from model-of to model-for is said to occur as students shift from referential activity to 
general activity. It is during this transition from referential to general activity that “the model 
becomes an entity in its own right and serves more as a means for mathematical reasoning than 
as a way to symbolize mathematical activity” (Gravemeijer, 1999, p. 164). 

During the instructional sequence the “model manifests itself in various symbolic 
representations” (Gravemeijer, 1999, p. 170). The chain of signification construct provides one 
way to describe changes in the symbolic representation of the model during an instructional 
sequence, and ultimately the evolution of the global model. Central to the chain of signification 
construct is the idea of a sign, which is made up of a signifier (a name or symbol) and the 
signified (that which the signifier is referencing, such as the students’ activity). A “chain of 
signification” occurs as students’ previous signs become the signified in subsequent signs. When 
this happens, it is said that the initial sign has slid under the subsequent sign. These local shifts in 
the form of the emerging model support the evolution of the global model in a number of ways. 
As Gravemeijer (1999) notes, “the chain of signification is in a sense the counterpart, on a more 
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specific level, of what the model is on a more general level” (p. 175). When one sign slides 
under, the new symbol efficiently encapsulates the students’ previous activity. In this way, the 
new sign serves to condense the earlier rounds of activity - placing the most general activity at 
the forefront of the chain while still allowing students to access their earlier activity if needed. 
Additionally, as the instructional sequence progresses, the constant revision of the signs ensures 
that the current sign is the most useful for the students’ current activity.  

While a chain of signification looks at the development of the model on a local scale by 
focusing on the form of the model, the transition from a record-of to a tool-for serves as a way to 
understand the development of the model on a local scale by focusing on the function of the 
model. As described by Larsen (2004), an inscription representing students’ mathematical 
activity transitions from a record-of to a tool-for when the students use the notational record to 
achieve subsequent mathematical goals. Therefore, instead of focusing on the relationships 
between the students’ emerging symbols and notations (as with chains of signification), the 
record-of/tool-for construct focuses on changes in how the emerging symbols and notations are 
used. These local shifts in the function of the emerging model support the evolution of the global 
model in a number of ways. For instance, a local of/for shift may indicate that one aspect of the 
student’s activity has become available to the student for more formal reasoning. The availability 
of this new tool reflects that certain aspects, or certain representations, of the global model are 
beginning to transition to a model-for more formal activity.  

Chains of signification and the record-of/tool-for construct provide lenses for describing 
local shifts in the various symbolic representations of the global model. The former attends to 
changes in the form of these symbolic representations, and the later attends to changes in the 
function of these symbolic representations. These local changes also support each other. Changes 
in the form of the representation provide students with more powerful inscriptions that better 
meet the needs of their current activity. As a result, these new inscriptions are more useful as 
tools. Additionally, as students change the function of the inscriptions to achieve new goals, they 
may adopt more efficient forms of the representations that highlight aspects that are especially 
useful. Therefore, the chains of signification and the record-of/tool-for constructs are reflexively 
related and work together to support changes in the global model.  

An example of emergent models in abstract algebra. In the first unit of the TAAFU 
curriculum, the students reinvent the group concept by investigating the symmetries of an 
equilateral triangle (see Larsen, 2013). Here the model is considered to be the algebraic structure 
of this particular group (the symmetries of an equilateral triangle). The students begin the unit by 
physically manipulating an equilateral triangle. Within this initial task setting, students identify, 
describe, and symbolize all of the symmetries of an equilateral triangle. The students then engage 
in referential activity when they being to manipulate the symbols that represent the symmetries 
of the triangle. This referential activity includes working with these symbolic representations in 
order to create a method for calculating combinations of symmetries. It is this referential student 
activity that an expert observer can describe in terms of the algebraic structure of this group. For 
instance, as students calculate certain combinations, they may regroup pairs of symmetries 
(implicitly using the associativity property) and notice that certain pairs of symmetries undo each 
other (implicitly using inverses). In this way, the structure of this group can be seen as a model-
of the students’ intuitive and informal activity. As the instructional sequence unfolds, the 
students’ activity progresses to generalized activity as they use the algebraic structure of this 
group of symmetries to analyze other systems (e.g., the integers under addition) and ultimately 

17th Annual Conference on Research in Undergraduate Mathematics Education 125



develop a formal definition of group. At this point, the concept is considered to be a model-for, as 
the students can use the concept to support more general reasoning in new situations.  

In this example the model (i.e., the algebraic structure of the group of symmetries of an 
equilateral triangle) undergoes a series of local changes in various symbolic representations of 
the students’ activity. These symbolic representations include the list of symmetries, an operation 
table, and a set of rules for manipulating symbols. The model comprises the collection of these 
representations, along with the connections between them. As a result, the development of this 
global model is reflexively related to 1) the development of more powerful forms of the model 
(as described by the chain of signification construct), and 2) the students’ increasing ability to 
reason with the various forms of the model (as described by the record-of/tool-for transition).   

Chain of signification. Initially, the students begin the group unit by physically moving a 
triangle in order to identify the six symmetries of an equilateral triangle. The students are then 
asked to represent these six symmetries with a diagram, a written description, and a symbol (see 
Figure 2). This set of inscriptions can be thought of as a signifier that signifies the students’ 
activity of manipulating the triangle. The students are then asked to generate a new set of 
symbols, this time representing each symmetry in terms of a vertical flip, F, and a 120o 
clockwise rotation, R. This new set of symbols represents the next step in the chain of 
signification, with the earlier sign sliding under this subsequent sign. The original sign, which 
was composed of both the students’ initial signifier (i.e., their initial inscriptions) and the original 
signified activity (i.e., physically manipulating the triangle), is now signified by this new set of 
symbols. So as the chain builds, students no longer need to directly consider their original 
activity of manipulating the triangle. For example, when working with symbols expressed in 
terms of F and R, students may no longer need to keep in mind that they refer to motions of a 
triangle. 

 
Figure 2. Diagrams and initial symbols for the symmetries of an equilateral triangle 
 
This new set of symbols (in terms of two generators F and R) supports the students in 

developing a set of rules for calculating the combination of any two symmetries. For instance, 
when combining a vertical flip (F) and a flip over one of the diagonals (F +R) the symbolic 
expression F +(F + R) invites regrouping the F’s and then ignoring them because performing a 
flip twice is the same as doing nothing1. Therefore, it is in the students’ use of these more 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  With the students original symbols (shown in Figure 2) this combination would be represented 
by (⊥𝐵𝐶 F) (⊥𝐴𝐵 F), which does not suggest the possibility of rule-based calculations the same 
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efficient symbols (in terms of F and R) that an expert can begin to describe the students’ activity 
in terms of the model. Specifically, as students begin to develop rules for calculating 
combinations of these symmetries, an expert would be able to recognize the algebraic structure 
of the group of symmetries as a model-of the students’ activity. As a result, the sliding under of 
the students’ initial inscriptions helped to support the development of the students’ emerging 
model by 1) providing them with powerful inscriptions, and 2) transitioning their activity from 
the initial task setting to referential activity.  

Tool-of/record-for. Once the students develop a common set of symbols using F and R, they 
are asked to determine the result of the combination of any two symmetries. As a way to 
organize the 36 different combinations, some students choose to record their results in an 
operation table. In this way, an operation table can initially emerge as a record-of the student’s 
activity. This record-of can later be used by students as a tool-for subsequent mathematical 
activity. For instance, partial operation tables can be used by students to argue that the identity 
element of a group must be unique. This was the case during a teaching experiment that 
supported the development of the TAAFU curriculum. In this teaching experiment, a student 
worked to show that the identity element of a group must be unique. This student employed a 
partial operation table, with arbitrary elements, in order to construct a proof (see Figure 3).  As 
discussed by Weber and Larsen (2008), the student’s modification of the operation table, 
including the use of arbitrary elements and only including aspects of the table that were needed 
to support her reasoning, “suggests that she was using the table as a tool to support her reasoning 
and not merely as a crutch for recalling the steps of a procedure” (p. 148). 

 
Figure 3. Operation table as s tool-for 

 
In this example, the student was able to use an operation table to prove that the identity of a 

group must be unique. This represents the operation table shifting from a record-of the student’s 
activity to tool-for further mathematizing. This shift in the function of the operation table, from 
an inscription (of one aspect) of the model to an instrument that can used for justification, can be 
seen as a local change that supports the global of/for transition of the model in two important 
ways. First, the operation table represents one aspect of the global model. Therefore, this local 
of/for shift in the function of the operation table reflects that one aspect of the global model is 
now available to the students for more formal reasoning. Second, the student was able to 
leverage the operation table as a tool as she reasoned about the formulation of the identity 
property. In this way, the operation table served as a tool for supporting the development of 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
way that F +(F + R) does (See Larsen (2009, 2013) for a more detailed discussion of the use of 
compound symbols).	  
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another aspect of the global model – the axioms that characterize the algebraic structure of this 
group. Therefore, this local shift of the operation table from a record-of activity to a tool-for 
further mathematizing aided in the development of other aspects of the global model, and reflects 
an increasing ability to reason with the various forms of the model.  
 

Framing RME Design Heuristics as Lenses on Student Learning: Two Metaphors 
Captured within both the guided reinvention and the emergent model heuristics is the duality 

of engaging in more generalized activity and developing mathematical concepts. By teasing apart 
these two aspects, two lenses for describing the purpose of these RME design heuristics come 
into focus. One lens, which considers the guided reinvention and emergent model heuristics in 
terms of more generalized student activity, places the emphasis on instruction that promotes 
“socially and culturally situated mathematical practices” (Rasmussen et al., 2005, p. 55). The 
other lens, which considers the guided reinvention and emergent model heuristics in terms of 
concept development, places the emphasis on instruction that supports the reification of student 
activity. In the following section I draw on Sfard’s (1998) two metaphors for learning, the 
participation metaphor and the acquisition metaphor, to provide insight into how the design 
heuristics support student learning. Additionally, by considering the implication of these two 
metaphors, I will present two conceptualizations of the notion of a “new mathematical reality”.    
 
Participation Metaphor and the Creation of New Mathematical Realities   

Sfard (1998) describes the participation metaphor for learning as a view in which “learning” 
is synonymous with becoming a participant in a community, and “knowledge” is synonymous 
with aspects of practice/discourse/activity (p. 7). With this view, the emphasis is placed on what 
the student is doing, and the context in which that practice is taking place (as opposed to 
emphasizing the mental constructs the students have). This emphasis on the students’ activity 
offers a lens to describe guided reinvention and emergent models in terms of more generalized 
activity that the heuristics are intended to support.  

With the guided reinvention heuristic, instruction can be designed with the purpose of 
supporting student activity through progressive mathematizing. During the process of 
progressive mathematizing, the students’ activity shifts repeatedly from horizontal to vertical 
mathematizing. This shift in the type of mathematizing corresponds to a shift in the generality of 
the student activity. Initially, horizontal mathematizing is limited to the specific problem context. 
As students transition to vertical mathematizing, this specific problem context is no longer the 
focus of the activity, rather the students mathematize their own mathematical activity to support 
their reasoning in a different or more general situation. Similarly, within the emergent models 
heuristic, there is an intention to progress students from activity situated within a specific task 
context to referential, general, and formal activity. In particular, the model-of/model-for 
transition is linked to a shift in the students’ activity from referential (where their activity 
references aspects of the original task setting) to general (where the students activity is no longer 
tied to the original task setting). The activity that supports the transition from a model-of to a 
model-for is an especially significant example of vertical mathematizing. When the students are 
engaged in referential activity, the model emerges as a result of the students mathematizing the 
problem context (i.e., horizontal mathematizing). As the students move into general activity, they 
begin to mathematize aspects of their emerging model. In this way the transition between 
referential and general activity can be interpreted as the result of vertical mathematizing. 
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By focusing on the student activity, we get a framing of the RME design heuristics that is 
consistent with a participation metaphor for learning. With this framing, the process of 
progressive mathematizing (guided reinvention) and the progression thorough more general 
layers of activity (emergent models) align with Rasmussen et al.’s (2005) notion of advancing 
mathematical activity – where advancing mathematical activity is understood as “acts of 
participation in different mathematical practices” (p. 53). From this perspective, “participation in 
these practices, and changes in these practices, is synonymous with learning” (p. 55). Continuing 
with the participation metaphor, one could ask what it means for student activity (i.e., learning) 
to support the development of a new mathematical reality. I propose that, from a participation 
perspective on learning, the creation of a new mathematical reality can be understood as the 
creation of a new context for further activity, and new ways for students to participate in that 
context.  

 
Acquisition Metaphor and the Creation of New Mathematical Realities   

With the acquisition metaphor, learning is viewed as the acquisition of knowledge and 
concepts. This perspective “makes us think about the human mind as a container to be filled with 
certain materials and about the learner as becoming an owner of these materials” (Sfard, 1998, p. 
5). This perspective places the emphasis on concept development, where “concepts are to be 
understood as basic units of knowledge that can be accumulated, gradually refined, and 
combined to form ever richer cognitive structures” (p. 5). This perspective comes to the forefront 
when the guided reinvention and emergent models heuristics are framed in terms of reification 
(e.g., Gravemeijer, 1999; Gravemeijer & Doorman, 1999). As described by Sfard (1991) 
mathematical objects (such as numbers and functions) historically developed through a recurring 
pattern of reification, in which “various processes had to be converted into compact static 
wholes” (p. 16). Similarly, one can conceive of the guided reinvention and emergent models 
heuristics as processes through which student activity becomes reified into mathematical objects. 
This emphasis on reification offers a lens to describe these two design heuristics in terms of the 
development of the concept, where aspects of the students’ mathematical activity become reified 
as they engage in more general activity. 

With guided reinvention, mathematical concepts develop as a result of horizontal and vertical 
mathematizing. By engaging in horizontal mathematizing, the students translate aspects of their 
mathematical reality into mathematical terms. The artifacts of horizontal mathematizing may 
include inscriptions, symbols, and procedures that represent aspects of an already familiar 
problem context. During vertical mathematizing, it is the students’ own horizontal 
mathematizing (and resulting representations/artifacts) that are mathematized. In this way, the 
students’ activity becomes the subject matter for subsequent mathematical activity. As described 
by Freudenthal (1971), “the activity on one level is subjected to analysis on the next, the 
operational matter on one level becomes a subject matter on the next level” (p. 417). It is this 
shift, from “operational” to “subject matter”, that Gravemeijer and Terwel (2000) state is related 
to reification, where this shift reflects that aspects of the students’ activity have evolved “into 
entities of their own” (p. 787).  Similarly, the shift from model-of to model-for is related to the 
process of reification (Gravemeijer, 1999). As students shift from referential activity to general 
activity “the model becomes an entity in its own right and serves more as a means of 
mathematical reasoning than as a way to symbolize mathematical activity grounded in particular 
settings” (p. 164). Therefore, the model – which Gravemeijer (1999) describes as “an 
overarching concept” (p. 170) – transitions from an artifact of the students’ mathematical activity 
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to a mathematical object independent of the students’ original activity. In this way the shift from 
model-of to model-for, which can be understood to be the incorporation of this new object into 
the students’ experiential reality, reflects the creation of a new mathematical reality.  

By focusing on the reification of student activity, and therefore on concept development, we 
get a framing of the RME design heuristics that is consistent with an acquisition metaphor for 
learning. From an acquisition perspective, learning not only supports the creation of a new 
mathematical reality (as it did with the participation metaphor), learning can be viewed as 
synonymous with the creation of a new mathematical reality. I propose that, from an acquisition 
perspective on learning, the creation of a new mathematical reality can be conceptualized as the 
incorporation of new mathematical objects into the students’ experiential reality. These new 
mathematical objects can be understood as concepts that form “ever richer cognitive structures” 
(Sfard, 1998, p. 5), and the fact that they become incorporated into the students’ experiential 
reality reflects that the students are able to access these concepts on an intuitive level.  

 
Implications for Analyzing Student Learning 

The participation and acquisition metaphors offer two perspectives on student learning – one 
primarily focusing on the activity of the students and the other primarily focusing on the 
development of the mathematical concepts. These two perspectives can provide theoretical 
support for analytic techniques designed to document student learning, especially in classrooms 
with RME inspired curricula materials. For instance, if the curricular materials were designed to 
encourage student learning by way of an emergent models transition (either because the 
engagement in such activity is learning or because engaging in such activity supports learning by 
developing a mathematical concept), then attempts to document student learning could explicitly 
draw on the theoretical constructs related to such a transition. In this section I will consider 
implications for analyzing student learning in cases where the instructional design is consistent 
with these RME heuristics (guided reinvention and/or emergent models). Specifically, I will 
consider what could count as evidence of student learning by considering examples from the 
TAAFU curriculum.  

 
Evidence for Student Learning from a Participation Perspective  

In order to document student learning from a participation perspective, the focus of analysis 
needs to be placed on 1) the students’ participation in mathematical practices, and 2) changes in 
the mathematical practices of the students. The RME design heuristics provide a lens for looking 
at: the nature of the practices that students engage in (mathematizing), the trajectory of the 
students’ activity in terms of generality (progressive mathematizing and layers of generality), 
and changes in the context and the ways students participate in that new context (new 
mathematical realities).  

Because student learning is taken to be synonymous with participation in practices (and 
changes in those practices) documenting the mathematical activity of the students is a necessary 
for document student learning. Central to the guided reinvention heuristics is mathematizing. 
While a complete taxonomy of such practices has not been compiled, there are several examples 
of mathematizing practices in the literature. These include: translating, describing, organizing, 
symbolizing, algorithmatizing, defining, and generalizing (Gravemeijer & Doorman, 1999; 
Rasmussen et al., 2005; Zandieh & Rasmussen, 2010). For instance, in the quotient group unit of 
the TAAFU curriculum, tasks are designed to support students in organizing the operation table 
of the symmetries of a square into an even/odd pattern, proving that some partitions of groups 
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themselves form groups, and defining a new category of group. When taking a participation 
perspective on learning, the documentation of student engagement in such activity provides 
evidence of learning.    

Analysis can go even further if the instructional sequence was designed in accordance with 
the guided reinvention or emergent models heuristics. Both design heuristics, as used by the 
curriculum developer, inform a hypothesized trajectory that the instructional sequence is 
designed to support. These hypothesized trajectories can serve as a guide for analyzing the 
progression of the students’ participation in mathematical activity. With the guided reinvention 
design heuristic, the instructional sequences are designed to support hypothesized trajectories of 
progressive mathematizing. With emergent models, the instructional sequences are designed to 
support hypothesized trajectories of increasingly general activity. Therefore, with either design 
heuristic, student learning can be documented in relation to a hypothesized trajectory of student 
activity. For instance, in the group unit of the TAAFU curriculum, instruction was designed to 
support students in moving from: identifying, describing, and symbolizing all of the symmetries 
of an equilateral triangle (task setting activity), to developing a calculus for combining 
symmetries (referential activity), to using the algebraic structure of this particular group of 
symmetries to analyze other systems and defining a group (generalized activity), to leveraging 
the properties of groups in order to develop the isomorphism concept (formal activity). Using 
this hypothesized progression as a guide, analysis can be carried out to determine the extent to 
which the students’ activity followed this path. Tracing such a development would be evidence 
of changes in the students’ participation and therefore would be evidence of student learning.  

In addition to looking at changes in the students’ mathematical practices by analyzing the 
trajectory of the student activity, it is also possible to look at changes in the mathematical 
practices by analyzing changes in the mathematical context in which the practices are taking 
place. The notion of a new mathematical reality (as understood from a participation perspective) 
provides a lens for describing the development of new mathematical contexts for further activity, 
and for describing new ways students participate in the new context. For instance, in the quotient 
group unit of the TAAFU curriculum, the guided reinvention design heuristic informed a 
progressive mathematizing sequence. This sequence culminates with an expanded mathematical 
reality that includes a working definition of quotient groups. Additionally, this sequence provides 
students with opportunities to reason within this new context. As students try to build partitions 
that form a group, they often try a number of different partitions and begin to develop a process 
for building quotient groups and an intuition about why some partitions form groups while others 
do not. In this way, the mathematical reality for the students’ activity changes as they engage 
with the instructional sequence – both in terms of the context in which the activity takes place 
(an expanded context which includes quotient groups) and in terms of the way that the students 
interact in the context (in terms of the ways students reason about partitions). Again, 
documenting such shifts provides evidence of student learning.  

Therefore, when analyzing student learning from a participation perspective, the RME design 
heuristics provide powerful lenses for documenting student practice and changes in these 
practices. The various mathematizing activities described in the literature provide examples and 
characterizations of mathematical practices. Documenting student participation in such practices 
is a necessary component to documenting student learning. However, it is also necessary to 
understand changes in the students’ practice. The RME design heuristics provide two avenues for 
analyzing changes in practice. Learning trajectories based on supporting students in progressive 
mathematizing and/or progressing through layers of generality provide a framework for 
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analyzing how the mathematical practices of the students are changing in regards to the 
generality of their activity. Additionally, the notion of a new mathematical reality provides a way 
to discuss both changes in the context of the students’ activity and changes in how students 
participate in this new context.    
 
Evidence for Student Learning from an Acquisition Perspective  

The documentation of student learning from an acquisition perspective focuses on the 
development of the mathematical concepts. With both the emergent models and guided 
reinvention design heuristics, the mathematical concepts develop as aspects of the students’ 
mathematical activity become reified. Instead of considering the reification of a global concept, 
here I will consider a smaller grain size of analysis by discussing the documentation of local 
evidence of student learning. This approach is similar to the one taken by Rasmussen and 
Marrongelle (2006), who pointed out that, “connecting the model-of/model-for transition to 
reification is a strong requirement that typically accompanies extended periods of time” (p. 391). 
Therefore, Rasmussen and Marrongelle chose to analyze teaching practices on the day-to-day 
level by focusing on a version of the emergent model heuristic that did not require reification 
(transformational records). Similarly, when considering the emergent model heuristic, I will 
consider evidence of student learning on a local level. These local changes can either be 1) 
related to the form of the model the, as described by the chains of signification construct, or 2) 
related to the function of the model, as described by the record-of/tool-for construct. In the case 
of the guided reinvention heuristic, the goal is to find evidence of incremental expansions in 
what is experientially real for the students. From an acquisition perspective, this is understood as 
a creation of a new mathematical reality, where new mathematical objects become incorporated 
into the students’ experiential reality. Documenting changes to the mathematical reality will 
focus on changes in the objects that arise as artifacts of progressive mathematizing.  

The TAAFU curriculum launches in the context of the symmetries of an equilateral triangle. 
As seen in Figure 2, an early sign that emerges in this context is composed of a signifier (an 
initial set of inscriptions for the six symmetries) and a signified (the students’ activity of 
physically manipulating an equilateral triangle). The curriculum then prompts students to 
generate a new set of symbols in terms of F and R, and in doing so supports the progression of 
the chain of signification. This new set of symbols represents a signifier in the next step in the 
chain of signification, with the earlier sign sliding under to become the object that is being 
signified by these symbols. This shift in the form of the model to one that is more powerful can 
be seen as a local change that is part of (and supports) the more global transition to a model for. 
Therefore, one sign sliding under a subsequent sign supports the reification of the global model 
by supporting shifts in the form that the model takes. As a result, documenting instances in 
which signs slide under is a way to capture local shifts in students’ concept development and can 
provide evidence of student learning.  

Once the students develop a common set of symbols using F and R, they are asked to 
determine the result of the combination of any two symmetries. An operation table initially 
emerges as a record-of the students’ activity. Later, as the students argue that the identity 
element of a group must be unique, students may draw on the operation table as a tool-for 
constructing a proof. This shift in the function of a representation of the model, from an 
inscription to a instrument, can be seen as a local change that is part of (and supports) the more 
global transition to a model-for. Therefore, an inscription shifting from a record-of to a tool-for 
supports the reification of the global model by supporting shifts in the function that the model 
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serves. As a result, documenting local instances of such transitions is a way to capture local 
shifts in students’ concept development and can provide evidence of student learning.  

The guided reinvention design heuristic, and the process of progressive mathematizing, 
provides a lens to document incremental expansions in the student’s mathematical reality. The 
quotient group unit is launched with the assumption that both the behavior of the even/odd 
integers and the operation table for the symmetries of a square are experientially real for the 
students. From here, the first symbolic artifact is a partition of the symmetries of square into two 
sets. However, it is not until the students engage in vertical mathematizing (by proving that this 
partition forms a group) that this partitioning activity becomes a new type of object that is 
accessible to the students on an intuitive level (i.e., a special type of group with two subsets as 
elements). This expansion in the students’ mathematical reality, which can be understood in 
terms of new mathematical objects being accessible to students on an intuitive level, represents 
student learning from an acquisition perspective. Therefore, one way to document learning in 
this context is to look for evidence that new mathematical objects have become accessible and 
useful to the students as they work in more general problem contexts. In the example provided 
here, the students’ activity of forming this new type of group (with two subsets as elements) 
resulted in a new object within the students’ experiential reality (where the new object is the new 
type of group). In order to document such a change in the students’ mathematical reality, one 
could look for evidence that this new object has become available for further progressive 
mathematizing. This could include students being able to further mathematize this expanded 
context to move beyond a focus on parity by intentionally forming groups made up of subsets. 

So, when analyzing student learning from an acquisition perspective in situations where the 
learning is designed to be supported through a model of/for transition, we can look for local 
shifts in the form and function of the emerging model. This includes looking for indications that 
one sign has slid under a subsequent sign and looking for indications that a record-of student 
activity is serving as a tool-for subsequent student activity. Both of these local shifts support the 
reification of the global model (i.e., student learning from an acquisition perspective). Further, 
when analyzing student learning from an acquisition perspective in situations where the learning 
is designed to be supported through progressive mathematizing, we can look for incremental 
additions to the students’ mathematical reality. These additions reflect that aspects of the 
students’ activity have become objects that are now accessible for further mathematizing.  
 

Conclusions 
RME offers curriculum developers with a powerful theory for instructional design. Emergent 

models supports instructional design efforts by describing a mechanism through which students’ 
informal and intuitive activity can be leverage to support the development of formal 
mathematics. Guided reinvention provides a description of how, by engaging in mathematical 
activity, students can expand the mathematical reality that they are able to access on an intuitive 
level. Part of the power of these two design heuristics resides in the fact that they place a dual 
emphasis on supporting both the students’ mathematical activity and the formal mathematics that 
the curriculum is intended to develop. As a result, the curriculum developer can design 
curriculum with both student activity and concept development in mind.  

While this focus on both activity and the concept development makes the theory flexible and 
powerful as an instructional design theory, it can be a confounding factor when trying to 
carefully articulate some of the fundamental RME constructs. For example, the idea of a new 
mathematical reality is left undefined although it is used often in the RME literature in order to 
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describe the result of student mathematical activity. This lack of precision in the descriptions of 
these theoretical constructs became a significant problem as I tried to investigate the impact of 
the TAAFU curriculum on student learning. The curriculum was designed to support students in 
creating a new mathematical reality and developing formal mathematics through a model-
of/model-for transition. So, it made sense to rely on these constructs to support my investigation. 
However, without knowing precisely what a new mathematical reality is, it is very difficult to 
argue that one has been established. In an effort to address such difficulties, this paper was 
written to explore the implications of RME for documenting student learning. I set out to first 
coordinate the RME theory related to the emergent model and guided reinvention design 
heuristics. Both of these heuristics support the development of new mathematical realities by 
engaging students in increasingly generalized activity, and both can be described in terms of 
more generalized activity and in terms of concept development. By focusing independently on 
these two aspects of the design heuristics, I was able to draw on Sfard’s (1998) participation and 
acquisition metaphors for learning in order to discuss how these design heuristics support student 
learning.  

Considering the design heuristics in light of these two perspectives on learning afforded a 
powerful lens for making sense of the idea of a new mathematical reality and for discussing what 
could be considered as evidence for student learning. I propose that, from a participation 
perspective, the creation of a new mathematical reality can be understood as the creation of a 
new context for further activity, and new ways for students to participate in that context. The 
RME design heuristics suggest a number of ways to document student learning from this 
perspective, including the following: documenting the mathematizing activities that students are 
engaged in; documenting how the mathematical practices of the students are changing in terms 
of the generality of their activity; and documenting changes in the students mathematical reality 
– both in terms of the context of the students’ activity and in terms of how students participate in 
this new context. From an acquisition perspective on learning, I propose that the creation of a 
new mathematical reality can be conceptualized as the incorporation of new mathematical 
objects into the students’ experiential reality. The incorporation of these new objects reflects that 
they have become accessible to students on an intuitive level. Again, the RME design heuristics 
suggest a number of ways to document student learning from this perspective, including the 
following: documenting when one sign has slid under a subsequent sign; documenting when a 
record-of student activity is serving as a tool-for subsequent student activity; and documenting 
incremental additions to the students’ mathematical reality.  
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WHY ADVANCED MATHEMATICS LECTURES OFTEN FAIL 

Kristen Lew1, Tim Fukawa-Connelly2, Juan Pablo Mejia-Ramos1, and Keith Weber1 
Rutgers University1 and Drexel University2 

Research on mathematicians’ pedagogical practice in advanced mathematics is sparse. The 
current paper contributes to this literature by reporting a case study on a mathematics 
professor’s presentation of a proof in a real analysis course. By interviewing the professor, 
we focus on his pedagogical goals when presenting this proof and link those with the actions 
that he took to achieve these goals. By interviewing six students, we investigate how they 
interpreted the proof and what they learned from it. Our analysis provides insight into why 
students did not learn what the professor intended to convey in his presentation. 

Key words: Lecture; Proof; Undergraduate mathematics education; analysis 

Introduction and Research Questions 
In advanced mathematics courses, what do mathematics professors try to convey in their 

lectures? How do they try to convey this mathematics to their students? How do students 
interpret the lectures? If students do not learn the mathematical content that the professors 
aim to communicate, what can account for their failure? Given the widespread prevalence of 
lectures in advanced mathematics courses, these questions are of central importance to 
research in undergraduate mathematics education. Yet, surprisingly, there has been relatively 
little empirical research in this area. The broad aim of this paper is to investigate these issues 
in the context of one mathematics lecture. To investigate this issue, we studied the 
presentation of a proof in an advanced mathematics class from three perspectives: the 
researcher’s perspective, the professor’s prospective, and the students’ perspective. We used 
this to address the following questions: 
(1) What mathematical content was the professor trying to convey in his presentation of the 
proof and how did he try to convey this content? 
(2) How would knowledgeable members of the mathematical community interpret this proof? 
Would their interpretations align with the professor’s? 
(3) How did students who attended the lecture interpret this proof? Did their interpretations 
align with those of the professor or the mathematical community? 
(4) If students did not interpret the lecture in the way the professor intended, what factors 
might have contributed to this unsuccessful communication? 

Because this is a case study, this report will not contain findings that are necessarily 
generalizable. However, since these questions have rarely been addressed empirically in the 
literature (especially (3) and (4)), this report will offer important hypotheses about students’ 
and professors’ perceptions of mathematics lectures. 

Related Literature 
Perceptions of Lectures in Advanced Mathematics 

Although lectures are the dominant form of pedagogy in advanced mathematics 
classrooms, many mathematics educators and some mathematicians question their 
effectiveness (e.g., Davis & Hersh, 1981; Dreyfus, 1990; Leron & Dubinsky, 1995; Hersh, 
1993; Thurston, 1994). There are three common complaints about lectures in advanced 
mathematics classrooms. First, lectures emphasize formalism, sometimes to the point of 
consisting entirely of definitions, theorems, and proof. This emphasis denies students the 
opportunity to see informal modes of mathematical reasoning, such as how mathematical 
concepts might be represented diagrammatically, how proofs were generated, or why 
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concepts are defined the way they are. As a result, students end up with a misleading view 
about mathematics and are unable to complete some important mathematical tasks such as 
exploring, defining and conjecturing (e.g., Davis & Hersh, 1981; Dreyfus, 1990; Thurston, 
1994). Second, formal proof is a poor way to convey mathematical content and other less 
formal explanations might be more accessible to students (Leron, 1983; Hersh, 1993; 
Rowland, 2001). Third, mathematicians are disinterested in their teaching and hence do not 
put adequate effort into preparing their lectures (e.g., Davis & Hersh, 1981), perhaps because 
they believe their students are incapable of learning the material (Leron & Dubinsky, 1995). 
It should be emphasized here that these views are based on widespread opinion or some 
authors’ own experiences rather than empirical studies of mathematicians’ teaching or their 
perceptions of teaching. 
What is Known About Lectures in Advanced Mathematics 

In 2010, Speer, Smith, and Horvath claimed that there was only one empirical study in the 
literature that systematically examined what occurred in lectures in advanced mathematics 
while also interviewing the professor about his intentions (Weber, 2004). Since their review, 
several other mathematics educators have observed and analyzed mathematics lectures (e.g., 
Fukawa-Connelly, 2012, in press; Fukawa-Connelly & Newton, in press; Mills, 2014), but 
the instructor’s and students’ perspectives of these lectures was not investigated. Rather the 
authors imputed motives to the instructors to make sense of their behaviors and broadly 
described learning opportunities that students would have when observing the lectures. In 
general, the results of these studies, as well as the study of Weber (2004), are inconsistent 
with the widespread complaints against lectures. The lectures that were observed were not 
purely formal; professors regularly used diagrams (Mills, 2014; Weber, 2004) and examples 
(Fukawa-Connelly & Newton, 2012) and tried to model appropriate mathematical behaviors 
(Fukawa-Connelly, 2012). The professor interviewed by Weber (2004) cared deeply about 
his instruction and his lectures were based on a good deal of thought. It must be emphasized 
that these case studies were based on a small and possibly unrepresentative sample of 
mathematicians; professors who agree to have their lectures observed might have a tendency 
to be especially thoughtful and inclusive of informal explanations and examples. 
Nonetheless, these studies indicate that more research is needed on whether and why lectures 
are ineffective for students. 

Theoretical Perspective 
In this paper, we draw on three theories. First, we adopt several perspectives from the 

New Literacies Movement (Gee, 1990). We do not think of a lecture as being equivalent to a 
transcript of what was spoken, but rather treat the totality of a lecture, including the words 
spoken by the professor, the intonations of these words, chalk inscriptions, and kinesthetic 
movements, as a single coherent piece of text. We also follow Selden and Selden (2003) in 
adapting the framework of Bogdan and Straw (1990) to characterize three locations where the 
meaning of a mathematical text might reside: with the author of the text (i.e., the professor), 
with the reader (i.e., the student), or independent of the author and reader. It is interesting to 
note that mathematicians tend to treat mathematical text, and especially mathematical proof, 
as being independent of both the author and the reader. As Selden and Selden (2003) 
remarked, “mathematicians say that an argument proves a theorem, not that it proves it for 
Smith and possibly not for Jones” (p. 11) and Shanahan, Shanahan, and Misischia (2013) 
wrote that mathematicians actively try to avoid considering who wrote a mathematical paper 
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when they read it1. As we noted previously, previous researchers on lectures in advanced 
mathematics implicitly adopted this position when they study mathematics lectures. They 
study what actually occurred during lecture, but do not actively consider the perspectives of 
the lecturer or student. In this paper, we do not suppose that there is a correct or best way to 
characterize where the meaning of a text resides. Rather we analyze the meaning of the text 
from three perspectives—that from the author of the text (i.e., the professor who presented 
the proof), the intended readers of the text (i.e., the students who observed the presentation of 
the proof), and from the perspective of knowledgeable members of the mathematical 
community.  

Second, we follow de Villiers (1990) and others who observe that conviction is not the 
only reason, or even the primary reason, that proofs are presented in mathematics or 
university classrooms (e.g., Hanna, 1990; Hersh, 1993; Rav, 1999; Yopp, 2011; Weber, 
2012). de Villiers (1990) listed four other functions of proof: explanation, discovery, 
communication, and systematization. For explanation, Hanna (1990) and Hersh (1993) 
argued that explanation should be the primary function of proof in the classroom. Weber 
(2010) suggested that for pedagogical purposes, one could view a proof as explanatory if 
students are able to relate the content of the proof to informal representations of mathematical 
concepts (such as diagrams, graphs, or kinesthetic motions) that are internally meaningful to 
the audience of the proof. For discovery, proofs of non-routine theorems often introduce new 
ideas or methods that can be extrapolated to discover and prove other theorems. Indeed, 
mathematicians claim that the primary reason that they read published proofs is to identify 
methods that will help them solve problems that they are working on (e.g., Rav, 1999). Hanna 
and Barbreau (2008) argued that classroom proofs could be more pedagogically valuable for 
students if they introduced new proving or problem-solving methods as well. By 
communication, de Villiers (1990) meant that by using proofs, mathematicians adopted 
shared standards of communication that could facilitate debate and resolution, but a 
discussion of these standards were not present in the lecture we observed or the interview 
with the professor. Likewise, systematization, or axiomatizing a theory, was not observed. 

Third, we adopt the theoretical notion of codes proposed by Weinberg and Weisner 
(2011) on the reading of mathematical text. The meaning of a text is not literally contained in 
the text. Rather, the author of the text encodes his or her intended meaning in some way. We 
refer to this as the encoded content of the text (throughout the paper, we define “content” 
broadly to be anything that the author of a proof intended to convey or anything the reader of 
the proof took away from it). Weinberg and Weisner (2011) argued that readers of texts have 
codes, defined to be the reader’s “system of signification” or “a way of ascribing meanings to 
the parts of the text” (p. 53). If a reader of a proof had different codes than the intended 
universal audience of the proof, his or her interpretation of the proof will differ from that of 
the author’s and hence will not develop the mathematical understandings and insights that the 
author intended to convey. Of course, possessing the appropriate codes does not guarantee 
that comprehension will occur, but lacking them will make comprehension difficult. 

Related Literature 
The Lecture 

This research took place at a large state university in the northeast United States in a real 
analysis course. At this university (and most universities in the United States), real analysis is 
a junior-level course that is required for mathematics majors. We chose to study a section of 

                                                
1 Based on empirical studies, we believe these claims and those that follow are overstated (Inglis et al, 2013; 
Weber, Inglis, & Mejia-Ramos, 2014; Weber & Mejia-Ramos, 2011). 
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the course taught by Dr. A. Dr. A had extensive experience teaching collegiate mathematics 
and regularly taught this real analysis course. He also received very high teaching evaluations 
from his students and had a reputation for being an outstanding instructor amongst his 
colleagues.  

The lecture that will be investigated in this paper was videotaped during the eighth week 
in the course. During the lecture, Dr. A almost always positioned himself between the 
students, who were sitting in desks, and the blackboard. Our video recording of the lecture 
focused exclusively on the actions of the professor, capturing what comments he said orally, 
what he wrote on the blackboard, and the gestures that he made. Our analysis in this paper 
focuses on a proof about sequences {xn} having the property that there exists a constant r 
(with 0 < r < 1) such that for any two consecutive terms in the sequence xn-1 and xn, it is the 
case that |xn – xn-1|<rn. Dr. A proved a theorem that sequences with this property are 
convergent. This 11-minute proof presentation was one of seven proofs in the lecture and was 
chosen because it was the most conceptually interesting; the other six proofs focused on 
computation or showing that a particular example satisfied a given definition. 

To avoid ambiguity, we refer to the blackboard proof as the argument that Dr. A 
inscribed on the blackboard demonstrating that the theorem was true. We refer to the lecture 
proof as the totality of the prof, including oral comments and gestures made by Dr. A. The 
focus of this study is on the lecture proof. 
Our Interpretation of the Text 

As a first pass through the data, we attempted to interpret what content could be learned 
through the lecture from by a mathematically enculturated individual. The lecture proof was 
viewed individually by the four authors of the paper, who all had experience teaching courses 
in advanced mathematics and all had or were pursuing master’s degrees in mathematics.  

Each member of the research team flagged instances when he or she felt that Dr. A was 
trying to convey an idea to his students. For each instance, the researcher noted what content 
was being covered and how it was encoded. We also coded the type of content based on de 
Villiers’ (1990) purposes of proof. If the emphasis of the content was on verifying that a 
given statement was true, we coded this content as an instance of verification. If Dr. A gave a 
conceptual explanation for why the theorem was true, we coded this content as conceptual 
explanation. If Dr. A highlighted ideas within the proof that might be useful for discovering 
or proving other theorems, we coded this content as method. After individually coding the 
lecture, the research team met to compare their findings and reach a consensus. We sought 
independent confirmation of our analysis by asking a lecturer in mathematics who was 
currently teaching a course in real analysis to view the videotape and describe what he 
thought were the main ideas of the lecture.  
The Author’s Aims and Interpretation of the Text 

After the initial analysis of the text, the first author met individually with Dr. A for an 
audio-recorded interview. The interviewer first asked Dr. A why he chose to present this 
theorem and its proof. Dr. A was then asked what he thought were the main ideas he was 
trying to convey to the class in his proof. Next, Dr. A was shown the video from his lecture of 
the proof and was asked to stop the recording at any point where he was attempting to convey 
the content that he just described, or to identify any other points that he may have neglected 
to mention. Whenever Dr. A stopped the tape to identify content that he was trying to 
communicate to students, the interviewer would ask how Dr. A was trying to convey that 
content to the students. This interview lasted 75 minutes. 

 We analyzed Dr. A’s comments about the content he was trying to convey using a 
semi-open coding scheme. If his comments were consistent with what we observed, we 
would fold them into the categories that we formed in our analysis of the tape. If not—that is, 
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if he introduced new content or described the content that we observed in a different way—
we would form a new category. Again, the content of this category was then coded using the 
categories that we described above. We also noted where, if at all, these ideas were encoded 
in the proof he presented, both by studying the points where he chose to stop the video and 
through viewing the proof in its entirety on our own. 
The Students’ Interpretation of the Text 

After the lecture was given, the first author went to Dr. A’s course and invited students to 
participate in a study on how they understood a mathematical lecture. Students were paid a 
nominal fee their participation. Six students volunteered to participate in this study. Two 
weeks had elapsed between the interviews and the lecture. The reason for this delay is that 
Dr. A forbade the research team from recruiting subjects prior to that point as the students 
were being given their mid-term examination. 

The students were interviewed in pairs, as we anticipated that the opportunity to 
communicate with one another would elicit more comments from the students. We refer to 
the first pair of interviewed students as Pair 1 and the individual students as S1 (Student 1) 
and S2 and so on. Each pair of students was asked to bring their lecture notes to the 
interview, which the interviewer photocopied. All interviews were video-recorded. The 
interview involved four passes to explore students’ understanding of the proof. The data 
collection and intention of each pass through the data is presented in Table 1.  
             
Table 1. 
Summary of four passes through the lecture proof with students 
Pass      Data collection    Purpose     
Pass 1      Participants recalled what they learned We wanted to see what participants  
      from the proof based on their notes. could reconstruct from a lecture proof  
       after time had passed. 
 
Pass 2      Participants viewed the video recorded We wanted to see what participants 
      presentation of the proof, took notes, understood immediately after viewing 
      and were asked what they learned and  the proof. 
      what the instructor was attempting to 
      convey.  
 
Pass 3      Participants watched short specific We were investigating whether  
      clips from the proof and were asked participants had the specific codes  

     what Dr. A was trying to convey. needed to interpret what Dr. A had 
identified as the content in his 
presentation of the proof. 

 
Pass 4      Participants were asked whether  We were exploring how participants 
      particular content highlighted by Dr. understood the main ideas that Dr. A 
      A in his interview could be gleaned claimed he was trying to convey with  
      from the proof they just watched.  this proof. 
             

In the first pass, students were invited to review their notes, and asked to describe what 
they thought were the main ideas of the lecture.  In the one occurrence that a student (S2) had 
not taken notes during lecture he was provided with a copy of everything Dr. A wrote on the 
board, which was distributed to the rest of the students in the second pass. This first pass 
through the data was designed to measure what students could reasonably reconstruct from 
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their experience attending a lecture. As a second pass through the data, students were asked 
to review the videotape of the proof in the lecture in its entirety. They were asked to behave 
as if they were in a mathematical lecture, including taking notes. However, they were also 
given a copy of everything that was written on the board, as the blackboard proof could be 
difficult to read while watching the video recording. After watching the video, they were then 
asked to describe what they thought the professor was trying to convey when he was 
presenting the proof. The second pass through the data was to see what students understood 
about the proof immediately after watching it.  

For the third pass through the data, the participants were shown each of the particular 
clips that Dr. A flagged as points where he was trying to convey some specific content. The 
participants were told these excerpts were places where Dr. A thought he emphasized some 
important ideas in the proof. The participants were asked to describe what they thought about 
these clips, but the interviewer added, “it’s acceptable to say that you don’t see anything. I 
don’t want to encourage guessing”.  The goal of this pass through the data was to see how 
they interpreted specific episodes of the lecture, and to determine to what extent the 
participants’ interpretations matched what Dr. A was trying to convey in these episodes. This 
was an attempt to measure the extent to which the participants had the codes needed to 
interpret what Dr. A considered to be the main content of the proof. In total, the participants 
saw eight excerpts. 

In the final pass through the data, the interviewer identified each type of content that Dr. 
A claimed he was trying to convey in this proof. The participants were told that some 
versions of this proof could convey this specific piece of content and asked if they thought 
the proof that they just observed did this. For instance, in his interview, Dr. A stressed that it 
was useful to think of the terms of the sequence as approximations of the limit and the 
epsilon in the definition of the limit as representing the error of the approximation. The 
question the interviewer asked with respect to this content was, “another thing you might 
have gotten from this proof is the epsilon used is the error. Is that something that you got 
from this presentation?” If the participants answered affirmatively, the interviewer 
encouraged them to describe how the proof conveyed this content and how they understood 
the content. The goal of this pass through the data was to see if, and to what extent, 
participants could access and understand the main points that Dr. A was trying to convey if 
asked specifically about them. 

In analyzing the first and second passes through the data, we used open coding to 
determine what these three pairs of students identified as the important ideas in the proof; our 
initial categories of the content were those formulated by our research team and claimed by 
Dr. A, but we formed new categories if the students’ comments did not fit within our initial 
framework. In the third pass through the data, we compared students’ interpretation of the 
video clips to the meaning that Dr. A ascribed to them in his interview. In the fourth pass 
through the data, we analyzed if students’ understanding of specific content of the proof was 
aligned with Dr. A’s intentions.  

Results:  Our Analysis of the Lecture 
General Comments 

This lecture proof had characteristics that were typical of many lectures in advanced 
mathematics. Dr. A spent his entire time between the students and the blackboard; for the 
majority (61%) of the time, his back was to the class as he was writing the proof on his 
blackboard. In our judgment, students only had minimal participation in the proof. At five 
points during the proof, Dr. A asked questions of the class, but two of those questions seemed 
rhetorical since Dr. A quickly provided the answer to them before students had the chance to 

142 17th Annual Conference on Research in Undergraduate Mathematics Education



respond. The other three questions used an initiate-response-evaluate format (Mehan, 1979); 
in each case, Dr. A asked students to supply the next step in the proof that was being worked 
on. Twice the students did not immediately supply an answer to Dr. A’s question so Dr. A 
provided a hint. For instance, the following exchange occurred: 

Dr. A: Now we know this is small [circling one mathematical expression]. Now what 
can we say about this expression right here [circling another mathematical 
expression]? [pause] Anybody have a vague idea? I’ll give you a hint. Calculus two... 
Student: Geometric series? 
Dr. A: … thirty or forty years ago? [gestures to student who spoke] 
Student: Geometric series. 
Dr. A: Geometric series! You have to always keep geometric series in your toolbox. 

We also noted that Dr. A’s lecture proof was significantly more detailed than his 
blackboard proof. The blackboard proof consisted of a polished proof that might appear in a 
textbook. However, in the lecture proof, he supplemented this with oral comments describing 
methodological and conceptual explanatory content. 
Main Themes from the Lecture 

In the lecture, we noted four main ideas that Dr. A was trying to convey:  
(i) One can show a sequence is convergent by showing it is a Cauchy sequence, which is 
especially useful when you do not know what the limit of the sequence will be. 
(ii) There is a common structure for writing proofs showing sequences are Cauchy.  
(iii) The triangle inequality is useful for showing that the sum of small terms is small. 
(iv) The geometric series formula is a useful technique for working with inequalities in real 
analysis. It should be in a student’s mathematical toolbox for keeping quantities small. 

We coded each one of these ideas as methodological content as all were useful in helping 
students write proofs in the future. Due to space limitations, we will only discuss (i) and (iv). 
Recall the theorem being proven was that if a sequence {xn} had the property that |xn – xn-

1|<rn for some constant r between 0 and 1, then {xn} was convergent. Previous proofs 
establishing convergence typically were based on the definition of limit, but using this 
definition required having a limit candidate for the sequence, something that could not be 
done in this situation because of the arbitrariness of the sequence. To us, (i) was the key 
theme from this part of the lecture: One could establish convergence by showing a sequence 
was Cauchy, even if one did not have a candidate for the limit. Dr. A emphasized this at three 
different points in the lecture, as we illustrate in the two excerpts below: 

Dr. A: There’s no mention of what the definition is of the sequence, so there’s no way 
we’re going to be able to verify the definition limit of a convergent sequence, where 
we have to produce the limit.  So what do we do?  […] What kind of sequences do we 
know converge even if we don’t know what their limits are?   It begins with a ‘c’.  

 
Dr. A: This is how we prove it is a Cauchy sequence. See there is no mention of how 
the terms of the sequence are defined.  There is no way in which we would be able to 
propose a limit L.  So we have no way of proceeding except for showing that it is a 
Cauchy sequence.   

Regarding (iv), after Dr. A invoked the geometric series formula in his proof, he said, 
“geometric series! You have to always keep a geometric series in your toolbox”. As 
individuals who have completed and instructed a real analysis course, we understood the 
phrase “mathematical toolbox” in this setting to mean a collection of techniques for working 
with inequalities to keep desired quantities small. We believe this shared understanding is 
common among mathematically enculturated individuals in this context. For instance, in a 
separate study, when Weber (2004) asked another professor about his goals when presenting 
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this type of proof in real analysis, the professor said, “I would like my students to have a 
mathematical toolbox. If they know the limit of something exists, they should immediately 
think of ways to make the desired quantities small” (p. 124, italics were from the original 
paper). We corroborate that this was Dr. A’s interpretation of “toolbox” in the next section. 
Of course, this interpretation likely would not be apparent to someone who was not 
experienced in this subject, including students in a real analysis course. 
Comments from Another Course Instructor 

To corroborate our findings, we showed another course instructor the video recording of 
the lecture. The instructor was extremely complimentary of the quality of the lecture and 
thought the main ideas of the lecture were (i), (ii), and (iv). He did not mention (iii), the 
importance of the triangle inequality and he did not mention other content that we did not. 
Like us, he thought (i) was the main goal of the proof, saying, “I think that’s the main 
objective here … up until this point, they’ve been showing convergence by definition… So 
he's saying okay, but what if you don't have a way to find the limit?  Can you still show 
something converges?  Well yeah, if you know it's Cauchy. I think that's one thing he's going 
to be trying to do here”. 
Key Points from this Section 

Dr. A conveyed important methodological content in his proof. The lecture did not seem 
geared toward convincing students that a theorem was correct or proving to satisfy a ritual, 
but toward helping students know how to construct proofs in the future. This is consistent 
with the teacher observations of Fukawa-Connelly (2012) and Weber (2004). We also note 
that the main content of the proof was stated orally, but not written on the blackboard. 

Results:  Dr. A’s Analysis of the Lecture 
General Comments 

The interview with Dr. A was surprisingly long. He spent 75 minutes discussing a proof 
that took him ten minutes to present. There are several things noteworthy about this 
interview. First, when asked why he chose to present this proof, Dr. A gave an 11 minute 
account situating Cauchy sequences in students’ analysis learning trajectory starting with 
calculus up through the study of measure theory in graduate school, suggesting that he had 
thought carefully about the place of this proof in instruction. Second, he emphasized the 
importance of repeating themes over the course of the semester, both to give students 
multiple opportunities to learn the same material and to form automatic associations between 
mathematical concepts, mental imagery, and proving actions. 
Methodological Content  

When Dr. A was viewing the videotape, he stopped the tape at every point that we 
identified mathematical content and his description agreed with our interpretation. One 
particular excerpt concerned his description of the triangle inequality. 

Dr. A: Once you get into the area where you're doing approximations, you can't do 
equal, equal, equal.  You have to have bounds, bounds, bounds […] The objective is 
to show how bounds, using the triangle inequality, can be used to show that 
something is small using information that they're given is small.  And this instance 
turns out that the information which is small is given in a form that allows us to use 
the geometric series as a bound. (italics were our emphasis). 

We highlight this as being consistent with our interpretation that it is important for students to 
have techniques to find bounds that keep the sums of small quantities small. 
Conceptual Explanatory Content 

Dr. A discussed several types of content that we coded as conceptual explanatory, as he 
sought to explain the theorem and illustrate the concepts using visual, kinesthetic, or 
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metaphorical reasoning. In particular, he said a goal of this proof was to illustrate Cauchy 
sequences pictorially, to represent Cauchy sequences as “bunching up”, to think of the 
epsilon term as an error of an approximation, and to view proofs about convergent sequences 
as analogous to knowing when a computer algorithm that forms approximations should 
terminate. 

 Despite being listed as content he wished to convey in this proof, this content was 
nearly entirely absent from the proof. Only the notion of Cauchy sequences “bunching up” 
was evident with a brief gesture showing his hands coming together (we missed this in our 
analysis, but Dr. A stopped the tape to highlight where this occurred). It is notable that no 
picture was given in the proof. In our interview, Dr. A spent six minutes describing the 
importance of pictures in real analysis, using the word “picture” 32 times, and saying students 
needed to see pictures at every opportunity so they would automatically associate Cauchy 
sequences with a picture. But when shown the tape, Dr. A laughed and said, “this is a poor 
example. There are no pictures here!” 
Key Points from this Section 

Dr. A appeared to (or at least talked as if he) thought hard about his lectures and was 
concerned about his students’ development. Dr. A valued repetition in his lectures so that 
students would form associations between concepts and pictures as well as to give students 
multiple opportunities to learn the material. This finding was also present in the literature by 
Weber (2004, 2012) in a case study of one mathematician’s teaching and interviews with 
mathematicians. Dr. A reported having the conceptual explanatory goals valued by 
mathematics educators, but this content was notably absent from his lecture proof. This is 
consistent with findings from Alcock (2010) and Lai and Weber (2014), who noted that 
mathematicians do not include all the conceptual content that they plan or desire to include in 
their lectures.  

Results:  Students’ Analysis of the Lecture 
Pass 1 

We photocopied students’ notes from the class. One student had a near verbatim 
description of everything that Dr. A said, four students copied the blackboard proof but 
nothing else, and one student did not take notes that day (but did attend the lecture). We find 
it noteworthy that five of the six students did not transcribe the oral content of the proof that 
Dr. A thought was so critical for conveying the mathematical content of the proof. 

In this pass, students were asked to look over the proof in their notes and asked what they 
thought Dr. A was trying to convey. Perhaps unsurprisingly, their responses at this stage were 
shallow. Pair 1 described a heuristic for knowing when to prove something was Cauchy-- 
namely if subscripts with the variables m and n were present-- and that Cauchy sequences can 
be used to prove convergence. One student in Pair 2 seems to have misinterpreted the proof, 
viewing the set-up for the proof and the algebraic manipulations in the proof as “two different 
methods to drive home the same thought process” for “people [who] learn differently”. Pair 3 
was excited to talk about the proof, with both students instantly recalling the proof used 
geometric series. Their description focused on the algebraic methods used to simplify 
equations, noting that different techniques were needed for different problems and one can 
rely on background knowledge from other courses to do this. 

We note that no student mentioned the main point: Proving a sequence is convergent by 
proving it is Cauchy is particularly useful when one does not know what the limit of the 
sequence is. Although Pair 3 highlighted techniques for working with inequalities, no 
students spoke of techniques that used bounds to keep quantities small. 
Pass 2 
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The students were asked the same questions as they were in Pass 1 after watching a video 
of the lecture proof. Students’ performance improved; they highlighted aspects of the proof 
that were both correct and useful. Pair 1 highlighted that (a) Cauchy sequences will be on the 
mid-term (which Dr. A stated in the proof), (b) the use of geometric series brought in prior 
knowledge, and (c) the importance of using the triangle inequality. Pair 2 highlighted that (a) 
one can show a sequence is convergent by showing it is Cauchy, (b) there is a consistent 
structure to writing proofs about convergence, and (c) one can use ideas from calculus 
(specifically geometric series and the triangle inequality) to write proofs in analysis. Pair 3 
highlighted that (a) the proof expanded the students’ toolbox of how to simplify expressions 
and (b) the proof illustrated how students can use prior knowledge from calculus to write 
proofs in analysis. 

There are a few interesting notes about these observations. First, all three groups noted 
the importance of using prior background knowledge in real analysis. Neither Dr. A nor our 
research team highlighted this as the mathematical content in the lecture but it is nonetheless 
a useful point. Again, no student said what we felt was the most important point of the lecture 
proof-- namely that if one wants to show a sequence is convergent but cannot determine its 
limit, one can do so by showing it is Cauchy. 
Pass 3 

In this pass, we showed students short video clips that Dr. A highlighted as conveying 
mathematical content. In general, students did fairly well in this pass. For instance, all 
accurately noted the importance of the triangle equality and saw Dr. A’s hands clasping 
together as representing Cauchy sequences bunching up. For the sake of space, we discuss 
only two video clips. 

In the first clip, Dr. A said, “What kind of sequences do we know converge even if we 
don’t know what their limits are? It starts with a ‘c’?” When a student replied, “Cauchy”, Dr. 
A said, “Cauchy! We’ll show it’s a Cauchy sequence”. Both Pair 1 and Pair 2 believed Dr. A 
was trying to convey that one can show a sequence is convergent by showing it is Cauchy, 
which is useful if you do not know the limit of the sequence. For instance, S1 said, “we 
should recognize it, like to figure out it's a Cauchy, we should know that it's converging, but 
its limit is not necessarily given.  So that we recognize it instantly”. However, Pair 3 thought 
the purpose of the clip was for Dr. A to interact with the class by posing a question and to 
gauge what the students knew. In fact, in Pass 3, we showed three video clips where Dr. A 
emphasized that showing a sequence is Cauchy could establish convergence if the limit was 
unknown and Pair 3 never thought that was what Dr. A was trying to convey. 

In the second clip, Dr. A said the following: 
Dr. A: So let’s factor out the smallest term, r to the n.  What’s left is 1 + r + r squared 
+ up to r to the m - n. [Writes this equation on the blackboard as he speaks]. Now we 
know this is small [circles rn] now what can we say about this expression right here?  
[points to and circles the geometric series 1 + r + r2 + … + rm-n, then turns around and 
faces the class]. Anybody have a vague idea?  I’ll give you a hint:  Calculus II. Thirty 
or forty years ago. 
Student: Geometric series. 
Dr. A: Geometric series! [Turns and faces the blackboard]. You have to always keep a 
geometric series in your toolbox.  So it’s going to be less than rn, this [gestures 
towards the geometric series written on the blackboard] then is less than sum from 
k=0 to infinity of r to the k. And now we need to know the formula of a sum of a 
geometric series. 

When asked what Dr. A was trying to convey, no student mentioned the notion of 
toolbox. Rather, all three pairs of students highlighted the importance of referring back to 
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previous knowledge to complete this proof. For instance, S6 stated Dr. A was “trying to like 
convert this expression somehow into an expression that we are familiar with or we know 
about from like our previous courses -- in this case it would be geometric series”. 
Pass 4 

Dr. A listed a number of mathematical ideas that he was trying to convey. In Pass 4, for 
each purpose that Dr. A listed, each pair of students was asked, “one thing you might get 
from this proof is that [Dr. A’s purpose].  Is this something that you got from this 
presentation?” Often, for these questions, students would respond “yes”, but when 
elaborating, it became apparent that their meaning of the terms used in Dr. A’s purpose 
differed from Dr. A intended. 

For instance, students were asked if the proof could provide students with “a toolbox that 
help them to prove things are small”. All students answered “yes” to this question. . 
However, in their responses, none mentioned inequalities or making things small. Indeed, 
from their responses, it appeared that students viewed the components of the toolbox as 
general techniques for writing proofs in mathematics. S2 described Cauchy sequences as 
being part of his toolbox, indicating the toolbox was for proving convergence, not keeping 
quantities small.  S3 described, “I think if he structures the way that he does, and you keep 
seeing it, it stays in your toolbox memory area […] not just in this specific proof itself, but it 
carries over to any other areas of math when you want to start to prove something”. Again, 
here it appears that how one structures real analysis proofs is part of one’s toolbox. 

Only one student, S5, mentioned the word “small” in his or response. In the following 
excerpt, we can see that S5 was not using small in terms of a magnitude of a quantity, as Dr. 
A intended. 

S5: We can use Mathematica, or like a tool to convert to make something small.  
I: So right so mathematics students need to have a toolbox of ideas to help them prove 
things are small. 
S5: Things are small.  Oh you mean that they're not so complicated.  When you say 
that things are small? 
I: No I mean like in terms of convergent sequences.  Is that something that you think 
you got from this presentation? 
S5: I mean, in terms of simplifying them and deriving for approximating the answer, I 
think it's on the path, it's like it's working.   

Again, we see that by listing Mathematica (a computer algebra system commonly used in 
college calculus classes but not real analysis), S5 is referring to general mathematical tools, 
rather than tools for working with inequalities or keeping quantities small. His response to the 
next question revealed that S5 did not know what was meant by “small” in this context, 
guessing that it means a not complicated, or simplified, equation, rather than a quantity with a 
small magnitude.  

Similar responses were made by students when they were asked if “epsilon as error” was 
conveyed in this proof (all students agreed but none alluded to approximations in their 
responses) or applications to computer science were conveyed in this proof (five students 
agreed, but none explicated any analogy between the two domains). 
Key points and summary.  

In Table 2, we list each of the types of content that Dr. A believed he encoded in his 
lecture and the pass through the data that students first articulated this content. 
             
Table 2. 
Summary of when student pairs described Dr. A’s intended content 
Content      Pair 1  Pair 2  Pair 3  
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Cauchy sequences can be understood   Pass 3  Pass 4  Pass 3  
as sequences that “bunch up”   
 
One can prove a sequence with an   Pass 3  Pass 3  Never  
unknown limit is convergent by showing   
it is Cauchy       
 
How one sets up a proof that shows a   Pass 4   Pass 2  Pass 4 
sequence is Cauchy         
 
The triangle inequality is useful in   Pass 2  Pass 3  Pass 3 
proving series in absolute value    
formulae are small      
 
The geometric series formula is part of  Never  Never  Never 
the mathematical toolbox to keep some  
desired quantities small  
             

Table 2 reveals several things. First, participants did not express many of the ideas in the 
lecture in their first two passes through the data. This is significant as the second pass through 
the data put the students in a privileged environment. They were watching a real analysis 
professor with an excellent teaching reputation present a proof for a second time. They knew 
they would be asked about this proof, so it was less likely that their attention would drift. If 
these students could not grasp the main points of the lecture by Pass 2, this suggests that 
many students are not grasping these main points with an average lecturer in real time. 
Second, participants did much better at Pass 3, implying that they had the codes to interpret 
much of Dr. A’s oral comments. Still, the analysis of Pass 3 and Pass 4 suggests this was not 
always the case. For instance, Pair 3 never stated what we felt was main point of the proof 
despite seeing three clips where it was stated, and no students described the meaning of the 
toolbox in an accurate manner. 

Discussion 
Why Did Students Have Difficulty Understanding this Lecture in Advanced Mathematics? 

We suggest several grounded hypotheses for students’ difficulties:  
H1. Dr. A did not include all the conceptual-explanatory content that he intended to, 

denying students the chance to see this material. 
H2. The method content of the proof was stated orally but five students only transcribed 

the blackboard proof. Hence, the oral content valued by Dr. A was not recorded for 
further study by these students and may not have been attended to.  

H3. There was some content, such as the notion of toolbox and small in this context, that 
students lacked the codes to interpret. 

H4. Dr. A repeated several themes in the course. Students were able to recognize the 
words in this theme but not their meaning. 

The point of raising these hypotheses is neither to blame Dr. A nor to blame the students 
for the state of affairs we observed. Indeed, all seemed well intentioned and we feel sympathy 
for both. For (H2), Dr. A might not have written down his oral comments since students at 
this stage were still learning what a proper proof should look like. Cluttering the blackboard 
with written translations of his oral comments might have distracted students from this 
worthwhile goal. Similarly, students may not have transcribed the oral comments since it may 
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have been a struggle to simply transcribe the blackboard proof (one student mentioned this 
explicitly). For (H3) and (H4), it is not hard to imagine why students would think of one’s 
toolbox as any useful mathematical technique rather than tools to work with small 
inequalities, as this meaning would make sense in other mathematical context (e.g. in a first 
or second calculus course, a toolbox might consist of integration techniques). Dr. A’s 
repetition of themes is a natural pedagogical technique to emphasize importance and help 
students develop associations, but (H4) suggests this might not be enough. One plausible 
account might be that Dr. A is operating on the assumption that the rich mental images that 
he associates with the terms he uses may be immediately accessible to the students when, in 
fact, the students need to construct these mental images. If so, from the students’ perspective, 
comprehending these terms might not be a matter of association but rather of construction. 
The latter process is likely too time-consuming and cognitively complex when hearing Dr. 
A’s utterances in real time. Further, since students are not recording Dr. A’s oral comments in 
their notes, they do not have the opportunity to construct these mental images by reflecting on 
Dr. A’s comments for an extended period of time at a later point. 
Significance for Research and Teaching 

The obvious and important caveat to this study is that this was a single case study with a 
non-representative professor. Hence one certainly should not make general claims about 
lectures from these data. However, these data do make a useful contribution to the literature 
in two ways. First, this is the first study that we are aware of that studies lectures in advanced 
mathematics from both the professor’s and the students’ perspectives. Research on both 
perspectives is sorely needed to better understand the effectiveness of these lectures. Second, 
some hypotheses reported here lend themselves to systematic testing. For instance, it would 
not be difficult to see if mathematical content was usually stated orally, but not written down, 
by other professors, nor would it be difficult to collect students’ notes and see how often they 
recorded oral comments. Also, although this would require more work, one could see if 
students’ understandings of common metaphorical expressions in mathematics lectures, such 
as “epsilon is error” or “mathematical toolbox”, are consistent with the professor who used 
these themes. If the grounded hypotheses from this study generalize to other lectures, this 
would provide valuable insights into why lectures are often ineffective and how this might be 
remediated. In summary, like many exploratory qualitative studies, the contribution here 
involve highlighting phenomena for future research and orienting researchers’ attention to 
aspects of the phenomena that are likely to be important. 
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Although counting problems are easy to state and provide rich, accessible problem solving 
situations, there is evidence that students struggle with solving counting problems correctly. 
With combinatorics (and the study of counting problems) becoming increasingly prevalent in K-
12 and undergraduate curricula, there is a need for researchers to identify potentially effective 
instructional interventions that might give students greater success as they solve counting 
problems. We tested one such intervention – having undergraduate students engage in systematic 
listing of what they were trying to count. We show that even creating partial lists of outcomes led 
to statistically significant improvements in students’ performance on problems, implying that 
systematic listing may be worthwhile for students to engage in as they learn to count. Our 
findings suggest that instructional interventions that facilitate listing warrant more attention.  
	  
Key Words: Combinatorics, Systematic Listing, Counting Problems, Discrete Mathematics	  
	  

Introduction and Motivation	  
The solving of counting problems has become increasingly prevalent in K-12 curricula (e.g., 

English, 2005) and in undergraduate mathematics courses. This attention on counting may be 
due to the fact that counting has practical applications in areas such as probability and computer 
science. Additionally, counting problems are simply stated and require few mathematical 
prerequisites to explore, and yet they require critical mathematical thinking to solve. This 
combination of accessibility and difficulty provides a uniquely rich context for mathematical 
problem solving (e.g., Kapur, 1970; Martin, 2001). In spite of the importance of counting 
problems, a number of studies that have been undertaken on combinatorics education suggest 
that students face difficulties with solving counting problems correctly. Given such struggles, 
there is a need for more investigations into effective ways to improve students’ counting. In this 
paper, we share findings from a study that examined the effects of having students engage in 
systematic listing – that is, to create an organized list (or even a partial list) of the outcomes they 
are trying to count. We answer the following research questions:  

1) Does engaging in systematic listing have a significant effect on students’ solving 
counting problems correctly?  

2) What are features of productive or unproductive lists that students generate, and how 
does listing activity differ in the generation of productive versus unproductive lists?  

 
Literature Review and Theoretical Perspective	  

Students’ difficulties with counting. While some researchers report success in which even young 
children display robust combinatorial thinking (e.g., English, 1991; Maher, Powell, & 
Uptegrove, 2011), most research on students’ work on counting problems shows that students 
struggle substantially with solving counting problems. One piece of evidence of this difficulty is 
low overall success rates. Godino, Batanero, & Roa (2005) note that 118 undergraduate 
mathematics majors “generally found it difficult to solve the problems (each student only solved 
an average number of 6 [of 13] problems correctly)” (p. 4). Additionally, in their study on 
undergraduates’ verification strategies, Eizenberg and Zaslavsky’s findings “support the 
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assertion that combinatorics is a complex topic – only 43 of the 108 initial solutions were 
correct” (2004, p. 31). In addition to low performance rates, there is evidence in the literature of 
how, specifically, students struggle. Batanero, Navarro-Pelayo, & Godino (1997) listed several 
error types they found in students’ work. Eizenberg and Zaslavsky (2004) and Lockwood (in 
press a) point out that because of the nature of counting problems and their very large numerical 
answers, such problems can be difficult to verify. Other researchers have highlighted specific 
mathematical features of counting problems that are especially difficult, such as issues of order 
(Batanero, et al., 1997; Mellinger, 2004) and overcounting (Lockwood, 2011; Annin & Lai, 
2010). Given the pervasive difficulties that students face, there is a need to identify potentially 
productive interventions that may help students solve counting problems more successfully.  
Sets of outcomes. Theoretically, our focus on systematic listing stems from the idea that students 
may benefit from grounding their counting activity in the concrete set of outcomes they are 
trying to count. This study draws upon Lockwood’s (2013) model of students’ combinatorial 
thinking (Figure 1), which proposes three basic components of students’ counting 
(expressions/formulas, counting processes, and sets of outcomes) and elaborates on the 
relationships between these components. Lockwood (2013) defines the set of outcomes as the 
“collection of objects being counted – those sets of elements that one can imagine being 
generated or enumerated by a counting process” (p. 253). In terms of the model, the idea of 
systematic listing, especially the act of reflecting on how to create an organized list of outcomes, 
lies in the relationship between counting processes and sets of outcomes.  

 
Figure 1 – Lockwood’s model of students’ combinatorial thinking (p. 253) 

 
A major motivation for the focus on outcomes is that to solve a counting problem correctly, 

we ultimately must know that we have counted all of the desirable outcomes exactly once. 
Students, however, can tend to gloss over the outcomes in favor of moving too quickly to 
formulas or techniques to solve counting problems (e.g. Kavousian, 2006; Lockwood, 2011). 
Although the focus on sets of outcomes stems primarily from Lockwood’s (2011, 2013) previous 
work, other researchers (English, 1991, 2005; Hadar & Hadass, 1981; Polaki, 2005; 
Shaughnessy, 1977) have acknowledged that emphasizing the set of outcomes could support 
counting activity. In this paper, our premise is that students may benefit from an explicit focus on 
sets of outcomes, and our work is motivated by a broader goal of investigating whether (and if 
so, how) students may benefit from work with sets of outcomes. 
Listing Strategies. A significant challenge with solving counting problems is that it can be 
difficult to convince oneself that all of the desirable outcomes have been counted exactly once. 
Constructing a systematic, organized list can allow us to make convincing arguments about why 
we have counted all of the outcomes. Some researchers (e.g., English, 1991; Halani, 2012) have 
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discussed listing in combinatorial tasks across a number of age levels, and a common and 
effective listing strategy is an odometer strategy. English identified combinatorial strategies in 
her work with young children (age 4 to 9 years), describing the odometer strategy being 
sophisticated and defining it as having a consistent and complete cyclical pattern with “a 
‘constant’ or ‘pivotal’ item…Upon exhaustion (or apparent exhaustion) of the item, a new 
constant item is chosen and the process repeated” (p. 460). Building on English’s work, Halani 
(2012) identified an odometer way of thinking. A major benefit of the odometer strategy is that it 
convincingly provides a rationale for why no outcome is missed. We hypothesize that systematic 
listing can give students a mechanism by which to convince themselves that they have all of the 
outcomes – something that is not trivial.  

The section above is meant to highlight that while there is some mention of outcomes in the 
combinatorics education literature, the treatment of outcomes is largely implicit. That is, 
researchers have not set out to systematically test the effectiveness of either students’ 
engagement with outcomes when counting or on instructional interventions that foster such 
engagement. Similarly, while listing has been identified as a common strategy among students, 
studies have not targeted the effects of listing on combinatorial performance. In this study, we 
explicitly study outcomes as a factor that might affect students’ success in counting. The study 
looks beyond describing and categorizing listing strategies in two ways – first, by quantitatively 
reporting the effectiveness of listing on students’ performances on counting problems, and 
second, by detailing the nature of productive versus unproductive lists in undergraduates’ listing 
strategies. In a recent plenary address, Weber (2013) advocated for an increase in quantitative 
studies to complement qualitative studies in mathematics education. This study is attempt to 
respond to this call by balancing quantitative and qualitative results. 

 
Methods	  

Participants and data collection. Forty-two undergraduate students participated in the study. 
These students were enrolled in an introductory psychology course at a large Midwestern 
university, and they received extra credit for their participation. Demographic information 
revealed varying degrees of experience with counting problems and suggested that almost all of 
the students had seen counting problems before (most typically in high school but not formally in 
college). While the psychology students were novice counters, counting problems do not require 
any mathematical prerequisites to solve and do not preclude such students from being able to 
approach the problems. The students completed a written assessment consisting of counting 
tasks, which took about 60 minutes to complete. We administered the assessments to students in 
three iterations on three different days. In a given day, the students took the survey in groups of 
1-6 students at a time. The number of participants for the three days was 13, 19, and 10, and 
minor adjustments (discussed below) were made between each of the days.  

Within each of the iterations, the data collection process was the same. The students were 
randomly assigned to either a listing or a non-listing condition, and each assessment involved 
pre-intervention, intervention, and post-intervention tasks. The tasks were the same for each 
condition; the only difference was in the prompts given to students. For the non-listing condition, 
students were given written instructions that simply asked them to solve the problems and show 
their work. For the listing condition, the students were also prompted with the following written 
statement prior to the intervention tasks: “In the following 3 problems, please make an attempt to 
create a list of what you are trying to count” and were given a verbal prompt, “On these 
problems, please first make an attempt to list out what you are trying to count.”  

17th Annual Conference on Research in Undergraduate Mathematics Education 155



 
 
 
 

Tasks. The written assessment consisted of 10 counting problems (12 in iteration 1) that 
would be accessible to novices, involving relatively simple applications of addition and 
multiplication. We chose tasks with a variety of sizes of sets of outcomes (some which could not 
easily be listed by hand) in order to allow us to see if even partial listing might help students 
count successfully. In all of the problems, even ones in which listing all outcomes was not 
plausible, we hoped that students would be able to write down outcomes and perhaps use that 
listing to determine a useful pattern or structure. The statement of each task, its pre-, 
intervention, or post- status, and the cardinality of the answer, are outlined in Tables 1, 2, and 3. 
We used Livescribe pens to collect the data, which have technology that allows for written 
responses and audio to be recorded in real time. The written work is then embedded into a pdf 
file, and one can “play” the pdf to see what was written in real time. We did not analyze the 
audio-recordings, as the students sat in the room quietly and completed the written assessment.  
 

Table 1 – Pre-Intervention tasks 
Pre-Intervention Task Answer 
Test 
Questions 

How many ways are there of answering an 8-question multiple choice test if there 
are four possible choices for each question? 

65,536 

Language 
Books 

There are five different Spanish books, six different French books, and eight 
different Russian books. How many ways are there to pick a pair of books that are 
not both in the same language? 

118 

Committee* Fred, Jack, Penny, Sue, Bill, Kristi, and Martin all volunteered to serve on a class 
committee. The committee only needs 3 people. How many committees could be 
formed from the 7 volunteers? 

35 

 
Table 2 – Intervention tasks 

Intervention Task Answer 
Apples and 
Oranges 

You have 8 identical apples and 8 identical oranges. You need to take some of this 
fruit to a friend’s house, and you don’t want to show up empty-handed (you must 
bring at least 1 piece of fruit). How many possibilities are there for what fruit you 
could bring? 

80 

Dominos A domino is a rectangular tile that has a line dividing one side into two halves. 
There can be dots on each half, ranging in number from 0 to 6. If you had to make 
a complete set of dominos, how many dominos would you have to make? 

28 

Lollipops You want to give 3 identical lollipops to 6 children. How many ways could the 
lollipops be distributed if no child can have more than one lollipop? 

20 

 
Table 3 – Post-Intervention tasks and justification  

(*The Committee and ABCZZZZ tasks were interchanged between Iterations 2 and 3) 
Post-Intervention Task Answer 
Cards In a standard 52-card deck there are 4 suits (Hearts, Diamonds, Spades, Clubs), 

with 13 cards per suit. There are 3 face cards in each suit (Jack, Queen, King). 
How many ways are there to pick two different cards from a standard 52-card 
deck such that the first card is a face card and the second card is a Heart? 

153 

ABCZZZZ* How many arrangements are there of the letters A, B, C, Z, Z, Z, Z, where the A, 
B, and C occur alphabetically (they do not have to appear together as a group)? 

35 

3-Letter 
Sequences 

You want to make a 3-letter sequence of using the letters a, b, c, d, e, and f. Letters 
may be repeated and the sequence must contain the letter e. How many such 3-
letter sequences are there? 

91 

CATTLE How many arrangements of the word CATTLE have the two T’s appearing 
together either at the beginning or the end of the word? 

48 
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Adjustments made between iterations. After Iteration 1, a few minor adjustments were made. 
In an initial analysis of Iteration 1, we shortened the survey by removing two problems involving 
non-consecutivity, which seemed to be too challenging. Based on the first author’s prior 
experience with the CATTLE problem, and after having seen students’ work in Iteration 1, we 
felt that a problem involving license plates may not provide insight into listing as much as the 
CATTLE problem, with which we replaced it. Finally, we made minor adjustments to clarify the 
wording of the Apples and Oranges and Domino problems. We preserved the same tasks as 
intervention tasks in all three iterations. Between Iterations 2 and 3, we interchanged the 
Committee and the ABCZZZZ as pre-intervention and post-intervention tasks in an attempt to 
mitigate order effects. Ultimately, we do not see these small adjustments as being problematic 
for our overall findings from the study. As the Results section show, our findings focus on the 
effects of listing, regardless of condition. While one could argue that making these changes 
might have helped students perform better (by providing easier tasks, say), we are still able to 
examine the students’ listing behavior and its effect on their solving of counting problems. 

Analysis. Initially, the first author coded the responses according to correctness (correct or 
incorrect) and we analyzed effects of condition on correctness. As will be described in the 
Results section, we were led to conduct additional analysis on students’ listing behavior. The 
first author then coded the student responses according to four categories of listing: no listing, 
articulation, partial listing, and complete listing, respectively. A code of no listing was given if 
there was no attempt at any kind of partial or complete list. Typically a student who did not list 
wrote a numerical value or some kind of formula or expression. A code of articulation emerged 
during analysis, as some responses involved more than only providing a formula or numerical 
answer, but they were not suggestive of even a partial list. This articulation code was given when 
a student wrote down at least one outcome but did not actually create any kind of list. A code of 
partial listing was given if the student created a partial list of the outcomes but did not write the 
entire list correctly or truncated their listing when they identified a pattern. A code of complete 
listing meant a student provided a complete, correct list of the outcomes. All problems were 
coded one problem at a time to maximize the consistency in coding per problem. These listing 
codes were coded independently of the listing/no-listing intervention conditions, with the aim of 
establishing whether the students had listed at all on a problem (regardless of condition). 

The quantitative findings suggested that listing could be potentially beneficial for students 
(discussed in the Results section), and we were thus motivated to look more closely at students’ 
work to learn more about what aspects of listing might be particularly helpful, and why. For the 
qualitative analysis, then, we reviewed the pdfs of the students’ work and watched back through 
the real-time work, focusing especially on those solutions that had been coded as correct and 
involving partial listing. We used the constant comparison method (Strauss & Corbin, 1998) to 
document features of lists that yielded correct versus incorrect results, and for each student’s 
work we recorded phenomena that shed light on the nature of productive listing. The goal was to 
characterize which aspects of students’ listing behavior contributed to successful solutions.  

 
Results	  

In this section we present both quantitative and qualitative results. Together these contribute 
to the overall narrative that certain listing behaviors and activities seem to be beneficial for 
students’ counting, and that listing warrants more attention in combinatorics education research.  
 
 

17th Annual Conference on Research in Undergraduate Mathematics Education 157



 
 
 
 

Quantitative Results 
In the following analysis, only problems where the answer was clearly correct or incorrect, 

and where the listing behavior was clear were used (a total of 352 problems – some problems 
were excluded because of poor Livescribe pen capture). While we had slightly changed some 
tasks between iterations, as described above, no significant difference in either number of items 
answered correctly or the listing behavior was found between iterations. Figures 2 and 3 show 
the mean and standard error of the number of problems correct and number of problems listed on 
for each condition in each phase of the experiment. 

     
        Figure 2 – Mean correct by condition        Figure 3 – Mean proportion listing by condition 

 
To address Research Question 1 (Does engaging in systematic listing have a significant effect 

on students’ solving counting problems correctly?), we measure student performance by number 
of questions answered correctly. On the whole, students struggled to solve these problems 
correctly, with only 24%  (84/352) accuracy overall. We also found that student performance on 
post-test questions did not differ significantly between conditions. That is, students in the listing 
condition, who were instructed to list, did not perform significantly better than students in the 
non-listing condition, who were not explicitly instructed to list. In other words, simply being 
instructed to list did not have a significant effect on students’ performance. Additionally, if we 
look at the difference between the mean number of questions answered correctly in the pre-
intervention tasks versus the post-intervention tasks, we again do not see any significant 
difference between conditions. In sum, then, the intervention, when measured by condition, did 
not have an effect on students’ performance. 

However, during the study we did notice many instances of students in the non-listing 
condition actually engaging in listing as they solved problems, and vice versa. Therefore, we 
decided to examine not the effect of a listing/no-listing condition, but rather to explore the effects 
of students’ actual listing behavior. Indeed, if we looked at listing behavior itself, we discovered 
that listing had an overall positive effect on correctly solving a problem (here, we take listing as 
including a code of either partial or complete listing). We performed two tests to confirm this. 

In the first test, we asked Were students just as likely to get problems correct, regardless of 
whether they listed or did not list? To answer this we calculated, for each student, the proportion 
of problems on which they were correct and listed out of those problems on which they listed, as 
well as the proportion of problems on which they were correct and did not list out of the all 
problems on which they did not list. This of course required looking only at those students who 
both listed and did not list (n=39). Performing a paired t-test we found a significant difference 
between these two proportions (t(37) = 3.92, p < .00038). This is evidence for saying that there is 
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a correlation between accuracy and listing behavior. Figure 4 shows a summary of these 
proportions, averaged across students. The first column represents average number of problems 
on which students listed, with the top of the column being the mean proportion of problems 
where students listed and got the problem correct (mean = 0.29, SD = 0.28).  The second column 
represents the same mean values but for problems where students did not list (mean = 0.11, SD = 
0.21). The significance we show here is the difference between the relative size of the top 
portions of these columns to the entire column. 

In the second test, we asked a similar question: Were students just as likely to have listed on 
problems they got correct as those they got incorrect? For each student (who had both correct 
and incorrect answers n=29) we calculated a proportion of number of problems with listing and 
correct out of number correct, and number of problems with listing and incorrect out of number 
incorrect. Applying a paired t-test we again find a significant difference (t(29) = 5.32, p 
< .000011). Summarizing across students we find an average proportion of listing and correct to 
correct (mean = 0.69, SD = 0.38), and an average proportion of listing and incorrect to incorrect 
(mean = 0.40, SD = 0.26).  Figure 5 summarizes these results – again, the important feature is the 
large difference in the relative size of the top portion of the column to the entire column.  

   
              Figure 4 – First paired t-test              Figure 5 – Second paired t-test 

 
In sum, the quantitative results show that while no difference was found among condition, 

and while students’ actual listing behavior was not necessarily influenced by the instructional 
intervention in the listing condition, students’ actual listing behavior was positively correlated 
with correctly answering counting problems. We note that while there is a correlation between 
listing and correctly answering a problem, we do not claim causation. We acknowledge that it 
may be the case that stronger students may naturally list, and that is why we see the positive 
correlation. However, regardless of whether success leads to listing or vice versa, the correlation 
is promising – if the more successful counters are listing, perhaps listing deserves more attention 
as a pedagogical focus. Given students’ clearly documented and sustained struggles with 
counting problems, these initial quantitative findings suggest that listing may be a valuable way 
to help students count more successfully. We feel that the findings at least warrant more 
attention, particularly because our results also suggest that instructional intervention was not 
consistently effective in getting students to list. We were therefore motivated to study the listing 
that students did in more detail, which we did by examining the students’ written work.  

 
Qualitative results 

These qualitative results stemmed from the basic quantitative findings, as discussed above, 
with the aim of answering Research Question 2 (What are features of productive or unproductive 
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lists that students generate, and how does listing activity differ in the generation of productive 
versus unproductive lists?). In our analysis, we distinguish between productive lists and 
unproductive lists. We take productive lists to mean any lists, partial or complete, which were 
generated on a problem that the student solved correctly. Unproductive lists are lists that were 
generated on a problem that was incorrect. Because of the nature of our data, we cannot make 
conclusive statements about whether or not a particular list actually caused a student to answer a 
problem correctly. However, for analytic purposes we found the productive versus unproductive 
distinction to be helpful as we tried to determine potential aspects of listing that seemed 
particularly beneficial for students’ counting. Below, we first discuss features of productive lists 
(providing contrasting examples of unproductive lists), and then we present additional 
noteworthy aspects of listing that arose among multiple students. These qualitative results 
complement the quantitative results presented previously, helping to paint a clearer picture of 
precise ways in which listing seemed to be effective for students in some situations.  

Features of productive lists  
In this section we discuss three key features of productive lists, which, while not necessarily 

present in every productive list, are representative of overall characteristics of productive lists.  
Useful notation and appropriate modeling of outcomes. Students who wrote productive lists 

typically found a suitable notation that appropriately modeled an outcome. In some problems, 
when an outcome is fairly self-evident and can easily be written on the page literally (such as 
letter or number sequences), figuring out a meaningful notation may be trivial. Other problems 
may require extra work to translate the outcome into something that can be written down and 
listed, and many problems require some translation of the problem into a useful notation. The 
Lollipop problem highlights the value of a usable notation and shows how students displayed a 
variety of notations even on the same problem. For example, Student 3311 let the letters A, B, C, 
D, E, and F represent the six students. Her outcomes were sets of 3 letters (representing 3 
students), which she listed lexicographically (Figure 6).  

              
Figure 6 – Student 331’s Lollipop problem   Figure 7 – Student 342’s Lollipop problem 
 

Student 342 encoded the outcomes by creating a table that labeled columns 1-6 for the 
students (Figure 5). The student represented an outcome as a row of three marks, with one mark 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Because gender information was not collected for each participant, we will refer to students whose number sums to 
an even number (such as 121) as male and an odd number as female. As a matter of interest, students with numbers 
ending in 1 were in the listing condition, and students with numbers ending in 2 were in the non-listing condition.  
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in exactly one column, and the total number of rows gave the final answer. This table is 
particularly effective in its use of different marks for rows that have marks in different first 
columns. This notation allowed for her to count up the rows, but it provides more information 
than only the final numerical answer.  

In contrast to these lists that show useful notations that facilitated a way to model outcomes, 
some students’ notations seemed problematic. For example, in Student’s 241 work on the 
Lollipops problem (Figure 8), her labeling of Lollipops 1, 2, and 3 suggests that she was thinking 
of the lollipops as distinct. When she writes permutations of the numbers 1, 2, and 3 beneath six 
children, this suggests that she has not clearly articulated what constitutes an outcome. Her issue 
may not be merely one of notation – she may have some incorrect notion of what the problem is 
asking, etc. – but her lack of a clear notation certainly does not help her on this problem. The 
notation did not facilitate a correct articulation of what constituted a desirable outcome. In sum, a 
key aspect of being able to create a productive list is to correctly model the outcomes, which 
often involves developing an efficient notation.  

 
Figure 8 – Student 241’s Lollipop problem 

 
Organized strategy. Another feature of productive lists was that they often seemed to be 

developed with an intentional organizational strategy. Student 331’s work on the Lollipop 
problem (Figure 6 above) exemplifies the odometer strategy. In order to list the set of 3 letters, 
she began by holding the first and seconds element constant, and then cycling through the last 
elements in the order of how she initially wrote the six letters that represented the students. Once 
she had similarly cycled through each possibility for the second letter, she could move to the 
next choice for the first option and repeat the process. Because we could watch her make the list 
in real time, we know that she did in fact implement this process as she listed outcomes. 

 

  
Figure 9a – Student 131’s partial list of the 

CATTLE problem 
Figure 9b – Student 131’s complete work on 

the CATTLE problem 
 

A similar organizational strategy was exemplified by a number of students in the CATTLE 
problem. These students did not create an entire list for this problem; instead, they wrote out 
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some of the arrangements of the letters C, A, L, and E, identified a pattern, and used 
multiplication to calculate the total. For example, Student 131 wrote out the two Ts and 
arrangements of the letters A, C, L, and E. The student’s real-time listing shows an attempt on 
his part to remain organized and systematic. He first wrote TTACLE but then crossed it out, and 
we infer from the rest of his work that he sought to list alphabetically. Figure 9a shows he then 
proceeded to write the first alphabetical outcome, TTACEL, followed by TTAECL. As he was 
writing TTAELC, he seemed to realize that he had missed another outcome starting with “AC,” 
and so he went back and added TTACLE to the top of his list, pairing it with TTACEL. Figure 
6a shows him in the process of going back and adding TTACLE to the top of the list. He then 
proceeded to complete an alphabetical list of arrangements starting with A. He wrote one of the 
arrangements starting with C (TTCALE) but then seemed to notice a pattern. Figure 9b shows 
his final list, in which he noted there were 6 options for the starting letter, and he multiplied this 
6 by 4 and then by 2 to yield the correct answer. This example shows a student using an 
organized strategy on a partial (as opposed to a complete) list that ends up being productive. The 
student was intentionally organized in her listing, to the point of going back and adding an 
outcome where it best belonged within his scheme. This organized, near alphabetical pairing of 
certain outcomes helped ensure that he had all of the outcomes.  

In contrast to the organized lists above, some unproductive lists lacked the kind of 
organizational strategy that could easily account for all of the outcomes. For example, on the 
ABCZZZZ problem (Figure 10), Student 661 correctly wrote out a number of outcomes. There is 
some initial organization, as she cycles the ABC through the Zs. However, beyond that the 
student is not systematic in her listing, and as a result many of the outcomes are missed.  

 
Figure 10 – Student 661’s ABCZZZ problem 

 
Evident Structure. Some productive lists had an obvious structure that elicited a certain way 

of organizing the outcomes. As noted in the literature review, a potential benefit of listing is that, 
if done carefully and systematically, listing can provide concrete evidence that all of the 
outcomes have been accounted for. The structure evident in some students’ lists contributed to a 
convincing argument that all of the outcomes were being counted exactly once.  

Student 252’s work on the Lollipop problem (Figure 11) clearly yielded a list that suggests a 
particular sum: (5+4+3+2+1)+(4+3+2+1)+(3+2+1)+(2+1)+1. The student encoded triangles as 
the students (distinct because they are in a line), with rows of circles under three of the triangles 
representing an outcome. She wrote down the outcomes systematically by first holding constant 
the circles in the first two columns, and then cycling the third through the remaining columns. 
Then, while still keeping the first entry static, she moved the second circle to the second triangle 
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and cycled through the all of the possibilities for the first triangle, continuing in this way while 
keeping the first item constant (apparently making use of the odometer strategy). The first sum of 
4+3+2+1, then, includes all the outcomes with a circle under the first triangle (or, with the first 
child receiving a lollipop). She then proceeded to move the first circle to the second triangle and 
repeated the process, yielding 3+2+1. She continued to repeat the process to produce the 
remaining sums. The structure of the sum visually pops out of the list, making apparent how the 
student meaningfully organized the outcomes to count them effectively.  

In contrast to Student 252’s work, on the same Lollipop problem Student 442 wrote the 20 
outcomes in a 5*4 array (Figure 12). Given the student’s subsequent writing of the binomial 
coefficient for “6 choose 3,” it may be the case that he had already guessed or arrived at the 
answer and wanted the array to reflect the answer of 20. However, the point is that the array, 
while correctly representing an answer of 20, does not offer much insight into the structure of the 
list or why the student may be convinced that all of the outcomes are counted. Unlike the work in 
Figure 11, there is no further insight gained by the structure of how the list is written. In fact, 
while on some problems an array might provide some insight, here the particular arrangement of 
the two outcomes in the array hides any relevant structure of the set of outcomes.  

Creating a list that highlights a particular structure is an effective way of connecting a 
counting process to a set of outcomes, and examining the set of outcomes can be an important 
means by which to be sure a student is counting correctly. A list with a transparent structure may 
provide concrete evidence that the list may be correct. Making such a list may be a productive 
verification strategy that should be investigated more thoroughly in subsequent studies.  

       
     Figure 11 – Student 252’s Lollipop    Figure 12 – Student 442’s Lollipop problem 

 
Other insights into productive listing 

In addition to identifying features of productive lists, we also identified two themes across 
students’ work that shed light on productive listing: creating productive lists seemed to affect 
students’ work on other problems, and even partial listing proved to be beneficial. 

Productive listing experience seemed to affect students’ work on other problems. Perhaps one 
of the more surprising results that came out of the qualitative analysis was to see the dynamic 
way in which some students’ work unfolded across problems. The real-time pdfs showed that 
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students were much more creative and dynamic in their listing than can be seen simply from the 
written work on the page. This came out most pointedly as students moved back and forth 
between problems. On several occasions it seemed that successful listing on one problem led 
students to go back and revisit previous problems, incorporating listing strategies to arrive at 
correct answers. As an example of this, Student 121 worked on the Domino problem, initially 
drawing out dominos and listing 0-0 through 0-6 and writing *6=36 (see the dark green but not 
grayed out writing in Figure 13a). The grayed out work would suggest that he then proceeded to 
list the rest of the dominos, cross out the duplicates, and arrive at the correct answer of 28. 
However, immediately following writing down 36, he moved on to the next problem. The 
dynamic recording reveals what was, to us, a surprising phenomenon. 

Student 121 then solved the Lollipop problem, engaging in very careful and systematic 
listing, so that she ultimately arrived at the correct answer of 20 using a very well organized list. 
Upon completing the Lollipop problem, he immediately returned to the Domino problem, 
subsequently systematically listing all of the dominos, crossing out duplicates and arriving at the 
correct answer of 28 instead of 36 (Figure 13b). While we cannot know for sure his progression 
of strategies, because we could not ask follow up questions, it is interesting that directly 
following successful, systematic listing on the Lollipop problem, he used listing to fix an initially 
incorrect answer. In this case, we conjecture that the student gained an important insight as he 
listed in the Lollipop problem – namely, the Lollipop problem does not count rearrangements of 
the same three students as distinct outcomes. By listing out the Lollipop possibilities, he knew 
that he did not want to count sets {1, 2, 3} and {2, 1, 3} distinctly toward the total. The same is 
true of dominos – domino 1,2 is the same as domino 2,1 – and his subsequent behavior on the 
Domino problem suggests that the work on the Lollipop problem led him to make a change in 
her strategy on the Domino problem. One could argue that it was not the act of listing itself that 
caused his realization, but rather that it might be caused by exposure to another problem with 
outcomes of a similar kind. However, we contend that the listing on the Lollipop problem drew 
attention to the nature of outcomes in ways that simply trying to solve the problem without 
listing might not have done. Additionally, the student’s subsequent systematic and detailed list 
on the Domino problem suggests that the act of listing itself was something he carried over from 
the Lollipop problem and chose to utilize in his subsequent solution of the Domino problem. 

    
Figure 13a – Student 121’s initial Domino     Figure 13b – Student 121’s correct Domino  

 
Other students had similar trajectories in which they revisited a problem after what they 

perceived as successful listing on another problem, suggesting that Student 121’s case was not a 
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one-time phenomenon. We feel that the effect of successful listing on other problems is 
something that could be investigated more explicitly in further studies.  

Even partial listing can be productive. The second theme we identified was that students 
could, at times, productively arrive at the correct answer by creating only a partial list without 
having to list all of the outcomes completely. Often, some type of encapsulation process was 
observed in the list, and while students at times overgeneralized, many students were able to 
identify and correctly use a pattern they saw in a partial list. Student 131’s work on the CATTLE 
problem above is one such example of a productive partial list. 

As another example, Student 431’s work on the Apples and Oranges problem demonstrates a 
progressive streamlining process that emerged during the students’ attempts to solve. Figure 14 
shows the student began a fairly detailed and complete list. Then, we see an increasingly 
streamlined listing process, and by the end the process of listing each outcome is encapsulated 
and truncated. The student is organized, displays a structure in the list, and he arrives at the 
correct solution without having actually listed all 80 outcomes.  

If listing were only beneficial if the problem’s solution can easily be listed completely, the 
value of listing would have serious limitations, as most counting problems have solutions that 
cannot easily be physically listed by hand. Counting problems regularly have very large sets of 
outcomes, and it is unrealistic to claim that students might be able to list all desirable outcomes 
as they solve counting problems. The fact, then, that we have evidence that listing appears to be a 
useful strategy even on problems which students may not choose to (or be able to) create 
complete lists is promising for helping students be successful in a variety of counting situations.  

 
Figure 14 – Student 431’s Apples and Oranges problem 

 
Discussion and Implications 

We briefly mention several points of discussion. First, the number of instances in which 
students attempted to list, as well as whether such listing was productive, varied from problem to 
problem. Certain problems did seem to elicit listing (partial or complete) more than others, such 
as when comparing the CATTLE (more productive listing) and ABCZZZZ (less productive 
listing) problems. While the role of a specific problem in students’ listing warrants further 
investigation, there may already be some implications for instruction. If we indeed accept the 
premise that it might be worthwhile for students to do at least some listing as they learn counting 
initially, then it is noteworthy that teachers should take into account what problems might best 
facilitate listing for students, and at least be aware that not all problems can are equally effective 
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in eliciting listing. From a research perspective, the effects of certain problem features and 
problem types on students’ listing behavior warrant further study. 

Additionally, a noteworthy factor in helping students to list productively seems related to 
having a careful disposition toward mathematical work (in this case, articulating outcomes and 
listing), which is in line with findings other researchers have shared (e.g., Hadar & Hadass, 1981; 
Lockwood, in press a). We suspect that students who failed to implement organizational 
strategies were not always making a mathematical error, but rather that they were, at times, not 
being careful and deliberate in their work. This is an aspect of listing, and counting more 
generally, that needs to be investigated further, perhaps by explicitly examining how 
metacognitive aspects of problem solving affect students’ counting.  

We also observe that the results support the notion that a focus on sets of outcomes is 
important, as Lockwood (2013) has proposed. Systematic listing orients students with what 
constitutes a desirable outcome, ensuring that they understand what they are trying to count. 
Identifying structure and organizational techniques in a list reinforces productive counting 
processes that can help student generate patterns and avoid overcounting. The value of listing 
evidenced in this study validates further work on sets of outcomes so that we might better 
understand ways in which outcomes might productively be used to help students count.    

Finally, our minimal intervention of prompting students to list via a simple written and verbal 
prompt was not enough to cause them to list consistently. More work needs to be done to 
investigate alternative methods of instruction to help students gain experience with and to 
appreciate the benefits of systematic listing. Especially given the fact that in some cases listing 
on one problem affected students’ work on other problems, it seems promising to target whether 
or not (and if so, how) instructional interventions can be designed to help students develop listing 
behavior. Specifically, we can investigate how to help students generate and identify meaningful 
patterns in lists. Additionally, it may be instructive for students to see productive versus 
unproductive lists in others’ work, in order to reflect on how helpful lists might be generated.  

In conclusion, our aim in this study was to examine whether or not having students 
systematically list might be a potentially helpful intervention in their solving of counting 
problems. Our findings suggest that, while our particular intervention was not entirely effective 
as intended, the listing (and even partial listing) of outcomes was positively correlated with 
students’ correct solving of counting problems. The qualitative analysis gave further insight into 
features of productive lists that suggest aspects of listing that could be incorporated into 
instructional interventions. In light of clear evidence that students at all levels struggle with 
correctly solving counting problems, we have uncovered one factor that is a significant factor in 
successful counting – having undergraduate students engage in systematic listing of what they 
were trying to count. These results also support prior work by Lockwood (2011, 2013) that 
points to the importance of focusing on sets of outcomes. Our findings indicate that more needs 
to be done in order to develop instructional interventions that will facilitate listing, but they also 
suggest that such an endeavor holds much promise for improving students’ counting. 
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EXAMINING STUDENTS’ COMBINATORIAL THINKING THROUGH  
REINVENTION OF BASIC COUNTING FORMULAS  
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Counting problems provide an accessible context for rich mathematical thinking, yet they can be 
surprisingly difficult for students. To foster conceptual understanding that is grounded in 
students’ thinking, we engaged a pair of undergraduate students in a ten-session teaching 
experiment. The students successfully reinvented four basic counting formulas, but their work 
revealed a number of unexpected issues concerning justification in counting. In this paper, we 
describe the students’ successful reinvention of the four counting formulas, we critically examine 
their combinatorial reasoning in terms of Lockwood's (2013) initial model of students' 
combinatorial thinking, and we offer several directions for further research. 
 
Key Words: Combinatorics, Reinvention, Counting Problems, Teaching Experiment 

 
Introduction and Motivation 

Enumerative combinatorics (the solving of counting problems) has applications in probability 
and computer science, and its accessible yet challenging problems provide a rich context for 
developing students’ mathematical justification and problem solving skills. As a result, counting 
problems have gained traction in K-12 and undergraduate curricula in recent years, particularly 
in probability units and in undergraduate discrete mathematics courses. Both researchers (e.g., 
Hadar & Hadass, 1981; Maher, Powell, & Uptegrove, 2011) and textbook authors (e.g., Martin, 
2001; Tucker, 2002) have noted that counting problems facilitate deep and critical mathematical 
reasoning. For example, Tucker (2002) emphasizes that counting requires “logical reasoning, 
clever insights, and mathematical modeling” (p. 169). Martin (2001) similarly points out, “One 
of the things that make elementary counting difficult is that we will encounter very few 
algorithms. You will have to think.” (p. 1). Often one of the first topics a student encounters in 
an undergraduate discrete mathematics course, counting offers a rich playground for developing 
the type of mathematical justification skills necessary for advanced courses. However, in spite of 
the practical applications of counting problems and their potential to foster rich mathematical 
thinking, student difficulties with counting persist (e.g., Batanero, Godino, & Navarro-Pelayo, 
1997; Eizenberg & Zaslavsky, 2004). Research is needed that explicates how students can 
effectively comprehend basic counting principles.  

The aim of our study was to gain insight into how students might come to reason coherently 

about four basic counting formulas: , , , and . Textbooks typically 

present these formulas early on, following each with numerous examples, and students are 
generally expected to apply the formulas in various contexts throughout the remainder of the 
course. Research (e.g., Batanero, et al., 1997; Lockwood, 2013) indicates, however, that students 
frequently misapply these formulas, which suggests they may not understand when and why 
these expressions are to be utilized. Recent studies (Swinyard, 2011; Oehrtman, Swinyard, & 
Martin, 2014) suggest that students can develop coherent reasoning about mathematical concepts 
via tasks designed to foster their reinvention of precise concept definitions (Tall & Vinner, 
1981). These studies have also served as evidence that reinvention can provide researchers a lens 

n! nr n!
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through which to gain insight into how students come to understand particular mathematical 
concepts. With this in mind, we engaged a pair of undergraduates in a ten-session teaching 
experiment, during which they solved basic counting problems and then subsequently 
generalized their mathematical activity by reinventing the four basic counting formulas. In this 
paper, we report on the students’ reinvention of the four formulas, addressing the following 
questions:  

1) How might students reinvent these four basic counting formulas?  
2) What cognitive issues might arise for students as they reinvent and use these formulas?  

 
Literature Review 

Student difficulties with counting. Researchers have clearly established that students have 
difficulty with even basic counting tasks. These struggles can be seen by overall low success 
rates on counting problems. For example, in a study conducted by Eizenberg and Zaslavsky, only 
40% (43 of 108) of initial solutions provided by undergraduates were correct (2004, p. 31), and 
Lockwood similarly found that only 42 out of 103 (41%) problems given to 22 postsecondary 
mathematics students were answered correctly (2011). Additionally, some researchers have 
identified factors that might lead to such difficulties, including over-counting and confusion 
about when order matters (Annin & Lai, 2010; Batanero, et al., 1997; Hadar & Hadass, 1981). 
Eizenberg & Zaslavsky (2004) also point out the fact that counting problems, with their large 
numerical answers, can be difficult to verify.  

Research on combinatorial concepts. In this study, we had students reinvent formulas for 
basic combinatorial notions, including permutations and combinations. Our work builds on prior 
research, including that of Piaget and Inhelder (1975), who posited a fundamental difference 
between the mental processes that combinations and permutations each respectively require, 
conjecturing that permutations occur at a more formal thought level than combinations. 
Fischbein and Gazit (1988), and later Dubois (1984) and Batanero, et al. (1997) also investigated 
the effects of both implicit combinatorial models and particular combinatorial operations on 
students’ counting. Our study contributes to this prior work by targeting students’ 
conceptualizations of permutations and combinations through reinvention of their formulas. The 
work is framed within Lockwood’s (2013) model of combinatorial thinking, in which she 
describes and relates three components of students’ counting (formulas/expressions, counting 
processes, and sets of outcomes) and argues that students should focus on sets of outcomes as 
they count. The model is elaborated in the theoretical perspective section, which we discuss after 
a brief mathematical discussion.  

 
Mathematical Discussion – The Multiplication Principle 

The multiplication principle (MP) is considered by many (e.g., Martin, 2001; Tucker, 2002) 
to be a foundational aspect of understanding and justifying counting formulas. Among textbooks 
there does not seem to be much consensus for a precise statement of the MP. Two statements of 
the MP are given below, the second of which is a generalization of the first.  

• “The Fundamental Principle of Counting: If one task can be completed in m ways and 
another task can be completed in n ways, then the sequence of the two tasks can be 
completed in m × n ways.” (Richmond & Richmond, 2009, p. 132) 

• “The Multiplication Principle: Suppose a procedure can be broken into m successive 
(ordered) stages, with r1 different outcomes in the first stage, r2 different outcomes in the 
second stage,…, and rm different outcomes in the mth stage. If the number of outcomes at 
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each stage is independent of the choices in previous stages, and if the composite outcomes 
are all distinct, then the total procedure has r1 × r2 × … × rm different composite 
outcomes” (Tucker, 2002, p. 170, emphasis in original). 

We discuss the MP here because it is foundational to basic counting in two key ways. First, it 
provides some justification for solutions to counting problems. To illustrate this, we consider the 
following problem:  

The Quiz Questions Problem – On a quiz, there are eight multiple-choice questions, each 
of which has four possible answers (A, B, C, and D). In how many ways could a student 
complete this quiz?  

To answer this question, we could make the following argument: “We have four options for how 
to answer the first question – A, B, C, or D. Then, for any of those possibilities, we again have 
four options for how to answer the second question, yielding 16 possibilities for answering two 
questions. By the same argument, we’ll have four choices for the third through eighth questions, 
and we continue to multiply by four for each question.” This is illustrated by a partial tree 
diagram in Figure 1. The MP allows us to explain the general process that justifies why repeated 
multiplication by four is reasonable without having to list all 48 (or 65,536) outcomes.  
 

 
Figure 1 – A tree diagram representing the multiplication principle 

 
Second, the MP is foundational to counting because it underpins the basic counting formulas 

students encounter. Formulas like , , , and  are each general ways to 

express particular products that are based on the MP. For example,  is the number of ways to 
arrange n objects when objects cannot be repeated. Indeed, if we picture placing objects in 
distinct, ordered positions, there are n choices for which object goes in the first position, n-1 
choices for the second position, and so on. Through the lens of the MP, this can be thought of as 
distinct, ordered stages, and thus it makes sense that the resulting product of n! gives all of the 

possible arrangements of n objects. The formula  is a variation of the n! formula – 

instead of arranging all n objects, we may only want to arrange r of n objects. There is again 
simply a product (based on the MP) that we wish to write, and the formula provides an efficient 
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way to express that product. The  and  formulas are similarly supported by the MP. 

Thus, we see that the MP both provides justification for our counting, and it conceptually 
supports much of the initial counting that students encounter.   

 
Theoretical Perspective 

A model of students' combinatorial thinking. Our work is situated within the context of 
Lockwood’s (2013) model of students’ combinatorial thinking (Figure 2), which we elaborate 
here, using the Quiz Questions problem as an example. The model consists of three components 
– formulas/expressions, counting processes, and sets of outcomes. The formulas/expressions are 
mathematical expressions that yield some numerical value, often considered “the answer” to the 
counting problem. In the Quiz Questions problem, the expression that gives the final answer is 
48. The counting processes are the enumeration processes (or sequence of processes) in which a 
counter engages as they solve a counting problem. In the Quiz Questions problem, the counting 
process is the iterative use of the MP to track the options at each stage. The set of outcomes 
refers to the set of elements being generated or enumerated by a counting process. In our 
example, the set of outcomes consists of the collection of all the ways in which a quiz might be 
answered, perhaps encoded as sequences of A, B, C, D of length 8. The cardinality of the set of 
outcomes (65,536 in this case) is equivalent to the problem’s solution. 

 

            
Figure 2 – Lockwood’s (2013) model of 

students’ combinatorial thinking 
Figure 3 – A depiction of how students 

typically try to solve counting problems
 
Lockwood’s model also elaborates relationships between the three components and 

emphasizes the importance of fostering the relationship between counting processes and sets of 
outcomes. In the initial conceptualization of the model, it was not fully explored what the direct 
relationship between formulas/expressions and sets of outcomes might entail, as evidenced by the 
dotted arrow. Lockwood offered a few conjectural comments, but did not have empirical data to 
substantiate or articulate the relationship. As such, the model initially served primarily to 
highlight sets of outcomes as a central construct underlying the counting processes and formulas 
with which students interact. Additionally, the picture in Figure 3 represents how students 
typically tend to count – they tend to live and die above the red line. That is, students are inclined 
not to think about sets of outcomes as they count, but rather they often rely on memorized key 
words or situations to determine whether order matters or to decide which formula to apply (e.g., 
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Annin & Lai, 2010; Lockwood, 2011, 2013). While some simple problems can be solved without 
considering outcomes, many commonly troublesome aspects of counting (such as issues of order 
or reconciling an overcount) can be resolved by students considering outcomes. Despite this, 
students do not utilize outcomes as often as they could (Lockwood 2011, 2013). The model thus 
provides language through which to articulate several salient aspects of students’ counting 
activity. 

Realistic Mathematics Education. In designing the present study, we conjectured, based on 
prior research (Lockwood, 2013), that students would have a better chance of successfully using 
counting formulas (and solving counting problems successfully) if the counting formulas contain 
meaning for them. Given that our central research goal was to gain insight into how students 
might reason meaningfully about the four counting formulas previously discussed, we chose not 
to supply them with these formulas, but rather to have them reinvent the formulas (i.e., construct 
the formulas themselves) by generalizing their work on an initial set of counting problems. We 
patterned our work after previous studies (Swinyard, 2011; Oehrtman, Swinyard, & Martin, 
2014) in which students were able to develop coherent reasoning about mathematical concepts 
via tasks designed to foster their reinvention of precise mathematical definitions. We thus drew 
inspiration from the perspective of developmental research (Gravemeijer, 1998), which 
leverages students’ informal knowledge and supports them in developing sophisticated, abstract 
knowledge while maintaining intellectual autonomy (p. 279). In line with Freudenthal’s 
recommendation (1973) to avoid an antididactic inversion (where symbolic formalism precedes 
reasoning), we aimed to create an environment that fosters initial exploration of counting 
problems that emphasizes sense-making over conventional symbolization.  
 

Methods 
The aim of this paired teaching experiment (Steffe & Thompson, 2000) was for two students 

to reinvent four basic counting formulas through engaging with a variety of counting problems.  
Participants. The participants were two above-average students (Thomas and Robin, 

pseudonyms) who had recently completed an integral calculus course. They were chosen based 
on the following criteria: 1) they had no formal college-level experience with counting; 2) they 
demonstrated strong mathematical background and ability; and, 3) they displayed a propensity to 
engage actively with mathematics and articulate their reasoning. The teaching experiment 
occurred following Thomas and Robin’s freshman and sophomore years, respectively.  

Data Collection and Tasks. The experiment consisted of ten 90-minute sessions, which 
occurred three times a week for about four weeks. The interviews proceeded in three phases, 
which we describe in detail. 

Phase 1 (Sessions 1-4): Solving Initial Counting Problems. Since neither student had prior 
counting experience, we first engaged them with ten counting problems, with the goal of 
providing them a common experience from which to generalize their mathematical activity. 
Three factors played into our task selection. First, we wanted Thomas and Robin primarily to 
engage in problem solving. Although these students had no formal collegiate experience with 
counting, we recognized that they may have seen permutation or combinations formulas in high 
school. To encourage problem solving rather than merely trigger attempts to recall expressions, 
we wanted to start with problems that do not immediately suggest a direct application of the most 
basic formulas. Second, we wanted students to use and reason about sets of outcomes, and thus 
most of the problems involved numbers small enough to facilitate explicit listing. Finally, we 
aimed for a variety of problems to require a range of approaches. This included problems that 
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might naturally be broken into cases, problems for which the multiplication principle might 
naturally be applied, problems that might be susceptible to overcounting, and at least a few 
problems with larger sets of outcomes. We provide a sample of problems from Phase 1 in Table 
1, focusing on those that we will subsequently discuss in the paper. 

 
Problem Problem Statement 

Dominos A domino is a small, thin rectangular tile that has dots on one of its broad faces. 
That face is split into two halves, and there can be 0 through 6 dots on each of 
those halves. Suppose you want to make a set of dominos (i.e., include every 
possible domino). How many distinguishable dominos would you make for a 
complete set? 

Language 
Books 

You have 4 different Russian books, 5 different French books, and 6 different 
Spanish books on your desk. In how many ways can you take two of those books 
with you, if the two books are not in the same language?  

CATTLE How many arrangements of the letters in the word CATTLE have the two T’s 
appearing together either at the beginning or the end of the word? 

Quiz 
Questions 

On a quiz, there are 8 multiple choice questions, each of which has 4 possible 
answers (A, B, C, and D). In how many ways could a student complete this quiz? 

Increasing 
Sequence 

You want to make a strictly increasing sequence of length 3, using digits ranging 
from 0 to 9. How many such sequences are there? 

Table 1 – Phase 1 tasks – Initial problem solving  
 
Phase 2 (Sessions 5-7): Reinventing Counting Formulas. Our aim in Phase 2 was to see if the 

students could reinvent each of the four basic counting formulas. To foster this reinvention, we 
chose tasks that we believed would motivate generalization, in that the solution sets are too large 
to enumerate easily via listing. In Table 2, we provide the tasks associated with the reinvention 
of each formula.  

Goal 
Formula 

Problem Statement 

 In the downtown public library, there are 648 books in the children’s section. In 
how many different ways can all of those children’s books be arranged on the 
shelves of the library? 

 There are 40 houses in the neighborhood, and they each need to be painted this 
summer. There are 157 paint colors available. In how many different ways could 
all of the houses be painted? 

 There are 19,000 fans at a basketball game. Throughout the game, fifty 
randomly chosen fans are going to be given fifty different prizes. How many 
possibilities are there for how the prizes can be distributed? 

 There are 19,000 fans at a basketball game. After the game, fifty fans are going 
to be chosen randomly to meet the team. In how many ways can these fifty fans 
be chosen?  

Table 2 – Phase 2 tasks – Reinventing four formulas 
 

Phase 3 (Sessions 8-10): Using the Formulas to Solve New Problems. After the students had 
reinvented the formulas, we wanted to provide opportunities to apply them. Would they use the 
formulas? If so, would they apply them blindly, or carefully justify their use?  
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We selected nine tasks, which are included in Table 3. The tasks chosen reflected what we 
believed to be fairly straightforward instantiations of arrangements, permutations, and 
combinations. Although students might make unanticipated connections between problems, we 
nevertheless chose these problems according to which formula/solution type might most 
naturally fit them (from our perspective), providing at least two problems matching each formula 
the students had reinvented.  

 
Problem Problem Statement 

SMOTHERING How many ways are there to rearrange the letters in the word 
SMOTHERING? 

iPhones In a shipment of 1500 microprocessors, 95 are defective. In how many ways 
can we select a set of 50 non-defective microprocessors? 

License Plates How many 6-character license plates can be formed using upper-case letters 
and the digits 0-9? 

Bits Consider binary strings that are 256 bits long. How many 256-bit strings 
contain exactly 75 0’s?  

Horses 20 horses are running in the Kentucky Derby. How many options are there for 
which horses could finish with Win, Place, or Show?  

Coin Flip A fair coin is flipped 36 times. How many outcomes are possible? How many 
outcomes have as many heads as tails? How many outcomes have a head on 
the fifth toss? 

Lollipops There are 50 children, and there are 10 identical lollipops to give to the 
children. How many ways could the lollipops be distributed if no child can 
have more than one lollipop? 

Kickball There are 30 kids who want to play kickball in gym class, and in a game of 
kickball there are 9 positions on the field at a time. How many ways are there 
for 9 of these kids to play in a kickball game? 

Paintings In the Portland Art Museum, there are 25,000 paintings. In how many ways 
can these pieces of art be displayed on the walls of the art museum? 

Table 3 – Phase 3 – New problems 
 

Analysis. As the experiment proceeded, we conducted an ongoing analysis that included 
reviewing the videotape of each session and constructing a content log of that session. In creating 
these content logs, we paid particular attention to students’ articulated thoughts that seemed to 
provide them with leverage, the voicing of concerns or perceived hurdles that needed to be 
overcome, and signs of/causes for progress. Our ongoing analysis informed our decisions about 
tasks for subsequent sessions. We also conducted a retrospective analysis (Cobb, 2000) in which 
we reviewed the entire corpus of data at a deeper level, so as to refine our descriptions of 
thematic elements present in the students’ reasoning. This retrospective analysis included re-
watching all of the videos, enhancing the content log for each session, and noting recurring 
phenomena and themes. Once we had identified a handful of themes, we reviewed and 
transcribed key portions of the video in order to investigate aspects of the data related to each 
theme.   

Results 
We divide the results into two findings: First, students’ use of sets of outcomes supported 

their successful reinvention of the four formulas and increased rate of success on subsequent 
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problems, and, second, overreliance on sets of outcomes and patterning may preclude the 
development of the MP. In describing both findings, we present the students’ work on one or two 
problems that is representative of their overall work.  

 
Finding 1: Students’ use of sets of outcomes supported their successful reinvention of the 

four formulas and markedly increased rate of success on subsequent problems  
Phase 1 (Sessions 1-4): Solving Initial Counting Problems. The students' work on this phase 

was marked by a focus on writing outcomes, and, in some cases, relying on patterns to determine 
the answer to the problem. The Domino problem was their first exposure to solving counting 
problems together, and we detail their work to highlight a couple of important norms that were 
established. Their work on this problem is representative of their work with outcomes throughout 
the experiment. 

Thomas began by writing out a row of seven dominos, writing a 0 over a 0 to represent the 
0:0 domino (Figure 4). They then had the following exchange, which set the stage for prioritizing 
listing over a search for an equation. 

Robin:  “Isn’t there an equation for that?” 
Thomas:  “I bet there is.” 
Robin:  “I don’t remember it…Isn’t it something like, what are those things called? … 

Like combination equations…How should we do this?” 
Thomas: “I don’t know, I don’t know the equation, so…(trails off).” 
 
After this exchange, they did not pick up on this search for an equation, and the idea of 

simply looking for an equation was tacitly set aside. Without knowing what such a formula 
might look like, they instead proceeded with listing more outcomes. Thomas said, “For each of 
the top half, there would be seven that match with it. So we’d have to do one for every one of 
them, 7, 7, 7, 7, 7, 7, 7,” suggesting repeated addition. They then started to write a second row of 
seven dominos (1:0 through 1:6), but they immediately realized that they had already counted 
0:1. Thomas suggested that there thus would not be 49 dominos, but he had not yet recognized a 
correct pattern, saying, “so this one would have seven and then each of the rest would have like 
6.” At this point, Robin suggested that they write out more dominos, which they did.  

 

 
Figure 4 – Thomas and Robin’s work on the Dominos problem 

 
As they did, they listed the second row of dominos with 1’s and crossed off the duplicate 1:0 

domino. They then began to write out the dominos with 2’s, and they crossed out 2:0, but as they 
wrote 2:1 Thomas said, “Ooooh, one more cancels each time.” This suggested that he had not 
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initially realized the pattern until he was actually writing out that particular outcome, and that the 
listing helped him recognize the duplication. They then wrote the entire list (Figure 4) and 
crossed out all of the duplicates. They recognized that “one more cancels each time” and 
ultimately summed to find the correct total 7+6+5+4+3+2+1 = 28. 

This problem highlights the value of articulating and listing outcomes, particularly in 
recognizing issues involving overcounting. Indeed, it seems as though Thomas might not have 
recognized that “one more cancels each time” if he had not listed more outcomes. Additionally, 
we suggest that this problem (and the use of outcomes) was key in determining what they took as 
an acceptable answer to a counting problem. They were confident in their answer of 28 because 
they had listed all of the outcomes, and this work set the stage for much of Phase 1. By the time 
they finished this phase, they had solved all 10 problems correctly.  

Phase 2: Reinventing Counting Formulas. To exemplify their work in this section, we very 
briefly discuss their reinvention of the formula for the number of arrangements of r objects from 

n distinct objects: . Posed with the third task in Table 2, the students noted that they 

wanted to multiply 19,000 by 18,999 by 18,998, and so on, all the way down to 18,951. They 
eventually recognized that they could more efficiently write that product as a quotient of 

factorials. This led them to conjecture that their answer would be 19000!
18950!

. To check their 

conjecture, they tried some smaller examples, which gave them growing confidence that their 
conjecture was sound. This led them to generalize their conjectured formula to the one seen on 
the right-hand side of Figure 5.   

By the end of Phase 2, the students had successfully reinvented each formula, using their 
own notation. Table 4 shows the formulas that the students came up with, as compared to 
standard textbook formulas. Despite the somewhat idiosyncratic appearance, the students' 
notation was meaningfully connected to their experience; for instance, the f in the last two 
formulas stood for fans at a Blazer game, which was the context in which the expressions were 
developed. 

 

 
Figure 5 – Reinventing permutations of r objects from n objects 

 
 
 

n!
(n− r)!
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Textbook 
Formulas 

  

 
 

Students’ 
Formulas 

    

Table 4 – Textbook formulas and students’ reinvented formulas 
 

Phase 3: Using the Formulas to Solve New Problems. What is noteworthy in this phase is 
that the students still used outcomes to determine which formula to use. Even when armed with 
their new formulas, the students did not blindly apply them. Instead, they first articulated what an 
outcome was, discussed the nature of that outcome (whether repetition was allowed, whether 
order was relevant), and used that discussion to determine which formula to use. In this way, 
they solved eight of the nine problems correctly. Figure 6 shows their (correct) work on the 
Kickball problem, showing how they first wrote down an outcome and decided that different 
orderings of the kids yielded different outcomes. This suggested permutations rather than 
combinations, again demonstrating how their facility with outcomes positively affected their 
work, helping to decide which formula to apply when.   

 

 
Figure 6 – The students’ work on the Kickball problem 

 
Summary of Finding 1: To elucidate our first finding, we want to emphasize three aspects of 

their usage of sets of outcomes. First, throughout their work on these problems, the students used 
sets of outcomes frequently and with great effect. As discussed in their work on the Domino 
problem, the students reasoned about outcomes, to a much greater extent than previous studies 
have suggested (Lockwood, 2011, 2013). Second, the students did use such reasoning to 
successfully reinvent the formulas, and, even more, they went on to solve problems successfully 
using these formulas. That is, they did go through the tasks and were able to arrive at formulas to 
which they had not previously been exposed. Again, we find this to be a notable finding, 
demonstrating both that students are capable of such activity, and that they were able to use those 
formulas in subsequent counting activity. Finally, students were remarkably successful at solving 
these problems. Indeed, through the course of the teaching experiment, they solved 29/30 
(96.7%) problems correctly. We cannot overstate how noteworthy and impressive these results 
are, given low success rates and difficulties that have frequently been reported in other studies. 

 
 
 

n! nr n!
(n− r)!

n!
(n− r)!r!

n! ab n!
(n− f )!

n!÷ (n− f )!
f !

178 17th Annual Conference on Research in Undergraduate Mathematics Education



	  
	  

Finding 2: Overreliance on sets of outcomes and patterning may preclude the development 
of the MP  

Given the students’ success described above, it is reasonable to expect their work to be 
characterized by rich and frequent justification via the multiplication principle. However, our 
analysis indicates that the students’ work was surprisingly not based on the multiplication 
principle, but instead was almost entirely based on empirical patterning. These findings reveal 
unexpected phenomena that suggest new insight into Lockwood’s (2013) model. This point can 
perhaps best be illustrated by presenting the students’ work on the Quiz Questions problem.  

Quiz Questions. As discussed above, a natural approach to solving the Quiz Questions 
problem is to use the multiplication principle; we can argue that there are eight independent 
stages to the problem, each of which have four possibilities, and so the answer is 4^8. Indeed, in 
our prior experience giving this problem to students, it is natural for them to use this positional 
reasoning and to use multiplication in this way to solve the problem, and we expected that 
Thomas and Robin might reason similarly. 

Instead, however, Thomas and Robin created a table with 8 columns for the questions 1 
through 8, and they tried to enumerate the possibilities by keeping everything constant and then 
changing the last digit (Figure 7). Accordingly, they wrote rows of AAAAAAAA, 
AAAAAAAB, AAAAAAAC, and AAAAAAAD, and found there to be four options for 
changing the last letter. Even though they had the eight different questions labeled, at no point 
did they talk about the number of choices they had for each position, and they did not appear to 
think of constructing an outcome in stages by considering that there were four choices for each 
question. The excerpt below, from the beginning of Session 2 (in Phase 1), shows how they 
arrived at the correct answer to the problem; but what is noteworthy is that they never seemed to 
reason using the multiplication principle. Indeed, as we will see, they were driven to the correct 
answer of 48 by noticing how quickly things were growing (suggesting exponentiation) and 
verifying this guess by noticing a pattern.  

 

 
Figure 7 – The students’ work on the Quiz Questions problem 

 
After much work, Thomas had written an 8 and a 4 on the board, and he articulated his 

frustration about the magnitude of the answer. His work here suggests that Thomas was 
motivated to pursue exponentiation because he realized the options were growing quickly. 

 
Thomas:  “We’re getting really frustrated trying to write out all of the possibilities, because 

we’re just noticing it’s just going to keep growing and growing. So we’re trying 
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to think of a way we can just either multiply them [referring to the numbers 4 and 
8], or do something with them. I wonder, because it’s growing really fast…I 
wonder if you would [writes an exponent of 4 on the 8 - they both laugh]. It’s just, 
they’re growing really fast, and so maybe exponentially, ‘cause then that would 
give us a really large number.” 

After a bit more thought, and in describing the growth of his pattern, Thomas adjusted the 
conjecture and wrote 48. 
 

Thomas:  “Well because now, maybe it’s not the 8 to a power, because we see that there’s 
4, changing just this last column, ‘cause it’s each one of the possibilities. And 
then when we move over a row, then we get like a total of 16 possibilities, which 
is 4 times 4, or 4 squared, and so maybe if we go out, should we do this one? Oh 
we got 64, which is 4 cubed, and so gosh.”  

Robin:  “What if it’s 4 to the n?”  
Thomas: “We’ve changed 3 questions and we’ve got 4 cubed. So if we changed the 4th 

question we’d hope to get 4 to the 4th. Ooh, my goodness [writes and calculates 
64 × 4=256].” 

Robin: “Yeah so what if it’s just 4 to the n, I could see that.”  
Thomas:  “It’s going to be hard to check it, because already we didn’t want to count up like 

this fourth column, which we think would give us 256, it’s just going to be hard to 
check if we’re right or not. It fits these first three. Um, I don’t know.”   

 
While they ultimately decided that the answer should be 48, they went on to say that they did 

not see how else they could check their answer, noting “we can only go up to the third row 
without missing anything.” There was not a sense that they could argue what was happening in 
terms of why this answer might make sense more generally, aside from the pattern they had 
detected. We thus see in this problem that while they arrived at the correct answer of 48, this 
answer was entirely based on a pattern they had empirically established through writing 
outcomes. They had found four possibilities by listing outcomes, and then they found 16 by 
listing outcomes, and so that, combined with the focus on exponentiation, suggested to them that 
the answer was 4 to a power. It is not the case that they reasoned about the number of options 
possible for each question, nor did they really seem to have ownership of why the solution made 
sense.  

This absence of MP reasoning is representative on their work on almost all of the problems 
that involved large numbers, throughout the entire experiment. In fact, their reinvention of the 
formulas and their subsequent work on new tasks all suggest a similar, consistent method. The 
ability to match patterns and reason from sample outcomes was reliable for them, and their work 
on every subsequent problem continued to provide repeated and consistent evidence for the fact 
that they did not use the multiplication principle in their reasoning. Accordingly, although they 
almost invariably eventually arrived at the correct answer by way of applying a correct formula 
(and using sets of outcomes to do so), their understanding of why the answer made sense was 
perhaps incomplete. 

In summarizing the results of the experiment, then, there is a tension between two different 
aspects of the overall narrative that we can describe. On the one hand, these students were very 
successful. Given the rates at which students typically correctly solve counting problems, even in 
studies in which they have ample time to work on a problem, a 96.7% success rate is very 
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impressive. Additionally, their ability to reinvent formulas, and their impressive facility with sets 
of outcomes are laudable. We want to celebrate these students’ accomplishment in this regard 
and to present our ideas for why they were so successful. On the other hand, we do not feel that 
their high success rates tell the entire story, as there were also serious limitations to their 
approach. Specifically, because of their strong connection to the set of outcomes, and because 
this often enabled them to rely heavily on patterns, they did not encounter a need to develop 
strong multiplicative thinking to explain what they were doing. As a result, they often lacked the 
kind of robust reasoning and justification that would be expected of students who had truly 
understood the material typically presented, say, in an introductory course in discrete math.  

 

             
Figure 7a      Figure 7b 

 
The students’ work also shed some new light on Lockwood’s (2013) model. In particular, 

prior to this study, students’ struggles with counting problems might be frequently characterized 
by Figure 7a, in which students commonly neglect sets of outcomes and instead formula-match 
or rely on memorized problem features. However, the students in our study were not making 
these same kinds of mistakes. Instead, in terms of the model, we would characterize their work 
by the diagram in Figure 7b. Our students did not display a grasp of the multiplication principle 
(in fact, their work suggests they did not have the MP as a tool), and they did not use a counting 
process like the MP to justify their work. Instead, they relied entirely on empirical patterning 
(which may be similar to Harel’s (2001) result pattern generalization). Indeed, as mentioned 
above, prior to this study, the relationship between sets of outcomes and formulas/expressions 
was not well understood. Our findings thus make a theoretical contribution to the model, 
suggesting that patterning is an appropriate description for how to characterize the relationship 
between sets of outcomes and formulas/expressions. Moreover, the students in this study provide 
an existence proof that, given appropriate circumstances, this can develop in students as a 
practical form of reasoning about counting. 
 

Discussion and Next Steps 
A number of studies (e.g., Lockwood, 2011, 2013) have already shown that sets of outcomes 

are an important feature of combinatorial reasoning and can support good counting practices, and 
we still claim that this is true. As we have indicated, the students productively reasoned about 
outcomes in almost every counting situation in which they found themselves – in formulating the 
answer to a problem in Phase 1, in developing patterns that contributed to generalization in Phase 
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2, and in determining which formula best fit their current situation in Phase 3. Looking at and 
arguing about outcomes was a fundamental aspect of their deciding which formulas might be 
appropriate, and this allowed them to avoid nonsensical answers and led them away from the 
temptation simply to apply the formulas blindly. The study thus provides strong evidence for 
how useful focusing on outcomes can be in counting, particularly for novice counters 

However, this study also reveals that sets of outcomes are not sufficient in helping students 
make sense of and justify their counting activity, and we highlight two potential issues with these 
students’ attention to outcomes in absence of counting processes like the MP. First, these 
students showed that patterning may not lead to justification. If indeed we seek to have students 
who deeply understand their counting activity (which is a clear goal for developing proficient 
counters), we need to emphasize more than just patterning. In addition, our study suggests that an 
overreliance on outcomes may preclude the development and use of the MP, the understanding 
of which, as we have mentioned, is central to the entire subject. Therefore, while work with 
outcomes can be useful for students, caution should also be taken so students do not rely on 
outcomes to the point that they ignore deeper and more conceptual aspects of their work.  

There are a number of natural next steps in our program. We need to investigate the ways 
students connect their counting processes with their sets of outcomes, and we feel that the 
multiplication principle is a key aspect of this connection. Therefore, we want to investigate the 
principle more deeply, studying students’ conceptualizations and development of it as a tool for 
counting. This may involve reinventing the multiplication principle specifically, which we 
believe may be more productive for students than having them simply reason about statements 
they are simply given or told. 

Ultimately, we want to move toward designed-based research that targets the development of 
instructional tasks and sequences that can help students be more conceptually grounded in their 
counting activity. Such research would follow the trajectories of researchers in other 
undergraduate content areas, such as linear algebra, differential equations (e.g., Rasmussen & 
King, 2000), and abstract algebra (e.g., Larsen, 2013). This study has laid the groundwork for 
such subsequent investigations in which we can explicitly target the development of particular 
concepts and ideas (such as the multiplication principle, or sets of outcomes) that we feel might 
be important aspects of students’ combinatorial thinking. 
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THE CONSTRUCTION OF COHOMOLOGY AS OBJECTIFIED ACTION 

 

Anderson Norton 

Virginia Tech 

 

The purpose of this paper is to investigate a theory about the nature of mathematical 

development, in which mathematics is characterized as the objectification of action. Informed by 

existing research on how students construct new mathematical objects, we consider as an 

example the psychological construction of cohomology and related objects of algebraic 

topology. This example extends neo-Piagetian theories of mathematical development from 

elementary school to graduate-level mathematics, while integrating existing research on 

students’ learning of abstract algebra. Results of the investigation affirm the objectification of 

action as a distinguishing feature of mathematics in general, while indicating the kinds of mental 

actions that undergird the objects of advanced mathematics. 

 

Key Words: Abstract Algebra, APOS Theory, Constructivism, Reflective Abstraction, 

Reification 

 

“Mathematics is the science of actions without objects, and for that, of objects we can define 

through action.”  Paul Valéry  (1973, p. 811). 

 

When fields’ medalist William Thurston endeavored to address the plight of mathematics 

education in the United States, he shared the following personal anecdote: 

 

I remember as a child, in fifth grade, coming to the amazing (to me) realization that the 

answer to 134 divided by 29 is 134/29 (and so forth). What a tremendous labor-saving 

device! To me, ‘134 divided by 29’ meant a certain tedious chore, while 134/29 was an 

object with no implicit work. I went excitedly to my father to explain my major 

discovery. He told me that of course this is so, a/b and a divided by b are just synonyms. 

To him it was just a small variation in notation. (Thurston, 1990, p. 5) 

 

Thurston used the story to illustrate the challenge we face, as teachers, when we attempt to 

unpack the mathematical objects we have constructed. Mathematics education researchers have 

taken pains to unpack the object of Thurston’s example in particular, demonstrating how students 

begin to understand fractions (and especially improper fractions, like 134/29) as “numbers in 

their own right” (Hackenberg, 2007). The key to this and similar work has been to identify the 

mental actions that comprise those objects, thus equipping teachers and researchers with models 

for how students might construct those objects through activity.  

Few students in the United States accomplish what Bill Thurston did (Norton & Wilkins, 

2012). In fact, it’s possible that Thurston’s father did not appreciate his son’s revelation because, 

for him, the fraction 134/29 symbolized nothing more than the division of two whole numbers. 

On the other hand, if the elder Thurston had constructed 134/29 as a number, it’s probable that 

he would have forgotten the labor of that construction, which involves coordinating mental 

actions of partitioning and iterating within a three-level structure: 134/29 as a unit resulting from 

134 iterations of a 1/29 unit, which results from partitioning a whole unit into 29 parts 

(Hackenberg, 2007). Figure 1 illustrates such a structure for the simpler fraction, 8/3. This 
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structure supports a conception of the improper fraction as an object defined through its size 

relation with the whole: 8/3 as a number that is eight times as big at 1/3, which has a 1-to-3 size 

relation with the whole. 

Figure 1. 8/3 as a unit of units of units. 

 

Steffe and Olive (2010) have described this way of conceptualizing improper fractions as an 

iterative fraction scheme (IFS). Whereas we have fine-grained models for describing, explaining, 

and predicting the construction of improper fractions, few models of this kind exist for advanced 

mathematics. The scarcity of such models likely owes to two factors: (1) mapping the 

psychological construction of mathematics requires intensive and longitudinal studies of 

students’ development—studies that, so far, have followed a trajectory from infancy to middle 

school mathematics; and (2) although schemes seem adequate for building models of 

development up to that point, modeling students’ constructions of advanced mathematics likely 

requires more complex structures. Here, we will examine construction in an extreme case—

cohomology—to identify key mental actions, even if we cannot model the complexity of their 

coordination.  

 

Theoretical Framework 

Inherent in Piaget’s genetic epistemology is the idea that mathematical objects arise through 

the coordination of actions: “The meaning of objects has two aspects: It is ‘what can be done 

with them’ either physically or mentally… The meaning of object is also ‘what it is made of,’ or 

how it is composed. Here again, objects are subordinate to actions.” (Piaget & Garcia, 1986, pp. 

65-66). As Tall and colleagues (2000) have noted, several theoretical frameworks for teaching 

and learning have arisen from this idea, including APOS theory (Dubinsky, 1991), reification 

(Sfard, 1991), and scheme theory (von Glasersfeld, 1995). Here, we present a broader theoretical 

framework that builds on such work while aligning more closely with Piaget’s characterizations 

of actions and objects, as well as his characterization of mathematics itself.  

APOS Theory 

Dubinsky and colleagues (e.g., Dubinsky & Lewin, 1986) developed APOS theory as a 

means of applying Piaget’s constructivist epistemology to research on undergraduate 

mathematics education. In particular, they demonstrate how mathematical actions may become 

reflectively abstracted as advanced mathematical objects and schemas. Their central tenet is that 

“mathematical knowledge consists in an individual’s tendency to deal with perceived 

mathematical problem situations by constructing mental actions, processes, and objects and 

organizing them into schemas to make sense of the situations and solve the problems” (Dubinsky 

& McDonald, 2001, p. 2). In this framework, actions are defined as transformations of tangible 
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objects (including diagrams and written symbols) and might include carrying out the steps of an 

algorithm, such as computing the left cosets of a particular algebraic group. Reflecting on such 

actions allows the individual to internalize them as mental processes that the individual can 

imagine performing, without the need for tangible objects. Similar to Piaget (1970b), Dubinsky 

and McDonald (2001) argue that this internalization allows students to reverse and compose 

actions. The process becomes an object for an individual when he or she can symbolize it and 

purposefully act upon it. “Finally, a schema for a particular mathematical concept is an 

individual’s collection of actions, processes, objects, and other schemas which are linked by 

some general principles to form a framework in the individual’s mind” (p. 3). 

Reification 

Following Dubinksy (1986), Sfard (1992) further elaborated on Piaget’s (1970a) notion of 

reflective abstraction by prescribing three stages through which students progress from engaging 

in mathematical processes to producing mathematical objects. To illustrate, Sfard provided an 

extended example from the historical development of number: from natural numbers, to positive 

rational numbers, to positive real numbers, to real numbers, and finally to complex numbers. She 

argues that each step-wise development has depended upon stages of interiorization, 

condensation, and reification. In particular, in the production of rational numbers, processes 

involving the division of natural numbers become interiorized so that they “can be carried out in 

mental representation” (p. 18, from Piaget, 1970a). Then they are condensed so that they can be 

combined with other processes, such as measurement. Finally, they are reified, or objectified, as 

a static structure on which to perform further processes, as in the development of positive real 

numbers. In fact, we can find evidence of this kind of development in the personal experience 

shared by Thurston: Whereas 129/34 had been a laborious process to perform, perhaps 

interiorized and condensed over a period of learning, in an instant it became reified as an object 

or “compact whole” (Sfard, 1992, p. 14). Unfortunately, Bill Thurston’s father did not appreciate 

this “quantum leap” (p. 20) from process to object, which we might explain in either of two 

ways, as discussed later in this section. 

Scheme Theory 

Sfard did not make use of Dubinsky’s action-process distinction, allowing processes to 

include actions, whether carried out physically or mentally. Neither did she make use of 

schemas. In contrast, scheme theory relies on a different characterization of action and utilizes a 

construct similar to Dubinsky’s schema, but does not explicitly address the production of objects. 

von Glasersfeld (1995) described a scheme as a three-part structure: an assimilatory template of 

situations that might activate the scheme, a coordinated collection of mental actions carried out 

by the scheme, and an expected result from acting in the situation. Although Dubinsky’s and 

Sfard’s frameworks would include such actions, von Glasersfeld’s description of mental action 

drew more heavily and narrowly from Piaget. For example, in contrast to the more formal 

mathematical actions of dividing and measuring described in Sfard’s analysis of how students 

construct positive rational numbers, a scheme theoretic perspective would focus on the 

psychological actions that undergird them.  

Actions and Objects 

In an attempt to characterize the nature of mathematical objects and their construction, Tall 

and colleagues (2000) reviewed each of the frameworks described here and, noting the common 

theme of encapsulated actions, sought to describe how actions become objectified. Here, we 

broaden these frameworks and extend their purpose by arguing that mathematics is the 

objectification of action—this is what makes our field unique and, in some sense, infallible. 
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Unlike other sciences, languages, or any other field of study, all of the objects of mathematics 

are based on actions and their coordination so that, ultimately, mathematical claims are about 

nothing but the mental actions we can perform. If these actions correspond to (or even predict) 

experiential reality, it is only because we, as humans, have evolved to operate within the world 

we experience (Piaget, 1971/1970). 

Piaget’s epistemological research draws a fundamental distinction between two kinds of 

thought: figurative and operative. Whereas figurative thought pertains to empirical abstractions 

of “perception, imitation, and mental imagery” (1970a, p. 14), operative thought is the domain of 

mathematics. It pertains to reflective abstractions of one’s coordinated activity in the 

construction of mental actions and structures. Unlike figurative objects (such as colors and 

drawings), operative objects remain dynamic on the basis of the actions that comprise them and 

the structures that organize them. Moreover, constructing such objects opens new possibilities 

for action, so that mathematics continually builds upon itself in alternating layers of actions and 

objects. Figure 2 illustrates the basic character of operative thought. 

 
Figure 2. Mathematics as objectified action. 

 

The top arrow in Figure 2 indicates that actions become reflectively abstracted as objects. 

The bottom arrow indicates that, as objects, these objectified actions can be acted upon. This 

pattern lies at the heart of Piaget’s epistemology of mathematics and can also be found Sfard’s 

reification and Dubinsky’s APOS theory. What Sfard and Dubinsky do not address is how 

interiorized actions become organized within psychological (rather than formal mathematical) 

structures—the subject of Piaget’s structuralism. 

Structuralism 

Structuralism focuses solely on operative thought, as an attempt to explain how children 

develop logico-mathematical reasoning. In addition to schemes (discussed above), Piaget 

(1970b) posited algebraic group-like structures that organize mental actions into reversible and 

composable systems. For example, students who have constructed mental actions of partitioning 

and iterating might organize them as inverse elements within a “splitting group”, where iterating 

a part five times undoes the mental action of partitioning a continuous whole into five parts 

(Norton & Wilkins, 2012). They might also engage in recursive partitioning, in which 

partitioning is both an action and the object of that action (e.g., partitioning a continuous whole 

into three parts and then partitioning each of those parts into five parts to produce fifteen parts in 

the whole). Recent research (ibid) indicates that this group-like structure is necessary for the 

construction of IFS—the way of operating Thurston apparently constructed in fifth grade. 

Although Piaget’s epistemology (including his structuralism) equates logico-mathematical 

thought with operative thought, much of what happens in mathematics classroom involves 

figurative thought as well (Thompson, 1985). When the link is broken between a student’s 

mental actions and the objects of a mathematical lesson, the student has little recourse but to 

engage in figurative thought. Sfard and Linchevski (1994) referred to this kind of engagement as 

the pseudostructuralist approach: “The new knowledge remains detached from its operational 

underpinnings and from previously developed systems of concepts” (p. 221). Moreover, 

Thompson (1985) has argued that students foreground some objects of mathematical discussion 
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as operative—acting on them and deconstructing them into their constituent actions—while 

placing other objects in the background, as figurative. For example, functions might be operative 

in the context of high school algebra, as students act on covarying quantities and attempt to 

establish them as invariant relationships, but functions might be treated as figurative within 

cohomology, where they are elements of a group. In any case, what constitutes operative thought 

depends upon the available mental actions of the individual and her goals within the activity. 

Thus, we can say the same for mathematics.  

 

Research on Abstract Algebra from an Action-Object Perspective 

Action-object perspectives (especially Sfard’s reification and Dubinsky’s APOS theory) have 

gained strong influence in research on undergraduate mathematics education (RUME). Here, we 

review RUME studies from an action-object perspective that focus on concepts related to 

abstract algebra, and therefore related to algebraic topology and cohomology (for which no direct 

mathematics education research exists). 

In a study on how college mathematics majors learn group isomorphism, Leron, Hazzan, and 

Zazkis (1995) drew a distinction between students who understood “the relation of two groups 

being isomorphic” and those who understood “the object of isomorphism” (p. 154). They 

identified three phases in students’ transition from the former, action/process conception, to the 

latter, object conception: (1) concepts that reference the student doing something; (2) concepts 

that reference a process that could be carried out by anyone; (3) concepts that make claims of 

subject-independent existence. As students struggled to progress toward an object conception of 

isomorphism, the researchers noticed them “craving for canonical procedures and their fear of 

loose or uncertain procedures, indeed, procedures with any degree of freedom” (p. 171).  

In a similar study with high school teachers, Dubinsky, Dautermann, Leron, and Zazkis 

(1994) focused on the interconnected layers of objects within group theory—group, subgroup, 

coset, normality, and quotient group—and their dependency on existing concepts of set and 

function. The teachers tended to begin by treating groups as sets on which to act and only later 

considered the role of a binary operator (function) in defining groups as objects. In line with 

Leron, Hazzan, and Zazkis (1995), the researchers noted the need for a concept of isomorphism 

in order to construct “group as an equivalence class of isomorphic pairs [of sets and functions]” 

(Dubinsky et al., 1994, p. 290). They also found that teachers construct subgroups in parallel 

with groups, as functions with a restricted domain. However, the teachers were generally not 

successful in constructing quotient groups, which the researchers attribute to difficulty in 

objectifying the process of forming cosets—a prerequisite construction for treating cosets as 

elements of a group. This difficulty was associated with teachers’ tendency to conflate normality 

and commutativity. 

Hazzan (1999) found that undergraduate students deal with the complexity of abstract 

algebra by “reducing the level of abstraction” (p. 71). Students do this in three distinct ways: (1) 

by basing arguments on more familiar mathematical entities (such as sets, rather than groups); 

(2) by dealing with single elements within a more complex collection (for example, working 

with a representative element within a quotient group, rather than the quotient group itself); and 

(3) by reducing objects to the actions that comprise them. Although the three methods are closely 

related, the third method aligns most directly with an action-object perspective. In line with the 

study by Leron, Hazzan, and Zazkis (1995), students can reduce the complexity of an entity by 

imagining actions they can perform to build it up. For example, one student dealt with quotient 
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groups, G/H, by referencing the imagined activity of taking all elements of the normal subgroup, 

H, and choosing an element from the group G by which to multiply them on the right.   

Other studies have demonstrated the efficacy of an action-object perspective as a pedagogical 

tool (e.g., Asiala, Dubinsky, Mathews, Morics, & Oktac, 1997; Brown, DeVries, Dubinsky, & 

Thomas, 1997). For example, Asiala and colleagues (1997) reported on the effectiveness of an 

abstract algebra course that explicitly attended to students’ progressive constructions of actions, 

processes, objects, and schema. In particular, they described an action conception of coset as one 

in which students could work with simple and familiar groups/subgroups to build the coset. 

Students progress to process conceptions of coset when they can imagine computing the products 

just as the student in the example provided above, from Hazzan (1999). Students can then 

progress to object conceptions, in which they do not need to focus on the actions of building the 

coset and instead act on the coset itself. Finally, a coset schema is formed as a network of 

actions, processes, objects, and schemas, by relating cosets to concepts of groups, subgroups, 

normality, and quotient groups.  

 

The Construction of Cohomology 

When considering the complexities of an advanced mathematical idea, diagrams can provide 

some indication of their organization. Specifically, Figure 3 represents various components of 

cohomology and their relationships. However, for most of us, these components and 

relationships remain figurative rather than operative because they do not symbolize mental 

actions that we perform, nor objects that we act upon. The situation is completely analogous to 

that faced by middle school students as they begin engaging in algebraic manipulation without 

reference to underlying mental actions. For example, students commonly solve equations of the 

form ax=b by subtracting a from both sides of the equation. Correcting students’ behavior in 

these instances is unproductive in terms of supporting algebraic reasoning. We need to address 

the source of the problem, that algebraic manipulations should become a proxy for underlying 

mental actions on previously constructed objects.  

 

 
Figure 3. Diagram of cohomology 

 

Previous research has suggested that constructing concepts in abstract algebra relies on 

having constructed functions and sets as objects first (Dubinsky, Dautermann, Leron, & Zazkis, 

1994). Students tend to begin by treating groups as sets on which to act and only later consider 
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the role of a binary operator (function) in defining groups as objects. Also, researchers have 

noted the interdependency of groups and isomorphisms in constructing “group as an equivalence 

class of isomorphic pairs [of sets and functions]” (Dubinsky et al., 1994, p. 290). Figure 3 begins 

at this stage, where Cn, represents a free abelian group generated by the set of n-dimensional 

triangles (e.g., vertices, edges, triangles, tetrahedras, etc.) used to build up the topological space 

under consideration.  represents a “boundary map” from Cn to Cn-1: a homomorphism that 

maps each n-dimensional triangle to its boundary (e.g., the boundary of an edge is the difference 

between its vertices, v2-v1). G represents another, selected group, and the various ϕs represent 

functions from Cn to G. Suppose these are objects for us, in the sense that Asiala and colleagues 

have described (1997): We can act on them and unpack them to their constituent actions (as 

opposed to figurative objects on which we might act but are not themselves composed of 

actions). Now consider the chain complex—the abelian groups, Cn, and the boundary maps, , 

between them—as an algebraic procedure. Thus, Figure 3 serves to identify the boundary 

between algebraic objects and actions, even though we have not yet identified what 

psychological actions might undergird procedures associated the chain complex.  

The Circle 

To proceed, we might compute the homologies of familiar spaces. Computing homology 

allows us to focus on objectifying the chain complex while reducing further complexity 

introduced by cohomology: the inclusion of the “ϕ” functions to group G and the coboundary 

maps, δ. Let us begin by computing the homology of the circle. This decision can be interpreted 

as an attempt to “reduce the level of abstraction” by dealing with a familiar entity (Hazzan, 

1999), which might also make it easier to geometrically interpret the results of our algebraic 

computations. In particular, it is easy to see how a circle can be continuously deformed into a 

triangle, with three vertices and three edges. Thus, the chain complex becomes 0<e1, e2, 

e3><v1, v2, v3>0; that is, C1 and C2 are abelian groups generated by three elements and, thus, 

both are isomorphic to Z
3
 (the product of three copies of the group of integers under addition). 

Now, the homology of the circle will be the quotient groups formed by the kernel of ¶n-1
 mod 

the image of .  

Research indicates that constructing quotient groups is particularly challenging, even among 

students who have constructed groups as objects (Dubinsky et al., 1994). In the case of 

computing homologies, there is an additional challenge in making sense of the particular quotient 

groups defined by a particular homomorphism—the boundary map. Interpreting results 

geometrically gives these algebraic manipulations a geometric meaning, and the relevant mental 

actions lie therein. In other words, computing and interpreting homologies becomes a proxy for 

geometric actions associated with mapping n-dimensional triangles to their boundaries, equating 

sequences of n-dimensional triangles with an identity element, and forming n-dimensional loops 

around holes in the topological space under consideration. Thus, we begin to understand the 

chain complex as a representation of those actions. For the actions to become objectified, we 

need for them to define a class of spaces, so that homology becomes a proxy for that class.  

In taking on this challenge, motivation quickly arises as a competing factor: Why did 

mathematicians ever bother to invent (co)homology in the first place? This as a competing factor 

because, for simple examples like the circle, sphere, or torus, there is no need for homology (let 

alone cohomology). We do not need to compute quotient groups of boundary mappings in order 

to determine that the torus and the sphere are topologically distinct. On the other hand, for the 

cases in which homology might be useful, the connection between the topology of the spaces and 

¶n

¶n

¶n
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their homology (roughly, the connection between their geometry and their algebra) is opaque. 

We need to begin by working with simpler examples in order to build the connection in a way 

that might extend to ever more complex examples. Along the way, however, new complexities 

arise within the connection itself.  

In working through examples, many of our actions will be conjectural—long sequences of 

tentative activity with depreciating confidence. For example, we might consider, “Why is 

homology invariant of choice of simplexes?” After all, we can build up the same topological 

space in many different ways. As it turns out, we do not even need to use n-dimensional triangles 

to form a chain complex, but can choose any n-dimensional polygon. Specifically, when 

computing the homology of the circle, we can choose any number, m, as the number of vertices 

(0-simplices) and edges (1-simplices). Figure 4 illustrates the cases of m=1 and m=3. 

 

 
Figure 4. Two ways to form simplexes in the circle. 

 

The image on the right of Figure 4 represents our original approach, with chain complex 

0Z
3
Z

3
0. The image on the left generates a simpler chain complex: 0ZZ0. Even 

though the images and kernels within these mappings differ considerably, the resulting quotient 

groups are identical. For instance, in computing H0(X), the corresponding kernels are Z and Z
3
, 

but the corresponding images are 0 and Z
2
, so that the quotient group is Z in either case. 

Understanding why this happens is part of what it means to objectify the quotient groups that 

define homology. Just as understanding equivalent fractions involves more than showing that 

common factors cancel out, this understanding relies upon mental actions beyond the 

computation. Thus, the objectification of homology involves more than an interiorization of the 

boundary mapping or the process of computing its quotient groups. In particular, every time we 

add a new vertex to the simplex, we must add another edge, and the boundary of that edge will 

consist of two adjacent vertices. Their connectivity, as a single connected component, essentially 

leads to their identification in quotient group: Each vertex is identified with its two adjacent 

vertices, by the edge that connects them.  

This understanding goes well beyond the process of computing kernels and images of the 

boundary map, and without this understanding, developed through simple examples, we would 

not be able to trust the extension of homology to the more complex examples where homology is 

actually useful. In building an understanding for how the algebraic computation of homology 

serves as a proxy from making topological distinctions, we find that relevant mental actions 

include geometric ones, related to vertex-edge graphs, as well as mental actions associated with 

continuity, especially as it relates to homotopy. By itself, the objectification of the boundary 

mapping would be no more useful to me than the algorithm for computing the product of two 

fractions; we would be objectifying something figurative rather than operative, and thus, would 
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not be engaging in mathematics. We dig a little further into these actions by considering two 

nearly identical surfaces: the torus and the Klein bottle. 

The Torus and the Klein Bottle 

Topology is intended to address questions like the following: Are the torus and the Klein 

bottle continuous transformations of one another? Algebraic topology provides an answer by 

showing that the two surfaces have different homologies. Figure 5 demonstrates the homology of 

the torus. 

 

 
Figure 5. Homology of the Torus 

 

Note that the diagram on the left side of Figure 5 represents a torus because the opposite 

edges are identified with one another; i.e., we can produce the torus by gluing opposite edges 

together and, in the process, the four corners become a single vertex, v. Also note that each of the 

boundary maps turn out to be the 0 map because vertices and edges cancel out. Now consider the 

Klein bottle (Figure 6). 
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Figure 6. Homology of the Klein Bottle. 

 

The diagram (and therefore the homology) is exactly the same, except for one twist: A copy 

of e2 is reversed. We can imagine both surfaces being constructed from a cylinder (after the pair 

of e1s are identified), but in order to match up the directions of the two copies of e2, the Kline 

bottle requires that the cylinder pass through itself to attach from the inside (see right side of 

Figure 7), which happens in four-dimensional space. Thus, the Klein bottle is a two-dimensional 

surface that does not exist in three-dimensional space. This fact alone might inform us that the 

torus and Klein bottle are not topologically equivalent, but we intend the comparison as an 

explanatory example for homology rather than a motivating one. We are trying to identify mental 

actions that might underlie our computations. 

 

 
Figure 7. Homology as a proxy for topological actions. 

Note: Images borrowed from Nosco (http://www.nosco.ch/mathematics/notes/torus.php) and 

Wikipedia (http://en.wikipedia.org/wiki/Klein_bottle) respectively. 

 

In the case of the circle, we have already seen how the 0
th

 homology group, H0, indicates the 

number of connected components in the topological space. Although the torus and Klein bottle 

affirm this connection (both are connected and have a single copy of Z for H0), they do not 

provide interesting cases in this regard because we constructed each of them with only one 

vertex. However, they do provide an interesting contrast for H1. How should we interpret the 

quotient groups Z
2
 and ZxZ2? 

For both surfaces, the kernel of the 1
st
 boundary map ( ¶1

) is the group generated by the two 

edges; both of these edges form loops because their boundary is a single vertex, v, and for that 

same reason, they map to 0. For the torus, those loops are maintained when the face is glued on 

because the opposite edges match up. In order for them to match up, their directions must be 

opposite as we go around the boundary, and that is why they cancel out in the 2
nd

 boundary map 

( ¶2
). In other words, the 2

nd
 boundary map is 0 precisely because the opposite edges of the face 

match up. Thus, the image is 0; no paths become identified with 0 in the quotient; and the 1
st
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homology group (H1) is the group generated by the two loops. We can see these loops on the 

torus in Figure 7: One goes around the “inner tube” and one goes around the hole at the center of 

the torus. 

For the Klein bottle, one of the loops is transformed when the face is glued on because one 

pair of opposite edges does not match up. Instead of canceling out, the edge is doubled, and the 

2
nd

 boundary map has an image of <2e2>. Thus, any even number of trips around the 

corresponding loop will be identified with 0. We can see the corresponding geometry in Figure 

7: Tracing a loop around the “neck” of the bottle is just as it was for the “inner tube” of the torus, 

but tracing the other way yields a loop that undoes itself on the second pass because the trace 

moves to the other side of the surface (from inside out, or vice versa). 

In general, the kernel of a boundary map is generated by n-dimensional cycles, and the image 

of the next boundary map is generated by the n-dimensional boundaries of n+1 dimensional 

polygons. In fact, algebraic topologists refer the kernels and images as “cycles” and 

“boundaries,” respectively. In the quotient groups that define homology, the boundaries are 

identified with 0. Geometrically, we can understand this as gluing the cycles together (often in 

intricate ways). However, we can get lost in the computation of cycles, boundaries, and their 

quotients without ever considering the geometric actions to which they refer, much as middle 

school students do when they “complete the square” without ever considering the geometric 

square they are completing. Whether we are completing squares, connecting vertices, or gluing 

faces on to loops, the mathematics is in the geometric action for which the algebraic 

manipulation is a proxy. Once these actions are objectified, they can be symbolized in a way that 

conveys meaning. In particular, the symbols in Figure 3 become more than figurative material; 

they become proxies for objects, and actions on those objects.  

 

Concluding Remarks 

In reflecting on the actions and objects of cohomology, a key distinction arises—one that 

Piaget vigilantly maintained in his studies of young children but one that becomes easier to 

overlook when considering advanced mathematics: The bases for construction of formal 

mathematical objects are not necessarily formal processes. The diagram presented in Figure 3 

might implicate computing kernels and images of boundary maps as primary actions to objectify, 

but subsequent investigation indicates a wide network of mostly geometric actions to coordinate. 

This finding supports the Piagetian notion that mathematics is a product of psychological action 

and not simply the enculturation of formal processes developed in the history of mathematics. 

APOS theory (Dubinski, 1991) and reification (Sfard, 1992) have contributed greatly to 

mathematics education by extending Piaget’s notion of reflective abstraction to advanced 

mathematics. However, researchers tend to use these frameworks as pedagogical tools for 

supporting student mastery of formal procedures, such as computing quotient groups (Asiala, 

Dubinsky, Matthews, Morics, & Oktac, 1997), especially when actions and processes refer to 

formal procedures. Although computations and procedures are integral to mathematical 

development, we must explicitly attend to the mental actions that give them meaning in order to 

support operative (and therefore mathematical) knowledge, rather than figurative knowledge. In 

fact, Sfard herself pointed to the “pitfall” of figurative knowledge when she warned of 

pseudostructuralist approaches to knowledge and learning (Sfard & Linchevski, 1994), which 

are indicated in students’ aversion to “procedures with any degree of freedom” (Leron, Hazzan, 

& Zazkis, 1995). In contrast, a structuralist approach to mathematical knowledge and learning 

focuses on the construction and organization of reversible mental actions (Piaget, 1970b). 
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Scheme theory (von Glasersfeld, 1995) adopts a structuralist approach but has its own 

limitations in modeling the development of advanced mathematics; namely, the simplicity of a 

three-part structure may not accommodate the complexity of advanced mathematical concepts. 

Although we are able to identify some of the mental actions that undergird cohomology, we do 

not have models for their organization. This may explain why we often revert to figurative 

representations of knowledge (e.g., Figure 3) when investigating the development of advanced 

mathematics.   

Our investigation of cohomology supports the argument that mathematics, at all levels, can 

be characterized as the objectification of action. This is the defining feature of mathematics, 

which distinguishes it from all other languages and sciences. Understanding mathematics in this 

way also evokes a degree of empathy as we provoke our students to construct new objects 

through action. In Bill Thurston’s case, the father did not appreciate his son’s accomplishment in 

constructing improper fractions as “numbers in their own right” (Hackenberg, 2007) because he 

could not unpack the coordinated actions of that construct. Likewise, models for teaching and 

learning advanced mathematics are limited by our models of the mental actions that comprise the 

objects of advanced mathematics. 
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INSTRUCTIONAL PRACTICES AND STUDENT PERFORMANCE IN CALCULUS  

Lisa Mantini Barbara Trigalet R. Evan Davis 
Oklahoma State University Texas Academy of Oklahoma State University 

 Biomedical Sciences  

Classroom teaching in multiple sections of Calculus I at a large comprehensive research 
university was observed and coded using the Teaching Dimensions Observation Protocol 
(TDOP). Multiple teaching styles were identified ranging from low engagement to 
moderate engagement to high engagement sometimes including student group work. 
Student performance on two course-wide uniform exams and on the Calculus Concept 
Inventory (CCI) was analyzed for any correlations with teaching methods. Significant 
correlations were found between high engagement teaching styles and performance on 
both the first exam and the final exam. However, section normalized gains on the CCI 
were found to be significantly correlated only with the presence of student group work or 
desk work and with no other measures of teaching practice or student performance.  

Key words: [Calculus instruction, classroom observations, student performance, calculus 
concepts inventory, teaching dimensions observation protocol] 

Introduction and Literature Review 
The United States is not producing enough graduates in Science, Technology, 

Engineering and Mathematics (STEM) (Bressoud, 2011) and the need is particularly great in 
the mathematically intensive majors. However, college freshmen entering one of the STEM 
majors face a significant hurdle in Calculus I. Currently, the Mathematical Association of 
America is investigating the teaching of college calculus courses nationwide to describe and 
measure the impact of the various characteristics of calculus classes that appear to influence 
student success (Bressoud et al., 2013; Rasmussen et al, 2014). As Speer, Smith and Horvath 
note, “research on collegiate teachers’ actual classroom teaching practice is virtually non-
existent” (2010, p. 99). According to Bressoud (2012), “the mathematical community does 
not have research evidence for instructional strategies that work.” This study seeks to 
contribute to a growing body of research on actual classroom practice, as well as determine 
possible correlations between actual classroom practices and student achievement in 
university courses in calculus. 

While much research has found alternatives to lecture such as “inquiry-oriented” or 
“constructive process” pedagogies to be successful (Ganter, 1999; Rasmussen, Kwon, Allen, 
Marrongelle & Burtch, 2006; Kogan & Laursen, 2013), others have found lecture to be 
effective (Hora & Ferrare, 2013; Saroyan & Snell, 1997) or preferable to students (Ferrini-
Mundy & Güçler, 2009; Murray, 1983). This suggests that there is a need for a detailed 
description of in-class instruction to capture the relations among instructors, students and 
classroom environments. Porter (2002) notes that careful analysis of teaching can help 
identify methods that contribute to student achievement. 

A growing trend in the assessment of student understanding is the use of Concept 
Inventories, dating back to the work in physics of Halloun and Hestenes (1985) in developing 
the Force Concept Inventory (FCI). The FCI is intended to serve as a reproducible and 
objective measure of how a course improves comprehension of principles (Epstein & Yang, 
2007); higher gains are seen after interactive engagement pedagogies in which students 
receive immediate feedback in class on their understanding of a topic. Similarly, the Calculus 
Concept Inventory (CCI) (Epstein, 2013) purports to measure conceptual understanding of 
the principles of calculus through the use of multiple choice questions requiring little to no 
calculation. Typically the CCI is given as a pre-test and post-test in one semester, and 
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sections of the course are compared by comparing their normalized gain, which is the ratio of 
actual gain in the class average score (post-test mean less pre-test mean) divided by 
maximum possible gain (maximum possible score less pre-test mean), though other measures 
of score comparison are possible (Thomas & Lozano, 2013).  

Research Questions 
The research questions addressed by this study are: 

1. What instructional practices including teaching methods, pedagogical moves, 
instructor/student interactions, cognitive engagement and instructional technology 
are being used in Calculus I at a large research university? 

2. (a) Which of these practices correlate to increased student conceptual 
understanding as measured by normalized gain on the Calculus Concepts 
Inventory? (b) Which of these practices correlate to higher average student 
performance on a uniform final exam? 

Methods 
Setting 

At the large, comprehensive research university during the term when this study took 
place, Calculus I was taught in small sections with from 36 to 43 students per section. These 
sections met for either four 50-minute meetings or three 75-minute meetings per week; class 
start times ranged from 8:00 AM until 2:30 PM. Section enrollments were unrestricted, and 
students self-enrolled into their preferred section. Course coordination was handled by a 
member of the tenured faculty. The common elements included the syllabus, online 
homework, first exam, and final exam, with both common exams graded uniformly. Other 
items such as the second and third hourly exams, any written homework, quizzes, gateway 
testing, and group work were determined individually by the instructors. 

Traditionally at this university, spring enrollments in Calculus I are smaller than in the 
fall and DWF rates are higher than in fall semesters. A significant proportion of students 
taking Calculus I in the spring had been placed into a pre-calculus course in the fall and then 
passed that course with a grade of C or better. Another significant proportion of the spring 
Calculus I population consisted of students who were retaking Calculus I after an 
unsuccessful experience in Calculus I in the fall.  
Participants 

The instructors who participated in the study consisted of 10 volunteers from among the 
section instructors, responsible for 11 sections of Calculus I (one volunteer was teaching 2 
sections). Two instructors were tenured professors with substantial teaching experience; four 
of the remaining instructors had held the Ph.D. for four years or less, and the remaining four 
instructors were advanced doctoral students within a year or two of earning the Ph.D. Four 
instructors were teaching their own section of Calculus I for the first or second time; all 
others had prior experience as an independent instructor in Calculus I. Four instructors were 
in their first year of teaching at the study institution. Six of the instructors were American and 
four were internationals; eight were male and two were female. Study participants accounted 
for over 90% of the sections of Calculus I taught during the semester in question and over 
90% of the students enrolled in Calculus I during that semester. 

Student participants were solicited in the sections taught by all instructors who were 
participating in the study. Phase I participants consisted of the 347 volunteers who completed 
both uniform exams, Exam 1 and the Final Exam. These students accounted for over 70% of 
students enrolled in Calculus I that semester. Phase II participants were the 208 volunteers 
who also completed both the pre-test and the post-test for the Calculus Concepts Inventory. 
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These students essentially consisted of 60% of the Phase I participants; they represented from 
34% to 72% of students from each section participating. 
Data Collection 

The uniform course exams were written by the coordinator with input from all of the 
section instructors. Questions were fairly standard and emphasized calculations but included 
some conceptual questions, some real-world applications, and some items requiring multiple 
representations of functions such as determining information about a function from the graph 
of its derivative. All items were free response questions except for one short answer question. 
Grading was done uniformly, with one instructor grading one problem on all papers. Scores 
for student study participants were reported to the researchers.  

The Calculus Concepts Inventory was administered in class once during week 1 and once 
during week 15 by all instructors. This is a multiple choice instrument requiring little 
calculation which tests the student’s understanding of calculus concepts (Epstein, 2012). In 
some cases the instructors scored their own sections and reported results to the researchers; 
otherwise the papers were scored by the researchers. Attendance was highly variable on the 
days when the CCI was administered. 

Classroom observations were conducted using the Teaching Dimensions Observation 
Protocol (TDOP) (Hora and Ferrare, 2010).  This instrument codes which of multiple 
behaviors by teachers or students are observed during each 2-minute interval of an 
observation.  It has been used previously to classify instructional behaviors in college-level 
instruction in Calculus (Code, Kohler, Piccolo, and MacLean, 2012) and across disciplines 
(Hora and Ferrare, 2013). Instructors participating in the study had access to the instrument 
and were aware that the broad categories being observed were Teaching Methods, 
Pedagogical Moves, Instructor-Student Interaction, Cognitive Engagement, and Instructional 
Technology (see Appendix for a table listing all TDOP codes).  Each section in the study was 
observed 3 times, during month 1, month 2, and month 4. Before each observation, the 
observer contacted each instructor to ascertain that the observed class period would be what 
the instructor would call “typical.”  All observations were done live, not from video, and by 
one researcher only. Before using the instrument for live observations, however, several 
researchers practiced coding from video and compared results, in order to train themselves on 
using the instrument and to increase inter-rater reliability. 

Other observation instruments were considered and rejected for this study. Among these 
were the Teacher Behavior Inventory (TBI) (Murray, 1983), which gathers subjective 
accounts from students assessing instructor behaviors, and the Reformed Teaching 
Observation Protocol (RTOP) (Sawada et al, 2002), which aims to evaluate the extent to 
which instruction meets the goals of being inquiry-oriented or student-centered, and thus does 
not provide a descriptive account of teaching behaviors (Hora and Ferrare, 2013).   
Data Analysis  

For each of the 11 sections in the study, observational data from the TDOP were 
converted into a sequence of 0’s and 1’s, where a 1 was recorded if that particular behavior 
was observed in a two-minute interval and a 0 if not. These data were entered into an Excel 
spreadsheet. Each section was observed 3 times, so the total number of observed 2-minute 
intervals ranged from 71 to 114 per section (some sections met for 50 minutes, some for 75 
minutes, and class periods occasionally ended early or ran a bit long). We then determined 
the proportion of observed 2-minute intervals in which each particular TDOP code was 
observed. This gave us a range of proportions for each TDOP code indicating its relative 
frequency of use among study participants. Many codes varied little across sections, but those 
codes that had high variability across sections were noted. 

For Phase I of the analysis, student performance was averaged in each section, producing 
two data points summarizing student performance: the final exam average and the CCI 
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normalized gain. CCI normalized gain is computed as the ratio of the actual section mean 
gain (post-test mean less the pre-test mean) to the maximum possible mean gain (maximum 
score minus the pre-test mean), that is, 

CCI normalized gain = (post-test mean – pre-test mean)/(22 – pre-test mean). 
Pearson correlation coefficients were computed between each of the student performance 
indicators and TDOP proportions across sections. TDOP categories showing a significant 
correlation with student performance were noted. 

In Phase II of the analysis, aggregate codes were formed from related TDOP categories 
with significant correlation to student performance measures, in order to try to broadly 
categorize instructional practices and student engagement. As a result, we were able to form 
an instructional profile for each section in the study and to characterize these into three 
groups: Group 1 consisted of sections displaying low engagement, Group 2 consisted of 
sections displaying moderate engagement, and Group 3 consisting of high engagement 
sections. Using these instructional groups, we then created a spreadsheet of anonymized 
individual student scores on four measures: the CCI pre-test score, the exam 1 grade, the CCI 
post-test, and the final exam score, along with the group number indicating the engagement 
level of that student’s instructor. Additional analysis was performed including ANOVA and 
ANCOVA to determine if any correlation was present between the instructional profile and 
student performance. 

Results 
Teaching Practices  

Initial findings from the TDOP regarding Teaching Methods indicate that all instructors 
employ lecturing with visuals, seen in 80% of the two-minute intervals coded.  The 
instructional technique of having students work at their desks, either in small groups (SGW) 
or by themselves (DW), was observed 11% of the time but it was used by only four 
instructors, ranging from 16% to 32% of the time in those sections. Several codes in both the 
Instructor-Student Interaction category and the Cognitive Engagement category varied 
significantly. Overall, approximately 60% of time intervals coded contained questions asked 
of the students by the instructors, with students responding in more than 50% of the time 
intervals coded. However, some instructors used display questions (DQ), asking students to 
display content knowledge, as often as 85% of the time, others as little as 11% of the time. 
Among Instructional Technology, the most predominant tool was the chalk board or white 
board, used 77% of the time. The use of power point slides and a digital tablet varied 
significantly, ranging from no use to use more than 30% of the time. Other instructional 
technologies were observed well less than 10% of the time. 
Student Performance 

Final exam scores were available for 347 student participants. The average final exam 
score for the participants was 68.5%. The final exam averages for sections participating in the 
study ranged from a low of 55% to a high of 75%, with two sections having averages 
between 55.2% and 62.2%, two sections with averages in between 66.2% and 67%, and 
seven sections with averages in between 69.8% and 75.2%. 

CCI scores were available for only 208 of 347 students completing the course, or 60% of 
the students who took the final exam. The CCI normalized gain among all students in the 
study was 10.2%. This is a fairly low number for normalized gain as compared to reports of 
other studies (Thomas & Lozano, 2013) and as compared to our data from a prior semester in 
which we obtained a course wide normalized gain of 17% (data analysis is ongoing). The 
individual sections in the study had normalized gains on the CCI ranging from 3.4% to 
20.3%, with three sections having gains in between 3.4% and 3.7%, two sections with gains 
from 9.6% to 9.7%, four sections with gains from 12.1% to 13.3%, and two sections with a 
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gain between 15.1% and 20.3%. However, it is notable that not all sections had the same rate 
of participation in the CCI. Attendance was highly variable on the day when the CCI post-test 
was given, and in many cases the student population from which the CCI data is drawn may 
include a disproportionate number of stronger students. The proportion of section enrollment 
completing both the CCI pre-test and post-test ranged from a low of 34.4% to a high of 72% 
in this study, with two sections having fewer than 38% of students participating, seven 
sections having between 45% and 59% of students participating, and two sections having 
between 62% and 72% of students participating. It is notable that the highest CCI normalized 
gains occurred in sections with fewer than 55% of students participating. 
Aggregate Codes and Instructional Profiles 

For the eleven sections in the study, we computed Pearson’s correlation coefficients for 
all of the TDOP codes with both the section average final exam score and with the CCI 
normalized gain. Several codes showed significant correlations. The code SGW, student 
group work, was positively correlated with CCI normalized gain. The code DW, individual 
desk work, was positively correlated with the final exam average. Code ART, student 
articulation, was positively correlated with the final exam average as well. Code A, 
assessments, had a negative correlation with the final exam average, and the code DT, 
indicating use of a digital tablet or document camera with visuals prepared before class, had a 
negative correlation with the final exam average performance.  

Based on this preliminary analysis, we combined several related TDOP codes to create 
aggregate codes in order to search for stronger positive correlations with the student 
performance measures. Teaching methods were observed in 93% of the observed time 
intervals and at least 85% of the time in all sections. The aggregate code SWK indicates the 
proportion of time when a teaching method was observed and students were observed 
actively working on problems via code SGW or DW. The aggregate code SVB indicates the 
proportion of time when a teaching method was observed and students were observed 
answering questions posed by the instructor, asking questions, or other forms of articulation 
(see list of all TDOP codes in Appendix). The sum of these two codes is abbreviated as 
SENG, to indicate that students were seen to be actively engaged in either of these manners. 
Finally, the code LNWV indicates the proportion of all time when a teaching method was 
observed but students were not seen to be either working or verbalizing. These codes are 
described in Table 1. 

 
Table 1: Aggregate TDOP Codes 

Code Meaning Description 
TMTH Teaching method 

observed 
Coded as 1 when any teaching method is 
observed 

SWK Students working Coded as 1 when either SGW (student group 
work) or DW (individual desk work) is coded 

SVB Students verbalizing Coded as 1 when SWK = 0 and a student 
response or question is coded (SNQ, SCQ, SR, 
or ART) 

SENG Students engaged Coded as 1 when TMTH = 1 and either SWK 
= 1 or SVB = 1 

LNWV Lecture, no work or 
verbalization 

Coded as 1 when TMTH = 1 and SENG = 0 

 
The resulting instructional profiles indicate a range of instructor behaviors. Code SWK 
ranged from 0% to 31.9%; code SVB ranged from 18.8% to 81.6%; and SENG, the sum of 
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SWK and SVB, ranged from 21.9% to 88.2%.  As a result, LNWV ranged from a high of 
78.1% down to a low of 11.8%. Note that SENG + LNWV = 100%.  The data suggested 
sorting instructor profiles into three groups. It is notable that one instructor in this section 
taught two sections, and the two sections were assigned to different instructional profiles. 
 
Table 2: Instructional Profiles Observed 

Group Engagement Profile SENG values No. sections 
1 Low  20% - 40% 4 
2 Moderate  50% - 60% 3 
3 High  80% - 90% 4 

 
Figure 1: Illustration of Observed Instructional Profiles 

 
 
 
Figure 1 illustrates the range of instructional profiles seen in these observations. The 

teaching profile bars are arranged from left to right by increasing SENG proportion, and the 
three instructional groups are indicated.  
Correlations of Instructional Profiles with Section Average Performance 

Using our data from the 11 course sections in the study, we calculated Pearson’s 
correlation coefficients between our aggregate TDOP codes SWK, SVB, and SENG and 
average student scores in each section on four measures: Exam 1, the Final Exam, the Sum of 
Exam 1 and the Final Exam, and the section’s net gain on the CCI.  Results indicated that the 
Exam 1 average was correlated significantly (p < .05) with code SENG. The Final Exam 
average and the Exam Average Sum were both correlated significantly (p < .05) with code 
SWK and correlated highly significantly (p < .01) with the combined code SENG. The 
section CCI normalized gain was correlated significantly (p < .02) with the code SWK but 
not correlated with either SENG or SVB. 

Figure 2 illustrates the instructional profile bars in order by final exam average in each 
section, with the placement of the bars corresponding to final exam average. Notice that the 
graph illustrates the correlation of the final exam average with the SENG code (represented 
by the combination of solid and striped areas).  

 

0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

Group	   1	   Group	  2	   Group	   3	  

Pe
rc
en

ta
ge
	  o
f	  O

bs
er
ve
d	  
In
st
ru
c3
on

al
	  T
im

e	  

Low	  Engagement	  	  	  	  	  	  Moderate	  Engagement	  	  	  	  	  	  	  High	  Engagement	  

LNWV:	  Lecture,	  
no	  student	  work	  
or	  verbalizaFon	  
observed	  
SVB:	  Students	  
verbalizing	  

SWK:	  Students	  
working	  

204 17th Annual Conference on Research in Undergraduate Mathematics Education



Figure 2: Instructional Profiles Ordered by Final Exam Average 

 
 

Figure 3 below illustrates the instructional profile bars in order by CCI normalized gain in 
each section, with the placement of the bars corresponding to the CCI normalized gain. 
Notice that the graph illustrates that the CCI normalized gain is correlated significantly with 
code SWK, students working, but is uncorrelated with codes LNWV and SVB. 
 
      
Figure 3: Instructional Profiles Ordered by CCI Normalized Gain 
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The student data consisted of scores on each of four assessment measures along with a 
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moderate engagement, and 3 indicating high engagement. The assessment measures 
considered were the CCI Pre-test, administered in week 1; the score on Exam 1, administered 
in week 5, the CCI Post-test, administered during week 15; and the uniform Final Exam, 
administered during week 16 of the semester. We used SPSS software to search for any 
significant correlations of student performance on the various assessments with the 
instructional profiles assigned.  

We found no significant difference [F(2,305)=1.88, n.s.] among students across the three 
groups in the analysis of the CCI pre-test.  

When comparing the scores on common Exam 1, analysis of variance revealed a 
significant difference in performance [F(2,347) = 12.84, p < .01] among students. 
Examination of paired comparisons (Tukey and Scheffe) showed that, while the moderate 
and low engagement groups did not significantly differ from each other, the high engagement 
group scored significantly better on the first exam than either of the other two conditions.  

When comparing the scores on the common Final Exam, analysis of variance again 
revealed a significant difference across the three groups [F(2, 347) = 7.46, p < .01]. Paired 
comparison between the three groups revealed that, while the difference between the high and 
low engagement groups was still significant, the difference between the moderate 
engagement group and either the low engagement group or the high engagement group was 
not statistically significant. The results for the final exam are interesting in that they suggest 
that the moderate engagement group “gained ground” on the high engagement group between 
the first common exam and the final exam, with a higher estimated marginal mean for the 
moderate engagement group as compared to the high engagement and low engagement 
groups in an ANCOVA analysis with the final exam as our dependent variable and the first 
exam as covariate.  

We also found no significant difference [F(2,215)=.08, n.s.] among students across the 
three groups in the analysis of the CCI Post-test. 

A summary of means on the student performance measures in each group is included in 
Table 3. 

 
Table 3: Means of Student Performance Measures Across Instructional Groups 

Measure Group 1 Mean Group 2 Mean Group 3 Mean 
CCI Pre-test raw score 6.81 6.49 6.49 

percentage 31% 29.5% 29.5% 
CCI Post-test raw score 8.16 8.21 8.29 

percentage 37.1% 37.3% 37.7% 
CCI normalized gain 8.9% 11.1% 11.6% 

Uniform Exam 1 70.8% 69.3% 79.5% 
Uniform Final Exam 63.2% 69.6% 73.2% 

 

Discussion 
Regarding our first research question, we found that the teaching methods observed relied 

primarily on lecture methods, seen from 68% to 100% of the time. Within lecture methods, 
though, the use of questioning and other engagement techniques varied significantly. Our 
data seem to indicate a possible definition of high engagement instruction, but further 
research is needed. It is interesting to note that all instructional profile groupings included 
instructors of varying experience levels and both Americans and internationals.  

Regarding our second research question, the correlation of section normalized gain on the 
CCI with code SWK, agrees with some prior results reported in the literature (Epstein, 2013; 
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Thomas & Lozano, 2013) but this is difficult to understand fully. The number of students 
participating in both CCI pre-test and post-test (n=208) is small, as little as 34% of 
enrollment in some sections, and may contain the better students in each section, since many 
of those absent on the days when the CCI was administered may have been weaker students. 
The lack of correlation between CCI pre-test and post-test scores and any TDOP variables or 
other assessments bears further investigation but may indicate a lack of effort by participants 
on the CCI, which did not count towards their course grade. Using additional computational 
methods to analyze CCI scores such as individualized gain scores or item response theory 
(Thomas & Lozano, 2013) may shed additional light on the relation of the CCI scores to 
observed instructional practices and to other student performance measures. 

The high correlation of exam scores with the level of engagement in the instructional 
profile is very interesting and also deserves further study. This result indicates that there may 
be a benefit derived from providing training to new Calculus I instructors in effective use of 
questioning techniques and of group work, and of supporting more experienced instructors 
who wish to adopt these effective instructional strategies. Of course, many other variables 
affect student performance in Calculus I, including the student’s background and preparation 
in algebra and pre-calculus. Other studies (Bagley, 2014) have shown that it is possible for 
variations in student understanding of pre-calculus concepts to account for all of the variation 
seen in student performance across sections in Calculus I.  Additional analysis of our data 
would be desirable to determine how much of the performance variation we are seeing may 
be accounted for by differences in background and preparation.  

Further research is desirable to investigate if there is any correlation between teaching 
methods and persistence in the calculus sequence or student performance in later courses. 
Studies of inquiry-based instructional practices (Kogan & Laursen, 2013) have shown 
increased persistence in mathematics courses by students experiencing inquiry-based 
instruction as opposed to traditional lecture instruction, and these effects were shown to be 
sizable and persistent with previously low-achieving students.  Longitudinal data may shed 
light on whether the differences in lecture-based teaching methods that we have observed 
influence student persistence in the calculus sequence or persistence in STEM majors. More 
observational data might provide richer descriptions of teaching styles in use in Calculus I 
and further evidence to support the correlations we found. Interviews with instructors might 
shed light on their decisions with regard to engagement levels and could be relevant to 
instructional training programs. 
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Appendix: TDOP Codes 

This table contains all of the codes used in the TDOP. 
 

Table 4: Codes Used in the Teaching Dimensions Observation Protocol 

 Teaching Methods  Pedagogical Moves 
L Lecture, no visuals MOV Moves into audience 
LPV Lecture, pre-made visuals HUM Humor 
LHV Lecture, handwritten visuals RDS Reads verbatim from notes or text 
LDEM Lecture with demonstration IL Illustration from real world 
LINT Interactive lecture ORG Organization 
SGW Small group work EMP Emphasis 
DW Desk work A Assessment 
CD Class discussion AT Administrative task 
MM Multimedia  Instructional Technology 
SP Student presentation PO Posters used 
 Instructor/Student Interaction B Books used 
RQ Instructor rhetorical question N Lecture notes actively used 
DQ Instructor display question P Pointer used 
CQ Instructor comprehension quest. CB Chalk board or white board used 
SNQ Student novel question OP Overhead or transparencies used 
SCQ Student comprehension quest. PP Powerpoint or digital slides used 
SR Student response CL Clickers used 
 Cognitive Engagement D Demonstration equipment used 
ART Articulation by students DT Digital tablet or document camera used 
RMF Reciting or memorizing facts M Movie, documentary, other video clip 

17th Annual Conference on Research in Undergraduate Mathematics Education 209



PS Problem solving SI Simulation 
CR Students create their own ideas WEB Website or other online resource 
CN Connections to real world OB Object used as part of instruction 
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A FRAMEWORK AND A STUDY TO CHARACTERIZE A TEACHER’S GOALS 
FOR STUDENT LEARNING 

Frank S. Marfai 
Arizona State University 

In this study, a secondary school teacher’s goals for student learning were characterized 
using a framework that emerged from prior work. Observed lessons spanning the use of both 
conceptually rich and skill-based curricula were analyzed.  The findings suggest that both 
challenges and opportunities exist for professional development endeavors that center 
around perturbing a teacher's goals. 

Key words: Teacher Goals, Mathematical Knowledge for Teaching, Teacher Knowledge, 
Teacher Beliefs, Professional Development 

It is widely known that mathematics teaching in the United States has been characterized 
as procedural and disconnected (Ma, 1999; Stigler & Hiebert, 1999), with little focus on 
understanding how mathematical concepts develop and how they are connected.  In recent 
work it has also been documented that it is common for teachers to teach in a manner in 
which they were instructed as students, and that making the transition to value conceptual 
learning and teaching is a difficult transition for teachers to make (Sowder, 2007). 

Theoretical Framework 
Researchers have identified mathematical knowledge for teaching as a key link between 

content knowledge and support of student learning. Mathematical knowledge for teaching 
(MKT) has been described as the domains of knowledge that include a teacher’s subject 
matter knowledge and her pedagogical content knowledge (Ball, 1990; Hill, Ball, & 
Schilling, 2008). MKT has also been described as a teacher’s key developmental 
understandings and how they influence a teacher’s practice (Silverman & Thompson, 2008). 
It has been reported that many teachers do not possess key developmental understandings 
(KDUs) of central ideas of secondary mathematics, and that these understandings can only 
emerge from experiences that promote perturbations that result in self-reflection. 

A teacher’s mathematical teaching orientation influences her classroom practices (A. G. 
Thompson, Philipp, Thompson, & Boyd, 1994).  A teacher with a calculational orientation 
has an image of mathematics as an application of rules and procedures for finding numerical 
answers to problems. A teacher having a conceptual orientation has an image of mathematics 
as a network of ideas and relationships among these ideas, and strives to support students in 
developing coherent meanings among these ideas.  

I will define a teacher’s goal as a mental representation of what a teacher is trying to 
accomplish.  This is similar to how other researchers (Locke & Latham, 2002; Norman, 2002; 
Pintrich, 2000; Schoenfeld, 1998) have categorized goals, although this perspective does not 
explain possible purposes or reasons why a teacher may pursue a goal.  Research has shown 
that a teacher’s goals for student learning do influence her development of powerful 
pedagogical content knowledge (Webb, 2011).  Other studies have shown that a teacher’s 
mathematical knowledge for teaching also influences her pedagogical goals and actions 
(Marfai & Carlson, 2012; Moore, Teuscher, & Carlson, 2011).  The relationship between a 
teacher’s goals and her mathematical knowledge for teaching are reciprocal; each influences 
the other. 

In the study on which this preliminary research report is based, I used Silverman and 
Thompson’s (2008) construct of MKT as a lens for examining how a teacher understands 
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ideas and connections among ideas, and how this influences her pedagogical decisions and 
actions. The transformation of a teacher’s key developmental understandings (Simon, 2006) 
into MKT is developmental as a teacher’s orientation shifts from calculational to conceptual, 
and I hypothesize examining teachers’ pedagogical goals for a lesson can lead to insights 
underlying this process of growth.  Figure 1 illustrates the interactions within this theoretical 
framework. 

 
Figure 1. Interactions within the theoretical framework 

As illustrated in Figure 1, I make the claim that through the process of self-reflection, a 
teacher’s orientation may shift from calculational to conceptual, and not the other way 
around.  A teacher’s mathematical orientation is influenced by her MKT and that this 
knowledge impacts the goals a teacher has for her students’ learning and her teaching.  A 
teacher forms new KDUs as she makes more connections between key ideas of mathematics 
through the process of self-reflection; these conceptual advances in a teacher’s understanding 
of mathematics are supportive of a conceptual orientation.  

Research Question 
My research question in this study was as follows. How might a teacher’s pedagogical 

goals for student learning be characterized in the context of using a curriculum promoting a 
conceptual orientation of mathematics, and how are they similar or different than when using 
a curriculum that promotes a calculational orientation?   

Methods 
To characterize a teacher’s goals for student learning, I used a goal framework that had 

emerged from a prior study using grounded theory (Strauss & Corbin, 1990), keeping the 
perspective of Silverman and Thompson’s characterization of MKT and teaching orientation 
in mind.  The goal framework is given in Table 1. 

Table 1. Levels in a Teacher’s Goals for Student Learning 

Goal Coding Description 
TGSL0 Goals are not stated, or the teacher states that the goals of the lesson are 

unknown. 
TGSL1 
 
TGSL2 

Goals are a list of topics that a teacher wants her students to learn in the 
lesson, each associated with an overarching action. 
Goals are a list of topics that a teacher wants her students to learn in the 
lesson, each associated with a specific action. 
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Goal Coding Description 
TGSL3 Goals are doing methods of mathematics that a teacher wants her students 

to learn in the lesson. 
TGSL4 Goals are getting students to think about the mathematics in the lesson, 

without the ways of thinking articulated. 
TGSL5 Goals are getting students to think about the mathematics in certain ways 

during the lesson. 
TGSL6* Goals are about developing ways of thinking about the mathematics in the 

lesson, with attention to how that thinking may develop. 
TGSL7* Goals are about developing ways of thinking about the mathematics in the 

lesson, with attention to how that thinking may develop, and how these 
ways of thinking may be either mathematically powerful or hindering for 
future learning. 

 
Goal levels marked with an asterisk (TGSL6 and TGSL7) were not observed in the prior 

study, but were hypothesized to exist based on researchers’ work in professional development 
supports that promoted growth of teachers’ goals attentive to students’ thinking of 
mathematics and ways to support such thinking (Smith, Bill, & Hughes, 2008; Smith & Stein, 
2011; P. W. Thompson, 2009). 

The context in which the goal framework originally emerged focused on characterizing 
the participants’ pedagogical goals for student learning with a research-based Precalculus 
curriculum (Carlson & Oehrtman, 2012) from the Pathways project that promoted well-
connected understandings of quantities, covariation, proportionality, the constant rate of 
change, and the average rate of change.  Some examples of teachers’ goals for student 
learning from this prior study included “Discuss three ways (ratio, constant multiple, scaling) 
quantities are proportional” (TGSL3), “State quantities precisely - don't use pronouns (want 
the object, the attribute of that object, units of measure)” (TSGL2), “Develop the equation of 
a circle” (TGSL1), and “Get through it” (TGSL0).  Project Pathways is an initiative that 
focuses on professional development to improve teachers’ key developmental understandings 
of the mathematics they teach in order to improve content knowledge through fostering a rich 
connection of mathematical ideas and relationships, and part of this initiative led to project 
leaders developing a research-based conceptually oriented curriculum that teachers involved 
on the project would use in their classroom. 

In the current study, Robert (pseudonym), a secondary mathematics teacher from Salt 
Valley High School (pseudonym) in a Southwestern state was selected for observation during 
two chapters in which he taught Trigonometry during the Spring 2013 semester.  Robert was 
teaching Precalculus for the third time using the same conceptually rich curriculum as the 
teachers in the prior study, although he had supplemented the course with materials from a 
traditional textbook.  Robert has been teaching for 13 years total at the same high school. 
Robert was identified by the Pathways project as a teacher whose key developmental 
understandings of the Precalculus curriculum were well connected and whose pedagogical 
actions indicated an inclination to act on student thinking. 

To characterize Robert’s lesson-specific goals for student learning, twenty-nine classroom 
observations were videotaped that primarily covered two chapters from different texts 
focusing on trigonometry, in particular angle measure, trigonometric functions, identities, and 
applications using trigonometric functions.  Field notes were taken during each observation.  
Prior to the series of classroom observations, an initial questionnaire was given to 
characterize Robert’s overarching goals.  At the end of class, the researcher gave a short 
questionnaire that included queries about Robert’s instructional goals and his goals for 
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student learning that day.  Robert responded the same day; the norm was established that the 
researcher would follow up with one or two questions based on his responses to the 
questionnaire that same day. Analysis in this report specifically focuses on Robert’s initial 
response to the question “What were your goals of instruction with regards to student 
learning for the lesson you had today?” Robert’s goals for student learning were then coded 
using the goal framework described in Table 1. 

For an example of how the coding was done in this study, in a lesson in which the key 
idea was having students make the connection that a measure of an angle's openness is the 
quantification of the fraction of any circle's circumference subtended by the angle (with tasks 
designed to help support students’ development of meaning for angle measure in both 
degrees and radians), Robert’s goals for student learning were as follows. 

One goal was for students to gain an understanding of what it means to 
measure an angle.  Another goal was for students to gain an understanding of 
what it means for an angle measure to be 1 degree.  I wanted to stress the 
importance of thinking about an angle as an object that cuts off a certain 
fraction of a circle’s circumference whose center is the vertex of the angle. 

Robert’s statement of his goals for student learning that day had two goals followed by 
one clarifying statement.  His first stated goal of what means to measure an angle, which 
included the clarifying statement, was rated at a TGSL5 level, since the desired way of 
student thinking was described specifically. However his second stated goal of having 
students gain an understanding what it means to measure an angle of one degree suggested a 
desired way of student thinking but was not articulated, and therefore was rated at a TGSL4 
level.  

The chapters under which the observations were performed had a conceptually rich 
chapter from the research-based curricular materials, which was then followed by a skill-
based chapter and sections from a traditional textbook.  In addition to characterizing how 
curricular context affected Robert’s goals for student learning, the researcher also tested the 
stability of Robert’s goals through follow-up questions designed to perturb his goals to higher 
levels in the framework. 

Results 
After coding Robert’s goals, statements of his goals for student learning ranged from 

levels 1 to 5 (see Table 2, next page). Based on classroom observations and field notes, in a 
majority of class sessions Robert made pedagogical moves to model student thinking and he 
made decisions to act on his model of student thinking either at the group level or in a whole 
class discussion, with varying levels of success. Robert’s pedagogical moves in more 
successful interactions initially suggested that he was mindful of student thinking and how to 
support student thinking in the planning process, which implies that goals rated at TGSL6 
were accessible to Robert.  However, such goals were not stated explicitly. 

Goals rated at a TGSL6 level only emerged through the process of follow-up questions, 
and in a few instances, Robert’s responses and his pedagogical moves in the subsequent 
lesson suggested reflection on how student thinking about the mathematics of the lesson 
could be promoted or developed.  However, these goals never became part of Robert’s 
regularly stated goals for student learning, and therefore were not coded. 
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 Table 2. Teacher's Goals for Student Learning - Count (Percentage) 

 
 

 
 

 
 

 
 

In looking at the top two categories where Robert’s goals for student learning clustered, 
when using a conceptually rich curriculum the top two ranked categories were TGSL4 
(41.5%) and TGSL2 (24.4%), while when using a skill-based curriculum the top two ranked 
categories were TGSL3 (38.1%) and TGSL4 (33.3%). 

Discussion 
Although Robert’s goals of having students thinking about the mathematics in the lesson 

(TGSL4) was prominent regardless of the curriculum type used, goals articulating specific 
methods of mathematics Robert wanted his students to use (TGSL3) topped the types of goals 
Robert stated for a skill-based curriculum, while goals stating specific actions (TGSL2) in 
support of mathematical topics were common while using a conceptually rich curriculum.   
Pintrich (2000) found that “strong” curricular or classroom contexts influenced the types of 
goals teachers would normally access, so the findings of this study might not be entirely 
surprising.  However, the results may be viewed as surprising if the goal framework is 
thought of as a trajectory of teacher growth representing a teacher’s developing MKT.  From 
this perspective, Robert’s goals would seem to show his MKT had more well-connected 
understandings when using a skill-based curriculum than when using a conceptually rich 
curriculum, since goals ranked at TGSL3 are higher than TGSL2.  However such an analysis 
would not be appropriate given that we are comparing two different curricula that are 
supportive of contrasting teaching orientations.  A skill-based curriculum and the activities 
found in it are supportive of a calculational orientation, so goal statements focusing on 
methods of mathematics a teacher wants her students to do are representative of a different 
view of the mathematics than goal statements focusing on methods of mathematics viewed 
from a conceptual orientation.  So although the goal framework can be thought of as 
representing stages of growth of a teacher’s goals supportive of student learning, how these 
goals manifest themselves with teachers having a calculational orientation, versus how these 
goals manifest themselves with teachers having a conceptual orientation, would need further 
study. 

Although it may seem that the different curricula Robert used promoted different types of 
goals for student learning, in retrospective analysis of Robert’s overarching goals, the results 
of this study may have been foreshadowed.  In an initial questionnaire Robert was asked, 
“Are these goals [for student learning] affected by the type of lesson you have-for example, a 
conceptual versus skill based lesson?  If yes, how are they affected?  If not, how are they not 
affected?”  Robert’s response to this question was as follows. 

The over-arching goal of improving student understanding remains for any 
lesson, regardless of the emphasis of skills vs. concepts.  However, the 
trajectory and/or delivery method of the lesson can be affected.  I visualize a 

  Conceptual Skill-based 
Goal Level Curriculum Curriculum 

TGSL0 0 (0.0%) 0 (0.0%) 
TGSL1 7 (17.1%) 2 (9.5%) 
TGSL2 10 (24.4%) 1 (4.8%) 
TGSL3 3 (7.3%) 8 (38.1%) 
TGSL4 17 (41.5%) 7 (33.3%) 
TGSL5 4 (9.8%) 3 (14.3%) 
TGSL6 0 (0.0%) 0 (0.0%) 

All Stated Goals 41 (100.0%) 21 (100.0%) 
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concept-based lesson as having student investigation as a major portion of the 
activities, while a skill-based lesson is still focused on “why” certain 
procedures are done but there is more direct instruction of those procedures. 

Looking at Robert’s overarching goals, improving student understanding was consistent 
with goals that promoted students’ thinking about the mathematics in the lesson (TGSL4).  
Robert’s mention of student investigations as being a large part of conceptually based lessons 
promoted goals concerning specific actions he wanted students to take during the course of 
these investigations (TGSL2).  In the last part of his response, Robert’s mention of direct 
instruction of procedures during a skill-based lesson suggested goals focused on methods of 
mathematics (TGSL3).  Looking at Table 2, Robert’s overarching goals were predictive of 
the clustering of top ranked goals he had for student learning for the lessons under which the 
classroom observations were made. 

Although the goal framework contained goals rated at TGSL6 and TGSL7 based on other 
researchers’ findings, these goals did not emerge as a response to the initial question “What 
were your goals of instruction with regards to student learning for the lesson you had today?”  
Goals rated at TGSL6 emerged through follow-up questions to stimulate reflection, or were 
evident based on Robert’s pedagogical moves made to support the development of his 
students’ ways of thinking about mathematics. However, the follow-up questions did not 
perturb Robert’s responses to the initial question at any time during this study.  Part of this 
may have to do with the way the question was interpreted by Robert.  In a post-study 
interview, Robert was asked how he interpreted the initial question.  His response was that he 
interpreted the question was asking what he wanted students to do or to understand.  By the 
nature of this interpretation, it eliminated the possibility that Robert would state goals beyond 
a level ranked at TGSL5.  However such an interpretation of goals for student learning is not 
unique to Robert. 

Many school districts in Arizona, the United States, and Canada have incorporated rubrics 
to assess a teacher’s goals for student learning as part of the protocol used in their evaluation.  
For example, teachers must write or post each day’s learning goals on the wall or board so 
that students (and evaluators who visit their classroom) can clearly see it.  For example, in 
guidelines for assessment, evaluation, and reporting by the Ministry of Education in Ontario, 
Canada, the section regarding assessment for learning states “learning goals clearly identify 
what students are expected to know and be able to do, in language that students can readily 
understand.”  (Ontario Ministry of Education, 2010, p. 33).   Similar statements regarding 
learning goals can be found in evaluation rubrics for school districts in the United States.  It is 
not surprising that a teacher’s stated goals for student learning do not mention ways to 
promote or support student thinking; there are strong societal norms that push back against 
such an interpretation. It may be a contributing factor to why Robert’s stated goals for student 
learning did not shift after attempts were made to perturb him toward stated goals that would 
be at higher levels in the framework. 

Conclusion 
There are several findings that resulted from this study which inform the direction my 

future studies will take.  First, a teacher’s overarching goals appear to be predictive of their 
lesson specific goals. It suggests that sustainable professional development efforts to perturb 
goals at the lesson level should also include moves to perturb a teacher’s overarching goals 
that value attention to how a student’s thinking about mathematics may be promoted or 
developed.  The second finding about how the phrase “goals for student learning” is 
interpreted almost universally in United States and Canada suggests a specific meaning is 
attached to this phrase that is not easily perturbed.  Since societal norms push against a 
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broader interpretation of goals for student learning, this suggests efforts to perturb goals 
toward TGSL6 and TGSL7 may be more successful through directed professional 
development efforts, such as professional learning communities or through adapting existing 
protocols, such as the Thinking Through a Lesson Protocol (Smith, et al., 2008) or the 
Professional Development Spiral (P. W. Thompson, 2009).  The adapted protocol would be 
designed to foster growth of both lesson specific and overarching goals for student learning 
that attend to students’ thinking about mathematics and ways to promote and support such 
thinking, with attention to how such ways of thinking may help or hinder future learning for 
the student. 
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MATHEMATICS BEYOND THE CLASSROOM: STUDENTS’ ‘VALUE 
CREATION’ THROUGH MATHEMATICAL MODELING WITHIN A LEARNING 

COMMUNITY 

Joo young Park 
Teachers College, Columbia University 

This study examined how mathematical modeling activities within a collaborative group 
impact on students’ perceived ‘value’ of mathematics. With a unified framework of 
Makiguchi’s theory of ‘value’, mathematical disposition, and identity, the study identified the 
elements of the value-beauty, gains, and social good-with the observable evidences of 
mathematical disposition and identity. A total of 60 college students participated in 
‘Lifestyle’ mathematical modeling project. Both qualitative and quantitative methods were 
used for data collection and analysis. The result from a paired-samples t-test showed the 
significant changes in students’ mathematical disposition. The results from the analysis of 
students’ written responses and interview data described how the context of the modeling 
tasks and the collaborative group interplayed with students’ perceived value.  

Key words: Mathematical Modeling, Instructional Activities and Practice, Value Creation, 
Mathematics Disposition  

Introduction 

Studies reported that when students see themselves as capable of doing well in 
mathematics, they tend to value mathematics more than students who do not see themselves 
as capable of doing well (Eccles, Wigfield, & Reuman, 1987; Midgley, Feldlaufer, & Eccles, 
1989). To see the value in mathematics, it is essential for students to believe that mathematics 
is understandable, not arbitrary; that, with diligent effort, it can be learned and used; and they 
are capable of figuring out mathematical problems based on their experiences. Kilpatrick and 
his colleagues (2001) introduced  “productive disposition” as one of key components of 
mathematical proficiency and defined as the “habitual inclination to see mathematics as 
sensible, useful, and worthwhile, coupled with a belief in diligence and one’s own 
efficacy”(NRC, 2001, p. 131). “Mathematics disposition” appeared in the National Council 
of Teachers of Mathematics Evaluation Standards as “a tendency to think and to act in 
positive ways”(NCTM, 1989, p233), which is manifested when students approach tasks. 

Developing such a disposition toward mathematics requires frequent opportunities to 
recognize the benefits of perseverance and to experience the rewards of sense making in 
mathematics. It becomes a question of what learning environment supports students to 
engage in meaningful learning of mathematics and to develop positive disposition as well as 
self-concept. A number of studies demonstrated that mathematical modeling, which plays a 
prominent role in the new Common Core State Standards for Mathematics (CCSSM), 
promotes socially situated learning environments with group collaboration, classroom 
discussion, initiative, and creativity, and it has the potential to develops positive disposition 
toward mathematics and strengthen their mathematical identity (Ernest, 2002; Lesh & Doerr, 
2003). The studies highlight that learning mathematics extends beyond individuals’ learning 
concepts, procedures, and learners learn to be a part of a community of practice and become 
participants in the mathematics being practiced (Boaler, 2002).  

 
Theoretical Framework 

As a unified framework of Makiguchi’s theory of value creation (1930), mathematical 
dispositions outlined by NCTM Evaluation Standards 10, and identity (see Table 1), this 
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study identified the elements of the value with the observable evidences of mathematical 
disposition and identity. The concept of value in the notion of Makiguchi (1930; Bethel, 
1989) takes into account the subject and object relationship (students’ relationship with 
mathematics in this study), which reflects human creativity. In the notion of Makiguchi 
(1930; Bethel, 1989)’s value creation, it is critical that students feel happiness, enjoyment, 
and pleasure in their own processes of investigating and understanding mathematics, as a 
result, students construct meaning, and value is created. In Makiguchi’s concept of value, the 
three elements of the value are the following: 
Beauty is perceived to be an emotional and temporary value. The value of Gain is an 
individual value and self-development, and beneficial aspect that is related to the whole of 
man’s life. Social good, however, is a social value and is related to the life of the group. The 
value of good is the expression given to the evaluation of each individual’s voluntary action, 
which contributes to the growth of a unified community composed of the individuals 
(Makiguchi, 1930; Bethel, 1989). 

Makiguchi’s Theory of Education 

 

Figure 1- Makiguchi’s theory of value creation (Makiguchi, 1930; Bethel, 1989) 

Based on Makiguchi’s philosophy, what is important to create value is to pursue gain, 
good, and beauty- without overemphasizing one or ignoring the others in a balanced and 
mutually reinforcing manner.  
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Table 1. Theoretical framework (Makiguchi’s theory of value, disposition, and identity) 

 
The theory of value creation (Makiguchi, 1930; Bethel, 1989) shares a common thread 

with a mathematical modeling perspective. Mathematical modeling is the process of leading 
from a problem situation to a mathematical model (Kaiser, 2006). A number of studies 
reported that mathematical modeling promotes socially situated learning environments with 
group collaboration, classroom discussion, initiative, and creativity and it has the potential to 
empower students and strengthen their mathematical identity (Ernest, 2002; Lesh & Doerr, 
2003). These studies highlight that learning mathematics extends beyond individuals’ 
learning concepts, procedures, and learners learn to be a part of a community of practice and 
to become participants in the mathematics being practiced (Boaler, et al., 2000). The 
modeling aspect shares the common threads with the view of Makiguchi (1930), which 
emphasized the engagement of students in the actual activities of the community and urged 
the students to engage with the challenges of problem solving and finding creative responses 
to the problems we find in our everyday lives. How a student learns mathematics involves 
the development of the student’s identity as a part of a mathematics classroom community 
(Anderson, 2007).  

Accordingly, students need an opportunity of sharing meanings and values through 
engaging in real life mathematics. The assessment of mathematical knowledge needs to 
include evaluations of these indicators and students’ appreciation of the role and value of 

Mathematical Disposition, Identity, Sense of belonging Makiguchi’s Elements of 
Value 

• Interest, curiosity, and inventiveness in doing math Beauty 

• Confidence in using math to solve problems and 
communicate ideas 
• Willingness to persevere and become persistent in math 
tasks 
• Flexibility in exploring math ideas and trying alternative 
methods in solving problems 
• Appreciation of the role of mathematics in our culture and 
its value as a tool and as a language 
• Inclination to monitor and reflect on their own thinking 
and performance 
• Valuing of the application of mathematics to situations 
arising in other disciplines and everyday experiences 

Gains 

• See oneself as a learner, and doer of mathematics  
(Identity) 
• Sense of belonging in a learning community, global 
citizenship 

 
Social value (Social Good) 
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mathematics. Interaction between individuals and environments (e.g., teachers, peers, 
curriculum and so on) can be understood in terms of Makiguchi’s notion of value, 
specifically, beauty, gain, and social value derived from how individuals relate to their 
environment, in this study, the mathematics classroom via mathematical modeling activities. 
The examination of mathematics disposition gives insights into meaningful integration of 
cognition and affective skills in learning mathematics.  

Research Questions 
The purpose of this study is to evaluate an instructional model for students to create value 

in learning mathematics. With the unified framework of Makiguchi’s theory of value, 
mathematics disposition, and identity, this study examines how ‘socially-situated’ 
mathematical modeling activity within a collaborative learning community can contribute to 
students’ development of their mathematical disposition, identity, and sense of community as 
well as students’ creating mathematical meaning. The guiding questions for this study are as 
follows: 
 

1. What changes (if any) are observed in students’ mathematical disposition that results from 
learning mathematics through mathematical modeling within a learning community? 
Specifically, How do students perceive value of beauty and gains, in Makiguchi’s notion, of 
learning mathematics after experiencing mathematical modeling activities within a 
collaborative group?  
2. How are students’ mathematical identities transformed from their involvement in 
mathematical modeling activities within a collaborative group? 
3. How are students’ perceived social values, in Makiguchi’s notion, of learning mathematics 
observed during mathematical modeling activities within a collaborative group? 
How does the collaborative group create a sense of belonging to the group that can be 
realized through engaging in mathematical modeling activities with group members?  

Methods 
Both quantitative and qualitative methodologies were used in data collection and analysis, 

investigation, and interpretation. Multiple data sources including surveys, interview data, 
students’ written tasks and journals were collected (see figure 1). These data sources provided 
participants with multiple opportunities of their reflecting and sharing thoughts about how 
these experiences impacted their disposition and identity.  The participants were a total 60 
students who enrolled in college algebra courses taught by the researcher. The curricular task 
for the study was a modified version of the mathematical modeling project developed by the 
Center for Discrete Mathematics and Theoretical Computer Science (DIMACS) at Rutgers 
University. The project introduces the ecology of humans as a topic, and ecological foot 
printing is developed as a tool for assessing human impact and as a decision-making tool. 
These topics are relevant to social and environmental issues in which students engage in 
everyday lives. The investigator attempted to provide students with the tasks that require 
everyday knowledge, critical thinking, and a collaborative work. The mathematical modeling 
project was conducted within groups of four or five for four consecutive weeks. After 
completing the first week of conducting the project, students were asked to collect their own 
data. The Mathematical Disposition Survey (MDS) was conducted at the beginning of the 
study and the end of the study, and the results were compared. The mathematical disposition 
survey instrument is a modification of the one developed by Kisunsu (2008). Students' 
written tasks and journals were collected after each class. A total of eighteen focal students 
were selected for interview based the results from the analysis of Mathematical Disposition 
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Survey and students’ journals. Semi-structured interview offered students the opportunity of 
giving detailed statements on their written tasks, questionnaires, and journals. The researcher 
took field notes and audio-taped all the activities in classroom and interviews.  

 
Figure 2- Procedures (Multiple methods) 

The coding scheme was created in terms of the components of disposition and values 
when finding common themes and aiming to answer each research question. To validate 
whether different coders would code the same data the same way, the two responsible for 
coding transcripts were the investigator and a professional researcher in mathematics 
education. Two separate coding documents were created for coders. One provided the list of 
codes with examples of utterances associated with each code and guidelines for coding lesson 
transcripts. The other provided practice in coding and was used in the training sessions. 
Initially, coders worked completely separately. However, the coders first coded 
independently and then met to try to reach a consensus on their coding transcripts. Intercoder 
agreement for each of the thematic categories was calculated, as well as an overall average 
agreement across all the themes. There is also quantitative data analysis in this study. 
Matched pair t-distributions were used to determine the overall outcome of the Disposition 
Inventory and outcome in each component of Disposition (Appreciation, Interest, Usefulness, 
Persistence, Meta-cognition, Flexibility, Confidence, and Modeling) Inventory.  

Results 
The result from a paired samples t-test showed the significant changes in students’ 

mathematical disposition between pre and post survey. There was significant difference in the 
mean scores for Mathematics Disposition Pre-test (Mean =132.57, SD= 23.65) and Post-test 
(Mean=138.97, SD= 24.52 with t=-3.25, p < 0.01) (See Table 2.)  

Table 2. Descriptive Statistics and Paired Samples T-test (Mathematics Disposition) 

 Pre-Test Post-Test 
Mean 132.57 138.97 

Variance 567.12 607.65 
Observations (N) 47 47 

Pearson Correlation 0.85  
Df 46  

t Stat -3.248  
P(T<=t) two-tail 0.002  
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t Critical two-tail 2.013  
 

For further investigation, the pre and post survey mean scores in each aspect of 
mathematics disposition (confidence, flexibility, perseverance, interest and inventiveness, 
meta-cognition, usefulness and appreciation) were analyzed by a paired samples t-test. 
Students’ gain score from pre to post test was statistically significant for the aspect of 
flexibility (Pre: Mean=10.53, SD=3.69; post: Mean=12.09, SD=2.51 with t=-3.28, p<0.01), 
for the aspect of appreciation (Pre: Mean=16.49, SD=5.34; Post: Mean=18.06, SD= 4.61 with 
t=-2.62, p<0.01). Interview data were analyzed searching for evidence of ‘changes’ in 
disposition, identity, and students’ perceived value resulting from engaging in modeling 
activities in a collaborative group. 

Students’ changes in disposition and identity 
Interview data were analyzed searching for evidence of ‘changes’ in disposition resulting 

from engaging in modeling activities in a collaborative group. Two coders divided the 
number of coding agreement by the number of agreement and disagreements combined. For 
instance, with two coders, if 18 text units had been coded “change in the aspect of 
appreciation” by at least one of two coders and in 15 of those cases both had invoked the 
code on the same text, then the level of intercoder reliability (Krippendorff, 2004; Campbell 
et al, 2013), would be approximately 83% for students’ change in the aspect of appreciation. I 
calculated overall intercoder reliability for all codes as a set by diving the total number of 
agreements for all codes by the total number of agreements and disagreements for all codes 
combined (Campbell et al, 2013). The overall intercoder reliability was .82. 

When analyzing interview data from seventeen participants, I discovered that 82% of the 
interview participants reported disposition changes in the aspect of appreciation of 
disposition, 58% of the students reported their changes in the aspect of usefulness, and 70% 
of the participants reported changes in the aspect of modeling. Most participants reported 
changes in more than one aspect. The results were nearly consistent with the statistical 
analysis in that a higher percentage of participants changed disposition in the aspect of 
appreciation, modeling, and usefulness than in the other aspects.  

One common characteristic emerged from interview data was that students attributed the 
changes in their own mathematics dispositions to their appreciation of the real life context of 
the modeling project: 
Excerpt 1. Change in the aspect of usefulness and appreciation 
 

Chloe: Since I do not use math much, I did not recognize the importance of math 
before. It was the first experience of seeing how much math was involved in 
everyday life. I didn’t see the importance of math as much as I do after this 
project. 

Lisa: I think it’s important to know since it’s environmental issue and I thought it was 
interesting topic. I never did like this before. It was interesting to see how 
much we used. 

 
The aspect of modeling that was relevant to students’ everyday lives seemed to have 
contributed to their development of positive disposition and personal identity as doers of 
mathematics: 
 
Excerpt 2: Change in the aspect of interest and confidence, and identity transformation 
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Ella: I had difficult in doing math entire my life until to this day. I feel like this 
project would be beneficial for the students like me. I think it is important to think 
analytically and think outside of box through this kind of project. I changed my view 
of math in the sense that it became enjoyable since this project gave me some 
excitement. The project used math but it was interesting.  
 

Excerpt 3. Change in the aspect of interest and confidence 
Jessica: Usually, sitting and doing are not for fun but this project made me to enjoy the 

process of doing it and liked it. Since it was an ongoing thing, I did not want to 
miss the class cause if I missed a part of the project, I know that I could not 
catch up nor finish it.  

Jade: I became more confident and suggested how we should solve the problem. So I 
think that this project was pretty interesting cause I usually tend to lay back, 
and everyone else takes control but for this project, I took control, gave 
opinions of how we should find the solutions. It was a learning experience that 
actually I used my brain to answer the questions.[…] I think the best moment 
was when I got the solution which was the same as everyone else’s. I had never 
had that experience. That was the best moment. 

Students came to value and appreciate the modeling activities of creating and interpreting 
data in real life context, and developed their autonomous modeling behavior: 

Herald: By breaking it down, it was easier to see the steps, instead of using a given 
equation. […] So I think it is much easier to do steps by yourself instead 
someone else is telling you what to do or how to do. 

Aubrey: I think again, the questions like, the conversions, how to convert one unit to 
the other, then a question like “where does the excess land come from to 
support people in US?”, we had to think about what is the bio capacity of US, it 
involves critical thinking by having compared numbers and looked back our 
data. It was great. We had never done like this before. We usually just did 
normal math procedures in our math class. 

As the above excerpts indicate, students seem to have developed identities as doers of 
meaningful mathematics; students expressed themselves to be people who want to use their 
own ideas, exercise their own thought, and think critically.  
Sense of belonging and social value: what it means to understand mathematics 
 
There was evidence indicating socialization in a group through emotional connections by 
asking for help and sharing stories of events with particular topics: 
 

Lisa: We talked about our data, also our personal lives, why we had these numbers, 
and what electric devices have used. I had a big number [footprint] but she had a 
smaller number than mine. Then we talked about why and talked about the details in 
our personal lives. Especially with Alexis, cause we both live with family but others 
live on campus so our numbers were pretty close but others’ were very different from 
ours. We talked about it at the personal level. Generally, as for a group work, some 
people do not do their parts but in our case, everyone contributed their parts.  

 
Interpreting mathematical results and social value: what counts as mathematical 
argumentations in modeling tasks 
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‘What constitutes mathematics argument’ was related to the affiliation with the group, 
and the real life context of modeling tasks helped them to establish socio- mathematical 
norms.  
            Interviewer: While working on this project in a group, how did you all validate that 
your solution is correct? 
 

Deana: We took a look at them to see if they make sense, like realistic numbers not 
too high or too low. One girl’s number was so low and everybody else was high, so 
we told her “you did something wrong”. Then we found that she forgot to add 
something. 

 
In order to claim if a solution is correct, students seemed to have established socio 

mathematical norms based on the realistic context of modeling: “if they make sense, like 
realistic number not too high or too low”. It involves knowing how to examine the data to see 
if it makes sense in real life situation. This data analysis demonstrates what counts as an 
acceptable mathematical explanation and mathematical understanding. 
 
Students seem to be able to make a connection not merely with their immediate community 
(a group in the classroom) but with a global community through interpreting mathematical 
results. Students also developed their identity as a global citizen: 
 

Lily: I realized what myself and my family can do for our environment through 
this project. Small things like, even having one more person in your car really 
makes a difference. Through calculating the footprint, I found that, you could 
reduce your footprint by walking, instead of taking a cab. It greatly changes your 
footprint. When I go to Whole Foods [market] I always use a reusable bag. 

As Lily demonstrated, for example, students not only developed their productive relations 
with mathematics but also their identity as a global citizen. 

The modeling task with students’ personal data and social interactions within a group 
contributed substantially to students’ creating social value. While working with ‘realistic 
data’, students were able to develop modeling competence: to see the possibilities that 
mathematics offer for the solution of real world problems and to value them positively 
(Maass, 2006); to think about the nature of mathematics and assess their own capabilities 
beyond constructing and investigating mathematical models, and students were aware of the 
limitations in real life problem situations on validating their data. 
 

Conclusion 
In Makiguchi’s theory of value, benefit or gain is a beneficial aspect of the interactions 

with an object (mathematics in this study). For example, students did develop a greater level 
of confidence in doing mathematics and were able to express their ideas within a group or 
developed one’s willingness to navigate alternative ways of solving problems and monitor 
thinking. The individual creates value through contributing to the well-being of the larger 
human community and society (Ikeda, 2001). Social value seemed to have been created 
through students’ interactions with the external context to mathematics and also with other 
members while working in a group. Students deeply engaged with mathematics through 
modeling activities by sharing mistakes, listening to and offering suggestions about other’s 
work, and thinking about rationales behind why particular decisions were meaningful. The 
development of disposition seems to be shaped by the interrelation between the context of 
mathematics tasks and interactions with others. For further study, by examining students’ 
modeling activities and interactions with peers in the classroom, one can understand better 
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how these elements interplay with students’ construction of disposition and identity. The 
underlying assumption of Makiguchi's value creation is that every student has the ability to 
contribute to his or her own development and that of society in a creative way. Overall, to 
create value means to self-actualize one’s full potential and create beauty, gain, and good, 
from all circumstances.  

The instructional model evaluated in this study-an interdisciplinary mathematical 
modeling project conducted within a collaborative group-can be implemented in a college or 
high school classroom as a model that helps students to develop their positive mathematics 
disposition and critical thinking, to engage in sense-making mathematics, and to create a 
learning community. 
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ARE STUDENTS BETTER AT VALIDATION AFTER  
AN INQUIRY-BASED TRANSITION-TO-PROOF COURSE? 
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We present the results of a study of the observed proof validation abilities and 
behaviors of sixteen undergraduates after taking an inquiry-based transition-to-
proof course. Students were interviewed individually towards the end of the course 
using the same protocol that we had used earlier at the beginning of a similar 
course (Selden and Selden, 2003). Results include a description of the students’ 
observed validation behaviors, a description of their proffered evaluative 
comments, and the, perhaps counterintuitive, suggestion that taking an inquiry-
based transition-to-proof course does not seem to enhance validation abilities. We 
also discuss distinctions between proof validation, proof comprehension, proof 
construction and proof evaluation and the need for research on their interrelations.  

	  
Key words: Transition-to-proof, Proof, Validation  
	  

We present the results of a study of the observed proof validation behaviors of 16 
undergraduates after taking an inquiry-based transition-to-proof course emphasizing proof 
construction. Students were interviewed individually towards the end of the course 
employing the same protocol used in our earlier study (Selden & Selden, 2003). Here, as in 
our earlier study, we regard proofs as texts that establish the truth of theorems and use our 
previous description of proof validation as the reading of, and reflection on, proofs to determine 
their correctness. Indeed,  

 
A validation is often much longer and more complex than the written proof  
and may be difficult to observe because not all of it is conscious. Moreover,  
even its conscious part may be conducted silently using inner speech and vision.  
Validation can include asking and answering questions, assenting to claims, 
constructing subproofs, remembering or finding and interpreting other theorems  
and definitions, complying with instructions (e.g., to consider or name something), 
and conscious (but probably nonverbal) feelings of rightness or wrongness.  
Proof validation can also include the production of a new text—a validator-
constructed modification of the written argument—that might include additional 
calculations, expansions of definitions, or constructions of subproofs. Towards  
the end of a validation, in an effort to capture the essence of the argument in  
a single train-of-thought, contractions of the argument might be undertaken. (p. 5). 

 
In this paper, we provide detailed descriptions of the observed validation behaviors that 

our 16 undergraduates took – something either not done, or only partially done, in prior 
validations studies and perhaps not at all for this level of student. Past validation studies 
include: first-year Irish undergraduates’ validations and evaluations (Pfeiffer, 2011); U.S. 
undergraduates’ validations at the beginning of a transition-to-proof course (Selden & 
Selden, 2003); U.S. mathematics majors’ validation practices across several content domains 
(Ko & Knuth, 2013); U.S. mathematicians’ validations (Weber, 2008); and U.K. novices’ 
and experts’ reading of proofs, using eye-tracking, to compare their validation behaviors 
(Inglis & Alcock, 2012).  

Our ultimate goal is to understand both the process of proof construction and the process 
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of proof validation. Our specific research question was: Would taking an inquiry-based 
transition-to-proof course that emphasized proof construction significantly enhance students’ 
proof validation abilities? 

 
Theoretical Perspective 

 
      We view proof construction as a sequence of mental or physical actions in response to 
situations in a partly completed proof. This process, even when done with few errors or 
redundancies, contains many more actions, or steps, than appear in the final written proof and 
cannot be fully reconstructed from a final written proof. Many of these actions, such as 
“unpacking” the conclusion to see what one is being asked to prove, or drawing a diagram, do 
not appear in the final written proof, and hence, are unavailable to students for their later 
consideration and reflection. 
      Many proving actions appear to be the result of the enactment of small, automated 
situation-action pairs that we have termed behavioral schemas (Selden, McKee, & Selden, 
2010; Selden & Selden, 2008). A common beneficial behavioral schema consists of a 
situation where one has to prove a universally quantified statement like, “For all real numbers 
x, P(x)” and the action is writing into the proof something like, “Let x be a real number,” 
meaning x is arbitrary but fixed. Focusing on such behavioral schemas, that is, on small 
habits of mind for proving, has two advantages. First, the uses and interactions of behavioral 
schemas are relatively easy to examine. Second, this perspective is not only explanatory but 
also suggests concrete teaching actions, such as the use of practice to encourage the 
formation of beneficial schemas and the elimination of detrimental ones. (See the case of 
Sofia and her “unreflective guess” behavioral schema in Selden, McKee, and Selden, 2010, 
pp. 211-212). 
      While we have investigated, and written about, a number of proof construction actions 
(e.g., Selden, McKee, & Selden, 2010), our thinking about proof validation actions is still in 
its infancy. However, it seems reasonable to conjecture, based on the extant proof validation 
literature (e.g., Inglis & Alcock, 2012; Selden & Selden, 2003, Weber, 2008) that 
examination of the overall structure of a proof is crucial in order to determine whether the 
given attempted proof, if correct, actually proves the statement (theorem) that it sets out to 
prove. In addition, it also seems that a careful line-by-line reading of an attempted proof is 
useful for determining whether the individual assertions are warranted, either explicitly or 
implicitly (e.g., Weber & Alcock, 2005).  

 
Setting of the Research: The Course and the Students  

 
The course that the participants attended is meant as a second-year university transition-

to-proof course for mathematics and secondary education mathematics majors, but is often 
taken by a variety of majors and by more advanced undergraduate students.1 The course was 
given at a Southwestern Ph.D.-granting university and was taught in a very modified Moore 
Method way (Coppin, Mahavier, May, & Parker, 2009; Mahavier,1999). That is, students 
were given course notes with definitions, questions, requests for examples, and statements of 
theorems to prove. In addition, the course notes contained one very detailed sample set theory 
proof construction, some explanations of types of proof frameworks (Selden & Selden, 2009, 
1995) and a number of operable interpretations of definitions.2 That is, we included 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  We have found that students are often afraid of a transition-to-proof course, and that instead of taking it in their 
second year of university, before courses like abstract algebra and real analysis (with which it is supposed to 
help), they take it later.	  
2 Bills & Tall (1998, p. 104) considered a definition to be formally operable for a student if that student “is able 
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statements about how to use a definition in proving a theorem and statements about how to 
prove that a definition is satisfied. We have found this level of detail useful, sometimes even 
necessary, for our second-year university students. 

To illustrate this, we have found that the formal definition of f(A) = { y | there is an a ∈ 
A so that f(a) = y } is difficult for students to use. So we have added a link to the following 
operable interpretation: To show “y ∈ f(A)” you show “there is an a ∈ A such that f(a) = y.” 
To use “y ∈ f(A)” you may say “there is an a ∈ A such that f(a) = y.” Yet, despite having 
included such operable interpretations, we have sometimes overheard students, during group 
work in a subsequent similar transition-to-proof course, say of our operable interpretations 
that they don’t know what these mean. It is now our conjecture that students may, in addition, 
need examples of how to use a definition in proof construction and of how to show that a 
definition is satisfied.  

The students in this study proved the theorems outside of class and presented their 
proofs in class on the blackboard and received extensive critiques. These critiques consisted 
of careful line-by-line readings and validations of the students’ proof attempts, often with 
corrections and insertions of missing warrants. In a sense, the second author modeled proof 
validation for the students. This was followed by a second reading of the students’ proof 
attempts, indicating how these might have been written in “better style” to conform to the 
genre of proofs (Selden & Selden, 2013). Once these corrections and suggestions had been 
made, the student, who had made the proof attempt, was asked to write his/her proof up 
carefully, including the corrections and suggestions, for duplication for the entire class. In 
this way, by the end of the semester, the students had obtained one correct, well-written proof 
for each theorem in the course notes. In addition, about once a week, the class worked in 
groups to co-construct3 proofs of upcoming theorems in the course notes. Sometimes, if the 
students seemed to need it, there were mini-lectures on topics such as logic or proof by 
contradiction. These mini-lectures were not preplanned; rather they occurred spontaneously, 
as the need arose. 

The homework, assigned each class period, consisted of requests for proofs of the next 
two or three theorems in the course notes. These proof attempts were handed in at the 
beginning of the next class to the first author, who determined “on the spot”, based on the 
students’ written work, which students would be asked to present their proof attempts on the 
blackboard that day. The students were aware that being asked to present their proof attempts 
did not necessarily mean that these were correct, but rather that their proof attempts would 
probably provide interesting points for the second author to discuss. In addition to presenting 
their attempted proofs in class, the students had both mid-term and final examinations, which 
consisted of theorems, new to them, to prove. The mathematical topics considered in the 
course included sets, functions, continuity, and beginning abstract algebra in the form of a 
few theorems about semigroups and homomorphisms. However, the teaching aim was to 
have students experience constructing as many different kinds of proofs as possible, 
especially in abstract algebra and real analysis, and not to learn a particular mathematical 
content. The course notes were self-contained, that is, all relevant definitions were provided. 
 

Methodology of the Study: The Conduct of the Interviews  
 

Sixteen of the 17 students enrolled in the course opted to participate in the study for 
extra credit. Of these, 81% (13 of 16) were either mathematics majors, secondary education 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
to use it	  in creating or meaningfully reproducing a formal argument [proof]”.	  
3 A detailed description of the co-construction of real analysis proofs is given in McKee, Savic, Selden, and 
Selden (2010)	  
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mathematics majors, or were in mathematics-related fields (e.g., electrical engineering, civil 
engineering, computer science). 

Interviews were conducted outside of class during the final two weeks of the course. The 
students received extra credit for participating and signed up for convenient one-hour time 
slots. They were told that they need not study for this extra credit session. The protocol was 
the same as that of our earlier validation study (Selden & Selden, 2003) and is reproduced in 
Appendix 2.  

Upon arrival, participants4 were first informed that they were going to validate four 
student-constructed “proofs” of a single number theory theorem, indeed, that the proof 
attempts that they were about to read were submitted for credit by students, who like 
themselves, had been in a transition-to-proof course. The participants were asked to think 
aloud and to decide whether the purported proofs were indeed proofs. Participants were 
encouraged to ask clarification questions and informed that the interviewer would decide 
whether a question could be answered. They were given the same Fact Sheet (Appendix 1) 
about multiples of 3 provided to the participants of our earlier study (Selden & Selden, 
2003).  

There were four phases to the interview: A warm-up phase during which the participants 
gave examples of the theorem: For any positive integer n, if n2 is a multiple of 3, then n is a 
multiple of 3 and then tried to prove it; a second phase during which they validated, one-by-
one, the four purported (student-constructed) proofs of the theorem; a third phase during 
which they were able to reconsider the four purported proofs (presented altogether on one 
sheet of paper), and a fourth debrief phase during which they answered questions about how 
they normally read proofs. (See Appendix 2 for details.) 

The interviews were audio recorded. The participants wrote as much or as little as they 
wanted on the sheets with the purported proofs. Participants took as much time as they 
wanted to validate each proof, with one participant initially taking 25 minutes to validate 
“Proof (a)”.  

The interviewer answered an occasional clarification question, such as the meaning of 
the vertical bar in 3|n2, but otherwise only took notes, and handed the participants the next 
printed page when they were ready for it.  

The data collected included: the sheets on which the participants wrote, the interviewer’s 
notes, and the recordings of the interviews. These data were analyzed multiple times to note 
anything that might be of interest. Tallies were made of such things as: the number of 
correct judgments made by each participant individually; the percentage of correct 
judgments made by the participants (as a group) at the end of Phase 2 and again at the end 
of Phase 3; the validation behaviors that the participants were observed by the interviewer to 
have taken; the validation comments that the participants proffered; the amount of time 
taken by each participant to validate each of the purported proofs; the number of times each 
participant reread each purported proof; the number of participants who underlined or 
circled parts of the purported proofs; the number of times the participants substituted 
numbers for n; and the number of times the participants consulted the Fact Sheet. Many of 
these are indicated below.  

 
Commentary on the Four Purported Proofs 

 
First, we make some general comments on interesting or unusual aspects of the four 

purported proofs. The theorem is true and one of the purported proofs is actually a proof of 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4	  Because the purported proofs were constructed by undergraduate students and because the participants in this 
study were also undergraduate students, we will henceforth refer to the undergraduates in this study as 
“participants” to avoid confusion.	  
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it, while three are not, that is, as proofs they are incorrect. In our previous paper, we 
provided a textual analysis -- a kind of line-by-line gloss or elaboration -- of the theorem 
and the four student-generated proofs that emphasized mathematical and logical points that 
a validator might, or might not, notice (Selden & Selden, 2003, pp. 10-18). 
       For example, we discussed such matters as the use of alternative terms (e.g., assume for 
suppose, divides instead of multiple), the role of individual sentences in furthering the 
argument, proper and improper uses of symbols, implicit assumptions (e.g., that a division of 
the argument into cases had been exhaustive), the correctness of inferences, computational 
errors, extraneous statements, and structural aspects of the four purported proofs. Global 
properties such as whether an argument proved the theorem, as opposed to some other 
theorem, were also noted.  
       Here we consider the four purported proofs, one-by-one, only very briefly. “Proof (a)” 
(Appendix 2, Phase 3) is not a proof. It consists of two independent subarguments each of 
which should have ended with the conclusion “n is a multiple of 3” or its equivalent, “n is 
divisible by 3.” However, the odd case did not end this way, and the even case made this 
claim but did not properly justify it. In addition, while taking odd and even cases, when n2 is 
a multiple of three, would not be wrong, these two cases seem a bit unusual. However, if each 
case were proved correctly, the proofs of the two cases would be essentially the same. 
      If “Proof (b)” is treated as a proof of the contrapositive, which one of the participants 
(CY) in the current study did, it would be peculiar to mention “the contrary” in the beginning. 
Under a contrapositive interpretation, the final step could have been omitted entirely or 
replaced by “Thus in either case n2 is not a multiple of 3.” We regard this as a proof of the 
theorem, although one that might have been written more clearly. Had the role of n2 and the 
division into two independent subarguments (cases) been made explicit rather than implicit, 
the proof would have been less confusing for validators, especially inexperienced ones.  
     Given what the students who wrote the purported proofs knew, and what the participants 
in this study and the previous study knew, “Proof (c)” has a gap in the reasoning, although 
some mathematicians have pointed out that the result can be considered to be an immediate 
consequence of the definition of prime, so there is no gap. This observation by 
mathematicians points out the importance of context for validation. Accordingly, the fact that 
the participants in both studies had been told, at the beginning of the interviews, that the 
purported proofs were written by students like themselves, who were in a transition-to-proof 
course, gave them crucial contextual information. Indeed, several participants in the current 
study wondered what the students who wrote the purported proofs knew or had been allowed 
to assume. 

“Proof (d)” begins with the conclusion and arrives at the hypothesis, although not in a 
straightforward way. Hence, it can be considered a proof of the converse of the stated 
theorem. 
 

Results: Participants’ Observed Validation Behaviors  
 

Given that validation can be difficult to observe, it is remarkable how verbal and 
forthcoming the participants in this study were. This enabled us to gather a variety of data, 
much of which is presented and discussed below. 

All participants appeared to take the task very seriously and some participants spent a 
great deal of time validating at least one of the purported proofs. For example, LH5 initially 
took 25 minutes to validate “Proof (a)” before going on, and VL initially took 20 minutes 
to validate “Proof (b)”. The minimum, maximum, and mean times for validating each 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 Initials, like LH, designate individual participants. 
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purported proof are given in Table 1.  
 

Table 1: Time (in minutes) taken initially to validate the purported proofs (during Phase 2) 
 “Proof (a)” “Proof (b)” “Proof (c)” “Proof (d)” 

Maximum time 25  20  16 9 
Minimum time 5 2 3 2 

Mean time  8.8  8.5  6.3 4.5 
 

The following validation behaviors6 were observed as having been enacted by the 
participants; the percentages and absolute numbers are given in parentheses:  

1. Underlined, or circled, parts of the purported proofs (100%, 16);  
2. Pointed with their pencils or fingers to words or phrases, as they read  

along linearly (50%, 8); 
3. Checked the algebra, for example, by “foiling” (3n+1)2 (62.5%, 10); 
4. Substituted numbers for n to check the purported equalities (37.5%, 6);  
5. Reread all, or parts of, the purported proofs (87.5%, 14);  
6. Consulted the Fact Sheet to check something about multiples of 3 (56.25%, 9). 

Summarizing the above, participants used focus/reflection aids (1. & 2.); checked 
computations or tested examples (3. & 4.); revisited important points – perhaps as a 
protection against “mind wandering” (5.); and checked their own knowledge (6.). These 
actions all seem to be beneficial validation behaviors.  

 
Results: Participants’ Proffered Evaluative Comments  

 
The participants sometimes voiced what they didn’t like about the purported proofs. For 

example, CY objected to “Proof (b)” being referred to as a proof by contradiction. He 
insisted it was a contrapositive proof and twice crossed out the final words “we have a proof 
by contradiction”. Fourteen (87.5%) mentioned the lack of a proof framework,7 or an 
equivalent, even though they had been informed at the outset that the students who wrote the 
purported proofs had not been taught to construct proof frameworks.  

Below are some additional features that seemed to bother some participants:  
1. Lack of clarity in the way the purported proofs were written. Some  

referred to parts of the purported proofs as “confusing”, “convoluted”,  
“a mess”, or not “making sense” (68.75%); 

2. The notation, which one participant called “wacky”; 
3. The fact that “Proof (d)” started with n, then introduced m, and did  

not go back to n; 
4. Not knowing what the students who had constructed the purported proofs  

knew or were allowed to assume: 
5. Having too much, or too little, information in a purported proof. For  

example, one participant said there was “not enough evidence  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 Ko and Knuth (2013, p. 27) referred to validation behaviors, such as checking line-by-line or example-based 
reasoning as “strategies” for validating proofs. We prefer the term “behaviors” as the act of underlining or 
circling parts of proofs is evidence of focus, not strategy, which usually entails a plan. 
7	  A proof framework is a “representation of the ‘top level’ logical structure of a proof, which does not depend on 
a detailed knowledge of the mathematical concepts, but is rich enough to allow the reconstruction of the 
statement being proved or one equivalent to it.” (Selden & Selden, 1995, p. 129). In practice, in this transition-
to-proof course, this meant writing the hypotheses at the top of the nascent proof, leaving a blank space for the 
details, and writing the conclusion at the bottom of the proof, and perhaps, also unpacking the conclusion and 
writing as much as possible of the structure of the proof.	  
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for a contradiction” in “Proof (b)”; 
6. The “gap” in “Proof (c)” which was remarked on by six participants. 

 
Results: Individual Participants’ Voiced Local and Overall Comments 

 
Some participants made comments that indicated local concerns, but some comments 

were of an overall evaluative nature. That is, the overall comments often seemed to have 
more to do with making sense, having enough information, or being a “strong” proof, rather 
than with the structure of the purported proofs. 

Indeed, no participant even commented on the strange division of “Proof (a)” into odd 
and even cases. This general lack of global, or overall, structural comments is similar to prior 
findings in the literature (e.g., Inglis & Alcock, 2012; Selden & Selden, 2003).  

 
Local Comments 
	  
Some of the local comments on “Proof (a)” were:  

 
MO:  For the odd part, [I] don’t like the string of equals.  

[n2 = (3n + 1)2  = 9n2 + 6n + 1 = 3n(n + 2) + 1] 
KW:  [It’s] got a problem. 3n+1, if n=1, is not odd – [it] would be even. 
AF:  This [n2 = 9n2] isn’t equal. 
 

Two of local comments on “Proof (b)” were:  
 

FR:  First off, [I am] not seeing the closing statement. 
KK:  [This is] not a proof because we don’t introduce n, but we use n. 
 

A sample local comment on the use of the universal quantifier in “Proof (c)” was:  
 

CJ:  [The bit about] where x is any integer worries me.  
 

A local comment on the notation used in “Proof (d)” was:  
 

LH:  Why would you use m? ... [It’s] kind of confusing with that m. 
 

Overall Comments 
	  
Some overall comments on “Proof (a)” were:  
 

CL:  [It] needs more explanation -- I can’t see where they are going. 
CY:  [The first case] doesn’t seem right. 
KW:  [They are] not going where they need to go. …. No, not a proof. …  

[I] don’t think they’ve done what they need to do. 
FR: I don’t want to say this is done. Not a proper proof. 
MO: [This is a] partial proof. 
 

Three overall comments on “Proof (b)” were:  
 

CL:  Yes, [this one] looks a lot better. [It’s] making more sense to me. 
[than “Proof (a)”].  
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SS:  [It’s] not written well.  
AF: [I] feel like it’s a proof because [they’re] showing that the two  

integers in between [i.e., 3n + 1 and 3n + 2] are not multiples of 3. 
 

Four overall comments on Proof (c)” were:  
 

CY: [I] just can’t get my head around [it]. 
CJ:  [I] need more information. [I] don’t buy it. 
KK: [This one is] closer [to a proof] than the others. 
MO:  I don’t think (c) is a proof. [It] doesn’t have enough information. [It]  

doesn’t go into detail … [It] doesn’t say exactly why it works.  
 

Two sample overall comments on “Proof (d)” were:  
 

MO: [He is] putting [in] more information than needs to be [there]. 
[This does] not help his proof. 

LH: [This one’s] not a strong proof. 
 
Participants’ comments, given in the above two sections, do not focus just on whether 

the theorem has been proved. They include evaluative comments about whether they liked the 
purported proofs, found them confusing or unclear in some way, or were lacking in some 
details or information. We suspect participants might have had difficulty separating matters 
of validity from matters of style and personal preference, or even from their own confusion, 
while reading the purported proofs.  

 
Results: What the Participants Said They Do When Reading Proofs 

 
In answer to the final debrief questions, all participants said that they check every step in 

a proof or read a proof line-by-line. All said they reread a proof several times or as many 
times as needed. All, but one, said that they expand proofs by making calculations or making 
subproofs. In addition, some volunteered that they work through proofs with an example, 
write on scratch paper, read aloud, or look for the framework. All of these actions can be 
beneficial. 

In addition, ten (62.5%) said they tell if a proof is correct by whether it “makes sense” or 
they “understand it”. These are cognitive feelings that, with experience, can be useful. Four 
(25%) said a proof is incorrect if it has a mistake, and four (25%) said a proof is correct “if 
they prove what they set out to prove.” These last two views of proof call for some caution 
during implementation.  

It is possible for a proof to have a minor mistake, perhaps a calculation error, that can be 
easily fixed, and hence, not “make sense” locally, but otherwise be correct. Indeed, it has 
been claimed that a past editor of the Mathematical Reviews8 once said that “approximately 
one half of the proofs published in it were incomplete and/or contained errors, although the 
theorems they were purported to prove were essentially true.” (de Villiers, 1990, p. 19). 
Consequently, it appears that, for most mathematicians, a mistake that is easily fixable does 
not mean the entire proof should be judged incorrect. Additionally, it is possible, especially 
for student proof attempts, to “end in the right place”, but still have significant errors. Thus, 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8	  Mathematical Reviews is a journal and online database published by the American Mathematical Society 
(AMS) that contains brief synopses, written and signed by mathematicians with appropriate expertise, of many 
published articles in mathematics, statistics, or theoretical computer science.  
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cognitive feelings such as those expressed in the previous paragraph need to be informed by 
appropriate proof construction and validation experiences. 

 
Discussion and Teaching Implications 

 
In answer to the initial research question, the participants in this study took their task 

very seriously, but made fewer final correct judgments (73% vs. 81%) than the 
undergraduates studied earlier (Selden & Selden, 2003) despite, as a group, being somewhat 
further along academically. In this study, 56% (9 of 16) of the participants were in their 
fourth year of university, whereas just 37.5% (3 of 8) of the undergraduates in our earlier 
study were in their fourth year. However, two of the eight participants in our earlier 
validation study had been able to prove the theorem themselves during Phase 1, whereas 
none of the 16 participants in this study proved the theorem. 

Because the participants in this study were completing an inquiry-based transition-to-
proof course emphasizing proof construction, in which validation had been modeled by the 
second author, we conjectured that they would be better at proof validation than those at the 
beginning of a transition-to-proof course (Selden & Selden, 2003), but they weren’t. We have 
tentatively concluded that if one wants undergraduates to learn to validate “messy” student-
constructed, purported proofs, in a reliable way, one needs to teach validation explicitly.  

We stress this because it may seem counterintuitive. We note that, as students most 
mathematicians have received considerable implicit proof construction instruction through 
feedback on assessments and on their dissertations. However, most have received no explicit 
validation instruction, but are apparently very skilled at it. 

There is at least one caveat regarding this study. It could be that we have been 
comparing “apples to oranges” as the participants in this study were not given a pre-test on 
proof validation, but instead are being compared to different students at the beginning of a 
transition-to-proof course at a different university. This could be remedied with another study 
that administered both a pre-test and a post-test consisting of validation items. However, it is 
difficult to imagine a course that gave more attention to helping students with proof 
construction or that demonstrated validation of proofs more explicitly than this one, with 
such limited effect on students’ validation behaviors. 

As to how one might possibly teach students to validate “messy” student-constructed 
proofs, Boyle and Byrne (2014, Table 1) have suggested a rubric, which they refer to as a 
“proof assessment tool” meant to help university teachers give formative feedback to 
students on their proofs. Byrne is currently using this rubric to have her transition-to-proof 
course students comment on each other’s proof attempts (personal communication, March 8, 
2014). It will be interesting to see whether Byrne needs to give her students explicit 
instruction on how to use this rubric or whether her students can use it “off the shelf” without 
explicit instruction, and also how proficient her students become at giving helpful feedback 
to each other on proofs and on validation.  

We conjecture, as a result of our current study, that it’s not enough for professors to 
model validation, as was done by the second author, and for students to observe those 
validations, as our participants did, rather students also need to practice validation, which is a 
reason to hope that Byrne will be successful with her current students. 

 
Future Research  

 
In addition to proof validation, there are three additional related concepts in the literature: 

proof comprehension, proof construction, and proof evaluation. There has been little research 
on how these four concepts are related. In this study, we investigated one of these 
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relationships -- whether improving undergraduates’ proof construction abilities would 
enhance their proof validation abilities and have obtained some negative evidence.  

Proof comprehension means understanding a (textbook or lecture) proof. Mejia-Ramos, 
Fuller, Weber, Rhoads, and Samkoff (2012) have given an assessment model for proof 
comprehension, and thereby described proof comprehension in practical terms. Examples of 
their assessment items include: Write the given statement in your own words. Identify the 
type of proof framework. Make explicit an implicit warrant in the proof. Provide a summary 
of the proof. 

Proof construction means constructing correct proofs at the level expected of 
mathematics students (depending which year they are in their program of study).  

Proof evaluation was described by Pfeiffer (2011) as “determining whether a proof is 
correct and establishes the truth of a statement (validation) and also how good it is regarding 
a wider range of features such as clarity, context, sufficiency without excess, insight, 
convincingness or enhancement of understanding.” (p. 5). 

While it is still an open question as to how these four concepts are related, in addition to 
our study, Pfeiffer (2011) conjectured that practice in proof evaluation could help 
undergraduates appreciate the role of proofs and also help them in constructing proofs for 
themselves. She obtained some positive evidence, but her conjecture needs further 
investigation. As for proof comprehension, it is an open question as to whether practice in 
proof comprehension would help any of proof evaluation, proof validation, or proof 
construction. 

In addition, there is anecdotal evidence, obtained from several mathematics department 
chairpersons, that some of today’s transition-to-proof courses/textbooks are thought to be 
inadequate for the task of actually transitioning students from lower-level undergraduate 
mathematics courses to upper-level undergraduate proof-based mathematics courses, such as 
abstract algebra and real analysis. Whether this is the case, and to what degree, should be 
investigated. 

Finally, we feel that there is a need to develop characteristics of a reasonable learning 
progression for tertiary proof construction, going from novice9 (lower-division mathematics 
students) to competent (upper-division mathematics students), on to proficient (mathematics 
graduate students), and eventually to expert (mathematicians). 
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Appendix 1: Fact Sheet 

[from Selden and Selden (2003), p. 32] 
	  
FACT 1. The positive integers, Z+, can be divided up into three kinds of integers -- those of 
the form 3n for some integer n, those of the form 3n + 1 for some integer n, and those of the 
form 3n + 2 for some integer n. 
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For example,  
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11… 

  3n 3n+1 3n+2 3n 3n+1 3n+2    
  where n = 1 where n = 2    
 
FACT 2. Integers of the form 3n (that is, 3, 6, 9, 12, . . .) are called multiples of 3. 
 
FACT 3. No integer can be of two of these kinds simultaneously. So m is not a multiple of 3 
means the same as m is of the form 3n+1 or 3n+2. 
 

Appendix 2: Interview Protocol 
[from Selden and Selden (2003), pp. 32-33] 

PHASE 1: ‘Warm Up’ Exercises 
For any positive integer n, if n2 is a multiple of 3, then n is a multiple of 3. 
1. Explain, in your own words, what the above statement says. 
2. Give some examples of the above statement. 
3. Does the above statement seem to be true? How do you tell? 
4. Do you think you could give a proof of the above statement?  
 

PHASE 2: Sequential consideration of ‘Proofs’ (a), (b), (c), (d). [The purported proofs 
were presented to the participants, one page at a time, during this Phase. The purported proofs 
are given below under Phase 3.] 
	  

PHASE 3: ‘Recap’ on the ‘Proofs’ 
Below are several purported proofs of the following statement: 
 
For any positive integer n, if n2 is a multiple of 3, then n is a multiple of 3. 
 
For each one, decide whether or not it is a proof. Try to “think out loud” so you can let me in 
on your decision process. If it is not a proof, point out which part(s) are problematic. If you 
can, say where, or in what ways, the purported proof has gone wrong. 

 
(a). Proof: Assume that n2 is an odd positive integer that is divisible by 3. That is n2 = 
(3n + 1)2 = 9n2 + 6n + 1 = 3n(n + 2) + 1. Therefore, n2 is divisible by 3. Assume that n2 is 
even and a multiple of 3. That is n2 = (3n)2 = 9n2 = 3n(3n). Therefore, n2 is a multiple of 3. If 
we factor n2 = 9n2, we get 3n(3n); which means that n is a multiple of 3.!  
 
(b). Proof: Suppose to the contrary that n is not a multiple of 3. We will let 3k be a positive 
integer that is a multiple of 3, so that 3k + 1 and 3k + 2 are integers that are not multiples of 3. 
Now n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1. Since 3(3k2 + 2k) is a multiple of 3, 
3(3k2 + 2k) + 1 is not. Now we will do the other possibility, 3k + 2. So, n2 = (3k + 2)2 = 9k2 + 
12k + 4 = 3(3k2 + 4k + 1) + 1 is not a multiple of 3. Because n2 is not a multiple of 3, we have 
a contradiction. ! 
 
(c). Proof: Let n be an integer such that n2 = 3x where x is any integer. Then 3|n2. Since n2 = 
3x, nn = 3x. Thus 3|n. Therefore if n2 is a multiple of 3, then n is a multiple of 3.!  
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(d). Proof: Let n be a positive integer such that n2 is a multiple of 3. Then n = 3m where m ∈ 
Z+. So n2 = (3m)2 = 9m2 = 3(3m2). This breaks down into 3m times 3m which shows that m is 
a multiple of 3. ! 

 

PHASE 4. Final Questions 
1. When you read a proof is there anything different you do, say, than in reading a 

newspaper? 
2. Specifically, what do you do when you read a proof? 
3. Do you check every step? 
4. Do you read it more than once? How many times? 
5. Do you make small subproofs or expand steps? 
6. How do you tell when a proof is correct or incorrect? 
7. How do you know a proof proves this theorem instead of some other theorem? 
8.  Why do we have proofs?	  	  
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AN ANALYSIS OF TRANSITION-TO-PROOF COURSE STUDENTS’  
PROOF CONSTRUCTIONS WITH A VIEW TOWARDS COURSE REDESIGN 

 
                               John Selden              Ahmed Benkhalti          Annie Selden 
                          New Mexico State        New Mexico State     New Mexico State 

 
The purpose of this study was to gain knowledge about undergraduate transition-to-
proof course students’ proving difficulties. We analyzed the final examination papers of 
students in one such course. Our perspective included drawing inferences about 
students’ sometimes automated links between situations and mental, as well as physical, 
actions. We have identified process, rather than mathematical content, difficulties such 
as not constructing a proof framework, not unpacking the conclusion, and not using 
definitions correctly. The ultimate goal is to contribute to an understanding of some of 
these kinds of difficulties as pedagogical content knowledge with which to teach or 
redesign transition-to-proof courses.  

Key words: Transition-to-proof, Proof construction, Pedagogical content knowledge, Actions, 
Proof framework 

     This paper presents an analysis of transition-to-proof course students’ final examinations in 
an effort to describe some of their main proving difficulties. By inferring kinds of difficulties in 
students’ proof construction processes from their written proof attempts, and by focusing away 
from specific fields of mathematics, we begin to answer the question: How can the general 
proving process be taught so that it applies broadly to many fields of mathematics? For example, 
what knowledge, habits of mind, and self-efficacy will facilitate students’ proof construction 
processes and might be candidates for explicit teaching in a transition-to-proof course? 
     Analyzing student examination papers in the service of teaching and course redesign might 
seem unpromising for a typical, that is, content driven, mathematics course because there is 
already mathematical terminology to connect student examination difficulties with parts, or 
precursors, in a way useful in teaching. For example, consider student difficulties in finding   
d/dx sin x2. The chain rule and composition of functions come immediately to mind as things the 
student must be able to use.  

In contrast, the proving difficulties we examined were mostly about the process of 
constructing a proof, not mathematical content. Thus new concepts and vocabulary may emerge 
to connect overall difficulties, for example, not being able to finish constructing a particular 
complete proof, with contributing parts or precursors, for example, the ability to use abstract 
definitions, in a way useful for teaching and course design. We turn now to some related prior 
research.  
 

Literature Review 
 

While some studies of students’ proving difficulties have been conducted before, they have 
not been so closely aimed at course design, especially design based on the process of proof 
construction. Also, several studies have been conducted with students who were mathematically 
more advanced than ours. For example, Selden and Selden (1987) examined errors and 
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misconceptions in undergraduate abstract algebra students’ proof attempts. However, the 
difficulties reported there have little in common with those observed in this study. In addition, 
Weber’s (2001) study, contrasting undergraduate abstract algebra students with doctoral students 
in algebra, showed that the latter had strategic (content) knowledge to use in constructing 
abstract algebra proofs that the undergraduates did not have. Our study, in contrast, gives insight 
into the proving difficulties of relative beginners, that is, undergraduate students at the end of a 
transition-to-proof course. We note that Moore (1994) observed a traditionally taught transition-
to-proof course and reported seven student proving difficulties, some of which do overlap with 
our categories, although in general, our categories are more fine-grained. In addition, Baker and 
Campbell (2004) reported three observations of somewhat less sophisticated transition-to-proof 
course students. Selden and Selden (1995) did observe process difficulties in unpacking the logic 
of informal mathematical statements. They reported that informal statements, that is, those that 
departed from the simplest natural language rendering of predicate and propositional calculus 
were difficult for students to unpack and hence difficult to prove. This information was indeed 
used in designing our current course. In it we decided to write mathematical statements in the 
course notes rather formally so the students would not need to unpack their logical structure and 
could focus on the rest of the proof construction. This is not because we did not value learning to 
autonomously unpack the logical structure of statements, but because certain proving actions 
seem to call for self-efficacy (Selden & Selden, 2014), which can be encouraged by providing 
students early opportunities to succeed in constructing proofs. Thus, we gave building self-
efficacy priority (Selden & Selden, 2014).  

There is some additional literature that supports our theoretical perspective, but it is perhaps 
best understood in that section below. 
 

Theoretical Perspective 
 
     First, we will suggest some psychologically-based ideas and then mention a few concepts that 
have emerged from earlier iterations of the course under consideration. We view the process of 
proof construction as a sequence of mental (e.g., “unpacking” the meaning of the conclusion in 
inner speech) or physical (e.g., drawing a diagram) actions. Such a sequence of actions is 
somewhat related to, and extends, what we have earlier called a “possible construction path” of a 
proof, illustrated in Selden and Selden (2009). The actions derive from a person’s nonobservable, 
and sometimes partly nonconscious, inner interpretation of usually outer and observable 
situations in a partly completed proof construction. 
     Inner interpretations cannot be observed, but they can be inferred, sometimes very 
convincingly. Norton and D’Ambrosio (2008, pp. 14-15) provide an illustration of this for two 
middle school students, Will and Hillary, who viewed the same external situation involving a 
fraction such as 2/3. Hillary had (in her knowledge base) a partitive fractional scheme, as well as 
a part whole fractional scheme, while Will had only the second scheme. This caused Will and 
Hillary to “see” the external situation differently, that is, to have differing inner interpretations, 
and hence to act differently. Hillary was able to solve the problem, but Will couldn’t. Will could 
only solve the problem after he had developed a partitive fractional scheme, and presumably then 
experienced a richer inner interpretation. 

When several similar (inner) situations are followed by several similar actions, an automated 
link may be learned between such situations and actions. A situation is then followed by an 
action, without the need for any conscious processing between the two (Selden, McKee, and 
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Selden, 2010). This appears to be a form of procedural memory, which can be thought of as 
“knowing how” as opposed to “knowing that”. A brief discussion of kinds of memory, including 
procedural, can be found in Ranganath, Libby, and  Wong (2012, pp. 121-123). Also, automated 
actions have been extensively studies by psychologists interested in their occurrence in everyday 
life (Bargh, 2014, 1997).  

Many proving actions appear to be the result of the enactment of small, linked, automated 
situation-action pairs that we have termed behavioral schemas (Selden, McKee, & Selden, 2010; 
Selden & Selden, 2008). Automating actions can considerably reduce the burden on working 
memory, a very limited resource, and thus tends to reduce errors. (Baddeley, 2000) The value of 
automating actions in proof construction is illustrated in the comments following Sample Corect 
Proof 3, below. 

Nonemotional cognitive feelings and nonconscious priming can influence whether a 
situation-action link is activated. Nonemotional cognitive feelings, such as the feeling of being, 
or not being, on the right track, typically are vague conscious states that pervade one’s whole 
conscious field and can combine with anything being focused upon (Selden, McKee, & Selden, 
2010). Nonconscious priming occurs when an individual is unaware of the way a situation is 
influencing an action. For example, a student attempting to construct a proof might have written 
several line into a proof which, although true, do not move the proof forward. The student might 
then wrongly decide the proof was finished without realizing those several lines made the work 
“look like” something useful had been done. Below we discuss this appearing to occur in one 
student’s work. (See Sample Incorrect Student Proof Attempt 2.) 

Some actions can be meta-actions, that is, actions on one’s own cognition, such as focusing 
on a particular part of a partly finished proof. Meta-actions should be distinguished from meta-
cognition, that is, thinking about one’s own thinking. Retrospective meta-cognition is likely to be 
a useful addition to understanding one’s own proof construction, but attempting simultaneous 
meta-cognition could compete for working memory with the cognition that it is observing. 

Some actions are beneficial for proof construction and should be initiated or encouraged. 
(See Sample Incorrect Student Proof Attempt 4 below for a beneficial action, not taken, that 
should be encouraged.) Other actions can be detrimental and should be eliminated or 
discouraged. 

During proof construction, the partly completed proof and scratchwork are an important part 
of the construction. They can be used as aids to reflection and to reduce the burden on working 
memory. For a few psychologists, these might even be seen as an external part of cognition, 
which is normally seen as entirely mental and inner. In this setting, a proof should be regarded as 
a text, that is, as something that can be passed between persons. It consists of some of the actions 
in a proof construction. Indeed, this suggests why it is often hard for a student to mimic the proof 
of a previous theorem in trying to prove another theorem. If anything could be mimicked, it 
would be some of the actions taken during the proof construction of the previous theorem, many 
of which are not available for later viewing.  

When students are first learning proof construction, many actions, such as the construction of 
a proof framework (Selden & Selden, 1995), can be automated. A good way to learn such actions 
is probably through “coached experience”, like riding a bicycle or playing soccer. This is why 
we regularly engage students in proof co-construction during some of our transition-to-proof 
classes. 
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We now turn away from the more psychological part of our perspective to some more 
mathematical aspects that have emerged from teaching several earlier iterations of the current 
course.  

We first describe the writing of a proof framework in more detail than can be found in Selden 
and Selden (1995). Proof frameworks are determined by the logical structure of what is to be 
proved. The most common form of theorem in our course notes is: some quantified variables; 
then “if P”, where P is a predicate about those variables; then “then Q”, where Q is another 
predicate involving some of the variables. 

A proof framework starts by introducing the variables. If “for all a ϵ A” occurs in the 
theorem, one writes in the emerging proof “Let a ϵ A”, in which case a is henceforth regarded as 
fixed, but unspecified. If “there is a b ϵ B” occurs, one must “find/create” such a b and a space is 
left to insert or explain that. If the quantifiers are mixed, some “for all” and some “there exist”, 
then in the proof these should be introduced in the same order as in the statement of the theorem. 
This avoids inadvertently changing the meaning of the theorem during the proving process. 
Where the theorem says “if P”, one writes in the proof, “Suppose P” and leaves a space for 
further parts of the proof. Where the theorem says “then Q”, one writes at the end of the 
emerging proof “Therefore Q”. This produces the first-level of the proof framework. 

At this point the student should focus on Q and “unpack” its meaning, that is, remember or 
look up its definition, being careful to change the names of its variables to fit the proof at hand. It 
may happen that the meaning of Q has the same logical form as the original theorem. In that 
case, one can repeat the above process, providing a second-level of proof framework which is 
written into the blank space immediately above “Therefore Q”. If in writing the second-level 
framework, some variables have already been introduced, one does not re-introduce them. 

All of this is rather complicated to explain, but much easier to understand in practice, and is 
illustrated in our sample proofs, below. Also, once students can produce and use a proof 
framework for the above “if P, then Q” logical structure, it appears to be relatively easy to 
introduce frameworks for the seven or so other logical structures needed in the course. Finally, 
we are not claiming that mathematicians write proofs in the way we are describing, but only that 
doing so will be helpful for students and that mathematicians will accept the results. 

We turn now to the idea of operable interpretations of definitions. Consider the following 
definition: Let f: X → Y be a function and A ⊆ X. Then f(A) = { y | y ϵ Y and there is a ϵ A so that 
f(a) = y}. To use this, if one knows “q ϵ f(A)” one can say “there is p ϵ A so that f(p) = q”. Also, if 
one knows “p ϵ A” then one can say “f(p) ϵ f(A)”. One might expect that a beginning transition-
to-proof course student would be able to autonomously discover such operable interpretations of 
definitions, but we have noticed that many cannot. Learning to do so would be a useful skill for 
anyone wishing to read mathematics or prove theorems independently. However, before this skill 
is learned, it may be helpful to provide some of the operable interpretations. There are around 30 
in our course. 

Searching the course notes or one’s own knowledge base may not seem to be a very 
sophisticated skill, but we find that some students do not do it when some result or definition is 
called for in constructing a proof. We now try to arrange the course notes so that students can 
experience the benefits of noticing useful prior results.  

We mean by exploration in proof construction doing something of unknown value, for 
example, finding or constructing new “objects” or “manipulating” them. A reltively easy 
example can be seen below in the middle of Sample Correct Proof 1, where the prover cannot 
know that manipulating abab or abab = e will be helpful. We suggest that exploration is aided by 
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a students’ self-efficacy (Selden & Selden, 2014) and for this reason we try to arrange for 
students to have early proving successes in our course. 

We will now borrow a point from the genre of proof, namely, that definitions available 
outside of a proof are not normally written into it, at least not in proofs published in journals 
(Selden & Selden, 2013). Quoting an entire definition exactly into a proof can wrongly suggest 
to a student that something has been done that moves the proof forward. The student may then 
prematurely stop work on the proof. This should not be confused with using a definition in a 
proof. For example, in using the fact that f is continuous in a proof, one normally writes, 
“Because f is continuous, there is a δ such that …”. This looks rather like, but is not, quoting the 
definition. 

Finally, we have found it helpful to have a, at least crude, gauge of the difficulty of a proof, 
independent of the ideas in the rest of this perspective. We say proofs are of Type 1, 2, or 3 as 
follows. A Type 1 proof calls for a student to see the need for a lemma, a subproof that could be 
proved separately, but could also be found located in the course notes. In a Type 2 proof, the 
student must articulate a lemma not proved in the notes, but the lemma’s articulation and its 
proof are straightforward. In a Type 3 proof, either the articulation or proof is not straightforward 
and may require insight or exploration. (Selden & Selden, 2013b, pp. 319-320).  
 

The Course 
 

The course, from which the data came, was inquiry-based as regards the proofs, but not as 
regards the mathematical structures or theorems. It was taught entirely from notes with students 
constructing original proofs and receiving critiques in class. The one-semester three-credit course 
is meant as a second-year university transition-to-proof course for mathematics and secondary 
education mathematics majors. It was given at a Southwestern Ph.D.-granting university and was 
taught in a very modified Moore Method way (Coppin, Mahavier, May, & Parker, 2009; 
Mahavier, 1999). That is, students were given course notes with definitions, questions, requests 
for examples, and statements of theorems to prove.  

The students in this study proved the theorems outside of class and presented their proofs in 
class on the blackboard and received extensive critiques. These critiques consisted of careful 
line-by-line readings and validations of the students’ proof attempts. This was followed by a 
second reading of the students’ proof attempts, indicating how these might have been written in 
“better style” to conform to the genre of proofs (Selden & Selden, 2013a). Once these 
corrections and suggestions had been made, the student, who had made the proof attempt, was 
asked to write it up carefully, including any corrections and suggestions, for duplication for the 
entire class. In this way, by the end of the semester, the students had obtained one correct, well-
written proof for each theorem in the course notes. Sometimes, if the students seemed to need it, 
there were mini-lectures on topics such as logic or proof by contradiction.  

The homework, assigned each class period, consisted of requests for proofs of the next two 
or three theorems in the course notes. These proof attempts were handed in at the beginning of 
the next class to the third author, who determined “on the spot”, based on the students’ written 
work, which students would be asked to present their proof attempts on the blackboard that day. 
In addition to presenting their attempted proofs in class, the students had both take-home and in-
class final examinations, each of which consisted of four theorems, new to them, to prove. The 
mathematical topics considered in the course included sets, functions, continuity, and beginning 
abstract algebra in the form of a few theorems about semigroups and homomorphisms. However, 
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the teaching aim was to facilitate students’ learning the proof construction process in an 
embodied way through experience constructing as many different kinds of proofs as possible, 
especially in abstract algebra and real analysis, and not to learn a particular mathematical 
content.  

 
Methodology 

     Guided by our theoretical perspective and our aim for the course, we analyzed all 16 four-
proof take-home, and all 16 four-proof in-class, final examination papers from the course. 
Altogether 128 student proof attempts were analyzed in detail through several iterations, using a 
combination of grounded theory and textual analysis. When we found indications of a difficulty 
in a student’s attempted proof, we drew inferences about the probable proving action that might 
have led to that difficulty. We were looking for categories at a level of abstraction above specific 
mathematical topics so they would reflect process difficulties. For example, we considered a 
student’s not unpacking a conclusion, as opposed to a student having difficulty with a particular 
mathematical concept, such as a minimal ideal in a semigroup. We began with no particular 
categories in mind and made several passes through the data, until we came to an agreement on 
what we saw in each student’s proof attempt. In this way our categories emerged from our data. 

We expected, and found, that when one difficulty occurred in a student’s proof attempt, other 
difficulties often also occurred. In addition, since our main interest was in finding a few 
difficulties that we might be able to alleviate with explicit teaching interventions, we did not 
attempt to search for categories that did not overlap or were not within other categories. Such 
information might be useful in designing teaching interventions. 
 

Categories: The Most Common Student Difficulties 

We have thus far identified the following categories: omitting beneficial actions; taking 
detrimental actions; inadequate proof framework (e.g., not unpacking the conclusion); 
mathematical syntax errors; wrong or improperly used definitions; misuse of logic; insufficient 
warrant; assumption of all or part of the conclusion; extraneous statements; assumption of the 
negation of a previously established fact; difficulties with proof by contradiction; inappropriately 
mimicking a prior proof; mathematical syntax errors, failure to use cases when appropriate; 
incorrect deduction; assertion of an untrue result; and computational errors.  

While most categories can be easily understood from their names, there is one sufficiently 
odd that it might benefit from an illustration. Here is an example of a mathematical syntax error. 
In an attempt to prove that the split domain function h, defined by h(x) = f(x) if x ≥ a and h(x) = 
g(x) if x < a, is continuous at a, given that both f and g are continuous at a and f(a) = g(a), one 
student wrote: “|f(x)-f(a)|< ε/2 – |g(x)-g(a)|< ε/2”. This action, subtracting a statement such as 
“|g(x)-g(a)|< ε/2”, from another statement, violates normal mathematical syntax. Subtraction is 
an arithmetic operation used between numbers or variables representing numbers, not a logical 
operation used between statements.  

In our textual analysis below, we illustrate omitting beneficial actions; taking detrimental 
actions; inadequate proof frameworks; not unpacking the conclusion; and extraneous statements 
(e.g., writing a definition that can be found outside of a proof into it). 

 
Textual Analysis of Sample Correct Proofs and  

Corresponding Sample Incorrect Student Proof Attempts 
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In the following section, we consider both a sample correct, and a corresponding sample 

incorrect student proof attempt, of the same four theorems. We are numbering the lines with bold 
square brackets for the purpose of referencing them when we comment on them.  

Sample Correct Proof 1. The first theorem we consider is: Theorem. Let S be a semigroup with 
an identity element e. If, for all s in S, ss = e, then S is commutative. Our sample correct proof is 
given below. 

Proof:  
[1] Let S be a semigroup with identity e.  
[2] Suppose for all s ϵ S, ss = e. 
[3] Let a, b be elements in S. 
[4] Now abab = e, so (abab)b = eb = b. 
[5] But (abab)b = aba(bb) = (aba)e = aba. 
[6] Thus aba = b, so, (aba)a = ba, and (aba)a = ab(aa) = abe = ab. 
[7] Thus ba = ab. 
[8] Therefore, S is commutative.  QED. 

We imagine that an idealized student prover would first write the hypotheses [1] and [2], 
leave a space for the body of the proof, and then write the conclusion [8], thereby completing the 
first-level proof framework. Next our idealized prover would unpack the conclusion [8], perhaps 
using scratchwork, and if necessary, consult the definition of commutative, which is in the 
course notes. By doing so, our idealized prover would know that he/she has to introduce two 
arbitrary elements of the semigroup, say a and b [3]. Then the prover could write line [7], 
thereby completing the second-level proof framework. What is required next is some 
“exploring”, that is, some manipulations, that prover cannot know will be useful, until lines [4], 
[5], and [6] can be written. 

Sample Incorrect Student Proof Attempt 1. Everything is reproduced below as written by the 
student, including the student’s scratchwork, except for the line numbers. 

Proof:  
[1] Let S be a semigroup with an identity  
element, e. [2] Let s ϵ S such that ss = e. 
[3] Because e is an identity element, es = se = s.  
[4] Now, s = se = s(ss). 
[5] Since S is a semigroup, (ss)s = es = s. 
[6] Thus es = se. 
[7] Therefore, S is commutative. QED.  
 
SCRATCHWORK: 
7.1: A semigroup is called commutative or Abelian if, for each a and b ϵ S, ab = ba.         
7.5: An element e of a semigroup S is called an identity element of S if, for all s ϵ S, es =  
se = s. 
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We assume the student wrote the first-level proof framework at the start, lines [1], [2] and 
[7]. Line [2], as written, only hpothesizes a single element s so that ss = e. Line [2] should have 
been “Suppose for all s ϵ S, ss = e.” With this change, the first-level framework would have been 
correct. Also, we cannot be sure line [7] was written before the rest of the proof. If the student 
did not write all of lines [1], [2] and [7] first, this would constitute a beneficial action not taken. 

In addition, despite being aware of the definition of Abelian written in the scratchwork, the 
student did not write the second-level framework by introducing arbitrary a and b at the top, 
followed by “Then ab = ba” right above the conclusion. Had the student written the correct 
second sentence in line [2] and taken these two actions, the situation would have been 
appropriate for exploring and manipulating an object such as abab. We think that such 
exploration calls for some self-efficacy, but can lead to a correct proof. 

Line [3] violates the mathematical norm of not including in the proof definitions that can 
easily be found outside the proof. Also, this does not move the proof forward. The next three 
lines [4], [5], and [6] are not wrong, but also do not move the proof forward because to prove 
commutativity, one needs two arbitrary elements.	  These actions not only do not move the proof 
forward, but might have been detrimental. Through non-conscious priming, they might have 
wrongly convinced this student that he/she had accomplished something and prematurely 
brought work on the proof to an end.	  

Sample Correct Proof 2. Next we consider the following: Theorem. Let S and T be semigroups 
and f:S→T be a homomorphism. If G is a subset of S and G is a group with identity e, then f(G) 
is a group. Our sample correct proof is given below. 

Proof:  
[1] Let S and T be semigroups and f:S→T be a homomorphism.  
[2] Let G be a subset of S and G be a group with identity e.  
      Part 1. [3] Note that G is a subsemigroup of S so, by Theorem 20.4, f(G) is a semigroup. 
 

Part 2. [4] Let y ϵ f(G). [5] Then there is x ϵ G so that f(x) = y. [6] Now f(e) ϵ f(G) and 
f(e)y = f(e) f(x) = f(ex) = f(x) = y. [7] Similarly, y f(e) = y. [8] Thus, f(e) is an identity for 
f(G).   
 
Part 3. [9] Let q in f(G). [10] Then there is p ϵ G so that f(p) = q. [11] Now because G is 
a group, there is p' ϵ G so that pp' = p'p = e. [12] Thus q f(p') = f(p) f(p') = f(pp') = f(e), 
and [13] f(p')q = f(p') f(p) = f(p' p) = f(e). [14] Thus, each q ϵ f(G) has an inverse, f(p'), in 
f(G). 
 

[15] Therefore, is a f(G) group.  QED. 
 

An idealized student prover would first write lines [1] and [2], then leave a space for the 
body of the proof, and finally write the conclusion [15] at the bottom. He/she would next unpack 
the conclusion, and if necessary, look up the definition of group. This would lead our prover to 
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consider three parts, namely, [3] f(G) is a subsemigroup of T, [4] f(e) is an identity for f(G), and 
[14] each q ϵ f(G) has an inverse in f(G). 

Next our idealized prover can begin on Part 1. But this is almost immediate because of a 
previous theorem in the course notes that says that the homomorphic image of a semigroup is a 
semigroup. Hence, line [3].  

Our idealized prover can then go on to prove Part 2. For this, he/she would need to use the 
meaning of the definition of an identity and consider an arbitrary element of f(G) [4], and have to 
conjecture that the identity of f(G) is f(e), the image of the identity e of G. This would lead to 
using the meaning of x ∈ f(G) and line [5]. Then using the meaning of homomorphism would 
give line [6], showing f(e) is a left identity for G. Then line [7] would follow by similarity and 
line [8] would conclude a proof of Part 2. 

Lastly, our prover would work on Part 3. For this, he/she would use the meaning of inverse 
element and consider an arbitrary element q in f(G). He/she would then call on the meaning of q 
∈ f(G) to notice [10] that q can be written as f(p) for some p in G and, using the meaning of 
homomorphism, show that the image of the inverse of p is the inverse of q by lines [11], [12], 
and [13]. Line [14] asserts the conclusion of Part 3, and the proof is complete, according to the 
meaning of the definition of group. 

We observe that the above idealized student prover often unpacked the meaning of a 
definition, by using what we have called its operable interpretation, and then altering the names 
of the variables to fit the theorem at hand. We also note that actions were rarely warranted, as is 
customary, as if they were completely transparent. However, for some beginning students, 
perhaps even many, we have found that using definitions in this way is not at all transparent.  
 
Sample Incorrect Student Proof Attempt 2. We next consider a sample student proof attempt of 
the same theorem. 

 
Proof:  
[1] Let S and T be semigroups and f:S→T be a homomorphism.  
[2] Suppose G ⊆ S and G is a group with identity e.  
[3] Since G is a group and it has identity e, then for each element g in G  
there is an element g’ in G such that gg' = g'g = e.  
[4] Since f is a homomorphism, then for each element x ϵ S and y ϵ S, f(xy)=f(x)f(y).  
[5] Since G ⊆ S, then f(gg')=f(g)f(g'). So f(gg') = f(g'g) = f(e).  
[6] So f(G) has an element f(e) since f is a function.  
[7] Therefore, f(G) is a group.  QED. 
 

The student has written the first-level framework correctly, lines [1], [2] and [7], that is, 
assuming the last line [7] was written immediately after writing the first two lines. To complete 
the framework, the student should have next considered f(G) and noted that there are three parts 
to prove, as indicated in the sample proof above. These are beneficial actions the student did not 
take. 

Instead, the student wrote into the proof the definition of G being a group [3] and f being a 
homomorphism [4]. These are actions that do not move the proof forward and are detrimental 
because they can convince the student that something useful has been done. Perhaps the student 
was trying to show the existence of an identity and inverses for f(G) in lines [5] and [6] and was 
unsuccessful, but we cannot know this. 
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This student’s work may suggest that he/she had some intuitive grasp of the concepts involved, 
and it may be tempting to give partial credit to the student. But from the point of view of having 
a student learn to construct proofs, doing so may send the “wrong message”. 

Further, this student’s work is reminiscent of Carrisa, who was attempting prove or 
disprovethe statement: Let φ be a 1-1 homomorphism from (G,ο) to (H,*). If G is an abelian 
group, then H is an abelian group. Carrisa concentrated on elements of G, the wrong place to 
start, and mistakenly said the statement was true. She ignored, or did not see, the fact that φ is not 
known to be onto (Melhuish, 2014, pp. 3-4). Had she written a complete framework for a proof 
of H being a group or H being Abelian, she might have seen that she had inadequate information 
to finish a proof.  

 
Sample Correct Proof 3. Next we consider the following: Theorem. If A, B, and C, are sets and 
C\B ⊆ C\A, then C∩A ⊆ C∩B. A sample correct proof follows. 

Proof:  
[1] Let A, B, and C be sets. [2] Suppose C\B ⊆ C\A. [3] Let x ∈ C∩A. [4] Suppose x ∉ B.  
[5] Then x∈ C\B, [6] so x ∈ C\A. [7] Thus x ∉ A. [8] This is a contradiction.  
[9] So x ∈ B and [10] thus x ∈ C∩B. [11] Therefore, C∩A ⊆ C∩B.  QED. 
 

An idealized student prover would first construct the first-level proof framework [1], [2] and 
[11], then “unpack” the conclusion, that is, use the operable interpretation of set inclusion to 
construct the second-level framework, [3] and [10]. Because the hypothesis refers to negative 
information about B, that is, C\B ⊆ C\A, our prover might think of doing a subproof by 
contradiction, and hence, suppose [4], x ∉ B. At this point, our prover would explore where this 
leads. Then use the operable interpretation of x ∈ C∩A to get x ∈ C. This together with the 
operable interpretation of set difference gives [5], x∈ C\B. Using the hypothesis that C\B ⊆ C\A 
and the operable interpretation of set inclusion and modus ponens, gives [6], x ∈ C\A. Then the 
operable interpretation of set difference gives [7], x ∉ A, which is the contradiction pointed out 
in line [8]. Thus, it is legitimate to write [9], x ∈ B. This finishes the proof, as lines [10] and [11] 
were already written.  

The above proof is not particularly unusual or difficult to read. This includes the passage 
consisting of [5], [6], [7], and [8], even though no explicit warrants are provided. However, the 
explanation of it in the above commentary seems more difficult to understand. We suggest that 
this is because many readers have automated some of the actions involved. This illustrates the 
value of automation mentioned in the fourth paragraph of the section titled, “Theoretical 
Perspective”. 
  
Sample Incorrect Student Proof Attempt 3. Next we consider a student proof attempt of the same 
theorem. 
 
Proof:  
[1] Let A, B, and C be sets. [2] Suppose C\B ⊆ C\A. [3] Let x ∈ C∩A. [4] Then x ∈ C and x ∈ A. 
[5] Since C\B ⊆ C\A, and x ∈ C [6] but x ∉ B, [7] x ∈ C\A. 
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This student did not write the entire first-level framework, but started in the right place with 
the hypotheses. lines [1] and [2]. The student did not attempt a proof of x ∈ B by contradiction 
despite being in a situation where he/she could not prove that x ∈ B directly. Instead, the student 
seemingly began a direct proof in line [3], taking an element of C∩A and unpacking what that 
meant [4]. After that, the student seemingly tried to use the hypothesis [5] and the fact that x is in 
C. It is not clear how the deduction, [6], follows from what precedes it. It is possible that the 
student lost his/her tain of thought, and thought wrongly that he/she knew x ∈ C\B. Also, there is 
no indication the student was starting a proof by contradiction. This leaves no reasonable way to 
conclude [7]. 

 It was not helpful that the student did not write a full proof framework. If he had, and 
noticed the he did not know how to continue with a direct proof, he might have seen how to start 
a proof by contradiction. We also note that the student drew two Venn diagrams, one in which 
both C⊆ A and B ⊆ A; we conjecture this was also not helpful. 

Sample Correct Proof 4. Finally we consider a sample correct proof and an incorect student 
proof attempt of the following: Theorem. Let X, Y, C, and D be sets and f:X→Y be a function. If 
C ⊆ D and D ⊆ Y, then f -1(C) ⊆  f -1(D).  

Proof:  
[1] Let X, Y, C, and D be sets and f:X→Y be a function.  
[2] Suppose C ⊆ D and D ⊆ Y.  
[3] Let x ∈ X. Suppose x ∈ f -1(C), [4] so that f(x) ∈ C.  
[5] Then f(x) ∈ D, [6] which means x ∈ f -1(D). 
[7] Therefore f -1(C) ⊆ f -1(D). QED. 
 

Our idealized prover would first write the first-level proof framework [1], [2], and [7]. By 
unpacking the conclusion [7], our prover would know that he/she needed to start with an element 
of f -1(C), which is line [3], and show x ∈ f -1(D), which is [6], completing the seond-level 
framework. The operable interpretation of the definition of f -1(C) and yields [4]. Using the fact 
that C ⊆ D our prover would get line [5]. Then applying the operable definition of f -1(D),gives 
[6], and the theorem is proved. 
 
Sample Incorrect Student Proof Attempt 4. Next we consider a student proof attempt of the same 
theorem, along with the student’s scratchwork. In his/her work there was a large blank space 
between lines [6] and [7]. 

Proof:  
[1] Let X, Y, C, and D be sets and f:X→Y be a function.  
[2] Suppose C ⊆ D ⊆ Y. [3] Suppose y ∈ C, [4] then y ∈ D and y ∈ Y.  
[5] Since f is a function, there is an x ∈ X so that (x,y) ∈ f. 
[6] Suppose x ∈ f -1(C), then 
 
 
[7] Then x ∈ f -1(D). 
[8] Therefore f -1(C) ⊆ f -1(D). 
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Scratchwork: 
Function: Then f(D) = {y | there is an element d ∈ D so that f(d) = y} 

The student has written lines [1], [2], [7], and [8] just as in the correct proof. So the student 
has written most of a proof framework, and to complete it, he should have written line [6] 
immediately after line [2]. The student then introduces [3] y ∈ C and legitimately concludes [4] y 
∈ D, along with the extraneous fact that y ∈Y. He/She then, but irrelevantly, states in line [5] that 
there is an element x ∈ X so that (x,y) ∈ f. This assumes incorrectly, but irrelevantly that f is 
onto. Indeed, lines [3], [4], and [5] are not helpful. Then in line [6], it seems that the student 
begins again with the correct assumption, which had it been done earlier, would have produces a 
proof framework. Apparently he/she could not figure out how to get to line [7], as indicate by the 
blank space. Although this proof was part of an in-class exam, the students were allowed access 
to all of their course notes. A beneficial action the student did not take would have been to write 
the operable interpretation of [8] into the scratchwork. Instead, it contains the definition of f(D).  

Summarizing, the student who wrote the above “proof” took a number of detrimental 
actions that should not have taken been and did not take a number of beneficial actions which 
that should have been taken.  

Teaching Implications and Future Research 

Having isolated and illustrated a few proving difficulties that our students, and probably 
many others, very often have, we can suggest some teaching interventions that might alleviate 
these difficulties. What form these interventions might take and how one might gauge their 
effectiveness, is a matter for future research. Because what might be done, and how to do it and 
gauge its effectiveness are closely intertwined we discuss them together. 

Perhaps a good place to start explicit teaching is with proof frameworks, described in detail 
in the theoretical perspective. As noted above in the sample proofs, a number of difficulties seem 
to be traceable to not writing part or all of proof frameworks. Also, the writing of a proof 
framework can be decomposed into parts that can be taught separately. Perhaps an intervention 
might begin by thoroughly teaching students how to write one kind of common proof 
framework. After that the others could probably be learned quickly. We have found that students 
tend to resist writing full proof frameworks. We think this is because it involves writing in a way 
that is not “from the top down”. In most of their past experience, texts were read and written 
from the top down. There should be enough practice for students, not only to understand what 
they are doing, but also to form a habit of consistently writing proof frameworks. That is, they 
should overcome their, possibly nonconscious, reluctance. Also, it would be good if the entire 
process of writing proof frameworks became automated. To accomplish this in a reasonable 
amount of time, it is probably better to ask students to practice constructing only a proof 
framework, not the entire proof, for each practice problem. 

To gauge whether such an intervention has succeeded, one might interview students towards 
the end of the course, asking them to construct a few relatively easy proofs, and observe them to 
see if they wrote proof frameworks. One might also analyze examination proofs for difficulties 
that might be traceable to not having written a proof framework. 

We turn now to another difficulty that occurs fairly often, namely, not correctly using 
definitions. Here we suggest the idea of operable interpretations, described in the theoretical 
perspective, would be good to explicitly teach. In transition-to-proof courses, there are likely to 
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be many definitions. It would be useful if students knew their operable interpretation in an 
automated way. It would also be useful for students to eventually develop the ability to 
autonomously produce operable interpretations of formal definitions for themselves. To arrange 
both of these, one might consider occasional brief small group discussions developing operable 
interpretations for definitions about to be used in a course. At the end of the group discussions, a 
teacher might certify which interpretations would be accepted for the course. One might also 
consider very brief short-answer quizzes on collections of operable interpretations. Another kind 
of quiz might consist of a few fragments of proofs that students could extend a little using 
operable definitions. Again, to gauge the usefulness of such activity, one might want to draw on 
quizzes, interviews, and an analysis of some examination questions.  

In the next iteration of the course, we hope to implement the above interventions and 
investigate their effectiveness. 
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TECHNOLOGY AND ALGEBRA IN SECONDARY MATHEMATICS TEACHER 
PREPARATION PROGRAMS 

Eryn M. Stehr and Lynette D. Guzman 
Michigan State University 

Most recently, the Conference Board of the Mathematical Sciences has advocated for 
incorporating technology in secondary mathematics classrooms. Colleges and universities 
across the United States are incorporating technology to varying degrees into their 
mathematics teacher preparation programs. This study examines preservice secondary 
mathematics teachers’ opportunities to expand their knowledge of algebra through using 
technology and to learn how to incorporate technology when teaching algebra in 
mathematics classrooms. We explore the research question: What opportunities do secondary 
mathematics teacher preparation programs provide for PSTs to encounter technologies in 
learning algebra and learning to teach algebra? We examine data from a pilot study of three 
Midwestern teacher preparation programs conducted by the Preparing to Teach Algebra 
(PTA) project. Our data suggest that not all secondary mathematics teacher preparation 
programs integrate experiences with technology across mathematics courses, and that 
mathematics courses may provide few experiences with technology to PSTs beyond strictly 
computational. 

Key words: Algebra and Algebraic Thinking, Technology, Preservice Teacher Education, 
High School Education 

This study explores opportunities provided by secondary mathematics teacher preparation 
programs for preservice teachers (PSTs) to expand their knowledge of algebra through the 
use of technology and to learn how to incorporate technology when they teach algebra. We 
explore the following research question: What opportunities do secondary mathematics 
teacher preparation programs provide for PSTs to encounter technologies in learning 
algebra and learning to teach algebra? These opportunities might include observing, using, 
or learning about a variety of algebra-appropriate technologies, as well as thinking critically 
about technology use. In this study, we define technology narrowly as electronic tools and 
software. This study will not focus on physical tools such as manipulatives, chalkboards, or 
dry erase boards, although we acknowledge that these tools are also important technologies 
that can be useful for teaching and learning mathematics. Our stance is not to claim 
technology is necessarily useful or not useful; however, we primarily draw upon 
recommendations for mathematics teacher education from recent reports and documents 
published in the United States, which encourage critical choice and strategic use of 
technological tools through learning opportunities. The development of internal frameworks 
that support critical choice and strategic use of technological tools has been recommended for 
some time as an important part of teacher preparation programs by the Conference Board of 
Mathematical Sciences (CBMS, 2001; 2012) and also by national accreditation agencies 
(InTASC: CCSSO, 1995; NCATE: NCTM, 2012). From this perspective, we assume PSTs’ 
opportunities to learn with technology are important components in their teacher preparation 
programs as they develop their professional teaching skills. 

Context 
Technology use in K-12 education has become practically universal in the past few 

decades. Many scholars suggest that use of technological tools in the classroom could 
contribute to reducing inequities in education and support subject-matter learning for a range 
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of diverse students. For example, Pomerantz (1997) argued: "....Calculators serve as an 
equalizer in mathematics education" (p. 5). Technology use, however, has led to a so-called 
digital divide (Reich, Murnane, & Willett, 2012). Attewell and Gates (2001) described the 
digital divide as two-fold: a division of access and of use. Federal funding has mitigated 
issues of access; however, there is a growing recognition of disparity in technology use in 
schools (Attewell & Gates, 2001). Thus, a focus shifts from supplying schools with 
technology to considering the highly effective ways in which technology can be (but is not 
usually) used. 

Both secondary mathematics content standards and teacher preparation standards have 
emphasized the importance of developing PSTs’ abilities to critically choose and use 
educational technologies. Standards developed for teacher preparation program accreditation 
agencies, such as National Council for Accreditation of Teacher Education (NCATE: NCTM, 
2012) and Interstate Teacher Assessment and Support Consortium (InTASC: CCSSO, 1995), 
recommended that PSTs develop the abilities to critically evaluate and strategically use 
technology. In addition, the Conference Board of the Mathematical Sciences (CBMS) 
emphasized the importance of PSTs’ preparation to use technology in Mathematics 
Education of Teachers II (CBMS, 2012). In particular, CBMS (2012) recommends that PSTs 
should have multiple opportunities to engage with technologies in their own learning 
experiences and also develop the capacity to engage with technologies in teaching students in 
their mathematics classroom. 

Algebra plays a prominent role in mathematics education reform efforts because it is 
valued as an important subject in mathematics. In terms of equity issues related to 
mathematics education, algebra has long been considered a gatekeeper for post-secondary 
education opportunities (e.g., Moses, Kamii, Swap, & Howard, 1989).  Particularly in the 
United States, preparing future secondary mathematics teachers to teach algebra has gained 
importance as more states include algebra as a high school graduation requirement (Teuscher, 
Dingman, Nevels, & Reys, 2008). Consideration of state education websites verifies that at 
least 38 states currently include mathematics courses with algebra as a necessary high school 
graduation requirement. Algebra is also being offered earlier in some states. In 1990, only 
16% of all eighth-graders were enrolled in algebra, and this percentage increased to 31% by 
2007 (Loveless, 2008). The emphasis of algebra in mathematics education, along with 
increasing use of technology in the classroom, highlights the need to support future 
mathematics teachers in learning algebra with technology and learning to teach algebra with 
technology. 

To use technology effectively to support the teaching of algebra, CBMS (2012) argued 
that experience with technology “should be integrated across the entire spectrum of 
undergraduate mathematics” (pp. 56-57) and PSTs should have opportunities to see teaching 
with technology modeled in their own mathematics coursework (CBMS, 2012). PSTs need to 
become familiar with a variety of technological tools used in a variety of ways, including 
computational tools, problem-solving tools, and tools for exploring mathematical ideas 
(CBMS, 2001; 2012; NCATE, 2012; InTASC, 1995). Naturally, we would expect to see a 
variety of technology use in mathematics courses as instructors model strategic choice of 
technology in the classroom. 

Method 
This study is part of a larger mixed-methods study, Preparing to Teach Algebra (PTA), 

which is exploring opportunities provided by secondary mathematics teacher preparation 
programs to learn algebra, to learn to teach algebra, to learn about issues in achieving equity 
in algebra learning, and to learn about algebra, functions, and modeling standards and 
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mathematical practices as described in the Common Core State Standards in Mathematics 
(CCSSM). The PTA project consists of a national survey of secondary mathematics teacher 
preparation programs and case studies of five universities. This paper focuses more narrowly 
on opportunities provided to PSTs to encounter technology in learning algebra and learning 
to teach algebra. This paper reports on results from a qualitative analysis based on data 
gathered from three university teacher preparation programs during the pilot study of the PTA 
project. 

In the pilot study, the PTA project chose three secondary mathematics teacher preparation 
programs as a sample of convenience. University A is a medium-sized university based on 
enrollment with Carnegie classification of RU/H (Research University with high research 
activity). Universities B and C are large-sized universities based on enrollment, both with 
Carnegie classification RU/VH (Research University with very high research activity). The 
programs at Universities A and C are four-year programs, and the program at University B is 
a five-year program. 

We compiled data by conducting five instructor interviews and one focus group interview 
at each site. Each instructor interview focused on a previously selected course that was 
chosen by the researchers for its potential to include opportunities for PSTs to learn algebra 
or learn to teach algebra, and also according to availability and course type. The only 
exceptions to this were at University B, where four mathematics education courses are taught 
as two year-long sequences. One instructor was interviewed about each year-long sequence 
and asked to focus on the first course of the year (the 1st and 3rd Secondary Math Methods 
courses, respectively). This focus on only part of the year-long course proved difficult, so we 
collected and analyzed instructional materials from all four courses. We treated them in the 
analysis as two year-long courses, except for data that we knew came from a particular 
semester.  

At each university, we attempted to balance representation of course types by choosing 
two mathematics courses for all mathematics majors, one mathematics course designed 
specifically for PSTs, and two mathematics education courses, as shown in Table 1 below. 
Each course was required by the program and had been recently taught by the instructor that 
we interviewed. We collected corresponding University course descriptions and instructional 
materials from each instructor. Among other questions in each interview, we asked 
instructors which types of technologies they used in a particular course; we also analyzed 
their course materials. 

Table 1. Chosen courses at each site. 

Type of 
Course University A University B University C 

Mathematics Linear Algebra Linear Algebra Differential 
Equations 

 
Mathematics Structure of Algebra Analysis Abstract Algebra 

 
Mathematics 

Designed 
for PSTs 

Secondary Math 
from an Advanced 

Viewpoint 
 

Math Capstone Seminar 

Mathematics 
Education 

Middle School Math 
Methods 

1st and 2nd Secondary 
Math Methods* 

Middle School 
Math Methods 
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Mathematics 
Education 

Secondary Math 
Methods 

3rd and 4th Secondary 
Math Methods* 

Secondary Math 
Methods 

*Note: At University B, 1st and 2nd Secondary Math Methods is a one-year sequence; 3rd 
and 4th Secondary Math Methods is a one-year sequence. We treated each one-year sequence 
as a whole course. 

 
We conducted focus group interviews with three or four students who had completed, or 

had almost completed, their student teaching requirement in each program. We asked PSTs to 
elaborate on their required and shared experiences with algebra across the entire program, 
including the five required courses listed above in Table 1. They confirmed a list of program 
requirements and identified which required courses incorporated technology in learning 
algebra or learning to teach algebra.  

One important note is that our unit of study is the teacher preparation program as a whole. 
We do not intend to evaluate or compare the programs in our study. Data gathered from PSTs 
is not necessarily representative of the same courses as data gathered from instructors 
because PSTs almost certainly did not take the specific enactment of a course described by 
our interviewed instructors. 

Because this study uses pilot data from a larger study, one limitation is that instructor 
interviews were restricted to five courses at each site and that these courses were not 
representative of an entire teacher preparation program. Additionally, we chose courses based 
on their likelihood to contain algebraic content and not specifically for a focus on technology. 
As a result, we missed data on other courses that provided additional opportunities for PSTs 
to experience technology in secondary mathematics. To balance this limitation, we used 
information from focus groups and course descriptions obtained from school websites to 
create an outline sketch of technology use across each program. 

Results 
We first give a brief report of the results obtained from our analysis of examples of 

technology use in algebra teaching and learning. Because explicit examples of algebra and 
technology use were limited due to the type of data we collected, we also gathered statements 
from instructors regarding why they did or why they did not choose to use technology. We 
follow the report of technology at each university with a presentation of the themes we saw in 
the instructors’ explanations of why they would or would not use (or allow) technology in 
their courses, whether used by students or the instructor. 
University Technology Use 

To create an outline sketch of technology use at each university, we first identified and 
gathered specific examples of technology use in algebra from instructor interviews, focus 
group interviews, or from the instructional materials. We analyzed each example according to 
five characteristics of experiences: activity type, types of technology use, algebraic topics, 
type of technology, and whether PSTs had the opportunity to think critically about choice and 
use of technology.  

Across all universities, we found 28 explicit examples of technology use in algebra. This 
count excludes numerous examples in a Differential Equations course at University C, which 
involved a computer lab component. Of the 28 examples of technology use in algebra, eight 
come from mathematics content courses and 20 from mathematics education courses. Table 2 
shows a descriptive list of algebraic topics and in which courses examples were found (M for 
Mathematics courses, including mathematics courses designed for PSTs, and ME for 
Mathematics Education courses). 
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Table 2. Algebra topics using technology identified per university and by 
mathematics or mathematics education courses. 

Algebraic Topics Univ. A Univ. B Univ. C 
Generalizing Patterns  ME  
Maximum Area Problem  ME  
Ratios and Proportion  ME ME 
Modeling with Equations   ME 
Functions and Multiple Representations ME ME MfT 
Linear Functions (e.g., families, slopes)  ME ME 
Systems of Linear Equations M, MfT   
Parametric Equations  ME  
Logarithmic Functions ME   
Matrices M, MfT   
Topics from Differential Equations   M 
Modular Arithmetic M   
Extensions on Rational Numbers MfT   

 
University A: Overview of technology use. University A requires twelve mathematics 

courses and four mathematics education courses. The Mathematics Department offers the 
mathematics education courses. Students are required to take a mathematics education course 
titled “Teaching Secondary Mathematics with Technology.” In this study, the technology 
mathematics education course was not a focus of an interview, but other mathematics 
education instructors described some of its content. For example, an instructor noted that 
PSTs used GeoGebra and Google SketchUp in the Teaching Secondary Mathematics with 
Technology course. Another instructor said of the program as a whole, “We think 
[technology is] crucial,” which is a statement supported by both the number of mathematics 
courses that include technology use in their course descriptions (six of twelve) and the 
program requirement of one mathematics education course focused on teaching with 
technology. Overall, student and instructor responses indicated technology was used in 
mathematics courses primarily as a computational tool, while mathematics education courses 
supported a greater variety of types of uses of technology, including some critical evaluation 
of technology for algebra teaching.  

One example of technology use with algebra at University A includes an activity in the 
Teaching Secondary Mathematics with Technology course in which PSTs “investigate 
graphing utilities and think about what are the features of graphing utilities that would … 
make one more desirable than another.” In this assignment, neither instructors nor PSTs 
necessarily used the technology, but students thought critically about multiple possible uses 
and types of graphing utilities. In a second example, the Secondary Math Methods instructor 
described discussions about preparing unit plans, particularly regarding the introduction of 
systems of linear equations or logarithmic functions, and determining what advantages or 
disadvantages come with technology use for those topics. Finally, a third example of 
technology use with algebra comes from the Structure of Algebra course instructor, who 
stated, “when we talk about cryptography I'll bring in Mathematica... if you want to do RSA 
cryptography in any sort of realistic way, you want to use... you know, RSA relies on a 
number that's a product of large primes.  …So you're doing … arithmetic mod some huge 
number.” 

University B: Overview of technology use. University B requires eight mathematics 
courses and four mathematics education courses. The College of Education offers the 
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mathematics education courses. PSTs in the focus group marked some use of computer 
software in Calculus III, geometry courses, and statistics courses, as well as multiple 
technologies in the four mathematics education courses. One student in the focus group 
stated, “…tools for me is by far the biggest weakness… even when we did use them it was 
pretty rare.” 

Overall, we found few examples of technology use in mathematics courses at University 
B. Instructors of Linear Algebra, Analysis, and the Capstone course stated that they did not 
use technology in class, except occasionally to check a calculation. The Linear Algebra 
instructor explained, “I don't think it is a good idea to use calculator or computer software… 
you want them to do it by hand.” The mathematics education courses used multiple 
instructional and mathematical technologies to support algebra topics and some critical 
evaluation of technology. Specific mathematical technologies included GeoGebra, 
spreadsheets, graphing calculators, and the occasional use of Geometer’s Sketchpad. One 
instructor explained that he chose to use technology because “…[the PSTs] see things 
mathematically they didn't see before and it helps them see the value of engaging in those 
sorts of tasks with their students….” 

Additionally, student and instructor responses indicated that few mathematics courses 
used technology in learning opportunities, while mathematics education courses integrated a 
variety of technologies to support PSTs’ teaching and learning of mathematics as well as 
PSTs critical evaluation of technological tools. One example of technology use in algebra 
was in the 2nd Secondary Methods course, the instructor introduced students to the “Ships in 
the Fog” task (based on the crash of the Stockholm and Andrea Daria) through a newsreel 
video of the wreck, solving the problem three ways (the worksheet calls for graphing 
calculator use), discussing the task on the Wiki, and then reading the “Ships in the Fog” case. 
PSTs used multiple technological tools as they watched the video clip, solved the problem 
with graphing calculators in multiple ways, and discussed their solution strategies on the 
Wiki site.  

University C: Overview of technology use. University C requires twelve mathematics 
courses and two mathematics education courses. The College of Education offers the 
mathematics education courses. An Educational Technology course is a required general 
education course in the program but does not focus on mathematics. The mathematics 
department at University C implements a policy that does not allow graphing calculators on 
mathematics final exams. PSTs indicated four mathematics courses in which they used 
computer software or clickers, although they did not acknowledge technology use in 
mathematics education courses. PSTs stated that they did not learn to use certain technologies 
despite needing them later in field instruction. In her notes from the focus group, one PST 
wrote along the list of program courses, “no graphing or non-graphing calculator allowed.” 
The Abstract Algebra and Differential Equations instructors indicated rare use of technology 
in lectures; however, the Differential Equations course included a computer lab component 
using MatLab. 

Although the mathematics education course instructors at University C did not emphasize 
technology when talking about their instruction, one assignment in the Secondary 
Mathematics Methods course did require students to revise a previously written lesson plan to 
“include technologies that enhance the teaching and learning of mathematics,” and to discuss 
their rationale for inclusion. Through this assignment, PSTs had explicit opportunities to 
consider how technology use in the classroom may enhance students’ opportunities to learn 
mathematics. Additionally, PSTs received feedback through a draft, peer review, and revising 
process over the course of a semester for this assignment. 

266 17th Annual Conference on Research in Undergraduate Mathematics Education



Overall, student and instructor responses at University C indicated several mathematics 
courses used technology, while mathematics education courses supported critical evaluation 
through choice and justification of technology for mathematics teaching, although the courses 
themselves did not integrate technology use. One specific example of technology use in 
algebra at University C was a lab activity in the Differential Equations course that focused on 
the existence and uniqueness theorems. Through creating graphs of several solution sets, 
students were asked to explain solutions in terms of the theorems, explain why an equation 
did not satisfy hypotheses of the theorems, make claims and explain why a solution must 
exist and be unique, investigate limitations of the theorems, investigate why and how results 
could be wrong answers, and make and investigate claims about boundedness of solutions. In 
this way, technology was used to help students bridge the gap between abstract theorems and 
applications. Students experienced engagement in mathematical practices such as claiming, 
explaining, and investigating.  

Instructor Rationales For or Against Technology Use 
Both mathematics and mathematics education instructors described rationales for using 

technology or supporting students’ use of technology. Instructors of both types of courses 
also described rationales for not using technology or actively discouraging students from 
using technology. We present these rationales as falling into four categories: practical 
concerns, beliefs that technology impedes mathematical learning, beliefs that technology 
enhances mathematical learning, and acknowledgements that the decision is complicated. 

Practical concerns. Several instructors reported practical concerns that kept them from 
using technology, referencing the appropriateness of technology in particular courses as well 
as issues of access, time, and support. For example, the Abstract Algebra instructor from 
University C argued that technology was not appropriate in such a course, stating, “No 
calculators, spreadsheets, no SmartBoard… really low tech. It’s abstract for a reason.” A 
number of other instructors we interviewed expressed a similar viewpoint about technology 
not being helpful in pursuing the goals of their courses. 

At both Universities A and B, mathematics education instructors stated that they were 
unable to use certain technologies because scheduling time to integrate technology into 
instruction was difficult and the department simply did not have the money. For example, the 
University A Secondary Math Methods instructor said, “…we don’t have money in our 
department to buy [a SmartBoard or clickers]. So we don’t have those and our students … 
need to know those things.” At University B, mathematics instructors indicated a need for 
additional time and support to prepare for technology use. For example, the Analysis 
instructor described wishing she could use a particular computer simulation that could help 
students see the differences between convergence and uniform convergence of functions. She 
said she could see it in her mind and would like to be able to show her mental image to the 
students. She drew the example on the chalkboard and described what she would like a 
computer simulation to demonstrate, saying “I think one day maybe we should have a nice 
computer-simulated programs that make you see the difference. It would be really nice.”  

Impeding learning. Instructors of both mathematics and mathematics education courses 
also described their beliefs that technology can impede learning. For example, the University 
B Analysis instructor said she believed that “…because of the calculator and all these 
technologies [people] don’t … develop their memory. But then you are asking them to 
develop their memory on something that is harder than adding or subtracting, you know?” 
The University A Linear Algebra instructor also held a perspective of technology potentially 
impeding student learning by stating, “…there are some computationally intensive problems 
in the book so in those cases I expect them to use technology… But I also want them to know 
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the concepts involved so sometimes you know I make a point to tell them that they shouldn’t 
use technology…” The University A Secondary Math Methods instructor similarly said that 
“at a college level we’re now quite concerned because we have students who can’t 
multiply… We have a huge problem in Calculus with kids who’ve come out of high school 
with A’s and B’s. And so we have students who can’t multiply. We have students who can’t 
reduce a fraction… I think because they have always had a calculator, you know. There are 
students who can’t tell you what the graph of y = x looks like. They could produce it on the 
graphing calculator, but to be able to think about what y = x and y = x2 looks like – they can’t 
do it without a machine… So we are actually moving to not using technology.” Instructors’ 
perspectives towards how technology may influence students’ learning of mathematics 
seemed to influence the opportunities they provided PSTs to encounter technologies in their 
courses. 

Enhancing learning. Instructors of mathematics education courses described ways that 
technology can enhance learning by making the abstract more tangible, allowing different 
perspectives, and supporting PSTs’ development of conceptualizations of mathematics. For 
example, the University C Middle School Math Methods instructor said, “I strongly 
encourage them to use [technological tools] as much as they can because I think that there’s 
different types of learners and that sometimes a hands-on or a computer simulation, getting 
up to a SmartBoard and drawing out your thinking in some way, …they can bring some of 
these more abstract things to make them more tangible for students. I wouldn’t say I’ve done 
the best job of exemplifying this in this class, but I do encourage it.” The University B 1st and 
2nd Secondary Math Methods instructor said, “I think it - it enhances their ability to, you 
know, model situations and … gives them a way to see the problem from a different 
perspective, one that they might not be familiar with such as a visual representation of a 
binomial or a trinomial and so it helps them kind of understand it from a learner's perspective 
and also gives them ways to think about how to instruct students in multiple ways so how 
they might teach with tools that can be accessible to learners.” The University B 3rd and 4th 
Secondary Math Methods instructor said, “All of these tools represent ways to represent and 
conceptualize mathematical ideas that go beyond the symbolic. They're important tools to 
really develop a conceptual understanding of mathematics. Moreover, it's critical that our 
students are prepared to use these same tools with their own students in the classroom to 
foster the same sorts of understandings.” 

Strategic technology use is not straightforward. Both mathematics and mathematics 
education instructors argued that technology is not appropriate in every course and that 
instructional consequences should be considered.  

For example, introducing unfamiliar software can shift the focus of a course from 
learning new mathematics to learning a new software. The University C Differential 
Equations instructor described his thinking when deciding whether or not to use technology 
in a particular course, explaining that in other courses he taught he did choose to use 
technology. He explained that he had not introduced technology into his Differential 
Equations course, saying, “[Calculator and graphing activities] are not really related to the 
basic themes and goals that I think are best in this course and as I said before I don’t want to 
blur the focus.” He went on to describe the shift in focus that would be required to teach 
students to use MATLAB in addition to the course content, saying, “The course is pretty 
close-packed and I don’t have time to teach them MATLAB in this course… and the more 
technology you have in a course like this the less that there is for algebra.”  

Instructors of mathematics education courses also described their discussions with 
students about why technology needs to be used at times but should not be used at other 
times. The University A Secondary Math Methods instructor described her concerns about 
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use of technology, saying, “...there are times where instructionally it may be not the best 
thing to always use technology and so making that kind of judicious choice is something we 
talk about as well.” The University B 1st and 2nd Secondary Math Methods instructor 
similarly described her discussions with students about when technology should be used, 
saying, “... you don't just use a tool or technology just because it's going to be fun; but you 
really have to think about - What does this particular tool or technology afford me in terms of 
students' understanding the content?” She also explained that her class discussed how 
thinking about use of technology can be a complicated balance between instructor’s time, 
instructional time, and benefits, saying “they come out of the course realizing that it's a lot of 
work - it takes time and so I have to be very strategic in how I use tools and technology” and 
that they reflect on their use of technology and when technology really provides something 
different than other tools, saying “…sometimes when we've used technology it didn't really 
offer us any more than if we had just drawn [on] a piece of paper…” 

Discussion 
Contrary to CBMS (2012) recommendations, our data suggest that not all secondary 

mathematics teacher preparation programs integrate experiences with technology across 
mathematics courses. We found that mathematics education courses integrate technology into 
instruction and learning more commonly, and with more variety in types of use, than 
mathematics courses. Even in mathematics courses that use technology, our data suggest that 
PSTs have fewer opportunities to see and use a variety of technological tools and that PSTs 
are more likely to see or use technologies only as computational tools. With respect to 
specific experiences using technology in learning and learning to teach algebraic topics, 
according to our data, mathematics education courses provide the bulk of these experiences. 

We heard concerns from both mathematics and mathematics education instructors that 
technology would impede PSTs’ learning. Some mathematics education instructors argued, to 
the contrary, that use of technology enabled PSTs to increase their understanding of algebra 
topics in ways that were not possible otherwise. One explanation of this difference in 
instructors’ viewpoints might lie in whether instructors used technology only as a practical 
expedient.  

We also heard that mathematical and instructional consequences should be considered 
before using technology. For example, instructors described the importance of considering 
the amount of time needed by an instructor to implement technology outside of class as well 
as within. Creating PowerPoint slides, designing applets, or developing other instructional 
materials and activities that use technology can be time-consuming for the instructor. 
Teaching students to use a technological tool or allowing students to become familiar with 
technology may divert time within a course that could otherwise be spent on the subject 
matter. Using technology may also change the way students conceptualize a mathematical 
concept or the way aspects of a topic are emphasized, whether intentionally or not. For 
example, using mathematical software or graphing calculators to solve systems of linear 
equations may not allow students to learn row operations, but could be used to highlight 
patterns in solutions of systems of linear equations instead. Using mathematical software to 
graph a quadratic function may impede students’ learning, but using mathematical software 
to dynamically explore the impact of the parameters of a quadratic function may help 
students understand those parameters in a different way than they could by using paper-and-
pencil. These examples illustrate that different ways of understanding mathematics and 
different emphases can be supported with different tools, whether paper-and-pencil or 
mathematical software. Instructors we spoke to recommended that mathematical 
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consequences such as these should also be considered when deciding whether technology 
should be used or not.  

We described some of the careful thought that instructors of both mathematics and 
mathematics education courses shared with us regarding how they have chosen to use or not 
to use technology in their courses. As described in the university overviews, we found that at 
every university, PSTs had opportunities to think critically about use of technology in both 
in-class discussions as well as assignments. One assignment that we saw in some form at 
each university involved either critically comparing graphing utilities as at University A, or 
incorporating some technology into a previously written lesson plan at Universities B and C. 
Based on the assignment rubric, the technology assignment at University C emphasized 
presenting a strong argument that technology provided something new and valuable that 
would not otherwise be provided. Mathematics education instructors at each university also 
described discussions with PSTs about the possible negative consequences of using 
technology in mathematics in addition to discussions about affordances. These opportunities 
to discuss and create arguments for technology will allow PSTs to develop the critical 
framework recommended by METI and METII (CBMS, 2001; 2012). 

Limitations. We acknowledge some important limitations of our data and analysis. As 
described in the Method section, our data was gathered in the pilot phase of the Preparing to 
Teach Algebra project. Some limitation of this study are being addressed in the main phase of 
the PTA project. During the pilot phase, despite balancing the types of the courses, the 
courses were a sample of convenience and not necessarily representative of algebraic content 
in the program as a whole. The courses were also chosen for algebra content, and not 
necessarily for technology use, and we know we missed at least one course (Teaching 
Secondary Mathematics with Technology) and possibly others. For the main study phase of 
the PTA project, courses were chosen more carefully to be representative of each program, 
while still being chosen for their potential to address our research questions. 

In addition, the collection of instructional materials depended on the interviewer and 
instructor. We collected at least a syllabus from each course, but the amount of instructional 
materials varied greatly from course to course. Some course instructors gave nothing but the 
syllabus while others gave a sampling of exams or quizzes. The University B Secondary 
Math Methods and University C Differential Equations courses provided the bulk of the 
instructional material that was analyzed, possibly because the instructors posted the materials 
on a website and gave the researchers access. The PTA project has been more systematically 
selective in the instructional materials gathered and analyzed for the main study phase. 

Other limitations are inherent in the choice of data and necessarily limited scope of the 
research questions. Our data was gathered from interviews and written materials, without 
observing classroom practice. We also only interviewed one instructor per course, even 
though different instructors can teach the same course in very different ways. We have 
attempted to balance these possible limitations by gathering data from instructors and 
students, hoping these different perspective will give us a reasonable understanding of the 
program as a whole.  

Conclusions 
We end this paper by expressing our hopes that it will raise questions about when, where, 

and how technology should appear in mathematics and mathematics education courses. METI 
and METII, as well as accreditation documents, recommend that PSTs encounter technology 
use and evaluation of technology use in their teacher preparation programs across both 
mathematics and mathematics education courses (CBMS, 2001; 2012). These documents 
recommend that encounters with technology in mathematics courses should support PSTs 
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mathematical learning and in mathematics education courses should include critical 
evaluation of technology use to support PSTs development of an internal framework that 
could support their later critical choice and strategic use of technology in their own teaching. 
From this set of data, we think an emphasis should be on turning technology use in 
mathematics courses to be more than just computational use. Mathematics courses, like the 
University C Differential Equations course and as suggested by the University B Analysis 
instructor, could use mathematical software to help students make connections between 
abstract theory and applications by critically investigating and questioning the theory using 
dynamic representations and applied examples.  We hope this paper challenges perspectives 
toward technology use in mathematics. Specifically, to challenge the bias that technology can 
only be useful in applied mathematics courses and that technology always impedes 
mathematical learning. We also hope that the practical difficulties faculty face, such as lack 
of time, support, or access, can be acknowledged and possible solutions explored. 

Further research should be planned to investigate ways technology can be used more 
effectively in algebra to support future teachers’ understanding of algebra as well as their 
abilities to choose and use technology more effectively in their own classrooms. Our research 
findings also point to additional questions that should be considered in when, where, and how 
PSTs should encounter technologies in opportunities to learn algebra and to learn to teach 
algebra as they develop their professional skills. 

Endnote 
This study comes from the Preparing to Teach Algebra project, a collaborative project 

between groups at Michigan State (PI: Sharon Senk) and Purdue (co-PIs: Yukiko Maeda and 
Jill Newton) Universities. This research is supported by the National Science Foundation 
grant DRL-1109256. 
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PERCEPTIONS IN ABSTRACT ALGEBRA: IDENTIFYING MAJOR CONCEPTS AND 
CONCEPT CONNECTIONS WITHIN ABSTRACT ALGEBRA 

Ashley L. Suominen 
University of Georgia 

 
Abstract algebra is recognized as a highly problematic course for most undergraduate students. 
Despite these difficulties, most mathematicians and mathematics educators affirm its importance 
to undergraduate mathematical learning. The purpose of this research was to formulate a list of 
the important concepts in abstract algebra as perceived by graduate students in mathematics, 
understand how they define these concepts, and recognize any relationships or connections 
between these concepts perceived by the students. The theoretical perspective of concept images 
and concept definitions as described by Tall and Vinner (1981) and Vinner (1983) was used to 
investigate participants’ understanding of abstract algebra concepts. Through an interview 
study, the students’ perceptions were analyzed through the creation of concept maps. The results 
revealed the participants had great difficulty articulating their concept images and concept 
definitions. In addition, they had differing views of major concepts and relationships within the 
course.  
 
Key words: Abstract algebra, Concept maps, Concept image, Concept definition, Connections 

Introduction 
It is widely acknowledged that abstract algebra is an essential part of undergraduate 

mathematical learning (e.g., Gallian, 1990; Hazzan, 1999; Selden and Selden, 1987), and yet it is 
also known for its high level of difficulty at the collegiate level. Many undergraduate and 
graduate students, including prospective teachers, struggle to grasp even the most fundamental 
concepts of this course (Dubinsky et al, 1994). For many of these students abstract algebra is the 
first time they experience mathematical abstraction and formal proof, and it is often the first 
course in which teachers expect students to “go beyond learning ‘imitative behavior patterns’ for 
mimicking the solution of a large number of variations on a small number of themes (problems)” 
(Dubinsky et al., 1994, p. 268). As a result, we can only expect abstract algebra students to really 
access the benefits of this course through the development of accurate mathematical meanings of 
the course concepts amidst the abstraction. This development will typically involve personally 
constructed concept images and concept definitions that can be used to understand the abstract 
theories and ideas. Despite the importance of abstract algebra and the known difficulties of the 
subject, little research has been devoted to these concept images and concept definitions. This 
article will highlight the constructed concept images and concept definitions of mathematics 
graduate students to explore their perceptions’ of concept importance and concept connections 
within the course. 

Theoretical Perspective 
This study utilizes the theoretical perspective of concept images and concept definitions as 

described by Tall and Vinner (1981) and Vinner (1983) to investigate participants’ understanding 
of abstract algebra concepts. In using this theoretical lens it is believed that the formation of a 
mathematical concept often involves the development of both a concept image and a concept 
definition. Tall and Vinner (1981) defined concept image as “the total cognitive structure that is 
associated with the concept, which includes all the mental pictures and associated properties and 
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processes.” For instance, students learning abstract algebra may construct mental pictures of 
specific algebraic structures in attempting to understand them, which may include a list of 
properties, class activities, or related previously constructed concept images. For instance, a 
student’s concept image of a group might include concept images about associativity, closure, 
and identity and inverse elements as well as a visual picture of an equilateral triangle and its 
rotations. A concept definition is then the “verbal definition that accurately explains the concept 
in a non-circular way” (Vinner, 1983). Ideally a person’s concept definition would be the verbal 
description of her personal reconstruction of the concept image, but often a person’s concept 
definition does not align with the formally accepted mathematical definition. To put it simply, a 
personally constructed concept image may seem sensible to that person and yet have some 
discrepancies in the concept definition when compared to the accurate definition. As a result, the 
concept images and concept definitions constructed by undergraduate and graduate students 
learning abstract algebra may or may not correspond to those taught in the course or found in the 
textbook. 

Ideally when a professor introduces the formal definition of a concept, any previously 
constructed images about or closely related to the concept should transform to include this 
definition. As a result, the concept image becomes more robust and the concept definition more 
accurate. However, this scenario does not occur as often as most professors would hope or 
expect. Rather, Vinner (1983) described two additional scenarios that can occur upon introducing 
a concept definition to previously constructed concept images. In the first scenario the formal 
concept definition has an influence on the student’s concept image for a short while but 
eventually is replaced with a personally constructed concept definition that fits the current 
concept image. While aspects of the formal concept definition may be integrated into the concept 
image, the formal concept definition in its entirety is not. In the second scenario the student 
considers the taught concept definition and the constructed concept image as two separate 
entities in which the student utilizes in different ways (i.e. the student may provide the formal 
concept definition when asked to by the professor but may rely on the concept image all other 
times). Unfortunately, the latter scenario is often a result of students relying on rote 
memorization to define a concept rather than a personal reconstruction of their concept images. 
As a result, the concept definitions are typically forgotten when not actively mentally used.   

In tertiary mathematics, however, students are routinely taught concept definitions when no 
previously constructed concept image exists and concept images of closely related concepts are 
not called upon. In this situation the taught formal concept definition forms a new concept 
image. Ideally the new concept image and taught concept definition begin to shape each other as 
both develop simultaneously. However, often times the concept image is entirely constructed by 
taught concept definition, so when students rely solely on rote memorization to define a concept, 
the concept definition is again forgotten as well as the concept image. 

Literature Review 
Despite the importance of abstract algebra, the known difficulties of the subject, and an 

increasing amount of research on teaching and learning collegiate mathematics, few studies 
concentrate solely on abstract algebra. Past research in abstract algebra can be classified into 
three categories: student learning (e.g., Asiala, Brown, Kleiman, & Mathews, 1998; Brown, 
DeVries, Dubinsky, & Thomas, 1997; Leron, Hazzan, & Zazkis, 1995), teaching methods (e.g., 
Asiala, Dubinsky, Mathews, Morics, & Oktaç, 1997; Freedman, 1983; Pedersen, 1972), and 
proof writing (e.g., Hart, 1994; Selden & Selden, 1987; Weber 2001).  
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Research on the teaching and learning of abstract algebra has indicated the conceptual 
understanding of undergraduate students in abstract algebra is less than satisfactory (e.g. 
Dubinsky, Dautermann, Leron, & Zazkis, 1994; Hazzan & Leron, 1996). Leron and Dubinsky 
(1995) declared that both professors and undergraduate students view the teaching of abstract 
algebra as a disaster. Thus, several researchers have introduced alternative teaching approaches. 
One of the earliest papers on teaching of abstract algebra was Pedersen (1972) in presenting a 
learning activity that involved 10 paper equilateral triangles in which students folded them in 
various ways to evolve the non-cyclic 6-group. This hands-on, discovery-learning activity 
encouraged students to develop mental concepts images and accurate concept definitions of the 
non-cyclic 6-group in a unique way. Similarly, Huetinck (1996) introduced the SNAP learning 
activity to introduction group theory in which students initially rotate and translate an equilateral 
triangle on an overhead transparency sheet to explore all possible orientations. Student then use a 
nine-peg 3x3 square array board with three rubber bands to discover patterns through various 
reorientations of the rubber bands. Additional researchers (e.g. Burn, 1996; Freudenthal, 1973; 
Larsen, 2004) suggested the introduction of group theory through permutations and symmetries 
of an equilateral triangle. Larsen and Lockwood (2013) then modified this activity by having 
students search for parity in the group of symmetries to present the concept of quotient group. 
Larsen (2004, 2013) also employed these and similar activities in his Realistic Mathematics 
Education (RME) theory research that stressed teaching group theory through examples. Cook 
(2012) then paralleled the work of Larsen in the teaching and learning of rings, fields, and 
integral domains. In these past studies researchers utilized activity-based learning to build upon 
students’ intuition and past mathematical knowledge to develop mathematical meaning of 
abstract concepts. Ultimately these activities should elicit more robust concept images and more 
accurate concept definitions rather traditionally lecture-based approaches. 

Not building upon past concept images is often a stumbling block to students learning 
abstract algebra. In his dissertation, Cook (2012) asserted the difficulty students experience in 
abstract algebra is due to the lack of established connections between undergraduate mathematics 
and school mathematics. He affirmed that abstract algebra students “do not build upon their 
elementary understandings of algebra, leaving them unable to communicate traces of any deep 
and unifying ideas that govern the subject” (p. xvi). Fennema and Franke (1992) supported this 
theory: “If teachers do not know how to translate those abstractions into a form that enables 
learners to relate the mathematics to what they already know, they will not learn with 
understanding” (p. 153). These conjectures imply that tertiary professors must be able to not only 
convey an abstract idea to students but also provide students the opportunity to build 
mathematical meaning by relating the new concept definitions to previously constructed concept 
images.  

While several research studies have focused on the teaching and learning of abstract algebra, 
no research has been done on the explicit concept images and concept definitions students have 
developed about abstract algebra. Likewise, students’ perceptions of concept importance and 
concept connections have not thoroughly been studied. Therefore, the accumulation of the 
current literature in addition to the lack of literature led to the following research questions: 

1) What are the important concepts of an abstract algebra course as perceived by 
mathematics graduate students and how are these concepts defined? 

2) What are the conceptual connections or relationships between these concepts that are 
perceived by mathematics graduate students? 
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Methodology 
In this research study three participants (pseudonyms: Andrew, April, and Heather) were 

purposefully selected based on two criteria: participants were accepted into at least the master’s 
level mathematics graduate program and participants recently (within a year or less) enrolled in 
the master’s level abstract algebra course. While undergraduate students typically take abstract 
algebra, graduate students were specifically chosen to provide an additional level of expertise. 
Prior to conducting this research, April and Heather had taken three lecture-based abstract 
algebra courses—an introductory course as an undergraduate and a yearlong sequence of two 
courses as a graduate student—and Andrew was concurrently enrolled in the third semester of 
the yearlong sequence with an additional. During the time of the study Andrew was in his first 
year of the doctoral mathematics graduate program with a pure mathematics emphasis, April was 
in her second year of the same program with a pure mathematics emphasis, and Heather was in 
her second year of the doctoral mathematics education graduate program. Andrew and April both 
have previous undergraduate mathematics background in applied mathematics, whereas 
Heather’s undergraduate experience focused more on mathematics education. These past and 
current experiences will ultimate influence the formed concept images of topics in abstract 
algebra.  

This research employed a semi-structured interview protocol with both open-ended questions 
and a construction task (Patton, 2002; Taylor & Bogdan, 1984; Zazkis & Hazzan, 1999). Each 
interview was audio recorded and ran approximately 45-60 minutes in length in a private room to 
ensure confidentiality. After the interviews were complete the audio was transcribed within a 
week of the interview. Since the purpose of this research study is to gain insight into graduate 
students’ perspectives of abstract algebra, one of the central foci of the interview was the 
creation of concept maps. These maps allowed the participants and researcher to visually 
understand described relationships between concepts. Novak and Cañas (2008) and Trochim 
(1989) largely contributed to the overall research design of this activity. First, each participant 
was given index cards (or post-it notes) and asked to write any important or key concepts of 
abstract algebra on a card (one per card). When he or she was finished with this task, the 
participant was asked to explain each concept. Next, participants were asked to visually represent 
any conceptual relationships between these topics by placing their concept cards on a sheet of 
poster board and drawing lines or arrows between concepts that have some type of relationship. 
After each participant completed a concept map, he or she was asked to explain why each line 
was drawn. Grounded theory was then utilized when analyzing the data. Once the interviews 
were conducted and transcribed, the transcripts were coded and analyzed thematically (Charmaz, 
2000; Patton, 2002; Taylor & Bogdan, 1984) focusing on the students’ responses to concept 
importance and concept connections. Each participant’s concept image and concept definition for 
the discussed important concept were then formulated based on their general talk and created 
concept map. 

Results 
As to be expected, each of the participants had a differing concept image and concept 

definition of major abstract algebra concepts. When asked to identify these concepts, April and 
Heather equated the time spent in class to the importance of the concept. April stated, “I think 
that fields are very important because we spent a lot of time discussing the different properties of 
fields and the different types of fields… So I felt it was really important.” Likewise, Heather 
repeatedly defined concept importance by the number of days the professor discussed it in class. 
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Andrew, on the other hand, relied on his perceived usefulness of a certain concept to determine 
major concepts. When asked to describe ring theory Andrew stated:  

It’s like you encounter rings first from like the first time you encounter math to be like the 
real numbers. We actually use them in our real life and everything, so in a way like this 
concept of rings kind of formalizes our understanding of what everything actually means. 

In addition, throughout the interview Andrew continually revisited useful applications for a 
group so that he felt comfortable identifying the concept as important. A complete summary of 
the perceived important concepts of each student and their overlapped important concepts is 
found in Figure 1. However, despite the varying concept images associated with concept 
importance, there were five identified concepts that were mentioned by all three students: 
groups, rings, fields, Galois theory, and isometries with geometric applications. In addition to 
these abstract algebra concepts, all three participants acknowledged the importance of learning 
about mathematical definitions, notion, and proof in abstract algebra. Andrew mentioned that in 
abstract algebra you “formalize everything, like in the practical in proper mathematical 
notation.” April highlighted specifically the importance in reading, dissecting, and understanding 
mathematical definitions as she wrote proofs. Heather stressed how important logical thinking 
and proof writing was for her future understanding of higher mathematics. Thus, the concept 
image of concept importance for these participants included indirect abstract algebra concepts, 
which is vital for professors to consider when teaching the course. 

          Heather 

 
  Andrew            April 

Figure 1: Identified important concepts 
In general the participants had difficulty articulating their concept images about content 

learned in their abstract algebra courses. Despite all of the students acknowledging the intuitive 
nature of rings, none of them were able to articulate the complete formal concept definition of a 
ring. April’s definition most closely aligned with the formal definition in classifying a ring as a 
set with two operations following seven axioms, but she could not articulate what were the 
axioms. Heather’s concept image of a ring was similar to April’s in that she viewed the algebraic 
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structure in terms of axioms. However, she was unable to articulate a concept definition for a 
ring due to declared confusion between what those axioms were and how many existed for a 
ring. Similar to April and Heather, Andrew’s concept image of a ring included two operations 
following certain properties, but his concept image also included the notion of a map, stating: “It 
is something like you have a map, you have commutativity over addition, associativity over 
addition, and you have additive identity, you have multiplicative identity.”  

When asked to describe a group or a field, the students seemed to have less robust concept 
images of these concepts than a ring. In fact, only April provided a concept definition for a group 
that closely aligned with the formal concept definition. However, she was unable to provide a 
concept definition of a field despite being probed several times. Unlike her concept image of a 
ring and a group that relied heavily on the formal definition, her concept image of a field 
consisted of types of fields and the concepts taught before and after fields. Heather and Andrew 
had greater difficulty articulating their concept images and concept definitions. Heather 
responded, “Gosh. I think I am confused” when asked about a group and “The funny thing is I 
just totally, I just don’t remember what a field was.” However, she did eventually attempt to 
relate her two concept images of a group and a field in stating, “I feel like it (field) has less, no 
the group has less conditions in order to be a group.” This comparison proved to be unhelpful to 
her understanding of these concepts to which she repeatedly asked me to provide her the formal 
definition of a group and a field since she could not remember despite earning As in all of her 
courses. Andrew’s concept image of a group relied heavily on his definition of a ring in 
describing a subset relationship between the two concepts. He stated, “From rings we can get 
groups. Kind of like subsets of rings are groups because we just have one operation” and 
“Because rings are the more generated thing with two operations, addition and multiplication, so 
a group is kind of like throwing one of the operations out.” When asked to elaborate more on the 
definition of a group, Andrew discussed another aspect of his concept image: his perceptions of 
usefulness of a group in the real world. Ultimately, though, he was unable to provide a concept 
definition of a group. When asked to define a field he responded, “A field is something I just 
can’t get used to it” and “A field is an integral domain.” His concept image of a field also 
included examples from the number system.  

All participants also provided a personal reconstruction concept definition of isometries and 
geometric applications, whereas no participant could accurately define Galois theory. In 
discussing the former, Andrew concentrated on functions, April discussed subtopics taught in 
class, and Heather related isometries to group theory. Andrew was the only participant that 
elaborated on his concept image of Galois theory, saying, “There are I think orders that tells us 
any polynomial greater than of degree 2, we cannot necessarily have a formula for factorizing it 
or something, so that is another I would say that’s perhaps an important use of it” Neither April 
nor Heather offered their concept images of Galois theory despite being asked.  

The concept images and concept definitions of perceived relationships between identified 
important concepts, as seen in the created concept maps, were quite diverse despite the fact that 
the participants took the same course. Andrew described his concept image of the connections 
between concepts as a “hierarchical structural” flow chart and a “laying kind of thing” (Figure 
2). When asked to describe the arrows drawn between concepts, he admitted to not fully grasping 
how the concepts in abstract algebra were built upon each other, but he knew they were all 
somehow related. Surprisingly, Andrew did not draw his subset relationship between a group and 
a ring that he explained with his concept image of a group. Likewise, he never included 
applications in his concept map despite concentrating on them during the first half of the 
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interview. Heather, on the other hand, included subset notation in her concept image of concept 
connections. She described her concept map as a web of concepts with lines denoting concept 
connections as well as set notation denoting subset relationships (Figure 3). For instance, she 
used a subset symbol between rings and fields because she understood these concepts as subsets 
of each other. She contemplated between also including a subset symbol between groups and 
rings, but she seemed unclear as to how the subset relationship worked in questioned whether a 
group is a subset of a ring or is a ring a subset of a group.  

 
 
 
 

 
 

 
 
 

 
 
 
 

 
 

 
 

 
 

 
Figure 2: Andrew’s Concept Map 

 
Figure 3: Heather’s Concept Map 
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April’s concept image of concept connections was quite different than the other two 
participants. On her concept map green lines indicated major topics and red lines indicated 
concept connections. To her, the red arrows were drawn between concepts that had overlapping 
concept images or similar concept definitions. For instance, when explaining the drawn red 
arrow between rings and groups she said, “They are related in many ways, especially in the 
definition when trying to decide whether a set is a ring or is a group. Because they are so closest 
related to each other.” April also described concept connections of major concepts by similar 
applications of her constructed concept definitions. 

 
Figure 4: April’s Concept Map 

Despite the variation in the participants’ concept image of concept connections, April and 
Heather discussed an additional aspect of their concept image: the order the concepts were 
discussed in class is linked to concept connections. In other words, concepts are related when 
discussed before and after each other. April explained when asked to elaborate on her concept 
maps, “The reason I have a bidirectional arrow between fields and rings was because we 
discussed fields after rings.” Likewise, Heather described her arrow between ring and 
homomorphism, “So that’s why I put it together. I just remember using that word ring 
homomorphism over and over again, so that’s why I thought they were connected.” This result 
parallels their concept image of concept importance of these two participants earlier discussed in 
this paper. Contrary to these results, one student portrayed concept connections in this way: “The 
main concept of connections is not only based on definitions, but the ways we applied our 
knowledge of each concept, so for instance, in rings, once we covered the definition of what 
makes a set a ring, we talked about applications of rings.” Consequently, each participant had 
various reasons for their concept image and concept definition of concept importance and 
concept connections. 

Conclusions 
In general, the participants of this study attempted to rely on connections to past 

mathematical knowledge or real-world applications when articulating their concept images of 
major abstract algebra topics. In fact, the participants of this study seemed to be searching for 
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any missing connections between identified important concepts and past mathematical 
knowledge. Heather affirmed:  

Making connections with other courses or ideas, I feel like that it is really hard to do 
it but it is important and it’s helpful. I really wished I knew this before I taught so that 
I can make better connections in my own teaching. … Because then I would have 
been able to provide more let’s say examples or even provide more opportunities for 
them to think about things to make connections between the mathematical ideas.  

Similarly, April repeatedly discussed connections between abstract algebra and number theory, 
“I generally like to think about abstract algebra and number theory being two courses that are 
very closely linked, partly because number theory is more of an application course of abstract 
algebra and abstract algebra is the more theoretical course of number theory.” Likewise, all three 
participants discussed the applications (or lack thereof) of abstract algebra concepts. Andrew 
claimed abstract algebra was not useful due to his inability to apply the theorems and definitions 
to real-life: 

I don’t know if it is useful. Like to be honest, I don’t know what I am learning. It’s like we 
learn lots of theorems and it’s kind of like solving problems but I really don’t know if we will 
ever be able to apply them to real life. Or use them since they are all so… I know that I 
learned all these concepts, but I don’t know if there is any usage out of them and if I am ever 
going to use them in real life. 

Andrew’s concept images were typically tied to these applications, so his inability to identify 
them only hinders his learning. Thus in order for these graduate students to construct robust 
concept images and accurate concept definitions, there must be connections to past knowledge 
and real-world applications, which concurs Cook (2012) and Fennema and Franke (1992). 

In addition, the difficulties these participants had in articulating their concept images and 
concept definitions parallels the learning scenarios described in Vinner (1983). April in 
particular seemed to initially accept the formal concept definition of a ring, group, and field 
when describing her concept images, but ultimately personally constructed concept definitions of 
a group and field when her concept images did not match the formal definitions. Heather also 
seemed to rely on the taught formal concept definitions of a ring, group, and field to construct 
her concepts images. However, her concept images as well as her concept definitions of a group 
and a field seemed to be forgotten, which aligns with Vinner (1983) that students whom solely 
rely on rote memorization to define a concept will eventually forget both. Unlike the two female 
participants, Andrew attempted to construct his concept images of a ring, group, and field upon 
previously constructed images of related concepts and the formal concept definitions. In spite of 
his attempts, he was unable to establish accurate connections between concept images, which 
caused him difficulty in articulating his concept images and concept definitions. In general, these 
participants tried to allow the concept definition to form new concept images, but it was not 
enough to develop accurate images and definitions of abstract algebra concepts. 

Implications for Future Research 
The results of this research study illustrates for these participants that their constructed 

concept images and concept definitions differ from the formal definitions taught in class. To put 
it plainly, students are not constructing the same mathematical meanings behind concepts as 
expected. Tertiary mathematics professors should then consider how to minimize this mismatch 
in learning to foster the development of more accurate concept definitions. This follows from 
Vinner (1983), “revealing the concept images of our students becomes very important for 
teaching; not only might it give us a better understanding of our students but also it might 
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suggest some improvements to our teaching which formed such wrong concept images.” One 
must provide students with enough examples that form the desired concept image not only in the 
beginning of the concept image development but throughout the learning process. Elements that 
cannot constantly being reinforced have a good chance of being forgotten, resulting a distorted 
concept image. Similarly, this study provides abstract algebra professors a snapshot into what 
students identify as important to the course and how these concepts are defined. This finding is 
particularly useful since many mathematics professors may not know what the students are 
actually learning or not learning in their classes. Furthermore, these identified important concepts 
may or may not correspond to the professor’s identified important concepts. As seen in this 
study, despite the participants overlapping four major concepts, each constructed very different 
concept images and concept definitions of these concepts that did not resemble the formal 
definition. In future work, I hope to utilize the methodology and results of this study to 
investigate the connections between school algebra and the abstract algebra course. These 
connections are often missing from classroom instruction even though students would benefit 
greatly from explicit instruction of them. Likewise, as seen in this study, students desire to 
establish connections between identified new abstract concepts and past mathematical 
knowledge.   
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This is a preliminary report of a study where the purpose was to examine how 
participation in a mathematics master’s program for in-service teachers affected student 
growth on a state mathematics assessment taking into account student demographic 
variables. We collected data from school districts for 5 academic years spanning from pre-
program through program completion. We conducted a four-step hierarchical multiple linear 
regression analysis. We can conclude that the combination of teachers’ years of participation 
in the Math TLC, teachers’ total years of experience, student ethnicity, and student free and 
reduced lunch eligibility provided a joint effect on the student growth percentiles on the state 
mathematics assessment. We explain future plans for continued research on this project. 

Key words: in-service teachers, professional development, secondary education, student 
achievement 

It is widely acknowledged that highly qualified teachers are instrumental to student 
achievement. Therefore, the Mathematics Teacher Leadership Center (Math TLC), an NSF-
funded Mathematics and Science Partnership project, has developed and is researching a 
master’s program in mathematics education in response to the call for advanced professional 
education accessible to in-service teachers. The Math TLC is a blended online and face-to-
face, 2-year program that aims to effect change in in-service teachers’ content proficiency, 
cultural competence, and pedagogical expertise for teaching secondary grades mathematics 
(grades 6 to 12). As such, an important outcome variable for the research team to measure is 
student achievement. We do not assume that the state mathematics assessment accurately 
reflects all that was presented to our teachers during the master’s program. However, as 
student performance on state assessments may be factored into teachers’ professional 
evaluations, those that deliver professional development and teachers will be interested in 
how teacher participation in these professional development programs can play a role in 
student achievement.  

Although measures of teacher preparation and certification are the strongest correlates of 
student achievement in reading and mathematics (Darling-Hammond, 2000), quantifying 
what types of professional development have an impact on student achievement still warrants 
exploration. We seek to explore to what extent teacher participation in the Math TLC 
master’s program affected their students’ growth on a state-wide test accounting for student 
demographic variables. The state tests considered are the Colorado Student Assessment 
Program (CSAP) and the Transitional Colorado Assessment Program (TCAP) 

This is a quantitative causal-comparative study (Gall, Gall, and Borg, 2007) on the state 
scores of the students of teacher participants of the master’s program. We have collected the 
participant’s students’ demographic and state assessment data for four years. We also have 
conducted quantitative observations of the teacher participant’s teaching both before and after 
his enrollment in the program (Hauk, Jackson, & Noblet, 2010; Goss, Powers, & Hauk, 2013) 
measures of his pedagogical content knowledge for teaching using a written instrument 
(Hauk, Toney, Jackson, Nair, & Tsay, 2013) throughout his participation in the program, and 
measures of his intercultural competence pre-program and post-program. 
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Literature 
High quality teachers improve student achievement, but any easily measured credential is 

at best a barely significant measure of teacher quality (Foster, Toma, & Troske, 2013; 
Rockoff, 2004), and the pedagogical content knowledge that appears to account for most of 
the variance in teacher quality is difficult to measure (Dash et al, 2012). Although 
professional development can help in-service teachers to examine and improve their practice, 
the conflicting research on the relationship between professional development and student 
achievement indicates that this relationship may be dependent on the specifics of a given 
professional development program, which is a challenge for teacher educators given that 
NCLB does not define what high quality professional development is (Blank & de las Alas, 
2009; Huffman, Thomas & Laurenz, 2003; Ross, Hogaboam-Grey, & Bruce, 2006).  

Professional development programs that succeed in raising student achievement on 
standardized tests have focused on specific instructional practice skills or curriculum 
development and had multiple years of continuous implementation (Hoffman, Thomas, & 
Laurenz, 2003). The instructional practices that are most likely to lead to student achievement 
gains following professional development are instruction techniques in a specific content 
area, like fraction addition or in the use of synchronous formative assessments like stoplight 
cards in the classroom (McGraner, Van Der Heyden, & Holdheide, 2011). Laura, 
McMeeking, Orsi, and Cobb (2012) found both significant student achievement gains on the 
CSAP for teachers that completed a particular professional development program; students’ 
odds of going from not proficient to proficient also increased. 

Student achievement scores are a popular way to measure teacher gains, since this is data 
that can be collected without additional loss of instructional time (Dash et al, 2012; Foster, 
Toma, and Trotske, 2013; Laura, McMeeking, Orsi, & Cobb 2012). There are several 
measurement issues inherent in using state standardized testing data, in this case the 
CSAP/TCAP. Although the test is reliable and the items are psychometrically well 
constructed (CTB 2010, 2011), the bookmark standard setting process is not tied to any 
particular curriculum. For researchers, the standard setting can create two levels of disconnect 
between the professional development and the state assessment; the difference between the 
program and what is implemented in the classroom and the difference between the classroom 
and the state exam. Due to this potential validity issue, using state standardized test scores in 
a linear model will tend to and lower the R-squared value of the model (Karantonis & Sireci, 
2006; McGinty, 2006).  

However, even when there is significant achievement gains attributable to professional 
development, student achievement occur after the professional development has ended 
(Harris & Sass, 2007). One of the difficulties in measuring student achievement gains 
following professional development is the implementation dip, where student achievement 
drops because teachers have discarded their old teaching practices but have not mastered the 
skills in the professional development (Ball, 2004; Busnick & Inos, 1992). Although the 
implementation dip is part of incorporating professional development into practice, this drop 
can be minimized by conducting professional development in a single area, following up with 
teachers in their classroom, and revisiting the same topics in later professional development 
(Stiles, Loucks-Horslet, Mundry, Hewson & Love, 2009; Zapeda, 2012). The implementation 
dip lasts up to 18 months after the last professional development session, but recent large 
scale studies of professional development on middle school and secondary mathematics 
teachers showed an implementation dip that lasted up to three years before there were 
measurable student achievement gains (Blank, Smithson, Porter, Nunnaley, & Osthoff, 2006; 
Busnick & Inos, 1992; Harris & Sass, 2011). 
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Methods 
Setting and Participants.  
The Math TLC 2-year master’s program is for in-service secondary teachers in 

mathematics with an emphasis in teaching. About half of the course credits are in 
mathematics and half are in education. The program delivery blends face-to-face and online 
formats and is offered jointly between two Rocky Mountain region universities. The primary 
goals of the program are to develop with in-service teachers a vision of mathematics as a 
culturally rich subject, increase teachers’ pedagogical content knowledge by examination of 
how students think and learn about mathematics, and expand mathematical content 
knowledge in topics that extend K-12 mathematics content. So far, 31 teachers from 3 cohorts 
have successfully completed the program. Our previous research has focused on changes in 
teachers’ pedagogical content knowledge for mathematics (Goss, Powers, Hauk, 2013), and 
now we are seek to describe student outcomes.  

This is a quantitative causal relationship study (Gall, Gall, & Borg, 2007) on the state 
scores of the students of teacher participants from the first two cohorts to successfully 
complete the master’s program. We requested state assessment and demographic data of the 
students of 20 teacher participants from 10 districts. We received data from 2 districts 
pertaining to 9 teacher participants. Five teachers were from the first cohort of teacher 
participants that completed the program in the summer of 2011, and 4 teacher participants 
were in the second cohort that completed the program in the summer of 2012. Table 1 
summarizes the demographic data of the students of the teachers from the first two cohorts. 

 N %   N % 
Total 2559 100     
Teacher    Gender   

TLC1046 361 14.1  Female 1300 50.8 
TLC1051 293 11.4  Male 1259 49.2 
TLC1081 230 9.0     
TLC1086 207 8.1  Ethnicity   
TLC2042 352 13.8  White 1900 74.2 
TLC2052 514 20.1  Non-white 659 25.8 
TLC2077 337 13.2     
TLC2087 265 10.4  Free/Reduced Lunch    

Year in Program    Not Eligible 1688 66.0 
0 years (not started) 534 20.9  Eligible 632 24.7 
1 year 727 28.4     
2 years 680 26.6     
3 years (completed) 618 24.2     

Table 1: Demographic frequency counts for students of teacher participants. 

Data Collection 
We collected the student mathematics scores on a state assessment that is administered to 

students in grades 3-10 in the subjects of mathematics, English/Language Arts, and science in 
the spring of each academic year. Within each subject, students receive a scale score, a 
proficiency level, and a growth percentile rating for the exam. Scale scores are conversions 
from raw scores that represent the same level of achievement regardless of the year in which 
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the test was administered. The growth percentile is a representation of each student’s progress 
comparing each student’s current achievement to students in the same grade throughout the 
state who scored similarly in past years (Bettebenner, 2009). The growth percentile is only 
reported if the student completed the assessment in two consecutive years. The first cohort of 
teacher participants began the Math TLC in the summer of 2009, and the second cohort 
completed the program in the summer of 2012. Therefore, we collected the scores of state 
assessments that were administered in the spring of 2009 through the spring of 2013. The 
state is in the process of implementing new academic standards. The state test used through 
2011, CSAP, assessed the previous standards. The test used from 2011 through 2014, TCAP, 
was designed to measure standards common between the new and old standards. In practice, 
districts continue to compare across years and growth percentiles calculated for student 
performance on the TCAP took into account their performance on the CSAP in prior years. 

The writers of the state-administered instrument discuss their efforts to establish content 
validity by having content-area specialists, teachers, and assessment experts develop a pool of 
items that evaluated the state’s assessment framework in each grade and content area. 
Measures of reliability including internal consistency and interrater reliability are calculated 
each year after the assessments are administered to students across the state. The scores of the 
students of our teachers are included in this calculation. The state reports the mathematics test 
showed good internal consistency; Cronbach’s alphas range from 0.92 to 0.94. They report 
interrater reliability kappas range from 0.66 to 0.94 (Colorado Department of Education, 
2009, 2010, 2011, 2012).  

We followed school district protocols to obtain student demographic and assessment data. 
We requested students’ demographic data, state scale mathematics scores, state mathematics 
proficiency levels, student growth percentiles in mathematics, and state English and 
Language Arts scale scores. For each teacher, for each of the given years, we requested all 
data for students in that year plus all data for those same students for the previous year. The 
student demographic data on which we chose to focus was student gender, student ethnicity, 
and student free and reduced lunch eligibility. We chose to focus on these three variables 
because they were easily obtained and they could account for variability in student 
achievement. We also collected teachers’ total years of teaching experience. We included 
years of experience as an independent variable as more experience in teaching may be 
correlated to higher student achievement. We wish to determine if teacher participation in and 
completion of the professional development affects student growth beyond what can be 
explained by teachers’ total years of experience. 

We obtained students’ mathematics scale scores, mathematics growth percentiles, and 
demographic data pertaining to each given year, but we did not obtain the data linking 
students’ current year scores to previous year scores. We considered the state assessment 
scores of the teachers’ students in grades 6-10 from five academic years: (0) prior to the 
teachers beginning the program, (1) the teachers’ first year in the program, (2) the teachers’ 
second year in the program, and (3) the year following the teachers’ completion of the 
program, and (4) two years following the teachers’ completion of the program. At this point, 
we only have data on all five levels for three teacher participants; we have data on four levels 
for all teachers. 

Data Analysis 
Because we did not obtain linked data to students’ previous years’ scores, we chose to 

focus on students’ mathematics growth percentiles as the outcome variables. The purpose of 
this analysis was to determine if teacher participation in the Math TLC can explain variance 
in student growth on the state assessment accounting for student demographic variables and 
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teachers’ years of experience. For variance explanation, Pedhazur (1997) recommended using 
hierarchical linear analysis.  

Predictor variables included student gender, student ethnicity, student free and reduced 
lunch eligibility, the teachers’ total years of teaching experience, and the year of enrollment 
in the Math TLC of the teacher at the time of the student assessment. Gender is a 
dichotomous variable; to prevent having very small groups, we entered ethnicity (white, non-
white) and free and reduced lunch eligibility (free and reduced lunch eligible and non-
eligible) as dichotomous variables. We effect coded the non-continuous, predictor variables. 
Multiple regression analyses including categorical variables should account for possible 
interactions among independent variables. It may be that the joint effect of ethnicity and 
gender explains more variance than ethnicity alone; Pedhazur (1997) calls this a joint or 
multiplicative effect. For this reason, we calculated interaction terms among all categorical 
variables. 

We performed hierarchical linear regression. Step one included gender, ethnicity, free and 
reduced lunch eligibility, and years of teaching experience. Step two included the primary 
predictor variable of interest, the four vectors from the effect coding of the five levels of year 
in the Math TLC. Higher level steps included interaction terms (products of two variables 
were entered at step three, three variables at step four, etc.). Testing assumptions of linear 
regression, we found the regression showed a non-linear relationship; therefore, we 
transformed the dependent variable by taking the arcsine of the square root of the student 
mathematics growth percentile (Sheskin, 2003). We performed the hierarchical analysis with 
the steps above and performed all-subsets tests to determine if the interaction terms held a 
significant effect (Pedhazur, 1997). We eliminated non-significant product terms from the 
model and ran hierarchical analysis on the smaller model.  

Results 
We first report descriptive statistics showing student mean growth percentiles on the state 

mathematics assessments for each year the teachers were enrolled in the program in Table 2. 
We see that mean growth percentile increased slightly while teachers were enrolled in the 
first year of the program, decreased slightly, and means increased again only two years 
following teacher completion of the program. No changes appear to be significant. 

 
Year in Program N M SD 
0 (pre-program) 398 48.0 28.76 
1 (mid-program) 550 52.0 29.23 
2 (mid-program) 615 48.8 29.20 
3 (1 year post-program) 579 48.5 30.42 
4 (2 years post-program) 116 52.2 30.73 

Table 2. Student growth percentile means by year of teacher enrollment in the Math TLC. 
 
In the all-subsets test of variables, only the joint effects of free and reduced lunch 

eligibility with year in the program; ethnicity with years of teacher experience; ethnicity with 
year in the program; free and reduced lunch eligibility with year in program; the product of 
ethnicity, years of experience, and year in the program, and the product of free and reduced 
lunch eligibility, years of experience and year in the program. All variables considered in the 
model are given in Table 2. Table 3 summarizes the correlations among the main effect 
predictor variables; joint effect variables are not included. Note that Y1 indicates the first 
year the teacher was enrolled in the program, Y2 the second year, etc. Because categorical 
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variables were effect coded and groups were not of equal size, correlations among groups are 
non-zero. 

Predictor Variables 
1) Ethnicity 14) Ethnicity-Y1 
2) Gender 15) Ethnicity-Y2 
3) Free/Reduced Lunch Eligibility 16)  Ethnicity-Y3 
4) Years of teaching 17)  Ethnicity-Y4 
5) Year1 18)  F/RLunch*YrsTeaching*Y1 
6) Year2 19) F/RLunch*YrsTeaching*Y2 
7) Year3 20) F/RLunch*YrsTeaching*Y3 
8) Year4 21) F/RLunch*YrsTeaching*Y4 
9) F/RLunch*Y1 22) F/RLunch*YrsTeaching*Ethnicity*Y1 
10) F/RLunch*Y2 23) F/RLunch*YrsTeaching*Ethnicity*Y2 
11) F/RLunch*Y3 24) F/RLunch*YrsTeaching*Ethnicity*Y3 
12) F/RLunch*Y4 25) F/RLunch*YrsTeaching*Ethnicity*Y4 
13) Ethnicity-YrsTeaching  

 
Table 2. Predictor variables entered into the hierarchical linear analysis.
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 1 2 3 4 5 6 7 8 

1) Ethnicity -- -.01 .39 -.01 -.02 -.03 .00 .06 

2) Gender  -- .00 -.04 .02 -.02 .00 .02 

3) Free/Reduced Lunch Eligibility   -- -.01 .03 .01 .05 .13 

4) Years of Teaching    -- .01 .10 .17 .24 

5) Year1     -- .40 .41 .62 

6) Year2      -- .39 .62 

7) Year3       -- .62 

8) Year4        -- 
 

Table 3. Correlations between main effect predictor variables. 
 
Due to the transformation of the dependent variable and the effect coding of the 

categorical independent variables, the partial slopes in the regression model should not be 
interpreted in the usual sense (Pedhazur, 1997). Additionally, since each main effect variable 
apart from gender was a factor in some significant joint effect, we cannot interpret the main 
effects. Instead, we consider if inclusion of variables at each level explained significantly 
more variance in the dependent variable than the previous levels.  

The hierarchical multiple regression revealed that at Stage one, Free and Reduced Lunch 
Eligibility contributed significantly to the regression model, and the block of predictor 
variables ethnicity, gender, free/reduced lunch eligibility, and teacher’s years of experience 
accounted for 2% of the variance in the transformation of student growth percentile (F-
change(4,2253) = 10.78, p < .001). Adding the block of variables representing teachers’ years 
of participation in the Math TLC explained only an additional 0.4% of the variance, but the F 
Change statistic was found to be significant, F-change (4,2249) = 2.42, p = .047. Adding the 
joint effects of free/reduced lunch eligibility with the years of the program, ethnicity with 
total years of teaching experience, and ethnicity with the year in the program explained an 
additional 1% of the variance (F-change (9,2240) = 2.37, p = .005). Finally adding the joint 
effects of ethnicity with years of experience with year in the program and free and reduced 
lunch eligibility with years of experience with ethnicity with year of the program explained 
an additional 1% of the variance (F-change (8, 2232) = 2.57, p = .009). When all the 
predictor variables were included in the final stage of the model, all variables accounted for 
4.2% of the variance in student growth percentile.  
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Variable Step 1 Step 2 Step 3 Step 4 

Step 1     
Ethnicity -.02 -.02 -.03 .12 
Gender -.02 -.02 -.13 -.03 
Free-Reduced Lunch Eligibility -.12*** -.13*** -.01*** -.13*** 
Teacher’s Years of Experience .01 .01 -.01 -.01 

Step 2     
Year1  .03 -.04 -.02 
Year2  -.05 .01 -.04 
Year3  .00 .07 .02 
Year4  .06 -.09 .06 

Step 3     
F/RLunch*Y1   -.09** .06 
F/RLunch*Y2   .05 .07 
F/RLunch*Y3   -.03 .15 
F/RLunch*Y4   -.02 -.22* 
Ethnicity*YrsTeaching   -.10 -.14* 
Ethnicity*Y1   .03 -.16* 
Ethnicity*Y2   .00 -.12 
Ethnicity*Y3   .06 .14 
Ethnicity*Y4   -.01 .18 

Step 4     
F/RLunch*YrsTeaching*Y1    -.16 
F/RLunch*YrsTeaching*Y2    -.01 
F/RLunch*YrsTeaching*Y3    -.17* 
F/RLunch*YrsTeaching*Y4    .18* 
F/RLunch*YrsTeaching*Ethnicity*Y1    .19* 
F/RLunch*YrsTeaching*Ethnicity*Y2    .11 
F/RLunch*YrsTeaching*Ethnicity*Y3    -.09 
F/RLunch*YrsTeaching*Ethnicity*Y4    -.17 

R .14 .15 .18 .21 
R2 .02 .02 .03 .04 
R2-change .02 .00 .01 .01 
N = 2134, *p < .05, **p < .01, ***p < .001 

 
Table 4. Beta values and R2 values from hierarchical regression 

Discussion and Conclusions 
We sought to describe how participation in the Math TLC master’s program could affect 

student achievement on a state mathematics assessment taking into account other 
demographic variables. When interaction terms of a multiple regression are statistically 
significant, it is not meaningful to do multiple comparisons among main effects. Instead we 
considered the changes in the R-squared values. We found that years of participation in the 
program were significant contributors to student growth percentile as part of joint effects that 
also included free and reduced lunch eligibility, total years of teaching experience, and 
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ethnicity. Prior to the inclusion of these joint effects, only students’ free and reduced lunch 
eligibility contributed significantly to the model.  

In Table 2, we see that the means of student mathematics growth percentiles for the 
second year teachers were enrolled in the program and the first year following their program 
completion were lower than they were pre-program. They began to increase two years after 
the teachers completed the program. This implementation dip is consistent with the findings 
from past studies (Harris & Sass, 2007; Ball, 2004; Busnick & Inos, 1992).  

Even after the inclusion of all predictor variables, only four percent of the variance in 
student growth percentile on the state mathematics exam was explained. The low R-squared 
value may be partially explained by the validity issue of the state assessment not aligning 
with any one curriculum (Karantonis & Sireci, 2006; McGinty, 2006). Additionally, we 
interpret that student growth percentile is a variable that cannot be adequately predicted by 
the given student demographic data and teacher participation in the Math TLC alone. Future 
research efforts will include other teacher variables including years of other professional 
development, observation data of teachers, and data from measures of the teachers’ 
pedagogical content knowledge. 

We can conclude that the combination of teachers’ years of participation in the Math 
TLC, teachers’ total years of experience, student ethnicity, and student free and reduced 
lunch eligibility provided a joint effect on the student growth percentiles on the state 
mathematics assessment. Further investigations are required to interpret these joint effects 
including how well the variable of teachers’ total years of experience predicts student growth 
across these groups. 

Moreover, we will continue to collect student data. Collecting data from the 2014 version 
of the state assessment will provide data pertaining to 3 years following the teachers from the 
first cohort completion of the program, 2 years following the second cohort’s completion of 
the program, and 1 year following a third cohort’s completion of the program. Continuing to 
collect this data will allow us to assess the program’s longer-term effects on student outcomes 
and potential differences in effects by cohort.  
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SLOPE AND DERIVATIVE: CALCULUS STUDENTS’ UNDERSTANDING OF 
RATES OF CHANGE 

Jennifer G. Tyne 
University of Maine 

Studies have shown that students have difficulties with the concepts of slope and derivative, 
especially in the case of real-life contexts. I used a written survey to collect data from 74 
differential calculus students. Students answered questions about linear and nonlinear 
relationships and interpretations of slope and derivative. My analysis focused on students’ 
understanding of slope as a constant rate of change and derivative as an instantaneous rate 
of change, and what these meant in the context of the problems. Preliminary results indicate 
that students have more success with slope questions than derivative questions (McNemar’s 
test, p<0.05), and that while students correctly use the slope of a linear relationship to make 
predictions, they do not demonstrate an understanding of the derivative as an instantaneous 
rate of change and an estimate of the marginal change. 

Key words: Calculus, Derivative, Rates of Change, Slope, Student Understanding  

Introduction and Research Questions  
America’s international competitiveness in the areas of science and mathematics is 

undermined by the declining mathematics and science literacy of Americans (Seymour & 
Hewitt, 1998). We need to improve mathematics and science education, with one goal being 
to produce more science, technology, engineering, and mathematics (STEM) majors (Holdren 
& Lander, 2012). Combinations of task forces, conferences, commissions, and workgroups, 
all sponsored by a variety of different organizations, have focused on the causes and 
consequences of low interest in, and high attrition from, mathematics and science. One such 
focus is on the pedagogical context of undergraduate learning, and the unmet needs of 
students (Seymour & Hewitt, 1998). The focus of this study is on one slice of this issue, 
namely calculus students’ understanding of some key concepts needed to succeed in calculus 
and higher-level mathematics. 

Examining calculus students’ understanding of slope and derivative as rates of change in 
the context of real life situations is important. Both slope and derivative are essential to 
understanding central themes in mathematics, but the “rate of change” concept is not well 
understood by students (Bezuidenhout, 1998). Understanding slope as a rate of change is the 
foundation that calculus students need to bring to the learning of derivatives as instantaneous 
rates of change (Hackworth, 1994).  

It is important for the mathematics community to understand students’ understanding of 
slope coming into calculus, and expand on that knowledge in teaching the derivative. “If 
students do not understand average rate of change, it is hard to imagine they have anything 
but a superficial understanding of instantaneous rate of change” (Hackworth, 1994, p. 154). 
And not only must students understand instantaneous rates of change, they must have an 
understanding of the continuously changing rates, as well as strong covariational reasoning 
skills to interpreting dynamic situations surrounding functions (Carlson et al., 2002).  

My research questions surround the interpretation and use of slope and derivative in the 
context of real life situations:  

• Is there a relationship between calculus students’ understanding of slope and their 
understanding of derivative? Specifically, do students’ abilities to interpret the slope 
as a constant rate of change make them more likely to be able to interpret the 
derivative as an instantaneous rate of change?  
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• Do students correctly use the slope and derivative to make valid predictions from 
models? 

By “interpret” I mean to provide a description of the meaning in the context of the 
problem. And by “use the slope and derivative” I mean do students understand the difference 
between a constant rate of change (which can be used to interpret change at any x-value) and 
an instantaneous rate of change (which is only valid for a specific x-value, and can only be 
used to make predictions around that x-value). Lastly, by “real life situations” I mean 
application problems that model realistic circumstances. Such applications require students to 
be able to translate from the context to the abstract level of calculus and then back to the 
context, skills that require conceptual knowledge (White & Mitchelmore, 1996). “Not only 
do real-world situations provide meaningful opportunities for students to develop their 
understanding of mathematics, they also provide opportunities for students to communicate 
their understanding of mathematics” (Stump, 2001, p. 88). 

My researchable questions are directly related to my larger question. While the bigger 
issue surrounds student understanding of the large concepts of slope and derivative, I focus 
my research on the understanding and interpretation of each as a rate of change in the context 
of a real life situation. My focus is on linear and non-linear, one-variable relationships, 
concepts that are reasonable for first-year calculus students. The study builds off research 
around student understand of slope and rate of change (Barr, 1980; Barr 1981; Orton 1984; 
Stump, 2001), student understanding of derivatives (Bezuidenhout, 1998; Ferrini-Mundy & 
Graham, 1994; Zandieh, 2000), student understanding of the rate of change of linear and non-
linear functions (Orton, 1983), and how student knowledge of rates of change affect their 
conceptual knowledge of the derivative (Hackworth, 1994).  

We know that far too many students start in STEM majors, only to drop out due to 
experiences in early courses (Holdren & Lander, 2012).  We must better understand students’ 
knowledge coming into calculus, and how that knowledge can adversely affect their success 
in calculus, in order to provided a successful calculus experience (and a higher chance they 
will continue in a STEM field).  

Student Understanding of Slope, Derivative, and Rates of Change 
Theoretical Perspective 

In order to research student understanding of slope and derivative, data were collected 
through a written instrument. The focus is on a detailed analysis of student understanding of a 
few key concepts, gained from direct student responses. This approach, which is consistent 
with a cognitive, theoretical perspective, is well established in the mathematics education 
community (Siegler, 2003). 

This cognitive approach requires certain assumptions, for example the assumption that 
students are making sense of the tasks in front of them based on their experiences, and that 
their answers are rational and subject to explanation (Ferrini-Mundy & Graham, 1994). My 
goal is to understand how individual students are thinking about the ideas of slope and 
derivative, so I built off the current research by utilizing this theoretical perspective.  

 
Student Understanding of Slope 

Research has documented difficulties students have with the concept of slope (Barr, 1980; 
Barr, 1981; Stump, 2001). Stump (2001) found that while high school students tended to 
understand slope in functional situations, “many students had trouble interpreting slope as a 
measure of rate of change” (p. 81).  Stump (2001) also found that students tend to think of 
slope as an angle instead of a ratio and recommended that teachers focus instruction on 
including a “deliberate mechanism for helping students link the notion of angle to the notion 
of ratio” (p. 87).  
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The use of real-world examples to assist in the understanding of slope is wildly used by 
teachers, both in representing slope in a physical situation (such as a ski slope or wheelchair 
ramp) and slope in a functional situation (such as population versus time) (Stump, 2001). In 
the latter functional situation, slope is a measure of rate of change, requiring proportional 
reasoning, another well-documented difficult concept for students (Orton, 1984).  

 
Student Understanding of Derivative 

We want students to not only be able to calculate derivatives, but to understand their 
meaning in the context of real life situations. Many students come to calculus with a very 
primitive understanding of functions (Ferrini-Munday & Graham, 1994). And while studies 
have shown that students’ procedural skills for calculating derivatives are often adequate, 
their conceptual and intuitive understanding of the derivative is lacking (Orton, 1983).  

Monk looked at students’ understanding of functions from two approaches – point wise 
and across time. Point wise understanding is what students first attain in their learning about 
functions, thinking of particular values of the independent variable corresponding to 
particular values of the dependent variable. But, in calculus, students must have “across-
time” understanding of functions, where changes in one variable lead to changes in another 
variable (Monk, 1994). Researchers have found that students’ lack the understanding 
necessary to deal with these co-varying quantities efficiently, thus not grasping the across 
time understanding (Bezuidenhout, 1998). Many of the questions on the instrument used in 
the present study require the across-time understanding of functions.  

The concept of the derivative can be represented graphically as the slope of a tangent line, 
verbally as the instantaneous rate of change, physically as velocity, and symbolically as the 
limit of the difference quotient (Zandieh, 2000). Much research has been done on the 
graphical understanding of the derivative (Asiala et al., 1997; Berry & Nyman 2003; Ubuz, 
2004), but very little about the verbal interpretation of the derivative as a rate of change. 
Verbal interpretation was a focus in the present study.  

 
Student Understanding of Rates of Change 

Rates of change are the overarching connection between the concepts of slope and 
derivatives. While much attention is focused on the specific concept of slope in algebra class, 
the more general concept of rate of change is often not emphasized, and is not well 
understood by students (Orton, 1984). Hackworth (1994) focused on calculus students’ 
understanding of rate of change, and how their understandings were affected by the 
instruction of the derivative. She found that the instruction failed to substantially change 
students’ reasoning about rate situations, and she found that the students who did poorly in 
calculus seem not to understand rate of change deeply. Hackworth also saw that students 
entering calculus had a weak understanding of rates of change, and that their understanding 
was relatively unchanged after derivative instruction, and in fact that regardless of the content 
of the course “what students assimilated was largely irrelevant to their understanding of rates 
of change” (p. 159).  

Prior research found that students are most successful with rate problems involving time, 
but that more focus should be on helping students form connections among rates involving 
time, and rates not involving time (Stump, 2001). Students demonstrate the ability to 
calculate slope but without real understanding of how the calculations relate to the more 
general concept of rate of change (Barr, 1981). Such rote learning could likely extend into 
calculus, where the student might be able to learn the techniques, but will be unlikely to 
understand the concepts (Barr, 1980). Even in studying student understanding of the 
Fundamental Theorem of Calculus, the difficulties in understanding were often tied to poorly 
developed understanding of rates of change (Thompson, 1994).  
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In the graphical understanding of a rate of change, students must recognize the difference 
between the rate of change of a straight line and a curve, but this was not evident in Orton’s 
study (Orton, 1983). Orton found through interviews that many calculus students do not think 
about rate of change anymore, losing the connections to the understanding as they moved on 
to higher level mathematics courses (Orton, 1983).  
 
My Research Motivation  

By building off the current research, this study is designed to focus on student 
understanding of slope, derivative, and rates of change. It also stems from my experiences in 
the classroom, in both a general education algebra course and a first semester calculus class. 
In the algebra course, developed to provide students with an alternative to a traditional 
algebra class, we ask students to do more than just use linear relationships. We want them to 
understand the slope and what it means in the context of the problem. For example, given an 
equation such as C = 9.8g + 750, where C is the cost in dollars to produce g gallons of a 
chemical, students are asked for the slope, the units on the slope, and the interpretation of 
what the slope means in the context of the problem (in this case, as we increase the number of 
gallons produced by 1 gallon, the cost increases by $9.80) (Franzosa & Tyne, 2010).  

Similarly, we often ask calculus students to interpret the derivative in similar ways. For 
example, given the C = f(g) is the cost in dollars of producing g gallons of the chemical, what 
are the units on f'(g)? And, what does f '(200) = 6 represent? In this case, when the number of 
gallons produced is 200, the cost is increasing at a rate of $6 per gallon (Hughes-Hallet, 
2013). But students can answer these types of questions with just a point-wise view of 
functions. Do they understand the derivative as a function that changes?  

We currently know from research that students have a difficult time with understanding 
slope as a rate of change, with across-time understanding of functions, and with 
understanding the derivative as an instantaneous rate of change. What there has not been 
much research on, however, is students’ verbal interpretation of the derivative and slope as a 
rate of change, and students’ understanding of the differences in making predictions 
involving constant rate of change and instantaneous rate of change.  

Research Design 
Setting  

The setting was differential calculus (first semester calculus) classes at a pubic university 
in the Northeast. The participants were students in two sections in fall 2013; 84 students 
participated from two sections that met three times per week in a lecture setting with a faculty 
instructor and twice per week in recitation with a graduate student teaching assistant. Of the 
84 students, 74 completed the survey fully and are included in this study. The two sections 
had different faculty instructors and graduate teaching assistants. Students completed the 
surveys during class time, approximately 80% through the first semester calculus course. 
There is only one type of calculus course taught at this university and thus the course enrolls 
a mixture of engineering students, non-engineering mathematics and science students, and a 
few students from other disciplines where majors require differential calculus. Over 50% of 
the students have seen calculus in high school, and all needed to either pass the mathematics 
placement exam or successfully complete precalculus at the University with a C or better to 
gain enrollment into differential calculus. 

 
Data Collection 

The survey instrument consisted of questions about slope and derivatives (see Figure 1), 
including questions about linear and nonlinear relationships between the dosage of a drug as a 
function of the weight of a patient. Neither variable represents time, and therefore the 
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interpretation is slightly different for students than questions where the independent variable 
is time. Prior research has shown that students are most successful with rate problems involve 
time, the most intuitive type of rate (Stump, 2001). 

The questions are not mechanical in nature and therefore do not assess computational 
skills; instead, they are questions about students’ interpretation of slope and derivative, and 
therefore try to uncover their conceptual knowledge about these topics.  

 Figure 1. Survey Instrument 
In textbooks and in instruction, when focus is given to students’ understanding of slope 

and derivative, usually the questions asked are similar to 1a, 1b, 2a, and 2b (Figure 1). These 
questions address units (Bezuidenhout, 1998) and point-wise interpretation of rates of change 
(Monk, 1994). However, Monk (1994) argues that “across-time understanding of functions is 
critical to an understanding of calculus” (p. 9) and so other questions were included in the 
survey. 

Because of the need to gather data on across-time understanding, the survey included 
questions 1c, 1d, 2c, and 2d. Analysis of data from these questions is a focus of the present 
study. The linear questions (1c and 1d) are posted to gain an understanding of students’ 
knowledge of predictions based on linear change. An understanding of the linear change as a 
constant is necessary to successfully answer these questions. The questions about nonlinear 
relationships (2c and 2d) are more complex. In order to answer these questions, students must 
understand the derivative as an estimate of marginal change, and that the derivative is an 
instantaneous rate of change that cannot be used to make predictions at other input values. 

For each of the questions used as data sources for the present study (1c, 1d, 2c, and 2d), I 
have included what a “ideal knower” would answer, what students would be thinking about 

For certain drugs, the amount of dose given to a patient, D (in milligrams), depends 
on the weight of the patient, w (in pounds).  

1. Assume that D(w) is a linear function with a slope equal to 2 (m = 2).   
a. What are the units on the slope, m = 2? 
b. Explain what this slope (m = 2) means in the context of the problem.  
c. Using the slope (m = 2), Jodi predicts that a patient’s dose will increase by 2 mg 

when the patient’s weight changes from 140 pounds to 141 pounds.  Do you agree 
with her reasoning?  Explain. 

d. Based on the linear model, a nurse accurately gave a patient a dose of 300 mg.   
Her next patient is twenty pounds heavier and she reasons that she must increase 
the dose by 40 mg (2 mg for each pound of weight) for a total dose of 340 mg.   
Do you agree with her reasoning?  Explain. 

2. Now, assume D(w) is a non-linear function.   

a. What are the units on ? (also known as ) 

b. Explain the meaning of the statement in the context of the problem.  
c. Using the fact that , Jodi predicts that a patient’s dose will increase 

by 2 mg when the patient’s weight changes from 140 pounds to 141 pounds.  Do 
you agree with her reasoning?   Explain. 

d. A nurse accurately gave a 140-pound patient a dose of 300 mg.   Her next patient 
is 160-pounds and she reasons that since , she must increase the dose 
by 40 mg (2 mg for each pound of weight) for a total dose of 340 mg.   Do you 
agree with her reasoning?  Explain. 
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while solving the task, and what the question is designed to give information about. These 
descriptions were used to inform the data analysis (described later). 
#1: Assume that D(w) is a linear function with a slope equal to 2 (m = 2).  
c. Using the slope (m = 2), Jodi predicts that a patient’s dose will increase by 2 mg when the 
patient’s weight changes from 140 pounds to 141 pounds. Do you agree with her reasoning? 
Explain. 

The ideal knower would respond, “yes,” by understanding that a slope of 2 represents the 
increase in milligrams per pound, and that it is a constant rate of change. As the pounds 
increase by 1, the dosage increases by 2 mg. This question begins to get at students’ across-
time understanding of functions, as they have to understanding how the dependent variable 
changes as the independent variable increases by one.  
d. Based on the linear model, a nurse accurately gave a patient a dose of 300 mg. Her next 
patient is twenty pounds heavier and she reasons that she must increase the dose by 40 mg (2 
mg for each pound of weight) for a total dose of 340 mg. Do you agree with her reasoning? 
Explain. 

The ideal knower would respond, “Yes, I do agree,” and explain that the increase of 2 
milligrams per pound is constant and would be applied to the twenty-pound increase. This 
question is designed to get at students’ knowledge of the slope as a constant rate of change, 
and how it can therefore be applied to any input values.  
#2: Now, assume D(w) is a non-linear function . 
c. Using the fact thatD '(140) = 2 , Jodi predicts that a patient’s dose will increase by 2 mg 
when the patient’s weight changes from 140 pounds to 141 pounds. Do you agree with her 
reasoning? Explain. 

The ideal knower could respond one of two ways. First, it would be appropriate to 
respond “Yes, I do agree,” by understanding that the instantaneous rate of change can be used 
as a prediction for the marginal change, or for input values very close to the input value of the 
derivative. Or, another appropriate response would be “No, I don’t agree,” by showing an 
understanding that the function is non-linear so we do not know how different the actual 
value would be from the tangent line prediction. This problem is designed to get information 
about students’ understanding of the instantaneous rate of change’s use in predicting marginal 
change. The important thing for students to show an understanding about is that the non-
linear nature of the function means the derivative gives an estimate of the change (and 
because information is not given about the type of non-linear function, we are not sure how 
much error is involved).  
d. A nurse accurately gave a 140-pound patient a dose of 300 mg. Her next patient is 160-
pounds and she reasons that since D '(140) = 2 , she must increase the dose by 40 mg (2 mg 
for each pound of weight) for a total dose of 340 mg. Do you agree with her reasoning? 
Explain. 

The ideal knower would respond, “It is not a valid prediction because 2 milligrams per 
pound is the instantaneous rate of change for a 140-pound person. Because the function is 
non-linear, one can not use the instantaneous rate of change to make a prediction so far away 
from 140-pounds.” This ideal knower would understand that the instantaneous rate of change 
is not a constant rate of change, and cannot be used as an estimate of the rate of change 
except at or around the specific input value. This question is designed to get at students’ 
across-time understanding of instantaneous rates of change. 

 
Data Analysis 

I examined the data from three angles, first comparing the two problems about the one-
pound increase in weight (both linear and non-linear), then comparing the two problems 
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about the twenty-pound increase in weight (both linear and non-linear), and finally 
comparing the two problems about the non-linear function (one-pound and twenty-pound).  

For each comparison, I took an approach similar to Monk (1994) and created 2x2 
contingency tables to display combinations of right or wrong answers. Students must have 
answered the question and provided some reasoning (not just “yes” or “no”) in order to be 
included in the study. I performed McNemar’s test (α= 0.05) to see if there were significant 
differences between the responses on the two questions. I also summarized the types of 
incorrect responses. 

In order to classify the linear problem answer as correct (for both the one-pound and 
twenty-pound increases), students had to agree with the nurse’s prediction and give reasoning 
that focused on the slope or constant rate of change being 2 mg per pound.   For example, 
“Yes, I agree with the nurse because the slope is 2 mg per pound and it is a constant rate of 
change”.    

In order to classify the non-linear problem correct for the one-pound increase, students 
either had to agree with the nurse and give reasoning about using the derivative at 140 pounds 
is 2 mg per pound to estimate the increase, or to disagree with the nurse because the 
relationship is nonlinear and express uncertainty about using the derivative anywhere other 
than at 140 pounds.    For example, “Yes, I agree with the nurse because the derivative at 140 
pounds is 2 mg per pound, so she can use that to estimate the marginal change in dose from 
140 pounds to 141 pounds.” 

In order to classify the non-linear problem as correct for the twenty-pound increase, 
students had to disagree with the nurse and give reasoning that focused on the non-linear 
nature of the model, and not being able to use the derivative to predict away from the input 
value of 140 pounds.  For example, “No, I do not agree with the nurse because the derivative 
is the rate of change at 140 pounds only, and cannot be used to estimate the change in dose 
from 140 pounds to 160 pounds”.   

Findings 
Students were much more successful answering the linear questions as compared to the 

non-linear questions (Figure 2), with 97% of students answering the linear one-pound 
question correctly and 95% answering the linear twenty-pound question correctly.   This is 
compared to 63% of students answering the non-linear one-pound question correctly, and just 
42% answering the non-linear twenty-pound question correctly. 

 

 
Linear Non-Linear 

1-pound 20-pound 1-pound 20-pound 
% correct 97% 95% 63% 42% 

Figure 2. Success rates of students in answering the linear and non-linear questions, 
N=74 

 
Comparing Linear and Non-linear One-Pound Increases 

To examine the results more closely, like Monk (1994), I coded students’ answers so that 
combinations of rightness and wrongness could be examined, and presented the percentages 
in a 2x2 contingency table shown in Figure 3.  The table shows the combinations of student 
responses for the two problems.  For example, 62% of the students answered both the linear 
and non-linear questions correctly, and just 1% answered both of them incorrectly.  And, 
35% of the students answered the linear problem correctly but went on to answer the non-
linear problem incorrectly.  Similarly, 1% answered the linear problem incorrectly but went 
on to answer the non-linear problem correctly.    
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Nonlinear 

Li
ne

ar
   Right  Wrong Total 

Right 62% 35% 97% 
Wrong 1% 1% 2% 
Total 63% 36%   

Figure 3. Contingency table for correctness of answers to linear and non-linear 
change in dose for weight changes from 140 to 141 pounds questions, N=74 

I performed McNemar’s test to investigate the null hypothesis that the probability of 
getting the linear problem correct is the same as the probability of getting the nonlinear 
problem correct, and concluded that there was a significant difference in the results (p < 
0.0001).  

Focusing on the 26 students (35%) who answered the linear problem correctly but went 
on to answer the nonlinear problem incorrectly, 13 answered yes, that they agreed with the 
nurse and used some language about constant rates of change. For example, one answered, “I 
do agree. The derivative of a function shows the rate of change, which is constant in this 
case.” And another answered, “Yes, she’s simply looking at the rate of change if the weight is 
140 (it’s the same for all weights, a linear derivative”. These students did not display an 
understanding of how the non-linear function comes into play, and instead relied on similar 
language as they had for the constant rate of change in the linear function.  

Three students answered that they did not agree with the nurse, and gave the reason that 
they needed to know the slope at 141, or needed to know D'(140). For example, one student 
stated, “I don’t agree. She needs to solve the derivative equation at D'(141) because D(w) is 
nonlinear”. This is interesting because they recognized that the non-linearity of the function 
comes into play, but then they thought that they just needed the derivative at another point to 
answer the question.  

In addition to these categories, one student answered “Not enough info to answer” and 
nine answered nonsensical answers, such as “No, the dosage would be 39,762 mg.”  

 
Comparing Linear and Non-linear Twenty-Pound Increases 

I performed the McNemar’s test on the 2x2 contingency table (Figure 4) to test the null 
hypothesis that the probability of getting the linear problem correct is the same as the 
probability of getting the nonlinear problem correct, and concluded that there was a 
significant difference in the results (p < 0.0001). 

Nonlinear 

Li
ne

ar
   Right  Wrong Total 

Right 38% 57% 95% 
Wrong 4% 1% 5% 
Total 42% 58% 100%  

Figure 4. Contingency table for correctness of answers to linear and non-linear 
change in dose for a 20-pound increase in weight, N=74 

Focusing on the 42 students (57%) who answered the linear problem correctly but went 
on to answer the nonlinear problem incorrectly, 28 answered yes, that they agreed with the 
nurse because of a “constant slope” or “same slope.” For example, one answered “Yes, 
because the rate of change dD/dw is 2 mg per pound,” and another answered “Yes, because 
d-prime is the slope and it is constant.”  
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Three answered that they did not agree with the nurse because they needed to know 
D'(160). For example, one student stated, “No, because the dosage increases by the derivative 
of 150 which will be different than 2 since it is nonlinear.” These responses are similar to 
those who, in the one-pound problem, answered that they needed to know D'(141).  

Two realized that it was not an appropriate reasoning, but concluded that because the 
relationship was nonlinear, the true dosage would be higher. They equated nonlinear with 
“exponential” or at least, increasing at an increasing rate.  

For the remaining nine, one said “Not enough information to answer,” one said it was 
“nonlinear but it was OK to make the nurse’ prediction,” one said “not entirely sure,” and six 
gave nonsensical explanations or calculations.  

 
Comparing Non-Linear One-Pound vs. Twenty-Pound Increases 

Lastly, I performed the McNemar’s test on the 2x2 contingency table (Figure 5) to test the 
null hypothesis that the probability of getting the linear problem correct is the same as the 
probability of getting the nonlinear problem correct, and concluded that there was a 
significant difference in the results (p < 0.001). 

20 pound increase in weight 

1 
po

un
d 

in
cr

ea
se

 in
 

w
ei

gh
t  

  Right  Wrong Total 
Right 41% 23% 64% 
Wrong 1% 35% 36% 
Total 42% 58% 100%  

Figure 5. Contingency table for correctness of answers non-linear one-pound 
increase and non-linear twenty-pound increase, N=74 

Focusing on the 17 students (23%) who answered the one-pound question correct but 
went on to answer the twenty-pound problem incorrectly, 13 answered that they agreed with 
the nurse because the slope stays the same. Even though they gave what looked like a 
reasonable answer for the one-pound increase, they went on to use the idea of constant rate of 
change for the twenty-pound increase. For example, for the one-pound correct answer, one 
student stated “Yes, I agree, because at point 140, D(w) is changing at 2 milligrams per 
pound,” but then went on for the twenty-pound problem to say “Yes, I agree because the 
nurse calculated 340 mg using the slope of 2 mg per 1 pound.”  

Two students stated that they needed D'(160) to answer the problem, once again realizing 
that the non-linearity comes into play, but that what is needed is just the instantaneous rate of 
change at a different point (the “end” point).  

One student equated non-linear with exponential, and said that the true dosage would be 
much higher than the nurse’s estimate. One student said that even though it was non-linear, 
the nurse’s prediction was valid. And lastly, one student answered that he agreed with the 
nurse but he was not sure why. 

 
Summary of Findings 

Three interesting themes emerged during the data analysis. First, students were successful 
at interpreting constant rates of change with linear relationships, with over 95% success on 
the two linear problems. Students had difficulties, however, interpreting the derivative in the 
context of the problem, what it represents, and how it can be used for approximations, with 
just 63% getting the one-pound increase correct and 42% getting the twenty-pound increase 
correct.  

Secondly, a few students recognized the non-linear nature of the relationships, but went 
on to conclude that a derivative (just not the one given) was all that was needed to estimate 
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the change in the dependent variable. This was especially noteworthy with the twenty-pound 
increase, where three students thought that the derivative at 160 pounds (instead of 140 
pounds) was the missing piece of information. 

Thirdly, a few students equated an increasing non-linear function with “exponential” or at 
least with “concave up.” While not directly related to my research questions, it does raise 
questions as to how students view a “non-linear function.”  

Conclusions and Implications 
General Conclusions 

My research focused on student understanding of concepts that required an across-time 
understanding of functions (Monk, 1988). Specifically, students seem to have a solid 
understanding of the use of the slope of a linear equation to predict unit change. For example, 
97% and 95% correctly agreed with the nurse’s prediction of the increase in dosage using the 
linear model for both one-pound and twenty-pound increases, respectively. And, even though 
64% also predicted the change in dosage for a one-pound weight increase correctly for the 
nonlinear function using the derivative at 140 pounds, more research in the form of student 
interviews should be performed to get at whether the correct answer stems from an 
understanding of the instantaneous rate of change as a measure of the marginal change, or 
because of a misconception about interpreting the derivative as a constant rate of change. 
Many of the students went on later to use the fact that D'(140) = 2 to agree with the nurse’s 
prediction of the dosage for a 160-pound patient. This makes me question whether students 
were using this wrong interpretation to answer the question about the change in dosage 140 to 
141 pounds. Interviews could uncover this more. 

For students’ understanding of the validity in making predictions from slopes and 
derivative, the results point to misunderstandings on the part of calculus students. For the 
twenty-pound increase problem, while 95% answered the linear problem correctly, only 42% 
reached the correct conclusion on the nonlinear problem. While more research in the form of 
interviews should be done, one can preliminarily conclude that students do not have a full 
understanding of the meaning of an instantaneous rate of change and an across-time 
understanding of the derivative as a function.  

Depending on the crafting of the question, students sometimes give correct answers for 
wrong reasons, which makes it difficult to detect misconceptions (Bezuidenhout, 1998). This 
might be the case for the students whose answers I coded as “correct” for the non-linear one-
pound increase. While they seemed to give correct reasoning, such a large number got the 
twenty-pound increase incorrect that I am unsure that they understood how the non-linearity 
came into play.  

Bezuidenhout (1992) found that only 2% of participants were able to interpret the 
meaning of a derivative in the context of a problem. While my results are definitely more 
promising, more research is necessary to fully understand the actual student thinking 
surrounding the non-linear responses. Additional questions and interviews could get at 
student understanding of the instantaneous rate of change as an estimate of the marginal 
change, as well as when and how a derivative should be used to make predictions. 

The struggles students had are similar to the struggles Monk found in his research 
surrounding students’ across-time understanding of functions. Like Monk (1988), I suggest a 
separate study that would include an analysis through interviews of the mental processes of 
students who do not get the correct answers to these problems.  

 
Revisiting the Research Questions 

Thinking back on my two original research questions: 
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• Is there a relationship between calculus student understanding of slope and their 
understanding of derivative? Specifically, do students’ abilities to interpret the slope 
as a constant rate of change make them more likely to be able to interpret the 
derivative as an instantaneous rate of change?  

• Do students correctly use the slope and derivative to make valid predictions from 
models? 

Students must have a clear understanding of a constant rate in order to understand 
instantaneous rate of change (Hackworth, 1994). This study supports this claim, as there was 
only one student who was able to successfully answer the non-linear derivative question after 
answering the constant rate of change question incorrectly. Rates of change in general must 
be understood by students to succeed in calculus (Hackworth, 1994), but this research adds to 
the set of findings that show that rates of change are not well-understood by first-year 
students, many of whom may have fundamental misconceptions (Bezuidenhout, 1998). 

Without a solid of understanding of rates of change, students are not able to correctly use 
the slope and derivative to make valid predictions. In fact, almost two-thirds of the students 
incorrectly used the instantaneous rate of change as a constant rate of change, pointing out 
some of the misconceptions about the derivative’s meaning as an instantaneous rate of 
change, and incomplete across-time understanding of the derivative as a function. 

 
Future Research 

I suggest more research be done in the form of interviews to understand student thinking 
about the instantaneous rate of change at a point, and why many used the instantaneous rate 
of change as a constant to make predictions. These interview questions would focus on 
student thinking about their answers to the questions about using the slope and derivative to 
make predictions. 

I also suggest some changes to the survey if it were to be used again. One slight change 
would be instead of asking students whether they agree with the nurse’s reasoning to ask 
instead how much confidence they have in the nurse’s reasoning. I think this would uncover 
the students who I coded as correct for non-linear one-pound increase who do not understand 
the derivative as an estimate of the marginal change. 

 
Teaching Implications 

It is evident from previous research (Hackworth, 1994, Orton, 1984) that students lack a 
solid understanding of rates of change in general, something needed in order to understand 
slope as a constant rate of change and derivatives as instantaneous rates of change. This study 
expands on those previous findings by showing that students do not have a full understanding 
of the difference between a constant rate of change and an instantaneous rate of change.  

How can we provide students with the general understanding of rates of change early in 
their mathematical career?   At the early grades, more focus must be given on rates of change, 
even before the context of linear functions and slope.  Students must learn to interpret rates of 
change in the context of questions, and understand how the rates of change affect the 
variables of interest.   

What can we do as calculus college instructors?  It is important to assess where our 
students are at coming into calculus, and provide the basic instruction of rates of change to 
fill in any gaps in knowledge.  It is also important to make sure our students are able to 
answer rates of change questions that require across-time knowledge of functions, not the 
point-wise questions that are often in textbooks.   If we want our students to understand the 
differences between instantaneous rates of change and constant rates of change, we have to 
ask them across-time questions that require them to reason and communicate about these 
difficult concepts. 
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AN ORIGIN OF PRESCRIPTIONS FOR OUR MATHEMATICAL REASONING 

Yusuke Uegatani 
Research Fellow of the Japan Society for the Promotion of Science (Hiroshima University) 

To build a supplementary theory from which we can derive a practical way of fostering 
inquiring minds in mathematics, this paper proposes a theoretical perspective that is 
compatible with existing ideas in mathematics education (radical constructivism, social 
constructivism, APOS theory, David Tall’s framework, the framework of embodied cognition, 
new materialist ontologies). We focus on the fact that descriptive and prescriptive statements 
can be treated simultaneously, and consider both descriptive and instantiated models in our 
minds. This indicates that descriptive statements in mathematics come from our descriptions 
of models, and prescriptive statements come from the instantiatedness of the instantiated 
models and non-existence of counterexample. As a practical suggestion from the proposed 
perspective, we point out that careful communication is needed so that students do not 
recognize the refutation of their arguments as a denial of their way of mathematical thinking. 

Key words: Inquiring minds, Prescriptive perspective, Mathematical reasoning 

Introduction 
Some undergraduate students seem to have only inadequately inquiring minds in 

mathematics, though inquiring minds are vital in continuing to study advanced mathematics. 
For example, a mathematician interviewed by Weber (2012) says, “I find students read a 
proof like they would read a newspaper and it’s impossible to understand proofs that way” (p. 
475). This comment implies that some students tend to accept proofs even before reading 
them, and as a result tend not to obtain the new insights that they would acquire through 
reading them. This is regarded as a “lack of inquiring minds” in this paper. In addition, these 
students also seem to uncritically accept most mathematical statements provided by their 
teachers in mathematics lectures. Following the distinction between a mathematical attitude 
and an attitude toward mathematics (Freudenthal, 1981, pp. 142–143), they lack 
mathematical attitudes, though they may have attitudes toward mathematics. 

This lack of inquiring minds or mathematical attitudes may also be conceptualized as a 
lack of “mathematical integrity,” a quality that involves commitment to mathematical truth 
(DeBellis & Goldin, 2006). To be specific, the phenomenon results from a lack of the 
unconscious belief that the discoverability of new mathematical results or the 
rediscoverability of already known mathematical results is open to everyone. For students 
without this discoverability belief, reading proofs or participating in mathematics lectures is 
not a process of (re)discovering mathematical results, but may instead be just a matter of 
encountering claims dependent on historical contingency, temporary human discourse, or 
authority. Some such students fail to make sense of mathematical statements, while others try 
to construct meanings such that the statements make sense to them. They do not check the 
validity of the statements, because they think that the statements are always correct if they 
only make sense. These students have difficulty in continuing to study mathematics. 
Therefore, in order to obtain practical implications from these cases to support successful 
mathematics learning, we need to identify the origins of discoverability beliefs and 
understand how they influence students. 

For this purpose, it is not enough to explain the origin of one’s discoverability belief as 
one’s successful experience in discovering some mathematical results by oneself. As an 
example of such a successful experience, we may take a kind of sudden insight within 
problem solving, known as an AHA! experience (cf. Liljedahl, 2005). Discoverability beliefs 
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also seem to depend on experiences of such subjective feelings. However, this explanation 
does not clarify the reasons why some students feel as if they have discovered something 
mathematical and others in the same lecture room do not. We may perhaps ascribe 
discoverability beliefs to uncontrollable subjective factors, but such a theoretical perspective 
is not useful for educational practice. For example, in terms of AHA! experiences, Liljedahl 
(2005) pointed out that “the environment for such an experience can be orchestrated, but the 
experience itself cannot” (p. 232). This implies that in order to get practical implications for 
the establishment of an adequate learning environment, we need to identify controllable 
objective factors that increase one’s probability of a successful experience or decrease one’s 
probability of an unsuccessful experience in (re)discovering some mathematical result. 

One possible approach to this problem is the epistemological one. Although new 
mathematical findings may sometimes depend on empirical evidence, establishing the 
validity of mathematical statements does not need empirical support in many cases. What is 
needed to establish mathematical truth is usually just mathematical reasoning. Thus, one’s 
feeling about discovery mainly depends on one’s own process of establishing mathematical 
knowledge. An origin of discoverability beliefs can be supposed to consist in such an 
epistemological process of human mathematical reasoning if mathematical truth does not 
depend on arbitrary human judgments. 

Several epistemological approaches to the process of establishing mathematical 
knowledge exist in mathematics education research, such as radical constructivism 
(Thompson, 2000; von Glasersfeld, 1995), social constructivism (Ernest, 1991, 1998), APOS 
theory (Dubinsky & McDonald, 2002), the three worlds of mathematics (Tall, 2004, 2008, 
2011), embodied cognition (Lakoff & Núñez, 2000), and new materialist ontologies (de 
Freitas & Sinclair, 2013). However, none of these explain how the discoverability belief, or 
whatever its counterpart is in each theory, arises. (Of course, they do provide explanations for 
broader educational phenomena, and their scant attention to discoverability belief is thus 
forgivable, because each theoretical perspective has its own purpose.) 

Thus, in order to obtain practical implications to support successful mathematics learning, 
we need a new supplementary theoretical perspective. As Cobb (2007) argued, “we should 
view the various co-existing perspectives as sources of ideas to be adapted to our purposes”; 
therefore, if the existing paradigms do not provide a direct solution, we must build a 
supplementary perspective integrating useful pieces of existing theoretical knowledge for a 
certain educational purpose. This paper attempts to build such a supplementary theory from 
which we can derive practical implications for the establishment of a learning environment 
where students can eventually acquire inquiring minds. 

Sufficient Conditions of the Supplementary Theory 
It is important to declare what conditions of the supplementary theory will be sufficient 

before trying to establish that supplementary theory. This will provide us with the needed 
constraints on the establishing process. In this regard, we make five assumptions in this 
paper. 

The first assumption is that the objective factors determine uniquely the set of viable 
subjective knowledge. In this paper, we must identify controllable objective factors related to 
discoverability beliefs in the subjective processes of students’ mathematical reasoning. Some 
readers may feel that this attempt is paradoxical because of the attempt to find objective 
factors in subjective processes. However, this paradox disappears if we specify that we are 
using the term “objective” to describe something from the observer’s (e.g., the teacher’s or 
the researcher’s) perspective, and the term “subjective” to describe something from the 
learner’s perspective. In radical constructivist theory, subjective knowledge is to an objective 
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problem what a key is to a lock (von Glasersfeld & Cobb, 1984). Although no single 
particular key can be uniquely determined by the particular lock, the set of usable keys is 
physically uniquely determined by the lock. Similarly, although valid subjective knowledge 
appropriate to solving an objective problem cannot be uniquely determined, we can assume 
that some set of viable subjective knowledge is uniquely determined by the problem. We thus 
establish the possibility of identifying influential objective factors for the viability of 
subjective knowledge, and will try to build a theoretical framework to capture such factors. 

The second assumption is that as a result of students’ use of learning strategies, their 
cognitive development follows David Tall’s theory (Tall, 2008) when they construct new 
mathematical concepts, even when reading proofs or participating in lectures. The theory 
partially incorporates APOS Theory (Dubinsky & McDonald, 2002) and conceptual 
metaphor theory (Lakoff & Núñez, 2000). It explains students’ cognitive transition from the 
earliest pre-school mathematics to graduate mathematics. However, it mainly explains 
successful development (outcomes), and is not directly suggestive for affective aspects such 
as attitudes or beliefs. The framework necessary for our purpose will be one which explains 
how some students autonomously begin to use successful learning strategies, resulting in the 
kind of cognitive development described by Tall’s theory, when reading proofs or 
participating in lectures. This explanation will elaborate an origin for discoverability beliefs. 

The third assumption is that we can compare the degrees of freedom of the solutions to a 
certain objective problem with those of an equivalent problem. Following the first 
assumption, for any problem for any student, the set of viable subjective knowledge for 
solving the problem is unique, but we cannot predict which knowledge in the set will actually 
survive or vie for survival, because many accidental factors influence the student. On the 
other hand, even if two problems are objectively equivalent, it is not necessarily warranted 
that two problems are subjectively similar to each other. If this third assumption holds, we 
can choose one among the equivalent problems, which will increases the probability that the 
intended knowledge actually vies. This paper will build a theory satisfying the third 
assumption. 

The fourth assumption is that the patterns of mathematical reasoning are common among 
students but that their consequences can differ because accidental factors cause students to 
arbitrarily arrange the patterns in their reasoning processes. This assumption is, albeit 
indirectly, supported by the existing research. For example, Nesher (1987) indicates that 
“most [misconceptions] are overgeneralizations of previously learned, limited knowledge 
which is now wrongly applied” (p. 37). Even unsuccessful students with misconceptions, as 
well as successful students, have some mathematical attitude toward generalization of their 
subjective knowledge. Another example is from the research on concept images. According 
to Tall and Vinner (1981), students have their own subjective images of each concept; some 
students successfully use concept images (Pinto & Tall, 2002) and others use them 
unsuccessfully (Tall & Vinner, 1981; Vinner & Dreyfus, 1989). However, both successful 
and unsuccessful mathematical thinking have some aspects in common. As a radical 
extrapolation from this fact, we make the forth assumption: if some pattern of mathematical 
reasoning is appropriately modeled, the process of loss of discoverability beliefs related to it 
can be explained in terms of the following four steps. First, all students use common patterns 
of mathematical reasoning in early learning. Second, however, due to accidental factors, 
some students fail to learn mathematics, in spite of the fact that their learning strategies are 
the same as those of successful students. Third, unsuccessful students mistakenly perceive 
that the reason why they failed is because they are using inadequate learning strategies. 
Finally, as a result, they eventually lose their discoverability beliefs and do not come to use 
successful learning strategies. Therefore, our theoretical framework must provide an 
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appropriate model of human mathematical reasoning. One of the practical goals of the 
framework will be to help students correctly recognize the validity of their initial learning 
strategies, because it is difficult to completely remove accidental factors. 

The final assumption is that successful experience of mathematical discovery depends 
mainly on mathematical reasoning, though some types of mathematical discovery may 
depend on physical evidence. If this assumption does not hold, we will not be able to 
understand why the validity of mathematical knowledge depends mainly on reasoning. On 
the other hand, this assumption implies that mathematical reasoning must have some 
prescriptive aspects. One example of such is that if the propositions 𝑃 → 𝑄 and 𝑃 are true, 
then the proposition 𝑄 should be true. If students do not perceive this prescriptive proposition 
from their mathematical reasoning, then they will not have experienced mathematical 
discovery. 

On the basis of these five assumptions, the main research task of this paper is to model 
the common patterns of human mathematical reasoning. The model must satisfy the 
following four sufficient conditions. First, it must identify the factors influencing the degrees 
of freedom of the solutions to a problem. Second, the model must explain how higher degrees 
of freedom tend to produce more accidental factors. Third, the model shows that the 
mechanisms of both successful and unsuccessful reasoning are the same except for the 
tendency to accept the influence of accidental factors. Finally, the model explains that a 
certain type of arrangement of reasoning patterns causes students to feel the presence of 
prescriptiveness in the knowledge at stake. 

In the following section, we will discuss the dual aspects of mathematical reasoning: 
prescription and description. Through the elaboration of both aspects, we will eventually 
succeed in modeling a mathematical reasoning that can satisfy the above conditions. 

Duality of Prescription and Description 
Ernest (1998) pointed out the limitations of prescriptive accounts of mathematics: 

Absolutist philosophies of mathematics such as logicism, formalism, and intuitionism attempt 
to provide prescriptive accounts of the nature of mathematics. Such accounts are 
programmatic, legislating how mathematics should be understood, rather than providing 
accurately descriptive accounts of the nature of mathematics. Thus they are failing to account 
for mathematics as it is, in the hope of fulfilling their vision of how it should be. (pp. 50-51, 
italics in the original) 

Thus, Ernest’s (1998) social constructivism takes a descriptive stance. It provides no account 
of which way of doing mathematics is correct, but rather describes how people do 
mathematics. Other existing research perspectives for mathematics education also take 
descriptive stances. They provide no account of which method of understanding mathematics 
is correct, but merely explain how students do mathematics. However, the preceding 
discussion is based on the following implicit assumption: we must exclusively choose 
prescriptive or descriptive philosophies. Both the prescriptive statement “X should be Y” and 
the descriptive statement “X is Y” can be simultaneously correct. 

For example, consider a group 𝐺,∗ . Suppose that 𝐺 is a set, and that ∗ is a binary 
operation on 𝐺. The group axioms are as follows: (i) For all 𝑎, 𝑏 in 𝐺, 𝑎 ∗ 𝑏 is also in 𝐺. (ii) 
For all 𝑎, 𝑏 and 𝑐 in 𝐺, 𝑎 ∗ 𝑏 ∗ 𝑐 = 𝑎 ∗ 𝑏 ∗ 𝑐 . (iii) There exists an element 𝑒 in 𝐺 such that, 
for every element 𝑎 in 𝐺, the equation 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎 holds. (iv) For each 𝑎 in 𝐺, there 
exists an element 𝑏 in 𝐺 such that 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 = 𝑒, where 𝑒 is the element defined in axiom 
(iii). From these axioms, we can derive the statement that the element 𝑒 postulated in (iii) is 
unique, and we will say that 𝑒 postulated in (iii) should be unique if someone argues that 
there are many elements postulated in (iii). In this case, both statements (involving “is” and 
“should be”) appear correct. This is explained by distinguishing between in and out of the 
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axiomatic system. The statement that the element 𝑒  postulated in (iii) is unique is a 
description of components in the system. The statement that the element 𝑒 postulated in (iii) 
should be unique (or, more strictly, the statement that we should argue that 𝑒 postulated in 
(iii) is unique) is a prescription for us who are out of the system. It is important that the 
element 𝑒 (or the entity in the system) is not itself bound by the rules of logic, but that all 
thinking subjects who are out of the system and agree on the group axioms have an obligation 
to obey some logical inference rules. 

In general, a descriptive statement in an axiomatic system and the corresponding 
prescriptive statement out of the system can be simultaneously correct, because we can 
always distinguish between in and out of the given system. It is, therefore, an unjustifiable 
assumption that we cannot simultaneously consider both prescription and description. If we 
have the ability to self-reflect, and to distinguish between the outside of an axiomatic system 
and the overall framework that contains the inside and the outside of the system, then 
prescriptive statements and descriptive statements are dual properties of the overall 
framework. In addition, it is also important that humans out of the system are prescribed, and 
the entities in the system are described at the same time. 

Origin of Prescription 
If our reasoning always followed the rules of formal logic, the discoverability belief 

would be justified by the independence between these rules and human minds. In general, it 
is difficult to describe the actual practices of mathematics only by formal logic (e.g., Fallis, 
2003). Thus, we argue that the schemata of descriptions actually prescribe human reasoning. 

The schema of descriptions is, for example, the format of implication statements “𝑃 → 𝑄.” 
We do not assume that it pre-existed the modus ponens. Rather, we argue that modus ponens 
pre-existed the schema “𝑃 → 𝑄,” and that the schema was invented to describe a situation 
where one may infer 𝑄 after knowing that 𝑃 is true. Given the propositions 𝑃 and 𝑃 → 𝑄, we 
usually deduce proposition 𝑄 for any propositions 𝑃 and 𝑄. This does not imply the validity 
of modus ponens, but implies that there can be a situation where one may infer 𝑄 after 
knowing that 𝑃 is true. Similarly, the rule of conjecture elimination (inferring 𝑃 from 𝑃 ∧ 𝑄) 
pre-existed the schema “  𝑃 ∧ 𝑄,” and the rule of universal instantiation (inferring 𝐴 𝑎  for 
any element 𝑎 from ∀𝑥  𝐴 𝑥 ) pre-existed the schema “∀𝑥  𝐴 𝑥 .” In general, an inference 
rule pre-existed its related schema. Thus, what one should infer depends on how one 
describes a given situation, and not on formal logic. 

From this perspective, it is necessary to identify what determines a valid description of 
the situation. Next, we shift to the question of how descriptive statements arise. 

Origin of Description 
In mathematics, some descriptive statements are contained within the axioms of the 

system under consideration, but even in advanced mathematics, we do not always think in 
completely formalized systems. We propose that, instead, descriptive statements originate 
from models in our minds. In the present paper, the term model has a dual meaning. In this 
regard, Mason’s (1989) idea is highly suggestive. According to Mason (1989), mathematical 
abstraction is described as “a delicate shift of attention from seeing an expression as an 
expression of generality, to seeing the expression as an object or property” (p. 2, italics in the 
original). Using the idea of “a shift of attention,” we will show the dual meaning of “model.” 

One meaning is “something that a copy can be based on because it is an … example of its 
type” (“Model,” n.d.-a). We call this an instantiated model. For example, the set of all 
integers, together with the operation +, is an instantiated model of a group in our minds, 
because it is a typical example of a group. With this in our minds, we can easily understand 
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any example of a group by analogy. We can also show that the set of all integers with the 
operation + is an instantiated model satisfying the group axioms. Similarly, because the 
experience of typicality can depend on subjective experiences, any example of a group can be 
an instantiated model. As it has not only the essential features of a group, but also non-
essential ones, it has more information than a group as an abstract object without any non-
essential features of a group. In general, an instantiated model satisfies a certain set of axioms, 
and carries more information than an abstract object without any properties which the axioms 
do not imply. A set of axioms do not have to be commonly accepted. Arbitrary logical 
expressions may be axioms. If a set of axioms is consistent, there exists at least one 
instantiated model for them. 

Another meaning of the term “model” is “something that represents another thing … as a 
simple description that can be used in calculations” (“Model,” n.d.-b). We call this a 
descriptive model. For example, a line in mathematics may be regarded as a descriptive 
model of a physical line, such as that made by a pencil, in our minds. A line in mathematics is 
defined by focusing attention on only some of the features of a physical line. It is a result of 
neglecting uninteresting features that. While a physical line does have width, we usually 
require in mathematics that a line have no width. In general, a descriptive model is created by 
focusing attention on only some of the features of other descriptive models or physical 
objects. Such a temporal creation is then refined with certain provisos (e.g., “it has no width”). 
The provisos prevent us from focusing attention on uninteresting features of the source 
descriptive models or objects. 

Most relevant here is the relativity between instantiatedness and descriptiveness. That is, 
when we focus attention on some essential features of an instantiated model, the abstract 
object constrained by the logical expressions of those features is a descriptive model of the 
instantiated model. When we create a new object by adding some extra features to an abstract 
object that is a descriptive model, the new object is an instantiated model of the descriptive 
model. In other words, any model in our minds can always be both instantiated and 
descriptive. Any model other than a physical object is an instantiated model of more abstract 
models or objects, and it is simultaneously a descriptive model of more concrete models or 
objects. The relativity between instantiatedness and descriptiveness allows us to dispense 
with the distinction between the terms “model” and “object.” In this sense, both terms may be 
used interchangeably, because every model can become an object of thought, and vice versa. 

By using the term “model,” one of the predominant origins of descriptive statements in 
mathematics can be explained as descriptions of models in our minds. We will provide two 
examples: the fundamental theorem of cyclic groups, and the construction of an equilateral 
triangle. Let us explain their possible models, for example, in the author’s mind. 

The fundamental theorem of cyclic groups: The theorem states that every subgroup of a 
cyclic group is cyclic. Let 𝑔  be a cyclic group generated by 𝑔. Following the definition of a 
cyclic group, 𝑔  simply consists of ⋯ ,𝑔!!,𝑔!!, 𝑒,𝑔,𝑔!,⋯; there is no other element in 𝑔 . 
If a subgroup of 𝑔  has 𝑛 different elements, they can be represented by 𝑔!! ,𝑔!! ,⋯ ,𝑔!!. 
From the group axioms, the subgroup contains 𝑔!"# !!,!!,⋯,!! , and 𝑔!"# !!,!!,⋯,!!  generates 
all elements in the subgroup. Thus, the theorem seems to be true. 

This way of creating descriptions of models in our minds implies various prescriptions. 
For example, when someone says that 𝑔  might not contain 𝑒, the author should argue that 
𝑔  always contains 𝑒 because 𝑔  is an example of a group. As another example, when 

someone points out that the order of a subgroup of 𝑔  is not always finite, the author should 
recognize that an example of a subgroup of 𝑔  in his mind is too specific. 

The construction of an equilateral triangle on a given line segment: Let 𝐴𝐵 be the given 
line segment. Draw a semicircle with center 𝐴 and radius 𝐴𝐵. Again, draw a semicircle with 
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center 𝐵 and radius 𝐵𝐴 on the same side as the first semicircle. Let 𝐶  be the point of 
intersection of the semicircles. Then, the triangle 𝐴𝐵𝐶 is equilateral. This is because the 
semicircles centered at 𝐴 and 𝐵 have radii of equal length, and all three segments 𝐴𝐵, 𝐵𝐶, 
and 𝐶𝐴 are the length of their radii. Thus, the construction seems to be valid. 

There are also various prescriptions in this case. For example, when someone says that 
the three edges 𝐴𝐵, 𝐵𝐶, and 𝐶𝐴 are not always equal, the author should argue that they are 
always equal, for the following reason. The point 𝐶 is regarded as our instantiated model of 
the points on the semicircles 𝐴 and 𝐵; the pairs 𝐶𝐴, 𝐴𝐵 and 𝐴𝐵, 𝐵𝐶 are regarded as our 
instantiated models of equivalent radii, and the lengths of 𝐴𝐵, 𝐵𝐶, and 𝐶𝐴 are regarded as 
our instantiated models of the transitivity rule. As another example, if someone points out 
that the author’s consideration depends on the belief that the two semicircles always intersect 
with each other, he should recognize that his consideration depends on a visual representation. 

Generally speaking, descriptive statements of some mathematical objects are created by 
accessing their models in human minds, and then describing these models. Given an 
axiomatic system (that is, a descriptive model), one creates an instantiated model of the given 
descriptive model in mind. Creating a descriptive statement in the system is creating a 
descriptive model of the current model in mind. There are two types of creation. One creates 
a description of a common property among all the instantiated models of the given 
descriptive model. The other creates a description of a property satisfied by only a particular 
instantiated model of the given descriptive model. If one mistakenly argues something based 
on the latter type, and someone points this out, then one should recognize the mistake (for 
example, that an example of a subgroup of 𝑔  is too specific, or the consideration of an 
equilateral triangle depends on a visual representation). Descriptive statements in 
mathematics, therefore, can come from descriptions of models in our minds, and prescriptive 
statements can come from the instantiatedness of the instantiated models and non-existence 
of counterexamples. From this perspective, the reason why proofs and refutations (Lakatos, 
1976) occur in the history of mathematics might be because humans (including 
mathematicians) sometimes create a description of a property satisfied by only a particular 
instantiated model of the given descriptive model. 

Conclusion 
In order to obtain the practical implications to support successful mathematics learning, 

especially with regard to discoverability, the author attempts to build a model of 
mathematical reasoning from a new theoretical perspective, presupposing the presence of 
mental models in the human mind. This paper asserts that strictly two types of mathematical 
reasoning exist, involving either the creation of instantiated or descriptive models from the 
mind’s present model. 

This proposed model of mathematical reasoning satisfies the four conditions presented in 
the second section. First, a factor influencing the degree of freedom in solving a problem 
lacks sufficient constraints to ignore non-essential features. For example, student 
overgeneralization of certain mathematical topics can be attributed to the creation of 
descriptive models focusing on their non-essential features. In other cases, student 
misjudgment might be attributable to an overly specific mathematical concept image caused 
by the creation of instantiated models with additional non-essential features. 

Second, if a learning environment permits students to focus on non-essential features, the 
probability of invalid mathematical reasoning will increase. The third vital property for 
successful reasoning entails focusing solely on the essential features that educators wish to 
teach; in contrast, unsuccessful reasoning is typified by a focus on non-essential features. 
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Finally, students who focus entirely on essential features will feel a sense of 
prescriptiveness. If a descriptive model of a common property among all instantiated models 
of a current mental model is created, prescriptiveness arises from subjective non-falsifiability. 
Discoverability beliefs originate from the repeated exposure of non-existent counterexamples. 

As a practical suggestion from the proposed perspective, we point out that students might 
lose the discoverability belief if they recognize the refutation of their argument as a denial of 
their way of mathematical thinking. What the refutation actually denies might not be their 
attitude toward creating an instantiated model of the given descriptive model, but only the 
particular instantiated model contingently created at that time. If creating an instantiated 
model and describing it is an essential process of mathematics, a chain of reasoning means a 
chain of creating instantiated models or descriptive models of the already-created models. 
Then, many chains of reasoning are not deductive. If a student seems to mistakenly make a 
non-deductive chain of reasoning, the teacher should carefully communicate with the student, 
and try to recognize which chain would make such a conclusion. Otherwise, proofs and 
refutations do not work well as a social construction of mathematical knowledge in 
classrooms, and intersubjectivity cannot be established. In particular, it seems to be important 
for the teacher to pay attention not only to the student’s conclusion but also to their attitude 
toward developing new findings in order to foster inquiring minds in mathematics. This 
teacher’s attention can be one of controllable objective factors that increase one’s probability 
of a successful experience or decrease one’s probability of an unsuccessful experience in 
(re)discovering some mathematical result. 

There are at least two limitations of the proposed perspective. First, it is still not clear 
whether it is completely compatible with each existing research perspective. Second, the 
above practical suggestion is still based on assumptions whose validity is not always 
warranted (for example, whether reasoning always means creating models). The suggestion 
describes only a possible situation in classrooms. Further development of our theoretical 
framework in this regard provides an avenue for future research. 
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EXPLORING DIFFERENCES IN TEACHING PRACTICE WHEN TWO 
MATHEMATICS INSTRUCTORS ENACT THE SAME LESSON 

Joseph F. Wagner                     Karen Allen Keene 
          Xavier University           North Carolina State University 

Investigating teacher practice at all educational levels has become an important research arena. 
We consider the teaching of inquiry-oriented differential equations in undergraduate classrooms 
by comparing two enactments of the same fragment of a student-centered curriculum by two 
mathematics professors.  We highlight differences in the professors’ practices and the 
consequent classroom results by analyzing the professors’ participation in whole-class 
discussions and the decisions they made during class. By considering how the same written 
curriculum can be enacted in very different ways in undergraduate level mathematics 
classrooms, we call for greater attention to research on the relationships between a written 
curriculum, an enacted curriculum, and student outcomes. 

Key words: Teaching Practice, Enacted Curriculum, Student-Centered Instruction 
 
Science, technology, engineering, and mathematics (STEM) disciplines have been 

increasingly identified as a priority for educational improvement and innovation in the United 
States.  The Department of Commerce (2012) listed mathematics and science education as one of 
six “alarms” that require our utmost attention in the 21st century.  One way to improve STEM 
education is to improve student learning of mathematics at the university level.  The mathematics 
education research community has begun to respond by creating new student-centered curricular 
materials for undergraduate mathematics courses that emphasize student inquiry, discovery, and 
problem solving.  The effect of these efforts, however, depends not simply on the materials 
themselves, but on the ways that undergraduate instructors make use of them.  To highlight this 
distinction, we examine the mathematics teaching of undergraduate instructors by interpreting 
their teaching practice as their participation in the enactment of a curriculum. 

There is considerable research on teaching practice at the elementary and secondary level. 
Ball and Forzani (2009) indicated that study of “the work of teaching” is a particularly important 
area.  However, the recent work in curriculum research at the K-12 level (i.e. Ridgway, 
Zawojewski, Hoover, & Lambdin, 2003; O’Donnell, 2008; Tarr, Reys, Reys, Chávez, Shih, & 
Osterlind, 2008) has not been extended to the university level. We believe that it is essential to 
study how a curriculum is enacted, especially as more innovative curricula are introduced at the 
college level. In this paper, we report on the results of our investigation of two university 
mathematicians’ enactment of an innovative, student-centered curriculum. Because of the 
magnitude of the available data, we have chosen to focus only on the instructors’ first day using 
the curriculum.  Although much could be learned from the study of curriculum use over time, we 
believe that an analysis even of this single day supports the arguments we make here.  In 
particular, we consider the following research questions: 

! How might university professors differ in their enactments of (the first day of) an 
innovative, inquiry-oriented differential equations curriculum?   

! How do such differences in curriculum enactment affect students’ opportunities to learn?  
Using classroom and interview data, we demonstrate how very different outcomes resulted 

from two instructors’ use of the same curricular materials on their first day of class, particularly 
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in terms of opportunities for student learning. We argue the need for RUME researchers to 
further research that does not isolate teachers’ practice and curriculum enactment from student 
learning. 

Literature Review and Theoretical Framework 

Research on mathematics professors’ teaching practice 
After an extensive review of the research literature, Speer, Smith & Horvath (2010) 

concluded, “[R]esearch on collegiate teachers’ actual classroom teaching practice is virtually 
nonexistent” (p. 99).  Since that time, some RUME researchers have begun to respond. Attention 
has been given, for example, to teaching practice in lecture-based classrooms (Patterson, 
Thompson, & Taylor, 2011; Fukawa-Connelly, 2012; Trenholm, Alcock, & Robinson, 2012). A 
variety of studies investigating mathematics professors as they enact more student-centered 
curricula have also been published. (See, for example, Journal of Mathematical Behavior, 32, 
2013).  Even before Speer et al.’s (2010) call for research, Wagner, Speer, and Rossa (2007) 
reported on one instructor’s knowledge as he implemented an inquiry oriented DE course. They 
identified forms of knowledge apart from mathematical content knowledge that are essential to 
reform-oriented teaching, and highlighted how knowledge acquired through more traditional 
instructional practices may fail to support research-based forms of student-centered teaching. 
Speer and Wagner (2009) considered the role of pedagogical content knowledge and 
mathematical knowledge for teaching through the construct of analytic scaffolding.  Early 
analyses that led to this paper were first presented by Wagner (2007) in a preliminary report on 
the differences in instructors’ use of inquiry-oriented curricular materials. Lee, Keene, Lee, 
Holstein, Ryals, and Eley (2008) suggested the construct of mathematical content move to 
discuss one mathematician’s practice while first implementing an inquiry-oriented differential 
equations curriculum.   

A few researchers have also responded to Speer et al.’s call for research comparing the 
teaching practice of instructors teaching the same course.  Johnson, Caughman, Fredericks, and 
Gibson (2013) discussed their case studies of three mathematicians, finding three themes that 
emerged from interviews and reflections with these mathematicians: curriculum coverage; goals 
for student learning; and the role of the teacher. Pinto (2013) compared the lessons of two 
teaching assistants who individually interpreted and implemented the same lesson plan for a 
calculus class very differently.  Our current work distinguishes itself, however, by contrasting the 
practices of two experienced mathematics instructors implementing identical curriculum 
materials. Additionally, we use the construct of curriculum enactment as a theoretical framework 
to help us better make sense of what happens in the classroom and how it affects student 
outcomes. 

Research on K-12 curricula 
In the 1990s, the National Science Foundation funded several new curricula to be used in 

mathematics teaching at the elementary, middle, and high school levels.  These curricula came to 
be known as “reform curricula,” and by 2000 there was significant interest in the success of these 
new curricula. This launched a myriad of studies and caused K-12 mathematics education 
researchers to think hard about the connections between a curriculum and student learning, as 
well as what it means for a curriculum to be “successful.” Remillard and Bryans (2004) called 
attention to the significant yet largely unstudied role of the teacher in determining the way any 
curriculum is used to influence subsequent student learning:  
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Focusing on the objectively given structures, we see that the resources provided in any 
curriculum represent a complex set of plans, activities, scripts, suggestions, information, 
explanation, and messages that have both textual and visual entailments and are likely to 
speak to different readers in different ways.  We know little about how teachers engage 
these varied offerings. (p. 234) 

Stein, Remillard and Smith (2007) developed a curriculum phase diagram to provide 
researchers with a framework for considering the transition of a curriculum from its written to its 
enacted form, and to subsequent student outcomes. (See Figure 1.) The written curriculum refers 
to all of the student materials, teacher materials, and supplemental materials that the curriculum 
authors originally designed. The intended curriculum includes the teacher’s plans for the class 
and for how the materials will be implemented, and expectations of how students will engage 
with them. (In this paper, we will not address the intended curriculum directly, but it will be 
discussed peripherally in the results.) The enacted curriculum is what actually happens in class. 
We interpret the teacher’s role in enacting the curriculum as what other mathematics educators 
often call teachers’ practice. In other words, the enacted curriculum is determined largely 
(though not entirely) by the teacher’s practice, including, but not limited to, the mathematical 
activities he actually uses, the decisions he makes during class, the questions he asks, and the 
time he allows for different tasks. Finally, the triangle at the right indicates the student learning 
that occurs as a result of the enacted curriculum. 

 
Figure 1: Temporal phases of curriculum use (Stein et al., 2007, p. 322) 

The cloud below the curriculum enactment flow diagram indicates areas of investigation of 
what influences the transformation from the written to the enacted curriculum.  Many of these 
issues are currently being studied in undergraduate mathematics education.  

The term curriculum has not traditionally been used to describe the content and activities of 
undergraduate courses in mathematics. Typically, professors have chosen a textbook whose 
content and topics often do not vary much from one book to another, and traditional lecture 
approaches to teaching have not lent themselves to curricular analysis as the more extensive sets 
of books, activities, instructor notes, and support materials do in K-12 mathematics teaching 
have. The introduction of more student-centered curricular materials has brought the notion of 
implementing curriculum to the notice of university-level mathematics education researchers. 
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Because of this, RUME researchers may benefit from attending to what has been learned by 
research in K-12 education.  

In her review of curriculum research, Remillard (2005) called attention to the variety of ways 
that educational researchers have either interpreted or simply assumed that curriculum 
implementers (in our case, mathematics professors) interact with a curriculum. Remillard 
identified four such interpretations or assumptions.  First, and particularly in older studies, 
researchers have treated a curriculum as fixed and unchanging, as it is in its written form, and so 
the role of the teacher is merely to deliver its content.  Within this perspective, it is assumed that 
it is possible for a teacher to implement a curriculum exactly as intended by its authors.  Failure 
to remain “faithful” to the curriculum is essentially to subvert it.  This approach leads to a 
positivist expectation that direct correlations can be made between the quality of a written 
curriculum and subsequent student progress. A second approach is to treat curriculum materials 
as but one of many sources available to a teacher in planning for instruction.  This assumes that 
individual teachers have more agency in affecting the enacted curriculum, and that written 
curriculum materials provide a supportive role.  A third approach perceives the teacher as an 
interpreter of the written curriculum, suggesting that fidelity between the written materials and 
the enacted curriculum is really not possible, as each individual instructor brings his or her own 
knowledge, experience, and values to bear in making use of the materials.  Finally, a fourth 
approach treats instructors and curriculum materials as being in a dynamic and interactive 
relationship.  In this understanding, the written materials exert an influence on the teacher, just as 
the teachers’ own background influences his or her interpretation of how the materials may be 
used. 

We are inclined to adopt this fourth perspective, avoiding a more positivist approach that 
might treat either or both of the mathematicians in this study as “failing” to implement the 
curriculum materials they were using.  It seems to us that the materials given to them exerted a 
significant impact on their own understanding of how the curriculum might be enacted, but each 
instructor brought very different backgrounds that led to notably different interpretations of how 
the materials might be used.  It is not evident to us that either “success” or “failure” is an 
appropriate interpretation of what occurred in their classrooms, nor do we believe that the 
standard of “faithfully implementing the curriculum” is a meaningful or measurable expectation 
to place on their shoulders.  

The rise of inquiry-oriented curricula 
In the past ten to fifteen years, a number of research-based sets of curricular materials have 

been written to support student-centered, and inquiry-oriented learning of undergraduate 
mathematics, including the NSF-supported Teaching Abstract Algebra for Understanding 
(http://www.web.pdx.edu/~slarsen/TAAFU/home.php), Inquiry-Oriented Linear Algebra 
(http://www.math.vt.edu/iola/index.php) and Inquiry-Oriented Differential Equations 
(Rasmussen, 2006). These materials have inspired a wide variety of research on both the teachers 
and students who have used them.  Much of this research, we contend, may rightfully be placed 
within the cloud of “Explanations for Transformations” in Figure 1.  That is, this research 
involves the study of phenomena that Stein et al. (2007) identified as directly influencing the 
transformation of a written curriculum into its eventual enactment.  We note, however, that the 
role of these phenomena in effecting such transformations is rarely addressed by their 
researchers or the larger RUME research community. We believe that this risks fostering 
research on teaching practice that divorces it from its subsequent effect on student learning.  The 
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purpose of this paper is to call attention to this problem and encourage deeper reflection on some 
of our research priorities. 

Methods 
Data for the current study are taken from a much larger collection gathered as Prof. Gage and 

Prof. Paxton each taught a semester course in Differential Equations, two years apart, at a 
private, liberal arts university in the Midwest. The students in the class were primarily majors in 
mathematics or one of the physical sciences.  Both instructors had doctorates in mathematics and 
each had been teaching for more than fifteen years at the university level.  Both used the same 
set of curricular materials for an Inquiry-Oriented Differential Equations (IO-DE) course 
developed by Rasmussen (2006). Their previous experience involved more traditional lecture 
style courses, and neither had any particular exposure to, or training in, other methods of 
instruction.  Each had, however, expressed some dissatisfaction with his prior student learning 
outcomes. 

The IO-DE curriculum is a research-based set of curriculum materials including student 
tasks, instructor notes, and other instructional materials intended to support students as they 
“reinvent” graphical, symbolic, and numerical techniques to solve ordinary differential equations 
and linear systems of differential equations under the guidance of an instructor.  The curriculum 
is designed to support student-centered learning, with activities cycling between small-group and 
whole-class investigations and discussions.  The first activity presented to students on the first 
day of class is shown in Figure 1. 

 

Almost all of each instructor’s classes were videotaped with two cameras, one following the 
instructor and another focused on a selected small group of students.  Audio-taped interviews 
were conducted with each instructor by the first author several times prior to the semester and 
after almost every class, with interviews varying between 15 and 75 minutes in length.  For the 
present study, complete transcripts were made of the whole-class discussions for each 
instructor’s first day of class, and significant portions of the interviews carried out near the first 
day of class were also transcribed. 

The instructors’ contributions to the whole-class conversations were coded using a coding 
scheme inspired by Wells and Arauz (2006) to determine the role that each turn of talk played in 
the conversation.  The codes (some described in more detail below) were designed to capture the 
nature of each comment and each question, as a means highlighting the distinct conversational 
differences between the two classes.  The two authors coded the transcripts independently using 
18 possible codes, with 72% and 73% agreement for Prof. Gage’s class and Prof. Paxton’s class 

In this problem we study systems of rate of change equations designed to inform 
us about the future populations for two species that are either competitive or 
cooperative. Which system of rate of change equations below describes a pair of 
competitive species, and which system describes a pair of cooperative species? 
Explain your reasoning.  

€ 

dx
dt

= −5x + 2xy

dy
dt

= −4y + 3xy
            

€ 

dx
dt

= 4x − 2xy

dy
dt

= 2y − xy
 

Figure 2: First activity of IO-DE curriculum 
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respectively.  Disagreements were resolved by mutual discussion.  Coding counts may be easily 
compared because both classes had segments of whole-class discussions that lasted nearly 
identical amounts of time (35:35 and 35:41 for Gage and Paxton, respectively).  Because the 
focus of this analysis is on the instructors’ practices, we do not code or otherwise attend directly 
to the students’ contributions to the class conversations.  In addition to making the analysis more 
tractable, we believe that a great deal is revealed even under this limitation. 

Findings and Analysis 

Analysis of professors’ practice as seen in whole class discussion 
Prof. Gage and Prof. Paxton each used the same written curriculum materials and student 

activities on their respective first days of class. Based on the interviews with the instructors 
before and after class, each instructor’s intended curriculum gave every appearance of being 
closely aligned to the written curriculum. Even more, at first glance, the enactments of the two 
classes looked a great deal alike.  In particular, we observed the following: 
• Each instructor attempted to promote group learning and foster small-group and whole-

class discussions. 
• Each instructor expressed desire for students to develop their own knowledge, without 

dependence on the instructor’s authority. 
• Each instructor used open-ended questioning, and encouraged students to present their 

work and ideas to the class and to each other for critique. 
• Each instructor made efforts to address both mathematical and social norms. 
At closer consideration, however, significant differences could be observed between the 

conversation and character of the two classes.  Prof. Gage and Prof. Paxton appeared to exercise 
different ways of directing and participating in the whole discussions.  Table 1 provides excerpts 
of their contributions to a segment of the whole class discussion (with student contributions 
omitted) that highlight the differences that we found typical of the two classes.  In particular, 
Prof. Gage’s questioning appeared to be very non-directive and open-ended, while Prof. Paxton’s 
seemed to be more pointed and specific. 

In an effort to capture these differences analytically, we developed and applied the coding 
scheme described above.  Due to space limitations, we provide in Table 2 only a few of the 
eighteen coding categories and counts for the instructors’ questioning.  Questions coded as 
Thinking, for example, offered invitations or openings for students to describe their thinking or 
share their opinion.  These were classified as one of three types: Opening, Neutral, or 
Narrowing: 

! Opening: Invites a student’s opinion or thinking (or sometimes a response), but without 
suggesting an increasing in focus from previous comments or questions.  Example: What do 
you think, Stacy? 

! Neutral: Invites opinion/thinking, but focus is unclear from the context 
! Narrowing: Invites a student’s opinion, thinking, or response, directed toward a specific 

idea that has emerged from the conversation; tends to focus the conversation rather than 
open it up to new directions.  Example: What do you think about what Drew just said? 

Questions coded as Math/Service are those that pointedly ask a specific mathematical question, 
usually referring directly to specific mathematical objects, and usually having a right or wrong 
answer. These questions are posed “in service” of making mathematical progress on the 
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task/problem at hand.  (Example: If the derivative is negative, what can we say about the 
function?) 

Table 1: Representative samples of each instructor’s pattern of questioning and 
soliciting students’ contributions. Prof. Gage’s questioning is very non-directive and open-

ended, while Prof. Paxton’s is increasingly pointed and specific. 

Prof. Gage Prof. Paxton 

G: 
 
 

S: 
G: 
S: 
G: 
S: 
G: 
S: 
G: 
S: 
G: 

 
S: 
G: 

Can somebody say a bit more about the 
variable aspect?  And you may, yourself, I 
mean, you just said, you know….  
(replies) 
Tom? 
(replies) 
Sue, can you explain what Tom…? 
(replies) 
Could somebody, somebody, please? 
(replies) 
To be functions? 
(replies) 
So you, Ron, what was in your mind 
here? 
(replies) 
I think we can go on forever with this.  
It’s kind of interesting. 

P: 
Ss: 
P: 

 
S: 
P: 

 
 
 

S: 
P: 

 
S: 
P: 

Do we agree with Cathy? 
(replies) 
So in System A when y is zero, species x 
and species y are getting what?  
(replies)  
So how do you go from that observation 
to the conclusion that in system A ... the 
species are cooperative? You’re Kevin, is 
that right? 
(replies) 
So what does it mean to say that the two 
species are cooperating?  
(replies) 
So Keith, are you gonna jump on that? 
Because that’s exactly the same 
reasoning as we heard. Conor? You don’t 
have to raise your hands! Just talk!  

 
Table 2: Excerpt of coding counts for instructors’ questioning during whole class 

discussions of nearly identical lengths. 

 Prof. Gage Prof. Paxton 
Questions   

Thinking 32 19 
Opening 24 10 
Neutral 0 1 

Narrowing 8 8 
Math/Service 2 26 
Clarify 12 4 
Progress/Assess 13 8 
Justify 0 6 

 
A comparison of the two instructors shows that Prof. Paxton’s questioning was somewhat 

more likely to include Narrowing questions, and much more likely to include Math/Service 
questions.  He also asked students to justify their responses at times during the conversation, 
while Prof. Gage never did.  Prof. Gage, on the other hand, tended to keep his questions much 
more open-ended and non-directive, and he was more likely to ask students to clarify their ideas 
and comments and to Assess or “check in” with students to see if they were paying attention, 
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understanding or accepting what was under discussion.  A complete analysis of the whole-class 
discussions shows similar differences in the nature of the instructors’ comments, as well.  In 
sum, the two instructors demonstrated markedly different types of engagement and guidance 
during whole class discussions, contributing to what we identify as markedly different 
enactments of the curriculum and opportunities for student learning. 

Opportunities to learn 
The two instructors’ different approaches to questioning and participating in the whole-class 

discussions offer a first measure of how, despite sharing the same written curriculum, very 
different enacted curricula arose in the two classrooms.  In what follows, we will present 
additional, significant differences in the enacted curricula, but as a means of presentation, we 
find it helpful to present these data in the context of considering how these differences may have 
affected student learning. Unfortunately, we do not have the data available to directly study 
student learning through assessment or interviews. However, we propose that considering 
students’ opportunities to learn provides a means to begin to think about the big picture of 
curriculum enactment as it affects student outcomes. Bennett (1987) discusses a student’s 
opportunity to learn as a function of several variables, including a student’s time on task, the 
nature and quality of the task, and the degree of student engagement. In the context of Prof. 
Gage’s and Prof. Paxton’s classes, we assume that students opportunities to learn would be 
affected by the time given to particular topics and discussions, the relative emphasis or value 
placed by each instructor on the matters discussed, and the degree to which students themselves 
demonstrated engagement in the class.  We emphasize that the question is not simply whether 
students learn “more” or “less,” but that as instructors influence different curriculum enactments, 
the nature and character of what is being learned can be affected as well.  This analysis cannot 
replace a more direct assessment of students’ actual progress, but we believe it points to the 
research need for RUME studies of teachers’ practice to give due attention to student assessment. 

Instructor questioning and commentary 
Our analysis above suggests to us that the differences in the ways that Prof. Gage and Prof. 

Paxton participated in their whole-class discussions likely resulted in offering the students in the 
two class differing opportunities to learn.  We can hypothesize what might be considered both 
“pros” and “cons” to each instructor’s approach.  Prof. Gage’s more open-ended and less pointed 
questioning, for example, may have encouraged a wider variety of students’ ideas to be placed in 
conversation, allowing students to consider more perspectives on the same problem; it might also 
have extended the conversation and made it more challenging for the class to reach consensus on 
the problem at hand.  Prof. Paxton’s more directive line of questioning, on the other hand, may 
have encouraged a common focus, permitting a quicker achievement of consensus; but it might 
also have discouraged alternative ideas or solution approaches from emerging, thereby favoring 
the instructor’s preferred solution or explanation over alternatives.  Our point is not to determine 
which, if any, of these hypotheses is correct, but to emphasize that we really do not know how 
the different instructor contributions affected the enactment of the curriculum either to the 
benefit or detriment of student learning.   

Turns of talk 
How students engage with a topic may be analyzed in terms of how often they actually 

participate in the whole class discussions.  We understand that this may be a simplistic view of 
“engagement,” as students who do not speak may or may not be actively engaged in classroom 
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learning. However, research does show that participation in the mathematics discussion is an 
effective way for students to construct knowledge (Webb, 1991; Cobb, Stephan, McClain & 
Gravemeijer, 2011).  In Table 3, we report the count data for turns of talk by teachers and 
students that occurred on the first day of each of the professor’s class during all periods of whole 
class discussion. 

 

Table 3: Analysis of classroom “talk” during whole-class discussion 

  Prof. Gage Prof. Paxton 

Turns of talk  188 183 
Instructor’s turns of talk 74 (39.4%) 87 (47.5%) 
Students’ turns of talk 114 (61.6%) 96 (52.5%) 
Students in class 22 21 
Students contributing 16 (72.7%) 9 (42.9%) 
Students making 90% of contributions 10 (45.5%) 5 (23.8%) 

 
A “turn of talk” refers to the spoken contribution of an individual speaker, beginning after a 

previous speaker concludes and ending before a subsequent speaker begins.  (Occasionally, 
overlapping contributions are coded as individual turns.)  As one can see, Prof. Gage’s and Prof. 
Paxton’s classrooms had almost an identical number of turns during their classes’ whole-class 
discussions (which lasted almost identical lengths of time). Professor Paxton made 47.5% of the 
utterances and Prof. Gage made 39.4%, giving Prof. Paxton a somewhat more frequent role in 
the discussion.  This indicates that there were a few more times in Prof. Gage’s classroom than in 
Prof. Paxton’s during which the whole-class discussion continued among students without a 
contribution by the professor.  This corresponds to the fact that, throughout the whole-class 
discussions, more students made vocal contributions in Prof. Gage’s class (16) than in Prof. 
Paxton’s (9).  A smaller number of students in Prof. Paxton’s class (5) tended to dominate the 
conversation by contributing 90% of students’ turns of talk, whereas in Prof. Gage’s class, 
contributions of talk were distributed more broadly among 10 students.  These differences in 
student participation rates suggest the possibility of corresponding differences in students’ 
opportunities to learn. 

Content analysis 
The two mathematics professors addressed the first day’s mathematical content in different 

ways, and we contend that how the professors interpreted the curriculum is an important and 
appropriate way to consider how the enacted curriculum may have affected student learning. In 
terms of the opportunity to learn, this content analysis considers both students’ time on task and 
the nature and character of the tasks with which they engaged.  Table 4 presents a brief 
description of how each professor addressed the mathematical content provided by the written 
curriculum materials. 

As Table 4 shows, Prof. Gage had his class take up only the first task of the curriculum on 
Day 1, and the class ended without the students reaching an apparent consensus on its solution.  
He spent significant time (over 13 minutes) dealing with the question, “What are x and y? 
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Functions? Variables? Numbers?”  Although our focus is on Day 1, we note that Prof. Gage did 
not return to the first task on Day 2, but he did continue the discussion of the “What are x and y?” 

Table 4: Overview of how the class was conducted and details of time on different 
content 

Prof. Gage Prof. Paxton 
! Students spent the entire first class working 

on the introductory task. 
 

! A significant amount of time was spent on 
the question, “What are x and y?” 
 

! Students broke into groups four separate 
times to discuss the first task, interspersed 
with whole class discussions. 
 

! No stated or assumed consensus was 
reached on the first task. 

 

! Students completed the first task with 
“announced consensus.” 
 

! A very brief discussion of the question 
“What are x and y?” took place. 
 

! Students broke into groups once for each of 
three consecutive tasks. 
 
 

! Class completed the second task with 
“announced consensus.” 
 

! Class worked on third task with uncertain 
consensus at end of class. 
 

Time spent on content (italicized times in bold taken from Day 2) 
 Prof. Gage Prof. Paxton 
Preliminaries 31:10 13:27 
Problem 1 45:50 29:08 
    Small group 10:15 (4) 13:21 (1) 
    Whole class 35:35 15:47 
    What are x and y? 13:13   16:30   1:28 
Problem 2             55:26 15:52 
Problem 3   - - 16:41 
 

question on the second day for an additional 16.5 minutes, suggesting the significance that he 
placed on students’ engagement with that particular question. This question was listed in the 
teacher materials provided by the IO-DE authors (and thus was a part of the written curriculum) 
as an idea that is important to address with students during the early classes.  Prof. Paxton had 
the same set of instructor materials, and he, too, raised the question about x and y, but he spent 
only about 1.5 minutes on the matter without returning to it on either of the first two days. 

In contrast, Prof. Paxton facilitated the completion of the first task of the curriculum, with 
announced consensus. By “announced consensus,” we mean that Prof. Paxton made a clear 
attempt to ask the class if everyone agreed with the conclusions that had emerged from their 
discussions, and, receiving no negative feedback from students, he indicated that it was time to 
move on to the next problem.  He then asked students to work on the second task, first in small 
groups and then in whole-class discussion, again reaching announced consensus.  He then had 
students work on the third task of the curriculum, and although he identified at the end of the 
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class the correct answer to the problem posed by the third task, Prof. Paxton noted in his 
interview that it was not clear that the class at arrived at consensus around it.   

What is clear, however, is that by the end of each instructor’s first day of class, the students 
had been exposed to very different mathematical content, even though both were using the same 
curriculum materials.  Prof. Gage’s class focused entirely on one problem, and the question of 
“What are x and y?” received significant attention.  Prof. Paxton’s class addressed three separate 
tasks, and the question about x and y was addressed only very briefly. 

Additionally, the difference in times devoted to small group and whole class discussions may 
have provided different opportunities for students to engage in learning. Professor Paxton 
provided students with considerably more time than Prof. Gage in small group discussion (26 
minutes, spread over three tasks), using small group discussion only at the beginning each task. 
Professor Gage provided less time small group discussion (a bit over 10 minutes), and distributed 
it in smaller amounts over four separate periods during the consideration of the first task.  
Because we do not have records of what went on in the small groups discussions, we really 
cannot hypothesize how these differences may have affected student learning. 

The results from this section show how different enactments resulted in very different 
opportunities to learn. On one hand, significantly more students were engaged in the whole class 
discussions in Professor Gage’s class and spent more time thinking about the key question, 
“What are x and y?” On the other hand, Professor Paxton’s students were able to consider more 
mathematical tasks and topics. We believe that there is strong evidence that the students’ 
opportunities to learn differed significantly across the classes.  We cannot, however, determine 
how actual student learning differed.  But that is precisely our point. 

Discussion 
We approach the study of two undergraduate mathematics professors’ practice by comparing 

their enactment of the curriculum and resulting opportunities for students to learn. Our concern is 
that RUME researchers may have become too complacent in assuming that the use of a particular 
written curriculum can be readily correlated with expectations about the nature, the quantity, and 
the quality of what students are actually learning. We believe that it is possible to overestimate 
the causal relationship between a written curriculum and subsequent student learning.  Rather, 
we claim that the enactment of the curriculum, which is constituted in the classroom by both the 
professor and the students, is particularly appropriate to study as we look at student outcomes. 
We propose that greater attention needs to be given to distinguishing between the different 
curricula at work: the written, the intended, and the enacted curricula offer a powerful way to 
reconsider the connection between curriculum materials and student learning.  

We presented an analysis of data drawn from the practice of two mathematics professors on 
the first day of an undergraduate differential equations course.  Both professors were teaching for 
the first time using a new curriculum (for them) with a student-centered and inquiry-oriented 
pedagogical focus.  The written materials consisted of a sequence of student tasks and some 
informal teacher notes about implementation from the curriculum’s author.  We found that, even 
though the classes appeared the same when considered at a coarse grain size, significant 
differences could be identified concerning the instructor’s role in discussion, student 
participation, the pace and quantity of the material discussed, and the emphases placed on 
different aspects of the mathematical content included in the curriculum materials.  

The kinds of questioning that the instructors used were different.  Even though both 
professors asked what we call “thinking” questions, Prof. Gage used more opening questions and 
Professor Paxton used more narrowing questions. This created different kinds of learning spaces 
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as the students in the two classes participated in the curriculum enactment.  Additionally, the 
cycling of small group and whole-class discussion was different.  Prof. Paxton began each task 
with one small group discussion and then conducted whole class discussion to complete and 
come to what he perceived as consensus on two curriculum tasks, with additional progress made 
on a third.  Professor Gage used of a series of small group and whole-class cycles during which 
the small group sessions lasted for short periods of time. Consensus around the first task of the 
curriculum discussed by his students was not reached. 

We hypothesized differences in students’ opportunities to learn in the two classes by 
considering their engagement, their time devoted to the tasks, and the nature and character of the 
tasks and supporting discussion.  The two classes demonstrated different levels of student 
engagement, different emphases on the mathematical content discussed, different amounts of 
time spent on individual topics and tasks, and different rates of progress through the curriculum 
materials.  Although we have no direct measure of student learning in the class, it is difficult to 
image that the two instructors’ use of the same curriculum materials resulted in comparable 
student experiences.  Furthermore, we do not think it helpful to judge that either of the two 
instructors succeeded or failed in making good or “faithful” use of the curriculum materials.  We 
believe that differences like those we observed are to be expected to varying degrees when any 
individual instructor engages in transforming a written curriculum into an enacted one. 

  Conclusion 
The RUME community has produced a wealth of research in recent years on the experiences 

of instructors and students in what is often called “research-based” curricula. Very often, 
however, the fact that these curricula emphasize inquiry, investigation, and other student-
centered activities is taken as sufficient for presuming their ultimate benefit to students.  We do 
not doubt the consistent research findings that student engagement and inquiry are beneficial.  
However, we are concerned that a large amount of the research on instructors’ use of such 
curricula either does not attempt to link the instructors’ activities to student outcomes, or appears 
to presume that “faithfulness” or “fidelity” to a curriculum as intended by its authors is possible 
and to be expected.  We fear that as a research community we may be too easily taking student 
outcomes for granted, rather than taking on the admittedly daunting task of asking harder and 
deeper questions about how the myriad ways that any written curriculum may be enacted 
ultimately impact our students’ experiences.  It is necessary to promote research that directly 
connects curricula, teacher practice, and student learning, rather than isolates them. 
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STUDENT CONCEPTIONS OF TRIGONOMETRIC IDENTITIES 

Benjamin M. Wescoatt 
Valdosta State University 

Although the research literature concerning topics in trigonometry is growing, explorations 
of students’ conceptions of trigonometric identities is scant.  This study aimed to contribute to 
this area by considering the extent that students developed a structural understanding of 
trigonometric identities and the implications their understanding had on the solving of 
problems involving identities.  Through task-based interviews involving verifying 
trigonometric identities, students appeared to view certain identities differently than other 
identities, holding a deeper understanding of them.  Their understanding and trust in these 
identities allowed for the students to use them in the construction of new identities.  In order 
to verifying identities involving complicated function arguments, some students either 
ignored the argument or replaced it with a single letter, typically an x.  Although doing so 
allowed the students to focus on the structure of the identity, students’ conceptions of 
variable remained at a conceptually-weak level.    

Key words: Trigonometric identity, Variable, Function argument, Procedural-structural 

Although research into concepts in trigonometry has historically been sparse in 
comparison to other areas of mathematics, over the past decade, the body of research has 
slowly accumulated.  In her dissertation, Brown (2005) explored the development of a 
framework for necessary components in students’ understanding of the sine and cosine 
function.  She believed that for students to have robust understandings, they needed to have 
fluid, integrated views of the functions as representing directed distances, y-coordinates, and 
triangle ratios.  These views were all grounded in the context of rotations in the standard 
position.  Additionally, students should have a connected understanding of the functions as 
represented by calculator outputs, right triangles, rotations, and sinusoidal graphs. 

Taking a break from his research into proof, Weber (2005) investigated how students 
experienced the sine function in a prescriptive sense.  Trigonometric functions are different 
from initial types of functions, such as polynomial functions, that students encounter in that 
they do not have an explicit form.  This issue can become a cognitive barrier in that students 
initially conceive of functions as procedures (Breidenbach, Dubinsky, Hawks, & Nichols, 
1992).  That is, functions have a prescriptive nature; the student inputs a value, the function 
outputs a value.  Weber described how students could approach trigonometric functions in a 
prescriptive sense through the measurement of triangle sides and the construction of ratios.  
The process allowed these students to gain a deeper understanding of the trigonometric 
functions and use their understanding of the process to justify properties of the functions in 
comparison to students who did not undergo the treatment.  

Moore (2014) described the importance a robust understanding of angle measure plays in 
a student’s understanding of the trigonometric functions.  Within the context of co-variational 
reasoning, the student in the study, Zac, was able to construct a process image of the sine 
function.  Zac reasoned about the circular motion inherent in the unit circle and connected it 
with the dynamic nature of the sinusoidal shape, allowing him to recreate the graph without 
relying on a memorized image or numerical calculations. 

As the previous research shows, most of the research concerning students’ understanding 
in trigonometry has been directed toward the trigonometric functions.  A next step would be 
to explore students’ conceptions of trigonometric identities.  A trigonometric identity is an 
object typically encountered by many high school or college mathematics students.  The 
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identity itself is a tautological statement claiming that two expressions composed of certain 
combinations of trigonometric functions actually describe the same underlying mathematical 
object despite appearing to be different.  The notion of trigonometric identity is rich in 
mathematical conceptions.  Students should be able to coordinate ideas of function and 
equivalence in order to understand the intended meanings imparted by the identity.  
Additionally, students should have a mature conception of the function argument, 
understanding the equivalence of the expressions for all inputs in the domain of the 
expressions.  Finally, if students engage in the activity of verifying identities, students must 
understand what constitutes valid mathematical argumentation. 

The studies of Weber (2005) and Moore (2014) focused on students developing a process 
conception of a trigonometric function.  As students explore identities, they need to move 
beyond this conception view and focus more on the structural aspects of the functions 
involved.  This study aims to fill in the gap in the literature pertaining to students’ conceptual 
understanding of trigonometric identities.  In particular, this study explored if students do 
begin to view trigonometric identities as indicating structural relationships rather than 
viewing identities in a procedural sense and examined the implications this shift could have 
for students in terms of solving associated problems. 

Theoretical Framework 
Rooted in the theories of Piaget, APOS theory attempts to describe how students may 

come to understand certain mathematical objects.  Underpinning APOS is the hypothesis that   
an individual’s mathematical knowledge is her or his tendency to respond to 
perceived mathematical problem situations and their solutions by reflecting on them 
in a social context and constructing or reconstructing mathematical actions, processes 
and objects and organizing these in schemas to use in dealing with the situations.  
(Dubinsky, 2000, p. 11) 

According to Dubinsky and McDonald (2001), an action is a learner-perceived external 
transformation of an object.  Actions usually occur in a step-by-step fashion with reliance on 
memorized procedures.  Once the learner has repeated an action, reflection on the action may 
interiorize the action into a process.  A process does not need to be physically performed; the 
learner may envision the process and the result.  Thus, a process does not have a reliance on 
external stimuli but is under the control of the learner.  Once the learner understands that a 
process represents a totality, the learner is said to have encapsulated the process into an 
object.  As an object, the focus has shifted from a procedural understanding to a structural 
understanding of the concept.  The learner constructs the mathematical concept’s schema by 
collecting into a coherent framework all of the other actions, processes, objects, and schemas 
associated with that concept.  APOS theory was used to understand trigonometric identities as 
moving from a process conception to an object/structural conception. 

Küchemann (1978) describe the many conceptions of numerical variables that students 
held when solving problems.  He described these uses as being a letter that was evaluated, 
ignored, or treated as an object.  Additionally, he classified them as letters treated as specific 
unknowns, generalized numbers, or actual varying quantities.  Gray, Loud, and Sokolowski 
(2009) characterized the first three conceptions of variable as arithmetic or procedural 
thinking.  In other words, students could solve problems by implementing a particular 
process.  The later three conceptions were characterized as algebraic thinking; students using 
those interpretations focused on the structural aspects of the problem.  In this study, uses of 
literal symbols, or a variable, will be characterized as being either arithmetic or algebraic.  
That is, students’ conceptions of variable will be interpreted as either procedural or structural, 
with structural thinking considered as representing a higher cognitive level. 
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Methodology 
The data for this study were collected from a college trigonometry course at a large 

research university as part of a larger case study on verifying trigonometric identities.  Thirty-
three students participated in the study, responding to prompts involving verifying identities 
and solving verification problems on homework, quizzes, and exams.  Of these thirty-three 
students, eight agreed to participate in individual task-based interviews.  Each interviewee 
solved problems while speaking aloud his or her thought processes.  The pseudonyms of the 
participants in the interviews were Alan, Amber, Bella, Charles, Cooper, Helen, Katie, and 
Maria.  Charles could be classified as deficient in his mathematical understanding and ability; 
the remaining interview participants were either above average or excellent in their 
understandings and abilities.  The audio from the interviews was captured and subsequently 
transcribed.  Additionally, student work generated during the interviews was retained for 
alignment with the transcripts. 

During the transcription process and while reading each interview, general themes were 
jotted down in an open-coding process; the approach could be described as being in the style 
of Grounded Theory.  Each evolving theme was compared to themes from previously 
analyzed interviews.  The themes were triangulated within and across interviews.  After the 
initial analysis of each interview, the interviews were further analyzed and the themes 
modified until the themes adequately described the observations from the interviews. 

In pure Grounded Theory, no theoretical framework is used to initially analyze the data.  
Instead, the data construct the framework.  For the purposes of the data analysis for this 
study, initially no framework was used.  However, as the themes began to evolve, it became 
apparent that pre-existing theory regarding the shift from procedural to structural 
understanding would be useful in framing the results.  Thus, the procedural-structural 
framework was utilized to interpret the themes. 

Results and Discussion 
In this section, results of the task-based interview will be shared and discussed.  Again, 

the focus of the analysis was on how students may understand the trigonometric function as 
an object. 
Encapsulation of the Trigonometric Identity 

Students appeared to encapsulate a core of well-known identities.  These identities 
became well-understood by the students through repetitive successful utilization.  Students 
were quite ready and comfortable to use these core identities to solve problems.  Furthermore, 
some of the students apparently conceived of these identities differently than other identities. 

An example of how students perceived of these core identities differently is best 
understood by examining comments made by Cooper.  The first question asked in the 
interview was the following:  “Do you consider the following equation to be an identity?” 

tan! 𝑥 =
sin! 𝑥
cos! 𝑥 

While students may have believed the equation to be or not be an identity for various beliefs, 
Cooper had an interesting and enlightening response. 

COOPER: This, I, I would consider this to be a definition, I think.  Cuz tangent x, I 
mean, tangent quantity squared, tangent is sine over cosine.  I consider that a 
definition. 

Not only did Cooper not believe the equation to be an identity, he considered it as 
representing some other class of object, an object for which he had named, a definition.  
Through prompting, Cooper clarified what a definition meant to him.   
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COOPER:  It’s kind of like looking at a word.  I mean, you’ve got different words 
have different meanings.  And if you look at tangent, I, I look at it as like, you know, 
you know, something that describes something. … Like, you know, whenever you 
think of just definition of a horse, or something, it’s just an explanation of what it is.  
So whenever you think of tangent, you’re kind of explaining what it is, well that’s 
sine over cosine. 

Thus, for Cooper, definitions focus more on underlying aspects, referring to alternative ways 
to describe a particular object.  In this example, he can describe an object as the tangent 
function or as a ratio of the sine and cosine function. 
 Cooper was able to articulate differences between how he viewed definitions and 
identities.  Thus, in his mind, a definition and an identity were distinct objects.  In exploring 
what he considered to be identities or definitions, Cooper claimed that identities differed from 
definitions in how he recalled them to consciousness. 

COOPER:  They’re [identities] not something that kind of just rolls off the thought.  
You know, its’ not something that instantly pops up in your head. … Definitions are 
automatically thought of.  Identities take me a moment to catch onto. 

For Cooper, the hesitation in invoking an identity appeared to originate in a need to perform a 
manipulation of sorts.  When distinguishing something as an identity, he mentioned process 
that occurred, usually mentally.  As an example, while he considered sin! 𝑥 + cos! 𝑥 = 1 to 
be a definition, defining what 1 was, he viewed sin! 𝑥 = 1− cos! 𝑥 to be an identity. 

COOPER:  It doesn’t really just roll off the head.  And it’s not, it’s kind of, there’s 
still manipulation of your original Pythagorean identity. … I look at the original 
problem and I’m imagining, you know, going ahead and changing it up, and, so, it’s, I 
usually do that so I don’t get it wrong and like kind of make a mistake somewhat. 

Thus, if Cooper needed to employ a process of change in order to arrive at an equation to 
use, he considered this equation to be an identity.  He knew that the equation was true as he 
began with what he considered to be a definition and manipulated that.  In a sense then, 
Cooper knew the definitions to be true.  He believed the descriptions they contained to be 
true descriptions.  Therefore, he could use these truths, the definitions, to arrive at other 
truths, the identities; he could create new truths from the old, known truths.  Hence, Cooper 
was quite comfortable with what he considered to be definitions. 

Conceiving of an equation as a definition allowed for Cooper to proceed in a problem 
without worrying about the correctness of the step.  He did not hesitate.  The distinction 
between definition and identity was important for him. 

COOPER:  It’s easier to think of it as a definition because I just whenever I see 
something I like to go look at it and immediately know that it’s something else.  Like, 
the definition just, whenever you memorize it like that, I think it makes it a little more 
easier. … You simplify things like that, I think just looking as a definition, kind of 
helps out a bit.    

Thus, Cooper valued this distinction he held.  He was provided a measure of confidence 
knowing the definitions. 

The development of definitions in Cooper appeared to originate in the repeated utilization 
of certain identities. 

COOPER:  The Pythagorean identities is the only ones I can really memorize for the 
most part.  And those just are the most, their usually the ones that I use the most.  Uh, 
the double angle identities, those are sometimes useful, but I haven’t really used them  
a whole lot.  And the angle sum, haven’t really used those too much.  And the angle 
differences, those I always forget. … The Pythagorean identities.  Yeah, those are the 
easiest ones to remember.  Those are the most stuck on because you use them all, I, I  
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Table 1 
Cooper’s Self-Identified Definitions and Identities in the Interview 
Classification Name Equation 
Definition sin! 𝑥 + cos! 𝑥 = 1 

tan 𝑥 =
sin 𝑥
cos 𝑥         cot 𝑥 =

cos 𝑥
sin 𝑥  

tan! 𝑥 =
sin! 𝑥
cos! 𝑥         cot

! 𝑥 =
cos! 𝑥
sin! 𝑥  

 
Identity sin! 𝑥 = 1− cos! 𝑥 

tan 𝑥 =
1

cot 𝑥 

csc! 𝜃 =
1

sin! 𝜃 
 

 
think you use them a lot more than you do the other ones. … You know, rinse and 
repeat, practice makes, you know, you memorize things if you keep using them. 

Thus through it all, Cooper referred to using particular identities over and over.  These were 
the ones that he really had memorized.  Table 1 includes equations that he distinguished as 
being definition or identity during the course of the interview. 

While not specifically providing names, other students indicated a view similar to 
Cooper’s view regarding well-known identities.  In discussing what a trigonometric identity 
meant to her, Amber spoke of having a fluid understanding of them. 

AMBER:  Once I see the connections, things just flow.  So, I mean, once you’ve, like, 
once I know the identities, like, inside and out, or basically know them without having 
to think about them, like, oh, wait a minute, what this equal to, or whatever? 

For Amber, intimately knowing an identity allowed her to readily use this identity.  As 
Cooper experienced, this intimate understanding developed through repeated usage. 

AMBER:  I didn’t see an identity straight off that I could use besides the reciprocal 
identity.  Um, of course I don’t even think of that as an identity.  But, um. 
INTERVIEWER:  Why not? 
AMBER:  It’s just second nature from high school. … The reciprocal identities are so 
simple that I just, it, they’re just. 
INTERVIEWER:  You just do it. 
AMBER:  Yes.  It’s one of those things that I don’t, I have to sit there, oh it’s an 
identity.  When I’m like, if when I’m talking about it, it’s like, oh, it is an identity.  
But, um, it’s just like something I just know and kind of go with it. 

Interestingly, Amber forgot that well-known identities were in fact identities.  In a way, she 
no longer viewed these identities as identities.  She was able to use them without consciously 
thinking about their validity because she already knew they were true.  She had repeatedly 
used them, successfully, since high school.   

Having confidence in the identity was important in problem-solving effort for Amber.  
Even if she verified that a particular equation was in fact an identity, she remained hesitant to 
use it in solving a problem or verifying another identity. 

AMBER:  I’m always using like one of the more basic identities to make the move.  
I’m not using an identity I’ve verified.  So um, I’m always using the ones that are 
given essentially like in the book, or something to make the move.  So I’m not using 
identities that I’ve proven to, uh, verify another identity. 
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Perhaps Amber’s qualms originate from the lack of confidence in this identity.  After all, 
unlike the identities given in the book that she has used over and over again successfully to 
verify identities, she has not used this new identity yet in a verification situation. 

During her interview, Katie also expressed notions of identity related to Cooper’s 
definition conception, using language similar to Cooper’s.  Katie described her thought 
process in claiming that tan! 𝑥 = sin! 𝑥 / cos! 𝑥 was an identity. 

KATIE:  I mean I feel like I always know as soon as I look at tangent that it’s sine x 
over cosine x. 

Katie drew an immediate connection between the tangent function and the sine and cosine 
functions.  She speculated about the origins of this immediacy. 

KATIE:  I’m more used to using sine and cosine, and it’s more common to me.  And 
so I think it’s the first thing that comes to my head. 

Thus, as Cooper and Amber described, Katie believed repeated usage of the particular 
identity developed the association between the functions.  These immediate connections 
existed for other identities for Katie.  The second question asked in the interview was the 
following: 

Verify that: 
1

1− cos! 𝜃 = csc! 𝜃 

Katie discussed why she immediately began by substituting in the expression sin! 𝜃 for 
1− cos! 𝜃. 

KATIE:  That is like a first identity that pops into my head whenever I see one minus 
cosine squared that, that it’s the same thing as sine squared theta. 

For Katie, well-known identities popped into her head the same way definitions popped into 
Cooper’s head. 

For Katie, confidence in using certain identities seemed to relate to whether or not they 
existed in her core of identities.  For example, the fifth interview prompt asked the following:  
“What does the following expression equal?” 

sin 2𝑥
sin 𝑥  

In discussing her solution, Katie admitted her initial discomfort. 
KATIE:  Sine two x is kind of more foreign to me than like sine squared x. … I feel 
like we didn’t do as much work with those, with, like, a double angle identity as I did 
a Pythagathorean [sic] identity.  So I was, I don’t know, I just.  I don’t know those off 
the top of my head. 

Katie related comfort in using identities with how readily she recalled the identities.  The lack 
of using identities proved a barrier for her.  She described why she believed the problem to be 
tricky for her. 

KATIE:  It was using a double angle identity, which I’m not, it’s, uh, more, um, 
foreign to me. 
INTERVIEWER:  Okay.  So do you feel then knowing, or being more familiar, 
having memorized identities makes it easier for you to solve problems? 
KATIE:  I mean, I guess it just makes me feel more comfortable when I am working it 
instead of having, I guess, to go look at a chart and figure out what it is and then 
coming back. … I guess you just feel more comfortable with it.  When you have it in 
your head, that means you’ve probably worked with it many, many times. … I mean, 
like I said, the cosine and sine, we used those from the start of identities to the end of 
identities.  And you used them repeatedly. 
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In addition to describing certain identities as popping into her head, Katie also expressed 
the view that she forgot certain well-known identities were in fact identities. 

KATIE:  Change like, say like cosecant x to one over sine x.  Or like change it, I 
guess that is an identity.  But I consider that just saying they’re the same two things, 
just right there.  You know, you can use this one or this one, whichever one you need 
to use at the time. 

Thus, Katie described this well-known identity as describing a relational aspect.  She knew 
the two expressions described the same underlying concept.  She was empowered to use 
either expression, depending on which one was beneficial for the situation. 

Cooper and Katie alluded to difficulties in employing certain identities that were lesser-
known to them through lack of usage.  Specifically, they mentioned the double-angle 
identities.  Lack of knowledge of identities presented barriers for some students.  Helen 
described such a situation as she attempted to verify the identity sin 2𝑦 = tan𝑦 (1+ cos 2𝑦). 

HELEN:  I still don’t fully understand what cosine of two y or sine of two y means.  
That’s so foreign to me that I would want to avoid it.  But I can’t in this problem.  
Like it’s unavoidable.  So, I don’t understand the problem. 
INTERVIEWER:  So you feel not fully understanding what cosine two y means is 
really making it hard for you to work this problem? 
HELEN:  Yeah, or sine two y. … Like it confused me.  Even though like if I was to 
eventually understand what that means, then I could work it easily.  But, if I’m hung 
up on something at the very beginning, it’s really hard to move past that.  Because, 
this whole problem depends on my understanding of the problem itself. 

For Helen, she was unable to overcome her lack of understanding of the identity that she 
needed to use.  This lack of intimate knowledge inhibited her progress on the problem.  
Without having the conviction about the necessary identity, she was stuck. 

Having intimate knowledge of identities, possessing a core of well-known identities, was 
important for students’ problem-solving efforts.  Like Cooper, many students expressed the 
idea that repetitive successful use made these identities easier to use.  Students were able to 
manipulate these definitions at will in order to best suit the problem.  Thus, students were 
able to generate new identities from the old, well-known identities, focusing on the structural 
aspect of the identity.   

An inability to generate these new identities, deviating from the known identities, was a 
hallmark of a student who struggled during the interview, Charles.  Charles repeatedly stated 
that he did not have the identities memorized, indicating a lack of intimate knowledge of 
them.  Additionally, Charles could not manipulate common identities provided to interview 
participants in a table.  The following exchange comes from his attempt at solving the second 
prompt.  At this point in the interview, he was struggling with what step to take. 

INTERVIEWER:  You’re saying one minus cosine squared theta equals sine squared 
theta. 

 CHARLES:  Uh. 
 INTERVIEWER:  Do you see that identity, or one similar to that identity? 
 CHARLES:  No.  One similar? 
 INTERVIEWER:  Mm-hm.  Maybe it’s not exact, but. 

CHARLES:  Um.  I mean there’s the one minus two sine squared.  And the, I mean 
nothing really stand out to me. 

Charles attempted to visually match the expression in the problem with one on the identity 
sheet.  He was unable to manipulate the Pythagorean identity, despite it being pointed out to 
him. 
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CHARLES:  It’s not exact, but I don’t know.  It doesn’t, like, I wouldn’t have thought 
to have used it in this. 

For Charles, the lack of repeatedly using identities and developing a sense of intimate 
knowledge about them hindered his ability to use them and manipulate them.  Through a 
discussion of the aftermath of the problem, Charles reiterated his inflexibility with the 
identities. 

CHARLES:  If I had something to go off of, I would feel a hundred percent better in 
writing it down.  Like if I had a list that, you know if I had one of those cards, and 
mine would have one minus cosine equals sine [sic]. … I wouldn’t have thought to 
like looked at it that way, I guess.  When, Like, I guess when I look at something, I’m 
like, well, that’s that.  And, uh, a lot of the time, I forget to do things, like, oh, I can 
put, or, I, I wouldn’t see that you could subtract cosine from each side. 

Unfortunately throughout the interview, Charles repeated the pattern of attempting to find an 
exact match for the expression on the identity sheet, displaying an inability to create the 
needed identity from existing identities. 
The Function Argument 

In treating identities as objects, attending to the structure and making use of the 
equivalence of expressions while verifying identities, students could ignore the process 
suggested by the identity.  In particular, students could generally ignore the inputs of the 
functions involved.  After all, identities were true for all input values in the domain of the 
functions.  As a result, students treated the function argument in interesting but perhaps 
debilitating ways. 

For the fourth interview prompt, students were asked to verify that the following equation 
was an identity: 

1
1− cos! 2𝛼 − 1 = csc! 2𝛼 − 1 	  

Students handled this problem in similar ways.  Maria described how she mentally viewed 
the function argument. 
 MARIA:  What is in the parentheses is just one term. 

INTERVIEWER:  Okay.  So wait, how do you see that even though visually it’s like 
two alpha minus one.  How do you see that in your head?  Do you see a two alpha 
minus one? 
MARIA:  It’s x. 
INTERVIEWER:  Do you, so in your head, do you, do you see an x? 
MARIA:  So, everything in the parentheses is just an x. 
INTERVIEWER:  So do you actually in your head.  You’re thinking of x? 
MARIA:  I really do. 

In order to verify the identity, Maria needs to envision the function argument as nothing more 
than an x.  She claimed that doing so simplified the problem for her.   

While some students used a similar approach to Maria, actually writing cos! 𝑥 , other 
students completely ignored the argument.  Helen commented on her reasoning for using 
exactly this strategy. 

HELEN:  I’m not mentioning it because I didn’t really do anything with it. … Ignore 
it just because it can get me a lot more mixed up than I need to be. … I realized that 
nothing has anything to do with it. … I kind of plugged it in at the last minute. … But 
it didn’t have any meaning as to I didn’t have to foil it out or anything.  So, just 
keeping it as like something that’s like x. 

In Helen’s view, since she did nothing with the argument, she was justified in ignoring it.  By 
ignoring the argument, something that was a little complicated for her, she was able to  
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Figure 1: Cooper’s focal point. 
negotiate, in her opinion, the verification of the identity.  She merely needed to reinsert the 
argument, tacking it on, at the end.  Cooper used an extreme method to ignore the 
complicated function argument; he explicitly drew a box around what he needed to focus on 
for solving the problem, omitting the function argument (Figure 1). 

COOPER:  I kind of took that one out of mind. … I realized that both sides had the, 
had the same thing and that it really wasn’t any much of an effect of the actual, 
original, what you’re trying to verify. 

As was the case with Helen, Cooper felt justified in ignoring the function argument.  Later in 
the interview, he clarified his stance on the function argument. 

COOPER:  I like to just ignore that one unless there’s multiple variables in the 
situation … it really doesn’t play a whole lot of importance unless there’s multiple 
variables in it.  And as long as you put it in your final answer … it’s still right. 

Again, his comment echoed Helen’s opinion of the function argument.  As long as the 
argument was tacked back in the problem, the verification would be valid.  This cavalier 
attitude concerning the argument was further explained by Amber. 

AMBER:  You get so caught up in the sines and cosines that sometimes the x just 
kind of disappears in your head. … The x is basically saying there’s a variable there. 
... You can’t have a trig function without a variable. … All that letter is standing for 
is, it’s standing for some number. 

Thus, in focusing on what students believed mattered for the problem, the structural 
relationships shown by the functions, the argument became expendable; it was merely just a 
formality, just a technical part of the expression.  After all, as Amber further explained, the 
verification of the identity does not depend on the symbol being used in the argument. 

AMBER:  You’re not actually verifying that tangent y plus cotangent y over cosecant 
y times secant y, um, is equal to one because of y.  You’re not thinking it’s because of 
that variable.  You’re thinking of, in terms of the trig functions. 

Hence, minimizing the function argument allowed for students to focus on the structural 
aspects of the expressions. 

However, Amber’s comments also bring to question the conception of literal symbols that 
students held.  That is, how do students view the “x” in the function argument?  Initially, 
Amber described the x as a generic placeholder, standing for some variable.  At face value, 
Amber appeared to claim the x was not the variable; instead, it stood for some other variable.  
But then she stated the x stood for a number.  Thus, rather than viewing the “x” as 
representing a general number, Amber seemed to view it as representing either a specific 
number or some other variable.  Perhaps she viewed the “x” as standing in for a specific 
letter. 

In ignoring the argument, Cooper simplified the problem for himself, allowing his focus 
to reside on the function.  Furthermore, he discussed his view of the indeterminate nature of 
the argument. 

COOPER:  You can always replace it with x if you want to. … It’s just not to really 
focus on that.  Cuz the main focus of the problem is what’s next to it, like trying to get 
that idea. 
INTERVIEWER:  Okay.  So what do you mean by replace it with x? 
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COOPER:  Uh, well, I mean, it’s just kind of a placeholder.  You can replace it with 
x, y, z, q, p, if you want.  It’s just a placeholder, so.  That’s, that’s how I always 
looked at theta or anything.  That’s, uh, just a placeholder unless it’s actually a 
constant.  And then, then they have meaning. 

Cooper appeared to associate the letter x as some generic placeholder, having little to no 
meaning for the verification problem.  In his mind, what mattered was what was next to the 
argument.  The argument had a capricious nature with the ability to be a whole litany of 
symbols.  Interestingly, the symbol only had meaning if it actually stood for a particular 
value.  Thus, Cooper appeared to not recognize that the symbol should have actually stood 
for a wide range of values, that in fact it represented a general number. 

While students recognized that in fact the symbol being used in the function argument did 
not matter, they showed a clear preference for one particular letter. 

MARIA:  The first thing that comes to my mind is x. … x is like my universal 
variable. 
AMBER:  I’m like automatically kind of geared towards, oh, let’s just use x. 

The preference for x as the letter of choice had its roots in the introduction of the notions of 
symbolic algebra. 

COOPER:  We’ve always used x. … It’s fourth, fifth grade, you know.  Everything’s 
just kind of always been in terms of x. … That’s just usually what you always find.  
You know, the original first problems are like, you know, x plus three equals two.  

This perceived tendency to use x continued into high school. 
BELLA:  Throughout my high school career, it’s always been x something equals 
this, this, and this. 

While attempting to highlight the subjectivity in choosing a symbol, teachers appeared to 
reinforce the notion of x as the variable. 

AMBER:  In high school, my math teacher that I actually had for eighth, ninth, and 
tenth grade, he told us like if we saw a variable in the book that wasn’t x, just, you 
could change to x if you wanted to.  He said he didn’t care.  Because it would be 
essentially the same thing.  Because it’s just a variable.  Unless you have it stipulated 
that the variable was, was equal to something. 

Again, Amber displayed a questionable conception of the symbol x, first calling it a variable, 
then stating that the variable was not a variable if it equaled something.  She seemed to imply 
at this point, she lost the freedom to use a different symbol or letter. 

While having the ability to recognize that the choice of symbol used was merely a choice 
and did not matter, students appeared to rely on using x as a crutch.  That is, when 
expressions were presented using symbols that were not x, they felt compelled to change the 
symbol to an x in order to solve the problem.  As previously commented, viewing the 
argument as an x allowed the students to shift their focus to the structure inherent in the 
equivalence, making the problem easier.  Furthermore, students were more comfortable using 
the symbol x and exhibited emotion in describing their attachment to x. 

 MARIA:  For some reason, they’re easier to deal with. 
COOPER:  I’m just going to use x cuz that’s, that works.  It’s going crazy. … Trying 
to remember it all in terms of x kind of makes it simpler. 
AMBER:  Dangit!  Why can’t you use x? 

For some students, needing to think in terms of x proved a minor barrier to overcome 
when x was not used as a symbol in the function argument. 

KATIE:  I know these identities, I know them as x.  And, like that’s just how it’s in 
my head, is x.  So then when I see this, I kind of have to realize that that rho is the 
same thing as an x. 
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For Katie, she needed to consciously remind herself that the symbol used had no bearing on 
the identity.  Cooper had a slightly more debilitating reaction to the lack of x. 

COOPER:  When I first looked at that, and I saw that cosine two y, it didn’t pop up in 
my mind because I was thinking of two x. … I don’t see x, I kind of ignore the 
identities. 

Both Katie and Cooper indicated knowing the identities in terms of x.  That is, the symbol x 
acted as a placeholder for the eventual function argument in the problem.  However, both of 
them appeared to hold onto the notion of x as being the function argument a bit too tightly, 
unwilling to easily replace it with the appropriate symbols in the current problem. 

In order to help them negotiate solving the verification problems, student generally 
viewed the function argument as an unnecessary component of the problem.  Accordingly, 
they would either drop it completely or replace it with a letter of choice, typically x.  Doing 
so allowed them to focus on what they felt was important for the problem, the structure 
represented by the functions.  Thus, students displayed a cavalier attitude concerning the 
argument, viewing it as something that was just there to satisfy a technical requirement.  For 
some students, the symbol x took on the meaning of a general placeholder, holding a spot for 
the actual function argument in the problem.  While students generally recognized that the 
truth of the identities did not depend on the symbol used, students such as Amber and Cooper 
appeared to display weak notions of the literal symbol, not fully viewing it as representing a 
general number.  In fact, students could successfully verify the identity by completely 
ignoring the argument, considered weak conceptual understanding.   

Not all students in the interviews displayed a weak understanding.  Bella, assessed by the 
researcher to be the strongest student, was able to successfully work problems without either 
ignoring function arguments or replacing them with a preferred letter.  Furthermore, she 
described a conceptually-correct notion of the role the literal symbols play in identities. 

BELLA:  The x is just some number.  That, it could be any number.  You don’t really 
have to know what it is to understand how the problem works. 

For her, the x was a general number; it just represented some number.  But her response also 
illustrated how the verification of identities did not lend itself to further students’ conceptions 
of the function argument and the symbols used.  Students could ignore them and still “verify” 
the identity. 

Conclusion 
 Overall, students in the interview appeared to view identities in terms of their structure.  

They viewed a certain core of identities as representing a set of equation from which to 
generate new identities.  Furthermore, they appeared to view these identities differently than 
other, lesser-known identities.  These identities were easier to recall and better understood, 
allowing the students to confidently use them.  In a sense, these students appeared to have 
encapsulated these identities as their core identities to use in order to verify other identities.  
They understood these identities on a structural level and could use them as objects. 

A particular strategy some students used to focus on the structure of the identity rather 
than the process nature of the identity was to direct their attention away from the argument of 
the function.  The students accomplished this feat either through completely ignoring the 
argument or by mentally or physically substituting a preferred letter, usually x, in for the 
function argument, treating the function argument as an object.  The x appeared to represent 
or refer to something that did not matter for the problem.  Thus doing so allowed the students 
to not worry about the argument; they could then append the argument back on the function 
name at the conclusion of the problem or replace the x with the original function argument.  
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However, in essentially ignoring the variable, students displayed a weak conceptual 
understanding of variable (Gray, Loud, & Sokolowski, 2009). 

In the larger case study, students approached identities with complicated function 
arguments in a similar manner.  On the exam following the unit on identities, students were 
asked the following question: 

Is the following equation an identity?  Explain your reasoning. 
sin! 𝑥! − 3 = 1− cos! 𝑥! − 3  

A clear majority of the student (29 of 33) agreed that the equation represented an identity 
using the reasoning that the equation was just the Pythagorean identity.  A typical explanation 
for the reasoning was the following, displaying the need to view the argument in terms of x to 
match the argument to the memorized version of the identity: 

“Because it is a Pythag. identity, which states that sin! 𝑥 + cos! 𝑥 = 1 and 
sin! 𝑥 = 1− cos! 𝑥 .  It does not matter what the stuff in the parentheses or ‘x’ is 
as long as it is the same.” 

Some students explicitly identified the argument as being replaced by another symbol, such 
as the student who wrote “𝑥! − 1 = 𝑦” and then writing “sin! 𝑦 = 1− cos! 𝑦.”  Other 
students explicitly ignored the argument, for example, writing, 

“Because the Pythagorean identity, which is sin! + cos! = 1.  Using this 1− cos! is 
the same as sin! so they can be used interchangeably.” 

While this strategy of ignoring the given argument allowed students to match the given 
equation to the known Pythagorean identity, the inability to think in terms of the argument 
may have represented cognitive weakness.  By placing the emphasis on the structural aspect 
of the identity as represented by the functions, students missed when a process conception of 
the identity and the functions would have been more appropriate to solve the problem.  On a 
quiz given during the unit on identities, students were asked the following question: 

“Is cos 𝑥 = 1− sin 𝑥  an identity?  Please explain your response.” 
Of the 25 out of 30 students indicating that this equation was not an identity, only 4 students 
justified their responses by choosing a particular number, substituting it into both 
expressions, and demonstrating that the equality did not hold for that particular value.  These 
students were able to revert to a process understanding of identity.  Of the remaining 21 
students, 17 students concluded that the equation was not an identity specifically because it 
did not match the Pythagorean identity.  That is, the equation lacked the squares on the sine 
and cosine function and so could not be an identity.  A typical response was the following 
comment: 

“Because the correct Pythagorean identity is cos! 𝑥 + sin! 𝑥 = 1, which can turn into 
cos! 𝑥 = 1− sin! 𝑥.  Since the equation given is not squared, it is invalid and not an 
identity.” 

Perhaps due to the inattention to the function argument throughout the majority of 
verification problems, students continued to ignore the function argument exactly when using 
it could have correctly solved the problem for them. 

If anything, the results of this research show that while students appear to view 
trigonometric identities as objects, they are ill-formed objects as they could not de-
encapsulate them properly; students were generally unable to revert to a process conception 
when needed.  Furthermore, students appear to use weak notions of literal symbols while 
verifying identities.  As Gray, Loud, and Sokolowski (2009) explored in their study of 
calculus students’ conceptions of variables, namely, that many calculus students utilize weak 
notions of symbols in order to solve algebra problems, this result should come as no surprise.  
Unfortunately, that verifying identities could not contribute to a deeper understanding of 
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variable is somewhat unfortunate.  Gray, Loud, and Sokolowski (ibid) also found a 
relationship between weak notion of variable and poor performance in the course. 

As a result, ways to deepen students’ understandings of literal symbols used in 
mathematics need to be developed and implemented in the classroom.  For the trigonometry 
course from which the students were drawn, the instructor purposefully used different 
symbols and letters to attempt to acclimate students to the idea of identities not depending 
upon the symbol of choice.  Based upon the results of the interviews, students still appeared 
somewhat entrenched in their weak views of symbols.  Phillipp (1992) suggested holding 
explicit discussions on the roles that symbols played in expressions.  Perhaps these 
discussions need to occur frequently throughout mathematics classes.  The goal would be to 
move students toward comfortably using whatever symbol or argument is within the problem.  
An offshoot of this issue would be the use of methods such as u-substitution in calculus.  
How do students view the symbol “u” during the process of solving the integral?  Can 
students move past using a “u” and view the function arguments as objects without actually 
replacing them?  Is this movement necessary for a deep understanding of the integration 
process? 

One area needing further exploration is to determine the extent that the well-known core 
identities control the problem.  For example, some students indicated a weakness when 
needing to implement the sum or difference identities.  The question then becomes what 
would control the problem, students’ core identities or their weak understanding of certain 
under-utilized items.  As an example, if students were presented the problem, “Is 

sin!(𝑥 − 𝑦)+ cos!(𝑥 − 𝑦) = 1 
an identity,” would they identify the Pythagorean identity structure or would they be swayed 
by the difference of variables in the argument as they attempted to solve the problem? 
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The purpose of this paper is to argue that attention to students’ ways of thinking should 
complement a focus on students’ understanding of specific mathematical content, and that 
attention to these issues can be leveraged to model the development of mathematical knowledge 
over time using learning trajectories. To illustrate the importance of ways of thinking, we draw 
on Harel’s (2008a, 2008b) description of mathematical knowledge as comprised of ways of 
thinking and ways of understanding. We use data to illustrate the explanatory and descriptive 
power that attention to the duality of ways of understanding and ways of thinking provides, and 
we propose suggestions for constructing learning trajectories in mathematics education 
research.  
 
Keywords: Ways of thinking, Ways of understanding, Duality, Mathematical knowledge, 
Learning trajectories 
 

Introduction 
In recent years, research that looks deeply at student learning has flourished, and research 

that focuses on the development of learning trajectories has received particular attention. Much 
of this research has taken substantial strides in articulating students’ mathematical knowledge 
about particular content areas such as fractions (Simon & Tzur, 2004), partitioning and splitting 
(Confrey, Maloney, Nguyen, Mojica, & Myers, 2009), and length measurement (Barrett et al., 
2012; Sarama, Clements, Barrett, Van Dine, & McDonel, 2011; Szilagyi, Clements, & Sarama, 
2013), allowing researchers and teachers to gain much insight about students’ thinking about 
such topics. Our reading of the work cited above, as well as our own efforts to document student 
thinking, suggest an important distinction between two aspects of mathematical knowledge – 
first, knowledge about mathematical content (i.e., knowledge of a particular proof) in particular, 
and second, broader aspects about that content knowledge (i.e., knowledge of what constitutes a 
proof) that supersede, but also interact with, knowledge about particular mathematical concepts.  

We contend that both of these dimensions of mathematical knowledge should be 
incorporated into research involving learning, and, more specifically, learning trajectories. 
However, we think that incorporating both dimensions necessarily entails considering them as 
reflexive, and that the reflexivity between them provides a means to explain conceptual change 
in learning trajectories. In this paper, we propose that Harel’s (2008a, 2008b, 2008c) Duality 
Principle is a useful theoretical lens through which to consider this relationship. 

Motivation for Duality in Learning Trajectories 
The distinction between content knowledge and broader aspects about that content 

knowledge has received attention in mathematics education. For instance, the CCSSM 
distinguishes between standards of mathematical content and standards of mathematical practice, 
(National Governors Association Center for Best Practices & Council of Chief State School 
Officers, 2010). Cuoco, Goldenberg, and Mark (1996) talk about “habits of mind” related to 
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doing mathematics, and Harel’s (2008a, 2008b, 2008c) ways of thinking and ways of 
understanding represent an important distinction as well.  

There is some evidence of this distinction being operationalized by those focusing on 
learning trajectories. As an example, Ellis, Ozgur, Kulow, Dogan, and Williams (2013) describe 
a learning trajectory for exponential growth that focuses on students’ notions of function. In this 
learning trajectory, Ellis et al. attend to the learning of particular mathematical content, such as 
the fact that rate of change of an exponential function is proportional to the amount of change in 
the function’s argument, and they suggests sequences of tasks that help students understand such 
content knowledge. They complement the focus on content by proposing two fundamental views 
of exponential growth, which they identify as a correspondence view and a covariation view in 
their learning trajectory. Each of these views represents not only a particular aspect of content 
knowledge, but also suggests broad characteristics of how students approach exponential growth. 
At the same time the development of the covariation and correspondence views seem 
qualitatively different from the development of content knowledge such as the meaning of the 
base in an exponential function. Indeed, they seem to be broader aspects about content 
knowledge that appear repeatedly in the learning of exponential growth. Ellis et al.’s learning 
trajectory is an example of how students’ knowledge might develop over time, where that 
development entails two aspects of learning: the learning of content knowledge (i.e. y increases 
multiplicatively by the growth factor for a unit change in x) and broader aspects about that 
content knowledge (i.e., a covariation or correspondence view). 

The notion that of mathematical knowledge may consist of both content and broader aspects 
about content knowledge is not new, but consideration of how more explicit attention to 
mathematical this distinction might affect the development of learning trajectories has not yet 
been addressed. The importance of this distinction has been noted by Empson (2011), who  
characterized the challenges of creating a trajectory about mathematical practices.   

Most, if not all, current characterizations of learning trajectories do not address the 
practices that engender the development of concepts – although it’s worth thinking 
about alternative ways to characterize curriculum standards and learning trajectories that 
draw teachers’ attention to specific aspects of students’ mathematical practices as well as 
the content that might be the aim of that practice (Empson, 2011, p. 573) 
These examples illustrate two potential directions in which existing research on learning 

trajectories might be expanded. First, mathematical learning represented in trajectories often 
includes content and broader aspects about that content, though often the focus on broader 
aspects is implicit and could be made more explicit. Second, trajectories consist of conceptual 
“levels” but they tend not to address the learning that takes place between those levels or what 
mechanism(s) drives that learning. We believe we can shed light on both of these issues with a) 
more explicit attention to how students come to develop knowledge about the broader aspects 
about mathematical ideas, and b) focus on knowledge about the broader aspects of content 
knowledge in a way that considers its reflexive relationship with content knowledge. 

To accomplish these aims, we draw on Harel’s (2008a, 2008b, 2008c) description of 
mathematical knowledge as represented by the dual constructs of ways of thinking and ways of 
understanding (defined momentarily), each of which influences the other, to characterize 
students and experts’ thinking about mathematics. By using Harel’s framework, which 
emphasizes the reflexive relationship and interaction between these two aspects of mathematical 
knowledge, we argue that this perspective carries particular benefit for researchers designing and 
developing learning trajectories. Our reason for focusing on Harel’s characterization of this 
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distinction in mathematical knowledge we made earlier is because we feel there is power in the 
duality he describes. The duality captured in the relationship between ways of thinking and ways 
of understanding helps to uncover new insights for researchers about students’ conceptual 
change, and these insights can lead to learning trajectories explain the nuances of how students 
move between various conceptual levels.  

In Section 3, we characterize Harel’s (2008a, 2008b) Duality-Necessity-Repeated Reasoning 
(DNR) framework and his definition of mathematical knowledge. His work provides the 
motivation for the focus on ways of thinking, and we frame our proposed contribution to learning 
trajectories in terms of his ideas. Then, in Section 4, we describe learning trajectories and their 
current roles in mathematics education research, with the aim of identifying how attention to the 
duality principle may provide a more complete and accurate picture of the development of 
mathematical knowledge. Next, in Section 5, we present a data example that highlight this 
duality and serves to clarify and reinforce that ways of thinking and ways of understanding 
develop in a reflexive manner. In Section 6, we articulate how the DNR framework provides a 
way to represent the cause and process of conceptual change in a learning trajectory. Finally, in 
Section 7, we describe ways in which researchers can make use of our recommendation to attend 
to the duality principle as they construct and revise learning trajectories. 

Part 1: DNR Framework and Mathematical Knowledge 
Harel (2008a, 2008b, 2008c) proposed the DNR based instruction framework as a way to 

think about the learning and teaching of mathematics. He identified the constituent parts of the 
framework as the duality principle (D), the necessity principle (N) and the repeated reasoning 
principle (R) that together comprise effective and meaningful mathematics instruction.  

In his DNR framework, Harel (2008a) articulated the notion of a mental act, which includes 
activities like interpreting, conjecturing, explaining, searching, and problem solving (p. 3). Harel 
defined mathematical knowledge as consisting of both cognitive products of a mental act and the 
characteristics of those mental acts. He proposed that a way of understanding is “a particular 
cognitive product of a mental act carried out by an individual” (p. 4). He described a way of 
thinking as ‘a cognitive characteristic of a person’s ways of understanding associated with a 
particular mental act” (Harel, 2008a). Harel’s analogy was that ways of understanding 
correspond to subject matter knowledge and ways of thinking correspond to conceptual tools. He 
articulated that mathematics consists of all the ways of understanding and all the ways of 
thinking that have evolved throughout history. He proposed the duality principle as a means of 
characterizing the interdependency between ways of thinking and ways of understanding.  

As an example of his definition of mathematics and how duality rests upon that definition, 
consider the mental acts of proving and problem solving. A particular proof of a given statement 
is a way of understanding, whereas a proof scheme is a way of thinking. In problem solving, a 
solution to a particular problem represents a way of understanding, but a general problem solving 
strategy, applicable across a variety of problems, is a way of thinking. As mentioned above, 
ways of thinking are the overarching characteristics of a mental act, whereas a ways of 
understanding are products of that act.  

A foundation of Harel’s model of mathematical knowledge, illustrated in the duality 
principle, is that thinking and understanding are reflexive. That is, “Students develop ways of 
thinking through the production of ways of understanding, and, conversely, the ways of 
understanding they produce are impacted by the ways of thinking they possess” (Harel, 2008a). 
We think of this as a feedback loop, and this feedback between ways of thinking and ways of 
understanding is the core of the duality principle. Given this perspective about the learning of 
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mathematics, a representation of learning over time (such as a learning trajectory) should 
articulate both aspects of that development and their reflexivity. Some existing learning 
trajectories focus on constructs akin to ways of thinking and understanding and make the 
distinction explicit (Clements & Sarama, 2009). However, no learning trajectory work of which 
we are aware has explicitly considered the reflexivity of ways of thinking and understanding and 
how the feedback loop between the spurs the development of students’ knowledge.  

An Introduction to Learning Trajectories in Mathematics Education 
When we describe learning trajectories, we mean representations (either predictive or 

descriptive) of the development of students’ mathematical knowledge over time. Simon and Tzur 
(2004) first identified a hypothetical learning trajectory (HLT) as a model of how students’ 
learning might occur over a period of time, with particular attention paid to students’ 
mathematical activity and the role of tasks in engendering that activity. We want to note that the 
construct of a learning trajectory is broader than the HLT, and in this paper we specify whether 
we mean LT or HLT throughout the paper. They proposed four principles for the hypothetical 
learning trajectory construct (Simon & Tzur, 2004, p. 93). 

1) Generation of an HLT is based on understanding of the current knowledge of the 
students involved. 

2) An HLT is a vehicle for planning learning of particular mathematical concepts. 
3) Mathematical tasks provide tools for promoting learning of particular mathematical 

concepts and are, therefore, a key part of the instructional process. 
4) Because of the hypothetical and inherently uncertain nature of this process, the 

teacher1 is regularly involved in modifying every aspect of the HLT.  
These principles highlight key components of learning trajectories in existing literature. First, 

they build on what a student understands, which requires determination of existing mathematical 
knowledge. Second, the HLT models how a student might develop a mathematical understanding 
by engaging with tasks that promote specific mathematical activity. In describing the impact of 
Simon’s work, Duschl (2011) identified the HLT construct as the beginning of a movement that 
resulted in ‘the recommendation that science/math learning be connected through longer 
sequences of instruction that function vertically across grades/years and horizontally within a 
given school year’ (Duschl, 2011, p. 124)2.  
4.1 Common Elements Among Learning Trajectories in Mathematics Education 

Researchers typically frame a learning trajectory as hypothesis generating (via an HLT as 
previously mentioned, (Simon & Tzur, 2004)) or hypothesis testing (via an emergent learning 
trajectory, defined below), though these two processes can be thought about as an iterative cycle. 
Examples include concepts such as graphs of multivariable functions (Weber, 2012), fractions 
(Saenz-Ludlow, 1994; Simon & Tzur, 2004),  trigonometry (Moore, 2010), and geometric 
figures (Clements, Wilson, & Sarama, 2004)3. Each of these learning trajectories focuses on one 
or more specific mathematical understanding(s), proposes the mathematical knowledge students 
need to have a coherent view of that idea, and describes a sequence of activities and instruction 
to engage students in learning the idea in the way the researcher proposed. First, the researcher 
identifies the hypothetical learning trajectory (by Simon, 1994), consisting of students’ 
                                                
1 We consider this principle as equally applicable to teacher-researchers.  
2 We note that we are discussing LTs here, and our discussion should not be confused with LP’s, 
which we view as a theoretically distinct construct.	  
3	  This is not intended to be an exhaustive list, but is representative of the various ways in which LTs are being used 
to represent learning about a variety of mathematical topics.	  	  	  
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mathematical knowledge and tasks designed to support that knowledge during the design phase 
of the experiment. Second, the researcher generates what we call the emergent learning trajectory 
(ELT) that reflects the development of the student’s mathematical knowledge after actual 
instruction and data interpretation (Figure 1). (This has been called the actual learning trajectory 
((Middleton, Flores, Carlson, Baek, & Atkinson, 2003).  We choose to characterize it as 
emergent because we claim that no learning trajectory is “actual” as it represents a model, and 
therefore a representation, of student’s thinking; also see Figure 2).  
 

 
Figure 1. Middleton et al.’s (2003) characterization of constructing learning trajectories. 

The hypothetical learning trajectory (Simon & Tzur, 2004) typically consists of a conceptual 
analysis of a mathematical idea and a series of instructional tasks intended to engender the ideas 
defined in the conceptual analysis. Thompson (2008) defined a conceptual analysis as, ‘ways of 
thinking4 that, if students had them, might be propitious for building more powerful ways to deal 
mathematically with their environments than they would build otherwise’ (Thompson, 2008, p. 
58). Thompson described conceptual analysis as useful in two ways. First, one can generate 
models of thinking that aid in explaining observed behaviors and actions of students (part of an 
emergent learning trajectory). Second, one can construct ways of understanding that, were a 
student to have them, might be useful for his or her development of a scheme of meanings that 
would constitute a coherent conception of a mathematical idea. Additionally, the development of 
a student’s mathematical knowledge typically results from analysis of data from one or more 
teaching experiments. Steffe and Thompson (2000) proposed that the purpose of a teaching 
experiment is to experience students’ mathematical learning and reasoning as a first step to 
constructing models of students’ ways of thinking5.  
The Affordances of Explicit Attention to Duality in Learning Trajectories 

Learning trajectories, as Simon characterizes them, have been used by a variety of 
researchers. Such uses of learning trajectories have ranged from modeling student learning about 
mathematical ideas (Castillo-Garsow, 2010; Moore, 2010) to serving as a tool for teachers to 
think about their instruction (Sztajn, Confrey, Wilson, & Edgington, 2012). We have found that 

                                                
4 Note that Thompson’s use of ways of thinking does not reflect the distinction Harel makes with ways of 
understanding. Instead, we take Thompson to mean specific understandings of mathematics and refer to it as such 
here.   
5 The context of their use of way of thinking suggests attention to mathematical content knowledge, which for Harel 
is a way of understanding.   
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most learning trajectories tend to focus on representing the development of knowledge about 
specific mathematical content, and we would argue that such learning trajectories do not seem to 
give explicit attention to ways of thinking described by Harel, even when the ways of thinking 
might be implicit in the trajectory. While these ideas may be implicit, not identifying them 
constrains discussion of how ways of thinking might affect the ways of understanding students 
appear to use, and vice versa. For example, we recall our earlier discussion of Ellis et al.’s 
learning trajectory for exponential growth. Suppose that the learning trajectory only consisted of 
specific understandings (i.e. the function gets bigger over time) without explicit attention to the 
covariation or correspondence view. An LT constructed solely of ways of understanding may not 
recognize the power of broader, orienting approaches (such as a correspondence view) that drive 
the observed way of understanding. This type of trajectory also does not allow for consideration 
that the application of a way of thinking to a particular situation (which we see as a way of 
understanding) affects the structure of that way of thinking, and that conceptual changes may 
arise from this interaction. In Ellis et al.’s LT, for example, this could mean that as a student with 
a correspondence view applies that way of thinking to a particular task. Perhaps the student 
encounters a task that requires conceiving of continuous variation between quantities. The 
student’s attempt to make sense of this situation with a correspondence about a necessary 
limitation of their correspondence view and may adjust that way of thinking accordingly. This 
experience, which represents a way of understanding, might in turn affect (by strengthening, 
putting into question, or altering) the initial steps in the development of a covariation view (or 
way of thinking). In this way, attention to the reflexivity of ways of thinking and ways of 
understanding complements the careful work about student thinking already being done.  

We now can reformulate our argument, given the introduction of specific terminology. In the 
remainder of this paper, we seek to leverage Harel’s work (Harel, 2008a, 2008b, 2008c; Harel & 
Koichu, 2010), particularly his characterization of the duality of ways of thinking and ways of 
understanding, as we propose recommendations for constructing and evaluating learning 
trajectories. We now present two examples of data that highlight the value of duality in 
considering students’ mathematical knowledge. We argue that certain ways of thinking displayed 
in these examples complement, and at times inform, the ways of understanding that students 
have about particular situations, and similarly that the ways of understanding can feed back into 
ways of thinking. Ultimately we claim that considering both ways of understanding and ways of 
thinking enhances our understanding of students’ mathematical knowledge. 

Attending to Duality to Explain Conceptual Change: An Example from Data 
In this section, we use an example to demonstrate how Harel’s duality principle provides a 

means to explain students’ conceptual change. We use previous work from a study on 
combinatorics to exemplify the importance of considering ways of thinking. The point of this 
example is to advocate that the reflexive relationship between ways of thinking and ways of 
understanding (and the subsequent feedback loop between the two) can help explain students’ 
conceptual development, which can be represented using a learning trajectory. By explain, we 
mean illuminate plausible mechanisms by which change in the students’ knowledge might occur. 
In the following discussion, it is important to keep in mind the distinction between mental acts 
and ways of thinking. As Harel (2008c) points out (p. 3), mental acts include activities such as 
proving, explaining, generalizing, problem solving, and justifying. Ways of understanding are 
products of such mental acts (e.g. a particular solution), while ways of thinking are cognitive 
characteristics of them (e.g. a particular problem solving approach like solving smaller, similar 
problems) (p. 4).  
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Data Example: Solving Smaller, Similar Problems in Combinatorics 
Our example draws on Lockwood’s (2013, in press) work with post-secondary students who 

solved five advanced counting problems in videotaped, semi-structured interviews. In this study, 
students solved the problems on their own and were later presented with alternative hypothetical 
answers (sometimes correct, sometimes incorrect), putting the students in situations in which 
they were comparing two possible answers. The aim was to see what students would think about 
and do in such situations, especially targeting how students would draw upon sets of outcomes 
(Lockwood, 2013). In addition to highlighting duality in another domain (combinatorics), this 
example shows how a student’s way of thinking can span multiple ways of understanding 
particular problems. While Lockwood has previously framed this work as having specific 
content implications in a combinatorial setting (Lockwood, in press) and in terms of sets of 
outcomes (Lockwood, 2013), the purpose of this example is to emphasize a particular problem-
solving approach (solving smaller, similar problems) as a way of thinking, and to show how that 
way of thinking affected both the student’s ways of understanding particular problems and the 
researcher’s interpretation of the students’ combinatorial thinking. This data demonstrates a 
distinction Harel (2008a) himself made between instances of solving a problem (representing 
ways of understanding) and broader problem-solving approaches (representing ways of 
thinking). Indeed, he identifies “looking for a simpler problem” (p. 6) as an example of a way of 
thinking about the mental act of problem solving. 

For Lockwood (in press) solving smaller, similar problems refers to the problem-solving 
approach of attempting one or more simpler versions of a problem as a means of gaining insight 
into a solution technique that may apply to the original problem. In any given counting problem, 
there are a number of conditions that determine what the problem is asking. Some of these might 
be numerical in nature (e.g., the specific number of letters in a password), which we call 
parameters, but others might refer to non-numerical conditions (e.g., the fact that repetition of 
letters is allowed in a password), which we call constraints. A smaller, similar problem reduces 
numerical parameters but maintains the constraints of the additional problem. This way of 
thinking is found elsewhere in the literature, typically presented as a valuable problem solving 
heuristic (Polya, 1957; Schoenfeld, 1979; Silver, 1981). The way of thinking of solving smaller, 
similar problems is demonstrated across two examples for a particular student. Anderson worked 
on the Passwords problem and the Groups of Students problem, which are presented in 
respective subsections below.  

The Passwords problem. The Passwords problem states, A password consists of eight upper 
case-letters. How many such 8-letter passwords contain at least three Es? In this episode, 
Anderson was in the process of comparing two expressions, although he did not know which 
answer was correct.6 The correct expression he was evaluating, referred to as Expression PC (for 
Passwords Correct) is 

. 

The incorrect expression is , subsequently referred to as Expression PI (for Passwords 

Incorrect). Anderson numerically computed both Expression PC and PI and found there to be a 

                                                
6 This activity of evaluating the expression of an alternative answer was part of the design of the interviews. The 
aim was to put students in situations where they had to evaluate incorrect but seemingly reasonable answers.  
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large numerical difference, indicating to him that one of the expressions was incorrect. As 
Anderson thought more about why the discrepancy occurred, he decided to truncate the situation 
to examining the number of 4-letter passwords that contain at least three Es, rather than 8-letter 
passwords that contain at least three Es (see Figure 2). In reasoning through this 4-letter smaller 
problem, he noted that there were 25 options for any placement of three Es, and he explained 

again that there were  ways to place three Es in the four slots, with 25 choices for the 

remaining letter. He then considered the case in which all four letters were Es, and he stated that 
there was just one way to do that, giving him an initial answer of 101. Then, Anderson tried the 

4-letter problem with Expression PI. When he did this, he arrived at , which gave an 

initial answer of 104. Expression PC had given him an answer of 101, and thus he noted, “the 
difference is already there.” We think it is significant that Anderson realized that the discrepancy 
between the expressions existed even in the smaller problem, and as a result he focused very 
closely on the small case. This numerical difference of 101 and 104 was small enough for him to 
be able to consider in detail, and he proceeded to examine the difference here more closely.  

As he examined the smaller case, he said, “I have E, E, E, A through Z. Which is equal to 
26” (while writing down E E E A-Z). Then, he said, “Then I have another E, E, A through Z, E, 
which is another 26” (while writing E E A-Z E). He then noted, “And since I do this four times, I 
have 4 times 26, which is 104, okay, which would suggest that the second one (Expression PI) is 
correct.” Then, nearby, he wrote out E E E A-Z-E, and he said, “I have 3 Es, then I set them to 
any 25 letters, so let’s see, A through Z minus E. And so I have 100 different ways to do that.” 
Then he wrote E E E E and noted “But then I also have 4 Es, and there’s only one way to do 
that.” His reflection on this discovery is seen below.  

 
Excerpt 4. Anderson recognizes the reason behind the overcounting.  
A: Oh, there we go, that’s where the difference is…there’s 26 different ways to arrange it so 

that the first 3 letters are Es, and then the last one can be any of the 26 letters. And then 
there’s another way to arrange it so that the first 2 and the last letter are Es, and the 3rd 
letter is any letter between A and Z, except if the third letter is an E, it’s exactly, it’s the 
exact same case as if the E was the last letter in the first case, which means it’s counting 
multiple passwords twice. 

Anderson thus identified a particular password (the all Es password) that was counted too 
many times by the incorrect Expression PI. After this discussion about the smaller case, 
Anderson was able to use his work to make sense of which expression was correct in the original 
problem. His use of the smaller, similar problem was a vital part of him successfully evaluating 
the alternative solution and determining an accurate answer. In this problem, we contend that 
Anderson used a way of thinking – the problem-solving approach of solving a smaller, similar 
problem – in order to think more about the discrepancy between the two answers. 

After this episode, Anderson was asked to reflect on his use of the smaller case. We believe 
that his response highlights the duality principle – that his way of thinking had a direct bearing 
on how he conceptualized the problem and influenced how he thought about the instance of 
overcounting that was occurring. In his reflection, it seems that he had anticipated how working 
with the smaller problem would facilitate his manipulation of the passwords. 
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Excerpt 5. Anderson’s reflection on the problem suggests a way of thinking.  
E:  Uh, do you feel like specific numbers there, like, knowing the 104 versus the 101 helped 

as opposed to having those huge numbers? 
A:  Yeah, um, I realized if I’m going to do this, like if I’m going to compare how I get to 

these numbers for an 8-letter thing it’s going to be way too big. And it’s going to take me 
a lot of time, so I was like, well, let’s just start off with 4, since it gives me room, um, 
since 3 of them have to be E’s, so I can just manipulate the last one however I wanted… 
And then yeah I calculated them to see if they were still different at that small of a level, 
here, if I started to shrink the problem. And I was like, oh, the problem – the two methods 
still come up with different answers, so something must be off on some fundamental 
level somewhere. 

E:  Okay. 
A:  So I realized, well, since my brain’s not all that math oriented, I guess I’ll just like write 

it out and see where I go, so let’s come up with a few examples, so I was like EEE, and I 
was like, well, my brain’s too lazy to come up with a specific example, so I guess I’ll just 
write down the range, and then I should be okay. And I guess it’s that step that my brain 
kept skipping due to laziness, (chuckles) that made me overlook this, that one problem. 

The work with the smaller problem clearly helped Anderson make sense of the situation and 
solve the problem correctly. While Anderson never said so explicitly (and he was not asked), 
because he was successful on this problem, we would speculate that the way of understanding 
the occurrence of overcounting fed back positively into his way of thinking. That is, his work 
with the smaller case on the Passwords problem ended positively in a correct (and robust) 
understanding of why overcounting occurred. This experience likely solidified this way of 
thinking, encouraging him to continue to utilize smaller, similar problems in subsequent work 
(and indeed, we will see that he used this strategy again on the following Groups of Students 
problem). When analyzing his combinatorial thinking, then, and in mapping out a learning 
trajectory for the concepts that facilitate the solving of combinatorial problems, Anderson’s way 
of thinking with smaller, similar problems likely affected his understanding of these concepts. 
When solving counting problems, part of his conceptualization is that he can adjust the size of 
the numbers to make a more tractable problem. Since he had success on the Passwords problem 
in being able to identify key mathematical ideas in the smaller problems (such as how exactly the 
mechanism for the overcounting was occurring), that shift to the smaller problem, we argue, 
became an integral part of his conceptualization of solving counting problems.   

The Groups of Students problem. Later in the interview, Anderson solved the Groups of 
Students problem, which states, In how many ways can you split a class of 20 into four groups of 
five? A correct way to answer this problem is to choose 5 students from 20 to form a group, then 

5 from 15, then 5 from 10, and finally 5 from the remaining 5, and there are 
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ways to do this. This process has an implicit order to the stages and counts the total number of 
distinguishable groups, and we thus divide this expression by 4! for the final answer. We briefly 
mention Anderson’s work on this subsequent problem to show how the same way of thinking 
emerged again in his work on a new counting problem. This supports our above assertion that his 
positive experience with the way of thinking on the Passwords problem might have encouraged 
him to employ it subsequently. It also helps to establish his problem solving approach as a way 
of thinking, not just a way of understanding that he applied to a particular situation in the 
Passwords problem. However, we also want to use this example to show how his experience on 
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the Groups of Students problem raised new issues in his way of thinking, thus affecting his 
conceptualization of how he might apply this way of thinking to novel counting problems.  

In this problem, Anderson reduced two parameters (the number of groups and the total 
number of students) to make the problem more tractable. He divided a class of four into two 
groups, and through systematic listing found that there were three ways to do this. He then 
attempted to determine how a class of six could be split into two groups, and again through 
systematic listing found that there were 10 such possibilities. Anderson continued in this way, he 
made an initial guess at what the general formula might be: “the number of students choose the 
size of the groups, divided by the number of groups.” We note that this formula is incorrect, but 
given his work it is a reasonable first attempt. Recognizing that he wanted to test out this guess at 
a formula, Anderson proceeded to solve another smaller problem, this time splitting six students 
into three groups of two. He wrote out solutions and similarly developed a pattern, continuing to 
reason about the problem. We ultimately ran out of time for Anderson to come up with a correct 
solution on his own, but his work with the smaller problems proved fruitful for him, and he was 

able to make sense of the correct answer, 
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In this example, we want to emphasize that multiple applications of the way of thinking 
actually might have served to refine Anderson’s way of thinking of using smaller, similar 
problems. Anderson’s way of using smaller cases in this problem differed from (and was not 
quite as straightforward as) his work on the Passwords problem. In the Passwords problem, 
insight about overcounting came to him right away, and one instance of a smaller case (reducing 
the problem to 4 instead of 8 letters) was enough for him to make sense of the correct solution. In 
the Groups of Students problem, he used a series of smaller problems to build up a pattern from 
which he made a guess at what the correct formula might be, and this initial formula was not 
correct. The nature of the interviews did not allow for explicit reflection about this way of 
thinking, but we can make a couple of inferences about how his ways of understanding in the 
two problems fed back into his way of thinking. We contend that the use of multiple smaller 
problems and the emergence of patterns supplemented and expanded his previous way of 
thinking about the mental act of problem solving. Additionally, we argue that as a result of his 
work on the Groups of Students problem, Anderson might have learned that he had to be careful 
in his choice about how to reduce the problem – simply reducing any parameters might not be 
helpful, and it is important for him to be strategic about how he reduces a problem. This is seen 
in his first unsuccessful attempt at breaking a group of eight into four groups of two, and this is 
an insight that might not have arisen had he only solved the Passwords problem. We would thus 
argue that Anderson’s way of thinking is more robust because of the ways of understanding with 
which he engaged on these two problems.  

Lockwood (in press, 2013) has made the case for combinatorial implications of this work and 
for the value of using smaller cases in counting. However, we emphasize that beyond the 
content, these two episodes together reveal an important aspect of Anderson’s learning – his use 
of a particular problem-solving approach – that can be described in terms of a way of thinking. 
Even more, Anderson’s work on both of these problems provides further evidence of the 
usefulness of the duality principle, suggesting that his ways of thinking and ways of 
understandings reflexively interacted as he solved counting problems. We argue that if 
researchers seek to articulate aspects of students’ learning via learning trajectories, there could be 
value in targeting both ways of understanding and ways of thinking such as those that Anderson 
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displayed. By emphasizing this duality, we suggest that the interaction between ways of 
understanding and ways of thinking actually shed light on Anderson’s combinatorial 
conceptions, and these provide explanatory aspects of his work that would otherwise not arise. 
By observing his ways of thinking, ways of understanding, and their interaction across multiple 
problems, we have a more complete picture of how he thinks about counting problems.  

Duality, Necessity and Repeated Reasoning as a Basis for Explaining Conceptual Change 
In Part 2, we argued that many existing learning trajectories often identify discrete levels of 

conceptual change, but we suggested that these could be complemented with explicit attention to 
how learning occurs between those levels. In Part 3, we used an example to illustrate how 
attention to duality provides a means to think about the interaction between ways of thinking and 
ways of understanding in observed conceptual change. In this section, we extend these 
discussions to suggest that duality provides a means to elaborate what Simon et al. (2010) called 
“subtle shifts in thinking.” (p.84) Simon proposed the need for understanding these subtle shifts 
to complement the work of Steffe, Cobb and Thompson (among others) that focused on 
hierarchies of student understandings. He argued that the focus on such hierarchies of student 
understandings do not sufficiently entail an explicit elaboration of the learning process; these 
hierarchies consist of a sequence of schemes that Simon believed did not describe what learning 
occurred “between” those hierarchies. We propose that duality, when combined with other 
elements of Harel’s DNR framework, provides a means to study, and represent in an LT, the 
subtle shifts that Simon identified.  

To illustrate this claim, we first return to Harel’s (2008) DNR framework. He argued that if 
feedback between ways of thinking and ways of understanding was to produce lasting changes in 
mathematical knowledge, that lasting knowledge relied on necessity and repeated reasoning 
(Harel, 2008, p. 20). The necessity principle states that, “for students to learn what we intend to 
teach them, they must have a need for it, where by need is meant intellectual need, not social or 
economic need” (Harel, 2008b, p. 19). The crux of the necessity principle is that a student is 
placed in a problematic situation that s/he genuinely sees to solve (intellectual need) and the 
desired concept is necessary to develop in order to solve the problem. Similarly, retaining new 
knowledge over time relies on the students’ internalization, retaining, and organization of that 
knowledge. The core of this learning over time is the repeated reasoning principle, which states,  
“Students must practice reasoning in order to internalize desirable ways of understanding and 
ways of thinking” (Harel, 2008b, p. 900). If students are to develop ways of understanding and 
ways of thinking that persist over time, the students must engage in problems that necessitate 
their development, and they must do so frequently. The repeated reasoning principle also 
distinguishes reasoning from practice. In other words, it is not just drill or practice of procedures. 
Students are engaged in repeated episodes of reasoning through problems. We interpret the 
necessity and repeated reasoning principles as mechanisms that drive the feedback loop between 
ways of thinking and ways of understanding.    

Stepping back, what we are proposing is that the necessity and repeated reasoning principles 
engender the feedback loop between ways of thinking and ways of understanding that we think is 
essential to explaining the kinds of subtle conceptual shifts that Simon described. As an example, 
imagine that a researcher was interested in explaining the conceptual change that occurred 
between a student thinking about a graph as static and a graph as a representation of covariation. 
First, the student must have a need to develop another way of looking at a graph. However, we 
do not mean that the static view of a graph “disappears” when it is insufficient to solve just one 
problem. Instead, a notion of a graph as a representation of covariation could arise as a result of 
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conceiving of covariation as necessary to solving a certain problem, while a static view of a 
graph solves others. We think that from Harel’s point of view, the shifts between schemes occurs 
when the student repeatedly conceives of a covariation view of function as useful to solving 
problems with graphs while he or she also conceives of the static view as insufficient to do so. 
Implicit in our descriptions of intellectual need and repeated reasoning is that the student’s initial 
way of thinking (static view) resulted in ways of understanding that were not sufficient to solve a 
particular problem, and that spurred a need for subtle shifts in the way of thinking about a graph. 
When these subtle shifts occur repeatedly they might produce an observable conceptual change 
such as shift from a static view of a graph to a covariation view of a graph. Even if learning 
trajectories only represent the macro-shifts, it is of great importance that the researcher considers 
how to engender the micro-shifts that produce them. The duality principle may help explain both 
the micro-shifts in conceptual knowledge (which may be so subtle they are not necessarily 
observable) and the macro-shifts in conceptual knowledge (which are clearly observable) 

Incorporation of Duality in Designing Learning Trajectories 
The purpose of this section is to provide specific recommendations for ways in which 

attention to the duality principle could shape how researchers think about and use learning 
trajectories. We suggest that researchers might recognize the potential that explicit attention to 
the duality of ways of thinking and ways of understanding might shape the understandings we 
might expect students to develop. To frame our recommendations, and to identify in what ways 
we see the focus on duality contributing to the current notion of a learning trajectory, we again 
consider Simon & Tzur’s (2004) elements of a hypothetical learning trajectory. Under each 
element, we consider what a focus on duality contributes, and how researchers might practically 
focus on duality in the construction and revision of learning trajectories.  
Table 1. 
Implications of Incorporating Duality into Learning Trajectories 

Principle Considerations Duality 
Introduces 

Recommendations for 
Researchers 

Generation of an HLT is based on 
understanding of the current 
knowledge of the students involved 

Understanding the current 
knowledge of students involved 
might entail a model of the students’ 
ways of thinking and their ways of 
understanding that is grounded in 
the literature base and develops 
from interactions with the students.  

Consider that difficulties or insights 
students appear to have could be 
related to their ways of thinking as 
well as their understanding of 
particular content. Ask questions 
across a variety of problems and 
domains to understand if their 
difficulties are content specific or 
involve ways of thinking.  
 

An HLT is a vehicle for planning 
learning of particular mathematical 
concepts 

An HLT is a vehicle for anticipating 
the development of mathematical 
knowledge, comprised of both ways 
of thinking and ways of 
understanding. The development of 
this knowledge can be represented 
as a feedback loop between ways of 
thinking and ways of understanding.   

Explicitly articulate mental acts 
(such a problem solving, justifying, 
proving, explaining, etc.) and 
anticipate potential products of 
(ways of understanding) and 
characterizations of (ways of 
thinking) mental acts that might 
arise for students. 
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Mathematical tasks provide tools for 
promoting learning of particular 
mathematical concepts and are, 
therefore, a key part of the 
instructional process 

Mathematical tasks provide a means 
to engender learning of 
mathematical concepts, and in doing 
so, provide a means to affect the 
development of ways of thinking. In 
turn, mathematical tasks that focus 
on engendering ways of thinking 
spur the development of particular 
subject matter knowledge.   

Create tasks that help gain insight 
into students’ ways of thinking by 
creating opportunities in tasks for 
students to reflect on their 
approaches and solutions across 
problems and situations. Be aware 
that certain mathematical domains 
may more or less effectively 
facilitate particular ways of thinking 
(e.g. solving smaller simpler 
problems)  
 

Because of the hypothetical and 
inherently uncertain nature of this 
process, the teacher-researcher is 
regularly involved in modifying 
every aspect of the HLT 

The teacher-researcher should 
consider modifications to the 
learning trajectory with both ways 
of thinking and ways of 
understanding in mind, developing 
and refining activities intended to 
engender those ways of thinking and 
ways of understanding.   

Document the development of 
students’ content knowledge in 
conjunction with their ways of 
thinking, explicitly attending to how 
these two aspects of students’ 
mathematical knowledge interact.  
 

 
We think there are three important considerations to be made going forward. First, our 

recommendations should not be considered as a call to develop a new “type” of learning 
trajectories. Instead, we have provided suggestions for what incorporating duality existing 
models of learning trajectories. The research on learning trajectories in mathematics education is 
robust and growing, but we hope our recommendations can supplement the work that is already 
being done. Second, our recommendations should not be considered an exhaustive list. We 
include these points as a means to promote discussion about a handful of important issues to 
consider about the inclusion of ways of thinking in learning trajectories. We hope that others 
may push back and refine our ideas about how to incorporate ways of thinking in learning 
trajectories. Third, content plays a significant role in how ways of thinking develop, and certain 
domains may be more appropriate than others for fostering specific ways of thinking. For 
instance, combinatorics is a particularly powerful context for thinking of solving smaller, similar 
problems, as the need for such work with smaller cases can easily be motivated in a setting that 
typically deals with very large and unwieldy numbers. While this way of thinking may be 
effectively developed in a domain like combinatorics, it could be further refined and developed 
in other mathematical areas, each of which might elicit different aspects of the way of thinking. 

In conclusion, in this paper we have focused on how emphasizing duality might supplement 
the development and implementation of learning trajectories. In subsequent work, we plan to 
provide more empirical evidence of how duality might arise in learning trajectories. 
Additionally, while our argument on this paper centers on learning trajectories for particular 
mathematical topics (such as ratio, counting problems, or fractions), we have also wondered 
about the development of learning trajectories for mathematical practices (such as generalization, 
problem solving, or proof). The existence of this other type of learning trajectory is a theoretical 
question that we would like to explore further. 
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Studies about students’ understanding of the formal definition of a limit, or the 
epsilon delta definition suggest that the temporal order of delta and epsilon is an 
obstacle in learning the formal definition. While such difficulty has been widely 
documented, patterns of students’ reasoning are largely unknown. This study 
investigates the degree of difficulty students have with the temporal order, along 
with justifications that students provide to support their claim. diSessa’s 
Knowledge in Pieces provides a suitable framework to explore the context 
specificity of students’ knowledge as well as the potential productivity of their 
prior knowledge in learning. 
 
Keywords: limit, formal definition, students’ prior knowledge, fine-grained 
analysis 

 
The formal definition of a limit of a function at a point, as given below, also known as the 

epsilon-delta definition, is an essential topic in mathematics majors’ development that is 
introduced in calculus. We say that the limit of f (x) as x approaches a is L, and write  

lim
!→!

𝑓 𝑥 = 𝐿 
if and only if, for every number 𝜀 greater than zero, there exists a number 𝛿 greater than zero 
such that for all numbers x where 0 < 𝑥 − 𝑎 < 𝛿 then |𝑓(𝑥)− 𝐿| < 𝜀. The formal definition 
provides the technical details for how a limit works and introduces students to the rigor of 
calculus. Yet research shows that thoughtful efforts at instruction at most leave students – 
including intending and continuing mathematics majors – confused or with a procedural 
understanding about the definition (Cottrill et al., 1996; Oehrtman, 2008; Tall & Vinner, 1981). 

Although studies have sufficiently documented that the formal definition is a roadblock for 
most students, little is known about how students actually attempt to make sense of the topic, or 
about the details of their difficulties. Most studies have not prioritized students’ sense making 
processes and the productive role of their prior knowledge (Davis & Vinner, 1986; Przenioslo, 
2004; Williams, 2001). This may explain why they reported minimal success with their 
instructional approaches (Davis & Vinner, 1986; Tall & Vinner, 1981). Thus, understanding the 
difficulty in the teaching and learning of the formal definition warrants a closer look – with a 
focus on student cognition and with attention to students’ prior knowledge. It also calls for a 
theoretical and analytical framework that focuses on understanding the nature and role of 
students’ intuitive knowledge in the process of learning.  

A small subset of the studies have begun exploring more specifically student understanding 
of the formal definition (Boester, 2008; Knapp and Oehrtman, 2005; Roh, 2009; Swinyard, 
2011). They suggest that students’ understanding of a crucial relationship between two 
quantities, 𝜀 and 𝛿 within the formal definition warrants further investigation. Davis and Vinner 
(1986) call it the temporal order between 𝜀 and 𝛿, that is the sequential ordering of 𝜀 and 𝛿 
within the formal definition where 𝜀 comes first, then 𝛿 (p. 295). They found that students often 
neglect its important role. Swinyard (2011) found that the relationship between the two quantities 
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is one of the most challenging aspects of the formal definition for students. Knapp and Oehrtman 
(2005) and Roh (2009) document this difficulty for advanced calculus students. This difficulty is 
also prevalent among the majority of calculus students who struggled with the formal definition 
in Boester (2008). How students reason about the temporal order still remains an open question. 

This study is a part of a larger study investigating the role of prior knowledge in student 
understanding of the formal definition. It specifically explores the claim that students struggle to 
understand the temporal order of 𝜀 and 𝛿 within the formal definition. We aim to answer the 
following research questions:  

1. What claims do students make about the temporal order of 𝜀 and 𝛿?  
2. If students in fact struggle with the temporal order, what is the nature of their difficulty? 

Theoretical Framework 
The Knowledge in Pieces (KiP) theoretical framework (Campbell, 2011; diSessa, 1993; 

Smith et al., 1993) argues that knowledge can be modeled as a system of diverse elements and 
complex connections. From this perspective uncovering the fine-grained structure of student 
knowledge is a major focus of investigation, and simply characterizing student knowledge as 
misconceptions is viewed as an uninformative endeavor (Smith et al, 1993). Knowledge 
elements are context-specific; the problem is often inappropriate generalization to another 
context (Smith et al, 1993). For example, “multiplication always makes a number bigger” is not a 
misconception that just needs to be removed from students’ way of thinking. Although this 
assertion would be incorrect in the context of multiplying numbers less than 1, when applied in 
the context of multiplying numbers greater than 1, it would be correct. Paying attention to 
contexts, KiP considers this kind of intuitive knowledge a potentially productive resource in 
learning (Smith et al., 1993). This means that instead of focusing on efforts to replace 
misconceptions, KiP focuses on characterizing the knowledge elements and the mechanisms by 
which they are incorporated into, refined and/or elaborated to become a new conception (Smith 
et al., 1993). Similarly, we view students’ prior knowledge as potentially productive resources 
for learning. We focus our investigation on students’ reasoning as potentially productive 
resources, and we focus our attention on the context specificity of students’ knowledge. 

Methods 
The data for this report comes from a larger interview study with 25 students (18 new 

students, and 7 students from the pilot study reported last year) investigating the role of prior 
knowledge in student understanding of the temporal order. Each of these students has received 
some form of instruction on the formal definition. So we anticipate some knowledge about the 
definition to be a part of their prior knowledge. The protocol was designed to elicit student 
understanding of the formal definition, but more specifically their understanding of the 
relationship between delta and epsilon. To explore the stability and context specificity of 
students’ knowledge across different contexts, we asked students about the temporal order of the 
two variables in four different contexts: dependence (does epsilon depend on delta, vice versa or 
they depend on each other?), their temporal order (does delta or epsilon come first in the 
definition?), set (which one is set? Delta, epsilon, both or neither?), and lastly we asked students 
to order x, f (x), epsilon and delta in order according to the definition. Each individual interview 
lasted about 2 to 3 hours. These interviews were videotaped following recommendations in 
Derry et al. (2010).  

The first step in analysis is categorizing students’ response to each question about the 
temporal order into the category of delta first, epsilon first or no order. The response to each 
question is given a score from 0 to 2 (delta first=0, no order=1, epsilon first=2). Then students’ 
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scores are added up across the different questions to give the student a total score. The total score 
ranges from 0 to 8 and puts students along a continuum between the claim of delta first and 
epsilon first. This is a more refined way of assessing students’ responses about the temporal 
order in comparison to our pilot work when we simply relied on what the student said last about 
the temporal order.  
 The second step in the analysis is to record students’ reasoning or justification for their 
claim about the temporal order. To do this we explore their response to the “why” question after 
each question about the temporal order. Common justifications emerged from the data and we 
were able to document the number of students who used the same justification for their claim. 
The goal of the analysis is not to come up with an exhaustive list of justifications for any student 
in calculus. Instead we aim to report the justifications that we found in the 18 students that we 
interviewed along with the 7 students from the pilot study.  

Results 
Relationship Between the 𝜺 and 𝜹  
 The table below shows how each student in the study answered each question about the 
temporal order. The table is split into two. The top half includes students from the current study 
and the bottom half are students from the pilot study whose results were reported last year.  
 

Student Dependence Temporal Set Order Total 
CL 0 0 0 0 0 
SW 0 0 0 0 0 
SF 0 0 0 0 0 
VB 0 0 0 0 0 
TF 0 0 0 0 0 
JIB 0 0 1 0 1 

ADH 0 0 1 0 1 
JOB 0 0 1 0 1 
JC 1 0 0 0 1 
BP 0 0 2 0 2 
BM 0 2 1 0 3 
KG 0 2 1 0 3 
SN 1 0 2 0 3 
GA 2 0 0 2 4 
RR 0 1 2 2 5 
CW 1 2 1 1 5 
RM 2 2 1 2 7 
IL 2 2 2 2 8 
DL 0 N/A N/A N/A 0 
JJ 0 N/A N/A N/A 0 

DR 0 0 N/A 0 0 
SR  0 0 N/A 0 0 
OB 0 0 N/A 0 0 
AD 2 2 2 N/A 8 
DC 2 N/A N/A N/A 8 

Table 1. Students’ responses to each question about the temporal order sorted from lowest to 
highest total and separated by current study vs. pilot study 
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As we reported last year, during the pilot not all of the questions were asked. AD and DC scored 
an 8 without answering the other three questions because they answered the questions that were 
asked normatively and was able to explain the formal definition accurately. To assist in parsing 
the table above, we charted the number of questions that students answered correctly (epsilon 
first, score=2). 
 
 

Figure 1. The distribution of students in answering the four temporal order questions correctly  
 
Fifty six percent (56%) of students (14/25) answered none of the questions correctly, 20%(5/25) 
answered one question correctly, 8% answered two questions correctly, 4%(1/25) answered three 
questions correctly and 12% (3/25) answered four questions correctly.   
Students’ Reasoning About the Temporal Order 

The table below shows the different justifications students provided to justify their claim 
about the temporal order and the number of students who used that justification. Each of the 
reasoning is followed by the conclusion students often make about the temporal order, along 
with any variations of the justification. Students from the pilot study are marked by parentheses. 
 

Reasoning Students Number of students 
There needs to be a delta for 
epsilon to exist. Often comes 
from students’ reading of the 
different parts of the 
definition.  
Variation: the delta has to be 
satisfied first before epsilon 
could be. So delta is first.  

ADH, BM, GA, KG, SN, TF, 
VB, (DL, JJ) 9 

Delta is known because x and 
a are known (and L is 
unknown). So delta is first. 

ADH, JOB, RR, VB, (SR, DR, 
OB) 7 

Normative reading of the BM, GA, IL, SN 4 
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statement. So epsilon is first.  
Spatial location of variables 
within the statement.  BM, GA, RR 3 

Intuitive understanding of 
limit. Small change in x, leads 
to small change in f (x). Small 
delta implies small epsilon. So 
delta is first. 

BP, JOB 2 

You're finding delta first.  
Delta is unknown. So delta is 
first. 

BP, IL 2 

If delta is true then epsilon is 
true. Often comes from 
students’ reading of the if-then 
statement from the definition. 
So delta is first. 

CL, GA, IL, JIB, KG, (JJ, SR, 
AD) 8 

Both epsilon and delta need to 
be found. So no order. CW, JC 2 

Students mistaking if-then as 
if and only if. So no order. JC, SW, (AD) 2 

Input/output or dependence 
between f (x) and x. 

JIB, JOB, SF, SN, SW, VB, 
(DL, DC, JJ, AD, DR) 11 

Delta is x and epsilon is y.  
Variation: y depends on 
epsilon and x depends on 
delta. Delta is grouped with x 
and epsilon with y. 

JIB, JOB, RR, SF, SN, SW, 
VB, (DC, DL, JJ) 10 

Partial recall from doing 
proofs. When done correctly 
leads to epsilon first, but if 
not, then usually delta is first. 

JC, KG, RM, SF, SW, VB, 
(SR, DC, AD) 9 

Epsilon is arbitrary, so it's not 
set. So delta is first. KG, RM, SW 3 

When the limit does not exist 
as a counter example. For a 
given epsilon there does not 
exist a delta. So epsilon is 
first.  

(DC, AD) 2 

Table 2. The list of students’ justification for their claim about the temporal order. 
Discussion and Implication 
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This study confirms the finding from our pilot study last year. We found that students 
struggle with the temporal order of epsilon and delta within the formal definition. Fifty six 
percent of the students in this study were not able to answer one question about the temporal 
order correctly. With a more refined method, we saw more variability in students’ claim about 
the temporal order. Ten students received a total score of 0 across the four different contexts and 
two students scored 8, but the many students were somewhere in between. The finding that some 
students can score a 2 in one context but a 1 or 0 in others shows that student knowledge about 
the temporal order is not quite stable across the different contexts. This supports our theoretical 
assumption that knowledge is context specific, and also highlights the importance of assessing 
student knowledge in multiple contexts in research and practice.    

With respect to their reasoning, the functional dependence between x and f (x) along with 
delta is with x while epsilon is with y remain the most common justification for the temporal 
order this year. We discussed the nature of that reasoning and its implication in Adiredja and 
James (2013). However, we also found other common reasoning patterns, like students claiming 
that “for every number epsilon there exists a number delta” from the definition suggests that 
there needs to be a delta first for epsilon to exist. We included this as one of the knowledge 
resources last year. In Adiredja and James (2013) we found that most of these knowledge 
resources were mathematical in nature, and hypothesized that either this indicated lack of access 
into the formal definition using intuitive knowledge or it was a product of using too large of a 
grain size to find intuitive knowledge resources. It turns out to be both.  

The findings from this study show that for the most part students use their interpretation and 
experiences with formal mathematics to make sense of the temporal order. At the same time, a 
microgenetic case study as part of the larger project reveals that many of what we found in this 
study are reasoning patterns, and not quite yet knowledge resources. A reasoning pattern is made 
up of different knowledge resources, making it larger in grain size. These reasoning patterns 
point us in a direction to locate knowledge resources. For example, one of the authors found that 
delta is both a determiner and a determined in the definition by focusing on students’ 
interpretations of the if-then statement and “for every number epsilon there exists a number 
delta.” While delta is determined by epsilon, delta also determines the appropriate interval whose 
difference with the limit would later be compared to epsilon. The case study also finds that the 
common “gloss” delta is x and epsilon is y might be a byproduct of the richness and complexity 
of the formal definition as a learning context. That is, it might be a necessary move for student to 
be able to focus on the other components of the formal definition while reasoning about the 
temporal order.   

The list that we provided here is not exhaustive, but it shows the diversity and range of 
student reasoning pattern. While we argue that it is too early to turn our findings into some form 
of instructional intervention, it is important to reiterate the point we made in Adiredja and James 
(2013). The goal in instruction should not be to replace some of the unproductive reasoning 
patterns. Instead, any instructional intervention should help students reorganize these reasoning 
patterns while recognizing the contexts in which they might be useful (e.g. the productivity of 
the functional dependence relationship in multiple contexts in mathematics). More importantly, 
we argue that we need to get to the level of resources to truly understand how students reason 
with the temporal order, and the ideas that they prioritize. Then we can begin to think about 
impactful instructions that can assist students in understanding the temporal order, and the formal 
definition more broadly, as a result of honoring their prior knowledge.  
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In this paper we report a study designed to investigate the impact of logical reasoning ability on 
proof comprehension. Undergraduates beginning their study of proof-based mathematics were 
asked to complete a conditional reasoning task that involved deciding whether a stated 
conclusion follows necessarily from a statement of the form “if p then q”; they were then asked 
to read a previously unseen proof and to complete an associated comprehension test.  To 
investigate the broader impact of their conditional reasoning skills, we also constructed a 
composite measure of the participants’ performance in their mathematics courses.  Analyses 
revealed that the ability to reject invalid denial-of-the-antecedent and affirmation-of-the-
consequent inferences predicted both proof comprehension and course performance, but the 
ability to endorse valid modus tollens inferences did not.  This result adds to a growing body of 
research indicating that success in advanced mathematics does not require a normatively correct 
material interpretation of conditional statements. 
 
Key words: Conditional Inference, Logical Reasoning, Proof Comprehension, Undergraduate 
Mathematics Education 
 

Introduction 
Mathematics and logical reasoning are seen as closely related.  It is widely believed that 

study of mathematics develops general logical reasoning skills (e.g., NCTM, 2000), and that 
correct logical reasoning is important for study of advanced mathematics: transition-to-proof 
textbooks commonly deal with the topic explicitly.  But is this really the case?  Recent research 
has revealed that mathematics and logical reasoning are related, but that this relationship is not 
straightforward: it is not the case that experienced mathematicians uniformly conform to 
normatively correct interpretations of conditional statements (e.g., Inglis & Simpson, 2006).  
This raises questions about what we need to teach and about which failures of reasoning should 
worry us.  In this paper we take up this discussion, arguing that mathematics education does not 
lead students to normatively correct reasoning, but does nevertheless develop the logical 
reasoning skills that students need for advanced mathematics.  We begin by reviewing arguments 
and evidence on expert and novice reasoning with conditional statements of the form “if p then 
q.”   
 

Reasoning with Conditional Statements 
Consider a conditional statement about an imaginary letter-number pair:  

“If the letter is X then the number is 1.” 
Researchers have investigated patterns of responses to four possible inferences from this 
statement plus a related assertion; these inferences are listed in Table 1. 
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Assertion Inference Inference type 
The letter is X (p) The number is 1 Modus ponens 
The letter is not X (not-p) The number is not 1 Denial of the antecedent 
The number is 1 (q) The letter is X Affirmation of the consequent 
The number is not 1 (not-q) The letter is not X Modus tollens 

Table 1: Four possible inferences from the conditional statement plus a related assertion. 
 

In formal logic, where conditional statements are interpreted as material conditionals, 
modus ponens (MP) and modus tollens (MT) inferences are defined to be valid, and denial-of-
the-antecedent (DA) and affirmation-of-the-consequent (AC) inferences are defined to be 
invalid.  This is the interpretation taught in textbooks and in transition-to-proof-courses.  It is not, 
however, the interpretation commonly made by people without formal training.  In everyday life, 
it has been argued that a defective conditional interpretation is more common (e.g., Quine, 1966).  
Under this interpretation, the conditional statement is seen as stating only that the consequent 
follows given that the antecedent is true, meaning that the statement is irrelevant in cases in 
which the antecedent is not true.  The picture is further complicated by the common everyday 
interpretation of a conditional statement “if p then q” as the biconditional statement “p if and 
only if q” (e.g., Epp, 2003). These three interpretations are compared in Table 2.  
 

p q if p then q (biconditional) if p then q (defective) if p then q (material)  
T T T T T 
T F F F F 
F T F irrelevant T 
F F T irrelevant T 

Table 2: Comparison of biconditional, defective conditional and material conditional 
interpretations (T – true; F – false). 
 

The corresponding responses to the four inference types are given in Table 3.  Under a 
biconditional interpretation, p and q are seen as simply “going together,” so that either both are 
true or both are false.  This corresponds to endorsement of all four inferences.  Under a defective 
interpretation, only modus ponens is endorsed, since the other three inferences involve assertions 
for which the conditional statement is seen as irrelevant.  The material interpretation corresponds 
to the normatively correct responses as listed above. 
 

Inference type biconditional defective material  
Modus ponens endorse endorse endorse 
Denial of the antecedent endorse reject reject 
Affirmation of the consequent endorse reject reject 
Modus tollens endorse reject endorse 

Table 3: Comparison of biconditional, defective conditional and material conditional 
interpretations. 
 

It might be natural, then, to see the material interpretation as the most sophisticated, and to 
believe that mathematics educators should help students develop toward this interpretation and 
should be concerned if it is not attained.  But is it true that a material interpretation is important 
for mathematical success? 
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Evidence on Mathematical Education and Logical Reasoning 

It has been argued that a material interpretation is needed for advanced mathematics; that 
certain forms of indirect reasoning are not accessible without it (Durand-Guerrier, 2003).  
However, it has also been argued that at lower educational levels a defective interpretation is 
more appropriate, “since in school mathematics, students have to appreciate the consequence of 
an implication when the antecedent is taken to be true” (Hoyles & Küchemann, 2002, p. 196).  
Indeed, evidence indicates that mathematical study develops conditional reasoning skill, but 
develops it toward a defective rather than a material interpretation.  In a sample of students in the 
UK, where compulsory education ends at 16, those studying mathematics in the first non-
compulsory year were found to change in their responses to a conditional reasoning task more 
than did an equivalent population studying English literature (and not mathematics).  The 
mathematics students became more likely to reject AC inferences and DA inferences, but also 
more likely to reject MT inferences (Attridge & Inglis, 2013).  Might this mean that their 
education did a disservice to those who went on to study undergraduate mathematics?  Does pre-
proof mathematical education teach students a better but still inadequate interpretation of the 
conditional, and does this cause problems when they come to study proof?  

Surprisingly, evidence from work with professional mathematicians suggests that it might 
not, because mathematicians do not reliably make the material interpretation either.  In a study of 
mathematicians’ responses to the Wason Selection Task, Inglis and Simpson (2006) showed that 
professional mathematicians behave differently from members of a general educated population: 
they are not tempted by AC and DA inferences, but neither do they reliably consider a relevant 
MT inference.  Perhaps, then, a defective interpretation is perfectly adequate for success even in 
proof-based mathematics.  Our data supports this suggestion, as described below. 

 
Methods 

Participants in our study were 112 students in a first year, second semester undergraduate 
mathematics class on problem solving and proving (the equivalent of a transition-to-proof 
course). All had taken a linear algebra course in the previous semester (this included theorems 
and proofs but treated these quite lightly) and were concurrently enrolled on a course in calculus 
(this included some proofs and some calculations involving limits, but epsilon-delta techniques 
appeared only briefly).  All were spending 50% of their total time over the year in these 
mathematics classes, and for almost all this was a compulsory component of a degree 
programme with “mathematics” in the title.  In workshop sessions in week 8 of the 11-week 
problem solving and proofs course, participants were asked to complete a conditional reasoning 
test, and to read and answer comprehension questions on a previously unseen proof.  They 
completed both tasks individually and in silence. 

The conditional reasoning test (adapted from Evans, Clibbens & Rood, 1995) comprised 16 
items of the form shown in Figure 1. There were four items for each type of inference (MP, AC, 
DA and MT), and instructions asked participants to decide whether the conclusion necessarily 
follows and to indicate their answer by placing a check mark in the appropriate circle.  
Participants were given ten minutes to complete the task, and the order of the items was 
randomised for each participant.  For analysis purposes, a count out of four was constructed for 
each inference type, where each point indicated an instance in which the participant agreed with 
an inference of the relevant type. 
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If the letter is J then the number is not 2. 
The number is 7. 
Conclusion: The letter is J. 
¢ YES. 
¢ NO. 

Figure 1: A conditional reasoning test item (an AC item).  
 
The proof comprehension task involved a proof that the product of two primes is not 

abundant (i.e., that the product is not less than the sum of its proper factors).  Participants were 
asked to study the proof carefully and then to answer a proof comprehension test based on the 
model developed by Mejía-Ramos, Fuller, Weber, Rhoads and Samkoff (2012).  This test 
comprised ten multiple-choice items, each of which had two distractors and one correct answer 
(the proof and test are too long to reproduce here, but full copies will be provided at the talk if 
this paper is accepted).  Participants were allowed 15 minutes for this task. 

Finally, we obtained the participants’ examination scores in their calculus, linear algebra and 
problem solving and proofs courses (all three courses had some coursework together with a final 
individual summative examination worth 85% of the course grade).  The average of these scores 
was used as a measure for performance in core mathematics courses. 

 
Results 

Table 4 presents the descriptive statistics for all six measures, showing the minimum and 
maximum number of inferences of each type endorsed, as well as the associated means and 
standard deviations.  
 

Measure (theoretical max) Min Max Mean Std. Dev.  
MP inferences endorsed (4) 2 4 3.68 0.541 
DA inferences endorsed (4) 0 4 1.06 1.085 
AC inferences endorsed (4) 0 4 1.42 1.271 
MT inferences endorsed (4) 0 4 2.68 1.050 
Proof Comprehension (10) 3 10 7.29 0.182 
Math Course (100) 22 95 61.86 16.426 

Table 4: Descriptive statistics. 
 
We note that the MP counts were close to ceiling.  This is to be expected, but it renders this 
measure inappropriate for use in regression models, so we omit it in the following analyses.  The 
counts for the remaining conditional reasoning measures show considerable variability – 
participants on average endorsed more than one of each of the invalid DA and AC inferences, 
and rejected more than one valid MT inference.  The proof comprehension scores were generally 
high, and the range and average of the mathematics performance scores were typical in the 
national context in which the study took place. 

Table 5 presents regression models with the DA, AC and MT counts as independent 
variables and with (a) proof comprehension score and (b) mathematics performance score as the 
dependent variables.  Figure 3 shows the means of the proof comprehension and mathematics 
performance scores for participants with different DA, AC and MT counts, together with lines of 
best fit for cases in which the count is a significant predictor. 
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(a) 

R2 Predictors β p 
.171*** DA -.234 .029 
 AC -.234 .031 
 MT .003 .969 

 
(b) 

R2 Predictors β p 
.261*** DA -.209 .041 
 AC -.342 .001 
 MT .084 .321 

Table 5: Regression models predicting (a) proof comprehension score and (b) mathematics 
performance; ***p<.001. 
.  
 

 
Figure 2: Proof Comprehension test and Math Course score means and correlation coefficients 
for participants endorsing different numbers of DA, AC and MT inferences; error bars show ±1 
SE of the mean, *** p < .001. 
 

In both models, the DA and AC counts were significant predictors with negative 
coefficients: participants who rejected more DA and more AC inferences performed better both 
on the proof comprehension test and in their mathematics courses.  In both models, the MT score 
was not a significant predictor: endorsement of MT inferences, which are valid under the 
normatively correct material interpretation of the conditional, did not have a systematic effect on 
either outcome measure. 
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Discussion 
The material interpretation of the conditional is normatively correct and is taught in standard 

undergraduate mathematics.  However, this study adds to a growing set of results suggesting that 
full conformity with its entailments is not necessary for mathematical success.  While the ability 
to reject invalid DA and AC inferences does appear to predict success in proof comprehension 
and in undergraduate-level courses, the ability to reliably endorse valid MT inferences does not.   

One obvious limitation of this study is that it involved a comprehension test for only a single 
proof.  Concern about this should be mitigated by the second regression model in which 
performance across three core mathematics modules showed a similar pattern; if a lack of ability 
to endorse MT inferences were a serious problem, we would expect it to appear as a significant 
predictor in this model.  However, these results leave open the possibility that a defective 
interpretation of the conditional is a disadvantage under some specific circumstances.  Perhaps, 
for instance, students with this interpretation are less able to understand contradiction or 
contraposition arguments.  All such arguments relative to a statement of the form “if p then q” 
involve a step at which one establishes not-q and uses this to conclude not-p.  Thus, we might 
expect them to be less well understood by students who do not readily endorse MT inferences.  
This could be investigated, although we suggest that such work should be done in parallel with 
further investigation of how expert mathematicians process such arguments.  Recall that 
mathematicians do not reliably consider relevant MT inferences under all circumstances, so there 
might not be a straightforward link between reasoning about single abstract conditional 
statements and understanding this structure as it is used in proofs.  Indeed, Inglis and Simpson 
(2009) suggest that the equivalent of an MT inference can be constructed given a defective 
interpretation of the conditional statement “if p then q” and the assertion not-q: they might 
suppose p, conclude q by MP, note that this contradicts the assertion, and conclude that their 
supposition of p was incorrect.  This is a somewhat long chain of reasoning, but that very fact 
might account for all of the results: if this is the mechanism typically used, we would expect that 
neither mathematicians nor students would endorse all straightforward MT inferences by simple 
recognition, but that experienced mathematicians and more successful students would be better 
able to reach correct conclusions by correctly reasoning through the whole chain. 

Prior to such investigations, we do not suggest that we should stop teaching mathematics 
students the material interpretation of the conditional.  However, we do suggest that we should 
not be too concerned if undergraduate students do not develop to a point at which they reliably 
endorse MT inferences, because it appears that they may not need to. 
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A COMPARISON OF FOUR PEDAGOGICAL STRATEGIES IN CALCULUS 

Spencer Bagley 
San Diego State University and UC San Diego 

The quality of education in introductory calculus classes is an issue of particular educational 
and economic importance. In work related to a national study of college calculus programs 
conducted by the MAA, I report on a study of four different pedagogical approaches to 
Calculus I at a single institution in the Fall 2012 semester. Using statistical methods, I 
analyze the effects of these four approaches on students’ persistence in STEM major tracks, 
attitudes and beliefs about mathematics, and procedural and conceptual achievement in 
calculus. Using qualitative methods, I draw links from the statistical results to differences 
and commonalities in the four classroom strategies. 

Key words: Calculus; Persistence; Achievement; Affect, Beliefs, and Attitudes; Classroom 
Research 

The quality of education in science, technology, engineering, and mathematics (STEM) 
fields is an issue of particular educational and economic importance. The President’s Council 
of Advisors on Science and Technology (PCAST, 2012) recently reported that fewer than 
40% of students who originally intend to major in a STEM field actually complete a STEM 
degree; many of the reasons students give for switching implicate uninspiring, dull, or 
unimaginative introductory courses, or courses that are “over-stuffed” and taught too quickly 
(Seymour, 2006; Seymour & Hewett, 1997). A national study, funded by the NSF and under 
the auspices of the MAA, is currently being conducted examining the characteristics of 
successful programs in college calculus (CSPCC, 2012; Bressoud, Carlson, Mesa, & 
Rasmussen, 2013). Using the same surveys as the CSPCC study, my work builds on this 
project by examining the effects on student outcomes (including conceptual and procedural 
achievement, persistence in STEM majors, and beliefs and attitudes about mathematics) of 
different teaching strategies used at a single institution. Because of my focus on a single 
institution, rather than the hundreds studied by CSPCC, I also was able to collect longitudinal 
student enrollment data, detailed classroom observations, and measures of students’ 
mathematical understanding. 

Theoretical Perspective and Literature 
The theoretical perspective undergirding this work is the emergent perspective (Cobb & 

Yackel, 1996), which holds that participation in classroom activity “constitute[s] the 
conditions for the possibility of learning” (p. 185), and that an individual’s psychological 
development is enabled and constrained by their participation in classroom activities. 
Therefore, classes that present more opportunities for students’ engagement and participation 
in classroom activities are seen as presenting more opportunities for robust student learning 
and improvement in beliefs and dispositions. 

The development of productive attitudes, beliefs, and dispositions about mathematics is 
an important component of student success in calculus. Students’ mathematical beliefs, 
including confidence, self-efficacy, and self-concept, correspond strongly with achievement 
in mathematics classes (Pajares & Miller, 1995; Carlson, 1999, Schommer-Aikins, Duell, & 
Hutter, 2005), as well as problem-solving behaviors (Carlson & Bloom, 2005). Further, 
students’ beliefs and attitudes appear to be strongly influenced by the beliefs and teaching 
styles of their instructors (Schoenfeld, 1992). 

One of the four classes under examination is an “inverted classroom” (Lage, Platt, & 
Treglia, 2000), in which lecture content is delivered outside of class time via internet videos, 
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and class time is used by students to solve problems in small groups. Inverted classrooms 
have been studied in STEM fields including economics (Lage et al., 2000), physics 
(Deslauriers, Schelew, & Wieman, 2011), computer science (Gannod, 2007), and biology 
(Moravec, Williams, Aguilar-Roca, & O’Dowd, 2010). Save for a few recent reports in 
conference proceedings (e.g., Bowers & Zazkis, 2012; Overmyer, 2013; Wasserman, Norris, 
& Carr, 2013), there is a relative dearth of literature on the inverted classroom in 
undergraduate mathematics education. 

Setting and Questions 
In the Fall 2012 semester at a large public university in the southwestern United States, 

Calculus I was taught by four different instructors using four different instructional 
techniques. The first class was a traditional, lecture-based approach to calculus, together with 
recitation sections led by a TA. The second class was a more interactive, student-centered 
lecture without TA recitations. A third class was taught using an inverted model, as described 
above. The inverted class had no TA recitations, but the TAs were involved in helping 
answer student questions during class time. The final class was an interactive, student-
centered, technology-intensive lecture with TA recitations, using applets developed in 
Geometer’s Sketchpad to help develop students’ intuition for calculus concepts. For ease of 
reference, I call these classes the traditional class, the interactive class, the inverted class, and 
the technology class, respectively. 

This report is part of a broader study examining the following research questions: 
RQ1: How do students in the four classes compare in their: a) persistence in STEM 

major tracks? b) attitudes, dispositions, and beliefs about mathematics? and c) 
conceptual and procedural achievement in calculus? 

RQ2: How do students in the four classes compare to students in the CSPCC study, and 
specifically to students in successful programs, in their: a) persistence in STEM 
major tracks? and b) attitudes, dispositions, and beliefs about mathematics? 

RQ3: How do the similarities and differences in opportunities for learning between the 
four classes contribute to the similarities and differences in outcomes? 

This report focuses on RQ1, examining the effect of the different classes on student 
outcomes, and RQ3, identifying similarities and differences between the opportunities for 
learning presented by each class and linking them to the statistical results. 

Data and Methods 
This is a mixed-methods study whose data is both quantitative and qualitative. The 

quantitative data comprises student survey responses and scores on several assessments. The 
surveys, designed for use in the ongoing CSPCC study, were given at the start and end of the 
term (STS and ETS, respectively), and included questions about students’ demographic 
information, mathematical preparation, beliefs and attitudes about mathematics, college and 
career plans, and their experience in Calculus I. I also collected student scores on the 
Calculus Concept Readiness (CCR) instrument (Carlson, Madison, & West, 2010), the 
Calculus Concept Inventory (CCI; Epstein, 2006), and a common final exam developed 
jointly by the four instructors. 

I also collected qualitative data, including classroom observations and student focus 
group interviews. I observed and took extensive field notes in each of the class sessions that 
addressed related rates and the fundamental theorem of calculus. I also conducted focus 
group interviews with groups of four to seven student volunteers, focusing on students’ 
subjective assessment of their calculus class. Both the interviews and the observations were 
audiorecorded and transcribed to aid in qualitative analysis, which was conducted using 
grounded theory (Strauss & Corbin, 1994). 
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To characterize and analyze the quantitative data, I used descriptive and inferential 
statistical methods. Tests such as ANOVA, ANCOVA, t-tests, and factor analysis were used 
to identify and assess the significance of differences between student outcomes in the four 
classes. 

Results 
In this section, I will summarize selected quantitative and qualitative results. The 

quantitative results fall into four broad categories: persistence, beliefs and attitudes, 
procedural and conceptual achievement, and differential impact on various subgroups. 
Persistence 

I identified switchers and persisters following the methodology used in the MAA study 
(Rasmussen & Ellis, 2013). Persisters are those who both began and ended the term intending 
to take Calculus II; switchers are those who initially intended to take Calculus II but changed 
their minds during the course of the term. I identified a total of 22 switchers and 253 
persisters in the four classes. I conducted a chi-square analysis to determine if there were 
significant differences between the proportions of switchers and persisters in the four classes. 
The test reported no significant difference (p = .239); it thus appears that the differences in 
the four classes have no impact on students’ persistence. 

Table 1: Switcher and Persister Counts 
  Tech. Interactive Trad. Inverted Total 
Switchers Count 9 0 8 5 22 
 Expected  6.2 2.6 8.2 5.1 22.0 
Persisters Count 68 32 94 59 253 
 Expected  70.8 29.4 93.8 58.9 253.0 

 
Beliefs and Attitudes 

There were 16 beliefs items on the ETS; I used ANOVA to determine if there were 
significant differences between the classes in the responses to the ETS items. Only five items 
were identified as differing significantly between classes. Post-hoc comparisons were 
conducted to determine the precise location of differences. The results are summarized in the 
table below; unless otherwise indicated, higher scores indicate more favorable beliefs. 

Table 2: ANOVA ETS Beliefs Items 
Item F(3, 325) p Differences MD p 

This course has increased my interest 
in taking more mathematics. 

8.666 < .001 Tech.  > Inverted 
Intr. > Trad. 
Intr. > Inverted 

.688 

.849 
1.259 

.007 

.003 
< .001 

I am good at computing derivatives 
and integrals. 

4.953 .002 Tech. > Inverted 
Trad. > Inverted 

.564 

.547 
.008 
.006 

I am able to use ideas of calculus to 
solve word problems that I have not 
seen before. 

2.718 .045 Trad. > Inverted .502 .038 

* My score on my mathematics exam 
is a measure of how well: (1 = I 
understand the covered material; 4 = I 
can do things the way the teacher 
wants) 

3.766 .011 Tech. < Inverted 
Trad. < Inverted 

.410 

.392 
.021 
.018 

When studying mathematics in a 4.235** .007 Trad. > Tech. .373 .030† 
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textbook, I tend to: (1 = memorize it 
the way it is presented; 4 = make 
sense of the material so that I 
understand it) 

Trad. > Inverted .413 .044† 

* Reverse-coded; ** Welch F(3, 137.994); † Tamhane’s T2 
 

As a dimension-reduction technique, I employed principal component analysis separately 
on the STS and ETS beliefs items. High KMO values (.808 and .848, respectively) and 
significant results from Bartlett’s test of sphericity indicated that the correlation matrices 
should be factorable. On the STS, I retained two components, which explained 25.6% and 
9.5% of variance, respectively, for a total of 35.1%. Two components from the ETS items 
were also retained, explaining 29.6% and 9.6% of variance, respectively, for a total of 39.3%. 

After theoretical interpretation, I found that the first factor on both the STS and ETS 
measured students’ affective beliefs about mathematics. ANOVA revealed no significant 
difference between the classes on the ETS affective beliefs variable. I used ANCOVA to 
compare scores on the ETS affective beliefs variable while controlling for scores on the STS 
affective beliefs variable, but again, no significant differences were revealed. 
Procedural and Conceptual Achievement 

As a measure of growth in student understanding of calculus concepts, normalized gain 
on the CCI was computed by taking the ratio of actual gain (post-term – pre-term) to possible 
gain (maximum – pre-term) (Hake, 1998). ANOVA revealed no significant differences 
between the four classes in average normalized gain. Similarly, there were no significant 
differences between the four classes in post-term CCI score. 

ANOVA revealed significant differences between the classes in raw percentage scores on 
the common final exam (F(3, 429) = 5.145, p = .002). Post-hoc comparisons using Tukey’s 
HSD test showed that inverted-class students were outperformed by both technology-class 
students (MD = 7.09, p = .032) and traditional-class students (MD = 7.58, p = .008), and that 
interactive-class students outperformed traditional-class students (MD = 7.25, p = .047). 
However, when using ANCOVA to control for preparation as measured by the CCR 
instrument, no significant differences were detected between the classes on mean final exam 
score. The overall mean final exam score was 51.7% with a median of 53%. 
Differential Impact 

I conducted a number of two-way ANOVAs to assess the differential impact of the four 
classes on various different populations. For instance, I compared the performance of males 
and females on the final exam in each of the four classes. The two-way ANOVA showed no 
statistically significant main effect of either gender or class; the interaction approached 
significance (F(3, 236) = 1.97, p = .119). A marginal means plot is displayed in Figure 3. 
Univariate contrasts revealed that, as suggested by the marginal means plot, males and 
females did not differ statistically significantly in any of the classes but the inverted class, in 
which males outperformed females by 10.93 points (t(36.97) = 1.77, p = .04). 

Figure 3: Comparison of Final Exam Scores by Gender 
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I also categorized students by their earliest prior calculus experience: high school (either 

AP or non-AP), college, or none. Two-way ANOVA revealed a significant main effect of 
prior calculus experience (F(2, 233) = 20.67, p < .001) and a significant interaction between 
prior calculus experience and class (F(6, 233) = 2.63, p = .02). The marginal means plot in 
Figure 4 suggests that students who took calculus in high school outperformed all other 
students in every class but the inverted class; indeed, it is only in this class that the univariate 
contrast is not significant. 

Figure 4: Comparison of Final Exam Scores by Prior Calculus Experience 
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Qualitative Results 

Given how different the classes seem, there are surprisingly few statistically reliable 
differences between student outcomes. It is natural, then, to inquire about the similarities 
between the classes. The qualitative data indicate that students’ perceptions of the four 
classes share several important commonalities. One prominent theme that emerged from 
focus group interviews was that calculus is a prerequisite for calculus (triangulating the 
quantitative result discussed earlier). For instance, one student felt that the instructor of the 
technology class “teaches the class for people who have already taken calculus.” A student in 
the inverted class said that students with no prior calculus are put at “a high disadvantage;” 
another said he felt bad for people in the class who hadn’t taken calculus before. A student in 
the traditional class counted himself “lucky” to have taken calculus before, and said that 
“[when] I put myself in the shoes for people who are just learning it for the first time, I was 
like wow, really tough.” 

Another common theme from the focus group interviews was that students had concerns 
about the pacing of each day’s class sessions. One student in the traditional class said that the 
instructor would often skip steps when presenting examples on the board, and he would 
wonder, “How did she get from this line to that line? … Can I see the step-by-step, please? 
But I think it’s just time maybe. She’s trying to cram everything.” Similarly, one student in 
the interactive class felt that she did not have enough time to formulate questions when the 
instructor would ask the class if they understood something: “I need just a few more seconds 
to get what he’s saying… and then I’ll look up, and he already started doing a new example 
or something.” However, she continued, “I get why, because we only meet twice a week.” 
The fast pace of daily classes, which concerned the students in the focus groups, was 
probably linked to their instructors’ felt need to cover a particular curriculum. 

The focus group students in the inverted class were uniformly and vociferously 
dissatisfied with the implementation of the inverted model. The instructor did not make the 
videos himself, instead choosing them from online resources such as Khan Academy; the 
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general feeling of the students was thus that “the problems on the [in-class] worksheet have 
no relation to the videos,” or that “the videos are not applicable to the work.” This had 
negative impacts on students’ confidence: “I watched the videos and I understand it going in, 
I feel very confident, and then I get that paper [the in-class worksheet] and I'm like, well, I 
give up already.” Another student said that she was “nervous for Calc II.”  

Further, the instructor did not come to the daily class sessions, sending TAs in his stead. 
Students were dissatisfied with this practice. One student noted that there are questions that 
TAs cannot answer, no matter how smart the TAs are: “when we ask the TAs, what does [the 
instructor] want with this problem, they say ‘I don’t know.’” When asked what he thought 
was the instructor’s attitude toward students, another student replied, “I feel like we’re kind 
of a nuisance to him.” One student summed up the general feeling by saying: “I think the 
entire class is just kind of fed up with the whole thing.” Another said that the inverted model 
is “a good idea, but I don’t think it was put into practice very well.” Data from his course 
evaluations triangulated this finding: of the 36 students who responded to the open-ended 
comment prompt, 33 left comments negatively evaluating the inverted model. 

Discussion and Future Directions 
One obvious similarity between the classes is the shared curriculum mandated by the 

common final. Given the poor performance on the common final exam (recall that the overall 
mean was 51.7%), these results appear to confirm Seymour’s (2006) previous findings that 
introductory courses including Calculus I are often “over-stuffed” and taught too quickly. My 
data appear to be one more piece of evidence supporting the ongoing push for a “lean and 
lively calculus” (see, e.g., Steen, 1988). Many studies over the past thirty years have 
supported this conclusion; perhaps we in the mathematics education community need to find 
new ways to communicate to administrators and instructional designers that the current 
curriculum is “too much, too fast” for students to master. It is worth observing that one of the 
instructors in this study is a mathematics education researcher with a great deal of theoretical 
and practical knowledge. The fact that this instructor could not be distinguished statistically 
from the others, even with wealth of theoretical and practical knowledge that informs their 
teaching, is illustrative of the constraints imposed by the curriculum.  

My data on students’ reception of this implementation of the inverted model support the 
literature’s growing consensus on a set of best practices for inverting a classroom. While 
searching the literature on the inverted model, I identified a set of commonalities among the 
most successful inverted classrooms: first, pre-lecture activities must be made by the 
instructor; second, students must be held accountable for completing the pre-lecture 
activities; and third, time vacated by lecture must be replaced with active-learning exercises 
with the full participation of the instructor. It appears that students in my study were 
dissatisfied with this implementation of the inverted model precisely because it did not 
include these best practices. 

Future analysis planned in this research program includes comparisons, both statistical 
and qualitative, of these four calculus classes with other calculus classes nationwide, and 
particularly those at institutions identified by the MAA study as particularly successful. 
Additionally, I plan to use multivariate regression to build a profile of the typical “switcher,” 
or student who chooses not to persist in a STEM major track, and compare the profile 
produced by my data with the profile produced by the MAA study’s nationwide data. In my 
conference talk, I will present relevant portions of these analyses, as well as more detailed 
segments of the quantitative and qualitative results reported here. 
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STUDENT UNDERSTANDING OF THE FUNDAMENTAL THEOREM OF 
CALCULUS AT THE MATHEMATICS-PHYSICS INTERFACE 

Rabindra R. Bajracharya, John R. Thompson 
University of Maine 

We studied students’ understanding of the Fundamental Theorem of Calculus (FTC) in graphical 
representations that are relevant in physics contexts. Two versions of written surveys, one in 
mathematics and one in physics, were administered in multivariable calculus and introductory 
calculus-based physics classes, respectively. Individual interviews were conducted with students 
from the survey population. A series of FTC-based physics questions were asked during the 
interviews. The written and interview data have yielded evidence of several student difficulties in 
interpreting or applying the FTC to the problems given, including attempting to evaluate the 
antiderivative at individual points and using the slope rather than the area to determine the 
integral. The interview results further suggest that students often fail to make meaningful 
connections between individual elements of the FTC. 

Key words: Fundamental Theorem of Calculus, Physics, Difficulties, Representations 

Introduction 
We have been exploring the effect of student understanding of various concepts in 

mathematics on their understanding of physics concepts and vice versa. Learning physics 
concepts often requires the ability to interpret and manipulate the underlying mathematical 
representations (e.g., equations, graphs, and diagrams). A proper understanding of 
representations of physics concepts often requires identification of the relationship between the 
physics and the mathematics built into the representation as well as subsequent application of the 
mathematical concepts (Chi et al., 1981; Redish, 2005). Several studies in physics education 
research (PER) indicate connections between students’ understanding of mathematics concepts 
and their understanding of physics concepts. Some PER findings suggest that some of the student 
difficulties categorized as physics difficulties may be related to the mathematics and its 
representations in addition to, or instead of, being difficulties with the physics (Christensen & 
Thompson, 2010; Christensen & Thompson, 2012; Meltzer, 2002; Pollock et al., 2007).  

One interesting aspect of student understanding is the ability to relate mathematical concepts 
learned in a mathematics class to various physics concepts. One topic that plays a significant role 
in physics is the Fundamental Theorem of Calculus (FTC), which is relevant in determining 
various physical quantities such as displacement, potential difference, and work. In order to fully 
understand the FTC, a working understanding of many concepts, such as function, rate of 
change, antiderivative, definite integral, is needed. Research in undergraduate mathematics 
education attributes student difficulty with the FTC primarily to students’ difficulty with the 
function concept (Carlson et al., 2003; Thompson, 1994; Thompson, 2008) and rates of change 
(Thompson, 1994).  

Connecting student understanding of mathematics and physics is relevant to mathematics 
educators as well, since many mathematics courses use various basic physics topics for 
applications of mathematics concepts.  In calculus, topics such as displacement, velocity and 
mechanical work are used as contexts for understanding integrals and derivatives. Studies have 
shown students using physics concepts while attempting to understand or interpret mathematical 
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concepts (Bajracharya et al., 2012; Marrongelle, 2004). In fact, researchers have suggested the 
use of physical contexts (e.g. displacement, velocity, etc.) when introducing the FTC (Rosenthal, 
1992; Schnepp & Nemirovsky, 2001). However, it may be that students who are unable to 
understand the physics concepts in the applied context may have more difficulty understanding 
the mathematical concepts being taught.  

Similarly, physics students are often expected to be able to find connections between the rate 
of change (derivative) and the accumulation (definite integral) of a physical quantity (function), 
particularly based on graphical representations. However, to our knowledge there is no explicit 
research on student understanding of FTC concepts in physics, despite its ubiquitous use in 
various physics contexts. Researchers in physics education have studied student interpretation 
and use of graphs in kinematics. Beichner (1994) found that students did not recognize the 
physical meaning of areas under kinematics graph curves, and that students often performed 
slope calculations or subtracted axis values when an area calculation was required, regardless of 
what was graphed. We are exploring the extent to which students’ understanding of the FTC 
affects their basic physics problem solving. Being able to distinguish whether students are 
struggling with the physics ideas or the underlying mathematics (or both) can inform instruction 
in both disciplines to help students connect the mathematics and the disciplinary contexts in 
which that mathematics is applied. 

Theoretical Perspective 
We have been investigating the conceptual difficulties that students have with the FTC in 

graphical representations using the notion of specific student difficulties (Heron, 2003). 
According to this perspective, students manifest their difficulties through incorrect or 
inappropriate ideas, or flawed patterns of reasoning to specific questions. Identification of 
specific student difficulties is a pragmatic approach that has led to the development of research-
validated instructional strategies and materials that have improved students’ conceptual 
understanding in many contexts across the physics curriculum (e.g., McDermott, 2001). Specific 
difficulties are typically identified through empirical studies and are crucial for building 
theoretical models of student thinking because they could be used to verify those models. 

The specific difficulties perspective does not necessarily speak to the origins of the 
difficulties being identified. There are other theoretical frameworks common in physics that 
address this to varying extents (e.g., resources, misconceptions). Often a difficulty can be due to 
the inappropriate application of a reasonable idea, an undeveloped distinction between two 
related concepts (e.g., velocity and acceleration (Trowbridge and McDermott, 1981)), or an 
incorrect naïve “theory” (e.g., a conception of impetus in a moving body associated with net 
force (Clement, 1982).  

Methodology 
We have constructed questions, often with parallel versions in both mathematics and physics, 

that either explicitly or implicitly requires the application of the FTC in a graphical 
interpretation. These questions were administered as written surveys in lecture sections of 
second-semester calculus-based introductory physics and multivariable calculus for two 
consecutive semesters. A total of 159 mathematics and 90 physics students participated during 
the first survey. During the second survey administration, 92 mathematics and 120 physics 
students participated. Here we focus on only one pair of questions (Fig. 1).  

We also conducted 13 individual interviews to probe the depth and breadth of students’ 
understanding and application of the FTC in physics that were not revealed in the survey results, 
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as well as the robustness of the explanations and lines of reasoning seen in the written responses. 
Subjects were asked five FTC-based questions in physics contexts of varying familiarity. 
However, these questions could be answered using the FTC without any prior knowledge of the 
physics. (Figure 2 depicts an example question.) The solutions to the first two questions required 
explicit use of the given graphs (i.e., determination of the area under the curve between the 
integration limits). The next two could be solved either graphically or analytically, using a given 
algebraic function. The last one required a numerical solution.  

         
FIGURE 1.  Analogous (a) mathematics and (b) physics versions of the written surveys. 

 
FIGURE 2.  An interview question requiring explicit use of the graph. 

Data analysis used grounded theory (Strauss & Corbin, 1997) but paid attention to specific 
difficulties related to the FTC. 

Results 
In the written surveys, about half of the students in both the mathematics and physics classes 

gave correct responses. Students used various reasoning strategies to answer the questions. Five 
strategies are described below; four of these indicate student difficulties with the FTC.  

1. Connecting the integral, antiderivative, and area under the curve. (Fig. 3.) Most students 
who provided correct responses used the FTC explicitly or implicitly. These students equated 
F(b) – F(a), the area under the curve, and the definite integral ( 𝑓 𝑥 𝑑𝑥

!
! ), effectively counting 

the squares under the curve between the limits to find the desired quantity. While most students 

(a) (b) 
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used the correct area, a few (<5%) chose the base for their area calculations as the horizontal line 
that passes through the endpoint of the curve (e.g., y=1 in Fig. 1(a)) rather than the x-axis. 

2. Evaluating individual 
antiderivative values at 
endpoints. (Fig. 4.) One 
group of students evaluated 
the individual values of the 
antiderivatives at endpoints 
(e.g., F(b) and F(a)). Finding 
the individual antiderivatives 
leads to a correct answer 
when they consider each of 
them to be equal to the areas 
under the curve between a 
common lower limit (here F(0)) and the upper limits as shown in Fig. 4a. However, this was not 
a consistently correct approach, as students also used other computational approaches to find the 
individual antiderivatives, as in Fig. 4b. This suggests difficulty recognizing that the difference 
in antiderivative values at the endpoints (e.g., F(b) – F(a)) is the definite integral of the given 
function between the given limits, and is related to the area under the curve in the given interval. 

       
FIGURE 4.  Students evaluating individual antiderivative values at end points. 

3. Confusing antiderivative and function. (Fig. 5.) One of the most common responses was to 
use the difference of the original function at the endpoints (i.e. f(b) – f(c)) rather than the 
difference of the antiderivative at the endpoints (i.e. F(b) – F(c)), suggesting an operational 
confusion between the antiderivative and the function in a graphical context. This is consistent 
with earlier findings in upper-division thermodynamics courses in which students used the 
difference of endpoint values to compare the works done on a system during two different 
thermodynamic processes (Pollock et al., 2007).  

      
FIGURE 5.  Students confusing antiderivative and function. 

4. Confusing slope or derivative with area. (Fig. 6.) A few students provided their responses 
using slope-based computational reasoning. Some students evaluated the slope over the interval 
(i.e., ∆y/∆x) as the required answer, whereas others tried different slope-based properties, such as 
F(1) = F(0), in their responses.  

5. Reasoning analytically. 
(Fig. 7.) Students in this category 
approached the problems in two 
distinct ways: approximating the 
given curve with an algebraic 
function, inserting that function as 
the integrand, and integrating; or 

  
FIGURE 3.  Students connecting the integral, antiderivative, 
and area under the curve. 

        
FIGURE 6.  Students confusing slope or derivative with area. 
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considering the given numerical value of the integral as a function. We do not know the extent to 
which they understand the FTC, since their computations do not reflect relevant operations in 
these problems. Previous studies have also documented students’ difficulties with problems 
without algebraic functions (Selden et 
al., 1989; Selden et al., 2000). This 
solution type is also consistent with the 
action view of function (Dubinsky & 
Harel, 1992; Oehrtman et al., 2008).  

Interview results generally supported 
written data. The majority of students 
failed to use the FTC to determine the 
physical quantities, e.g., the change in internal energy, when the question did not include an 
algebraic function explicitly. For questions explicitly involving functions, most students took the 
antiderivative right away and solved the problem correctly. When subsequently prompted to 
answer these questions using a different approach, they concluded that the solution could be 
represented by the area under the curve. Our interview results suggest that even students who 
have a sufficient understanding of each of the constituents of the FTC (e.g., function, rate, area) 
often fail to see the connection between these elements. We speculate that their inability to find 
the right connections between the elements of the FTC results in the various kinds of previously 
mentioned specific difficulties. 

Conclusions 
Our preliminary results describe specific student difficulties with the Fundamental Theorem 

of Calculus common to both mathematics and physics contexts. Some of our findings in this 
research agree with previously reported difficulties (Beichner, 1994; Thompson, 1994). The 
interview results revealed that the majority of the physics students have a good grasp of most of 
the individual components of the FTC, but often fail to connect these components to solve 
problems. However, when dealing with unfamiliar physics contexts and without an analytical 
expression from which to start, either students struggle to meaningfully connect the individual 
elements of the FTC or their difficulties with even one element hinder their attempts to find the 
meaningful connection between the individual elements of the FTC. We are analyzing the 
interviews in greater depth to see where in the protocol students recognize the appropriate 
connections and the extent to which physics context affects their performance.  

Our preliminary interview analyses indicate that students use different strategies to solve the 
FTC-based physics problems. Although attempted initially, we did not analyze our data using the 
notion of transfer as preparation for future learning (e.g., Schwartz et al., 2005) because the 
interviews we conducted did not fit the required format described by Schwartz et al. Our ongoing 
work includes interview analysis using the lens of epistemic games, which are defined as a set of 
rules and strategies that that are guided by a specific purpose, e.g. learning a concept (Collins & 
Ferguson, 1993). Our approach consists of comparing our grounded-theory-based problem-
solving strategies to existing, identified epistemic games (Collins & Ferguson, 1993; Tuminaro 
and Redish, 2007). 

Questions for audience 
Which theoretical framework(s) or model(s) might be most appropriate to interpret students’ 

difficulties connecting the elements of the FTC? 
Are there specific aspects of the FTC and its related concepts that may need to be considered 

        
FIGURE 7.  Students using analytical reasoning. 
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here but aren’t? 
Often the representations and notations used in mathematics and physics are very different. 

This often hinders students’ ability to access ideas from mathematics to use in physics or vice 
versa. Is there a way to deal with this issue in both directions? 
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TRANSFORMING REMEDIAL MATHEMATICS INSTRUCTION WITH HIGH-
QUALITY PEER TEACHING 

 
Kristen N. Bieda, Raven McCrory, Steven Wolf 

Michigan State University 
 
Background 

In the United States, many students enter their first year of college unprepared to take 
college level mathematics: at public 4-year institutions, 16% of entering freshmen took remedial 
(developmental) mathematics in 2000 (U.S. DOE, 2003, p. 18). These students are less likely to 
enter or persist in STEM majors, and even less likely to graduate from college than students who 
are prepared for, and succeed in, college mathematics in their first year (Adelman, 
2006).  According to the recent AAU (2012) draft discussion document announcing their STEM 
initiative, about 25% of freshmen across the country intend to go into a STEM field, but only 15 
-17% of graduates complete a STEM major (AAU, pp. 2-3). Most students who drop STEM 
majors do so during the first two years of college, often because of trouble in their first year 
mathematics courses (AAU, 2012, p. 4).  

At least two issues are apparent here: First is the “preparation gap”, the inadequate 
mathematical preparation of incoming college students. Institutions of higher education 
commonly offer developmental mathematics courses to address this problem, placing students in 
pre-college level algebra in an effort to get them ready to succeed in higher-level mathematics 
and science courses.  The root cause of this problem, though, lies not in the postsecondary 
institution, but in the preparation of students before they reach college, in their elementary, 
middle and high schools.  Many point to the inadequate preparation of mathematics teachers as 
an important factor, and call for better preparation of these teachers (Conference Board of the 
Mathematical Sciences, 2012; Schmidt, Blömeke, & Tatto, 2011).  Although post-secondary 
institutions cannot directly influence what happens in high schools and earlier, they can work to 
improve what new K-12 teachers bring to K-12 mathematics classrooms. 

The second problem is the retention of students in STEM majors once they enter college. 
Researchers and policy makers agree that one of the major problems in initial mathematics 
courses is inadequacy of pedagogy (e.g., AAU, 2011; Fairweather, 2008). Even though 
disciplinary-based researchers who study mathematics and science education have extensive 
evidence about how to teach introductory mathematics and science college courses in ways that 
“work”, large scale adoption of effective teaching methods has been elusive. Faculty have been 
reluctant to change their teaching practices even in the face of strong empirical evidence about 
what works in part because the rewards for doing so are limited and it is hard work that requires 
substantial investment of time and effort (AAU, 2011). 

This project investigated the potential of a hybrid remedial mathematics course (RMC), 
taught by a corps of undergraduate peers in a secondary mathematics teacher preparation 
program, to provide remedial mathematics students with opportunities to develop robust 
mathematical proficiency. Specifically, the question guiding our research is: In a developmental 
mathematics course, what is the impact on students’ mathematical proficiency of an intervention 
using teaching methods and materials designed to help them develop mathematical 
proficiency?  In the section that follows, we describe the theoretical framework guiding the 
instruction in this hybrid RMC. 
Theoretical Framework 

402 17th Annual Conference on Research in Undergraduate Mathematics Education



Research on effective mathematics teaching and learning shows that, although students 
learn in different ways, the goal of mathematical proficiency is best reached through methods 
that engage students in doing, talking, and thinking about mathematics. This is particularly the 
case for students in undergraduate remedial mathematics courses (Hodera, 2011). The National 
Research Council’s report Adding it Up, authored by Kilpatrick, Swafford and Findell (2001), 
identified and defined five strands to explain what it means to be proficient in mathematics.  The 
strands are defined as follows: 
·   Conceptual understanding is the “comprehension of mathematical concepts, operations, 

and relations” 
·    Procedural fluency is “knowledge of procedures, knowledge of when and how to use them 

appropriately, and skill in performing them flexibly, accurately, and efficiently.” 
·   Strategic competence is the “ability to formulate, represent, and solve mathematical 

problems” 
·   Adaptive reasoning is the “capacity for logical thought, reflection, explanation, and 

justification” 
·   Productive disposition is the “habitual inclination to see mathematics as sensible, useful, 

and worthwhile, coupled with a belief in diligence and one’s own efficacy.” (Kilpatrick, et 
al., p.116, 121) 

Effective mathematics teaching attends to all five strands, aiming to help students learn to solve 
problems, apply mathematics in new contexts, and see mathematics as a coherent and powerful 
discipline. To achieve this, students should be engaged in problem solving and mathematical 
discourse, working in small groups and whole class discussions to explain mathematical ideas 
and justify mathematical solutions (Fuson, Kalchman & Bransford, 1999; Kilpatrick, Swafford & 
Findell, 2001).  Research on classroom discourse in mathematics and on teaching through 
problem solving and discourse provides guidance about how to plan for and manage classes that 
maintain a rigorous mathematical focus while encouraging students to participate (Chapin, 
O’Connor & Anderson, 2003; Stein, Engle, Smith & Hughes, 2008). This project implemented a 
curriculum and pedagogy based on these principles -- students work collaboratively, talk about 
their reasoning, and complete tasks that build robust mathematical proficiency --- enacted by 
prospective secondary mathematics teachers (PSMTs). 
Research Method 

We piloted the project in Fall 2012 with 34 students in two sections of a RMC. Students 
in the RMC used an online adaptive tutoring program (ALEKS, Falmagne, Cosyn, Doignon, & 
Theiry, undated) to complete coursework and attended a face-to-face support class twice a week 
for two hours each.  Ten PSMTs pairs rotated responsibility for instruction in each support class 
session. We collected achievement data from intervention and control sections of the RMC 
including placement (pretest) scores, final exam scores, and assessment from the ALEKS 
system.  We collected video data from the intervention sections, and interviews with students 
from both intervention and control sections.  We administered a pre- and post- attitudes and 
beliefs assessment based on Fennema (1976) and Bai, Wang, Pan, & Frey (2009).  Demographic 
data for students in both intervention and control sections were obtained from the 
registrar.  Analysis is ongoing and is using statistical methods that include comparisons of 
means, multilevel modeling, and, for the interviews and videos, discourse analysis.  
Research Findings 

We piloted the project in Fall 2012 with 34 students in two sections of a RMC each with 
10 PSMTs pairs who rotated responsibility for instruction in each class session.  While no 
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significant differences (α = 0.05) were found, the students in the intervention had higher scores 
on average on both the final exam and the online system assessment than other students in the 
RMC. The Winsorized mean values for the intervention groups and two comparison groups are 
shown in Table 1.  Because of a power issue, there is a 93% likelihood that a Type 2 error 
(failure to reject a false null hypothesis) occurred.  Longitudinal data from our institution’s 
mathematics department suggests that the difference in performance of the intervention students 
on the final exam does predict a higher grade in the subsequent mathematics course, College 
Algebra, by a half grade-point (e.g., 3.5 rather than 3.0).  We are currently developing a 
multilevel regression model to control for factors such as prior knowledge, SES, and instructor.   
 
Table 1 
End-of-course results for intervention and comparison groups 
  

Final Exam 
(Max 200) 

 

Online Post Test 
(Max 248) 

 

Online Gain 
 

Group n Mean SD Mean SD Mean SD 

Online students 701 134 51 209 45 149 46 

Face-to-face 
Control 

71 135 44 220 47 162 46 

Face-to-face 
Intervention 

34 138 35 218 25 174 31 

All 806 134 50 211 44 151 46 

 
The project, modified based on some of our findings from Year 1, will continue in 2013-14 with 
a second cohort of remedial mathematics students and PSMTs. Modifications include revisions 
to the course curriculum to better align with the needs of remedial mathematics students and 
condense the number of topics taught during the semester.  
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Preservice	  Teachers’	  Uses	  of	  the	  Internet	  to	  Investigate	  the	  Proof	  of	  the	  Pythagorean	  
Theorem	  and	  its	  Converse	  

	  
Aaron	  Brakoniecki	  

Michigan	  State	  University	  
	  

Learners	  of	  mathematics,	  including	  preservice	  teachers,	  often	  explore	  
online	   resources	   when	   investigating	   mathematical	   problems.	   When	  
asked	  to	  search	  online	  for	  resources	  that	  would	  help	  them	  be	  able	  to	  
better	   explain	   a	  proof	  of	   the	  Pythagorean	   theorem	  and	   its	   converse,	  
preservice	  teachers	  used	  a	  variety	  of	  different	  searching	  strategies	  to	  
locate	   information.	   Further,	   the	  ways	   in	  which	   this	   information	  was	  
incorporated	   into	   their	   understanding	   of	   mathematics	   became	  
evident	   through	   concept	   maps.	   This	   proposal	   describes	   the	   study	  
conducted	   and	   initial	   results	   from	   the	   data	   and	   asks	   the	   reader	   to	  
consider	  possible	  ways	  this	  research	  might	  be	  extended	  and	  refined.	  

	  
Keywords:	  Preservice	  Teacher,	  Pythagorean	  Theorem,	  Internet	  
	  
	   When	  learning	  about	  any	  mathematical	  content,	  many	  mathematics	  students	  
utilize	  the	  internet	  as	  a	  resource	  to	  support	  their	  learning	  of	  mathematics.	  
Preservice	  elementary	  teachers	  are	  no	  exception.	  Additionally,	  the	  mathematics	  
content	  course	  that	  preservice	  elementary	  teachers	  are	  often	  required	  to	  take	  is	  
limited	  when	  compared	  with	  the	  mathematical	  content	  of	  the	  grades	  these	  
preservice	  teachers	  might	  be	  responsible	  for	  teaching	  once	  they	  begin	  their	  practice	  
(K-‐5	  or	  even	  K-‐8).	  The	  internet	  is	  likely	  a	  rich	  resource	  of	  information	  to	  support	  
learning;	  however,	  it	  is	  not	  yet	  clear	  for	  what	  purposes	  these	  learners	  are	  going	  to	  
online	  resources	  for,	  what	  strategies	  they	  use	  to	  locate	  information,	  and	  how	  they	  
incorporate	  any	  information	  they	  find	  into	  their	  larger	  understanding	  of	  that	  topic.	  
This	  study	  seeks	  to	  begin	  to	  unpack	  some	  of	  this	  mystery	  and	  shed	  light	  on	  how	  
learners	  of	  mathematics	  (specifically	  preservice	  teachers)	  use	  the	  internet	  to	  
support	  their	  learning	  of	  mathematics.	  
	   The	  Common	  Core	  State	  Standards	  for	  Mathematics	  state	  that	  in	  8th	  grade,	  
students	  (and	  thus	  also	  teachers)	  should	  be	  able	  to	  “Explain	  a	  proof	  of	  the	  
Pythagorean	  theorem	  and	  it’s	  converse”	  (Standard	  8.G.6).	  When	  discussing	  the	  
Pythagorean	  theorem	  with	  preservice	  teachers	  at	  a	  large	  Midwestern	  University,	  the	  
text	  used	  and	  course	  materials	  do	  not	  differentiate	  between	  the	  theorem	  and	  its	  
converse.	  As	  such,	  many	  preservice	  teachers	  in	  this	  program	  are	  unfamiliar	  with	  
what	  the	  “converse”	  to	  the	  Pythagorean	  Theorem	  actually	  is.	  As	  research	  on	  
learning	  in	  online	  environments	  suggest	  that	  students	  are	  more	  successful	  in	  
internet	  searching	  when	  they	  have	  some	  understanding	  of	  the	  topic	  they	  are	  
investigating	  (Fidel	  et	  al.,	  1999;	  Hirsh,	  1999),	  the	  familiarity	  with	  the	  theorem	  and	  
the	  unfamiliarity	  with	  the	  converse	  makes	  this	  standard	  compelling	  to	  investigate..	  
	   One	  way	  that	  current	  research	  has	  attempted	  to	  classify	  the	  ways	  that	  
students	  search	  for	  information	  online	  is	  by	  describing	  the	  kind	  of	  information	  they	  
are	  looking	  for	  (Bilal,	  2000,	  2001;	  Schacter,	  Chung,	  &	  Dorr,	  1998)	  whether	  it	  be	  to	  
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find	  a	  specific	  singular	  answer,	  or	  to	  learn	  about	  a	  topic	  in	  a	  more	  general	  sense.	  
Much	  research	  on	  the	  use	  of	  the	  internet	  by	  students	  suggest	  that	  users	  have	  a	  
tendency	  not	  to	  question	  the	  information	  they	  locate	  or	  determine	  whether	  it	  comes	  
from	  a	  reliable	  source	  (Kafai	  &	  Bates,	  1997;	  Large	  &	  Beheshti,	  2000;	  Lorenzen,	  
2001).	  	  
	   There	  have	  been	  many	  different	  ways	  of	  describing	  the	  kinds	  of	  
mathematical	  knowledge	  possessed	  by	  students.	  It	  has	  been	  noted	  recently	  that	  the	  
original	  definitions	  of	  procedural	  and	  conceptual	  knowledge	  described	  by	  Hiebert	  &	  
Lefevre	  (1986)	  conflates	  two	  separate	  factors	  of	  knowledge,	  its	  kind	  and	  its	  quality	  
(Star,	  2005).	  It	  is	  argued	  by	  Star	  that	  knowledge	  can	  be	  either	  procedural	  or	  
conceptual	  in	  nature,	  and	  it	  can	  be	  either	  rich	  or	  superficial	  in	  quality.	  It	  is	  with	  this	  
lens	  that	  a	  more	  accurate	  description	  of	  the	  knowledge	  displayed	  by	  learners	  of	  
mathematics	  can	  be	  obtained.	  
	   In	  this	  study,	  two	  questions	  are	  under	  investigation	  (1)	  What	  form	  and	  
quality	  of	  mathematical	  connections	  do	  preservice	  teachers	  make	  around	  the	  
Pythagorean	  Theorem	  after	  finding/searching	  for	  information	  online?	  (2)	  What	  are	  
information-‐seeking	  strategies	  that	  preservice	  teachers	  use	  when	  finding/searching	  
for	  information	  about	  math	  tasks	  online?	  
	  
Method	  
	   Participants	  in	  this	  study	  focused	  on	  improving	  their	  own	  understanding	  
around	  Common	  Core	  State	  Standard	  for	  Mathematics	  about	  the	  proof	  of	  the	  
Pythagorean	  theorem	  and	  it’s	  converse,	  a	  topic	  they	  may	  be	  required	  to	  teach	  if	  they	  
obtained	  an	  8th	  grade	  teaching	  position.	  They	  were	  asked	  to	  complete	  two	  tasks.	  
During	  the	  first	  task,	  participants	  were	  given	  open	  access	  to	  the	  internet	  to	  search	  
for	  and	  view	  whatever	  resources	  they	  wanted	  in	  order	  to	  improve	  their	  
understanding.	  In	  the	  second	  task,	  the	  participant	  was	  directed	  to	  5	  specific	  internet	  
resources	  and	  were	  allowed	  to	  explore	  those	  resources	  with	  the	  same	  goal	  in	  mind.	  	  
Before	  either	  task	  began,	  between	  tasks,	  and	  after	  both	  tasks	  were	  completed,	  
participants	  were	  asked	  to	  create	  a	  concept	  map	  around	  their	  understanding	  of	  the	  
Pythagorean	  Theorem.	  
	   Each	  concept	  map	  that	  each	  participant	  created	  was	  analyzed	  by	  first	  
augmenting	  it	  with	  any	  words	  they	  spoke	  during	  the	  map’s	  creation	  or	  in	  describing	  
the	  map.	  These	  augmented	  maps	  were	  divided	  into	  smaller	  chunks	  for	  analysis.	  
Each	  chunk	  was	  coded	  for	  what	  kind	  of	  mathematical	  content	  was	  included	  in	  the	  
chunk,	  and	  whether	  that	  mathematical	  content	  was	  procedural	  or	  conceptual	  in	  
nature	  and	  whether	  the	  included	  content	  seemed	  to	  be	  of	  a	  rich	  or	  a	  superficial	  
quality.	  
	   The	  internet	  explorations	  that	  participants	  completed	  were	  transformed	  into	  
a	  database	  that	  captured	  what	  sites	  the	  participant	  went	  to,	  how	  long	  they	  spent	  on	  
each	  site,	  a	  description	  of	  the	  site’s	  content,	  a	  description	  of	  the	  participant’s	  activity	  
while	  on	  the	  site,	  written	  and	  verbal	  comments	  made	  by	  the	  participants	  while	  on	  
the	  sites,	  as	  well	  as	  researcher	  comments	  and	  notes	  regarding	  what	  happened	  on	  
each	  site.	  Participant	  activity	  during	  each	  task	  was	  described	  by	  how	  they	  appeared	  
to	  interact	  and	  make	  decisions	  around	  sorting	  through	  results	  of	  internet	  searches,	  

408 17th Annual Conference on Research in Undergraduate Mathematics Education



and	  how	  they	  appeared	  to	  interact	  with	  the	  information	  obtained	  while	  examining	  
websites.	  
	  
Results	  
	   Several	  emergent	  themes	  were	  noted	  during	  initial	  analysis	  of	  the	  maps.	  
First,	  most	  all	  participants	  did	  not	  include	  the	  word	  “converse”	  in	  their	  initial	  
mapping	  though	  that	  word	  was	  included	  in	  subsequent	  mappings.	  Additionally,	  the	  
majority	  of	  the	  mathematics	  described	  appears	  to	  be	  of	  the	  superficial	  quality.	  Also,	  
participants	  included	  a	  mixture	  of	  procedures	  and	  concepts	  in	  their	  mappings.	  One	  
interesting	  thing	  to	  note	  was	  how	  some	  preservice	  teachers	  produced	  radical	  shifts	  
in	  the	  structuring	  of	  later	  iterations	  of	  their	  concept	  maps.	  One	  student	  structured	  
her	  final	  map	  in	  the	  form	  of	  a	  lesson	  plan	  (Figure	  1a),	  describing	  the	  order	  in	  which	  
she	  would	  teach	  particular	  content.	  Another	  student	  decided	  to	  structure	  her	  
content	  around	  particular	  themes	  (Figure	  1b).	  

	   	  
Figure	  1(a)	  and	  1(b)	  –	  Augmented	  Concept	  Maps	  of	  Two	  Participants	  

	  
	   Initial	  results	  of	  the	  internet	  exploration	  activities	  suggest	  that	  participants	  
were	  using	  the	  internet	  to	  serve	  different	  purposes	  in	  their	  explorations.	  Some	  were	  
using	  their	  explorations	  as	  a	  way	  of	  bookmarking	  resources,	  some	  were	  learning	  
from	  websites,	  and	  some	  were	  reviewing	  information	  they	  were	  already	  familiar	  
with.	  When	  a	  participant	  engages	  in	  bookmarking,	  they	  appear	  to	  be	  giving	  websites	  
a	  once	  over,	  quickly	  determining	  if	  there	  is	  information	  contained	  in	  the	  site	  that	  
might	  be	  of	  use,	  and	  noting	  that	  a	  particular	  site	  would	  be	  fruitful	  to	  explore	  at	  a	  
later	  time	  for	  more	  information.	  When	  a	  participant	  is	  learning	  from	  a	  website,	  they	  
appear	  to	  be	  actively	  reading	  and	  even	  rereading	  information	  contained	  in	  the	  site,	  
exploring	  examples	  or	  activities	  presented	  in	  the	  site,	  and	  even	  working	  out	  
arguments	  or	  examples	  on	  their	  own	  while	  engaging	  with	  the	  content	  of	  the	  site.	  
Participants	  who	  are	  reviewing	  content	  appear	  to	  be	  refamiliarizing	  themselves	  with	  
content	  that	  they	  have	  encountered	  already.	  They	  tend	  to	  read	  portions	  of	  or	  all	  of	  a	  
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site	  once	  before	  moving	  onto	  similar	  content	  on	  other	  sites.	  It	  should	  be	  noted	  that	  
multiple	  kind	  of	  explorations	  could	  appear	  by	  a	  participant	  at	  different	  points	  in	  
their	  explorations.	  

There	  also	  appear	  to	  be	  two	  distinct	  kinds	  of	  ways	  that	  participants	  sort	  
through	  search	  results,	  those	  that	  are	  high	  frequency	  of	  sites	  explored	  per	  search,	  
and	  those	  that	  are	  a	  low	  frequency	  of	  sites	  explored	  through	  their	  searching.	  Those	  
that	  are	  high	  frequency	  of	  sites	  explored	  tend	  to	  have	  subsequent	  searches	  themed	  
towards	  different	  kinds	  of	  content	  while	  those	  with	  low	  frequency	  of	  sites	  explored	  
will	  often	  have	  subsequent	  searches	  be	  around	  the	  same	  content.	  Additionally,	  it	  
was	  not	  apparent	  that	  every	  student	  had	  a	  way	  of	  determining	  whether	  information	  
from	  a	  website	  was	  reliable,	  though	  some	  preservice	  teachers	  did	  make	  comments	  
noting	  that	  particular	  sites	  were	  better	  (“wolframalpha.com”,	  “any	  .org	  site”)	  than	  
others	  (“wikipedia.com”).	  
	   Further	  investigation	  of	  these	  initial	  results	  will	  focus	  on	  several	  questions.	  
First,	  additional	  analysis	  of	  the	  content	  and	  structure	  of	  the	  concept	  maps	  will	  
illuminate	  how	  the	  type	  and	  quality	  of	  the	  mathematical	  information	  changed	  (if	  at	  
all)	  over	  the	  iterations	  of	  the	  concept	  mapping.	  Secondly,	  additional	  analysis	  of	  the	  
internet	  exploration	  data	  will	  seek	  to	  further	  categorize	  the	  kinds	  of	  techniques	  that	  
participants	  used	  when	  investigating	  mathematical	  content	  online.	  Lastly,	  any	  
connections	  that	  may	  exist	  between	  the	  kind	  and	  quality	  of	  the	  mathematical	  
content	  included	  within	  these	  mappings	  and	  the	  searching	  techniques	  employed	  by	  
the	  students	  will	  be	  explored.	  
	  
	   During	  this	  preliminary	  research	  report,	  attendees	  will	  be	  asked	  at	  least	  
three	  questions	  to	  consider	  while	  the	  study	  and	  initial	  results	  are	  presented:	  

• What	  things	  might	  I	  do	  to	  strengthen	  the	  argument	  and	  to	  what	  other	  
literatures	  does	  this	  research	  speak	  to?	  

• What	  did	  you	  find	  most	  compelling	  about	  the	  research	  presented?	  
• Of	  the	  results	  presented	  so	  far,	  what	  do	  you	  want	  to	  know	  more	  about?	  

	  
References	  
Bilal,	  D.	  (2000).	  Children’s	  Use	  of	  the	  Yahooligans!	  Web	  Search	  Engine:	  I.	  Cognitive,	  

Physical,	  and	  Affective	  Behaviors	  on	  Fact-‐Based	  Search	  Tasks.	  Journal	  of	  the	  
American	  Society	  for	  Information	  Science	  and	  Technology,	  51(7),	  646–665.	  

Bilal,	  D.	  (2001).	  Children’s	  Use	  of	  the	  Yahooligans!	  Web	  Search	  Engine:	  II.	  Cognitive	  
and	  Physical	  Behaviors	  on	  Research	  Tasks.	  Journal	  of	  the	  American	  Society	  for	  
Information	  Science	  and	  Technology,	  52(2),	  118–136.	  

Fidel,	  R.,	  Davies,	  R.	  K.,	  Douglass,	  M.	  H.,	  Holder,	  J.	  K.,	  Hopkins,	  C.	  J.,	  Kushner,	  E.	  J.,	  …	  
Toney,	  C.	  D.	  (1999).	  A	  visit	  to	  the	  information	  mall:	  Web	  searching	  behavior	  
of	  high	  school	  students.	  Journal	  of	  the	  American	  Society	  for	  Information	  
Science,	  50(1),	  24–37.	  doi:10.1002/(SICI)1097-‐4571(1999)50:1<24::AID-‐
ASI5>3.0.CO;2-‐W	  

Hiebert,	  J.,	  &	  Lefevre,	  P.	  (1986).	  Conceptual	  and	  procedural	  knowledge	  in	  
mathematics:	  An	  introductory	  analysis.	  In	  J.	  Hiebert	  (Ed.),	  Conceptual	  and	  
procedural	  knowledge:	  The	  case	  of	  mathematics	  (pp.	  1–27).	  Hillsdale,	  NJ:	  
Lawrence	  Erlbaum	  Associates.	  

410 17th Annual Conference on Research in Undergraduate Mathematics Education



Hirsh,	  S.	  G.	  (1999).	  Children’s	  relevance	  criteria	  and	  information	  seeking	  on	  
electronic	  resources.	  Journal	  of	  the	  American	  Society	  for	  Information	  Science,	  
50(14),	  1265–1283.	  doi:10.1002/(SICI)1097-‐4571(1999)50:14<1265::AID-‐
ASI2>3.0.CO;2-‐E	  

Kafai,	  Y.,	  &	  Bates,	  M.	  J.	  (1997).	  Interet	  web-‐searching	  instruction	  in	  the	  elementary	  
classroom:	  Building	  a	  foundation	  for	  information	  literacy.	  School	  Library	  
Media	  Quarterly,	  103–111.	  

Large,	  A.,	  &	  Beheshti,	  J.	  (2000).	  The	  web	  as	  a	  classroom	  resource:	  Reactions	  from	  the	  
users.	  Journal	  of	  the	  American	  Society	  for	  Information	  Science,	  51(12),	  1069–
1080.	  doi:10.1002/1097-‐4571(2000)9999:9999<::AID-‐ASI1017>3.0.CO;2-‐W	  

Lorenzen,	  M.	  (2001).	  The	  land	  of	  confusion?:	  High	  school	  students	  and	  their	  use	  of	  
the	  World	  Wide	  Web	  for	  research.	  Research	  Strategies,	  18(2),	  151–163.	  
doi:10.1016/S0734-‐3310(02)00074-‐5	  

Schacter,	  J.,	  Chung,	  G.	  K.	  W.	  K.,	  &	  Dorr,	  A.	  (1998).	  Children’s	  internet	  searching	  on	  
complex	  problems:	  Performance	  and	  process	  analyses.	  Journal	  of	  the	  
American	  Society	  for	  Information	  Science,	  49(9),	  840–849.	  
doi:10.1002/(SICI)1097-‐4571(199807)49:9<840::AID-‐ASI9>3.0.CO;2-‐D	  

Star,	  J.	  R.	  (2005).	  Reconceptualizing	  Procedural	  Knowledge.	  Journal	  for	  Research	  in	  
Mathematics	  Education,	  36(5),	  404–411.	  

	  

17th Annual Conference on Research in Undergraduate Mathematics Education 411



34

412 17th Annual Conference on Research in Undergraduate Mathematics Education



 1 

NAIVE BROUWERIAN VISIONS: A STUDY OF STUDENTS’  
INTERPRETATIONS OF NON-CONSTRUCTIVE EXISTENCE PROOFS 

 
Stacy Brown 

California State Polytechnic University, Pomona 
 
This paper shares findings from a three-phase study exploring students’ conceptions of non-
constructive existence proofs. Data are used to illustrate students’ tendency to apply a naïve 
Brouwerian lens to non-constructive proofs; that is, a perspective in which learner’s proof 
conceptions are governed by a potentially subconscious anticipation of construction, which 
enables the learner to construe proofs of existence (be they constructive or non-constructive) as 
providing actual instances of (or algorithms for producing) mathematical phenomena. Questions 
concerning researchers proof scheme inferences are raised.    
 
Keywords: Indirect proof, constructive proofs, proof schemes 
 
 Researchers have suggested that non-direct proofs, which include proof by contradiction, 
proof by contraposition, and non-constructive existence proofs, are particularly problematic for 
students (Tall, 1979; Leron, 1985; Harel & Sowder, 1998; Antonini & Mariotti, 2008). Three 
different rationales have been provided. First, Tall (1979), who focused specifically on proofs by 
contradiction, argued that it is the presentation of the proofs that is at issue. Leron also focused 
specifically on proofs by contradiction and posited that is it the non-constructive nature of such 
proofs that is problematic for students. Harel and Sowder (1998) provided data from teaching 
experiments to illustrate students’ lack of preference for non-constructive proof and, like Leron, 
argued that this lack of preference was due to a way of thinking referred to as the constructive 
proof scheme: a scheme in which “students doubts are removed by the actual construction of 
objects – as opposed to the mere justification of the existence of objects” (p. 272). Offering an 
alternative framing, Antonini and Mariotti (2008) argued that students’ difficulties with non-
direct proofs occur at a meta-theoretical level. In other words, it is difficulties with the 
acceptance of a logical theory and the resultant move to secondary statements (e.g., from P ⇒ Q 
to ~Q ⇒ ~P in a proof by contraposition) that is problematic for students. Taken together, these 
findings indicate that non-direct proofs may be particularly problematic for students. 
 While providing evidence of students’ struggles to accept non-direct proofs, research in this 
area has not addressed two issues. First, little is known about what might constitute an 
intellectual need (Harel, 1998) for non-direct proof methods, especially at the undergraduate 
level. Some evidence in geometric contexts can be found in Antonini and Mariotti (2008) and in 
numeric contexts with elementary-age children in Maher and Martino (1996). Second, to suggest 
that students lack a preference for non-constructive proofs is to suggest that students not only 
comprehend but also reflect on the logical structure of such proofs. Yet, researchers have not 
documented students’ conceptions of non-direct proofs. The purpose of this paper is to make 
progress on this second issue, so as to identify potential epistemological obstacles (Brousseau, 
1997) to non-direct proofs, as part of a program that seeks to address both of the issues listed 
above. Specifically, the purpose of this paper is to discuss students’ conceptions of non-
constructive existence proofs and, in particular, to provide evidence indicating that students may 
struggle to develop an awareness of the logical-structure of non-constructive existence proofs. 

A Definition of Non-Constructive Existence Proofs 
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 Theorems in mathematics take many forms. In some cases, theorems assert the existence of a 
relation, object(s), or other mathematical phenomena. For example, the theorem, “There exists a 
real-valued solution to the function f (x) = x3 – 1,” is an existence statement. Proofs of existence 
theorems are known as existence proofs. These proofs take two forms: constructive and non-
constructive. A constructive proof either explicitly provides an instance of a phenomenon or 
gives an algorithm for generating an actual instance. For example, one can prove the theorem 
stated above by noting that (1)3 – 1 = 0. In contrast, a non-constructive proof demonstrates the 
logical necessity of a result but fails to produce either a specific instance of a phenomenon or an 
algorithm for producing a desired result. Non-constructive proofs, therefore, require attention to 
and use of logical rules of inference. For instance, one can cite the Intermediate Value Theorem, 
the fact that polynomials are continuous on the reals, and argue that since f (2) > 0 and f (-1) < 0, 
then there exists c ∈ (-1,2) such that f (c) = 0. In other words, one can deduce that a solution 
exists even though the actual value(s) have not been provided and a method for finding the 
value(s) has not been explicitly stated. With these definitions in mind, it is important to note that 
it is the former type of proof – constructive – that researchers have suggested students prefer. 

Historical Background 
 Historically, the three forms of non-direct proof were treated differently by the mathematics 
community. For example, it is well known that Euclid’s Elements contains proofs by 
contradiction and that mathematicians, such as Hardy (1940), felt that this technique was one of 
mathematicians’ “finest weapons.” In contrast, in 1890 when Hilbert submitted a paper to the 
Mathematische Annalen, which used a non-constructive existence argument to prove that “if V is 
a finite dimensional representation of the complex algebraic group G = SLn(C) then the ring of 
invariants of G acting on the ring of polynomials R = S(V) is finitely generated,” his paper was 
met with significant objections. Indeed, Paul Gordan, a leader in invariant theory, is reported to 
have responded, “This is not mathematics. It is theology” (Webb, 1997, p. 1). Writing to Felix 
Klein, Gordan argued, “Hilbert has scorned to present his thoughts following formal rules; he 
thinks it suffices that no one contradicts his proof, then everything will be in order … he thinks 
that the importance and correctness of propositions suffice … but of a comprehensive work for 
the Annalen this is insufficient” (Rowe, 1986, cited in Webb, 1997, p. 1) Hilbert’s proof had 
established the logical necessity of a finite basis without constructing such a basis.  

Later, in 1909, L. E. J. Brouwer became famous for results in the field of point set topology 
and most specifically for a result known as the Brouwer Fixed Point Theorem. This result, like 
Hilbert’s proof of a finite basis, used a non-constructive existence proof to established that “for 
any continuous function f with certain properties mapping a compact convex set into itself, there 
is a point x0 such that f(x0) = x0.” Later, however, Brouwer became an adamant intuitionist and, 
consequently, came to view his own proof of the Brouwer Fixed Point Theorem as an invalid 
proof of existence (within intuitionistic logic) and to seek a constructive proof. Indeed, Brouwer 
progressively adopted a philosophy of mathematics in which, “objects of mathematics are mental 
creations, and hence that they can be said to exist if and only if those creations have actually 
been carried out” (Engel, 2007, p. 1). Since logical necessity arguments do not construct the 
mathematical objects whose existence they seek to establish, Brouwer rejected such proofs as 
proofs of existence. Specifically, arguments of logical necessity, such a Hilbert’s, were viewed 
as proving the statement ~P is false, where P is the statement of existence, but not as proving P 
since a proof of existence requires something more; namely, a construction. (It is due to this and 
other points of logic that the Intuitionists were viewed as rejecting the law of the excluded 
middle.) Thus, though much more can be said, it is clear from the historical events reported that 
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consideration of non-constructive existence proofs created significant philosophical issues for the 
mathematics community and, in some cases, ruptures. 

Theoretical Considerations 
 To conceive means “to form or develop” whereas perceive means “to attain awareness or 
understanding of.”  One may conceive of a proof in two ways: (1) the individual develops a 
proof through actions we would not classify as repetitions or reiterations of prior activities, or (2) 
the individual is presented with a proof and develops an image of the proof in their mind. In the 
later case, the individuals’ ways of understanding mathematical constructs and ways of thinking 
about mathematics will afford and constrain the meanings available to the learner. Ways of 
understanding can be thought of as “the particular meaning/interpretation a person gives to a 
concept, relationships between concepts, assertions, or problems” (Harel & Sowder, 2005, p. 30). 
Ways of thinking “refers to what governs one’s ways of understanding, and thus expresses 
reasoning that is not specific to one particular situation but to a multitude of situations” and 
involves a person’s “beliefs, problem-solving approaches and proof schemes” (p. 31). 
 Proof schemes are “what constitutes ascertaining and persuading for that person”  (Harel & 
Sowder, 2005, p. 33). More often than not, researchers infer learners’ proof schemes by 
evaluating the proofs the students produce and assuming that the students’ interpretations of the 
produced proofs parallel the researchers’ interpretations. Some have implied that this 
methodological approach may be problematic. For instance, researchers interested in 
understanding students’ use of empirical arguments have begun to question what can be 
ascertained when students produce such arguments. Indeed, Weber (2009) and Vinner (1997), 
have argued that students may produce empirical arguments if they are unable to produce a proof 
but wish to produce something. Others (Brown, submitted) have questioned if students’ 
exploratory work has been misclassified as an attempted proof.  

An alternative to examining students’ proof productions is to explore students’ conceptions 
of presented proofs. In particular, by asking students to explain a given argument researchers 
may be able to infer the criteria students bring to bear on proofs and to separate out instances in 
which students’ lack the necessary ways of understanding from those instances in which the 
learner’s ways of thinking inhibit or promote students’ proof conceptions. This approach reaches 
back to the Piagetian roots of the term scheme and draws on Thompson’s definition: “A scheme 
is an organization of actions that has three characteristics: an internal state that is necessary for 
the activation of actions composing it, the actions themselves, and an imagistic anticipation of 
the result of acting” (Thompson, 1994, p. 182). Here we see that in addition to organizing action, 
schemes play an anticipatory role. Thus, from this perspective, one can argue that a learner’s 
proof schemes may not only influence the proofs produced but may also play a role in the 
outcomes anticipated as students seek to interpret or produce a proof.  

The outcomes anticipated by a learner may be either consciously or subconsciously attended 
to by a learner. In the former case, the learner can explicitly state the criteria they bring to bear 
on a proof. In the latter case, the learner may be unaware of these criteria for the criteria are part 
of the learner’s tacit knowledge – ways of knowing that “act and influence the reasoning process 
without the individual being aware of their origin and their effect” (Fischbein, 2001, p. 313). 
When applied to contexts of interpretation, such anticipations could be thought of as anticipatory 
intuitions rather than intuitive affirmations (Fischbein, 1983), for it is a feeling of what is to be 
rather than a feeling of “it must be so” that is responded to by the leaner.  Thus, how a learner 
conceives of a proof can be seen as indicative of learners’ proof schemes, which are viewed as 
governing the learner’s anticipatory behaviors at either a conscious or subconscious level. These 
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schemes influence not only learners’ production but also their reproduction of mathematical 
proofs and, consequently, are indicated by learners’ modifications during acts of reproduction – 
modifications the learner may be aware of at either a conscious or subconscious level. 

The Study 
This paper reports findings from a three-stage study of students’ perceptions of and 

preferences for (or lack of preference for) non-direct mathematical proofs; that is, non-
constructive existence proofs, proofs by contraposition, and proof by contradiction. The first 
stage of the study involved administering a written survey to mathematics majors (n = 21) who 
were either completing an introduction to proof course or enrolled in an advanced topic course 
(analysis, topology, etc.). Results from the survey were reported in (Brown, 2011). Briefly, the 
comparison tasks asked students to compare a direct proof to one of the three types of non-direct 
proof and to indicate: (a) their level of confidence; (b) the most convincing proof; and, (c) the 
best proof. Despite prior observations indicating that students’ prefer direct proofs (Leron, 1985; 
Harel & Sowder, 1998), data from the first stage of the study did not indicate a lack of preference 
for non-direct proofs. For example, Task 3 asked students to compare a direct proof to a proof by 
contraposition. Of the 21 responses, 9 ranked the direct proof as most convincing and 12 chose 
the proof by contraposition. With regard to the comparison of a non-constructive existence proof 
with a constructive proof (Task 4), 9 students found the constructive proof “most convincing,” 
while 13 chose the non-constructive proof (See Appendix A for Tasks 3 and 4). 

The second stage of the study involved 6 clinical interviews with mathematics majors, who 
were selected to represent a variety of survey responses. During the interviews, students 
discussed their survey responses and responded to comprehension questions. The goal of the 
clinical interviews was to create case studies linking students’ interpretations of the arguments to 
their proof preferences. The third stage of the study involved a classroom intervention (n = 29), 
which included activities intended to foster growth in students’ perceptions and production of 
non-constructive existence proofs. The intervention employed “conceptual awareness pillars” 
(Stylianides & Stylianides, 2009); i.e., questions aimed at developing students’ awareness of the 
logical features of non-constructive existence proofs. Students were given an end-of-term 
assessment, which included a reproduction item; that is, students were asked to prove an 
existence statement that had been discussed in class and proven using a non-constructive 
existence proof. In this paper, findings from the second and third stages of the study are reported. 

Findings 
 Analyses of the clinical interview transcripts indicated that 4 of the 6 students struggled to 
comprehend the logical structure of Argument B in Task 4 (see Appendix A), which I will refer 
to as Argument 4B. Due to space limitations, however, we will focus on students’ responses to 
the interview question, “Does the argument provide a specific case for which the theorem is 
true?” The two students (all names are pseudonyms), who successfully responded to the 
comprehension questions, responded to this question by noting that the argument did not provide 
a specific instance of the theorem. For example, Nora argued, “Here [Argument B], we found an 
a and b and we said, well, there’s this one case that might be true and then there’s this other case 
that might, that … that one of these two things is true. […] So, either, either this pair of numbers 
is applicable or this pair of numbers is applicable.” In contrast, 3 students argued that either one 
or two specific instances of the theorem were provided in the proof. For example, Jake, who 
selected Argument 4B as most convincing, argued that a specific instance had been provided in 
the proof (see Figure 1). In other words, these students’ interpretations of the argument were 
constructive.  The remaining student initially argued that a specific instance was provide and 
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then after a period of time spent considering the question, “Does the argument provide a specific 
case for which the theorem is true,” self-corrected and provided a description similar to Nora’s. 
 
 

Int: Umm, so at the end of Argument B, do we have an a and a b that are irrational, such 
that a to the b is rational? Do we have a set of numbers? 
Jake: Well, we have one example. We say a is the square root of two and b is the square 
root of two. 
Int: Okay. 
Jake: And, this proof shows a to the b is two, which is rational. 

Figure 1. Jake’s Transcript 
Discussion of findings from the third stage of the study will be restricted (due to space 

limitations) to students’ in-class responses to the non-constructive existence proof of Theorem 4 
(see Appendix A) and to a reproduction task involving Theorem 4 on the end-of-term 
assessment. During the classroom intervention approximately 45% of the students (13 out of 29) 
indicated with gestures (raised hands) that Argument 4B produced at least one specific instance 
of the theorem. In other words, nearly half of the students viewed the proof constructively. 
Inquiries into the students’ interpretations highlighted students’: (1) assumption that the number

€ 

2
2 is irrational, and (2) difficulties with conditional statements. Use of the assumption “

€ 

2
2 is 

irrational” led to a whole-class discussion about the lack of means (previous theorems or proof 
techniques) with which to classify this number as either rational or irrational.1 

Four codes were used to categorize student responses to the end-of-term assessment item, 
which was a proof reproduction task involving Theorem 4: (a) valid, non-constructive existence 
proof (44.8%); (c) invalid, direct proof (31%);  (e) invalid, proof by contradiction (10%); and (f) 
other (14%). Proofs of type (a) tended to be reproductions of Argument 4B. The remainder of 
this discussion will focus on proofs of type (c).  Responses were coded as an invalid, direct proof 
if the student choose specific values for a and b and attempted to shown that ab is rational. 
Comparison of the students’ attempted direct proofs to the previously shown non-constructive 
proof indicated that the attempted direct proofs were markedly similar in two distinct ways; they 
were either a concatenation or a redaction of the non-constructive proof. An attempted direct 
proof was classified as a concatenation if the student: (a) did not use the law of the excluded 
middle, and (b) replaced the conditional statements in Argument 4B with a set of dependent, 
declarative sentences. This type of attempted direct proof (Figure 2) was called a concatenation 
because the original conditional statements were revised and “strung together” to create a single 
case. Approximately 44% of the attempted direct proofs were concatenations.  

                                                
1 The fact that number 

€ 

2
2 is irrational is a consequence of the Gelfond-Schneider Theorem (GST), which is 

otherwise known as Hilbert’s Seventh Problem. The proof of the GST was viewed as beyond the scope of the 
introductory class and consequently, the irrationality of 

€ 

2
2 was viewed as unproven. 
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Figure 2. Concatenation Example. 

An argument was classified as a redaction if the attempted direct proof could be viewed as an 
edited-version of the non-constructive proof, where a significant portion of the argument was 
removed. Specifically, these attempts involved the omission of first 4 lines of Argument 4B and 
the replacement of the conditional clause, “if 

€ 

2
2is irrational” with declarative statements about 

the irrationality of either 

€ 

3
2 or 

€ 

2
2. Redactions comprised 55% of the attempted direct proofs.  

There are two plausible explanations for students’ production of redactions (see Figure 3) 
and concatenations of the non-constructive proof. The first explanation is that, despite the 
explicit in-class discussions, students persisted in their use of an unproven assertion (

€ 

2
2 is 

irrational) because the assertion was intuitively acceptable. Though plausible, evidence of this 
explanation is limited to the students’ use of the assumption on the end-of-term assessment.  

 
Figure 3. Redaction Example 

A second explanation is that the students interpreted Argument 4B using a Naïve-Brouwerian 
lens: a perspective in which learner’s proof conceptions are governed by a potentially 
subconscious anticipation of construction, which enables the learner to construe proofs of 
existence (be they constructive or non-constructive) as providing actual instances of (or 
algorithms for producing) mathematical phenomena.2 Evidence of this explanation can be found 
                                                
2 The term “naïve” in the phrase Naïve-Brouwerian lens is used intentionally. Brouwer’s position on non-
constructive arguments was rooted in a deep understanding of non-constructive proofs and their logical 
underpinnings. In the students’ case, an anticipation of construction rather than an awareness of a lack of 
construction guides their interpretations. Hence, they are naïve – they lack awareness.  
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both in the clinical interviews and the in-class field notes. For example, in one interview, Maria 
proposed that the argument created a new value for a, an irrational number (

€ 

2
2), “so that you 

get a rational when you put a to the b.” In other words, she interpreted the statements of the 
proof as “building” specific numbers, which could then be employed in the service of a 
constructive proof. These data suggest that it was an anticipation of construction, rather than the 
preservation of an assumption, that governed students’ reproductions of the non-constructive 
proof and resulted in the redacted and concatenated versions described above.   

Discussion and Implications 
Tall (1991) noted that many researchers (Ellerton, 1985; Biggs & Collins, 1982) have 

suggested that in advanced mathematics, the developmental stages identified by Piaget may be 
viewed as a learning cycle occurring at each individual stage and producing, though each cycle, 
“a higher level of abstraction” (p. 8). If this is the case, then there may be a concrete-operational 
phase within the hypothetical-deductive stage. Thought of in relation to proof schemes, learners’ 
initial attempts to conceive of non-constructive proofs may be hindered by leaner’s constructive 
anticipations; that is, governed by a Naïve-Brouwerian lens. However, more research is need 
within other proof situations, which avoid intuitively acceptable assumptions, if researchers are 
to determine if such a perspective is, in fact, dominant among novices.  

The implications of this study are two fold. First, findings from the survey and clinical 
interviews indicate that researchers may need to document not only students’ proof productions 
but also students’ interpretations of their own and others’ proof productions, if we are to better 
understand students’ proof schemes. Such work would, among other methodological changes, 
involve including comprehension questions such as those proposed by Mejia-Ramos, Fuller, 
Weber, Rhoads, & Samkoff (2012). Indeed, the clinical interviews indicate that students’ 
selection of Argument 4B was impacted by a lack of comprehension of the argument. Second, 
findings from the intervention indicate that non-constructive existence proofs may pose 
particular problems for novices as they attempt to interpret these proofs. Consequently, 
instructional interventions intended to advance novices’ production and comprehension of such 
proofs should afford opportunities for students to become aware of and explicitly discuss the 
metatheorical basis for such proofs. 
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Appendix A. 
Theorem 3: Suppose a set A has the property, 

for any subset B, A ⊆ B, then A = ∅. 
Argument A: Argument B: 

 
Let B be an arbitrary subset of A, then A ⊆ B. 
Let B* = A ∩ 

€ 

B.  B* is a subset of A. It 
follows that A ⊆ B*. Since A ⊆ B* and A ⊆ B,    
A ⊆ B ∩ B*. However, B ∩ B* = ∅. 
Hence, A = ∅. 
 

 
Suppose A ≠ ∅. Since A ≠ ∅ there is an 
element x, such that x ∈ A.  Now, let B = ∅. 
Thus, B is a subset of A such that x ∉ B. It 
follows that  
A ⊄ B, as desired. 
 

1. I am confident about my understanding of 
Argument A. (Please mark one) 
 
                                                              
Strongly agree  Agree    Disagree    Strongly disagree 

2. I am confident about my understanding of 
Argument B. (Please mark one) 
 
                                                              
Strongly agree  Agree    Disagree    Strongly disagree 
 

3. Which argument, in your opinion, is the most convincing?             Argument A           Argument B  
Please explain your selection. (If you need additional space please use the back of this page.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Which argument, in your opinion, is the best proof?            Argument A             Argument B 
Please explain your selection. (If you need additional space please use the back of this page.) 
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Theorem 4: There exist irrational numbers a and b such that ab is rational. 
 

Argument A 
Definition 1. logzx is the number y, such that x = zy.  
 
Lemma 1.0: The log29 is irrational.  
Proof: Suppose log29 is rational. 
Since log29 is rational, there exists then integers m and n 

such that 

€ 

log2 9 =
m
n

.  

By Definition 1., it follows that  
However, 9n is odd, for all integers n, and 2m is even, for 
all integers m, which is a contradiction. Thus, log29 is 
irrational. 
 
Theorem 4: There exist irrational numbers a and b such 
that ab is rational. 
Proof: Let a = . It is well known that the  is 
irrational.  Let b = , by Lemma 1.0, b is irrational.

 
 
Thus, ab is rational. 

Argument B 
 
Let a =  and b = .   
It is well known that  is irrational. 
 

 
 

If  is rational, then the theorem is true. 
 

If is irrational, let a =  and  
b = , then  
 

. 
 
Thus, ab is rational. 
 

1. I am confident about my understanding of 
Argument A. (Please mark one) 
 
                                                              
Strongly agree  Agree    Disagree    Strongly disagree 

2. I am confident about my understanding of 
Argument B. (Please mark one) 
 
                                                              
Strongly agree  Agree    Disagree    Strongly disagree 
 

3. Which argument, in your opinion, is the most convincing?             Argument A           Argument B  
Please explain your selection. (If you need additional space please use the back of this page.) 
 
 
 
 
 
 
 
 
4. Which argument, in your opinion, is the best proof?            Argument A             Argument B 
 
 
 
 
 
 
 
 
 
 

€ 

2
m
n = 9⇒ 2m = 9n

€ 

2

€ 

2

€ 

log2 9

€ 

ab = 2
log2 9

= (2
1
2 )log2 9 = (2log2 9)

1
2 = (9)

1
2 = 3

€ 

2

€ 

2

€ 

2

€ 

ab = 2
2

€ 

2
2

€ 

2
2

€ 

2
2

€ 

2

€ 

ab = ( 2
2
) 2 = ( 2) 2⋅ 2 = ( 2)2 = 2
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UNDERGRADUATE STUDENTS’ USE OF INTUITIVE, INFORMAL, AND 
FORMAL REASONING TO DECIDE ON THE TRUTH VALUE OF A 

MATHEMATICAL STATEMENT

Kelly M. Bubp
Ohio University

Although deciding on the truth value of mathematical statements is an important part of the  
proving process, students are rarely engaged in making such decisions.  Thus, little is known  
about the ways in which students use intuitive, informal, and formal reasoning to evaluate  
conjectures.   In  this  study,  task-based  interviews  were conducted  with  undergraduate  
students  in  which  they  were asked  to  determine  the  truth  value  of  five  mathematical  
statements on functions and relations.  Students’ reasoning on these tasks will be classified  
as intuitive, informal, or formal, and then further categorized according to the findings of  
current research, with new categories added as needed.  This study should contribute to our  
understanding of the ways in which students reason when dealing with uncertainty in the  
proving process.  Additionally, this study may suggest ways in which educators can assist  
students  in  navigating  the  often  difficult  process  of  proving  and  refuting  mathematical  
statements.  

Key words: Reasoning and proof, Evaluating conjectures, Intuition, Task-based interviews

The  process  of  proving  mathematical  statements  often  starts  with  formulating  or 
evaluating  mathematical  conjectures—activities  that  involve  uncertainty.   Unfortunately, 
students rarely are engaged in uncertain aspects of the proving process, including determining 
the  truth  value  of  mathematical  statements  (Alibert  & Thomas,  1991;  de  Villiers,  2010; 
Durand-Guerrier, Boero, Douek, Epp, & Tanguay, 2012).  Due to these limited opportunities, 
little is known about how students evaluate conjectures and what types of reasoning they use 
to do so.  In particular, there is a lack of research on students’ ways of deciding on the truth 
value  of  general  mathematical  statements  involving  general  mathematical  objects  in  the 
context of proof-based mathematics. 

Determining the truth value of mathematical statements is an important component of the 
proving process.  When dealing with uncertainty,  mathematicians often try to  decide on a 
statement’s truth value with some degree of confidence before investing time in a proof or 
refutation attempt (de Villiers, 2010; Inglis, Mejia-Ramos, & Simpson, 2007).  Study of this 
decision process is essential for determining the ways in which intuitive, informal, and formal 
reasoning can be used to make successful decisions about the truth or falsity of mathematical  
statements.  Furthermore, study of successful students engaging in this process, rather than 
mathematicians, is more likely to yield results of pedagogical value and “suggest learning 
trajectories that might be applicable for many other students as well” (Weber, 2009, p. 201). 
Thus, this study will explore the following question:  In what ways and to what extent do 
undergraduate students use intuitive, informal, and formal reasoning to decide on the truth 
value of a mathematical statement?

Literature Review
Intuitive, informal, and formal reasoning are three types of reasoning which can assist 

with  the  process  of  deciding  on  the  truth  value  of  a  mathematical  statement.   Intuition  
constructs an automatic mental representation of a task, taking into consideration task cues, 
prior knowledge, and experience,  and operates independently of working memory (Evans, 
2010, 2012; Fischbein,  1987; Glockner & Witteman,  2010; Wilder,  1967).   Informal  and 
formal reasoning are deliberate processes of reasoning that can be explained, decomposed 
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into their  constituent  parts,  and require  the use of working memory (Evans,  2008, 2012; 
Fischbein, 1987).  Informal reasoning includes a variety of reasoning strategies such as visuo-
spatial, example-based, graphical, diagrammatic, physical, kinaesthetic, analogical, inductive, 
and pattern-based.  Formal reasoning is reasoning from definitions,  axioms, assumptions, 
and theorems based solely on logic and deduction that conforms to specified rules regarding 
language, symbols, and frameworks for argumentation.  Much of the research on the types of 
reasoning engaged in while deciding on the truth value of a mathematical statement comes 
from the study of mathematicians’ reasoning rather than students’ reasoning.  
Intuitive Reasoning

Intuition  is  especially  important for  deciding  on  the  truth  value  of  a  mathematical 
statement because it can suggest what is plausible in the absence of a proof (Burton, 2004; 
Davis & Hersh, 1981; Fischbein, 1994) and “provides a justification for, but is prior to, the 
search for convincing argument and, ultimately, proof” (Burton, 1999, p. 32).  In the limited 
research on intuition in mathematics education, researchers have found a variety of types of 
intuitive  reasoning  used  by  students  and  mathematicians  to  evaluate  mathematical 
conjectures.  Inglis et al. (2007) found that mathematicians’ intuitive support for the truth or 
falsity  of  a  mathematical  statement  was  based  on  either  suspected  properties  about 
mathematical objects or known relationships between mathematical concepts.  On the other 
hand, students’ intuitive decisions on the truth value of mathematical statements have been 
found to be based on (a) cues in the statement (Buchbinder & Zaslavsky, 2007; Leron & 
Hazzan, 2006); (b) definitions and mental images (Bubp, 2012); or (c) expected relationships 
between mathematical objects with certain properties (Bubp, in press).
Informal Reasoning

Mathematicians use a variety of informal reasoning strategies to convince themselves or 
to reduce their uncertainty of the truth value of a mathematical statement, including: drawing 
geometric  figures  or  diagrams  (de  Villiers,  2010),  examining  special  or  limiting  cases 
(Alcock & Inglis, 2008; de Villiers, 2010), reasoning by analogy (Alcock & Inglis, 2008; de 
Villiers,  2010),  exploring  patterns  (Alcock  &  Inglis,  2008;  de  Villiers,  2010),  studying 
specific  or  generic  examples  (Alcock  & Inglis,  2008;  Inglis  et  al.,  2007),  searching  for 
counterexamples  (Inglis  et  al.,  2007),  or  engaging  in  informal  plausibility  argumentation 
about properties of relevant mathematical objects (Alcock & Inglis, 2008; Inglis et al., 2007). 
Although much less is known about how students reason informally about the truth value of a 
mathematical  conjecture,  evidence  has  been  found  that  they  (a)  study specific  examples 
(Buchbinder  & Zaslavsky,  2007;  Connor,  Moss,  & Grover,  2007;  Durand-Guerrier  et  al., 
2012; Weber & Mejia-Ramos, 2009); (b) search for counterexamples (Durand-Guerrier et al.,  
2012); (c) draw diagrams, especially Venn diagrams (Weber, Brophy, & Lin, 2008); and (d) 
construct informal arguments about mathematical properties of examples (Weber & Mejia-
Ramos, 2009).
Formal Reasoning

Mathematicians and students both employ various formal reasoning strategies to decide 
on the truth value of a mathematical statement.  Inglis et al. (2007) found that mathematicians 
reasoned  formally  from definitions,  algebra,  and  counterexamples  to  determine  the  truth 
value  of  a  mathematical  conjecture.   Weber  (2009)  provides  an  account  of  a  successful 
undergraduate student who used only formal reasoning to evaluate conjectures.  This student 
would  reformulate  a  conjecture  by  using  logically  equivalent  statements  or  alternate 
definitions, determine logical inferences that could be made from the assumptions, or attempt 
a  proof.   Additionally,  students  may  perform  algebraic  or  symbolic  manipulations 
(Buchbinder & Zaslavsky, 2007) or consider possibly relevant theorems, rules, or definitions 
when determining the truth value of a mathematical  statement  (Buchbinder  & Zaslavsky, 
2007; Durand-Guerrier et al., 2012).
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Method of Inquiry
Participants

Purposeful sampling was used to select participants from  the main campus  of a public 
university in Ohio.  All selected participants  met the criteria of (a) being an undergraduate 
student enrolled in selected mathematics courses at  the university, and (b) having passed at 
least one proof-based mathematics course with a B or better as an undergraduate student.
Procedures

I conducted two task-based interviews with each participant which were audio-recorded 
and transcribed.  Participants were asked to think aloud during completion of the tasks and to 
clarify or expand on their thinking as necessary.  The tasks were provided one at a time on 
separate sheets of paper.  Participants were not (a) given any instructions other than to think 
aloud during the process, (b) provided with any information other than a list of definitions of 
terms in the tasks, or (c) given the use of any materials other than a LiveScribe Pen and 
paper.  This Pen records synchronously audio and writing.  After each task, I asked follow-up 
questions  regarding  the  participants’  work  on  the  task  and  general  questions  on  their 
approach to uncertainty in the proving process.  
Tasks

Participants completed five tasks in which they were asked to determine the truth value of 
a given mathematical statement and prove or disprove the statement accordingly. The tasks 
cover basic information about functions and relations with which students who have taken at 
least one proof-based mathematics course should be familiar, thus they have been chosen to 
be accessible to the participants.  In line with Alcock and Weber (2010), each of the tasks 
refers to general objects and their properties and should be amenable to intuitive, informal, or 
formal reasoning strategies.  Finally, the tasks provide opportunities to construct both proofs 
and counterexamples.  The following are two of the tasks used in the study:

Monotonicity task: Prove or disprove: If f :ℝ → ℝ and g :ℝ → ℝ decreasing on an 
interval I, then the composite function f ∘ g is increasing on I.

Composite function task.  Let f :ℝ → ℝ and g :ℝ → ℝ be functions.  Prove or 
disprove: If the composite function f ∘ g is one-to-one, then g is one-to-one.

Analysis
Reasoning  used  during  the  process  of  deciding  on  the  truth  value  of  the  given 

mathematical  statements  will  be classified as either  intuitive,  informal,  or formal.   I  will 
classify reasoning as intuitive if the student (a) stated that it was a(n) intuition, instinct, gut 
feeling, or first thought; (b) used similarity to make an assessment of the task; or (c) was 
unable  to  justify  the  reasoning.   Reasoning  will  be  classified  as  informal  if  it  involves 
deliberate  and  justifiable  use  of:  visuo-spatial,  example-based,  graphical,  diagrammatic, 
physical, kinaesthetic, analogical, inductive, or pattern-based reasoning.  Reasoning will be 
classified as formal if it involves deliberate and justifiable logical and deductive reasoning 
based on axioms, definitions, theorems, given assumptions, and standard proof frameworks. 
After  the  initial  classification  into  intuitive,  informal,  and  formal,  the  reasoning  will  be 
further  categorized  according  to  the  types  discussed  in  the  literature  review,  with  new 
categories added as necessary.  Each instance of reasoning will be classified separately in 
order to capture the use of multiple reasoning types throughout the decision process.  

Preliminary Results 
Analysis is on-going, but preliminary findings indicate that although the participants in 

this study had difficulty deciding whether an open statement was true or false, they used a 
combination  of  intuitive,  informal,  and  formal  reasoning  to  assist  them  in  making  this 
decision.   Participants’  intuitive reasoning includes using vague images of functions with 
particular  properties  or  considering  what  makes  sense  based  on  prior  mathematical 
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experience.   Their  informal reasoning includes exploring specific examples and sketching 
graphs.   Finally,  participants’  formal  reasoning  involves  reasoning  from  definitions  or 
making logical implications to see if these lead to information that could support a decision.

Questions for the Audience
Are  there  other  frameworks  for  analyzing  students’  reasoning  during  the  process  of 

deciding on the truth value of a mathematical statement that may be more informative than 
the  one  I  am using?   How might  I  improve  my current  framework?   What  educational 
implications do you see from this work?  
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Engaging students in the construction of proofs often does not include conversations 
about what does and does not count as proof, to the detriment of the students. The critiques of 
student-generated arguments should be communicated in a language common to instructor and 
student; such a language can be developed via an assessment tool that is accessible to both 
parties. This paper describes the development of an argument assessment tool that will be useful 
for instructors and researchers both to assess students’ and participants’ ability to construct 
proofs and to communicate those assessments. The tool is introduced and two assessed student 
arguments are shared to illustrate the tool’s application. Future work with the argument 
assessment tool will include its use in a classroom as an instructional tool for establishing a 
common language for instructor and students and providing the foundation for discussions about 
proof production.  

Key words: Mathematical Proof; Argument Assessment; Constructivism 

Introduction 
There exists extensive research on undergraduate mathematics students’ limited 

understanding with respect to constructing and evaluating proofs.  The arguments for why 
undergraduate students struggle vary from not knowing how to start a proof (Moore, 1994), to a 
contrived understanding of mathematical definitions (Ewards & Ward, 2004; Moore, 1994), an 
inability to move flexibly between inductive and deductive thinking (Ball, Hoyles, Jahnke & 
Movshovitz-Hadar, 2002), and a lack of understanding of the difference between inductive and 
deductive arguments (Morris, 2002). A proposed solution to this problem is the transformation of 
instruction from traditional lecture-based courses to constructivist classrooms where students 
work intentionally to create their own knowledge. Such active classrooms necessitate learning 
opportunities that engage students in a breadth of activities resulting in proof and involving 
processes which are more inline with how mathematicians engage in constructing proofs 
(Blanton, Stylianou, & David, 2003; Harel & Sowder, 1998; Smith, 2006; Stylianides, 2007; 
Stylianides, 2008).  

Students’ inability to construct proofs stems from the continual handling of proof in 
classrooms, where instructors present complete solutions with little input from students (Harel & 
Rabin, 2010; Smith, 2006; Solomon, 2006).  This traditional way of teaching mathematics, 
including proofs, allows instructors to cover more problems and topics including various proof 
methods. However, when the instructors view their students as passive learners who absorb 
knowledge and thus do the thinking for their students by presenting complete solutions quickly, 
students are often left believing that proof construction is an individual instructor activity 
(Solomon, 2006). The traditional lecture style instructional method leaves students deficient 
about what is a proof and how to produce proofs on their own, believing they need to memorize 
what the instructor produces (Moore, 1994; Harel & Rabin, 2010; Solomon, 2006).   
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A major difficulty with supporting students in constructing proofs is that they do not know 
what counts as proof. Moore (1994) interviewed 16 mathematics and mathematics education 
majors including two graduate students and found that “All of them said they had relied on 
memorizing proofs because they had not understood what a proof is nor how to write one” (p. 
264). Without a clear understanding about what is a proof, students continue to view it as a 
mystery.  Stylianides (2007) has proposed and explained his rationale for a definition of proof for 
school mathematics, which has gained acceptance. He explains seven stipulations to consider 
after presenting his proof definition.  The main point is that classrooms need to co-construct a 
definition in which the teacher assumes the role of the representative of the greater mathematics 
community and that his definition can serve as a productive launching point. He proposes that 
the students and instructor take on active roles during the proving process to continue to develop 
understanding of the definition of proof and possibly modify it to fit the individual classroom 
needs, to align with students’ previous conceptions, and to reconstruct understanding of proof. 
Furthermore, teachers will need to scaffold student thinking as they construct arguments 
(Blanton, Stylianou, & David, 2003; Stylianides, 2007).  The rationale is that as students begin to 
understand what is needed for an argument to count as proof, through a process that involves 
reworking their own understandings as conceptual conflicts arise, they will become more 
successful at constructing them on their own.  

Stylianides (2007) proposed a criterion for what counts as proof as follows: 
Proof is a mathematical argument, a connected sequence of assertions for or 
against a mathematical claim, with the following characteristics: 
1. It uses statements accepted by the classroom community (set of accepted 

statements) that are true and available without further justification; 
2. It employs forms of reasoning (modes of argumentation) that are valid and 

known to, or within the conceptual reach of, the classroom community; and 
3. It is communicated with forms of expression (modes of argument 

representation) that are appropriate and known to, or within the conceptual 
reach of, the classroom community. (page 291) 

 
While the criterion is useful to develop a basic understanding of proof, less is known how such a 
criterion provides supportive feedback to students on the arguments they develop. Such feedback 
allows student to interact more closely with their previous conceptions of proof as they are 
drawn into conflict with newer conceptions. In other words a “student friendly” instructional tool 
is needed for instructors and students to support students’ developing understanding of proof.  
This article proposes an argument assessment tool that has shown to be applicable to a wide 
range of possible student solution paths that aligns with Stylianides’s (2007) definition of proof. 
It is intended to be accessible to students so that they can use it to assess solutions their peers 
propose and to evaluate their own arguments.    

Theoretical Framework 
Richardson (2003) calls constructivist pedagogy “the creation of classroom environments, 

activities, and methods that are grounded in a constructivist theory of learning, with goals that 
focus on individual students developing deep understandings in the subject matter of interest and 
habits of mind that aid in future learning” (p. 1627). Based on the idea that students have the 
capacity to work to build their own knowledge, a constructivist approach to teaching proof 
necessitates activities that allow students to confront their own, often flawed, understanding of 
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proof and to work towards a more thorough understanding that aligns with the greater 
mathematics community.  

The tool presented in this paper will provide a foundation for constructivist proof instruction. 
According to Hartle, Baviskar, and Smith (2012), four criteria need to be met for effective 
constructivism. An activity should elicit prior knowledge, create cognitive dissonance, apply new 
knowledge with feedback, and reflect on learning.  

 
The Proof Assessment Tool   

Many assessment tools to evaluate arguments have been developed for research purposes. 
Such tools typically include common argument types that are invalid. The research instruments 
generally range from informal to formal argumentation following some type of numerical or 
variable scale. For example, Bell (1976) listed two groups with six scales in each one for 
empirical arguments and one for those that are deductive. The titles include names such as 
“partially systematic” in the empirical scale and “relevant” in the deductive category. Another 
approach has been to categorize student solutions into proof schemes (Harel & Sowder, 1998). 
Harel and colleagues (Harel & Sowder, 1998; Martin & Harel, 1989) evaluated student-produced 
arguments into proof frames and proof schemes, which both follow an approach, similar to Bell’s 
(1976), along the lines of inductive and deductive reasoning.  Finally, Weber and Alcock (2004) 
approached the categorization from a different perspective; they focused on reasoning that leads 
to proof production and labeled the categories as syntactic versus semantic.  While these 
approaches to categorizing arguments are useful for research purposes, less is known about how 
such categorizations are useful to students’ development of proof construction. The argument 
assessment tool (as shown in table 1) aims to fill this gap to better support students.  

The argument assessment tool is intended for use in classrooms to develop a shared 
understanding of proof. That is, it should be used as a starting point from which the classroom 
community can work to establish a common understanding of proof and develop a common 
language to discuss a variety of arguments. Because it is to be used to help classes develop 
shared understanding, it can be used in a variety of settings including secondary math classes, 
courses for pre-service teachers, and undergraduate proof-based mathematics courses. The 
argument codes used by Stylianides and Stylianides (2009) are listed in the first column. The 
code details are added to support instructors and students with more specific feedback as to why 
an argument aligns with a specific argument code. The final column includes directions on how 
to code a solution including both an argument code (i.e. A0-A4) and a specific number to 
provide code details.  Three clear and convincing categories are listed below the table and are 
only applied to valid arguments (codes A3 or A4). 

The argument code A0 is used on solutions that are incoherent or do not address the problem 
situation. A1 is used if the participant was unable to reach a solution or make a generalization 
instead using only empirical evidence. The code A2 is applied to solutions where the participant 
attempts a general argument, but is unsuccessful. The various sub codes in the second column 
(code details) identify specific issues as to why the argument is invalid. The A3 code represents a 
valid argument that falls short of being a proof. A3 is applied when unjustified assumptions were 
detected in the argument including assumptions about the conjecture the participant is attempting 
to prove. It was also applied when the participant lacked the formality required of mathematical 
proofs within the specific context of classroom community. A4 is applied to proofs, and no sub 
codes follow because there are no flaws or issues identified. The feedback provided and 
discussions in classroom communities aim to support the development of a common 
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understanding of the codes. Additionally, what needs to be justified at the beginning of a 
semester may be left unjustified later as general skill level and understanding progresses.  

Since there are differences among valid arguments, a set of clear and convincing criteria are 
included to provide more detailed feedback to improve arguments. A set of plus or minus 
symbols are used to code all A3 and A4 main codes.  For each of three clear and/or convincing 
statements, a plus is listed if the criterion is represented, and a minus is used to indicate that a 
criterion is absent. Therefore, each valid argument code (A3 or A4) is followed by a combination 
of three plus or minus symbols. For example, a proof that includes unnecessary information and 
lacks a concluding statement is coded as A4 + - -.  

 
Argument Codes Code Details Code Evidence 
Incoherent or not 

addressing the stated 
problem (A0) 

1. Solution shows a misunderstanding of the mathematical 
content. 

2. Ignores the question completely. 
3. Interprets claim, provides no argument. 

• List A0 and either 1, 
2, or 3. 

Empirical (example 
based) (A1) 

1. Examples are used to find a pattern, but a generalization is 
not reached. 

2. Only examples are generated as a complete solution. 
Examples alone are not sufficient! They can be used as a 

starting point, however.  

• List A1 and either 1 
or 2 

Unsuccessful 
attempt at a general 

argument (A2) 

1. There is a major mathematical error  
2. Illogical reasoning; several holes and or errors exist 

causing an unclear or inaccurate argument.  
3. Reaches a generalization from examples, but does not 

justify why it is true for all cases.  
4. Solution fails to covers all cases.  
5. Solution is incomplete. Argument stops short of 

generalizing the stated claim.  
Must explain for all cases in general terms; general explanation 

& all cases covered; logical arguments  

• List A2 and match 
the bulleted number 
(1-5) in the middle 
column with the 
work in the solution.   

Valid argument but 
not a proof (A3) 

1. The solution assumes claims, in other words the solution 
exhibits a leap of faith before reaching a conclusion  

2. The solution assumes a conjecture or lists a non-
mathematical statement as a conjecture.  

3. Argument is sound, but does not use mathematical 
notation and/or language - too informal 

No unjustified assumptions, but one can refer to ideas that the 
community has previously proven. 

• List A3 and either 1, 
2 or 3 & address 
each of the points 
below ** 

Proof (A4)  • List A4 and address 
each of the three 
clear and convincing 
points below. ** 

** for use with A3 and A4. 
(+/-) The flow of the argument is coherent since it is supported with a combination of pictures, diagrams, 
symbols, or language to help the reader make sense of the author’s thinking. Diagrams are fine as long as they are 
accompanied by an explanation. Explanation of ideas or patterns. 
(+/-) There are no irrelevant or distracting points. Variables and definitions are clearly defined and any terms 
introduced by the author are explained.  Common understood language 
(+/-) The conclusion is clearly stated. 

Table 1. Argument Assessment Tool (AAT) 
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Argument Assessment Tool Used in Two Studies 
Because this tool relies on community-accepted norms, the researchers each met with 

colleagues to discuss what knowledge is accepted in each individual community and what kinds 
of assumptions need to be justified. For example, due to the different experience levels of the 
study participants, students in the first study were expected to provide justification for the 
assumption that the sum of two even numbers is even, but students in the second study were 
allowed to assume that knowledge without need for justification. After discussion about 
community norms and an explanation of the assessment tool secondary coders were asked to 
apply the tool to a variety of arguments. The tool was used to assess arguments in two different 
studies. 

In the first study, 9 graduate students, who all earned an undergraduate degree in 
mathematics, participated in a reasoning and proving course to prepare them as secondary 
mathematics teachers in a education department at a large US public university. The first author 
was the researcher of this study. A second coder used the tool to assess 18 of the 71 student 
produced arguments.  Agreement was reached on 13 of 18 (72%) main codes. Every argument 
coded as a valid argument (A3 or A4) was also labeled as such by the second coder. There was 
one instance in which the second coder labeled a solution as a valid argument and the researcher 
coded it A2. Therefore, four of the disagreements were between A3 and A4 and only one 
between A3 and A2. There were eight solutions that required sub codes and there was agreement 
on seven of the eight possible sub codes. There were 33 opportunities to include a plus or a 
minus for the 11 valid arguments, and 26 of the 33 (79%) instances were agreed upon during the 
initial coding session. The disagreements were resolved through discussion until agreement was 
reached on every code.  

In the second study, 22 undergraduate mathematics and mathematics education majors were 
assessed on their proof construction abilities at the start and conclusion of a semester during 
which the students were enrolled in a variety of proof-based math courses at a large public 
institution. The PI, the second author, initially assessed the participant-generated arguments with 
a tool she developed based on validation literature (Selden & Selden, 2003; Weber, 2010) but 
was frustrated by the coarseness of the tool and the inability to discuss improvement between 
invalid attempts at general arguments. Using an earlier version of the tool presented here, she 
was able to assess 130 of the 132 proof attempts, but used the two remaining arguments to refine 
the tool to the version presented in this paper. The researcher trained two additional coders who 
looked at 6 of the 84 solutions. All three coders were in agreement on all six main codes, and on 
only two solutions was there initial disagreement on sub codes. In those instances, after a short 
discussion agreement was reached on sub codes as well as the clear and convincing ratings.  

Coding Examples 
Two examples are provided to illustrate how an argument was coded (as shown in Figures 1 

and 2).  The participants in the first study were asked to prove that n2 + n is always even for all 
counting numbers. Tanya’s solution (Figure 1) is mathematically correct, but she included an 
assumption when she wrote “an even times an odd is even” without justifying why this is true.  
The valid argument with the assumption was coded A3.1.  Since the solution is a valid argument, 
all three clear and convincing statements are checked.  The argument does not include jarring 
statements, missed defined terms or variables, but there is no clear conclusion.  Two cases (odd 
and even counting numbers) are addressed without summarizing the combined argument to 
explain why the conjecture is indeed true for all counting numbers.  Therefore, Tanya’s solution 
was coded A3.1++-. Tanya may not have known that her assumption required justification, but 
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the classroom community agreed on the criterion that any claim that were not previously proven 
in the course needs to be justified.   

 
Figure 1. Tanya’s Solution (first study) 

 
The participants in the second study were asked to prove that when m2 is odd, m is also 

necessarily odd. Ursula attempted a general argument by contradiction (see Figure 2), but had 
logical errors that invalidated her argument. She sets up the contradiction argument incorrectly, 
and contradicted her incorrect statement. A valid contradiction argument would have assumed 
that m2 was odd but that the specific m used was even. Assuming that m is even for all m in the 
natural numbers is a logical mistake that demonstrates a misunderstanding of contradiction. After 
making that logical error, Ursula correctly contradicted the incorrect statement since a single 
counter example suffices to negate a for-all statement. There are no other errors present. While 
the support of her argument is empirical, she was trying to make general statements about all m, 
so this argument did not fit that A1 code criteria. As such, her argument was rated as A2.2. 
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Figure 2. Ursula’s Solution (second study)  

Conclusion: Future Work 
The argument assessment tool was developed because of a need to analyze and provide 

feedback on student produced arguments. The need for such a tool stems from the instructional 
goal of moving beyond instructor presented arguments toward supporting students with 
constructing, evaluating and developing a greater understanding of mathematical proof. Current 
work with analyzing student arguments has only been from research purposes. While the use of 
the argument assessment tool has also been used as a research instrument, both authors believe in 
the potential of the tool as an instructional support to develop students’ knowledge of proof in 
the classroom in a variety of settings. 

Both authors used the tool to analyze their participants’ arguments, but they were not able to 
use the tool to provide feedback to the students. The participants in the first study utilized a 
different set of classroom community constructed criteria of proof to provide feedback to one 
another during instruction. The argument assessment tool was developed ad hoc as a way to 
distinguish among the participants’ arguments at the end of the course in conjunction with the 
first study. The participants in the second study were encouraged to talk to the PI at the 
completion of the study to discuss their arguments, but no participants did. As such, there was 
not an opportunity to use the tool to give students feedback on their proof attempts. Therefore, 
while the tool has shown to be a productive assessment tool in different settings with different 
researchers, the authors do not have data yet on the tool’s effectiveness as an instructional 
resource beyond summative assessment. 

Future work will include using it with students in classroom settings as a constructivist 
activity. Each time students are asked to produce proofs they will necessarily be drawing on prior 
mathematical knowledge as well as their current understanding of proof production. The authors 
have plans to use the tool in courses for pre-service teachers as well as courses for undergraduate 
mathematics majors. Sharing the tool with students openly will allow them to give and receive 
feedback about proof construction that will often draw attention to the students’ 
misunderstanding of proof, creating cognitive dissonance they will need to resolve. As the 
students reflect on such feedback individually and as a class, they will be able to revise and 
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redefine the tool as needed to improve their own learning. While this tool is designed for use in a 
constructivist classroom, the authors hypothesize that it would be of use for grading proofs and 
providing feedback in other settings as well. 

Therefore, future work in classrooms that implement the tool will include study of how 
students learn to appropriately apply the tool to analyze arguments including their own, construct 
proofs, and expand their generalized understanding as to what counts and what does not count as 
proof.  
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EXPLORING STUDENTS’ QUESTIONS FROM ONLINE VIDEO LECTURES 

Fabiana Cardetti, Konstantina Christodoulopoulou, and Steven Pon 
University of Connecticut 

This study was designed to investigate the types of questions college students generate as they 
watch video lectures in a business calculus class. Thirty-six students taking an undergraduate 
calculus course participated in the study. In this paper we share the preliminary results of 
our qualitative analysis. We have found nine mutually exclusive categories that uncover the 
thoughts, struggles, and successes our students go through as they experience this new 
teaching modality of video-viewing. We also include three questions for the audience to help 
further our analysis and open up new research opportunities for the improvement of 
collegiate teaching through the study of students’ questions. 

Key words: Students’ Questions, Calculus, Flipped Classrooms, Video Lectures 

The exchange of questions between student and teacher forms an integral part of the 
learning process. There is a wealth of studies devoted to the role of teacher questions and 
student responses in examining student learning and the effectiveness of teaching approaches. 
However, we can also learn a great deal from the questions that students ask, since posing 
questions is a crucial component of learning and scientific inquiry and can play an important 
role in directing a teacher’s practice. The increase in the use of some technologies, especially 
asynchronous technologies such as video lectures, email, and discussion boards, both 
heightens the importance of the pedagogical response to student questions as well as allows 
for more detailed study of student questions.  

Conceptual Framework 
In their comprehensive review of the research on students’ questions, Chin and Osborne 

(2008) demonstrated that there is considerable educational potential for science teaching and 
learning in student-generated questions. Students’ questions play a key role in science classes 
directing student learning and driving knowledge construction (e.g. Chin & Brown, 2000), 
fostering classroom discussion (Chin, Brown & Bruce, 2002), helping students self-evaluate 
and monitor their understanding (e.g. Chin, 2006; King, 1989), and increasing students’ 
interest in a topic (Chin & Kayalvinzi, 2005). From a teaching standpoint, students’ questions 
can be used to assess learning (e.g. Maskill & Pedrosa de Jesus, 1997; Watts & Alsop, 1995), 
to evaluate students’ higher-order thinking skills (Dori & Herscovitz, 1999), to stimulate 
scientific inquiry (Crawford, Kelly, & Brown, 2000; Maskill & Pedrosa de Jesus, 1997), and 
to prompt teachers to reflect critically on their teaching (Watts, Alsop, Gould, & Walsh, 
1997).  

A key to the study of student questions is their classification. Different classification 
schemes have been developed to reveal the level of cognitive processes that students use 
when posing questions in general science classes (e.g. Bloom, Engelhart, Furst, Hill, & 
Krathwohl, 1956; Pedrosa de Jesus, Teixeira-Dias, & Watts, 2003; Pizzini & Shepardson, 
1991).  Such classifications help not only with quantifying and furthering our understanding 
of student questions, but also with supporting students with a relevant taxonomy that can 
improve the quality of their questions (Marbach-Ad & Sokolove, 2000).   

With regards to mathematics instruction, researchers have emphasized the importance of 
student-generated questions in mathematics teaching at the K-12 school level and have 
investigated ways to incorporate them in their classrooms (e.g. Foster 2011; Piccolo, 
Harbaugh, Carter, Capraro, & Capraro, 2008). However, less has been done to further study 
student questions at the college level, especially as they relate to the unique features of 
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mathematics, which is more abstract and less experimentally-based than other sciences. With 
this background in mind, the central research question guiding this study was: What types of 
questions do college students raise as they watch video lectures in a business calculus class? 
In addition, we are interested in the relationships between the questions students ask and 
students’ performance related to the videos in the immediate-term (video), short-term 
(quizzes), and long-term (exam). The research reported in this paper is part of our ongoing 
research on the appropriate use of technology in undergraduate mathematics (Cardetti, Pon, 
& Christodoulopoulou, 2013). 

Methodology 
This study took place in two sections of a college business calculus course in Fall 2012 

taught by two experienced instructors.  For one particular week in the semester the classes 
were flipped; that is, students viewed instructor-generated videos prior to the corresponding 
class meeting and class time was devoted to work on problems from the textbook. After 
watching the videos, students were required to answer conceptual questions and generate 
thoughtful questions about the material in the videos. This activity was intended to help 
verify that students had watched the videos and to encourage them to think critically about 
the material. The flipped week featured material on finding absolute extrema of functions and 
real-world optimization problems. Participants included 36 students, most of them were at the 
sophomore level and about half of them were Business majors.  

The primary data source for this study were the questions students generated after 
watching each of the three sets of lecture videos prepared by their instructors. In total we 
collected 175 questions. The analysis began with a process of open coding (Strauss & Corbin, 
1998) focusing on the general nature of students’ questions. We used primarily the constant 
comparative method to identify emergent categories, distinguishing themes and features of 
the students’ questions. All questions were carefully coded using the initial categories, 
keeping an eye out for new or more refined versions of the categories to emerge. Each 
question was independently coded by at least two members of the research team. This was 
followed by discussions to ensure agreement on classifications and the development of new 
categories. What we report in this paper are the initial categories that emerged from this data. 

We also collected students’ answers to the conceptual questions and students’ scores on 
quizzes and exams. The analysis of these data is ongoing and will help find patterns or trends 
associating students’ questions with their performance throughout the term. 

Early Results and Development 
As our study is ongoing, we will present here findings primarily addressing our main 

research question regarding student-generated questions. We identified nine broad categories 
defined below. We also include an illustrative example and a brief rationale for the coding 
choice. To better understand the coding, it is useful to know that on the videos the instructors 
presented the standard procedure to find absolute and relative extrema along with examples, 
as well as optimization problems. In all videos, graphs were used to aid the explanations.  
Fundamental Misconception: question reveals basic deficiencies from earlier courses. 

 “In the second video, where did S = 2x2 + 4xh  come from” (Day 2) 
(Student could not follow derivation of surface area of a box.) 
Previous material: question reveals lack of recall or relation to material from earlier in the 
term. 

“Why is lim
x!"
(3# x # x2 ) = lim(#x2 )  [sic], what is this concept?” (Day 1) 

(Finding the end behavior of a polynomial like this was covered previously in the course.) 
Basic steps: question reveals difficulty following from one step to the next in the video. 
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“If there are endpoints that can be possible absolute max/mins how do we decide which 
one is [the] absolute [extrema]?” (Day1) 
(Student seemed to have trouble with the last step in finding absolute extrema on closed 
intervals.) 
Struggling: question reveals student difficulty connecting concepts within the video. 

“Why the odd polynomials don't have absolute extrema?” (Day 1) 
(Student had trouble connecting a graph of an odd polynomial to the idea of absolute 
extrema.) 
Anxiety: question concerns anxiety over exams. 

 “Will we ever have a problem like example 2 on a test?”(Day 2) 
Mathematical disposition: question reveals students attitude toward mathematics practice or 
the value of mathematics. 

“So if all optimization problems are different, [why] should we study the procedure?” 
(Day 3) 
(Student questions the value of the procedures explained in the video.) 
Word problems: question reveals issues with mathematical modeling. 

“How can we tell from the beginning of the problem whether or not the objective function 
will be expressed in terms of one or multiple variables” (Day 3) 
Making sense: question centers on a student’s first reaction – may be naïve, ingenuous, 
unsophisticated, or show confusion over a minor mistake. 

“Why does the process change when using () as opposed to []” (emphasis added, Day1) 
(Student seemed interested in further understanding why the difference makes sense.) 
Non-standard questions: question showcases student thinking beyond what is being 
presented. 

“If there is a hole or jump in the function, does it change anything as to how the absolute 
extrema are found?” (Day 1) 
(Videos dealt only with continuous functions, and the student is exploring degenerate cases.) 

Further analysis of our findings will help us refine these categories, as well as find out the 
frequencies of the different types of questions and whether there are any connections between 
short- or long-term students’ difficulties and the different categories.  

Audience Discussion Questions 
Our preliminary data analysis suggests a wide variety of questions in students’ minds as 

they watch video lectures. While many of these categories are familiar to the experienced 
instructor, this study allowed us to survey all students in the classrooms, rather than only 
those who would normally raise questions in a typical in-class lecture. The preliminary 
results seem to support the importance, raised by the literature, of studying these questions. 
Moreover, the preliminary findings indicate that the way in which the questions were elicited 
has great potential to help improve the students’ learning experience by requiring them to do 
in-the-moment deep thinking about the presentation. This suggests further research focused 
on the nature of this task.  

Considering that a better understanding of our students’ thoughts and difficulties can play 
a significant role in informing changes in instruction, there are several questions we would 
like to discuss with the audience to help further our analysis and direct new research 
opportunities: 

1) How do you see these studies helping your teaching and student learning? 
2) How do you see the role of student questions changing in an online or other 

nontraditional environments? 
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3) How could we further leverage student questions to get students into the 
mathematician mindset, allowing them to feel smart and capable of asking good 
mathematical questions? 
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MATHEMATICAL PERCEPTIONS AND PROBLEM SOLVING OF FIRST YEAR 
DEVELOPMENTAL MATHEMATICS STUDENTS IN A  

FOUR-YEAR INSTITUTION 

Anne Cawley 
University of Michigan 

 
I report initial findings of a study that seeks to investigate the change in developmental 
(remedial) mathematics students’ mathematical problem solving skills. I report on the 
analysis of one-on-one interviews with six students before a four-week Intermediate Algebra 
course. The ultimate goal is to see the extent to which their skills changed after the course. 
Using a framework of reasoning developed by Lithner (2000), I describe events in which one 
particular student shows plausible reasoning and also reasoning based on established 
experience. I seek input with regard to alternative frameworks or analysis of the data that 
may help me interpret the findings. 

Key words: Developmental Mathematics, Problem Solving, Reasoning in Mathematical 
Tasks 

Much research has looked into developmental mathematics students at the postsecondary 
level (Bahr, 2008; Bahr, 2010; Bonham & Boylan, 2011; Stage & Kloosterman, 1995). This 
study aims to draw connections between students’ prior knowledge with regard to their 
beliefs of preparedness, self-efficacy and the locus of control (internal versus external) of 
their mathematical experiences while looking at the change in their mathematical problem 
solving skills (cognitive strategies). This analysis is especially important in undergraduate 
education given that more than one out of five college students are required to take remedial 
mathematics courses varying across arithmetic, pre-algebra, beginning algebra, and 
intermediate algebra (NCES, 2003). What is more, a majority of students enrolled in 
developmental mathematics courses need more than one attempt to pass (Attewell, Lavin, 
Dominia, & Levey, 2006). Postsecondary developmental mathematics education is comprised 
of courses that include content that is prerequisite for college level courses. The main goal of 
developmental mathematics courses is to prepare students who are deemed unprepared for 
college level mathematics courses and bridge them to college level mathematics (Blum, 
2007). Stuart (2009) claims that providing help for specific content areas in which they are 
lacking is more valuable than simply teaching the topics of an entire course over again. 
Therefore, better understanding the connection of developmental students’ misunderstandings 
or lack of understanding, knowledge of their beliefs as well as drawing connections to their 
problem solving/cognitive strategies may be essential in finding ways to improve the success 
of these students. As part of a larger study, the following research question is the focus of this 
paper: How does developmental mathematics students’ mathematical problem solving change 
after taking a course designed to remediate students’ mathematical skills?  

Theoretical Framework 
Lithner (2000, 2004) proposes a framework of reasoning mathematical tasks via a four-

step structure: (1) a problematic situation occurs (where it is not obvious how to proceed), (2) 
strategy choice (try to choose a strategy that can solve the difficulty), (3) strategy 
implementation (did the strategy solve the difficulty?), and (4) conclusion (a result is 
obtained). Lithner describes reasoning as “the line of thought, the way of thinking, adopted to 
produce assertions and reach a conclusion” (Lithner, 2000, p. 166). What is more, Lithner 
further describes two different types of reasoning: plausible reasoning and reasoning based on 
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established experiences. Plausible reasoning occurs when the argumentation is founded on 
mathematical properties and is meant to guide towards what probably is the truth, without 
necessarily being complete or correct. Reasoning based on established experiences (or 
superficial reasoning) concerns the transfer of properties from one familiar situation to 
another situation that has at least superficial resemblance to the familiar situation. I propose 
to use this framework for this study. 

Methods 
Six participants responded to recruitment emails to participate in the study. Participants 

were enrolled in one of two sections of a four-week, developmental Intermediate Algebra 
course at a diverse, four-year, large, public university located on the West Coast. Students 
that are required to take developmental mathematics must take the course during the summer 
before their freshman year at the university. Students in the course who show clear 
understanding of the material advance forward to college level mathematics in the fall 
semester. The course is structured for technical majors (e.g., engineering, business) and 
students that advance from this course may move to pre-calculus algebra, trigonometry, 
statistics or business calculus, depending on their choice of major.  

There are multiple primary sources of data collected over a seven-month time period. 
Audio recordings of two interviews, fieldnotes from classroom observations, results from a 
diagnostic mathematics test, final exams, a survey constructed from portions of the Motivated 
Strategies for Learning Questionnaire (Pintrich, 1991), and a mathematical problem solving 
task on linear equations were collected.  Participants worked independently on a routine 
problem set with the researcher with the aim to assess their knowledge of linear equations. 
The problem solving session was video and audio recorded and then transcribed. Each 
problem solving session lasted approximately 30 minutes in total. The participants were 
asked to fill in a table of values given a specific set of information. This table includes: (1) 
graph of the line, (2) symbolic expression, (3) y-intercept, (4) x-intercept, (5) a point on the 
line, (6) a point not on the line, (7) increasing/decreasing, and (8) slope. The problem that 
Carter, one of the participants, chose to start with included the x-intercept of (0,0), a point on 
the line (1, -3) and a point not on the line (2,6). The problems are coded in two steps: first I 
identify “reasoning” situations, then each reasoning situation is coded as either plausible 
reasoning or reasoning by established experiences. This paper analyzes the first problem from 
the problem solving session of one particular student, Carter (pseudonym). I chose to focus 
on his work because out of all participants, he was the most confident student in his 
interviews and in the classroom observations, yet showed the most varied responses during 
the one-on-one interview solving the mathematical task.  

Findings 
Carter demonstrated having experience working with linear equations because he 

appeared comfortable and confident providing the missing information. There were eight 
situations that were coded as “reasoning” about what he is doing; only two of these are coded 
as plausible reasoning. The remaining six situations showcase reasoning by established 
experience.   

Plausible Reasoning 
Carter begins the problem with “So far I’m seeing these two [points] will help me find 

slope here and [be] able to put everything else.” He then recalls the slope formula to find that 
the slope of the line is “-3 over 1 or just simply, -3”.  

R: So, you used these two points [(0, 0) and (1, -3)] and not this one? [(2, 6)]?  
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Carter: Because this one’s an x-intercept and this one is a point on the line. 
This one is not a point on the line so if I were to use this one it would give me 
a different graph. It wouldn’t be a graph that… how do I say. I just really 
follow the words, that’s it. That’s not on the graph means that it’s not a 
solution to the graph [points to (2,6)]. And these two will have solutions 
[points to (0,0) and (1,-3)].  

Carter reasons, in a mathematical way, what the repercussions are of finding the slope using a 
point not on the line. While Carter does not state clearly that the “x-intercept” and the “point 
on the line” are solutions to the line, he does differentiate that the third point will not provide 
the appropriate slope to the line that was being asked for. Another example that showcases 
plausible reasoning is when Carter graphs the x-intercept as the horizontal line y = 0 and then 
realizes that the given information indicates that the x-intercept is simply a point. He realizes 
that the x-intercept should actually be the point (0,0) and not a line. In this case, he noted a 
contradiction in his reasoning and the given the information. However, when asked about the 
line he had graphed for the y-intercept, he did not use the idea that the x-intercept is a point; 
the y-intercept was a line.  

Reasoning by Established Experience 
Carter mainly reasons by alluding to information he learned previously about linear 

equations. Twice in the problem, he stated that he could answer something, but then would 
start writing something different that did not draw the conclusion he claimed to find:  

R: Ok, great. What else in that row can you fill in? 
Carter: I can definitely do the increasing or decreasing. [writes 
y− 0 = −3(x − (−3)) ] […] 
R: Ok, so when you did all of this work, what were you trying to answer out of 
all of these? [points to the top row of missing information] 
Carter: One thing…that I did definitely answer is the y-intercept.  

Carter seems to recall, in many instances, information that is somehow related to linear 
equations (e.g., increasing, decreasing), but does not seem to gauge its appropriateness for 
solving the problem. For example, to answer whether the line is increasing or decreasing, he 
decides to recall and use the point-slope formula. Ultimately, he does not provide an answer 
to his original goal and instead veers off to find the y-intercept, of which he also does not use 
the equation he just derived. Similarly, he does not realize that the equation he finds is indeed 
one of the missing values that he needs to write into the table. That is, he attempts to consider 
another, more familiar situation from his past by using the point-slope formula in an effort to 
aid himself in finding the missing information, without seeing the connections.  

Discussion 
Analysis of one problem shows that Carter’s reasoning within the mathematical task is 

heavily based upon reasoning by established experience. He uses plausible reasoning to find 
the slope of the line, but when answering other questions (e.g., finding the y-intercept) he 
brings mathematical information he recalls, but does not use it appropriately. These findings 
support the claims made by Lithner (2000) that established experience dominates most 
students’ reasoning. Lithner also argued that while plausible reasoning does occur, it is often 
local and dominated by established reasoning. Carter had moments where he showed 
plausible reasoning through the statements he made, and a few times realized a mistake. 
However, a majority of his reasoning was indeed dominated by more superficial connections.  
The following questions will be presented to the audience for discussion: 
1. What other frameworks might be helpful to analyze and connect these data? 
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2. Are there other more general conceptual frameworks that will connect this problem 
solving to other more affective features of the larger project? 
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ON THE SENSITIVITY OF PROBLEM PHRASING – EXPLORING THE 
RELIANCE OF STUDENT RESPONSES ON PARTICULAR REPRESENTATIONS 

OF INFINITE SERIES 

Danielle Champney 
California Polytechnic State University 

This study will demonstrate the ways in which students’ ideas about convergence of infinite 
series are deeply connected to the particular representation of the mathematical content, in 
ways that are often conflicting and self-contradictory. Specifically, this study explores the 
different limiting processes that students attend to when presented with five different 
phrasings of a particular mathematical task - ∑(1/2)n - and the ways in which each phrasing 
of the task brings to light different ideas that were not evident or salient in the other 
phrasings of the same task. This research suggests that when attempting to gain a more 
robust understanding of the ways that students extend the ideas of calculus – in this case, 
limit – one must take care to attend to not only students’ reasoning and explanation, but also 
the implications of the representations chosen to probe students’ conceptions, as these 
representations may mask or alter student responses.  

Keywords: Calculus, Infinite Series, Interviewing, Tasks 

Background and Framing  
Existing literature on students’ understanding of infinite series (i.e. series of numbers, 

Taylor series, power series) is extremely sparse, despite the overwhelming notion that it 
represents (1) the most important topic that students can understand from traditional second 
semester calculus, if they are preparing for a future in engineering, physics, and other related 
fields (e.g. Alcock & Simpson, 2009; Tall & Schwarzenberger 1978), and (2) the topic with 
which students have the most difficulty, when considering the entirety of the traditional 
second semester calculus syllabus (e.g. Monaghan 2001; Biza, Nardi, & Gonzalez-Martín 
2008; Champney, in preparation). Literature suggests an unbalanced treatment of the related 
material, as “sequences are played down, or even omitted, whilst Taylor series, geometric 
series, series expansions for the exponential, sine, cosine, etc are a fundamental part of sixth 
form work,” (Tall & Schwarzenberger 1978). Alcock and Simpson (2005) find that even 
when presented with a definition of convergence of an infinite series and asked to paraphrase 
it, directly following a unit of instruction on the topic, students differ in their descriptions of 
what it means for a series to converge, with a large percentage of them providing a 
mathematically incorrect description. Thus, it is not surprising that, as a field, we document a 
very wide range of ways that students think about “converge” (Monaghan 1991), in its 
broadest sense.  

One of the most common tripping points for students in their study of infinite series 
comes in making the transition from studying infinite sequences to studying infinite series of 
numbers. While series of numbers are for mathematicians a natural extension of the study of 
infinite sequences, students get tangled in the complexities of the many different limiting 
processes that they must coordinate, as they turn the notion of infinite sequences on its side in 
order to reframe and accommodate their new ideas of infinite series. Namely, they must make 
the shift from considering simple limits of sequences to redefining an infinite series as a 
sequence of partial sums, and attend to the limit of that sequence, and not the sequence of 
terms itself, if they wish to make claims of convergence. Confusion abounds as students 
struggle with reconciling the different visual representations associated with the sequence of 
terms vs. sequence of partial sums, etc… and the language of limits gets used and abused as 
students attempt to explain the meaning of convergence in this new context. Champney (in 
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preparation) explores this idea further in a large-scale study, which identifies bottlenecks and 
tripping points for students, as they begin to adapt their notions of limit in these new ways. 

In order to sort out students’ confusion, and get a more robust understanding of what 
students understand about the phenomenon of convergence of infinite series – and how this is 
and is not consistent with their more fundamental notions of limit in calculus – it is 
reasonable to turn to the limit literature and ask students to explore and explain some of the 
tried and true examples, such as “Explain why 

€ 

0.9 =1” (from Oehrtman, 2002, for example). 
However, in using this task with the intention to understand what particular aspects of 
convergence students find salient as they make connections between limits, sequences, and 
series, one may have equivalently asked “Is 

€ 

0.9 =1? Please explain.” or “To what does the 
sequence {0.9, 0.99, 0.999, 0.999, … } converge?” While mathematicians would see the 
consistency in these various phrasings of the same question, and reasonably assume that if 
students have some idea about the nature of the mathematical object 

€ 

0.9 , then they will 
answer consistently across all phrasings, prior literature and the study discussed in this paper 
indicate that this is not the case. Consider the “

€ 

0.9 ” task – Figure 1 demonstrates five 
different ways that this task has been used in the limit literature, dating back several decades, 
all for different purposes and with different results. The second column in Figure 1 displays 
analogous phrasings, using ∑(1/2)n, henceforth referred to as the “halving” task (Champney 
finds that students use the “halving” task more readily than 

€ 

0.9  when asked for accessible 
examples of infinite series). One may guess that while students may be able to reason with 
particular phrasings of either of these questions, other phrasings are presented in ways that do 
not align with students’ understanding of convergence. In the most extreme sense, these 
alternative phrasings may be presented in such a way that masks students’ true understanding 
of convergence or brings different features of the mathematics to light in such a way that they 
interpret certain phrasings of the question entirely differently than others.  

Some work has been done to explore the effects of multiply phrasing tasks such as these. 
One recent example (in a physics context), Wittmann (2012) demonstrated the differences 
that resulted in asking students the same task about several bulbs in a circiut by (1) framing 
the question as asking for both an answer and a justification of that answer vs. (2) framing the 
question by providing the answer and asking only for justification of that answer. In his 
study, Wittmann curiously found that, though many students were not able to choose and 
justify the correct answer for themselves, those same students were largely able to provide 
adequate justification for the correct answer, when it was provided.  

While it may be interesting to pose the question: to which phrasings of the “halving” or 

€ 

0.9  task do students respond correctly/consistently with a more formal understanding of the 
topic of convergence, this is not the question explored in this study. Knowing which 
phrasings are more or less likely to prompt ‘correct’ responses does not provide one with any 
information on the range of ideas that students associate with the topic, nor give guidance for 
improving student understanding. Thus, in this study, I aim to address the following research 
questions, which are more aligned with exploring students’ extensions of their limit 
understanding, and more directly impact future instruction aimed at helping students grasp 
the difficult concept of infinite series:  

- What aspects of students’ understandings of convergence (of infinite series) are 
illuminated by the different phrasings of the “halving” question, outlined in Figure 1? 

- How are these differences significant in the way we calculus educators (a) frame our 
teaching of this content, and (b) assess students’ understanding of this content?  

Data and Methods 
In 2010, semi-structured interviews designed to investigate students’ spontaneously 

generated visual representations used when explaining the topic of infinite series (of 
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numbers) to a less-knowledgeable peer were conducted with second and third semester 
calculus students, and real analysis students. It became obvious during the course of the first 
round of interviewing that most students used some version of the ∑(1/2)n example on their 
own, to explain convergence, at some point during the interview. That is, it appeared to be an 
example with which students were relatively familiar and had some level of comfort in using 
to support their explanations. Thus, during the flow of each subsequent interview, the 
questions in the right column of Figure 1 were posed, at various times, as they became 
relevant and related to students’ explanations and considerations through the course of their 
explanations. The purpose of posing these questions, as discussed above, was to explore 
which different aspects of convergence were illuminated with a consideration of each 
different phrasing of the problem.  

The study discussed here makes use of a particular 1.5-hour semi-structured interview 
with sophomore engineering major Jenna – a representative of the larger sample of students, 
all of whom were participating in the related study on visual representations for infinite 
series. At the time of the interview, Jenna had successfully completed second semester 
calculus, which included an extensive unit on infinite series (taught from Stewart), with a 
grade of “B.” Jenna was chosen as a representative case because while her responses were 
very typical among the larger sample of participants, she communicated them more clearly 
and thoughtfully than others. An in-depth, microgenetic analysis of this interaction with 
Jenna takes a very close look at the particular limiting processes and aspects of infinite series 
that were prompted by her reasoning with each phrasing of the “halving” task, and allows for 
a more fine-grained level of analysis than would be ascertained in other assessment situations 
(Calais, 2008). Such analysis with all student interviews would be impractical, so the 
discussion of Jenna is followed by some general patterns observed from the entire set of 
student interviews.  

The Case of Jenna – in brief  
While it is difficult to condense Jenna’s work with the various phrasings of the “halving” 

task to such a confined space, what follows is a short description of her responses to tasks 
2.1-2.5. Much more detail and discussion is provided in the more extended analysis. In the 
following description, of interest (as it pertains to the research questions) are the particular 
aspects of the “halving” task itself that Jenna considers when making conclusions about 
convergence. It will become apparent that in each different phrasing, Jenna shifts her 
attention to a different mathematical structure used in that particular task, which causes 
differences in the way that she views the phenomenon of convergence of this particular 
infinite series.  

During her teaching episode, Jenna spontaneously brought up examples with both 

€ 

0.9  
and ∑(1/2)n on her own, as part of her explanation of series convergence. Her use of these 
examples provided entry points for all of questions 2.1-2.5 to be posed, at various relevant 
points in her explanation. And while the representations that she used to explain and the 
conclusions that she drew about the general topic of infinite series were quite consistent, 
Jenna showed vastly different understandings when responding to the different phrasings of 
the “halving” task. 

In brief, when responding to task 2.1, Jenna was able to provide a complete response for 
why ∑(1/2)n =1. She first simply recalled the “formula” for convergent geometric series, and 
discussed how this fit the model of a geometric series whose common ratio of 1/2 indicated 
that it converged, in particular to a value of 1. When pressed by the interviewer for more 
reasoning and understanding, Jenna was able to provide both a “walking to the wall” 
metaphor (reminiscent of Zeno’s Paradox - in which she used halving distances to describe 
the terms of the series, and the distance from her to the wall of 1 yard) and a geometric 
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representation drawn on the whiteboard to further describe her reasoning (see Figure 2). By 
this work, one might claim that Jenna has some idea of what it means for an infinite series to 
converge, calling to attention her correct use of an appropriate metaphor, formula, and visual 
representation. Her examples were good, and aligned with some of the more traditional ones 
that might occur in a lecture on the material. She clearly communicated an idea of what a 
geometric series is, and was able to make conclusions based on it, beyond simply recalling 
the “formula” for convergent geometric series.  Her work on task 2.2 extended this – in 

Jenna’s words, “You can compute 

€ 

1
2

+
1
4

+
1
8

+
1
16

+
1
32

+ ... because even though it goes on 

forever … that’s just a geometric series that converges because r is less than 1.”  
In her response to task 2.2, if stopping there, one might conclude that this is further 

evidence of her understanding the topic at hand. While it is unclear if Jenna could produce a 
proof or explanation of the more general case to which she refers –  ∑a(r)n – it is clear that 
she is able to appropriately discuss the different parts of this general type of series. However, 
to this point in the interview, her attention has largely been on a term-by-term comparison, 
emphasizing the action of halving of distances or “pies” (as in Figure 2), and appears to be 
considering, almost exclusively, the individual terms, and the resulting compilation of terms, 
rather than any other limiting processes that may be appropriate in this scenario.  

Continuing to reason with task 2.2, however, Jenna goes on to say “those later terms get 
so small that they don’t matter, and after a while it doesn’t change the sum.” This is an 
inappropriate extension of limit ideas that sheds first light on some ways in which Jenna’s 
understanding of series convergence is not correct. It also marks a shift in her reasoning 
pattern, away from the individual terms and toward the sequence of terms. That is, her 
attention has shifted to instead considering the ordered list of individual terms, and not just 
the terms independently, as she decides to consider that the later terms’ magnitude is so small 
that it must not impact the overall sum. While consideration of independent, individual terms 
allowed her to justify why ∑(1/2)n =1 (task 2.1), consideration of the ordered sequence of 
terms lead her to the same conclusion, but for a different reason, in task 2.2.  

Additional contrasting evidence comes in her response to task 2.3, in which Jenna claims 
that, rather than producing a value of 1 (answer choice (b)), which would align with her 

earlier responses, the sum 

€ 

1
2

+
1
4

+
1
8

+
1
16

+
1
32

+ ... is “just less than 1, by some infinitely 

small value,” (answer choice (c)). When probed, Jenna’s unexpected answer choice was 
justified in a way that indicated a further shift in the mathematical structure to which she was 
attending. The presentation of the infinite series in task 2.3 – as an expansion with ellipses 
after five terms – caused her to conclude that this series must be “approaching, but not quite 
1,” unlike task 2.1, which was presented with sigma notation. Thus, a simple shift in the 
presentation of the infinite series in question caused Jenna, by her own explanation, to arrive 
at a different conclusion about the convergence of said series. Now, rather than attending to 
the individual terms or the sequence of ordered terms, Jenna attended to the ellipses as an 
indication of a different sort of limit process, for which she was uncomfortable concluding 
that the series converged to 1. 

Further complicating matters, Jenna viewed tasks 2.4 and 2.5 as inconsistent with the 
other questions, and was unable to leverage her understanding to talk about partial sums or 
the sequence of partial sums. Task 2.5, in particular, was meant to examine whether writing 
the values as decimals would call something different to mind than the terms expressed as 
fractions. However, Jenna (as representative of many other students) was fully able to 
connect those values to values of “partial sums” of ∑(1/2)n without a problem. Even still, 
though she had previously used the language of “converges to 1,” for tasks 2.4 and 2.5 Jenna 
said the strongest statement she could make was that it “tends to 1” or “approaches 1.” In 
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fact, when posed as a sequence of partial sums, Jenna explicitly denied that one could claim 
“convergence (to 1).” Jenna’s work with the five phrasings of the “halving” task can be 
summarized (briefly) in Figure 3. 

Thus, I claim that the differing responses that Jenna made to the different phrasings of the 
∑(1/2)n task are interesting and useful, but that only when we consider the collection of 
responses to the different phrasings do we fully understand (a) the full scope of what she 
really intends as the meaning of “converge,” (b) potential ways in which Jenna coordinates 
the different limit ideas with the different mathematical structures when considering infinite 
series, and (c) which of these understandings are dependent on task presentation vs. more 
deeply tied to her knowledge of the content. Thus, looking at her response to any one of these 
tasks can tell us about some aspect of her understanding, that understanding is only tied to the 
particular representation of ∑(1/2)n used in that task. But that is insufficient to say that she 
has a particular “model” (a la Williams, 1991), or “misconception” (a la Davis & Vinner, 
1986; Cornu, 1991; and more). Simply asking the questions differently altered Jenna’s 
responses, demonstrating that the different features of a particular task called to mind 
differences in the way that she interpreted the notion of convergence.  

As will be discussed in much greater detail in the full report, though Jenna’s responses 
were representative of the larger sample that participated in this study, there were additional 
patterns of responses that are significant. For example, there was a large overlap within 
student, consistent with Wittmann’s (2012) findings – a significant portion of students were 
both able to explain why ∑(1/2)n =1 (task 2.1) while also claiming that one cannot compute 

€ 

1
2

+
1
4

+
1
8

+
1
16

+
1
32

+ ... and get an answer (task 2.2). Potential explanatory factors for this 

discrepancy are discussed at length in the full report, but they go beyond Wittmann’s 
suggestion that knowing the answer frees the student to justify and use reasoning, rather than 
trying to first make a choice and then justify it. The factors that appear to, in part, explain the 
overlap in this data are more closely tied to the mathematical content and the ways that 
students orient to infinite series as presented in a variety of different formats – with sigma 
notation, as a sequence of terms, as a sequence of partial sums, with ellipses v. with a limit 
symbol, and more. This and other patterns are identified and discussed at more length in the 
full report.  

Contributions and Implications  
Often in the present limit literature, it is common to find “results” that attempt to 

characterize student understanding based on their response to only one framing of, for 
example, the 

€ 

0.9  task. While conclusions based on a singular phrasing of a task may be 
locally relevant to a particular researcher’s agenda at hand, the study discussed here indicates 
that using a singular representation to make some claim about students’ limit understanding is 
inadequate, as the way that the task itself is phrased has significant influence on the particular 
mathematical structures to which the students attend – thereby influencing the ways that they 
appeal to their understanding of phenomena such as convergence. From the many ways that 
the 

€ 

0.9  or “halving” questions could have been posed, and the many ways that a single 
student could (and often does) respond differently, depending on the way it was phrased, it 
seems speculative to claim that any student has a particular understanding of such a concept 
that is not tied explicitly to the way that the mathematics was represented in the task.  Thus, 
the findings here speak to and have implications for two general audiences. First, for those 
interested in how students extend their understanding of limit, it important to note how the 
subtleties in task presentation unintentionally bring to light differing limiting processes that 
have enormous impact on student interpretations of convergence. Generalizing this, broader 
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audiences can take away not only content implications, but also methodological implications 
for the specificity of claims about student understanding, as they relate to task presentation.  
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Figures 
 
(1.1) Q: Explain why 

€ 

0.9 =1 
 
(Oehrtman, 2002) 

(2.1) Q: Explain why 

€ 

1
2nn=1

∑ =1  

(1.2) Q: Can you add 0.1 + 0.01 + 0.001 + ... 
(the dots indicate continuation) and get an 
answer?  
 
(Monaghan, 2001) 

(2.2) Q: Can you compute   

€ 

1
2

+
1
4

+
1
8

+
1
16

+
1
32

+ ... 

(the dots indicate continuation) and get an 
answer? 

(1.3) Q: What is between 0.999… and 1? 
(a) Nothing because 0.999… = 1 
(b) An infinitely small distance because 
0.999… < 1 

(2.3) What is the value of  

€ 

1
2

+
1
4

+
1
8

+
1
16

+
1
32

+ ... ? 

(a) It does not have a value because it keeps 
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(c) You can’t really answer because 0.999…  
keeps going forever and never finishes. 
(d) If you agree with one of the above, 
provide your own answer. 
 
(Szydlik, 2000) 

going forever and never finishes 
(b) 1.  
(c) Just less than 1, by some infinitely small 
value 
(d) If you agree with none of the above, 
provide your own answer 

(1.4) Q: Find the limit of the sequence:  

€ 

lim
n→∞

1+
9
10

+
9
100

+ ...+ 9
10n

$ 

% 
& 

' 

( 
) 
 

 
(Tall and Vinner, 1981)  

(2.4) Q: Find the limit of the sequence:  

€ 

lim
n→∞

1
2

+
1
4

+
1
8
...+ 1

2n
$ 

% 
& 

' 

( 
)  

(1.5) Q: Consider the sequence {0.9, 0.99, 
0.999, 0.999, … }. Which of the following is 
true of this sequence?   
(a) It tends to 

€ 

0.9      (e) it tends to 1  
(b) it approaches 

€ 

0.9      (f) it approaches 1  
(c) it converges to 

€ 

0.9    (g) it converges to 1  
(d) its limit is 

€ 

0.9      (h) its limit is 1 
 
(Monaghan, 1991) 

(2.5) Q: Consider the sequence {0.5, 0.75, 
0.875, 0.9375, 0.96875, …}. Which of the 
following is true of this sequence?   
(a) It tends to 1 
(b) It approaches 1 
(c) It converges to 1 
(d) Its limit is 1 
(e) It tends to some value that is not 1 
(f) It approaches some value that is not 1 
(g) It converges to some value that is not 1 
(h) It has a limit that is not 1      

Figure 1: Comparison of tasks – existing literature and current study 

 
Figure 2: Jenna’s geometric representation of the “halving” scenario 

 

(2.1) Q: Explain why 

€ 

1
2nn=1

∑ =1  Attended to: individual terms, independently 
Explanation: included geometric image (see 
Figure 2), “walking to wall” metaphor, and 
use of geometric series “formula” 

(2.2) Q: Can you compute   

€ 

1
2

+
1
4

+
1
8

+
1
16

+
1
32

+ ... 

(the dots indicate continuation) and get an 
answer? 

Attended to: sequence of ordered terms and 
the decreasing size of “eventual” terms 
Explanation: if the terms get “small enough” 
then they become “negligible” and you can 
get an answer 

(2.3) What is the value of  

€ 

1
2

+
1
4

+
1
8

+
1
16

+
1
32

+ ... ? 

 
(a) It does not have a value because it keeps 

Attended to: the ellipses at the end of the 
series as an indication of continuation and 
uncertainty 
Explanation: The “dot dot dot” means 
“getting very close to, but not reaching” 
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going forever and never finishes 
(b) 1.  
(c) Just less than 1, by some infinitely small 
value 
(d) If you agree with none of the above, 
provide your own answer 
(2.4) Q: Find the limit of the sequence:  

€ 

lim
n→∞

1
2

+
1
4

+
1
8
...+ 1

2n
$ 

% 
& 

' 

( 
)  

Attended to: the limit symbol and the idea 
that there appears to be a “last term” in this 
version of the task 
Explanation: the limit is 1, but this version of 
the task is “not related” to ∑(1/2)n because 
this limit is not the same as the ∑ symbol 

(2.5) Q: Consider the sequence {0.5, 0.75, 
0.875, 0.9375, 0.96875, …}. Which of the 
following is true of this sequence?   
(a) It tends to 1 
(b) It approaches 1 
(c) It converges to 1 
(d) Its limit is 1 
(e) It tends to some value that is not 1 
(f) It approaches some value that is not 1 
(g) It converges to some value that is not 1 
(h) It has a limit that is not 1      

Attended to: the sequence as individual 
values that represent the various partial sums; 
(When prompted) shifted attention to the 
collection of these partial sums as an ordered 
sequence 
Explanation: the sequence “approaches 1” 
and “tends to 1” but does not converge to 1, 
because this “can never equal 1.”  

Figure 3: Jenna’s responses to the five phrasings of the “halving” task 
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VISUALIZING MATHEMATICAL CONNECTIONS IN                                           
STUDENT TEACHING EPISODES 

Danielle Champney 
California Polytechnic State University 

Keywords: Calculus, Infinite Series, Video interview data 

This poster aims to present a modified version of SPOT diagrams (Structure Perceived 
Over Time) (Yoon, 2012) – an aspect of analysis and data presentation used to present 
interactive student video data, during which perceptual shifts may occur. The larger study in 
which this tool was employed (Champney, in preparation) explored undergraduate calculus 
students’ self-generated representations (SGR) used during interviews in which they were 
asked to explain to an absent peer the events of the day(s) during which infinite series were 
introduced and discussed. While typical studies ask students to address tasks and issues 
framed by a researcher, this study instead asked students to explain the content, thereby 
providing a broader window into “what counts” from the student perspective.  

The main analysis indicated that, while they used the same general image types, the 
connections drawn between nine identified limiting processes (e.g. sequence of terms, generic 
compilation, sequence of partial sums) was among the most significant factors separating 
experts’ and students’ arguments about convergence of infinite series. While it is important to 
understand which limiting processes (see also Tall, 1980) students find important when 
reasoning about infinite series, simply knowing which ones students draw on most frequently 
is insufficient to understand what sense students make of this topic. It is further necessary to 
uncover the ways that students coordinate and connect these limiting processes, while 
explaining. Studying the connections that students make allows insight into which limiting 
processes are prioritized and why, in a student’s attempt to produce a coherent, mathematical 
story that accounts for infinite series convergence. This is difficult, however, because of the 
interactive nature of the students’ teaching episodes.  

The modified SPOT diagrams show how students connect ideas about infinite series 
similarly and differently, and help to organize and elucidate which mathematical structures 
students have constructed, prioritized, and found relevant to the context. The use of such 
diagrams is instrumental in the study at hand because they help to demonstrate how students 
connect the limiting processes that they find important in supporting their arguments about 
infinite series convergence, and help to identify whether some learning or perceptual shifts 
may have actually occurred during the teaching episode itself, amid the student’s explanation.  

SPOT diagrams have been shown to be particularly useful at identifying factors that 
contribute to “aha! moments” during exchanges in which students’ initial ideas represent the 
potential for ‘genuine conceptual development’ (Yoon, 2012). Several such teaching episodes 
were identified, and a modified form of a SPOT diagram is being explored with one student, 
Molly, who had a literal “aha!” moment during her explanation. Molly’s teaching episode is 
unique because, though she started with an admittedly weak understanding of infinite series 
(“partial sums is a word they use,” “I think a graph might be involved,” “I think I understand 
sequences better than series”), she proceeded to spend the following 24 minutes constructing 
an internally consistent account for the meaning of series convergence. While not always 
mathematically sound, the connections drawn among limiting processes in her account are 
both consistent and built around eight SGR that she spontaneously produced. Thus, a 
modified SPOT diagram provides an empirical lens into shifts and connections in Molly’s 
understanding, which allows for the examination of the events of her teaching episode from 
multiple perspectives on learning. Using Molly as a single case, the aim of this poster will be 
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to share the affordances of these modified SPOT diagrams as tools for organizing and 
presenting complicated video data, during which perceptual shifts may have occurred in 
students’ understanding.  

 
References 

Tall, D. (1980). Mathematical intuition, with special reference to limiting processes. 
Proceedings from the Fourth International Conference for the Psychology of 
Mathematics Education, 170-176. 

Yoon, C. (2012). Mapping mathematical leaps of insight. Proceedings from the 12th Annual 
International Congress on Mathematical Education.  

 

17th Annual Conference on Research in Undergraduate Mathematics Education 461



41

462 17th Annual Conference on Research in Undergraduate Mathematics Education



 

What are we sure about? What do they tell about our probabilistic thinking? 

  

In this study the prospective teachers’ understanding of extreme probabilities is studied via their 

examples. Watson and Mason’s Learner Generated Examples (LGE) theory is employed to 

justify the type of data used in this study and to emphasize the importance of examples in 

learning about different levels of the learners’ probabilistic thinking. 

Keywords: Probability, Learner Generated Examples, Teacher Knowledge  

About the LGE framework: 

Watson & Mason (2005) considered Learner generated Examples (LGEs) -an approach in 

which learners are asked to provide examples of mathematical objects under given constrains – 

as a powerful pedagogical tool, through which learners enhance their understanding of the 

concepts involved. Watson and Mason also introduced the construct of example space as 

collections of examples that fulfill a specific function, and distinguished among several kinds of 

example spaces. When invited to construct their own examples, learners both extend and enrich 

their personal example spaces, but also reveal something of the sophistication of their awareness 

of the concept or technique (Bills, Dreyfus, Mason, Tsamir, Watson, & Zaslavsky, 2006). In 

accord with this observation, Zazkis and Leikin (2008) suggested that LGEs provide a valuable 

research tool as they expose learner’s ideas related to the objects under construction and 

examples generated by students mirror their understanding of particular mathematical concepts. 

Of my interest in this study are personal example spaces, triggered by a task as well as by recent 

or past experience, and collective example spaces, local to a classroom or other group at a 

particular time. 

Mason in an analysis of the phenomenology of example construction (Mason, 2011) 

describes what takes place through the process of mathematical example construction as: A 

strong tendency to combine the simplest possible with maximum generality, constructing lots of 

examples and tinkering with examples to modify them so that they meet some particular 

constraint, experiencing dimension of possible variation and range of permissible change 

associated with the examples constructed and explore deeper aspects of the notion, and drawing 

attention to the playful aspects of example construction and the ways of tinkering with a basic 

construction that might be of benefit the future use. Vinner (2011) finds the role of examples in 

everyday and mathematical thinking to be very crucial. Unlike in mathematics in which the 

concept formation is aided by definitions, examples and proofs, in everyday thinking, examples 

are the only tool by which we can form and verify concepts and conjectures. Even in 

mathematics there are important notions such as “proof” that have no (undergraduate level) 

definitions and the students are supposed to acquire the concept of proof by the many examples 

they are exposed to. 

 Zazkis & Leikin (2008) suggest that The task of constructing examples of mathematical 

concepts can be quite a complex task for students and teachers, but several researchers find it a 

well worth effort since the example generating task provides rich educational potentialities: 

providing a window into learner’s mind through which significant aspects of conceptualization 

could be observed, raising the students’ awareness of features of examples that can change and 

of the range where they can vary (Mason, 2011), and the richness and complexity of processes 

involved in constructing examples (Antonini, 2011). 
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Examples also may be used to identify, mirror, and confront learners’ incorrect mathematical 

inferences. Building on ideas of cognitive conflict and conceptual change, Zazkis and Chernoff 

(2008) extend the considerations of dimension of possible variation and range of permissible 

change to counterexamples and discuss the role of counterexamples with respect to those 

theoretical constructs while helping students face their misconceptions. 

Many different ways to look at the examples are introduced into the research. From the 

generating point of view, there are two types of examples: those generated by learners upon 

invitation (learner generated examples) and the examples used by teachers in a classroom setting 

(instructional examples). With regard to the availability of examples to the generator one can 

distinguish between situated, personal, personal potential, accessible, and conventional example 

spaces; discussed in Watson and Mason 2005. With regard to the specific functioning of 

examples one can put them into examples-of, examples-for (Michener, cited in Watson 2011), 

pivotal examples, bridging examples (Zazkis & Chernoff 2008), non-examples, 

counterexamples, ... 

This study: 

In this study I consider student generated examples of an event with 100% probability and 

address the following question: 

To what extent do examples generated by participants reveal their understanding of the 

mathematical concept of probability and more specifically of the certain events? 

About 100% probable events: 

Extreme probabilities have mathematical significance. Also known as tail probabilities, the 

extreme probabilities create additional complexity to the probability estimation methods and 

techniques. Every computer simulation method has limitations and problems when the 

probability sought after is around the extremes. For example the central limit theorem allows for 

a binomial distribution to enjoy the normal approximation when np and n(1-p) are both greater 

than 5, even if the sample size is small. For very extreme probabilities, though, a sample size of 

30 or more may still be inadequate and the approximation works at its worst when the sample 

proportion is exactly zero or exactly one.   

From an educational perspective distinguishing between the binary opposites of certain-

uncertain and possible-impossible is often located at the very introductory phases of a typical 

probability education. For example Van de Walle (2011), suggests that young children come to 

class with all sorts of bewildering ideas of probability, “to change these early misconceptions, a 

good place to begin is with a focus on possible and not possible and later impossible, possible, 

certain” (p. 474). Thus extreme probabilities are the type of events that the learners are familiar 

with since the very early grades.  

Participants of the study: 

The participants of the study are 29 undergraduate students taking a mathematics education 

course in Simon Fraser University, Vancouver, with a diverse mathematical background 

including arts, social studies, biology, and computer science. However, all of them have taken an 

equivalent of an introductory probability and statistics course at some point before. They are 

asked to give examples (in writing) of events with 100% probability of happening. They produce 

45 examples in total. The task is presented to them in written form and the time for answering 

has been unlimited.  

Method of data analysis:  
The Framework used to analyze the data is a tool for analyzing personal or collective 

example spaces based on (a) correctness, (b) richness, and (c) objective-subjective duality.  The 
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first two elements of this framework are adopted form Zazkis & Leikin (2008) the last part is 

borrowed form Gillies (2000) and Chernoff (2008). 

Correctness: In the correctness category I consider whether the examples satisfy the condition 

of the task, which is fulfilling a 100% probability of happening from a reasonably acceptable 

mathematical point of view. There is an important decision to be made before we go through a 

discussion of correctness of data. If a student expresses a belief that there is a 100% chance that 

the next roll of a die will be six and to prove himself correct he rolls a die and a “six” shows up, 

is his assessment of the probability correct or not? It is while we do not have any knowledge of 

the die, it could be a fair die or it could be loaded to show six all the time. The same issue comes 

up in several examples from the participants: “there is a 100% chance that I will take the bus 

back home today” is this a correct example of a certain event or not? The student that has 

presented this example possesses certain knowledge of her transportation options and habits and 

perhaps she sees this as the only event in the sample space and perhaps she is right to assign a 

100% probability to it. 

The criteria for assessing the validity of the probabilities assigned to events is whether 

common sense (to be more specific: accounting for all of the possible scenarios/outcomes) and 

knowledge that is reasonably accessible to everyone is used and wherever applicable the 

background information necessary to make the judgment appeal to other people is presented or 

not. For instance in the bus example it is reasonable to take into account that a bus is a vehicle 

prone to accidents or general failure and it simply might break, so there is a chance however 

small that she might have to call a friend to give her a ride back home today. That marks this 

particular example incorrect and I have coded them as lacking key information or common sense 

(Lack). 

Another group of examples that have been identified as incorrect are what I call examples of 

“non-random events”. In this group of examples the participant holds a vision of 100% 

probability as a fact that no one can challenge or refute, and finds such facts from situations 

which are not subject to randomness at all simply because they either refer to events in the past 

or they deal with definitions. Among such examples are: “There is a 100% probability of me 

having the same color eyes as someone in this class because I see some people with the same eye 

color”, “There is a 100% chance that tomorrow is Tuesday given that today is Monday”, and 

“There is a 100% chance that I went to bed before 10 last night, because I did so”. This group of 

examples is coded as “Non-random situations” (NR) 

Table 1: correctness of the participants’ examples (n=45) for events with 100% probability 

Example of a certain event Condition 

Correct (n=21) N/A 

Incorrect (n=24) Lack of key information or common sense (n=19)
 

Non-random situation (n=5) 

 

 

Richness: In richness category I consider the context from which the example is generated. 

Everyday experience and mathematical experience are the two main contexts that have been 

looked for. However it is not an exhaustive partitioning of the possible contexts for the examples 
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and also the two are not mutually exclusive since mathematics both comes from (not all of it 

though) and is applied to the real life. In order to decide on whether the context of an example is 

mathematical or not, I have looked for evidence of combinatorial reasoning, meaningful use of 

numbers or standard randomizers such as coin, dice, spinners, urn of balls, etc. 16 examples are 

marked as including mathematical context and the other 29 examples are describing less 

mathematical, and more real life situations.  

 Table 2: richness and objective-subjective duality analysis of the examples (n=45) 

Mathematical 

(n=16) 

12 correct 

4 incorrect 

14 Artefactual Objective  

2 Formal Objective 

0 Inter-Subjective 

0 Intra-subjective 

Everyday life 

(n=29) 

10 correct 

19 incorrect 

3 Artefactual Objective 

0 Formal Objective 

16 Inter-Subjective 

10 Intra-subjective 

 

Subjective-Objective: In the next step, the examples are put into two main categories of 

objective and subjective inside which four refined categories of “formal objective”, “artefactual”, 

“inter-subjective”, and “intra-subjective” are recognized. 

 

These expressions are adopted from Gillies (2000) and used as informative and distinctive 

probability terminologies by Chernoff (2008); here is a very brief description of each: 

Artefactuale: “probabilities can be considered as existing in the material world and so as 

being objective, but they are the result of interaction between humans and nature. Probabilities in 

coin tossing and other games of chance, as well as the probabilities associated with repeatable 

experiments in science, are artefactual”, Gillies (p.171). 

From the 45 examples provided by the participants, 17 examples were identified as referring to 

artefactual type of probability. Evidence of combinatorial reasoning (e.g. “10 red apples and 1 

green apple in a basket, you are guaranteed with picking 1 red apples with 2 chances without 

replacement”), references to the games of chance (e.g. “Probability of getting heads or tails when 

tossing a coin is 100%”), and addressing statistical or scientific findings (e.g. “An earthquake 

here in BC in the next hundred years occurs with 100% chance. The experts have been predicting 

it for decades but no one knows when it will happen”) are used as the main criteria for this group 
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of examples. 

Formal objective: Those events that are independent of humans—to the greatest extent that 

they can be, for example events related to the hypothetical problem of dropping a needle on 

number line and finding the probability of certain set of numbers being hit (rational numbers for 

instance) is divorced enough from the human context to be categorized with “formal objective”. 

Within the collected data there were only two incidents of formal objective type of probability: 

1) “There is a 100% chance that in flip of a coin it is 50% probability that it flip heads”. 

2) “The probability of rolling a 1 on a 6-sided die being 1/6”. 

It could be argued that these examples are more of an artefactual type since they refer to the 

well-known facts. It is apt to distinguish between the mathematical facts and statistical facts and 

the mode of inquiry of those. I contend that if the participants consider “Probability of heads or 

tails are each 50%” as a result of experiment or as what statistics suggests, then these examples 

are merely artifacts and hence pertain to artefactual probability. But if we look at these facts as 

results of mathematical theorems (e.g. (

    



n
lim (p(

x

n

1

2
)) 1for the coin tossing experiment), 

then the two examples above are assigning an objective probability to an event which is far away 

enough from the human context to sit with Formal objective probability. This itself is a 

fascinating example of how the perspective of the person who is examining these examples (that 

would be me in this case) can affect on the probability stance of a single probability assessment. 

Inter-subjective: probabilities that represent the degree of belief of a social group that has 

reached a consensus. In other words it includes probabilities that are assigned on a subjective 

basis but in the light of some evidence that are clear to a group of people. For example the 

probability of Sara taking an umbrella on a cloudy November day of Vancouver could very well 

be assigned on an inter-subjective way. The followings are two examples from the 16 examples 

identified as bearing indications of Inter-subjective probability. In these examples the probability 

proposed is perceived (by me) as containing no formal calculation, but close to what might be 

akin to the belief and knowledge of a group of people. 

“There is a 100% chance of having three girls in a lecture room that contains 100 students”. This 

example is marked as incorrect because of the lack of accounting for a possible scenario, which 

is “an all boy class”, but nevertheless it tacitly referrers to the experience of students from their 

large classes in a typical university/college. 

“I am 100% sure that most of the class is right-handed.” Once again this example is not referring 

to any statistical finding or a ratio of right-handed to the total, but reasonably it is believed that 

most of people are right handed and a class is an appropriate representative of the whole 

population with regard to this feature. 

Intra-subjective: it is more of a personal belief-type of probability. The probability that I’ll 

take the bus tomorrow (and no further evidences or information provided) is put into this 

category. 

Examples include: “There is a 100% probability that I will take the bus home”, “Going to bed 

tonight”, and “It is 100% probable that at least 2 people in this class will be born in the same 

birth month”. 

It is necessary to note that the four above-mentioned types of probabilities (formal objective, 

artefactual, inter-subjective, and intra-subjective) mostly describe the extremes and indicate the 

upper and lower bounds of the probability continuum. In total, 10 examples fit this category all 

of which are marked as “incorrect” in the first run of examining the examples. This brings us 

back to the issue of introducing subjective probabilities into the k-12 mathematics curriculum. 
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When it comes to marking tests or using other forms of evaluation, we need to decide whether it 

is possible to develop a consistent criteria to mark the students’ intra-subjective arguments or 

not.  Or it could be the case that any intra-subjective probability assignment by definition carries 

a connotation of “wrong or insufficient explanation.  

Concluding remarks: 

The absence of ‘expert’ example space (as described in Zazkis & Leikin, 2008) that displays 

rich variety of expert knowledge is apparent. All of the mathematical examples obtained from 

the participants are textbook examples of sure events typically used by the teachers at the very 

first phases of the introduction of the notion. Examples related to basic coin tossing or die rolling 

events as well as statements such as “the sun will rise tomorrow” (which is yet another textbook 

example of certain events, p.474 Van de Walle). The later performance of the participants of this 

study on the probability test (not reflected in this paper) shows that they have a reasonably good 

grasp of laws of probability and that they have an above average performance with the 

probability related tasks and problems. Yet their examples of certain events don’t reflect the 

same level of development and expertise. An overwhelming 26 out of 45 example referred to in 

this study proved to be subjective probability statements, pointing out the fact that the frequency 

and classical (objective) approaches to probability are less widely applicable than the belief 

interpretation.  A person can hold beliefs about any event, but the frequency interpretation 

applies only when a well-defined experiment can be repeated and the ratio always converges to 

the same number. Many events for which we would like to have probabilities clearly do not have 

probabilities in the frequency and classic sense. For example consider the most frequently 

mentioned sure event: several participants presented the “I will die” example as an event with 

100% probability of happening. Let’s try to assign a classical probability to this event: we first 

need to define a sample space consisting of equiprobable events, count the number of events in 

which “I will die” and divide it by the total number of the events in the sample space. The 

inherent difficulty in doing so may lie in the idea that the sample space is either S={I will die, I 

will not die} or S={I will die}. The former is suffering from the absence of equiprobability and 

the latter is acceptable only if we have made up our mind (in an a-priori fashion) that nothing 

else is possible and thus the “I will die” event is the 100% sure event. This conceptual difficulty 

is not specific to the extreme probabilities, subjective aspects of making decisions about 

assigning or calculating mathematical probability remains the same all over the probability 

continuum, but they are more noticeable in the case of impossible and certain events. 

I propose that students of probability at all levels need to experiment with probability tasks in 

which they are not only asked to calculate/assign the probability of an event but also they are 

encouraged to uncover and discuss the underlying assumptions that are made about the event in 

question and the knowledge of different individuals about the event. The dynamic process of 

taking in new information and adjusting the previously formed beliefs and judgments creates not 

only a bridge between frequency based and subjective probability measurements but also creates 

valuable opportunity for students to develop a new perspective on uncertainty. 
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MODEL-OF TO MODEL-FOR IN THE CONTEXT OF RIEMANN SUM 
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This research focuses on the cognitive challenges that students face and how they resolve 
these challenges while transitioning from intuitive reasoning to constructing a more 
formal mathematical structure of Riemann sum while modeling “real life” contexts. A 
pair of Calculus I students who had just received instruction on definite integral defined 
using Riemann sums and illustrated as area participated in ten interviews. They were 
given three contextual problems related to Riemann sums but were not informed of this 
relationship. The intent was to observe students’ transitioning from “model-of” to 
“model-for” reasoning based on Gravemeijer and Stephan (2010). Findings indicate that 
it was not the end results but records of their ways of acting and reasoning about their 
contextual problem through multiple representations along with real life intervention that 
served as tools for supporting their transition from “model-of” informal activities to 
“model-for” more formal mathematical reasoning. 

 
Keywords: Emergent modeling, Riemann sum, Realistic Mathematics Education, Design 
experiment, Model-of/Model-for 
 

Introduction and Research Questions 
 Orton (1983) observed that many students who could fluently compute the definite integral 

could not explain why they needed the definite integral. Sealey (2008) highlighted that an 
understanding of the structure of the Riemann sum provides a foundation upon which students 
can understand why definite integrals model various situations found within physics and 
engineering. Von Korff and Rebello (2012) emphasized that in addition to knowing the 
appropriate structural elements of the Riemann sum, students also need to have a good 
understanding of the physical context of their problem situation. For that reason they stressed 
encouraging students to manifest the structural elements of Riemann sum into multiple 
representations. Sealey and Oehrtman (2007) also detailed the importance of conceiving of 
appropriate structural elements of the Riemann sum within contexts in order to complete 
approximation tasks. Research detailing how students might shift from informal activities to a 
more formal understanding of the definite integral has leveraged quantitative reasoning and how 
that reasoning can support a more conceptually accessible formation of the Fundamental 
Theorem of Calculus (Thompson & Silverman, 2008). But when students come to understand 
Riemann sums as a model of a particular situation, how does their reasoning about that model 
influence their reasoning in constructing Riemann sum models of subsequent situations? This 
study attempts to address how students shift from informal to more formal mathematical 
reasoning about Riemann sums and definite integrals using an emergent modeling approach. 
Studies that have detailed the cognitive challenges that students face in modeling contextual 
problems using Riemann sums (Sealey, 2008) have not explicitly incorporated an emergent 
modeling approach. This research attempts to answer the following questions. (1) What role do 
representations play in identifying and resolving challenges as students construct a Riemann sum 
as a “model of” a contextual approximation problem? (2) How do “records of” and “tools for” 
aid students while transitioning from “model of” to “model for” reasoning about structural 
elements of the Riemann sum? 
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Theoretical Perspective 
Emergent modeling is a Realistic Mathematics Education’s (Freudenthal, 1973) instructional 

design heuristic where modeling is viewed as an active organizing process in which models co-
evolve as students reorganize intuitive reasoning and construct more formal mathematical 
reasoning (Gravemeijer, 2002). In emergent modeling, models are more than representations; 
they are holistic organizing activities including a solution strategy. Sub-models evolve along 
students’ ways of acting and reasoning about their problem situation, and build one after another 
through an iterative process. Gravemeijer & Stephan (2010) classify the initial informal context-
specific reasoning as “model-of”, and the more generalized reasoning as “model-for”. As 
students employ their “model-of” reasoning and begin to identify commonalities amongst 
different situations, their model starts to change character, and slowly takes on a life of its own, 
with its own identity, and emerges as a new mathematical reality (Gravemeijer & Stephan, 
2010). “Real life” refers to situations that are experientially real to students, and mathematical 
reality implies mathematical reasoning that students access intuitively and experience as their 
reality (Gravemeijer, 2007; Johnson, 2013). While transitioning from a model-of a context-
specific reasoning to a model-for general reasoning, students actively engage in symbolizing 
their emerging reasoning (Gravemeijer & Stephan, 2010). As students symbolize and revise their 
reasoning in an iterative process, various signs emerge which take on different roles that can be 
referred as “record-of”, and “tool-for” (Zandieh & Rasmussen, 2010). “Record-of” and “tool-
for” are ways of analyzing day-to-day level teaching experiments to emphasize important 
transitions without the need to associate those transitions to new mathematical realities 
(Rasmussen & Marrongelle, 2006). While model-of/model-for captures the big picture of how 
students create a new mathematical reality, record-of and tool-for focuses the symbolizing that 
students engage in while creating their new mathematical reality. Records-of can emerge as 
representations (including pictures of situations, symbols, tables of values, graphs, etc.) that 
embody students’ reasoning about a problem situation (Zandieh & Rasmussen, 2010). A tool is 
something that the student “explicitly recognizes as useful for achieving specific goals” 
(Rasmussen & Marrongelle, 2006, p. 2). Various records-of and tools-for emerge while 
transitioning from a model-of/model-for reasoning. In the context of Riemann sums, a record-of 
students’ picture of a dam may later serve as a tool-for subsequent mathematical reasoning about 
force. Quantitative reasoning (Larson, 2010; Thompson, 2011) serves to support the transition 
from ‘record of’ to ‘tool for’ through initially conceiving of, representing, operating on, 
coordinating, and identifying new context-specific quantities and later identifying commonalities 
between quantities in different newfound contexts. When a conceived quantity is specifically 
attached to an attribute of a problem situation, any representing of this quantity would indicate 
model-of reasoning, but as one reasons about this quantity within a quantitative structure without 
referring to a problem situation, that reasoning emerges as a model-for their reasoning about the 
mathematics. 

 
Methods 

Ten interview sessions (50-148 minutes) were conducted with two volunteer first-semester 
calculus students, Sam and Chris (pseudonyms) after they had been introduced to the definite 
integral through Riemann sums illustrated as area (Stewart, 2008). Students were given three 
approximation tasks related to Riemann sums and adapted from Oehrtman’s (2008) 
approximation framework. Of the three tasks, two emphasized finding under and overestimates 
to total distance traveled based on a table of velocities and a velocity function, respectively 
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(Figure 1). Tasks 1 and 2 were scaffolded with nine subtasks that included drawing pictures of 
the actual situation, finding and illustrating error bounds, and graphing. Task 3 entailed 
approximating total force exerted on a dam with scaffolding mostly removed. After completing 
all tasks, students were asked to compare and contrast their solution methods in a generalizing 
activity. Sessions were videotaped to analyze how students modeled their problem situations.  

Models were identified based on students’ reasoning as exemplified by their representations 
and verbal utterances. When students directly related their reasoning to a problem situation, this 
was viewed as model-of reasoning. When students did not tie their reasoning to a particular task, 
but rather generalized it and then extended it to other situations, this was considered as indicators 
for “model-for” reasoning. As students transitioned from model-of to model-for, initial 
representations and corresponding descriptions were identified as records-of their reasoning. 
Prior records-of reasoning and symbolizing when applied were viewed as indicators of tools-for 
reasoning. Students’ conceptions related to distance/rate/time relationship (DRT) and 
force/pressure/area relationship (FPA) will be referred to as micro-level models. Conceptions of 
DRT and FPA, which approximate total distance traveled or total amount of force will be 
referred to as macro-level models. The micro-level sub-models relate to conceiving of quantities 
and constructing a multiplicative relationship between those quantities. Macro-level models 
relate to the idea of adding individual products that have been constructed at the micro-level to 
approximate a total, total distance traveled or total force exerted on a dam. 

 
Task 1: The table drawn below shows the velocity of a car travelling from Conway to Little Rock. In this activity 
you will approximate the distance travelled by the car during the first 10 seconds of the car entering the 
southbound I-40 ramp. 

T(s) 0 2 4 6 8 10 
V(ft/s) 0 21 34 44 51 56 

 

Task 2: NASA’s Q36 Robotic Lunar Rover can travel up to 3 hours on a single charge and has a range of 1.6 
miles. After t hours of traveling, its speed is miles per hour given by the function 𝑣 𝑡 = 𝑠𝑖𝑛 9 − 𝑡!. In this 
activity you will approximate the distance travelled by the Lunar Rover in the first two hours. 
Task 3: A uniform pressure P applied across a surface area A creates a total force of F=PA.  The density of water 
is 1000 kg per cubic meter, so that under water the pressure varies according to depth, d, as P=1000dg. In this 
activity you will approximate the total force of the water exerted on a dam 62 meters wide and extending 25 
meters under water. 

Figure 1. The three approximation tasks without scaffolding 
 

Results 
The results reported here will focus on how students’ records-of reasoning about DRT 

relationships and approximations to total distance in Tasks 1 and 2 emerged as model-for 
reasoning. Descriptions for distinct DRT and FPA conceptions, together with descriptions of 
their emerging conceptions for finding approximations to total distance traveled and total force 
can be found in Tables 1-3. Initially, at the micro-level, Sam and Chris quickly identified varying 
velocities and the finite amount of data as causing problems with completing Task 1. They said, 
“Distance changes as time changes” (DRT 1) and a record-of this reasoning is found in Figure 2. 
After the facilitator prompted them to be “picky” about their picture, they noted amounts of 
change in distance should vary but they did not attend to the detail of how amounts of change in 
distance would vary. They represented this conception pictorially with increasing changes in 
distance between every two-second snapshot (Figure 3) and formulaically as “d = ∆V·∆t” (DRT 

17th Annual Conference on Research in Undergraduate Mathematics Education 473



 

 

 

2). After prompted to think about a “real life” situation of a car merging onto an interstate, Sam 
drew a picture of a moving car (Figure 4) indicating increasing distances between snapshots and 
said, “It’s [car] where it starts, would be the next place and the next place will be little bit further 
and further and further.” Then they revised their formula to 𝑑 = 𝑉!∆𝑡  to indicate increasing 
distances between snapshots (DRT 3).  

 
Table 1. 
Distinct conceptions during Task 1. 

Conception Description of reasoning 

DRT 1: Distance changes as 
time changes 

Omitted explicit detail to amounts of change in velocity. Pictorially 
represented as a vehicle with constant amounts of changes in distance per two-
second intervals. 

DRT 2: Distance is change 
in velocity × change in time 

Initially supported by their reasoning that amounts of change in distance vary 
because of changing velocities. Pictorially represented as a vehicle with 
decreasing amounts of changes in distance per two second intervals which 
became a model for distance as d = ∆V·∆t. 

DRT 3: Distance is constant 
velocity × change in time 

Initially only conceived for a vehicle traveling at constant velocities. Only after 
adjusting their picture to model a vehicle with increasing amounts of changes 
in distance and after “supposing” their vehicle as traveling at constant 
velocities was this conception applied to their context. Formulaically 
represented as 𝑑 = 𝑉!∆𝑡. 

Total 1: Total distance 
approximated by adding 
distances can be 
underestimates or 
inconclusive. 

Adding up amounts of change in distances approximates total distance. 
Coordinated with DRT 2 and then DRT 3. With DRT 3 it was initially 
represented as 𝑉!∆𝑡!

!!! . For Sam, this sum was an underestimate because the 
sum would increase towards the exact total distance traveled as more data 
points were added. For Chris, this sum was inconclusive because the data table 
did not reveal what happened between data points.  

Total 2: Total distance 
approximated by adding 
using max. and min. 
velocities. 

Coordinated with DRT 3. They conceived of maximum and minimum 
velocities over a time-interval as approximations to varying velocity over that 
interval. Underestimates and overestimates were represented by 𝑉!∆𝑡!

!!!  and 
𝑉!∆𝑡!

!!! , respectively. 
 
After establishing DRT 3, at the macro-level, they totaled individual distances to 412 ft, but 

struggled to identify it as an overestimate to total distance traveled by the car during the first ten 
seconds. They did not attend to a notion of max. and min. velocity over an interval, which 
hindered them from reasoning about their approximation as an overestimate. Then the facilitator 
engaged them in reasoning about 21 ft/s as a max. and a min. velocity over the 0-2 and 2-4 
second intervals. However, record of their reasoning about 21 ft/s as a max. or min. velocity over 
the 0-2 or 2-4 second intervals, respectively, did not immediately support them in justifying why 
412 ft was an overestimate to total distance traveled over the 10-second interval. It was only after 
they had to find the error bound that they exploited their reasoning about 21 ft/s as both a min. 
and max. velocity over 2-4 and 0-2 second intervals to justify 412 ft and 300 ft as an over and 
underestimate, respectively. As they proceeded to illustrate distance on a graph of velocity as a 
function of time, students’ records-of their picture (Figure 4) served as tools for attributing 
distance between two points as straight-line distances on secant lines to the curve instead of area 
under the curve. Even though Sam acknowledged that these distances, symbolized as 
Δ𝑡! + Δ𝑉! on their graph, did not yield correct units, he still grappled to illustrate distance. 

Even their prior experiences with illustrating Riemann sums from their calculus class did not 
serve as tools to attend to rectangles of the curve. Only after the facilitator intervened and drew a 
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rectangle over the first interval did Sam attend to distance as area of rectangles and employ his 
prior reasoning about max. and min. velocity over an interval to categorize rectangles below and 
above the curve as under and overestimates to distance traveled.  

 

 
Figure 2. DRT 1  

Figure 3. DRT 2 
 

Figure 4. DRT 3 

Their ways of reasoning about DRT and Total concepts in Task 1 supported them to engage 
in similar types of reasoning in Task 2. While they completed Task 1 in about six hours, they 
completed Task 2 in about three hours (including a new subtask in Task 2 of finding an 
approximation to a predetermined error bound). Immediately after starting Task 2, Sam asked 
Chris, “Well, you think the picture looks the same as last time?” and Chris responded, “Yeah. 
We need to know if the velocity is increasing or decreasing.” Sam drew a picture with snapshots 
of the rover at every half-hour interval (Figure 5), and Chris constructed a table similar to Task 1 
using the rover’s velocity function. Records of reasoning about picture from Task 1 became tools 
for Sam, while records of reasoning about a table from Task 1 became tools for Chris.  

 

 
Figure 5. Sam’s first picture of a Lunar 
Rover traveling for two hours. 

 
Figure 6. Chris constructing more snapshots of 
Rover. 

After being asked, “Where is distance?” they noted distances between snapshots on their 
picture and proclaimed that finding total distance was, “the same as what we did last time” and 
wrote total distance as 𝑉(!)∆𝑡.  While computing approximations, they readily attended to 
notions of max. and min. velocities to support their reasoning for confirming their 
approximations as under and overestimates to total distance traveled by the rover in two hours. 
They graphed distance as areas of rectangles above and below the curve. They demonstrated the 
number of snapshots as going to infinity by drawing more snapshots (Figure 6), and 
formulaically as “𝐷 = lim!→! 𝑉!(

!!!!!
!
).” Task 2 had a new subtask where they had to find an 

error bound to within one foot. Although they reasoned that more snapshots would yield a 
smaller error bound, they struggled to find an n that would give the desired accuracy. Later Chris 
wrote “𝑉!(

!!!!!
!
) - 𝑉!(

!!!!!
!
) = 0.00189 miles” and reasoned that they could solve for n by 

subtracting, “The last value here [pointing to total overestimate] minus the first value here 
[pointing to total underestimate] actually because others [values] are going to cancel.” Sam 
agreed with Chris and found n to be 6832 (later rounded to 6833) snapshots. They wrote, “As our 
error bound decreases we approximate closer to the actual distance. In this case, we started with 
five snapshots, and we had an error bound of 0.323 miles. When we increased the number of 
snapshots to 6832, we had an error bound of 0.000189 miles.” 

Both students referred to their prior reasoning about DRT and Total conceptions to reason 
about pressure and total force in Task 3 but each had their own sets of challenges and 
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resolutions. Therefore, Chris and Sam’s FPA and Total conceptions have been classified into 
Tables 2 and 3, respectively. Although Chris readily attended to changing pressure based on the 
provided formula, he struggled to understand the relationship between force, pressure and depth, 
which hindered him in moving ahead. After Sam explained to him about his experience with 
swimming, Chris was able to make connection between pressure and depth. Then records of his 
reasoning about max. and min. velocity served as tools to construct and reason about total under 
and overestimate force exerted on the dam. For example, he said the following: 

We calculate the force […] different forces and […] summation of those the max. forces 
and the min. forces, the difference between the max. forces and the min. forces [...] actual 
force will be in between them. And we can make it the exact force if we apply the limits.  
Unlike Chris, Sam readily attributed the relationship between pressure and depth to 

reason why total force was not just the product of force and area. He employed his real life 
swimming experience to reason that pressure would increase with depth, and said, “Pressure 
here cannot be multiplied by only an area because depth must be taken into consideration.” 
Although he intuited that different depths would result different pressures, he struggled to 
formulate his reasoning about total force. Then Chris helped him in symbolizing total under 
and overestimates to force and also in solving for an n to within 5000 N error bound. 

 
Table 2. 
Chris' FPA and Total Force Conceptions. 

Chris’ FPA Conception Description of reasoning 
FPA 1: Pressure is changing Formula served as tools for interpreting pressure to be changing. 
FPA 2: Pressure depends on 
depth 

Initially modeled by the provided formula and then reinforced by Sam’s 
reasoning about his “real life” swimming experience. Pictorially represented by 
increasing pressure along the depth of a dam.  

FPA 3: Pressure at a depth Reasoning about pressure from his table supplemented with Sam’s over and 
underestimate expression, Chris conceived of pressure at a point and verbalized 
his notion of minimum and maximum pressure at a point [depth].  

FPA 4: Force= Pressure at a 
point [depth] * Area 

Reasoning about min and max pressure from their picture and table allowed 
Chris to reason about force as a product of pressure at a point and its area.  

Total 1: Total force 
approximated by adding 
using max and min pressures 
at different depths. 

Coordinated with FPA 4, and facilitated with their prior reasoning of minimum 
and maximum velocity, they conceived of maximum and minimum pressure at a 
depth as approximations to varying pressures along the depth. Underestimates 
and overestimates were represented by 𝑃!∗62 ∗ ∆𝑑!

!!!  and 𝑃!62 ∗ ∆𝑑!
!!! , 

respectively. 
 

In their generalizing activity, they highlighted that their ways of reasoning was similar in all 
of their tasks. Chris said, “If it was the force […] we considered a lot of number[s] of pressure to 
make our error smaller and to find the exact, we applied the number of those points tend to 
infinity…[points to Task 1] for the distance we considered the number of snapshots tends to 
infinity.” To represent their approximation in each of their contexts, Sam spontaneously drew 
rectangles (Figure 7) and labeled them as their approximations for their tasks. He said, “Each 
time we found the area […] our approximation was the area between two other variables […] 
Task 1 would be velocity times time equals our displacement … and then the other would be 
pressure times area equals force.” He pointed to rectangles of prior graphs and emphasized that 
summation of those rectangles would give him the approximation. They symbolized their 
approximation as 𝑎!

!!!!!
!

.!
!!!  When asked if they saw anything common between their 

contexts, Sam immediately referred to the multiplicative structure of two variables as being 
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common in all of the tasks and said, “Anything that’s just one thing times another is gonna have 
that [points to rectangles] area and you can [...] get the exact amount of it by taking an infinite 
number of snapshots of it” and drew Figures 8 and 9 to illustrate the multiplicative relationship 
for two new contexts he provided, voltage and force. Finally, they were asked if they had seen 
something similar in their calculus class, Chris replied, “This would be the integral, integral of 
the products of two things.” After writing definite integrals for each of their tasks, Sam 
expressed that graphically the definite integrals represent the exact areas under the curves. 

 
Table 3. 
Sam's FPA and Total Force Conceptions. 

Sam’s FPA Conception Description of reasoning 
FPA 1: Pressure increases with depth Aided with algebraic expression, F= ρgdA and supplemented with his 

“real life” swimming experience, Sam reasoned that pressure increases 
with depth and modeled his reasoning through his picture.  

Total 1: Total force is the sum of 
ρg∆dA 

Reasoning with and about table and picture served as tools for 
reasoning about total force as the sum of ρgdA.  

Total 2: Total force is the sum of 
ρg𝑛∆dA 

Organized his Total 1 to model a dynamic pressure and reasoned that 
multiplying with n would provide him with a constantly changing 
pressure. 

Total 3: Total force approximated by 
adding using max and min pressures 
at different depths. 

Organized his reasoning about 𝑛∆d with Chris’ pressure at a point and 
constructed his underestimate and overestimate force as 𝑃!∗62 ∗!

!!!
∆𝑑 and 𝑃!62 ∗ ∆𝑑!

!!! , respectively. 
 

 
Figure 7. Approximations as 
rectangles. 

 
Figure 8. Voltage as a product 
of resistance and current. 

 
Figure 9. Force as a product of 
mass and acceleration.

 
Discussion  

We note that it was not merely the end results, but elements of students’ reasoning, including 
their solution strategy that served as tools for reasoning more effectively about subsequent tasks. 
Being able to imagine a constant quantity as approximating a varying quantity was crucial for 
them to reason about their approximations. Manifesting problems and solutions into multiple 
representations supported them in making sense of their context and in building rich connections 
amongst their representations. Records of their picture, graph, table, and formulaic expressions 
from Task 1 served as reference points for them to make connections between their two tasks as 
they conceived of, represented, and related relevant quantities. Real life intervention enabled 
students to understand their context and facilitated them to organize their informal activities into 
more formal mathematical reasoning of Riemann sums. Since students spontaneously extended 
their micro-level conception of product structure to novel situations (e.g. Figure 8, Figure 9), the 
results suggest that they conceived of their product structure as a new mathematical reality. With 
just three tasks, it is hard to claim if or exactly when students transitioned from model-of to 
model-for reasoning at the macro-level since they did not expand their reasoning of Riemann 
sums as an informal activity for some other task. Because no such extension of Riemann sum 
was observed, it does not mean that it had not become a model-for, just that this type of 
reasoning was not clearly evidenced. Using additional contexts to clearly observe if students 
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conceived of the Riemann sum as their new reality could extend our knowledge of if their 
reasoning about Riemann sum had emerged as model-of reasoning. These observations guide 
plans for future research designed to support students in an observable transition from model-
of/model-for reasoning at the macro-level. We acknowledge that work with one pair of students 
may not necessarily generalize to others, but even so, this study highlights that leveraging real 
life experiences and utilizing multiple representations can support students in a deeper 
understanding of Riemann sum and in realizing a need for definite integral. While Sealey (2008) 
detailed students’ understanding of Riemann sums as layers and Von Korff and Rebello (2011) 
demonstrated how multiple representations and activities rooted in physical contexts can support 
reasoning, this study provides more detail into how coming to understand physical contexts 
through evolving models of a particular situation, even “incorrect” models, can subsequently 
support the generalization of elements of a learning process about Riemann sums. 
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USING A FRAMING AND RESOURCES FRAMEWORK FOR ANALYZING 
STUDENT THINKING ABOUT MATRIX MULTIPLICATION 

Warren Christensen 
North Dakota State University 

A student who has completed both Linear Algebra and Quantum Mechanics should have a 
wealth of conceptual and procedural knowledge that has been obtained from mathematics 
and physics classes.  However in practice, students seem to struggle with this task. This 
investigation casts light on students’ thinking about matrix multiplication and how their 
thinking appears to be influenced by their framing of the problem as either a mathematics or 
physics question. Using Framing and Resources as a theoretical lens can provide insight into 
the ideas and concepts that a student accesses from domains of mathematics and physics. 
Using lexicon analysis, it appears the student shifts from a “mathematical frame” to a 
“physics frame” and back again, but struggles to successfully transfer concepts between 
these two frames. I will highlight the markers for these frame shifts and demonstrate why 
framing and resources is the appropriate lens for this investigation. 

Key words: Linear Algebra, Physics, Quantum Mechanics, Interdisciplinary, Interviews 

Over the past decades, a great deal of research has taken place within both Mathematics 
departments and Physics departments on the learning and teaching of these respective fields. 
A growing number of researchers are interested in tapping the knowledge base of both the 
communities of Physics Education Research (PER) and Research in Undergraduate 
Mathematics Education (RUME). The present study builds on the work of Henderson et al. 
(2010), which used a theoretical framework of symbol sense (Arcavi 1994) to investigate 
students’ reasoning on concepts of Linear Algebra. The current study uses framing and 
resources as a theoretical framework to investigate students thinking about matrix 
multiplication after a course in Quantum Mechanics (Hammer, Elby, Scherr & Redish, 2005).  

Resources and framing are fairly novel approaches to research for the RUME community, 
but are prevalent in PER. Within this theoretical framework, individuals have different types 
of resources. For example, conceptual resources deal with understanding physical 
phenomena, such as one’s understanding of the concept of force and Newton’s Laws. The 
resources that the student activates in any particular situation depend on how they frame the 
problem they are considering, that is, how they answer the question, “What is going on 
here?” (Hammer et al. 2005). Frames are locally coherent sets of resource activations. The 
process of learning involves forming these sets of activations, and then, once formed, using 
these frames in settings where they seem applicable. This study uses lexicon analysis to make 
claims about how a student is framing a particular problem, and what resources that student is 
activating during a one-on-one interview. Specifically, we identify episodes during the 
interview when the student has a high density of discipline-specific terms (either mathematics 
or physics) and then investigate what the student is describing, what triggered the cascade of 
language, and the appropriate and correctness of their statements. 

The case study that will be presented demonstrates the power of this theoretical 
framework. A student can be seen to answer questions correctly and incorrectly, in what 
would appear to be two different frames and is unable to use the correct ideas from each 
frame together to resolve inconsistencies and troubling issues. Discussion will focus on these 
theoretical frameworks as a tool for better understanding student thinking. 
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Undergraduate Students’ Stochastic Understanding of Probability Distribution 

 

Darcy Conant 

Notre Dame of Maryland University 

 

Stochastic conceptions undergird development of conceptual connections between 

probability and statistics and support development of a principled understanding (Greeno, 1978) 

of probability distribution.  This study employed mixed research methods to investigate the 

impact of an instructional course intervention designed to support development of stochastic 

understanding of probability distribution.  Instructional supports consisted of supplemental lab 

assignments comprised of anticipatory tasks designed to engage students in coordinating 

thinking about complementary probabilistic and statistical notions along a hypothetical learning 

trajectory aimed at development of stochastic understanding of probability distribution.  

Participants were 184 undergraduate students enrolled in a lecture/recitation, calculus-based, 

introductory probability and statistics course.  Results of quantitative analyses showed 

completion of stochastic lab assignments had a statistically significant impact on students’ 

stochastic understanding of probability distribution.  Student interviews revealed those who held 

stochastic conceptions also indicted integrated reasoning related to probability, variability, and 

distribution and presented images supporting principled understanding of probability 

distribution.  

 

Key Words:  Probability Distribution, Stochastic Reasoning, Understanding Probability, 

Simulations. 

 

Introduction and Theoretical Background 

Many college-level students struggle with probabilistic and statistical reasoning (Artigue, 

Batanero, & Kent, 2007; Jones, Langrall, & Mooney, 2007; Shaughnessy, 1992, 2007).  

Research shows that after a first course in probability and statistics most students do not 

understand the reasoning involved in making a statistical inference nor the reasoning required for 

interpretation of the results (Batanero, Tauber, & Sanchez, 2004; Reaburn, 2011; Smith, 2008).  

Liu and Thompson (2007) found that stochastic conceptions of probability support an 

understanding of statistical inference.  A stochastic conception of probability involves 

understanding the stochastic nature of random phenomena, understanding how probability is 

used to model random phenomena, and understanding how probability models are used to make 

formal statistical inferences (Steinbring, 1991).  The purpose of this study was to investigate the 

impact of an instructional intervention designed to support development of stochastic reasoning 

by addressing the following research question:  What is the impact of an instructional 

intervention designed to support the development of stochastic understanding of probability 

distribution of undergraduate students enrolled in an introductory, calculus-based, probability 

and statistics course?   

Among prior research studies addressing students’ understanding of probability, only a 

few investigated students’ stochastic conceptions of probability and only a few involved 

participants who had earned college-level credits for calculus.  Research shows that post-calculus 

students, who were either currently enrolled in or had recently completed an introductory 

probability and statistics course, demonstrated evidence of probabilistic thinking that was aligned 

with novice thinking evidenced by high school students and college-level students in algebra-
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based introductory probability and statistics classes (Abrahamson, 2007; Abrahamson & 

Wilensky, 2007; Barragues, Guisasola, & Morais, 2007; Lunsford, Rowell, & Goodson-Espy, 

2006).  Research investigating undergraduate post-calculus students’ conceptions of probability 

distribution found that learners exhibited difficulty understanding probability models and 

struggled to discriminate between empirical distributions and theoretical distributions 

(Abrahamson, 2007; Batanero, Godino, & Roa, 2004; Lunsford, et al, 2006).  Prior research 

suggests that after completing an introductory, calculus-based, probability and statistics course, 

most students were comfortable with mathematical procedures and had mastered algorithmic 

techniques, but lacked stochastic conceptions and a deep conceptual understanding of probability 

distribution.   

Although not conducted in a classroom, the work of Abrahamson (2007) indicates that 

post-calculus learners can consolidate their intuitive notions of probability with their formal 

mathematical knowledge in the context of probability distribution.  Abrahamson (2007) found 

that individuals were able to coordinate their thinking about relationships between empirical 

distributions and theoretical distributions as a result of engaging with interactive models in a 

computer environment.  Other research points to the promise of learners’ engagement in 

simulation tasks utilizing a computer-based, dynamic statistical environment as a means towards 

facilitating development of notions of sampling distribution, variability, and inferential reasoning 

(Meletiou-Mavrotheris, 2003; Sanchez & Inzunsa, 2006).   

Theoretical Framework 

Drawing on constructivist and situated perspectives of learning, the author designed a 

model which frames development of stochastic understanding probability distribution (Figure 1).  

This model focuses on individual understanding that is built through learning experiences, which 

are impacted by the learner, the teacher(s), the instructional material, and peers.  Notions of 

stochastic reasoning are built on experiences with stochastic processes.  Stochastic reasoning is 

crucial for development of understandings which ground aspects of probabilistic and statistical 

thinking that are essential to understanding probability distribution.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Model of theoretical framework for development of stochastic understanding 

of probability distribution. 

 

Three overarching constructs frame an understanding of probability distribution:  

probability, variability, and distribution (Table 1).  Understanding probability distribution means 

understanding connections between the constructs of probability, variability, and distribution, as 
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well as understanding connections among notions within each construct and across the constructs 

(Kapadia & Borovcnik, 1991).  This means that understanding variability is not exclusive of 

understanding probability or understanding distribution.  A deep understanding involves 

understandings associated with the notions found within the constructs of probability, variability, 

and distribution, and this deep understanding is fostered by connected conceptions of probability, 

variability, and distribution.   
 

Table 1 

Framework for Understanding of Probability Distribution 
Probability Distribution 

Probability 

Coordination of empirical and 

theoretical probability 

Random variable 

Sample space 

Independence versus dependence 

Model for inference 

Variability 

Randomness and random variability  

Law of large numbers 

Unit-to-unit variability 

Sampling variability 

Variability of sample statistics and the 

central limit theorem 

Distribution 

Distribution of random variable  

Parameterization of distribution 

model 

Distribution of sample versus 

population distribution 

Sampling distribution 

 

Methods 

The study employed a mix of both quantitative and qualitative research methods to 

examine students’ understandings that resulted from an instructional intervention in a quasi-

experimental, treatment-control setting.  A sequential exploratory design (Tashakkori & Teddlie, 

2003) allowed elaboration and enhancement of quantitative-based findings with the 

incorporation of qualitative data in the context of an integrated interpretation.  This design 

incorporated five phases: (1) collection of quantitative data; (2) cursory analysis of conceptual 

assessment for purposes of interviewee selection, (3) collection and analysis of qualitative data; 

(4) use of the qualitative findings to inform coding and analysis of conceptual assessment; (5) 

final analysis and interpretation of both quantitative and qualitative data.  Quantitative data 

sources included a student background survey, an assessment of stochastic conceptions, 

confidence interval items drawn from ARTIST topic scales (Garfield, delMas, & Chance, 2006), 

and comprehensive final course examinations.  Qualitative data consisted of end-of-course 

interviews with 12 student volunteers.   

Students were assigned to either the treatment group or control group via their course 

registration and enrollment in a discussion section associated with one of two large lecture 

classes.  Students in the treatment group received supplemental lab assignments aimed at the 

development of stochastic reasoning in the context of probability distribution.  The stochastic lab 

assignments were designed to develop stochastic anticipations (Simon, 2013) and support 

development of stochastic understanding of probability distribution along a hypothetical learning 

trajectory (Simon, 1995) adapted from Liu and Thompson (2007).  Students in the stochastic-

reasoning lab group engaged in activities which utilized Fathom (Finzer, 2007) software to run 

virtual simulations and to represent distribution of outcomes resulting from the simulations.  

Students in the control group received supplemental lab assignments consisting of a review of 

calculus content used in this introductory probability and statistics course.  In order to measure 

learning outcomes, all students completed the same stochastic reasoning assessment in the form 

of a conceptual quiz which consisted of two problems.  Each quiz problem involved a different 

context representing a probabilistic situation that could be approached stochastically or 

nonstochastically.  Problem one, the “hospital problem”, has been used in a number of previous 

studies which investigated undergraduate students’ understanding of probability (Fischbein & 
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Show all your work and explain your reasoning. 

1. A town has two hospitals.  On the average, there are 45 babies delivered each day in the larger hospital.  

The smaller hospital has about 15 births each day.  Fifty percent of all babies born in the town are 

boys.  In one year each hospital recorded those days in which the number of boys born was 60% or 

more of the total deliveries for that day in that hospital.  Is it more likely that the larger hospital 

recorded more such days, that the smaller hospital did, or that the two hospitals roughly recorded the 

same number of such days?  Explain your reasoning. 

 

2. Anthony works at a theater, taking tickets for one movie per night at a theater that holds 250 people.  

The town has 30,000 people.  He estimates that he knows 300 of them by name.  Anthony noticed that 

he often saw at least two people he knew.  Assume that people are not coming to the theater because 

they know Anthony and there is nothing special about the type of movie.  Is it in fact unusual that at 

least two people Anthony knows attend the movie?  Give an explanation of your reasoning and be sure 

to address issues of randomness and distribution.   

Schnarch, 2007; Reaburn, 2011; Tversky & Kahneman, 1974; Watson, 2000).  Problem two was 

adapted from a question Liu and Thompson (2007) posed to secondary mathematics teachers.   

 Figure 2.  Stochastic Conception Quiz 
 

Results 

Qualitative analyses indicated evidence of stochastic reasoning across three hierarchical 

categories (Liu & Thompson, 2007):  image of a repeatable process, image of specification of 

conditions, and image of distribution.  Evidence for stochastic conception presented in Table 2 

was gleaned from interview participants’ written work on the conceptual quiz, as well as their 

responses to interview probes.   
 

Table 2 

Summary of Interview-Based Evidence for Stochastic Conception 
Image for Repeatable Process 

Indicates understanding that the process is repeated under essentially the same conditions 

Indicates the repeatable process yields outcomes and describes outcomes of the process 

Indicates thinking about a repeated experiment   

Indicates that repetition of process results in repeated sampling 

Connects thinking about the process to a model 

May connect thinking about the process to running a simulation 

Image for Specification of Conditions 

Indicates that repetition of the process yields a collection of variable outcomes 

Assumes outcomes are independent 

Describes a sampling process where each selection is equally likely 

Indicates the sampling process produces samples that are representative of population 

Indicates that variability in outcomes is related to sample size 

Indicates conceiving of conditions of the process in relation to an underlying model 

Images for Distribution of Outcomes 

Indicates thinking about a distribution of outcomes 

Connects thinking about expectation to variability 

Attends to variability when thinking about distribution of outcomes; connects notions of 

distribution variance, shape, and sample size  

Indicates thinking about the law of large numbers in relation to stabilization of frequencies 

over a large number of repetitions of the process 

Indicates thinking about an underlying distribution  model 

Quantifies “unusual” as deviation from expectation in terms of a distribution modal 

Note.  Italicized images were only evidenced as a result of the interview.  Images not italicized were evidenced as a 

result of the interview and via student’s individual written answers for the conceptual quiz. 
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Three interview participants consistently exhibited stochastic reasoning across all three 

stochastic reasoning categories for both problem contexts and throughout interview probes and 

were characterized as holding a stochastic conception.  For example, Student 113 explained: 
 

So, the way I thought about it was, you know, if I flipped a coin 45 times, and in another 

experiment I flip a coin 15 times.  Which one will more likely to get over 60% heads?  So I 

was thinking very quickly you’ll see that it would be easier through the things we were doing 

all semester running these experiments through Fathom. …You’d see that you could have, if 

you only ran 15 trials, you might end up with a result that definitely far away from 50-50. 
 

Once your sample gets bigger, larger and larger and larger, it very, very, very seldom that 

it’ll deviate from, you know, from the expected, or what’s expected in the population.  You 

know, like we saw in the Fathom experiment.  You know, you run the trial in Fathom 

thousands and thousands of times and the line is really, really, really close to what you expect 

to be, 0.5.  So, I sorta felt like 45 is like getting closer to law of large numbers than 15 is.  So 

that was another thing I was thinking about. 
 

Three interview participants exhibited stochastic reasoning across all three categories for only 

one of the two problem contexts and were characterized as holding a situational conception.  The 

remaining interview participants either indicated no images related to a stochastic conception 

(characterized as no image) or only indicated an image of repeatable process for either one or 

both problem contexts (characterized as nonstochastic conception).  Table 3 summarizes the 12 

interview participants’ stochastic conceptions evidenced on the conceptual quiz and interviews.   
 

Table 3 

Distribution of Student Identification Numbers over Categories of Stochastic Conceptions 
 Stochastic Situational Nonstochastic No image 

Interview Participants’ 

Student ID numbers 

113 

214 

329 

313 

325 

817 

711 

715 

1016 

428 

518 

811 
 

Results of the qualitative analysis informed development of a rubric used for scoring all 

study participants’ work on the conceptual assessment.  Images of stochastic reasoning 

evidenced on interview students’ written conceptual quiz answers were used to define the rubric, 

which yielded a maximum score of 14 possible points.  The overall distribution of all students’ 

scores on the stochastic reasoning conceptual assessment ranged between 0 and 13 with a median 

score of 2.  This distribution was highly skewed (M = 2.74, SD = 3.26).  The distribution of 

scores for each of the treatment and control groups was also skewed.  Students in the stochastic 

reasoning (SR) group had a median stochastic score of 3, while students in the calculus review 

(CR) group had a median stochastic score of 0.5.  The mean stochastic score for the SR group (M 

= 3.87, SD = 3.718) was significantly higher than the mean stochastic score for the CR group (M 

= 1.65, SD = 2.290); [t(143) = 4.36, p <.000].   

A binary variable, stochastic image, was defined to indicate whether or not a student 

presented evidence of stochastic reasoning on their written work for the conceptual assessment.  

Table 4 shows results of a logistic regression model fit to the data to predict stochastic image and 

to investigate the relationship between lab group (treatment/control intervention) and the 

likelihood a student presented evidence of a stochastic conception.  The overall logistic 

regression model was significantly more effective than the null model in predicting stochastic 

image, χ
2
(5, n = 145) = 33.88, p < .001.  The odds of a student in the stochastic reasoning lab 
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group presenting a stochastic image were 3.80 times greater than the odds for a student in the 

calculus review lab group (p = .003).  The odds of a student enrolled in Lecture A presenting a 

stochastic image were 5.89 times greater than the odds for a student in Lecture B (p < .001).  The 

variables used as controls for prior achievement and mathematical and statistical background 

were not significantly related to stochastic image.  
 

Table 4 

Summary of Logistic Regression Analysis Predicting Stochastic Image 

Variable B SE OR 95% CI 

Wald 

Statistic p 

Group   1.341   .452   3.798 [1.565, 9.217]   8.704   .003 

PriorMath     .788   .437   2.199 [0.943, 5.179]   3.252   .071 

PriorStat     .105   .442   1.111 [0.467, 2.640]   0.056   .812 

Lecture   1.773   .463   5.890 [2.377, 14.595] 14.668 <.001 

AllLabsCompleted     .354   .534   1.424 [0.501, 4.053]   0.439   .507 

Constant −3.510   .703   0.030  24.913 <.001 
 

The logistic regression model using the same explanatory variables with an added 

interaction, all labs completed by group, showed the interaction was significantly related to 

stochastic image (p = .026).  An investigation of this interaction revealed that students in the SR 

group who completed all of the lab assignments had a higher mean stochastic image than 

students in the CR group who completed all of the lab assignments (Table 5).  Furthermore, the 

mean stochastic image for students in the SR group who did not complete all of the lab 

assignments was similar to the mean for students in the CR group who completed all of the lab 

assignments, as well as the mean for students in the CR group who did not complete all of the lab 

assignments.  These results indicate the stochastic reasoning lab assignments promoted students’ 

movement along the hypothetical learning trajectory.  Students who completed all of the 

stochastic reasoning labs showed a higher propensity towards indicating a stochastic 

understanding of probability distribution. 
 

Table 5 

Mean Stochastic Image by Completion of All Labs and Proportion of Treatment Group 
 Lab Assignment Group 

 SR CR 

All labs completed 

Mean stochastic image 

n 

 

0.455 

55 

 

0.128 

48 

Not all labs completed 

Mean stochastic image 

n 

 

0.188 

16 

 

0.154 

26 

Note.  Stochastic Image is dichotomous with 1 = Stochastic or Situational and 0 = Nonstochastic or No Image. 
 

Taken together, qualitative and quantitative results showed that the instructional 

intervention designed to support development of stochastic understanding of probability 

distribution incited students’ stochastic thinking and promoted a stochastic understanding of 

probability distribution.  Students who held a stochastic conception of probability distribution 

were able to apply their theoretical understanding of probability distribution to differing 

empirical contexts.  These students demonstrated evidence of thinking that included both a 

modeling perspective of distribution and a data-centric perspective of distribution (Peters, 2011), 

and they consistently coordinated an experimental perspective of probability with a theoretical 
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perspective of probability.  Some students demonstrated situational stochastic conceptions which 

were context dependent.  For these students, stochastic thinking was evident, but their stochastic 

reasoning was inconsistent across differing problem contexts.  Thus, their stochastic reasoning 

appeared to be more tenuous.  When prompted during the interview, students with situational 

stochastic conceptions coordinated a modeling perspective of distribution with a data-centric 

perspective of distribution.   

Implications 

The results of this study show that particular anticipations and perspectives of distribution 

are related to a stochastic conception of probability distribution.  Students who were 

characterized as holding stochastic conceptions attended to the notions of variability which 

included both a data-centric perspective and a modeling perspective of variability.  The three 

interview students who were characterized as holding a stochastic conception of probability 

distribution spontaneously indicated thinking about a model in relation to the problem situations 

presented on the conceptual assessment.  More robust stochastic conceptions include strong 

conceptual links between empirical and theoretical distributions.  The implication is that 

coordination of thinking about empirical distributions with probability distribution models could 

be an essential aspect of stochastic thinking and a principled understanding of probability 

distribution.   

The results of this study also imply that conceptions of repeated sampling are important 

to a stochastic conception of probability distribution.  All students who were characterized as 

holding stochastic conceptions indicated thinking about repeated sampling in relation to the 

repeatable process in addition to thinking about repeating an experiment.  While some of the 

students who did not hold stochastic conceptions mentioned sampling, it was clear they were not 

thinking of a sampling process, and none mentioned thinking about sampling in relation to 

repetition of an experiment.  Furthermore, students who did not hold stochastic conceptions did 

not indicate a perception of variability in outcomes, but indicated thinking that focused on 

formulas and calculations.   The implication is that anticipation of repeating sampling in relation 

to a repeatable process is a necessary component of stochastic thinking.  

Yet another implication is that students need experiences with distributions of data 

generated via random processes along with experiences that support development of a modeling 

perspective of distribution.  Experiences with distributions of data should include activities 

which support development of stochastic anticipations of repeated sampling.  Furthermore, these 

experiences should also include supports which undergird connections between repeated 

sampling and probability experiments.  The implication is that these kinds of experiences with 

simulations in Fathom appear to support development of normative conceptions of randomness 

and random phenomena which undergird stochastic conceptions of probability distribution. 

The results of this study show that the type of task and design of the instruction matter 

and have implications for curriculum and instruction in probability and statistics.  An objective 

of the stochastic-reasoning lab assignments was to elicit development of stochastic reasoning by 

means of anticipatory tasks (Simon, 2013), which were designed to prepare students to learn by 

promoting development of stochastic anticipations.  The results imply that the design of 

anticipatory activities along a hypothetical learning trajectory (Simon, 1995) aimed at stochastic 

understanding of probability distribution can incite students’ stochastic conceptions and 

potentially change students’ thinking.  Because stochastic conceptions support thinking about 

statistical inference and modeling variation, the implication is that instruction aimed at 

development of stochastic conceptions should be included in the college-level curriculum.   
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PROSPECTIVE SECONDARY TEACHERS’ CONCEPTIONS OF PROOF AND 
INTERPRETATIONS OF ARGUMENTS 

AnnaMarie Conner, Richard T. Francisco, Carlos Nicolas Gomez, Ashley L. Suominen, & 
Hyejin Park 

University of Georgia 

We analyzed the interviews of three prospective secondary mathematics teachers to examine 
their conceptions of proof and how they validated arguments in the context of students’ 
answers. Our participants had differing views of the definition of proof and its role in 
mathematics. Their work when validating arguments in large part aligned with their 
professed views of proof, with some deviations on the part of one participant. Further 
research must examine whether this consistency is prevalent across prospective teachers and 
how this relates to teachers’ work with proof in classrooms. 

Key words: Proof validation, Conceptions of proof, Prospective secondary teachers, 
Conviction 

The role of proof in mathematics has been clearly established as significant. "Proving is 
one of the central characteristics of mathematical behavior and probably the one that most 
clearly distinguishes mathematical behavior from behavior in other disciplines" (Dreyfus, 
1990, p. 126). Current national recommendations establish the desirability of elementary and 
secondary students engaging in reasoning and proof (National Council of Teachers of 
Mathematics, 2009; National Governors Association Center for Best Practices & Council of 
Chief State School Officers, 2010). Teachers’ conceptions of proof, beliefs about the role of 
proof in mathematics, and their abilities to facilitate argumentation are related to how well 
they can implement these kinds of experiences (see, e.g., Conner, 2007). Little research has 
been devoted to how prospective secondary teachers develop and modify these conceptions in 
their university curricula. In this paper, we report results of a study in which we interviewed 
several prospective secondary mathematics teachers during their mathematics education 
coursework to examine their conceptions of proof and how they engaged in argument 
validation when arguments were situated in the context of student responses.  

Relevant Literature  
Teachers’ conceptions of proof are inherently influenced by their experiences with proof 

in their mathematics coursework. Even though proof plays a central role in the undergraduate 
mathematics curriculum, numerous studies depict students’ difficulties with proof production 
(e.g. Healy & Hoyles, 2000; Harel & Sowder, 1998). Students’ lack of confidence with proof 
may be influenced by the fact that the field of mathematics cannot agree on a definition of 
proof (Hersh, 1993). However, even if students cannot give a formal definition of proof, 
many students have concept images of proof (Moore, 1994). Many studies have been 
conducted in which students at various levels were asked to construct proofs (see Reid, 
2011), but as mathematics educators looked for more fine-grained explanations, some 
researchers have begun to examine students’ validations of proofs (e.g., Knuth, 2002a; Selden 
& Selden, 2003; Weber, 2010).  

Studies of proof validation have been conducted with various populations, including 
undergraduate students, practicing teachers, and research mathematicians. The results 
demonstrate that determining whether an argument is a valid proof is not straightforward. 
Selden and Selden (2003) asked undergraduate mathematics students whether given 
arguments proved a number theoretic statement. The aggregate of students’ responses 
indicated a random response pattern. In another study, only six of thirteen undergraduate 
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mathematics majors were able to determine that a real analysis proof was invalid (Weber & 
Alcock, 2005). A recent study on proof validation found that undergraduate students who 
completed an introduction to proofs course were often able to reject empirical arguments as 
proofs but again performed variably when asked whether a deductive argument (valid or 
invalid) was a proof (Weber, 2010). Research on practicing secondary teachers found that 
teachers accepted non-proof arguments as valid mathematical proofs (Knuth 2002a). Finally, 
Weber (2008) found that even practicing mathematicians do not always agree about whether 
an argument is a valid mathematical proof, even for relatively uncomplicated proofs (a couple 
of lines long). This ambiguity has important implications for teaching, as the final verdict of a 
proof’s correctness is often determined by social norms (e.g. Hanna, 1991). It is therefore 
important to examine teachers’ views of proofs, what they consider to be convincing, and 
how they validate arguments from students.  

Theoretical Perspective 
Our larger study coordinates a situative perspective on learning to teach mathematics 

(following Peressini, Borko, Romagnano, Knuth, & Willis, 2004) with current research on 
teachers’ beliefs about teaching, mathematics, and proof (e.g., Cooney, Shealy, & Arvold, 
1998; Ernest, 1993, 1988; Knuth, 2002a; Liljedahl, Rolka, & Rosken, 2007; Thompson, 
1992). As we narrowed our focus for this particular part of the study, we coordinated several 
perspectives related to proof to provide guidance for our analysis. 

The primary lens for our analysis of participants’ conceptions of proof was the multiple 
roles that have been proposed for proof in mathematics. Proofs provide conviction that an 
assertion is true (e.g. Harel & Sowder, 1998) and justify mathematical assertions. De Villiers 
(1990) asserted that proofs play an important communicative role in mathematics and 
systematize the field. Other researchers have argued that proofs should also explain why an 
assertion is true (e.g. Hanna, 1990; Hersch, 1993). Following from these roles of proof in the 
discipline of mathematics, Knuth (2002b) contended that we must consider the following 
roles of proof in school mathematics: verification, explanation, communication, discovery, 
and systematization. In Knuth’s (2002b) study, practicing secondary mathematics teachers 
reported some of these beliefs about the role of proof, including explaining why a statement 
is true, communicating mathematical knowledge, verifying the truth of a statement, and 
systematizing the field of mathematics, but lacked emphasis on promoting understanding. We 
examined what our participants viewed as roles of proof in mathematics and in the classroom. 

An important goal for students in teacher education programs is the development of the 
ability to critically reflect upon students’ thinking (Ball, 1988). One prominent way that 
mathematical knowledge is communicated is through written assignments and examination. 
Therefore, it is essential that teachers develop proficiency at reading mathematical proofs. 
We asked teachers to validate mathematical arguments (after Knuth, 2002a; Selden & Selden, 
2003; Weber, 2010) by stating whether they qualify as mathematical proofs and whether they 
find them convincing. Our analysis of our participants’ argument validations was informed 
by Selden and Selden’s (2003) description of proof validation as a process by which someone 
reads and reflects on an argument in order to determine the extent to which it is correct. 
“Validation can include asking and answering questions, assenting to claims, constructing 
subproofs, remembering or finding and interpreting other theorems and definitions, 
complying with instructions (e.g., to consider or name something), and conscious (but 
probably nonverbal) feelings of rightness or wrongness” (Selden & Selden, 2003, p. 5). 
Because we were interested in participants’ views of proof in the context of teaching 
mathematics, we situated our interview questions and proposed arguments as answers from 
hypothetical secondary students. The situative perspective was useful in making sense of 
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their responses, as they often cited norms from undergraduate mathematics classrooms or 
referenced classroom teaching situations when giving their evaluations.  

Methodology 
This paper reports a subset of results of a larger study in which we followed sixteen 

prospective teachers through their mathematics education coursework. For this smaller study, 
we purposefully selected three prospective teachers and examined their perspectives on proof 
during their first year of mathematics education coursework. During this time, the prospective 
teachers were concurrently enrolled in mathematic courses that required regular engagement 
with proof (e.g., Abstract Algebra and Foundation of Geometry). Data collection for this 
study included three video-recorded semi-structured interviews of varying length (45 – 90 
minutes). In the first interview, conducted during the first two weeks of the fall semester, 
participants were asked for their initial thoughts on the definition of proof, its role in 
mathematics, and its role in the mathematics classroom. In the second and third interviews, 
conducted at the end of the fall and spring semesters respectively, we asked students 
additional questions about proof and asked them to complete sets of proof validation tasks we 
had developed and adapted from other studies (see Table 1 for a summary of tasks). For 
example, several tasks asked students to read a set of arguments that purport to prove a 
particular statement and then decide whether or not it proved the statement. Some of the tasks 
were set in the context of a classroom in which different students had proposed the different 
arguments. Our protocol was based in part upon Knuth’s (2002b) examination of practicing 
teachers’ beliefs about the role of proof in mathematics and in their practice, with the 
argument validation tasks informed by other proof validation studies as well (e.g., Weber, 
2010). Each interview was transcribed by a member of the research team and checked by 
another member to verify accuracy.  

Table 1: Summary of Arguments Presented to Prospective Teachers 
Problem/Claim Argument Argument Summary 

Exponent Problem: Is it 
possible to select real 
values for a and b such 
that (2a + 1)b would be an 
even number? Why or 
why not? (Interview 2) 

Cathy’s 2 to any power is even so 2a
 + 1 will always be 

odd. An odd number to any power is odd because 
if “foiled” the addition of one is consistent. 

David’s 2 to any power is even so 2a
 + 1 will always be 

odd. An odd number to any power is odd because 
the last digit follows a cyclic pattern of odd 
numbers. 

The law of cosines states 
that given ∆ABC with 
sides of length a, b, and c 
respectively, then 
c2=a2+b2–2ab cos C 
(Interview 2) 

A Pre-constructed dynamic geometry sketch, steps 
through a series of constructions, including a 
circle in which are two similar triangles. A chain 
of equations, written from proportional 
relationships, concludes the argument.  

B Dynamic geometry sketch, user can move any 
vertex of the triangle ∆ABC and observe 
measurements and calculations.  

C Two cases using Pythagorean theorem: C is 
obtuse or C is acute.  

D Distance formula on a coordinate plane with one 
vertex of triangle at (0, 0).  

The sum of the first n 
odd natural numbers is 
n2. ℕ = {1, 2, 3…} 
(Interview 3) 

Bart’s Proof by example: First 10 cases shown. 
Daphne’s Visual proof with use of multi-colored dots in 

square arrays. 
Charlie’s Algebraic manipulation of sum of the first n odd 
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natural numbers: 𝑆 𝑛 = 1+ 3+⋯+ 2𝑛 − 1. 
Eva’s Algebraic manipulation of summation formula of 

the first n natural numbers: 1+ 2+ 3+⋯+ 𝑛 =
!(!!!)

!
. 

Archie’s Proof by induction. 

Number Theory 
Problem: For any 
positive integers a and b, 
if a + b is an odd number, 
then one a or b is an odd 
number and the other is 
an even number 
(Interview 3) 

A Argument has unnecessary algebraic 
manipulation to demonstrate that an even number 
plus one is an odd number. 

B Proof by contradiction. Assumes a and b are even, 
finding an even sum. Then assumes a and b are 
odd, finding an even sum.  

C Proof of converse.  
D Three cases: a is odd and b is even, a and b are 

both odd, and a and b are both even. 
 

To analyze the data we first coded the data and identified parts of the data in which 
participants talked about proof and proving in general, separating these from parts in which 
the participants were working on the proof tasks. Next, we summarized the participants’ 
views of proof from their statements about proof and proving in general, and we summarized 
the participants’ work with proof, paying attention to the characteristics of proof that our 
participants seemed to value. Our codes and themes were both analytic and inductive, as we 
began with knowledge of the purposes and characteristics of proof from the literature, but 
remained open to (and found) other purposes and descriptions mentioned by our participants. 

Results 
Our analysis of our data was guided by the following questions: What are the prospective 

teachers’ views of proof and its role in mathematics? How do the prospective teachers 
analyze arguments from students? What are consistencies or inconsistencies in their talk 
about proof and analysis of students’ arguments? Our participants had differing views of the 
definition of proof and its role in mathematics. Their work when verifying arguments in large 
part aligned with their professed views of proof, with some deviations on the part of one 
participant. In this section, we introduce Jill, Jason, and Vanessa, describe their views of 
proof, and briefly describe some of their proof validations.  

Jill focused on issues of accuracy and being correct in both her general talk about proving 
and her examination of arguments. In interview 1, she described proving as “showing that it’s 
correct and that it works.” However, she does not believe she knows “the formal definition of 
proving” (Interview 1), implying that there is a correct formal definition. Jill believes that we 
prove things in math because otherwise we would just have to take someone’s word for 
mathematical results, so we prove things to establish mathematical certainty:  

Well if we don’t prove it and somebody just says hey, this is, this works, and then 
they don’t prove it and then how do we ever know it really does work. Because if you 
just, you can take anyone’s word for it, but if they don’t prove it and show you why it 
works then you might never know if it’s right or not. (Interview 1) 
In her examination of arguments for various statements, Jill focused on examining the 

details of the various steps that were given. In particular, she examined the accuracy of the 
algebra within three of the arguments for the law of cosines, specifically questioning how the 
authors obtained various lines. She questioned a particular notation in Charlie’s argument for 
the sum of the first n odd natural numbers, and she verified that she could see the differently 
sized squares in Daphne’s argument for the sum of the first n odd natural numbers. She also 

17th Annual Conference on Research in Undergraduate Mathematics Education 497



referenced specific proof techniques or notations when she was talking about her own 
proving as well as examining students’ arguments. For instance, she stated, “Because, when 
we are doing, like, proofs, and we have to talk about even and odd numbers, we would 
usually write 2x for an even number and then 2x plus 1 for an odd, for an odd number.” She 
was uncomfortable with Charlie’s argument for the sum of the first n odd natural numbers, 
saying, “they just went about it in an odd way.” This argument seemed to be different from 
what she expected, and even though she concluded that it was a proof, she seemed to be 
looking for a trick of some sort that would make it not a proof. 

When Jill talked about proof in the context of teaching and learning, she emphasized 
another aspect of proof: proof as a way to understand how and why something works. Jill’s 
explanation is similar to that of Knuth’s (2002b) participants who expected their students to 
learn “where statements come from or why they are true rather than accepting their truth as 
given” (p. 80). Her prime example of something to be proved is the quadratic formula:  

The quadratic formula to some kids is just like a bunch of letters, and they’re like, 
“What do I do with these letters?” I don’t get it. They just plug it in and it doesn’t 
make, they are just like, “Okay, this is what I am doing. Plug it in, blah.” They don’t 
really understand what it, what’s going on, but maybe if they proved it, they would 
see where those letters are coming from, where the numbers go in. (Interview 3) 

However, when evaluating arguments, even arguments from students, she focused on the 
accuracy of the arguments, including their generality, their logical structure, and line-by-line 
analysis rather than the explanatory power of an argument.  

Jason’s conceptions of proof as illustrated by his answers to general questions about proof 
and proving and his examination of students’ arguments were very consistent. Jason believes 
that proof and proving are integral parts of mathematics. He defined proving as 
“demonstrating why something is the case, not just saying that’s the case. So you’re building 
up your argument” (Interview 1). Jason explained that the roles of proofs in mathematics are 
verification, explanation, and logic outside of mathematics. In particular, he stressed the 
importance of proofs in relation to logic. When he analyzed the students’ arguments, he 
pointed out what was being proved in their arguments, investigated if the arguments included 
all cases and examined each step of the arguments to determine if they made sense. He 
distinguished between illustrating a theorem and proving it when he analyzed the dynamic 
geometry argument for the law of cosines (argument B), Bart’s argument for the sum of the 
first n odd natural numbers, and Cathy’s solution to the exponent problem. In several cases, 
Jason criticized an argument for proving something other than the requested claim. This was 
true for three of the number theory arguments (A, B, and C). 

When asked what students should prove, Jason focused more on the general concept of 
proving than on specific things to prove:  

I think they should come across the idea of proving something is true in all cases, that 
just proving that something works isn’t the same as proving that something is always 
true. I think that’s an excellent concept to teach students. (Interview 2) 

In his proof validations, he tended to look for generality in an argument; for instance, he 
critiqued Bart’s argument as not proving the claim in general. He also critiqued argument B 
for the law of cosines: “Technically you’d have to drag the cursor over an infinite amount of 
screen to prove it, so no, that’s not proving it” (Interview 2, lines 540-542). Jason’s view of 
the verification role of proof was illustrated by his answers to questions about how 
convincing the arguments were to him. In every case, Jason was either convinced by an 
argument and said it was a proof or was not convinced by an argument and said it was not a 
proof. This consistency was not observed in the other focus participants, and is contrary to 
the general trend of the findings of Segal (2000) and Weber (2010).  
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Vanessa’s views of proof seemed to depend on her understanding of what a proof is or 
involves and how that coincided with the views of the instructor or the requirements of the 
course. Of the focus participants, Vanessa was the most accepting of arguments, including 
empirical arguments, as proofs. For instance, she accepted argument B for the law of cosines 
as a proof. In her examination of students’ arguments, Vanessa did have some specific views 
about what a proof should look like. For instance, when examining David’s solution to the 
exponent problem, she said that it was not what a formal proof should look like, but it made 
sense and was pretty convincing. She said that Archie’s argument for the sum of the first n 
odd natural numbers was what she was used to seeing, so “I’m guessing” it’s a proof 
(Interview 2). She critiqued Daphne’s argument for the sum of the first n odd natural numbers 
as not a complete proof because she was used to “seeing a lot more writing and a lot more 
variables involved” (Interview 3).  

Vanessa’s definition of proof was flexible and considered the audience of the proof as an 
important factor, even at the beginning of her mathematics education coursework:  

To prove something is when…you’re able to explain the concept or an idea to 
someone so that they can, like, understand it. It doesn’t have to be ambiguous and like 
just mathematically jargon-filled and, like, complicated. It can be as simple as, like, a 
middle school person could understand it. So it’s just a way for you to be able to 
explain something very well, so that somebody that it’s not familiar with it can be 
able to really understand, I think. That’s when you know that you’ve achieved the 
goal of proving something. (Interview 1)  

When examining Eva’s argument for the sum of the first n odd natural numbers, she 
essentially said that it was a proof for her but not for a high school student:  

But if, if I was like a high school student reading this. It wouldn’t…make sense to me. 
It doesn’t justify anything. Because I didn’t know this fact [points to n(n+1)/2], so 
you’re telling me to assume that fact, and then once I assume it then I should believe 
the rest. So to a high school student this is not a proof, this doesn’t explain this 
statement right here, this claim right here. But to me, it makes sense as proof, because 
I know that [points to n(n+1)/2], and the whole thing just follows. (Interview 3)  

When she examined Bart’s argument in interview 3, she distinguished that it is a justification, 
which is appropriate for middle school, but it is not a proof. Vanessa’s flexible definition of 
proof could be compared to Stylianides’ (2007) definition of proof in K-12 mathematics, 
capturing the idea of considering classroom communities, even though she does not seem to 
acknowledge the deductive structure implied by Stylianides. 

Implications for Future Research 
If we want teachers to use proofs in ways that will promote students’ understanding, we 

should provide opportunities for prospective teachers to consider the attributes of proofs and 
how they can be used to promote understanding. Our study shows that prospective secondary 
teachers validate students’ arguments in ways that are consistent with the conceptions of 
proof they have developed during their school and university experiences. However, their 
developed conceptions seem to be individual, ranging from a flexible conception that is 
context-dependent and considers the audience to be an important factor, to a view that is 
focused on the accuracy and form of an argument, to a view that focuses on generality and 
logical structure of a proof. Each of these views of proof has aspects that would be useful to 
teachers of secondary mathematics, but each also contains aspects that could hinder teachers’ 
assessments of student arguments. Future research should examine if teachers’ validations of 
students’ arguments remains consistent with their views of proof when larger numbers of 
participants are considered. In addition, research must examine what views of proof allow 
teachers to assist students in constructing and critiquing arguments in effective ways. 
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THE SELECTION AND USE OF EXAMPLES BY ALGEBRAISTS:  

AN EXPLORATORY STUDY 

 

Abstract: This paper reports on an exploratory study of 10 algebraists designed to investigate the 

reasoning behind their selection of examples for their own teaching and research.  Variation theory 

provided a lens with which to analyze the algebraists’ goals for their collections of examples and 

to speculate about the resulting pedagogical implications.  Though findings from this exploratory 

study should be regarded only as preliminary and in need of further justification, our results 

provide some initial evidence that mathematicians use a relatively small number of very well-

chosen classes of examples in both their teaching and their research (suggesting that this might be 

a useful pedagogical strategy for students as well).  We also report on the examples of groups and 

rings that the algebraists deemed to be the most important for students of introductory abstract 

algebra. 

 

Key words: example usage, abstract algebra, variation theory  

 

Introduction 
Examples are believed to be very important in developing conceptual understanding of 

mathematical ideas (Mason & Watson, 2008; Tall & Bills, 1998; Tall & Vinner, 1981).  Examples 

give insight into and can be used to create mathematical definitions, theorems and proofs (Cuoco, 

Goldenberg and Mark, 1997; Lakatos, 1976).  Mathematicians use collections of examples to 

develop intuition and to generate, test, and refine conjectures (Michener, 1978).  When a 

mathematician comes upon or creates a conjecture that is not obviously true, Courant (1981) 

claimed that the mathematician’s first reaction is to call upon an example in order to think about 

the general through a particular case.  The purposes of an example are to provide a more familiar 

and concrete means to explore ideas, and to evaluate constraints in theorem formulation.  In 

particular, when used in such ways, they clearly indicate that the mathematician is attempting to 

work outside the symbolic system of the current problem.   

There is great perceived pedagogical power of examples (Bills & Watson, 2008; Mason & 

Watson, 2008). Several studies have focused on student exemplification and use of examples in 

learning about concepts and proofs (Alcock & Inglis, 2008; Dahlberg & Housman, 1997; Mason 

& Watson, 2008). Moreover, studies have explored how graduate students use examples in 

determining the truth of conjectures (Alcock & Inglis, 2008).  At this time, there are few studies of 

instructors’ teaching with examples in undergraduate proof-based mathematics courses. For the 

purposes of this study, proof-based courses are undergraduate mathematics courses which focus 

on definitions, theorems and proofs.   

This paper draws upon Watson and Mason’s definition of an example as “any mathematical 

object from which it is expected to generalize” (2005, p. 3). In particular, we focus further on what 

Watson and Mason (2005) described as a “reference example”—that is, an example that is 

commonly used for testing conjectures and encodes all of the important information about the 

class of objects it exemplifies. This concept of a reference example suggests that, among the large 

space of examples of any particular concept that a mathematicians knows, there are some which 

are somehow more useful and called upon than others. We believe that most mathematicians have 

a very small class of reference examples that they repeatedly draw on in their work and explore 

whether this should have implications for their teaching practice. Moreover, while there is 

evidence that instructors do generally draw on a relatively small range of examples in their 

instruction, and that they present material to promote a reference example (e.g. the class (  ,  )), 
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this evidence is from a single case study (Fukawa-Connelly & Newton, in press), and there is a 

need to determine the generalizability of the results.  Thus, the specific aims of this research are:  

1) To explore the examples of groups and rings that algebraists think are most important for 

students to know and their reasoning for those choices. 

2) To explore the truth of the hypothesis that mathematicians really only use a very small 

collection of examples, but incredibly well-chosen ones. 

3) To draw tentative conclusions about the relationships between the responses to the above. 

Pedagogical Uses of Examples 
Researchers assert that “exemplification is a critical feature in all kinds of teaching, with all 

kinds of mathematical knowledge as an aim” (Bills & Watson, 2008, p. 77). To this end, research 

on example usage is on the rise. Several studies have focused on student exemplification and use 

of examples (Alcock & Inglis, 2008; Dahlberg & Housman, 1997; Mason & Watson, 2008). There 

are few studies documenting the use of examples by instructors in undergraduate proof-based 

mathematics courses. In proof-based courses, examples are often used in teaching to introduce a 

concept or motivate a definition; alternatively, they serve as a means by which students can attach 

meaning to definitions (Goldenberg & Mason, 2008).  Goldenberg and Mason posited that, by 

exploring examples, “learners encounter nuances of meaning, variation in parameters and other 

aspects that can change” (2008, p. 184). That is, examples can be used to explore a definition 

(Fukawa-Connelly & Newton, in press), and, in such cases as Larsen and Zandieh (2008), create, 

test, and revise definitions.   

Examples of concepts are also used by instructors in presentations of theorems and 

proofs.  Mills (2012) identified a number of different ways instructors use examples in proof-

based classes.  Some of the types of examples that Mills identified can be thought of as giving 

insight into the creation of new mathematics.  For example, she documented classes of examples 

that support motivating and exemplifying the statement of the claim. Similarly, Lakatos (1976) 

described the use of examples to articulate and refine definitions and conjectures.  Such 

information can give insight into the creation of a proof or foster understanding of proofs (Alcock, 

2010; Weber, 2010).  Yet, in Mills’ observations, instructors drew on these proof-supporting uses 

less than once per class period, and some only a few times across the entire semester.  Moreover, 

she did not describe what examples the instructors use or how they think through their 

choices.  Thus, there is still need to investigate how mathematicians think about example use both 

in their mathematics and in their teaching. 

Theory 
Variation theory is a natural means to analyze the affordances offered by the collection of 

examples that students experience and has been used to describe goals for presenting examples 

(Goldenberg & Mason, 2008). Variation theory suggests that the way a person develops an 

understanding of a concept depends on which aspects the individual can discern (Runesson, 2006). 

In order for a person to be able to discern a particular aspect of a concept, he or she must 

experience variation of that aspect (Runesson, 2006).   In particular, if the instructor’s proposed 

examples all have similar characteristics, there will be significant variation that students will not 

experience.   

Tall and Bills’ (1998) asserted that a definition-theorem-proof approach to proof-based courses 

will generally be unsuccessful without also giving students the ability to develop a rich intuition 

from their experiences. Tall also claimed the importance of examples that vary in complexity so 

that students are able to apprehend important features. Thus, this study focuses on examples of 

concepts because they are uniquely powerful in both mathematics and the teaching of 
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mathematics, and seeks to explore Tall’s suggestions about how mathematicians approach this 

idea of rich images of concepts in their work and teaching. 

Methods 
Because we are interested in exploring the relationship between algebra instructors’ use of 

examples in their own mathematical work and teaching, we constructed a purposeful sample of 

algebraists who also teach undergraduate algebra classes.  Our survey was specifically designed to 

assess (1) which examples algebraists considered most relevant to their research and (2) which 

among those examples they considered most important for students in an introductory abstract 

algebra class.  We analyzed data by borrowing some techniques from grounded theory while 

keeping extant literature about instructors’ demonstrated pedagogical example use in mind 

(Fukawa-Connelly & Newton, in press; Mills, 2012).   We began by repeatedly reading responses 

to the survey, making summative comments about the categories of examples that algebraists 

claimed were important, and characterizing those important to their research as reference 

examples.  We then analyzed the characteristics of the examples deemed pedagogically important 

via the method proposed in (Fukawa-Connelly & Newton, in press) and then aggregated across the 

group of mathematicians. Finally, we attempted to discern if individual mathematicians generally 

use a very small class of examples. 

Data and Results 

1) Examples of groups and rings that algebraists believe introductory students should know. 

Groups: Algebraists believe that the symmetric groups of small order are the most important 

class of groups for students to be familiar with as they all mentioned at least one, followed by the 

cyclic groups, which were cited by seven (one of the algebraists listed the integers, six did not list 

any specific cyclic group, nor did they single out the cyclic groups of prime order).  The dihedral 

groups were the next most mentioned with six (naming the general class and one listing a 

particular example), followed by the matrix groups (typically over a finite field).  Three mentioned 

direct products as a means of creating other types of groups (the lattice groups and finite abelian 

groups, while one stated “direct products of groups”).  One participant mentioned elliptic curves, 

continuous functions, and the orthogonal groups.  The dihedral groups were specifically described 

as an ideal introductory example because of their focus on the behavior of the group structure.   

Rings: There is less agreement among the algebraists about the full range of examples of rings 

students should experience, but there were still commonalities amongst their responses.  The most 

commonly cited example was the matrix rings (by seven participants), followed by polynomial 

rings (six participants), then the integers (five participants), and the cyclic rings (four 

participants).  The real numbers were listed by two participants and no other examples were listed 

more than once, but 10 different examples of classes were listed once, including the class of 

“fields” as an example that students should be familiar with at the end of a first semester course.     

The algebraists primarily gave two explanations for their choices.  First, they asserted that the 

given examples are easy to work with, making these examples ideal for performing calculations 

and verifying results.  Second, the algebraists chose the given examples to include structures 

exhibiting varying mathematical structure (with regards to, for example, commutativity, finiteness, 

inclusion of zero-divisors), in order that students be exposed to a variety of structures that behave 

differently (and perhaps non-intuitively).  The following explanation, while focused on individual 

examples, demonstrates most of the types of reasoning that the mathematicians drew upon: 

For groups, knowing basic properties of cyclic groups,    and    will get you through quite a 

bit. Knowing about    and    definitely expands your range substantially. If a student knows 

these along with the quaternion group, they probably can test just about anything reasonable at 

the first semester of study level. 
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That is, the algebraists’ thinking about examples appear to implicitly reflect the implications of 

variation theory (Runesson, 2006). 

There were a small number of examples whose absence we deemed notable, especially given 

the rationale that went into the algebraists’ selection of examples.  Finite fields, while being 

mentioned in conjunction with matrix groups (over a finite field), were not directly mentioned in 

their own right. They were indirectly mentioned, of course, with each reference to the modular 

rings   (and perhaps the algebraists believed this to be sufficient).  This is noteworthy not only 

because of the significance of finite fields in field theory and number theory but also because they 

seem to fit the algebraists’ criteria perfectly:  finite fields are small, easy to perform calculations 

with, and are certainly a unique example of varying structure.  The second exclusion was the ring 

of quaternions (though, curiously, the quaternion group was referenced), being the only accessible 

example of a division ring.  It is possible that this example was not included because division rings 

do not receive much attention in an introductory abstract algebra course, yet we still found it 

surprising that a paradigmatic example of an accessible structure exhibiting deviant behavior 

received no attention.   

2) Algebraists tend to think about classes of objects as examples, especially pedagogically.   

While there were a small number of individual examples of groups and rings listed (such as 

the integers, rationals, quaternions or specific permutation and dihedral groups), all of the 

surveyed algebraists listed at least one class of groups and at least one class of rings (most listed 

multiple).  Five of the surveyed algebraists listed only classes of groups as their examples.  The 

pattern was similar with rings, although half listed the integers and more of the participants had a 

single example of a particular class that they listed as exemplary (such as   √   ).  As a result, 

while all listed at least one class of examples, only one listed classes of ring examples exclusively. 

This finding suggests that Fukawa-Connelly and Newton’s (in press) observation that 

instructors quickly transition from discussing individual examples to classes of examples is likely 

to be common.  That is, if the instructors think primarily of classes of examples, then any specific 

example would be understood as essentially interchangeable with any other members of the class, 

and, therefore, it would be quite reasonable to talk about a “general” element, such as      or    

almost immediately. Then, as the professor in Fukawa-Connelly and Newton’s work did, theorems 

about all members of the class might be proven.   

What we know about learning suggests this is somewhat incompatible with how students 

think, at least as they are learning new concepts. In particular, students are not likely to think of a 

broad class of examples right away.  Rather, students are likely to think about quite specific 

individual cases and then take time to apprehend how they all have similar characteristics 

(Wagner, 2010).  In this way, this process of moving from thinking about individual 

characteristics to seeing structural similarities is difficult for students and requires significant time, 

even when the common structure in the presented examples are transparent to mathematicians 

(Dubinsky, Dautermann, Leron, & Zazkis, 1997).   

3) Most algebraists draw on relatively small collections of examples for most of their work. 

The mathematicians were asked what five examples they most commonly use in their 

research.  One algebraist’s research was about a particular type of Lie algebra, and, as a result, 

found that the question was not meaningful.  Another participant acknowledged that he studied the 

sporadic simple groups, quipping that these included 26 examples (rather than 5).  There were also 

a number of other more abstract (esoteric) structures listed, normally by one particular participant, 

suggesting specificity to that particular research area.  These responses were not representative 

overall, however, as many listed an array of examples or classes of examples. One explained that 

the groups he most frequently used included the “dihedral groups, quaternion group, cyclic 
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groups, symmetric groups, matrix groups.”  Many provided similar responses; in general, these 

algebraists generally used a relatively small number of classes of examples.   

The participants also indicated that the listed classes of examples generally constitute a large 

fraction of the examples they use, suggesting that these examples operate as reference 

examples.  One person did not respond to the question and one (who listed the sporadic simple 

groups) remarked that, because there are an infinite number of simple groups, the examples he 

listed represented 0% of those he used in his research.  The other mathematicians claimed that the 

five listed examples accounted for 50%, 70% ,75%, 75%, 80%, 80%, 90% and 100% of the 

examples used in their work.  This data generally reflects that most of their work is done with very 

few examples (or classes of examples).  Although this recommendation should not be taken as 

dispositive, the data suggests that it might be more useful for students to have deep familiarity 

with a few examples, rather than a more broad experience with many.  That is, mathematicians 

appear to use few examples, but think deeply about them, and there is reason to believe that this 

type of practice may be equally valuable for undergraduates (Collins, Brown, & Newman, 

1989).  Mathematicians have significant experience with and success at mathematics learning, and 

continue to learn new mathematics.  As such, their habits suggest potential strategies for 

undergraduates (Collins, et al., 1989). This stands in direct contrast to recent studies that have 

either explicitly or implicitly suggested that undergraduates should have experience with a large 

number of examples (Watson & Mason, 2005; Sinclair, Watson, Zazkis, & Mason, 2011).  

The algebraists primarily cited two reasons for their choices of examples in their own research.  

In agreement with Courant (1981), the most commonly cited was the use of examples for 

illustrative purposes – that is, to make the general more concrete (six participants).  This was 

followed by those who mentioned using examples as building blocks to aid in generalizing 

definitions and theorems – that is, making the concrete more general (four participants).  It is 

curious to note that only one mathematician cited the testing and proving of conjectures; the 

reasons for this omission are presently unclear.  

Discussion 
While it is inappropriate to draw major conclusions from a small-scale study, we do cautiously 

summarize our findings and interpret them in terms of their implications for the field.  First, it is 

important to note that this is meant as an exploratory study and the hypotheses that we generated 

will be subsequently tested via a large-scale online survey (c.f., Lai, Weber, & Mejia-Ramos, 

2012). We see such a survey as a logical extension of our work and as a means to generalize from 

prior case studies (e.g., Fukawa-Connelly & Newton, in press).   

Our data suggests that algebraists generally believe that students need to be proficient with a 

relatively small number of classes of examples of groups and rings, with few mentions of 

individual members of those classes ( ,   ,   , and    being exceptions).  Our data collection was 

limited in that we did not ask instructors to describe useful structures that do not fulfill all of the 

properties of a given structure.  None of them listed any, so we cannot know the reasons for this; it 

might be because we did not ask, because they do not consider them important, or for some other 

reason.  Moreover, we wonder about the pedagogical implications of their listing of classes of 

examples.  Fukawa-Connelly and Newton (in press) showed one example of a professor quickly 

transitioning from introducing a specific example from the class of    to proving theorems about 

the entire class (one lecture after introducing the first example).  We suggest that there are 

significant implications for student learning about the specific content and also what such 

practices communicate to students about what is valued in mathematics and mathematics classes 

(if you can’t keep up, you’re not a good math student).   
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    Second, we see a distinction between how mathematicians use examples and how they expect 

students to use them.  Their examples for students seem to be geared towards exposure to certain 

notions; there’s a certain “expanding of their horizons” tone to some of the rationale.  For their 

own work, the algebraists focus on using examples to illustrate and generalize claims.  While there 

is some overlap in those contexts, perhaps one of the limitations is our failure to ask the 

algebraists to explain how they show students how to ensure appropriate boundaries for 

generalizations.  For example, as noted above, we did not ask for near-examples which would give 

indications about structures that would allow students to test the boundaries of 

generalizations.  Moreover, while none of the mathematicians specifically described using any of 

their listed structures as counterexamples, it seems reasonable to suggest that they see determining 

the limits of generalization via counterexamples as part of the generalization process (Lakatos, 

1976; Zazkis & Leiken, 2008).  From a research perspective, we will next revise our data 

collection tool to both give better access to algebraists’ thinking and to perform appropriately in an 

online setting. 
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LIVING IT UP IN THE FORMAL WORLD:   
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Abstract algebra is a fascinating field of study among mathematics topics. Despite its 

importance, very little research has focused on the teaching of abstract algebra. In response 

to this deficiency, in this study we present an abstract algebra professor’s daily activities and 

thought processes as shared through his teaching diaries with a team of two mathematics 

educators and another abstract algebraist over the period of two semesters. We examined 

how he was able to live in the formal world of mathematical thinking while also dealing with 

the many pedagogical challenges that were set before him during the lectures.  

 

Keywords: Reflections on Teaching, Abstract Algebra, Formal World of Mathematical 

Thinking 

Introduction  

William Thurston (1994), the Fields medalist, posed the question: “How do 

mathematicians advance human understanding of mathematics?”  In his view, “what we are 

doing is finding ways for people to understand and think about mathematics” (p.162).  It is 

unclear to what extent this is manifested in teaching practices at the undergraduate level, 

however, which are largely undocumented in the literature. As Dreyfus (1991) suggested, 

“one place to look for ideas on how to find ways to improve students’ understandings is the 

mind of the working mathematician. Not much has been written on how mathematicians 

actually work” (p. 29).   

This statement is still relevant almost two decades later, as Speer, Smith, and Horvath 

(2010) believed that very little research has focused directly on teaching practice and what 

teachers do and think daily, in class and out, as they perform their teaching work. They found 

that often “strong content knowledge and the ability to structure it for students may be taken 

as sufficient for good teaching” (p. 111). 

Research in pedagogy at the university level is fairly new, and regrettably the 

communication between the mathematicians and those outside of the community is often very 

limited. According to Byers (2007): 

People want to talk about mathematics but they don’t. They don’t know how. Perhaps 

they don’t have the language, perhaps there are other reasons. Many mathematicians 

usually don’t talk about mathematics because talking is not their thing – their thing is 

“doing” of mathematics. (p. 7) 

In an attempt to close this gap, Hodgson (2012), in his plenary lecture at ICME 12, raised 

the point about the need for a community and forum where mathematicians and mathematics 

educators can work as closely as possible on teaching and learning mathematics. In recent 

years various institutes and individuals have been more willing to examine and reflect on 

their own teaching styles, leading to a growing body of research in this area. For example, a 

study by Paterson, Thomas and Taylor (2011) described a supportive and positive association 

of two groups of mathematicians and mathematics educators from the same university which 

allowed the “cross-fertilization of ideas” (p. 359). The group met on a regular basis and 

discussed teaching strategies while watching small clips of each other’s videos during a 

teaching episode. Hannah, Stewart and Thomas (2011, 2013) indicated cases in which a 

mathematician took careful diaries of his/her actions and thoughts during linear algebra 

lectures and reflected on them with the rest of the team.  Also, a study  by Kensington-Miller, 

Yoon, Sneddon and Stewart (2013) showed how a mathematician, with the help of 
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mathematics educators in a research team,  made changes in his lecturing style while teaching 

a large undergraduate mathematics course by asking well-planned questions. 

Naturally, the teacher and any corresponding methods of instruction do not stand alone in 

the classroom; they are subject to the needs and abilities of the students. In addition to a lack 

of information about teaching practices in abstract algebra, there is considerable evidence 

documenting student difficulty with the subject’s most basic concepts (Clark, Hemenway, St. 

John, Tolias, & Vakil, 2007; Dubinsky, Dautermann, Leron, & Zazkis, 1994).  This situation 

has led one group of researchers to starkly conclude that “the teaching of abstract algebra is a 

disaster” (Leron & Dubinsky, 1995, p. 227).  To further investigate what makes this course so 

challenging, we will examine an abstract algebraist’s daily mathematical activities through 

his teaching diaries to understand his way of thinking and possible challenges of teaching 

advanced mathematics courses that many mathematicians (and their students) may face. The 

overarching aim of this study is to investigate how mathematicians live and dwell in the 

formal world of mathematical thinking and, at the same time, communicate their knowledge 

to their students. Our research questions are: Given that the mathematician in this study is a 

formal thinker, how does he invite students to his world and to what extent is he willing to 

help students to reach the higher level of mathematical thinking? 

In the next section we will explore a theoretical framework by Tall (2004, 2010, 2013) 

that is appropriate in guiding this research to help us understand more about mathematicians 

as formal thinkers.  

  Theoretical Framework   

     In his theory, Tall introduced a framework based on three worlds of mathematical 

thinking: the conceptual embodiment, operational symbolism and axiomatic formalism. The 

world of conceptual embodiment is based on “our operation as biological creatures, with 

gestures that convey meaning, perception of objects that recognise properties and 

patterns...and other forms of figures and diagrams” (Tall, 2010, p. 22). Embodiment can also 

be perceived as the construction of complex ideas from sensory experiences, giving body to 

an abstract idea. The world of operational symbolism is the world of practicing sequences of 

actions which can be achieved effortlessly and accurately. The world of axiomatic formalism 

“builds from lists of axioms expressed formally through sequences of theorems proved 

deductively with the intention of building a coherent formal knowledge structure” (p. 22). 

Tall (2013) suggested that: 

Formal mathematics is more powerful than the mathematics of embodiment and 

symbolism, which are constrained by the context in which the mathematics is used. 

Formal mathematics is future-proofed in the sense that any system met in the future that 

satisfies the definitions of a given axiomatic structure will also satisfy all the theorems 

proved in that structure. (p. 138) 

In his view “research mathematicians will focus attention on the higher demands of research 

and assert professional standards appropriate at that level” (p. 143). As these levels are 

decidedly relevant in abstract algebra, we employed this framework as a means of 

differentiating and drawing comparisons between the varying levels of mathematical thinking 

exhibited by the mathematician in his journals. 

 

Method 

The research described here is a case study of a research mathematician that took place at 

a large research university in Fall 2012 and Spring 2013. The research team consisted of two 

mathematicians and two mathematics educators forming a community of enquiry. The data 

for this research comes from one of the research mathematicians’ daily reflections on his 

teaching of an abstract algebra course, which were made available to the group after each 

class; the team members’ observation of the classes and their comments; weekly discussion 
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meetings of the whole group after reading each of these reflections and the audio recordings 

of each meeting which were later transcribed.  

The mathematics professor in this study was an experienced faculty member who had 

taught many mathematics courses from college algebra to algebraic geometry. He captured 

many details in his daily diaries and shared them promptly with the rest of the research team. 

The journals were brief, often included technical language, and gave an impression to the 

reader of being present in the class.  During the weekly meetings, the rest of the research 

team, having already read the journals, gave the mathematician an opportunity to discuss his 

teaching from the past week. This was followed by questions from the research team, which 

often generated additional discussions. Additionally, the mathematician welcomed 

unannounced visits to his class by other members of the team. During the course of the two 

semesters he planned and devised a few teaching experiments in his abstract algebra lectures. 

He was approachable and open to new ideas during the meetings, and even attended 

educational talks by graduate students in the mathematics department. His positive attitude 

toward teaching and education enabled the team to get as close as possible to his way of 

thinking and interacting in the classroom.    

The main themes emerging from the data were: the role of questions during the lectures; 

the role of examples to preview and illustrate a concept; assessment of students, content, class 

as a whole and students’ understanding; examining the content, textbook and homework;  

reflection on himself, teaching, preparation, interaction and content; teaching experiments, 

preparation, decision making before/during the class, philosophy, rapport, teaching 

observation based on experience and teaching details. The data related to teaching and 

reflection comprised half of the data. For the purpose of this paper we will only concentrate 

on teaching experience and reflections on teaching. 

What we will illustrate next is a glimpse into the mathematician’s daily activity as a 

formal thinker stepping out of the research world and entering into the classroom to teach.  

 

Results 

     As mentioned above, the mathematician performed several teaching experiments during 

the course of two semesters. The teaching experiments often included more focus on students 

and less lecturing.  In one occasion he wrote in his diary (April 1): 

The second half of the class was spent on the notion of conjugacy classes. I did not do this 

at all the way I had prepared it. Somehow, the idea of me writing "Definition:..." etc 

seemed really boring. Instead, I decided to introduce the notion by means of the simplest 

non-trivial example, namely S_3. By now everyone is familiar with this group. I resorted to 

the trick I had used before of having not me, but a student write on the blackboard. I 

called for a volunteer; nobody was eager, but eventually one of the better students stood 

up. …It is always interesting how the simple fact that it is not me but a student standing 

there seems to increase class participation immediately. I believe this example was very 

illustrative and they learned the notion of conjugacy class better than with a formal 

definition. I am now wondering whether to even do the formal definition at all next time we 

continue, or just leave it at that. 

Here we see a formal thinker moving away from his comfort zone of definitions, theorems 

and proofs, reverting back to a simple example in the symbolic world of mathematical 

thinking. By involving a student and starting from an example he is attempting to reach out to 

his students and break down the abstraction of this concept.  Suggesting that he viewed this 

break from the routine as successful, he mentioned that he is considering not making use of 

the formal definition at all the next time he teaches the course.  

On another occasion (February 11) before the class he decided to invite students to 

construct their own proofs without writing it all on the board for them:  
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In this class we proved the main theorem of Galois theory. Looking at my notes right 

before class, I realized that all the pieces of the proof are in place, and there isn't really 

much more to do. So I decided to more or less have the students develop the proof.  I 

started the class by not stating the theorem, but writing down some ingredients of the 

proof, without the students knowing that this is going to be a proof at all. Then I guided 

them towards the main theorem by asking questions. Within ten minutes the proof was 

complete, and only then did we state it formally as a theorem. 

It was apparent that as an experienced mathematician he knew his material well but was 

consciously aware that his students were not yet at that level.  This awareness of the 

discrepancy between his understanding and that of his students was a common theme 

throughout his journals.  For example, on September 17, he wrote: 

We spent the last 15 minutes proving that a field of fractions is a fraction field. I am afraid 

that the point of this was not entirely clear, and that it was in fact a little bit confusing. But 

I don't know how to do it better. 

It was also clear that he was looking for ways to make the ideas that came so naturally to 

him more accessible to his students (February 13): 

Then we formulated and proved a small Galois-theoretic result. This would have been kind 

of a boring afterthought to the main theorem, with no obvious immediate purpose. So I 

thought to myself right before class, how can I make this interesting? I resorted to the 

following trick: Before stating the theorem, I said that the level of complexity of the proof 

is such that a similar statement could easily be a problem on a qualifying exam. I think 

this kept everyone on their toes for the duration of the proof. I halfway had the class 

develop the proof, and it seemed like everyone was thinking hard, wanting to prove to 

themselves that they would be able to figure out a qualifying exam problem. 

He knew that performing these teaching experiments would come with a cost,  so he was 

consciously aware of the time and often was battling a tension between his identity as a 

mathematician (and the desire for conciseness and formality) with his identity as an instructor 

(and the desire to break down the material for his students) (October 22): 

How did this happen? For one, I really wanted to get through with the proof of Gauss' 

theorem today. I knew time would be tight, and indeed we barely made it. So from the 

beginning I was in lecturing mode. Almost as if I didn't want the class to be disturbed by 

the possibility of students asking questions. This, of course, is a terrible attitude towards 

teaching. 

As he reflected on his teaching, this conflict continued to be a challenge. After performing 

another teaching experiment he wrote: “While this was a very ‘cool’ and constructive class, 

we made zero progress on the material we are supposed to cover in this course” (November 

2).  Though teaching experiments comprised a very small portion of the course overall, they 

provided a rich source of insight into this mathematician’s efforts to help his students 

navigate the formal nature of abstract algebra. 

       Although the professor was happy to try different teaching methods, at times he was not 

ready to change his beliefs on the usefulness of traditional lectures (October 15):  

…I thought back about my own algebra education today, and how this was all very old-

fashioned classroom lectures. There were not many questions asked by the teacher, and 

certainly there was never any group work or any kind of teaching experiment. 

Nevertheless, I remember thoroughly enjoying every class, with most of the fun coming 

from the beauty of the material itself. Made me wonder if it was just me having fun, or if 

there is more value in old-fashioned lecturing than we usually think there is. 

     The weekly discussions with the rest of the research team gave the mathematician another 

opportunity to reflect on his teaching and speak freely about the past week’s events.  It was 
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noted that he was often excited about teaching, especially his favorite concepts and the 

materials that were well-prepared before the class (September 15):    

…So when I prepare a class then it’s also understanding for myself even though its stuff I 

know in principle but I put it fresh on my mind right, and it’s almost like it wants to come 

out and it’s really often that I wish the class would happen right now because I want to tell 

people about it now… 

Concluding Remarks 

For a research mathematician, transitioning from the formal world of mathematical 

thinking back to the symbolic and embodied worlds is pedagogically challenging and requires 

an awareness of students’ level of thinking and careful preparation. The results in this paper 

give a brief account of the mathematician’s everyday actions and thoughts. Returning to our 

research questions, the results of this study provide some insight into the thought processes 

engaged in by a mathematician teaching an abstract algebra course.  Specifically, this paper 

details his reflections on his efforts to help his students access the formal nature of abstract 

algebra. The results of this study provide a preliminary characterization of his efforts to do 

so. Of course, this is but a small portion of his journals and reflections (a full-scale report is 

beyond the scope of this proposal). The authors are in the process of making the full report of 

this research available in the near future.    

Reflecting on the statement that “the teaching of abstract algebra is a disaster,” the results 

of this two-semester study of an abstract algebra course suggest a positive outcome with 

regards to the collaboration between mathematicians and mathematics educators, despite the 

fact that 95% of the course consisted of old-fashioned blackboard lectures and no classroom 

technology was deployed. So far the effect of this collaboration has been positive in the sense 

that everyone in the group are not only focusing on the research mathematician’s teaching 

strategies and thinking processes,  but also their own teaching and decision making on a day-

to-day basis. Moreover, it has provided a platform allowing mathematicians to talk about 

mathematics freely and share their pedagogical challenges with each other.    
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PRESENTATION OF MATRIX MULTIPLICATION  

IN INTRODUCTORY LINEAR ALGEBRA TEXTBOOKS 

 

Abstract: We conducted an analysis of 17 modern, introductory linear algebra textbooks to 

investigate presentations of matrix multiplication.  Using Harel’s (1987) textbook analysis 

framework, we examined the sequencing of matrix multiplication and its accompanying 

rationale. We found two principal sequences: one which first defines the operation as a linear 

combination of column vectors before introducing the dot product method (LC to DP), and 

another which invokes the dot product method before linear combinations (DP to LC).  The 

rationale for these two trajectories varied in interesting ways.  LC to DP demonstrates that 

solving a system of linear equations is equivalent to solving its corresponding matrix equation 

Ax=b.  The rationale for DP to LC was less focused, opting in several cases to postpone the 

explanation until linear transformations are covered. We hope to initiate a discussion about the 

effectiveness of and pedagogical implications for these two contrasting approaches.      

 

Key words: linear algebra, matrix multiplication, textbook analysis 

 

Introduction 

Matrix multiplication is likely the first abstract multiplication that students encounter in 

undergraduate mathematics.  It is likely to be the first multiplication that does not ‘multiply’ in 

the literal sense (as with scalar multiplication or the multiplication of real numbers). Rather, 

matrix multiplication is a multiplication (in the sense of ring theory) because it is associative and 

distributes over matrix addition.  As such, it seems reasonable to expect some hesitancy from 

students to accept this more abstract operation (even though the computations are relatively 

straightforward).  This elicits important questions.  Since matrix multiplication can be defined in 

many different ways (see, for example, Carlson, 1993), how is it being taught in undergraduate 

classrooms?  How is it being explained and motivated? 

While no studies were found directly examining teaching practices of this particular topic 

in linear algebra, a possible avenue of potential insight is to investigate presentation of matrix 

multiplication in linear algebra textbooks.  Harel (1987) presented an analysis of linear algebra 

textbooks, yet our work is distinct in two important ways.  First, Harel’s analysis was nearly 

three decades ago, a significant period of time in which impactful attempts at linear algebra 

curriculum reform have been made (for example, Carlson, Johnson, Lay, & Porter, 1993) and an 

array of new textbooks have been published.  Second, Harel makes no direct mention of how 

matrix multiplication is defined or explained.  Harel’s findings, however, provide a useful 

framework with which to conduct our analysis.  He found that linear algebra textbooks varied on 

the basis of sequencing of content, generality of vector space models, introductory material, 

embodiment, and symbolization.  Those tenets of Harel’s framework that inform our analysis are 

detailed in the next section. 

This paper seeks to use Harel’s (1987) framework to investigate the presentation of 

matrix multiplication in modern, introductory linear algebra textbooks.  In doing so, we sought 

answers to the following research questions: 

 How is matrix multiplication defined in modern textbooks?   

 What rationale is given for the proposed definition(s)? 

 What are the pedagogical implications of any differing approaches? 
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Theoretical Framework 

We employ Harel’s (1987) framework for textbook analysis.   However, as Harel’s paper 

presented a macro-analysis (of the content presentation on a general scale throughout entire 

textbooks) and this paper presents a microanalysis (of the presentation of one specific topic), we 

adapted the framework to fit the parameters of this study.  Those tenets relevant to our very 

specific analysis of matrix multiplication are sequencing of content and introductory material.  

We restrict ourselves to these two to form the basis of our analysis.   

Sequencing of content.  Harel noted that introductory textbooks typically follow a 

computation-to-abstraction approach, in which systems of equations and matrix multiplication 

are used to necessitate vector spaces and more general mathematical structure.  Restricting our 

focus specifically to matrix multiplication, however, we examined the sequencing in which the 

textbook authors proceed with the different methods of performing this operation.  Our anecdotal 

evidence and experience indicate that each textbook contains at least two methods.  What is less 

clear, however, is the order in which these methods appear and the rationale given for that 

particular approach.  Any trends in this regard would provide insight not only into the overall 

pedagogical philosophies employed in these textbooks, but would also provide preliminary 

indications of how this topic is being taught in undergraduate classrooms.   

Introductory material.   Harel found that introductory material, attempting to bridge the 

intellectual gap between prior knowledge and the new mathematics to be learned, was presented 

by means of four primary strategies:  

(1) analogy:  describing similarities between familiar notions and new ideas;  

(2) abstraction: introducing students to specific examples before making general claims; 

(3) isomorphization: presenting a familiar concept or structure that is isomorphic to the 

new one at hand
1
; 

(4) postponing: stating that the significance of a topic will be realized later when it is not 

currently obvious. 

Indeed, matrix multiplication is undoubtedly an introductory topic in a first-semester linear 

algebra course (regardless of whether each textbook explicitly characterizes it as such).  To this 

end, these four techniques provide an effective means with which to classify the rationale and 

explanations given for matrix multiplication.   

Method 

 We narrowed our focus to introductory linear algebra textbooks (as advanced books are 

less likely to explicitly detail matrix multiplication) that had been published within the past 

decade (as these books are more likely to be in use in undergraduate classrooms).  We compiled 

an initial list of recently-published textbooks by (1) examining syllabi available online for 

introductory linear algebra courses at more than 20 large universities around the United States, 

(2) conducting online searches of textbook provider websites, and (3) examining the textbooks in 

our own respective university libraries.  Overall, our list is comprised of 17 modern, introductory 

linear algebra textbooks
2
. 

 For each textbook, we examined any sections involving matrix arithmetic or matrix-

vector products and also scanned the table of contents and index for any mention of these topics.  

Relevant pages were photocopied (or, for online books, printed out).  Once all data had been 

                                                           
1
 Note that analogy and isomorphization seem quite similar.  We shall distinguish the two by reserving 

isomorphization for literal cases of mathematical isomorphism; analogy is reserved for all other comparisons. 
2
 Due to their propensity for introducing topics in very similar (if not identical) ways, textbooks sharing an author 

were deemed equivalent (and only counted once).   
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collected in this manner, each textbook was analyzed using the framework detailed above.  The 

framework then enabled us to identify trends and common themes across the entire data set. 

 

Results 

 Two primary methods of defining matrix multiplication were found
3
:  (1) the linear 

combination of the columns method (LC) (in which the matrix vector product Ax is defined as a 

linear combination of the columns of A), and (2) the vector dot product method (DP). 

 Sequencing of content.  Two primary sequences for developing matrix multiplication 

emerged.  First, systems of equations were reframed as the matrix equation Ax=b, wherein Ax 

was defined as a linear combination of the columns of A.  The more general matrix product AB 

was then defined in terms of the matrix-vector product.  In this trajectory, the dot product method 

was secondary and arose as a means to calculate quickly or calculate a single entry (as opposed 

to the entire product matrix).  Second, while systems of equations preceded matrix multiplication 

in each textbook we examined, some textbooks made no explicit mention of the relationship 

between their proposed definition of matrix multiplication and the systems of equations.  These 

textbooks primarily presented matrix multiplication starting with the dot product method (on 

either the matrix-vector product or the product of two matrices).  The linear combination of the 

columns method was given considerably less focus.  We refer to these respective trajectories as 

(1) LC to DP and (2) DP to LC.  The following table classifies each analyzed textbook
4
: 

Sequence Textbooks Employing Specified Sequence 

LC to DP          

(7 total) 

Cheney & Kinkaid (2012); Holt (2012); Lay (2011); Leon (2010);    

Nicholson (2013); Spence, Insel, & Friedberg (2007); Strang (2009) 

DP to LC 

(10 total) 

Andrilli & Hecker (2009); Anton & Rorres (2010); Bretscher (2012); 

DeFranza & Gagliardi (2008); Kolman & Hill (2007); Larson (2012)
5
;     

Poole (2011); Shifrin & Adams (2010); Venit, Bishop, & Brown (2013); 

Williams (2012) 

Rationale.  There were examples of each of the four categories of rationale.  Typically, 

the rationale for the LC to DP method only included isomorphization (as solving the matrix 

equation Ax=b is isomorphic to solving the system itself).  In contrast (and somewhat 

interestingly), the DP to LC method spanned the remaining three categories. 

Rationale Method Example 

Analogy DP to LC “Another basic matrix operation is matrix multiplication.  To see 

the usefulness of this operation, consider the following application 

in which matrices are helpful for organizing information.  A 

football stadium has three concession areas …” (Larson, 2012, p. 

42)  

Abstraction DP to LC “Another useful operation is matrix multiplication, which is a 

generalization of the dot product of vectors.” (Andrilli, 2009, p. 59) 

Isomorphization LC to DP “Theorem 3 provides a powerful tool for gaining insight into 

                                                           
3
 There are, of course, other methods that can be used to multiply two matrices.  Those listed are the most prevalent 

among the textbooks we examined.  For additional information about the nonstandard methods, see Carlson (1993) 

and Strang (2009).  A common method usually occurring amongst the more advanced material in these texts is to 

link matrix multiplication to preserving the composition of linear transformations.   
4
 While each textbook has its own style and slight variations from the other texts, this table displays the general, 

overall pattern of each. 
5
 Larson, Edwards, & Falvo (2008) proceeded identically. 
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problems in linear algebra, because a system of linear equations 

may now be viewed in three different but equivalent ways: as a 

matrix equation, as a vector equation, or as a system of linear 

equations.” (Lay, 2011, p. 36) 

Postponing DP to LC “Only a thorough understanding of the composition of functions 

and the relationship that exists between matrices and what are 

called linear transformations would show that the definition of 

multiplication given previously is a natural one.” (Kolman & Hill, 

2007, p. 24) 

 

Discussion and Questions 

 While analysis of the data is still ongoing, there is sufficient evidence here to conclude 

that these introductory textbooks, while presumably having similar goals, enact strategies with 

contrasting objectives and rationale to achieve them.  We hope to engage the audience in a 

discussion about the pedagogical implications of these differing content sequences and which 

approach is more effective.  In particular, we will ask our audience following questions: 

 Which method of defining matrix multiplication do you prefer?  Why? 

 Does one of the two sequences make more sense mathematically?  Why? 

 While the effectiveness of the two approaches has not been evaluated (quantitatively or 

otherwise), can a sound argument be made that one is more effective than the other?   
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STUDENT UNDERSTANDING OF MEAN, DISTRIBUTION AND STANDARD 

DEVIATION 

Samuel A. Cook  Tim Fukawa-Connelly 

          Wheelock College     Drexel University 

This study investigates the understandings of mean, median, distribution and standard 

deviation that undergraduate students have at the end of an introductory statistics course.  The 

goal was to explore their understandings as a follow-up to previous studies documenting 

incoming student difficulties with the concepts and determine whether a course would help 

them achieve a more statistically appropriate understanding. They overwhelmingly think about 

the mean as the “average” and via the calculating formula, meaning they understand it as a 

process.  Similarly, they understand the median in terms of the process for determining it, or 

via the location-based term, “middle.” As a result, students do not generally understand the 

two measures to be describing a similar concept.  Students do, reliably connect the shape of a 

distribution to standard deviation, but that connection varies by type of display and is not based 

on a reliable rule. 

Key words: measures of center, measures of variation, student understanding, statistics 

education  

One of the most important, and difficult ideas for students to develop is the concept of 

a sampling distribution (Chance, delMas, & Garfield, 2004; delMas, Garfield, & Chance, 

2004). Research suggests students’ difficulties with the foundational concepts of center, 

distribution and variation is the primary contributor (delMas & Liu, 2005).   

The Arithmetic Mean 

The arithmetic mean is a fundamental topic in terms of measures of center in the 

development of statistical knowledge and sophistication (Landrum, 2005; Mokros & Russell, 

1995).  The mean can be understood in a variety of ways. Consequently, it would be 

beneficial for students to have a variety of possible conceptualizations of the mean (Cook & 

Fukawa-Connelly, 2012; Watier, Lamontagne, & Chartier, 2011). There is evidence that K-

12 students often develop a very procedural understanding of the mean rather than one that 

includes an intuitive or conceptual understanding (Watier, Lamontagne, & Chartier, 2011) or 

one that is able to be operated on as an object (Mokros & Russell, 1995).  At the conclusion 

of Mokros and Russell’s study (1995) none of the students in the study showed a thorough 

understanding of the mathematical relationships of the mean and stated “One of the questions 

that remains is how children can ultimately come to understand the mean as a mathematical 

point of balance (p. 38).”  Mokros and Russell therefore claim that the arithmetic mean, as an 

object, should not be introduced until after students have mastered other fundamental ideas. 

The inability for 8th graders to arrive at an abstract understanding of the mean is unsurprising 

when considered with what is known about cognitive development (Woolfolk & Perry, 

2012).  In particular, there is significant evidence that high school students, and even many 

adults, do not have the ability to use formal synthetic reasoning (Shayer, 2003).  It is much 

more typical that the type of formal operational ability needed to support an object-

understanding of the mean can only come as a result of undergraduate instruction (Woolfolk 

& Perry, 2012).  By the end of an introductory statistics course, students should have the 

reasoning ability and be developing abstract notions of the mean and be able to operate upon 

it. One of the goals of this study is to test that claim. 

The Standard Deviation 

Compared to students’ understanding of measures of center, and the mean in 

particular, relatively little research has been conducted on students’ understanding of 
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variation and distribution (delMas & Liu, 2005; Peters, 2011).  Yet, as Peters, drawing on 

delMas and Liu’s work, explains, “understanding standard deviation or mean absolute 

deviation necessitates a dynamic conception of distribution that coordinates changes to the 

relative density of values about the mean with their deviation from the mean” (p. 55, 2011).  

That is, understanding the standard deviation both requires an ability to think about the mean 

in quite sophisticated ways and also about distribution in dynamic ways, both of which are 

believed to be difficult.  There are two relevant studies to student understanding of the 

standard deviation.  The first focused on students’ initial understandings of standard 

deviation, prior to any undergraduate coursework and described stages of understanding that 

students might develop based upon asking them to complete a series of visualization tasks 

(delMas & Liu, 2005).  Peters’ paper was also describing different ways that students might 

reason about the standard deviation.  Both were as focused on the ways that their participants 

could develop their thinking as describing how students are most likely to think.    

Research questions 

 We respond to delMas and Liu’s call for more study of how students “ make 

comparisons of variation between two or more distributions” (p. 56).  We intend to focus on 

the first piece, attempting to describe the ways of understanding measures of variation that 

the broad range of students hold while also expanding on extant studies of student 

understanding of the mean and measures of center.  Therefore, we investigate the following 

research questions: 

1. In what ways do undergraduates, who have completed an introductory statistics 

course, think about the mean and median?   

2. Are undergraduates who have (nearly) completed an introductory statistics course 

able to determine which graphical representation shows a distribution with more 

variability  

Previous statistics research has shown the utility of Sfard’s (1991) description of two ways to 

understand a mathematical concept; as a process and as an object. In holding a process 

conception, an individual sees a concept as a “potential rather than actual entity, which comes 

into existence upon request in a sequence of actions” (p. 4).  The second way that an 

individual might see a mathematical entity is as an object, referring to it as if it were a real 

thing that exists somewhere.  Holding an object conception also means being able to 

apprehend the entirety of the concept, manipulate it as a whole, and operate or perform 

processes on the concept.  The student can also explore the general properties of the category 

of concepts and relations between the concepts themselves. In general, holding a 

misconception can be understood as a normal part of the learning process, and development 

of more correct concepts may involve students concurrently holding two or more competing 

conceptions (Smith, diSessa, & Roschelle, 1994).  This research should be understood as an 

investigation of the types of understandings of mean and standard deviation that students hold 

at the end of an introductory course in statistics, or, the most mature understandings that most 

students will ever hold.  We investigate whether they have process or object conceptions, or, 

if they have gone down a side-route and have fixed on a quasi-structural set of ideas.   

Methods 

Data for this study was drawn from 41 participants from multiple universities.  Each of 

the participants completed a 5-item survey that included three items focused on students’ 

understanding of the mean and median and two items focused on students’ understandings of 

standard deviation. The research team drew on items focused on student understanding of the 

mean and median that had previously been used in similar studies (Kim, Fukawa-Connelly, & 

Cook, 2012).  The two items assessing student thinking about distribution, and the standard 

deviation, were taken from delMas and Liu’s (2005) work.  These two items were selected 

because they were best at differentiating students in terms of their thinking about distribution 
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and standard deviation.  Moreover, the items also consistently solicited different types of 

thinking about the concepts, thereby allowing the researchers to give more complex 

descriptions of student understanding. 

Approximately two thirds of the students completed the survey on-paper while the rest of 

the participants completed an online version that had the same format except that all items 

were presented on a single page rather than front-to-back.  The online survey did have a 

relatively large number of individuals agree to participate and then not complete any items.  

We believe a reasonable fraction of these were likely the individuals to whom we sent the 

original solicitation for recruitment of participants; departmental administrators and faculty, 

although we cannot be sure.   

Survey responses were summarized in two ways.  The first was used on survey items 1 

and 2, students were asked to list all of ways of they think about the mean (item 1) and 

median (item 2).  Responses were divided into six response categories for item 1 and seven 

for item 2.  If a participant listed a way of thinking related to a category they were placed in 

that category, such that, each participant was placed in at least 1 category, but may have been 

placed in every category if their list dictated such.  The second was used on item 3 where 

participants were asked if the mean and median describe similar things and items 4 and 5 

where participants were asked to identify the larger standard deviation between two visual 

summaries.  Each response was placed into a single category response that identified both the 

answer the participant chose and the reasoning they gave.  From these categorizations, we 

identified individual responses that were representative and interpreted them in terms of the 

categorization appropriate for either mean (Cook & Fukawa-Connelly, 2012) or standard 

deviation (delMas & Liu, 2005) and explain the type of understanding that the students most 

likely hold. 

Data and Results 

Of the 41 participants, 39 chose to provide a response to item 1, which asked 

participants to “Please list all the ways that you know how to describe or think about the 

mean”; these responses are summarized in table 1. The most common response participants 

gave in item 1 was to describe the mean as an average as 35 of the 39 participants used 

average, in some way, in their response.  Another common response was to include the 

formula for the arithmetic average, either symbolically, through example or through an 

explanation such as “add up the numbers and divide the amount”; 17 of the 39 respondents 

thought of a mean as a formula, with 16 of the formulas deemed correct and one that stated 

that he/she thinks of a mean as “add up and average of all data”.  Of the 17 participants that 

think of a mean as a formula, 15 of them also stated that they think of a mean as an average, 

and 13 of the 17 participants did not have any additional ways of thinking about the mean.  

Of the 39 participants 23 (59%) think about the mean as only an average, only a formula or 

an average and a formula, but not more. 
 

Table 1. Responses about the mean 

Response Average Formula Center, Middle or 

Representativness 
Samples vs 

Populations 
Arithmetic vs 

Geometric 
Other 

Percentage of 

Participants 
89.7% 43.6% 28.2% 10.3% 2.6% 15.4% 

 

Of the 41 participants, 39 provided a response to item 2, which asked participants to 

“Please list all the ways that you know how to describe or think about the median”; these 

responses are summarized in table 2.  In some way, 82.1% of responses included a reference 

to the middle of data with 53.8% of respondents being more specific by indicating an ordered 
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middle, explaining the procedure to find the median or doing both.  In addition to the 82.1% 

who used the word middle, 10.3% did not use the word middle in how they think about the 

median, but did describe the median using the words center, central tendency or 50th 

percentile.  There were 3 (7.7%) participants that did not provide a response that correctly 

described the median, 2 described the mode and 1 stated it was “the average number out of a 

few different statistical numbers”.  There were also 3 participants who thought of the median 

as an “average”, where average was used in a colloquial way, for example: “Median is the 

“middle” number of the data set.  It also can reflect the average standard of the data.”. 
 

Table 2. Responses about the median 

Response Middle Ordered 

Middle 
Formula or 

Procedure 
Center or Central 

Tendancy 
Resistent 

to outliers 
“Average” Something 

incorrect 

Percentage of 

Participants 
82.1% 38.5% 30.8% 15.4% 10.3% 7.7% 12.8% 

 

Of the 41 participants, all 41 chose to provide a response to item 3, which asked 

participants “Do you believe that the mean and median describe similar things?”;  these 

responses are summarized in tables 3a and 3b.  In the online version of the survey, 

participants were forced to pick between “yes” and “no” if they chose to answer the question.  

The paper surveys asked for a yes or no, but some participants said “sometimes yes and 

sometimes no”; therefore, if in the reasoning given on the online surveys it was indicated that 

the answer is sometimes yes or sometimes no, they were placed in that answer category.    

 When participants responded that the mean and median sometimes do and sometimes 

do not describe similar things, in all cases their reasoning was based on the result of the 

calculation or the final “figure” as several students wrote.  Some participants went further and 

indicated that the figures would only be similar if the data was normal or symmetric. 

 Focusing on the result or final “figure” was also popular reasoning for answering both 

yes and no.  For those who indicated that yes, they do describe similar things, 16.7% noted 

that the result of the mean and median are usually close together; therefore, they are similar.   

Likewise, of those who indicated that they did not believe they describe similar things 46.7% 

reasoned that because the results will not always be close together they are not describing 

similar things; some added further reasoning around outliers or issues of skewed 

distributions. 

 Among all respondents, 43.9% of them used the result of the calculation of the mean 

or median as the reason for selecting yes, no, or both yes and no. Another reason students 

claimed that the mean and median do not describe similar things drew on the definitions of 

the two, one is an average and the other a middle point and are therefore not describing 

similar things. 

 The reasoning for participants determining that the mean and median describe similar 

things is summarized in table 3b.   The most detailed reasoning was found for those who 

responded with a yes, with 55.5% of yes respondents citing that both describe the middle or 

center of data, or the notion of representativeness was used.  One response indicated that both 

represent an “average”, where average represented the colloquial definition and not the 

mathematical or statistical.  Additionally, 16.7% of respondents did not provide a clear reason 

but did specifically indicate that they recognized a mean and median are not the same thing, 

but do describe similar things. 
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Table 3a - “Do you believe that the mean and median describe similar things?” 

Response Yes No Sometimes yes and sometimes no. 

Percentage of 

Participants 
43.9% 36.6% 19.5% 

 

Table 3b - “The mean and median describe similar things” 

Reasoning Center, Middle or 

type of “Average” 
Numerical value 

is similar. 
Similar but not Same, with no 

additional reasoning. 
No reasoning or 

incorrect 

reasoning 

Percentage of 

Participants 
55.5% 16.7% 16.7% 11.1% 

 

Of the 41 participants, all 41 provided a response to item 4, which asked participants 

“When determining the size of the variability of the data summarized by the following two 

histograms, is the standard deviation for the graph on the left smaller, larger or the same as 

the graph on the right?”; there were 2 responses that did not provide a clear answer between 

smaller, larger or the same so those were ignored and a sample of 39 is summarized in table 

4a.  The histograms described two distributions of similar symmetric shape and mode, but 

with differing areas of no data such that the graph on the left had a smaller standard 

deviation.  Of participants who concluded the histogram on the left had a smaller standard 

deviation (69.2%), 55.6% of them reasoned similar to delMas and Liu’s study, giving a 

reason that was categorized as there being more data near the middle of the left histogram 

than the right; while 11.1% used a mathematical reason similar to “more in the middle”, 

reasoning that the deviations on the left would have more small differences.  These results are 

summarized in table 4b. 

Of those respondents who did not chose smaller, the majority decided that the 

standard deviations were the same with the primary reason given that both histograms were 

balanced or, similarly, that the mean and median were the same.  These participants 

concluded that the actual deviations on the right and on the left were identical and thus the 

variation of each was the same.  These results are summarized in table 4c. 
 

Table 4a - “The standard deviation for the above graph on the left is:” 

Response Smaller than the graph on the 

right. 
Larger than the graph on the 

right. 
the same as the graph on 

the right 

Percentage of 

Participants 
69.2% 5.1% 25.6% 

 

Table 4b - “The standard deviation for the graph on the left is smaller than the graph on the 

right” 

Reasoning More in the 

Middle 
Use of formula or 

mathematical 

reasoning. 

Different distribution or left 

has a steeper peak in 

distribution 

No reasoning  

Percentage of 

Participants 
55.6% 11.1% 11.1% 22.2% 
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Table 4c - “The standard deviation for the graph on the left is the same as the graph on the 

right” 

Reasoning Mean = Median Balanced Distribution 

or distance from mean 

the same on both 

sides 

Follow the same distribution 

shape. 
No reasoning  

Percentage of 

Participants 
30% 40% 20% 10% 

 

Of the 41 participants, 38 provided a response to item 5, which asked participants “When 

looking at the box-plots above, is the standard deviation for the data in the graph on the left 

smaller, larger or the same as that in the graph on the right”; in 3 of the responses an answer 

could not be determined and are ignored, these results of 35 responses with determinable 

answers are summarized in table 5a.   The box-plots described two distributions of similar 

medians but differing ranges and locations; such that, the box plot on the left had a smaller 

standard deviation.  Of the participants who stated that the graph on the left has a smaller 

standard deviation 71.4% of them referenced the difference in range, IQR, spread or some 

combination of range, IQR and spread as their primary reasoning, and 14.3% referenced more 

data near the middle.  Other than participants that did not provide a reason, this accounted for 

everybody who chose the box-plot on the left. 

 There were 7 remaining participants who did not select the box-plot on the left as 

smaller, 5 of them provided no reasoning or reasoning that was difficult to follow, 1 indicated 

a difference in the size of the IQR, but then concluded the left was larger, and one used 

differences in skewedness to indicate the box-plot on the left had a larger standard deviation. 
 

Table 5a - “The standard deviation for the above graph on the left is:” 

Response Smaller than the graph on the 

right. 
Larger than the graph on the 

right. 
the same as the graph on 

the right 

Percentage of 

Participants 
80% 14.3% 5.7% 

 

Table 5b - “The standard deviation for the graph on the left is smaller than the graph on the 

right” 

Reasoning Smaller 

IQR/Range/Spread 
More in the middle, 

no reference to range 

or spread. 

No reasoning  

Percentage of 

Participants 
71.4% 14.3% 14.3% 

 

Discussion 

The results presented above demonstrate how students think about the mean, median, 

and variation.  In terms of the mean, the results show that the students overwhelmingly think 

about the mean via the term average and via the formula.  Cai, Lo and Watanabe (2002) 

showed that textbooks in the United States present the formula (a process-based 

understanding), which is contrasted with an equal-sharing (process or object) or per-unit 

quantity type of understanding (object) and at a more advanced level, the mean can also be 

understood as a representative of the data set (object). That the students typically hold a 

process-conception of the mean was reinforced by the results about the median (almost 
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always described in terms of “location” or a process) in that the students’ discussion about 

whether the mean and median could be said to describe the same thing focused on numerical 

result, only claiming that they would be similar if the results are similar. That is, because the 

processes yield different results, the concepts do not describe similar things.  This finding 

demonstrates that a semester of undergraduate statistics was insufficient to help students 

progress to more abstract understandings, even though they are needed in order to develop 

correct notions of inferential statistics. 

In terms of the students’ understanding of variation and distribution, this study was 

designed to determine whether students at the end of a traditional undergraduate statistics 

course had understandings of spread and variation more similar to the pre-intervention or 

post-intervention students in delMas and Liu’s (2005) study.  In general, the students in our 

study did primarily draw upon reasoning related to spread or variation.  Overall, this is the 

type of reasoning that we want to promote (even if the results of that reasoning were incorrect 

for many of them), and, it suggests that the students recognize that the shape of the 

distribution does give information about the standard deviation. It is important to help 

students better reason in that way, meaning, to correctly recognize spread and variation from 

a histogram and a box-and-whisker plot.  This study has the limitation of not being able to 

further explore or explain the students’ reasoning, and, as a result, we do not attempt further 

inferences about it. 

There has been, thus far, no direct investigation attempting to document classroom 

instruction in statistics and link it to changes in student understanding (there have been 

multiple teaching experiments).  Our work suggests a need to attempt to do so, perhaps as a 

means to motivate adoption of research-based curricula, but at the least, in order to explain 

why students hold the conceptions that they do. 
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A TYPOLOGY OF VALIDATING ACTIVITY IN MATHEMATICAL MODELING 

Jennifer A. Czocher 
Texas State University 

Mathematical modeling tasks are used to help students learn mathematics and also to im-
prove their modeling skills. Validating has been identified as the process by which students 
check and revise their models, but little is known about when or how students choose to do 
so. This study examined engineering students’ validating activity and characterized it into a 
typology of different kinds of validating activity satisfying different roles in ensuring accura-
cy of the model. 

Key words:  differential equations, mathematical modeling, qualitative methods 

Introduction 
Mathematical modeling tasks have been shown to help students learn significant mathe-

matical ideas (Lesh, Cramer, Doerr, Post, & Zawojewski, 2003) and to hone students’ model-
ing skills (Haines, Crouch, & Davis, 2001; Mousoulides, Christou, & Sriraman, 2008). Re-
searchers have described students’ modeling activity an iterative process, where the connec-
tion between the real world and the mathematical world is continually refined (Blum & Leiß, 
2007). While theory emphasizes the importance of the iterative refinement of the mathemati-
cal representation and the modeler’s interpretation of the situation (Lesh & Yoon, 2007; 
Thompson & Yoon, 2007), it has not yet clarified how such refinements or reinterpretations 
occur. Current descriptions of how modelers revise their models rely on the activity validat-
ing – confirming that a model yields accurate predictions – but there is not yet a description 
of how students validate their models. The present study  addressed this gap. 

 The research presented here is part of a larger study of engineering students’ mathemati-
cal thinking during mathematical modeling, but the current focus is on characterizing stu-
dents’ validating activity. Drawing on evidence generated by undergraduate engineering ma-
jors working on mathematical modeling tasks, this report elaborates on validating activity and 
addresses the research question: How do engineering majors’ validating activities contribute 
to the refinements of their mathematical models? 

Theoretical Framework 
The construct validating is drawn from Blum & Leiß’s (2007) theoretical model of indi-

viduals’ mathematical modeling activity, which served as the research framework for this 
study. A schematic of the research framework is shown in Figure 1. The framework separates 
the world into the real world and the mathematical world and overlays an iterative cycle of 
activity (separated into stages of model building [a – f] marked in red and transitions among 
those stages [1-6] marked in blue). The cycle represents the transformation of a real world 
problem into a mathematically well-posed problem (stages [a – d], transitions [1 – 3]), which 
is analyzed mathematically (stages [d – e], transition [4]), interpreted in terms of the real 
world (stages [e-f], transition [5]), and then compared against the state of the real world (tran-
sition [6]).  

 According to the framework, validating consists of verifying results obtained from 
analysis and interpretation of a mathematical model against measurements from the real 
world (transition [6]). This definition can be broadened by recognizing that it is essentially a 
comparison activity: comparing an obtained outcome (object of validation) to an expected 
outcome (standard of validation). The result is that the model is either accepted or rejected. 
When the results are accepted, the modeler exits the modeling cycle. If the model is rejected, 
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the theoretical framework predicts that the modeler re-enters the modeling cycle after making 
adjustments to the model.  

  Methods  
The stages and transitions outlined by the theoretical framework guided task design, data 
analysis, and data interpretation. Mathematical modeling tasks were designed to elicit each of 
the six transitions predicted by the framework.  Seven one-on-one, semi-structured, modeling 
task-based interviews were conducted with four undergraduate engineering majors (total of 
60 hours of interviews) who were purposefully selected according to their performance on a 
knowledge of calculus screening test. Mance and Trystane were selected for low performance 
while Torrhen and Orys were selected for high performance. They were in their freshman and 
sophomore years and enrolled in a differential equations course at a large Midwestern univer-
sity. Each session lasted between 1 and 2 hours and addressed between 1 and 3 tasks. Math-
ematics elicited by the interview modeling tasks ranged from arithmetic to differential equa-
tions. The interviewer interacted with the students to request clarification of the students’ so-
lutions or to challenge the students’ solutions. The sessions were audio/video recorded.  

Data analysis followed a four stage process. First, indicators were developed from 
transcribed interviews and literature to identify where the students’ utterances and mathemat-
ical work corresponded to transitions in the modeling cycle (samples given in Table 2). Sec-
ond, using the indicators, students’ utterances and mathematical work were tagged with the 
transitions in the modeling cycle. During data analysis it was observed that students’ utter-
ances and mathematical work corresponding to the middle of the modeling cycle also fit the 
descriptors for validating activity. Instances of validating activity were selected for systemat-
ic inspection. From this closer inspection, five kinds of validating activity were observed 
based on what stage of the mathematical model the student was validating (object of valida-
tion) and the stage of the mathematical model the student was comparing it to (standard of 
validation). See Table 3 for samples. Third, a typology based on the object/standard of vali-
dation was developed and used to characterize instances of validating activity. Fourth, sec-
ond-order models of the students’ mathematics were constructed (Steffe, 2013). These are 
essentially the researcher’s narrative accounts of the students’ mathematics as interpreted 
through the researcher’s own mathematical theories and experiences. The narratives were 
used to ground the students’ mathematics use in context and are what the illustrations pre-
sented here are drawn from. These second-order models emphasize the student’s use of math-
ematical ideas rather than whether each step in solving the problem was correct. Therefore, 
during data analysis, the research attended to the students’ validating activity and their own 
interpretations of the correctness of their own mathematics and modeling activity. 
 An example of the tasks used is the falling body problem, which is amenable to solu-
tion via kinematics, energy equations, and differential equations: On November 20, 2011, 
Willie Harris, 42, a man living on the west side of Austin, TX died from injuries sustained 
after jumping from a second floor window to escape a fire at his home. What was his impact 
speed? 

 Results 
The data suggested that students used validating activity for two different, but related, pur-
poses: to check the model’s representativeness and to check the model’s accuracy. Based on 
evidence from the interview sessions, the definition of validating activity was expanded into 
a typology of five types of validating activity (Table 3) which are illustrated below. An ex-
ample is offered for each kind, but the kinds are not mutually exclusive. Due to space con-
straints, the examples were selected purposefully for their illustrative power so as to demon-
strate each type as clearly as possible. Thus, the selection is not representative of all the tasks. 
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However, at least one example was chosen to share from each student and the illustrations are 
typical of the data set as a whole. The typology was capable of characterizing all instances of 
validating activity. Abridged task statements are given in Table 4. Throughout, italicized 
segments of protocol were coded as validating activity.  
 
Type (i): Mathematical Results  Mathematical Model. In order to use a model to make ac-
curate predictions, two conditions must be met. The first is that the mathematical model must 
correctly represent the situation. The second is that the analysis of the model that yields the 
prediction must be correct. Type (i) activity amounts to verifying the outcome of mathemati-
cal analysis and ensuring that the model satisfies the second condition.  
 In the Tropical Fish Tank problem, Mance set up a differential equation to model the 
amount of buffering agent in the tank. The model was incorrect, but he was able to solve it 
using integration techniques. 

Mance: So 𝑑𝑐
𝑑𝑡

 umm, integrate that, you’re gonna go with 𝑐 equals, umm 5, no 60, no, 
plus now, negative 𝑡 over 60. That’s the integral. I’m pretty sure that’s what you 
have to do for that. If this [the expression for 𝑑𝑐

𝑑𝑡
] is your, if that was your initial 

rate you were given, um, to get a concentration at a given point you need the 
concentration as a actual variable. So I did the integral of this [𝑑𝑐

𝑑𝑡
] with respect to 

𝑡 and then this will just be 𝑐. 
In this excerpt, Mance reviewed the product of his work, checking that he could see the con-
nection between the starting expression and the resulting expression through his analysis. 
 
Type (ii): Mathematical Model  Situation Model. Type (ii) activity is notable in that there is 
no mathematical analysis taking place. The modeler directly compares the mathematical 
model to his conceptual model of the problem setting. It contributes to ensuring that the mod-
el is representative of the real situation. In contrast, Type (iii) has to do with ensuring that 
relationships among variables in the mathematical representation reflect those chosen as im-
portant. In the Falling Body problem, Trystane compared the variables in his mathematical 
model to the quantities he expected to appear in it and found that his idealized real model was 
missing a variable. Using dimensional analysis to derive a differential equation, he noted that 
variables were missing from his model. 

Trystane: Looks to me like we need the mass of something times a coefficient of 
the air – dunno why I made that a W. 

Interviewer: You might’ve been calling it “wind.” 
Trystane: Oh, wind! The coefficient of the friction of the wind times velocity 

equals force. And this was force. Intuitively, I don’t think I trust that. That’s [the 
differential equation] the answer that I reached. But I really think it has some-
thing to do with the surface area because this pencil would fall faster than a big 
piece of paper weighing the same amount. 

Here, Trystane directly compared his mathematical model to the situation model and found 
that it was lacking a variable that he expected would impact the force of drag experienced by 
the falling object. This prompted him to declare the variable – incorporate surface area into 
his idealized real model – and try to represent it in the mathematical representation for drag. 
 
Type (iii): Mathematical Representation  Real Model. This type of validating is character-
ized by an effort to check whether the mathematical relationships among the factors present 
in the model match the intended physical relationships in the idealized real model. Type (iii) 
validates mathematizing activity and ensures that the model is accurate given assumptions 
made during simplifying/structuring activity. It tended to surface in tasks involving dynam-
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ics. In the Empire State Building problem, Orys decided that fitness of the individual ascend-
ing the building by stair must be accounted for. He invented a constant (F) to represent fit-
ness and manipulated it and his model such that a less fit person would have a slower ascen-
sion pace. 

Orys: Maybe just rearrange this a little. It’s gonna be like steps time 𝐹 over speed. I 
guess it would even be just put 𝐹 on the bottom like 𝐹 × 𝑠𝑝𝑒𝑒𝑑, based on the 
more fit you are the faster you’re going. This is just speed, is the average speed, 
someone would travel and say you’re more fit than the average person, you 
should go maybe 1.2 times that speed and you’re less fit and you would go .8 
times that speed. 

Orys ensured that the principle more fit people go faster was captured by the product 
𝐹 × 𝑠𝑝𝑒𝑒𝑑. He did this by comparing his mathematical representation to the princi-
ples included in his idealized real model of the situation. 
 
Type (iv): Real Results  Situation Model. This is the kind of validating activity predicted by 
theory. It compares the model’s prediction against the modeler’s expectations of the real situ-
ation and is used to ensure accuracy of the model. In the data, it tended to happen only when 
the task requested a numerical prediction from the derived model. In the Falling Body prob-
lem, Torrhen used kinematics equations to predict that a falling body would impact at 18.12 
miles per hour. He validated this against his empirically based perceptions of speed: 

Torrhen: If I were to hit a brick wall with that, it would hurt a lot or possibly kill me 
and 18 mph definitely. And it’s [the prediction] higher than that. A car crash at 
18 miles per hour isn’t too much. But if you were completely unprotected, if you 
were hit by a car going 20 mph, not so much a car, but a bus that was more flat 
like going into the ground, then that would be painful. 

Torrhen justified his obtained value by comparing it to a value he knew would cause the kind 
of damage to the falling body that was reported in the problem statement. 
 
Type (v): Real Results  Real Model. This kind of activity was observed only in tasks that 
required differential equations but did not request a numerical prediction. This is because the 
result of analyzing a differential equation is a family of equations, in essence, another model. 
Trystane derived a first-order linear equation to model a falling body influenced by gravity 
and air resistance. As a solution, he obtained 𝑄(𝑡) = 𝐶𝑒𝜆𝑡. Unable to determine from the ex-
pression whether the exponential modeled the velocity of the falling body, he drew two graph 
shapes, one linear and one exponential. His dilemma was which type of relationship would 
best describe how force-due-to-drag would increase with velocity. On its own, this behavior 
demonstrates Type (iii) validating activity. However, it is embedded in a vignette of Type (v) 
activity. The exponential expression is the result of mathematical analysis and in the follow-
ing excerpt, Trystane contemplated whether it fit his expectations from the real world. 
 The transcript below shows Trystane comparing his model to his expectations of how the 
important variables (force-due-to-drag and velocity of the object) should be related.  

Trystane: I’m not sure that’s [the exponential solution] right because I’m not sure if 
there should be some sort of constant increase as you get faster, um. I guess that 
just stems from fluid mechanics. For instance, I don’t know if it’s a linear graph 
[draws linear graph] or if as you’re going faster it gets [draws exponential 
graph]. 

Interviewer: What’s this graph represent? 
Trystane: This [linear graph] is a straight line. 
Interviewer: Of what versus what? 
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Trystane: Of force due to wind [vertical axis] and this is velocity [horizontal axis] 
and then this is force. I guess that would be switched [switches axis labels on ex-
ponential graph]. Force gets greater and greater.  

Interviewer: So you’re saying there’s an increasing relationship between these two, 
force and velocity, but you don’t know— 

Trystane: -- I don’t know exactly what this would look like and then this would de-
termine whether this [the differential equation] equals zero or this equals some 
sort of forcing time. So I mean, right now I’m getting 𝜆 equals the negative of a 
constant. Um, but this doesn’t really, it doesn’t really tell me a whole lot because 
I don’t know what the graph should look like. I feel like it probably equals some 
sort of forcing term. Because I don’t think the solution would end up being that 
as 𝑣 [velocity] increases and position, I don’t think it’s gonna be 𝐶𝑒𝜆𝑡. 

In this excerpt, Trystane relied on graphical models of a qualitatively distinct relationship be-
tween the two variables of interest to make a decision about whether the exponential repre-
sentation was acceptable. In essence, he compared his mathematical model with a condition 
of his real model. He decided against the exponential because he was concerned with how an 
exponential velocity would affect position.  

Discussion and Conclusions 
The typology described here is a product of a novel use of the mathematical modeling 

cycle developed by Blum & Leiß (2007). It was capable of characterizing all instances of val-
idating activity observed during the interviews. The mathematical modeling cycle was built 
with the idea that validating occurs when checking the real results (stage [f]) against empiri-
cally collected data. Analysis suggests that this is not the only kind of validating activity and 
that other kinds of validating activities lead to model refinement and may even offer insight 
into the problem setting. In terms of the mathematical modeling cycle, the object of valida-
tion can be the situation model, the real model, the mathematical representation, the mathe-
matical results, or the real results.  The five kinds of validating activity could be separated 
into two interrelated purposes: those which examine predictions from the model (Types (i), 
(iv), and (v)) and those which examine fidelity of the model to the situation it was supposed 
to represent (Types (ii) and (iii)). Both are necessary for and contribute to developing accu-
rate, representative mathematical models. 

Longer and more involved tasks – those requiring substantial mathematical analysis – 
tended to prompt more comparisons between the mathematical result and the mathematical 
model (Type (iii)). In addition, tasks involving dynamics seemed to prompt more validation 
of the mathematical model itself against the real and situation models. Likewise, comparison 
of real results to the situation model – the kind of validating activity predicted by theory – 
happened when numerical predictions were made. 

The current work may explain what are termed blockages in the modeling cycle 
(Galbraith & Stillman, 2006). Blockages were conceptualized as impediments to progress 
from one stage of the model to the next. The researchers presented a taxonomy of elements in 
the solution process that students could get caught up on and which would derail a solution 
procedure, such as “clarifying context of problem” (corresponding to real situation/situation 
model  real model transition) or “using correctly the rules of notational syntax” 
(corresponding to real model  mathematical results transition) (Galbraith & Stillman, 2006, 
p. 147). The researchers generated a modeling cycle that included backwards arrows at each 
site where blockages could occur, essentially reversing the transitions between stages in 
Blum & Leiß’s (2007) model. Conceptualizing backwards motion through the modeling cycle 
as blockages is in part based on the assumption that validating can occur at only one site in 
the modeling cycle. The present analysis suggests that these blockages may be precipitated by 
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validating activity. Future research should investigate whether and why an instance of 
validating activity may have led to a blockage. To do so, tasks which elicit different kinds of 
validating activity must be developed. 

Another direction for future research would be to examine whether the individual’s 
mathematical model is revised or if the individual’s understanding of the problem situation is 
refined depending on the type of validating activity the student engaged in.  Answers to such 
a question would aid in understanding the interplay between thinking about the real world 
and thinking about the mathematics that represents it. 

This study has demonstrated that students engage in validating activity throughout the 
modeling cycle. Only checking the real results against the situation model (Type (iv)) is not 
sufficient for diagnosing where in the model-building process a mistake or misstep might 
have been made or how to rectify it. This is important for teaching with modeling because 
envisioning where students might need validation during a derivation or modeling problem 
can help in providing them support. This finding is important theoretically because the sites 
of validating activity may be sites where metacognition or coordination of different 
knowledge bases (e.g., scientific and mathematical) could be studied.   

The present study suggests reivsions to the modeling cycle which would account for a 
variety of validating activities that are critical for refining mathematical models. Further 
research is needed to integrate the typology into the research framework and to understand 
which types of validating are most likely to occur and under what conditions. 
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Figure 1: Research framework (Blum & Leiß, 2007) 

 
  
Table 1 Stages of model building 

Stage of Model Definition 
[a] real situation  situation, as observed in the world 
[b] situation model conceptual model of problem 
[c] real model idealized version of the problem (serves as basis for mathematization) 
[d] mathematical model model in mathematical terms 
[e] mathematical results answer to mathematical problem 
[f] real results answer to real problem 
 
Table 2 Transitions and sample indicators 

Transition Captures Sample Indicator 
[1] understanding forming an idea about what the 

problem is asking for 
reading the task 

[2] simplifying & structuring identify critical components of the 
problem situation 

making assumptions to “simplify” 
the problem 

[3] mathematizing represent the idealized real model 
mathematically 

writing mathematical representa-
tions of ideas 

[4] working mathematically mathematical analysis explicit algebraic or arithmetic 
manipulations 

[5] interpreting recontextualizing the mathemati-
cal result 

speaking about results in context 
of the problem 

[6] validating verifying results against the real 
world 

implicit or explicit statements 
about the reasonableness of the 
answer 

 
Table 3 Typology of validating activity 

Type of Validating Activity  
 Object of Valida-

tion 
Standard of Validation Description 

(i) mathematical results mathematical model checking the results of a calculation or mathemati-
cal analysis mathematically 

(ii) mathematical model situation model comparing the mathematical model, its constituent 
components or relationships, to the interpretation 
of the problem setting 

(iii) mathematical model real model comparing the mathematical model, its constituent 
components or relationships, to the idealized ver-
sion of the problem setting 

(iv) real results situation model the kind of validation predicted by the theoretical 
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framework 
(v) real results real model comparing the real results against physical princi-

ples present and accounted-for in the real model 
 
Table 4 Task the example was drawn from 

Type of Validating Task/Student Abridged Problem Statement 
(i) Tropical Fish Tank/Mance Model the amount of a pH buffering agent currently 

in a tropical fish tank. 
(ii) Falling Body Problem/Trystane What is the impact velocity of a falling body? 
(iii) Empire State Building/Orys How long does it take to ascend the Empire State 

Building via the tourist elevator? Via the stairs? 
(iv) Falling Body Problem/Torrhen What is the impact velocity of a falling body? 
(v) Falling Body Problem/Trystane What is the impact velocity of a falling body? 
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USING THE FLIPPED MODEL TO ADDRESS COGNITIVE OBSTACLES IN 
 DIFFERENTIAL EQUATIONS 

Jenna Tague    Jennifer Czocher   Greg Baker 
The Ohio State University            Texas State University    The Ohio State University     

Key words: Flipped classroom model, cognition, post-secondary education 

Recent work has shown that there is a lack of coherence from calculus to differential equa-
tions (Czocher, Tague, & Baker, 2013). We define lack of coherence as the gap between the 
knowledge students are expected to gain by the end of the calculus sequence versus how cal-
culus knowledge is expected to be used in differential equations (Czocher, Tague, & Baker, 
2013).  In this report, we describe how we have exploited the flipped classroom model to 
begin to address some of these issues with coherence. We share our theoretical perspective, 
how it was enacted, and also a preliminary evaluation of students’ perceptions of the coher-
ence of the course and its content.  
 
Theoretical and Empirical Background 
Two kinds of coherence arise in this paper.  First, we address coherence in the curriculum 
through our planning and sequencing of mathematical content.  Second, we address coher-
ence within instruction by aligning out-of-class with in-class material and concepts.  As such, 
our theoretical and empirical background speaks to both kinds of coherence. 
 
Curricular Coherence 
We draw on the construct cognitive obstacle (Herscovics, 1989) to describe a manner of 
thinking about a mathematical object or structure that is appropriate in one case, but inappro-
priate in another. Cognitive obstacles may arise from or contribute to incomplete concept im-
ages and may be a symptom of lack of coherence in the curriculum. Two well-documented 
cognitive obstacles relevant to differential equations learning are the function-as-solution di-
lemma (Rasmussen, 2001) and viewing rate of change as a symbolic process devoid of 
quantities (Zandieh, 2000; Rowland, 2006). These obstacles threaten to inhibit differential 
equations learning because they have to do with the nature of equations and the nature of the 
derivative. The function-as-solution dilemma refers to stuents’ difficulty in thinking about 
solutions to differential equations because they are families of functions, rather than numbers 
(which solve algebraic equations). It is a cognitive obstacle because a limited understanding 
about solutions to differential equations can hinder development of ideas about equilibrium 
solutions and many others. 

Student difficulty with rate of change as related to quantities is documented 
throughout mathematics learning, but it is a critical concept because of its relation to the 
derivative. To complicate matters, the derivative concept was also identified by (Czocher, 
Tague, & Baker, 2013) as being used differently in differential equations than it was expected 
to be known at the end of calculus due to its dependence on conceptions of rate of change of 
physical quantities. Other related mismatches have been reported between how engineering 
faculty and mathematics faculty teach and use the concept of derivative  (Bingolbali, 
Monaghan, & Roper, 2007). Other lines of inquiry into student conceptualization of rate of 
change have revealed that they have difficulty isolating rate of change as a quantity of 
interest (Monk, 1992), a poor understanding of covariation and derivative (Thompson, 1994), 
and refer to derivative as the tangent line (rather than slope of the tangent line) despite 
defining derivative formally (Zandieh, 1997).  With these issues in mind, we sought to use 
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the flipped classroom model to strengthen students’ conceptions of key calculus ideas known 
to be cognitive obstacles to learning differential equations content. 

Since these two concepts are foundational to differential equations, we chose to focus 
our efforts on strengtheninng and broadening students’ understanding of them. We did so by 
making them the focus of pre-class instructional modules. In-class instruction was adjusted to 
incorporate group work and discussion and the use of traditional lecture was minimized.  In 
this paper, we focus on the pre-class modules and how it related to the content during the 
classtime rather than the pedagogy. 

 
Instructional Coherence 

During the 1990s, instructors began to use video, presentation software, and Internet 
capabilities to teach with the “inverted classroom” (or “flipped classroom”) model. The phi-
losophy was that students would go through lecture materials at home (e.g., watch a video) 
and class time would be used for what was traditionally at-home work (e.g., solving prob-
lems). In this way, students would be ready to engage with the most difficult parts of the con-
tent while the instructor was present. For most instructors, using a combination of video re-
cordings, quizzes, and educational videos (e.g., TED talks) to move lecture out-of-class was 
not challenging. How to spend class time became problematic. In many flipped classroom 
settings, instructors lectured during the in-class time too.  Other reported difficulties included: 
failure to address student misconceptions, overuse of low cognitive-level activities requiring 
only recall of facts, and an emerging disconnect between lecture materials and active-learning 
in-class components (Andrews, Leonard, Colgrove, & Kalinowski, 2011). In our use of the 
flipped classroom paradigm, we explicitly focused on addressing the difficulties reported by 
Andrews, et al (2011) for the purpose of exposing cognitive obstacles. 

The scope of this paper is an examination of the coherence of our modified 
differential equations course from the students’ points of view. We report a study of students’ 
perceptions of the coherence of our implementation of the flipped classroom model and 
coherence of the resulting curriculum.  We use this study as a starting place toward resolving 
coherence issues identifed in the literature – curriculuar coherence and course coherence.  

  
Context 
The differential equations course was a class of 80 second-year engineering majors. We iden-
tified target concepts (e.g. rate of change) through literature searches and observation of stu-
dent work over the past four years.  Modules were created using Articulate Storyline software 
which was embedded in the course website.  Each module addressed an aspect of a cognitive 
obstacle for the upcoming differential equations content.  Long- and short-answer questions 
were designed to encourage critical thinking about the cognitive obstacle or misconception 
rather than just working related procedural problems. Many of the modules had branches 
where question n+1 depended on the student’s response to question n.  

For example, the first module was designed to address one basic idea supporting rate-
of-change as a quantity: what are some ways one can measure change in a quantity? The 
module asked students to examine data derived from a loan repayment schedule based on an 
exponential model using both absolute change and relative change.  The students were first 
shown a table of values without context.  The students were then asked to draw on their past 
experiences with measuring change to make sense of trends in the table.  After asking the 
students to describe change in the data set in words, we introduced multiple representations 
of the data set including sequence and graphical representations. They were asked to consider 
how change in a quantity could be represented in representations other than algebraic. Inter-
actions were shaped around helping the students articulate the idea that different representa-
tions highlight different attributes of the data 
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In class, the students were given the data shown in Figure 1. The table represented 
growth of bacteria in the same medium at different temperatures.  The professor opened the 
course by asking, “What is happening?” Students volunteered that the first two columns were 
increasing and the last was decreasing.  A good initial look at the data completed, the instruc-
tor moved on to asking, “How does the data change?”  The instructor pushed them to exam-
ine relative densities as a way to fairly compare the cultures Next, the instructor suggested it 
might be easier to compare the cultures if the initial values were the same. The corresponding 
transformation produced the table shown in Figure 2.  Then students calculated the relative 
change and a pattern emerged to lead to an exponential function. 

 
Methods 

The study was carried out using survey methods using an existing instrument (Powers, 
Bright, & Bugaj, 2010).  There were two types of surveys: a large online pre- and post-survey 
and four smaller in-class surveys.  The questionnaires focused on many aspects of the adapta-
tion of instructional technology in mathematics courses, but specifically the questionnaire 
asked three questions related to course cohesion: 

1. I expect pre-class multi-media materials to prepare me to participate in class activities 
(group discussion, problem solving, etc.) 

2. As a result of the out-of-class material, I expect to be confident in my understanding 
of the concepts that each module covered. 

3. I expect the in-class activities to be clearly coordinated with the pre-class material.  
These questions were given on a 5-point Likert scale and the verb tense was changed from 
the pre- to the post-questionnaire.  Results of the survey were analyzed using Qualtrics de-
scriptive statistics.  Students were also given the opportunity to provide open-ended feedback 
on the surveys and qualitative responses were coded accordingly.  
 
The in-class surveys asked the following questions related to the prelectures: 
1.  Did you complete the prelectures this week?  (Circle one)   All      Some  None 
2.  Were the lectures related to the prelectures this week? 
3.  If they were related, give an example of something from a prelecture that you felt was use-
ful in a lecture. 
 
Results 
The pre-/post-surveys online were completed by 58 and 20 students, respectively.  The low 
response rate on the post-survey might be due to its administration being close to finals. Ta-
ble 1 shows student responses to the pre-/post-surveys respectively.  
  
Table 1. Results from the online surveys. 
Question (5-point Likert scale) Pre- Mean  

(SD) 
Post- Mean 

(SD) 
I expect pre-class multi-media materials to prepare 
me to participate in class activities (group discus-
sion, problem solving, etc.) 

3.67 (0.95) 3.60 (0.67) 

As a result of the out-of-class material, I expect to be 
confident in my understanding of the concepts that 
each module covered. 

3.16 (1.03) 3.10 (1.94) 

I expect the in-class activities to be clearly coordi-
nated with the pre-class material. 

3.88 (0.89) 3.90 (0.97) 
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Of the 20 students who took the post survey, 65% reported that course design and instruction 
met or exceeded their expectations.  Table 2 shows the results from the questions related to 
the online modules. There was no statistically significant difference in students’ perceptions 
of the alignment between in- and out-of-class materials. This suggests that they found the ma-
terials helpful in maintaining instructional coherence.  Although the mean response on the 
second question did not change significantly from pre- to post-survey, the standard deviation 
nearly doubled.  The reasons for this were explained by the open-response questions about 
aspects of the course.  Students indicated that they either did not need the additional help and 
so found little use in the prelectures or they really appreciated the introduction to lecture ma-
terial. 
 
Table 2. Results from the in-class surveys 
 Survey 1  

(n=59) 
Survey 2  
(n=62) 

Survey 3  
(n=53) 

Survey 4  
(n=55) 

Completed all the 
prelectures 

85% 82% 72% 81% 

Prelecture was related 
to the lecture 

85% 74% 85% 96% 

 
Our main purpose was to investigate the efficacy of a method of applying the flipped class-
room model in a meaningful and coherent way that is based in theory of mathematics teach-
ing and learning.  Analysis suggests that a focus on cognitive obstacles relative to the in-class 
material improves coherence of instruction in the flipped classroom model.  In this way, 
flipped classroom models can provide a way of addressing cognitive obstacles in addition to 
being an alternative and cost-effective option. We see that “technology is here to transform 
thinking, and not to serve as some prosthetic device to prop up old styles of pedagogy or cur-
riculum standards” (Hegadus & Moreno-Armella, 2009, p. 397).  Future research needs to 
check this out with larger-n study. Qualitative responses to the in-class surveys also indicated 
students were making connections between current material and past mathematical material 
leading toward curricular coherence. More research is necessary to assess curricular coher-
ence. 
 
Questions for the Panel:  
 
How else, besides survey questions, can we measure students’ perception of coherence of a 
course? Are there alternative ways to operationalize coherence, besides relying on student 
perceptions? 
 
What other cognitive obstacles do students bring to differential equations? 
 
How else have instructors/researchers implemented flipped classrooms successfully? 
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DISAMBIGUATING RESEARCH ON LOGIC AS IT PERTAINS TO ADVANCED 
MATHEMATICAL PRACTICE 

Paul Christian Dawkins 
Northern Illinois University 

Many consider logic a hallmark of mathematical practice and an integral part of proof-
oriented mathematical instruction. This is true of the term logic whether it refers to a domain of 
mathematical study or to aspects of reasoning, but I claim that these formalized and 
psychological senses of the term must be carefully distinguished in mathematics education 
research. In the course of identifying how the abstraction criterion has been misapplied across 
various types of logic in psychological and mathematics education research, I outline a 
framework for the disambiguation of the range of research constructs referred to as logic. By 
distinguishing the types of logic pertinent to mathematics education instruction, I hope to 
provide a language by which future research can better specify the constructs they investigate. 
Clearer research constructs should help the community to understand the role various logics 
play in students’ apprenticeship into the practices of advanced mathematics.  

Key words: Logic; Reasoning; Abstraction; Conditionals; Proof 

People often justify mathematics instruction because it develops logical reasoning skills 
(Gonzalez & Herbst, 2004; Inglis & Simpson, 2008, 2009). Unfortunately, many studies 
demonstrate that students’ untrained reasoning differs from the conventional logic of 
mathematics (e.g.- Dubinsky & Yiparaki, 2000; Epp, 2003; Hoyles & Kuchemann, 2002), 
suggesting that logic poses a barrier to success in advanced mathematics. The exact role of logic 
in the transition to proof-oriented mathematics is debated because mathematicians explicitly use 
formal logic very little (Hanna & De Villiers, 2008; Thurston, 1994). As many universities 
across the United States introduce “bridge courses” meant to help students succeed in proof-
oriented mathematics classes, a debate recurs regarding whether and how formal logic should be 
taught. Furthermore, faculty often assess students’ proofs in terms of logical validity, but little is 
understood about how and whether reasoning about logic itself played a role in producing the 
proof. Like many other aspects of the complex activity of proving, certain aspects of logic seem 
to be necessary, but by no means sufficient, conditions for successful enculturation to proof 
practices. In this paper, I contend that ambiguity among uses of the term logic create or at least 
exacerbate much of the confusion around the importance, role, and instruction of logic in proof-
oriented mathematics. Synthesizing studies from multiple disciplines, I propose a framework for 
disambiguating various uses of the term logic to help future investigations to clarify the nature 
and intent of the constructs under investigation. In particular, I motivate the need for 
disambiguation via the criterion of abstraction.  

Disambiguating Logic: Important Dimensions of Variation 
An important question in all cognitive work in mathematics education is whether the 

phenomena being described are prescriptive or descriptive. Mathematics education must attend 
to both because student-centered paradigms of instruction require sensitivity to student reasoning 
as it occurs (descriptive), but instruction requires learning goals that privilege particular modes 
of activity (prescriptive). While the mathematics education community has made great strides 
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toward appropriately investigating the constructed rationality of student activity, problems arise 
when researchers appropriate the same language or representation system to describe both 
constructs creating ambiguity or conflation. This pitfall particularly plagues research on logic 
because of its relation to (deductive) reasoning. Common parlance interchanges descriptors like 
“logical” with “reasonable” (meaning reasoning deemed appropriate), implying a clear standard 
of assessment. Furthermore, even logicians infer some connection between prescriptive logical 
systems and reasoning. For example, when the logician Parsons critiqued Piaget’s use of 
propositional calculus notation, he said, “The theorems (tautologies) of truth-functional logic are 
not always true under [Piaget’s model of psycho-logic]… What fails to make logical sense can 
hardly make psychological sense in a study of intellectual development” (quoted in Bond, 1996, 
p. 180-181). However, logicians widely acknowledge there are multiple possible “logics” none 
of which appears completely able to accommodate the range of common language or reasoning 
(see Durand-Guerrier, 2003).  

It is problematic to claim students do not reason according to “logic” (by whatever standards) 
since it suggests they are “illogical”, introducing connotative baggage. Overton (1990) even 
claims, “Deductive propositional and predicate logics ultimately are formalizations of the 
commonsense, correct deductive arguments that people engage in on a day to day basis” (p. 5). 
So, it would seem that to contradict the classical logics is either to be nonsensical or simply 
incorrect. However, some instantiations of logical reasoning render this a problematic stance. 
Consider the research findings related by Markovits (2004): 

“Young children do have problems making [the modus ponens] inference when contrary-
to-fact premises are used… For example, if given premises such as “if it is raining, then 
the grass is dry,” young children show a strong tendency to conclude that “it is raining” 
implies that “the grass is wet.” However, when these children are given some external 
support… they consistently make the logical modus ponens inference.” (p. 323-324) 

While I shall elaborate later why the conclusion “the grass is dry” is considered prescriptively 
logical, it seems odd to lament when early elementary children infer that the grass is wet when it 
rains. The expectation that children should blindly adopt contrary-to-fact hypotheses seems 
unreasonable (in the everyday sense of that term). I argue that this research paradigm represents 
a misapplication of a formalized system (the prescriptive system) to everyday reasoning. Clearly 
the logic of the child’s reasoning (descriptive) was different from that prescribed, but I would not 
deem it inappropriate.  

The Prescriptive Logic of Mathematics  
Formal mathematics, such as Euclid’s Elements, served for many centuries as a paradigm of 

good reasoning. Modern formal logic similarly arose among mathematicians. Such formal 
logical tools are formalizations and abstractions that have been so successful in assimilating 
mathematical argument and language that many mathematicians view those formalizations as 
obvious or natural. For instance, Katz and Starbird (2013) stated, “The whole of mathematics… 
is merely a refinement of everyday thinking. Proving theorems [is] not a different way of 
thinking—it is merely a refinement of clear thinking” (p. 2). While some might question this 
claim based on empirical observation of non-mathematicians (e.g.- Evans, 2005; Oaksford, 
Chater, & Stewart, 2012; Markovits, 2004), mathematical reasoning seems to be translatable into 
the formalisms of propositional and predicate logics. Mathematics educators are concerned with 
mathematicians’ reasoning patterns because they should constitute a prescriptive system for 
mathematics instruction, especially in advanced mathematics classes where students should be 
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acculturated into the mathematics community. If mathematicians reason in ways compatible with 
formal logic, then that logic will provide a prescriptive system for mathematics instruction.  

Unfortunately, the relation between mathematicians’ reasoning and formalized logic is less 
clear. The most common representative of logical reasoning in research is the conditional 
(“if…then…”) and many assume that mathematicians reason with the material conditional (MC) 
in which “if p, then q” is equivalent to “not p or q.” Because logicians assume MC logic is 
abstracted from particular content, there need be no relevance (Piaget & Garcia, 1991) relation 
between p and q. Inglis and Simpson (2004) administered a standard psychological test for 
conditional reasoning to mathematicians and found that while they reasoned differently from 
non-mathematicians, their performance did not coincide with the MC. However, this may reflect 
more on the Wason card task (see Evans, 2005, for a summary) as a research tool rather than the 
logical reasoning it is assumed to measure. More strikingly, Weber and Alcock (2005) provided 
mathematicians with conditional statements that were true by MC standards, but with no clear 
mathematical link between the antecedent (p) and the consequent (q). Mathematicians did not 
affirm such claims. The authors proposed that mathematicians instead assessed the truth of 
conditional statements using a warranted conditional (WC) in which the claim was true only if 
they knew warrants by which the consequent could be proven from the antecedent. So 
mathematician’s interpretation of conditionals relies less on truth-function (meaning it is derived 
solely from the truth-values of the component propositions) than on provability, which intimately 
relates to the semantic content of p and q.  

So, the (descriptive) logic of mathematics students’ reasoning differs from mathematicians’ 
(descriptive) logic (Epp, 2003), but empirical studies also show mathematicians’ reasoning is not 
fully compatible with (prescriptive) formalized logic. Despite this, in transition-to-proof courses 
mathematicians often introduce MC-based truth-table analysis as a prescriptive model for 
mathematical reasoning (Selden, 2012).  

Key Assumptions Derived from Formal Systems 
Based on the previous studies, I find it difficult to maintain that formal logic is an appropriate 

prescriptive system for the logic of mathematical or non-mathematical reasoning, but this 
continues to be an attractive hypothesis to many. A number of psychologists have spent 
extensive time attempting to confirm the existence of some innate logical (in the formal sense) 
mechanisms in human reasoning (Braine, 1990; Oaksford et al., 2012). While I agree with 
Stylianides and Stylianides (2008) that mathematics educators should attend to psychological 
research about deductive reasoning, I urge caution about the assumptions behind such research. 
The way many psychologists test “deductive reasoning” is via the Wason card task, but the 
afore-mentioned studies suggest this test does not capture the logic of mathematicians’ 
reasoning. One problem is that psychologists’ definition of “deductive reasoning” embeds the 
formal logical criterion of abstraction into their research assumptions (Evans, 1982; Evans & 
Feeny, 2004). Abstraction asserts that the logic of an argument is independent of the semantic 
meanings of the statements being reasoned about (see Durand-Guerrier et al., 2012; Overton, 
1990). For instance, in the research Markovits (2004) described, children’s reasoning is deemed 
logical if it ignores their knowledge of rain (semantic meaning) and relies solely on the given 
assumption (“If it is raining, then the grass is dry”). More recently, psychologists questioning 
these assumptions have proposed alternative framings for the logic of naïve and developmental 
reasoning such as probabilistic reasoning (Evans & Feeny, 2004), systems of pragmatics 
(Markovits, 2004), or the logic of meanings (Piaget & Garcia, 1991).  
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As early as Aristotle and more prominently in the 20th century, logicians used abstraction to 
distinguish logic from rhetoric and to identify undue assumptions. Logicians embody abstraction 
through a notation of linguistic variables such as p, q, or P(x). Hilbert famously emphasized the 
logical validity of his geometry axioms saying, “Instead of treating ‘points’, ‘straight lines’ and 
‘planes’, one must always be able to discuss ‘tables’, ‘chairs’ and ‘beer-mugs’.” (quoted in 
Mariotti & Fischbein, 1997). I think it is important that this provides a heuristic for assessment 
rather than a means of axiomatizing, but the criterion of abstraction seems clear. Hilbert’s stance 
should not be overstated, since mathematicians in Weber and Alcock’s (2005) study did care 
about mathematical connections between the contents of a conditional claim. Semantic content is 
clearly important, seeing as it is easier to affirm modus ponens inferences when the propositions 
are abstract (p and q) than when they are particular contrary-to-fact claims (as in the rain 
example above). Since formalized logic distinguishes validity (abstract form of argument) and 
truth (correspondence with understanding or experience), many researchers have assumed truth 
(and thus prior knowledge) should be irrelevant in logical reasoning. 

Problems of Communication and Interpretation 
The notations that embody the abstraction criterion cause confusion about the meaning of 

logic in descriptive research (Overton, 1990; Bond, 1996). Piaget and colleagues (Inhelder & 
Piaget, 1958; Piaget & Garcia, 1991) sought to describe “the logic of meanings” children use to 
solve tasks. In line with Piaget’s constructivism, this descriptive project tied meaning to 
students’ action rather than abstract concepts or propositions. He used formal logical notation to 
classify and distinguish the reasoning of action, much as he used algebraic group language 
elsewhere. Piaget (1950) explained this practice when he cautioned those who wanted to make 
“thought the mirror of logic” saying, “reverse the terms and make logic the mirror of thought, 
which would restore to the latter its constructive independence” (p. 30). Unfortunately, even 
prominent psychologists completely misunderstood his use of such notations (Overton, 1990) 
assuming he claimed that “adult human reasoning was inherently logical”, by which they mean 
consistent with the MC (Evans & Feeny, 2004). They assumed the abstract notation implied 
abstractness in the reasoning it modeled.  

Similar problems can appear in mathematics education research. For instance, Stylianides, 
Stylianides, and Phillipou (2004) investigated students’ reasoning about contrapositive 
arguments. One hypothesis they presented in an argument by contraposition stated, “If Costas 
suffered from pneumonia, he would have high fever” (p. 139). The authors rejected the response 
of one student who contested, “Perhaps fever is not the only symptom. Therefore, the conclusion 
is wrong” (p. 147). The authors’ justification for their critique assumes the given hypothesis is 
true, consistent with mathematical convention, in which case the students’ counterargument is 
invalid. I contend that the students’ argument is appropriate according to everyday pragmatic 
conventions: hypotheses may be questioned and there may exist cases of pneumonia with no 
fever. The two interpretations directly correspond to truth (the student’s concern) versus validity 
(the authors’ concern). The difference concerns the pragmatics by which people determine how 
statements should be interpreted and the standards of discourse that are applicable in a given 
situation (part of what Stenning and van Lambalgen, 2004, call reasoning to an interpretation).  

Pragmatics aside, Stylianides et al. (2004) made a stronger claim with regard to the afore-
mentioned student argument: “These students did not manage to decontextualize the statements 
and assess the necessity of the conclusion in purely logical terms” (p. 147). In this way, the 
authors not only compared the students’ claim against the outcome of their own formalized 
logical reasoning, but also claim that logical reasoning should involve some level of abstraction 
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away from semantic meaning. Thus the abstraction used by logicians to formalize rules of logic 
becomes imbued with a prescriptive cognitive aspect. I question this conflation of constructs and 
insist researchers must distinguish whether logic refers to the actual process of reasoning 
psychologically, or to the formalized system used to develop rules for validity (i.e.- heuristics to 
assess the outputs of reasoning). Stylianides et al. (ibid.) assumed the abstraction of the latter 
applies to the former by insisting logical reasoning must in some sense ignore semantic content. 
Many psychological researchers make similar assumptions (Oaksford et al., 2012).  

I claim instead that abstraction must be considered a useful convention of formalized logic 
rather than a prescriptive assumption about logical reasoning. To justify this, imagine a 
mathematician expositing a basic axiomatic proof to a class of students. Suppose the 
mathematician “applies” a conditional axiom (e.g.- “If m and n are numbers and their successors 
are such that m’=n’, then m=n”) in what could be called a modus ponens inference. Would it be 
appropriate to say the professor used modus ponens to draw an inference (as is common in 
psychological research)? If logic (including the abstraction condition) refers to reasoning, then it 
is unlikely at best. This would mean that she somehow ignored her knowledge of the natural 
numbers and divorced the formal notion of “successor” from the counting it models (a rather 
fantastic claim) and depended upon the conditional axiom to deduce a conclusion. As Detlefsen 
(2008) argues, mathematical proof is more often considered translatable into formal logic rather 
than existing a priori in that representation system. I posit the mathematician has trained herself 
to conform her semantic reasoning (in this case about numbers) to the syntactic standards of 
logic (what I called heuristics for assessment), or more specifically to the conventions of 
mathematical proof.  

I find it much more reasonable to characterize abstraction as a useful convention adopted by 
mathematicians for attaining valid argument. I also hold that the Platonism of many 
mathematicians (Rotman, 2006) implies that they value validity precisely because it produces 
true results (what logicians call soundness). Psychologically, the axiom began as a formal 
articulation of the mathematicians’ knowledge of natural numbers based on years of pre-
formalized experience. The essential mathematical practice of abstraction involves shifting focus 
from the particular objects of mathematical activity to their relationships and properties, which 
are the bedrock of proof. Unfortunately, mathematicians may not recall the reorganization 
process engendered by proof practice, to the extent of conflating axiomatic structure 
(formalization) with the epistemic foundations of numbers (psychological). Similarly in logic, 
some claim students “misinterpret the meaning” of if (Anderson, 2010, p. 289) suggesting that 
the MC is the right interpretation of the linguistic form rather than the product of a particular 
formalized game of reflecting on arguments (what I call “reasoning about logic”).  

A Basic Framework for Disambiguating Types of Logic 
In summary, logic can be prescriptive or descriptive and it can concern psychological 

processes or formalized systems. Combining these two dichotomies, there are at least four 
distinct categories of meaning for the term logic as presented in Table 1. Prescriptive-formalized 
(Type 1) logic entails the standard propositional and predicate logics developed by Frege, 
Russell, Witgenstein, and Tarski (see Durand-Guerrier, 2008). As previous research shows (e.g.- 
Epp, 2003; Evans & Feeny, 2004), the logic of mathematics students’ reasoning (Type 3) differs 
from Type 1 logic in multiple ways. As I claimed above, mathematicians’ reasoning (which 
constitutes Type 2 logic for proof-oriented mathematics education) is not identical to Type 1 
logic either (see also Nickerson, 2004), but rather mathematicians learn to conform their proofs 
to these standards up to some level of contextual tolerance (Reid, 2011). Regarding Type 4 logic, 
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mathematicians and philosophers in proof theory and related fields continue to extend formalized 
systems in new prescriptive and descriptive directions (Piaget & Garcia, 1991, reference the 
work of Anderson & Belnap, 1975). However, such work is not fully necessary for mathematics 
education since Type 1 logic articulates the standards to which Type 2 reasoning conforms.  
 Formalized system Psychological process 

Prescriptive (Type 1) 
Propositional/predicate 

(Type 2) Conformal 

Descriptive (Type 4) Non-standard (Type 3) Naïve/pragmatic 
Table 1: Categories of meaning for logic in research 

Conclusions and Future Directions 
To restate my previous argument in this new terminology, distinguishing these categories of 

logic is important because abstraction is a useful convention for Type 1 logic, is a goal for Type 
2 logic, and can only be problematically applied to Type 3 logic. I hypothesize that greater 
attention to clearly identifying the constructs under investigation will improve research on this 
important component of proof practice. Specifically, future research may investigate how 
mathematicians conform their Type 2 reasoning in action. While the work of many mathematics 
educators (Durand-Guerrier, 2003, 2008; Epp, 2003; Roh & Lee, 2011) provide rich activities for 
making students more consciously aware of the conventions of Types 1 and 2 logic, the research 
community must continue to clarify research methods on Type 3 logic to properly implement and 
understand the learning engendered by these activities. Being that Type 1 logic arose as a 
formalization of Type 2 activity, I also conjecture that an instructional sequence for reinvention 
of logic and validity could yield fruitful insights about how to help students transition Type 3 
reasoning toward Type 2 reasoning, which I claim is a primary goal of proof-oriented instruction. 
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Functions are a crucial topic in the study of mathematics.  Research has found 

that a lack of deep understanding of functions is one of the main reasons why 

students struggle in calculus (Eisenberg, 1991; Ferrini-Mundy & Graham, 1991; 

Lauten, Graham, Ferrini-Mundy, 1994; McDonald, Mathews, & Strobel, 2000; 

Monk, 1994). In light of these studies, we investigate – using traditional paper-

and-pencil assessments, concept maps, and an interview – what pre-calculus 

students’ understanding of functions is, to what extent students have a repertoire 

of functions at their disposal, how students’ understanding evolves over a 

semester, and what non-traditional  assessments can tell us about this 

understanding. We found that (1) As Williams (1998) suggested, concept map 

assessments do reveal something that traditional assessments do not; (2) 

participants have trouble giving non-examples of functions, and (3) there does not 

seem to be a major change in participants’ understanding of functions over time. 
 

Key words: Functions, Concept Maps, Assessment, Facets And Layers. 

 
      In most tertiary institutions in the United States, the vast majority of students who are either 

in the mathematics or sciences program take some form of calculus as an entry-point to 

undergraduate mathematics study. In the study of calculus, a rich understanding of functions is 

needed. In fact, the concept of functions is a prerequisite to understanding many central concepts 

in calculus such as the limit, derivative, and integral (Oehrtman, Carlson, & Thompson, 2008). 

Indeed, in all of mathematics, the topic of functions is considered to be the most important 

concept (O’Callaghan, 1998; Ferrini-Mundy & Graham, 1989). In light of this, some universities 

designed a prerequisite course to calculus that aims at strengthening students’ understanding of 

the concept of functions. 

There are a plethora of studies on students’ understanding of functions. For an extensive 

treatment of the literature on this subject, we refer to Leinhardt et al. (1990). The literature shows 

that students frequently struggle to understand functions, as evidenced by a number of their 

fundamental misunderstandings of the concept.  In order to be successful, students must 

understand functions as general processes that accept an input and produce an output, and they 

must be able to think about the change of the output as the input changes and its rate of change 

(Oehrtman, Carlson, & Thompson, 2008).  The goal of any precalculus class is to help students 

overcome the types of misconceptions that they arrive with and develop the strong notions of 

function and variation that they will need in order to be successful, yet little is known about how 

students’ understandings change over the course of such a class.  Multiple studies have noted the 

inadequacy of traditional assessments as tools for describing student understanding (Carlson, 

Oehrtman, & Engelke, 2010; Williams, 1998). Thus, we investigate the following research 

questions: 
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● How does the understanding of functions of undergraduate students evolve over the 

course of a semester? 
● How do different forms of assessment give access to and constrain our ability to 

investigate students’ understanding? 
 

 

 

Theory 
The perspective of learning assumed in this paper is Piagetian constructivism, the idea that 

knowledge is constructed, rather than acquired. This theory of learning is based on the 

fundamental notion that knowledge is not passively received; rather, it is an adaptive activity that 

is actively built up by the cognizing subject (von Glasersfeld, 1995).  Piaget argued that learning 

occurs as a consequence of the assimilation of new knowledge with existing knowledge. 

Assimilation is the process by which the individual takes in new data. The process of 

assimilation is followed by accommodation, which is the process by which the individual makes 

some modification in his/her cognitive structure (Piaget, 1970).  

DeMarois and Tall (1996) described a conceptual framework for students’ understanding of 

functions that characterizes understanding of functions in terms of facets and layers. 

● Facets are approaches (breadth) one can take to understand the concept of function. 

DeMarois and Tall (1996) characterize facets in a horizontal sense. 

● Layers describe the extent (depth) to which one examines the concept in question in any 

one facet.  DeMarois and Tall (1996) characterize layers in a vertical sense. 

Their take on the function concept employs eight different facets – verbal (spoken), written, 

kinesthetic (enactive), colloquial (informal or idiomatic), notational conventions, numeric, 

symbolic, and geometric (visual) aspects. DeMarois and Tall (1996) acknowledged that these 

facets are not intended to be neither independent nor exhaustive ways of approaching the concept 

of function. Their version of the function concept also includes a superficial layer (pre-action), 

action, process, object, and core layer (procept) as the five different levels. 
 

Previous research on student understanding of functions 
In general, instruction on functions has focused on procedures without deep understanding, 

and it has been insufficient.  In the section that follows, we describe some of the most important 

findings about student difficulty and relate them, as appropriate, to the DeMarois and Tall (1996) 

framework.  In general, students have (at best) an action-view of function (DeMarois & Tall, 

1996; Oehrtman, Carlson, & Thompson, 2008).  As a result, they have difficulty distinguishing 

between algebraically defined functions and equations (Carlson, 1998) and believe that all 

functions should be able to be defined by one algebraic formula (Breidenbach et al., 1992), 

which, in turn, leads them to believe that all functions are “nice.”  This type of conception results 

in believing that a piecewise function represents multiple, distinct, functions and that there is a 

single unique formula that defines any particular function (Oehrtman, Carlson, & Thompson, 

2008).   

When students develop a more abstract understanding, such as that at the object or procept 

layer, they are able to consider functions as a process that may be reversed (resulting in an 

inverse function), consider composition of functions as an operation on two objects (as opposed 

to mere algebraic manipulation) and consider, simultaneously, the relationship between all 

possible input and output values.  Such a view results in a nuanced understanding where students 
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are able to consider properties of the functions and think about structure (Williams, 1998).  In 

general, students are less likely to think about function families than experts (Williams, 1998), 

and, even if they do, are likely to assume that any function whose graph looks like a line is linear 

and any function whose graph is u-shaped is a quadratic (Schwarz & Hershkowitz, 1999).  That 

is, they categorize into function-families based upon surface characteristics, as opposed to the 

structural thinking in which experts engage. 
 

 

Research methodology 
This section will describe the ways through which our group collected, and then analyzed, 

our data. Our choices of both population and sample were appropriate.  The population consisted 

of students from a precalculus class at a research university. From our population, our group 

eventually selected three participants to participate in a detailed case study. This number is 

appropriate because it allowed for generalizations to be made about the larger population, but 

also, because they exhibited diversity of opinion about an item on a background.  In particular, 

their opinions varied when asked to evaluate the plausibility of the statement “Mathematics is 

mostly computational.” 

We collected data across three “phases” during the semester of the study.  In phase I, our 

group administered a preliminary questionnaire and the traditional assessment.  In phase II, our 

group had the participants re-take the same traditional assessment, explain what a concept map 

is, give an example of a concept map (that had “numbers” as the central topic rather than 

“functions”; we were careful to choose a topic different from the one on which students would 

make their concept maps), and create their own concept maps for “function”.  Finally, in phase 

III, our group administered the same traditional assessment a third time, the concept map 

assessment a second time, and an interview – the purpose of the interview was twofold; first, to 

clarify remarks on either the traditional or concept map assessment that our group found 

confusing, and second, to test each participant for a particular kind of understanding that neither 

the traditional nor concept map assessment can detect: kinesthetic understanding (DeMarois & 

Tall, 1996, p. 4).  Taken together, these three phases occurred in September, November, and 

December, respectively.  The data we collected during each phase allowed us to capture 

snapshots of the students’ understanding of functions at various points in the semester and, read 

together, to describe the changes in their understanding over the course of the semester. 

Our hypotheses were as follows.  First, we expected the scores on the traditional assessments 

to increase over time for all participants.  Second, we hypothesized that the participants’ ratio of 

number of valid links to number of total links will increase with each passing phase.  In 

particular, we expected the number of both valid links and total links on the concept maps to 

increase for all three participants.  Finally, we expected that students expand their repertoire of 

examples of functions.  We acknowledge these hypotheses as part of our epistemological beliefs 

about qualitative research and note that they influenced our approach to the task of data analysis.  

We were implicitly testing these beliefs against the data, and acknowledge them to guard against 

confirmation bias (Creswell, 2007). 

In terms of our data analysis, in the first phase we drew on the diagram in the DeMarois and 

Tall (1996, p. 4).  In particular, we applied it to the participants’ traditional assessments by being 

on the lookout for key words on the latter that hinted at certain layers.  For example, the last item 

on the traditional assessment gave students two graphs, asked them whether or not they were 

functions, and required students to explain their reasoning.  Based on their explanations, we 
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assigned a layer to certain facet – geometric – that we held constant.  If the participant appealed 

to the vertical-line test, then we interpreted that as evidence that the participant was aware of a 

process (procedure) of testing whether or not a graph depicted a function; hence, we assigned the 

layer of process.  We assigned the procept layer if the student appealed to the definition of 

function – specifically, if the student mentioned that every input yields a unique output.  The 

word unique was important, for our group would have assigned the object layer had the student 

left it out.   

We also devised a framework to analyze our participants’ concept maps. Each one of us kept 

a tally of the number of mathematically valid and invalid links or connections for each 

participant’s concept map.  In the event where there was disagreement amongst ourselves 

whether or not a link is mathematically valid, we asked the participants during the interview for 

further clarification on their concept map.  Otherwise, we then took the ratio of the number of 

valid connections to total connections in each concept map.  In addition, each of us wrote a 

summary of any understanding that could be inferred from participants’ concept maps. The 

summary included information related to (1) definition, (2) examples and types, (3) properties, 

and (4) operations of functions. 
 

Results and discussion 
This section will discuss three findings about the understanding of functions of one particular 

student, Epsilon (we gave pseudonyms to each participant). We chose to present data from 

Epsilon rather than all three students because we think that his results are representative of the 

remaining two. The first finding was in the evolution of Epsilon’s understanding of the term 

function. In Phase I, Epsilon’s response was that a function “is a rule.” This answer was 

incomplete because Epsilon did not go into detail about what the rule involved, perhaps 

suggesting that he has memorized this idea.  As a result, we classified his answer as a pre-action.  

In Phase II, Epsilon provided a more complicated answer: a function “is a rule… when you plug 

in a independent [sic] value you get another individual value out”.  Here, Epsilon hinted at the 

process of plugging in a number and obtaining a corresponding second number.  Thus, we 

labeled this answer as the process layer.  In Phase III, Epsilon’s answer became even more 

sophisticated.  He described a function as a “rule in which for every input there is a unique and 

individual output”.  From this answer, we believe that Epsilon identified a function as an object 

in its own right. However, not all features of his traditional assessment underwent improvement 

over time.  For example, he kept providing examples of linear functions when asked to provide 

examples of functions and non-functions.  Though this and other misunderstandings existed 

across the phases, not only did his conception of what a function is improve (as demonstrated 

earlier in this paragraph), but also, his percent score for Phase III was higher than that for the two 

preceding phases.  Thus, Epsilon did somewhat better in Phase III of the traditional assessment 

than he did anytime earlier in the semester. 

The second finding was that Epsilon’s concept map evolved somewhat from Phase II to 

Phase III in regards to the mathematical understanding displayed therein (please see the 

appendix).  This was true despite the ratio of valid connections to total connections decreasing 

from one phase to the next (as was the case for all three participants) – in Phase II, Epsilon had 

18 valid connections out of 22 total, and in Phase III, he had 17 valid connections out of 26 total.  

This decrease was noteworthy and merits further comments, which appear later on.  First, 

Epsilon gave notational references to different kinds of functions in Phase II, referring to rational 

functions as  f g  x , inverse functions as f
 1 x , and so forth.  This changed in Phase III, with 
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Epsilon giving explicit examples of each kind of function.  For instance, he gave y  x  x b 

as an explicit example of a quadratic function.  In fact, Epsilon gave many more examples of 

functions in Phase III than he did in Phase II.  This was a sign that his awareness of different 

families of functions had become richer from one phase to the next.  A second feature of 

Epsilon’s concept maps was the presence of composition of functions as an example of an 

operation on functions that one can perform.  This was noteworthy because Epsilon was the only 

student out of the three participants who recognized function composition in his concept maps.  

But, curiously enough, Epsilon only recognized function composition during his Phase II concept 

map.  Thus, it is possible that Epsilon (1) felt that it was not important to include it in his Phase 

III concept map, (2) ran out of time, or (3) forgot to include it altogether.  A final feature of 

Epsilon’s concept maps is his labeling of certain families of functions as being positive or 

negative.  To sum up, Epsilon’s understanding of functions as shown on the concept maps 

became somewhat more sophisticated over time in terms of the presence of more examples and 

types of functions. 

Our third finding was that Epsilon’s interview was consistent with how he did on the 

traditional and concept map assessments.  Epsilon said that his labels were in reference to 

positive and negative “slope”.  He then gave an example involving the function f x  x , which 

he then correctly graphed as a parabola with vertex at the origin that opened upward.  Epsilon 

demonstrated that if he inserted a minus sign before the x , that would cause the parabola to 

reflect over the x-axis.  He then immediately recognized that his choice of example was not 

ideal, as it was appropriate for reflections of functions (more specifically, transformations of 

functions) than it was for slope.  This was an indication that Epsilon could not think of an 

appropriate function that would go better with his comment.  Another feature of Epsilon’s 

interview was his description of a function.  He used an example of a specific function, f x  
 x (that Epsilon used a linear function to illustrate his point was typical among the three 

participants, who would always provide this kind of function as an example of a function in 

general terms), and said that 1 maps to 2, 2 maps to 4, and so forth.  This was an indication that 

Epsilon understood functions in a more tabular, numeric sense.  Thus, one could appropriately 

label his understanding of functions under the numeric facet.  Finally, when responding to a 

question about what a function was, one of the first things that Epsilon said was that a function is 

a “rule”.  Epsilon used this word in all three versions of his traditional assessment, thus 

establishing a connection between his traditional assessment and interview.  Thus, Epsilon’s 

responses in his interview were consistent with the answers he provided on the traditional and 

concept map assessments. 
To sum up, in the final analysis of concept maps for each participant across all the phases, 

the ratio of number of valid links present to number of total links present decreased.  However, 

this did not tell the full story, for at the same time, the total number of links for all three 

participants increased.  This was an indication that even though more misunderstandings were 

present in the Phase III concept maps, we hypothesize that the students felt confident enough to 

take risks and see if they could expand their understanding of functions. Our data indicate two 

noteworthy findings about Epsilon in particular.  First, his concept maps underwent some 

evolution regarding the richness of his understanding.  Second, his responses at his interview 

confirmed the answers he provided on the traditional and concept map assessments.  Said 

differently, Epsilon’s understanding did not change that much over time.  This finding has 

implications, and a discussion of some of them will follow in the next section. 
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Implications for further research 
While it is inappropriate to draw major conclusions from a small-scale study, we do 

cautiously summarize our findings and interpret them in terms of their implications for the 

field.  Yet, we see it as a logical extension of extant work, and suggest that a larger-scale follow-

up is needed in order to demonstrate the robustness of these results.  First, in terms of how 

students’ understanding of functions evolves over the course of a semester of a precalculus class, 

we report that at the least, the students do appear to have moved from only having a very low-

level layer (pre-action) to having an abstract way of thinking about functions (object).  We do 

have concerns that the language may have been memorized rather than necessarily the student’s 

own; this is because of related changes in the student’s concept maps.  In general, the students’ 

concept maps did not show much change in understanding of functions over time; thus, it seems 

difficult to support the claim that students’ understanding would have evolved from only a pre-

action layer to an object layer without concurrent development of their understanding of other 

concepts related to functions.  Moreover, the concept maps suggested that the students’ ways of 

thinking about function appear to match Williams’s (1998) description of students often giving 

surface classifications of functions as opposed to focusing on the type of structural thinking in 

which experts would engage.  At the same time, our work shows that in spite of Williams’s 

findings, students do classify functions into more than just linear and quadratic categories. Our 

students included additional families such as exponential, trigonometric, rational, and piecewise.  

Similarly, we showed that our students do consider piece-wise functions as entities, not as 

amalgamations of functions.  Finally, we note that the concept map gave access to a type of 

thinking that none of the other assessments (traditional or interview) would have given alone.  In 

particular, the concept map, with its completely open structure, made it possible to learn that 

Epsilon had developed his own quasi-structural means of categorizing functions into positive and 

negative, which can be understood as helpful in that it builds towards the concept of a derivative.  

In light of all these reasons, we suggest that researchers, in their attempt to study students’ 

understanding of any mathematical topic, utilize assessments that target the types of 

understandings they anticipate, but also allow students to express their own idiosyncratic 

understandings that were not (and could not be) anticipated in advance. 
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DIFFERENTIAL PARTICIPATION IN FORMATVE ASSESSMENT AND 

ACHIEVEMENT IN INTRODUCTORY CALCULUS 

Rebecca-Anne Dibbs University of Northern Colorado; Michael Oehrtman University of 

Northern Colorado 

Prior formative assessment research has shown positive achievement gains when classes 

using formative assessment are compared to classes that do not. However, little is known 

about what, if any, benefits students that are not participating regularly in formative 

assessment gain from these assignments. The purpose of this study was to investigate the 

achievement of the students in two introductory calculus courses using formative assessment 

at the three different participation levels observed in class. Although there was no significant 

difference on any demographic variable other than gender and no significant difference in 

any achievement predictive variables between the groups of students at the different 

participation levels, there were significant differences in achievement on all but the first 

activity write-up and the final exam.  

Key words: approximation framework, calculus, formative assessment 

Regardless of the content area or age of participants, the effect size on most quantitative 

formative assessment studies is around 0.5 (Briggs, Ruiz-Primo, Furtak, Shepard, & Yin, in 

press; Karpinski & D’Agostino, 2012). These studies show that classes where formative 

assessment is used do better on average on common summative assessments than those 

classes where no formative assessment is used; however, even in classes where formative 

assessment is used, not all students will regularly complete the formative assignments. The 

purpose of this study was to investigate if there were achievement differences on summative 

assignments in a novel calculus curriculum between students completing different numbers of 

formative assessments during the semester. For this paper, we will distinguish between three 

different low participation levels: regular, sporadic, and non-participation. Students regularly 

participating in the formative assessments missed no more than two formative assessments 

during the semester; students in the sporadic participation group completed at least one but no 

more than four of the 12 formative assessments in the semester, while non-participants did 

not complete any formative assessments.  

 

Methods 

Black and Wiliam’s (2009) formative assessment framework and Vygotsky’s (1987) 

Zone of Proximal Development (ZPD) were used as the theoretical perspective of this 

project. There are several characterizations of the ZPD (Vygotsky, 1987); this report will 

focus on the scaffolding; where a learner is in their ZPD if they can complete a problem with 

assistance they could not complete independently. This characterization of ZPD dovetails 

with the second purpose of Black & Wiliam’s framework (2009): formative assessment is 

used to engineer effective classroom discussions; where scaffolding may be given to a group 

of students in an efficient manner.  

Participants were recruited from two introductory calculus courses taught using the 

approximation framework. This framework is built upon developing systematic reasoning 

about conceptually accessible approximations and error analyses but mirroring the rigorous 

structure of formal limit definitions and arguments (Oehrtman, 2008, 2009). This study 

focused on the three multi-week labs developing the most central topics in the course: limits, 

derivatives, and definite integrals. Each approximation lab consists of 20 questions designed 

to help students understand their context in terms of approximating a limit (Figure 1). 
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Figure 1. Approximation framework 

The courses were taught at the same time and on the same schedule by two equally 

experienced instructors. All of the lab questions were scored dichotomously so the inter-rater 

reliability of the lab write-ups was perfect, and the final exams were co-graded by the 

instructors.  The content validity of the assessments was checked by the course coordinator 

and an additional expert on the approximation framework. All assessments had reliabilities 

within acceptable levels (Gall, Gall & Borg, 2007): the limit, derivative, and definite integral 

labs had KR-20 values of 0.83, 0.72, and 0.78 respectively; the final exam had a Cronbach 

Alpha of .68.  

In addition to participants’ lab write-ups, the final exam and demographic information 

was collected from each participant. There were no significant differences between the 

sporadic and non-participation groups on all but one of the demographic or grade predictive 

variables tested (p > 0.25)
1
. Female students were significantly more likely to be regular 

participants in formative assessment (p = .03). Since asynchronous formative assessment, like 

the ones used in this study, require a greater level of organization and engagement, these 

assignments tend to slightly favor female students (DiPrete, 2013). Despite the selection bias 

inherent in the participation groups, there was no evidence at the start of the semester to 

suggest that students at different participation levels would perform differently in the course.  

There were 66 students that consented to participate in the study; 13 of the students were 

removed from the sample because they had prior exposure to the labs that could confound the 

results. Of the 53 students that were new to the approximation framework labs, only seven 

had no prior exposure to limit concepts in a prior course, and 27 of the students had AP 

Calculus in high school. There were 14 students classified as sporadic participants in 

formative assessment and 16 students classified as non-participants; the remaining 23 

students participated regularly in the formative assessments (Table 1).  

Table 1  

Gender distribution of the participation groups 

Group Male Female 

Regular 8 15 

Sporadic 9 5 

Non-Participant 11 5 

 

Each assessment was analyzed using one way ANOVA; Tukey-Kramer tests were used 

when there was a significant difference found on the ANOVA. To investigate the effects of 

the formative assessment-based class discussion on achievement on the summative 

                                                 
1
 Age, race, native language, and year in school showed no significant difference on a Chi-Square test. GPA, 

Math GPA, ACT Math Score, Math GPA, the pre-calculus skills test administered the second day of class, and 

time elapsed since the previous mathematics course showed no significant differences using Mood’s median 

test. 
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assessments, item discriminations were calculated on all items discussed by the instructors in 

class.  

 

Results 

The limit lab asked students to approximate the location of a removable discontinuity 

where there were no obvious algebraic manipulations that would allow the discontinuity to be 

calculated exactly. Much of the lab depended on familiarity with function concepts. Given 

that there was only one formative assessment based discussion and there were no significant 

differences between the participation levels in any prior knowledge measure available, it is 

not surprising that the ANOVA found no significant differences in group achievement on the 

lab write-up (Table 2); the context of the lab was equally familiar to all students and there 

were not enough instructional interventions to make a difference. 

Table 2  

Results of the limits lab achievement scores 

 SS Df MS F p 

Between 50.637 2 25.32 1.702 0.193 

Within 758.693 51 14.876   

Total 809.33     

 

The derivative lab asked students to approximate an instantaneous rate of change at a 

given point using the slopes of secant lines. During this lab, there were three formative 

assessment-based discussions, and students were given an opportunity to turn in a draft of 

their write-up for formative feedback. The ANOVA results shown in Table 3 revealed a 

significant difference in achievement on the lab write-up between the three participation 

levels. According to the Tukey-Kramer test, the significant difference in achievement was 

between the regular participation group and the sporadic and non-participation groups. The 

sporadic and non-participation groups’ achievement was not significantly different from each 

other. The difference between the regular participation group and the others is that the regular 

participants consistently used slopes as their approximations; the sporadic and non-

participation groups completed this lab using y values as approximations more often than the 

regular participation group. 

Table 3  

Results of the derivatives lab achievement scores 

 SS Df MS F p 

Between 303.21 2 151.61 13.96 0.000 

Within 553.96 51 10.862   

Total 857.12 53    

    

The definite integration lab asked students to model a given quantity with a definite 

integral and then approximate their quantity with Reimann sums. There were two formative 

assessment-based discussions during this lab; these discussions focused on summation 

notation and assistance with the technology required to calculate large Riemann sums. The 

ANOVA results shown in Table 4 revealed a significant difference in achievement between 

the three participation levels. The Tukey-Kramer test revealed that all three groups were 

significantly different; the regular participant group outperformed the sporadic participant 

group who in turn outperformed the non-participant group. The cumulative common final 

exam ANOVA and the corresponding Tukey-Kramer test had similar results to the definite 

integral lab; all three groups had significantly different levels of achievement from each 

other, and were in the same order (Table 5). 

Table 4  
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Results of the definite integral lab achievement scores 

 SS Df MS F p 

Between 1108.39 2 550.69 12.252 0.000 

Within 2292.31 51 44.95   

Total 3393.70 53    

   

Table 5  

Results of the final exam achievement scores 

 SS Df MS F p 

Between 19881.53 2 9940.77 20.968 0.000 

Within 24179.40 51 474.09   

Total 44059.92 53    

Discussion 

While these results indicated that there were measurable achievement differences between 

the three participation groups, the more interesting, and more difficult, question is why these 

differences exist. There appear to be two plausible explanations based on the available data. 

The first is that the formative assessment-based instruction was more effective for the 

students participating in the formative assessments. After conducting an item discrimination 

analysis on the lab write-ups, 48% of the items that were discussed in class showed no 

significant discrimination between participation levels. While this result suggests that all 

participation levels benefit on some level from the in-class discussions, the non-participant 

group had fewer non-discriminating items on every assignment; on the final lab only one 

question failed to discriminate between the regular participant group and the non-participant 

group. There were three non-discriminating items between the sporadic and non-participant 

groups on the final lab.  

The other plausible explanation is these achievement patterns are indicative of a lurking 

variable. The questions we will pose to those attending our talk will explore this explanation: 

(1) Can any further analysis be done with the current data? (2) Are there any constructs other 

than attribution that could account for the differences in achievement? 
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STUDENTS’ EXAMPLE USAGE IN THE DOMAIN OF FUNCTIONS 

Muhammed F. Dogan 

University of Wisconsin - Madison 

Abstract: Mathematicians use examples strategically while working on mathematical 

conjectures, and this strategic usage helps them gain a lot of insight about mathematical 

phenomenon. However, students do not always have the same strategic example usage; instead, 

they tend to over rely on examples without understanding of example based reasoning. This 

study examines college algebra students’ responses on a written assessment in the function 

domain and discusses students’ example spaces. The results reveal that students have very 

limited example space in the function domain that affects their strategic example usage. Student 

example usage was very limited to conventional example spaces that they learned during 

instruction or from their textbook. This study suggests that having conventional example spaces 

does not guarantee that students can use examples strategically which can help them better 

understand the mathematical conjectures.   

 

Key Words: Algebraic reasoning, Function, Example space, Exemplification 

 

Introduction 

Even though the mathematics education literature has indicated that proof activities are a 

crucial element in mathematical thinking and activity, mathematics education research has 

shown that students fail to understand the nature of evidence and justification in proving 

activities in mathematics (e.g., Harel & Sowder, 1998; Knuth, Choppin, & Bieda, 2009). 

Researchers give a number of reasons for students’ struggles with proving, including students not 

understanding the importance of proof, not being able to articulate the mathematical knowledge 

that they have, and not feeling comfortable with mathematical activities. One additional reason 

posited in the mathematics education literature is based on students’ treatment of examples in 

proving activities (e.g., Stylianides & Stylianides, 2009; Healy & Hoyles, 2000; Porteous, 1990), 

as students tend to be overly reliant on examples and generally believe that they have proved a 

mathematical statement by using a few examples that satisfy it. While acknowledging the 

limitations of examples in proving activities, researchers have also shown that examples can be 

very crucial in helping students generate proof (e.g. Ellis et al., 2012; Lockwood et al., 2012; 

Alcock & Inglis, 2008).  

The purpose of this study is to better understand the role that examples play in the 

exploration and justification of mathematical conjectures, especially in domain of function in 

college level mathematics. Functions are central to numerous mathematical concepts, and they 

play a vital role in advanced mathematical thinking. In the study described in this proposal, I 

examine how students use examples while working with conjectures involving odd, even, and 

one-to-one functions. The research question is:  How do students use examples, and what is the 

nature of their thinking about the examples they use to develop, explore, understand, and prove 

mathematical conjectures about functions? 

 

Literature Review and Theoretical Background 

It is well known that examples play an important role in mathematicians’ thinking as they 

engage with mathematical activities. Watson and Mason (2002, 2005) see examples as the heart 
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of mathematical learning at all levels. However, the idea of examples is very broad, and it is 

unclear how students use examples to develop an understanding of a mathematical concept or to 

explore and prove a mathematical conjecture. There are a number of studies that focus on the 

limitation of examples use. Most of those studies claim the same idea, which is that students 

overly rely on examples and tend to convince themselves that something is true by using a few 

examples while engaging in proving activities (e.g. Harel & Sowder, 1998; Bell, 1976; 

Balacheff, 1987; Stylianides & Stylianides, 2009). Therefore, students do not see a need to 

develop a proof that goes beyond showing examples; they think they have sufficiently proved a 

conjecture and do not understand the limitations of using examples as proof.  

In the literature, the role of examples in proving activities has recently gained a lot of 

attention. Researchers have claimed that examples are not solely a barrier in proving activities, 

but instead can be a crucial component of understanding and developing a mathematical proof 

when examples are used strategically (e.g. Ellis et al., 2012; Lockwood et al., 2012;; Weber & 

Mejia-Ramos, 2011; Alcock & Inglis, 2008; Buchbinder & Zaslavsky, 2011; Antonini, 2006; 

Dahlberg & Housman, 1997; Iannone et al., 2011). It is important to note that these studies 

deemphasize the limitations of the use examples in proof, but rather claim that examples also can 

be very powerful, especially when developing reasoning about proof. Overall, the literature 

suggests that examples are an important part of mathematics in developing conceptual 

understanding of a mathematical concept. I have designed my study with this literature in mind, 

drawing upon the fact that example-based reasoning can be very powerful in terms of learning, 

understanding, and making sense of mathematical conjectures. 

Theoretically, I frame the study in terms of the notion of an example space, which is based 

upon the notions of concept definition and concept image by Tall and Vinner (1981) and Vinner 

(1993). Tall and Vinner (1981) and Vinner (1993) define concept definition as the words and 

symbols used to specify a concept, and concept image as “the total cognitive structure that is 

associated with the concept, which includes all the mental pictures and associated properties and 

processes” (p. 2). Students cannot always reason and justify mathematics by using a concept 

definition, so they need a concept image to reason and justify about mathematical properties. Tall 

and Vinner (1981) describe a learning gap between students’ concepts definitions and concepts 

images, and point to the importance of using examples to close this gap. Thus, the ideas of 

concept image and concept definition are closely related to use of examples. Additionally, 

Watson and Mason (2005) discuss examples in a broader sense by introducing the idea of 

exemplification in mathematics and the idea of example space. They use the term exemplification 

to “describe any situation in which something specific is offered to represent a general class with 

which the learner is to become familiar—a particular case of a generality” (p. 4). Exemplification 

itself is a pedagogical tool for mathematical learning, but it is also worth mentioning that it is 

crucial to allow students to generate their own examples and exemplify the concept for 

themselves since example creation and generation is individual and situational (meaning an 

example may make sense in one situation but not in a different situation).  

Methods 

The data presented here consists of undergraduate students’ responses to a subset of items 

from a written assessment targeted to understand how students’ use mathematical examples in 

tasks involving functions. The assessment was designed to have students interpret mathematical 

definitions, use the definitions, generate examples, demonstrate the role of examples in their 

work, and produce convincing mathematical arguments and proof. The results shared in this 
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paper focus on two main items from this study that asked students’ to generate justifications 

regarding the truth of mathematical conjectures. 105 college students at a large mid-western 

university responded to the questions on the written assessment. All of the participants were 

enrolled in a “College Algebra” course and all had taken a “Pre-calculus Math” course the 

previous semester. Data were collected in seven different College Algebra classrooms. The 

researcher collected data by attending the last 30 minutes of each of the seven classes. Table 1 

shows the conjectures that students were given on the assessment.  

Table 1 - Conjectures 

Even and 

Odd 

Function 

Tasks 

Let f and g be functions with domain all real numbers. Answer the following: 

a. Suppose f and g are even functions. Is f – g is an even function, an odd function, 

or neither? Please show your work and justify your answer. 

b. Suppose f is an even function and g is an odd function. Is the sum f + g an even 

function, an odd function, or neither? Please show your work and justify your 

answer.  
c. Suppose f is an odd function and g is an even function. Is the composition f  g 

even, odd, or neither? Please show your work and justify your answer. 

One-to-

One 

Function 

Tasks 

Let f and g be functions with domain all real numbers. Please answer the 

following: 

a. Suppose f and g are one-to-one functions. Is f + g also one-to-one? Please show 

your work and justify your answer. 

b. Suppose f is a one-to-one function and c is a nonzero real number. Is cf also one-

to-one? Please show your work and justify your answer. 

 

The tasks were presented in three different groups depending on the types of examples given 

in the task, and the students were randomly assigned to groups. All three of the groups were 

given definitions for even, odd, and one-to-one functions, as well as the same five mathematical 

conjectures (Table 1) to evaluate., The groups varied in terms of which examples were provided 

with the conjectures and definitions. Group I was provided with an algebraic example and a 

graphical example for the three kinds of function (even, odd and one-to-one). Group II was given 

the definition of the functions and with the items, and they were explicitly asked to provide an 

example for each kind of function and were not given examples. Group III was given the 

definitions of functions and the items, but was not provided with or asked to generate any 

examples. At the time when this data was collected, the participants were studying polynomial 

functions. The instructors of the course claimed that most of their students could successfully 

solve the items in the given time because they had studied even, odd, and one-to-one functions 

within the previous two weeks. The instructors assumed their students knew all of these concepts 

since they had worked on them extensively.  

Analysis of the written assessment consisted of examining the data for emergent themes and 

categories. Open coding (Strauss & Corbin, 1998) was used to develop categories classifying the 

different types and uses of examples that students’ gave to develop, explore, understand, and 

justify mathematical conjectures.  

Results and Discussion 

As a result of the open coding, three main categories of example types were identified: graphical 

examples, algebraic examples, and non-examples. Table 1 shows definition of each example type 

and examples of it. Themes also emerged from the analysis, and these are discussed below. 

17th Annual Conference on Research in Undergraduate Mathematics Education 575



 4 

Table 2: Example Types 

Example Type Definition Example 

Algebraic Examples Use algebraic symbols 

to represent examples 

“f(x) = x
2 
and g(x) = x

3
”

  

“f(x) = x
2 
+ 4 and g(x) = x

4”
 

Graphical Examples Use graphs to represent 

examples 

 
Non-examples (irrelevant 

examples) 

Examples that are not 

related to the concepts, 

which means they are 

not right examples of 

functions.  

F(x)=2; as example of one-to-one 

function: f(x) = x
2
 

As seen in Table 2, the participants generated mostly non-example which meant the examples 

that they used were not related to the concept they were asked about. Algebraic examples were 

the next most common type of examples used.  

Example Type Group I Group II Group III Total 

Algebraic Examples 71 37 33 141 

Graphical Examples 18 12 19 49 

Non-examples 111 99 120 330 

Table 3: Counts of Groups’ Example Types 

Group I. Students in Group I were provided with an algebraic example of an even function 

(x
2
), an odd function (x

3
), a one-to-one function (x

3
), and a non-one-to-one function (x

2
), as well 

as with a graphical representation of the algebraic functions. The examples given were from their 

textbook, so since those examples were familiar to them from having seen them in the textbook 

and during instruction, the examples are defined as examples from conventional example space 

(Watson & Mason, 2002; 2005). In general, students stuck with the provided examples and did 

not generate other examples to work with. Students generated functions that were very similar to 

x
2
 and x

3
 functions which were given to them, such as x

4
, x

5
, and x

6
. This suggests that students’ 

example spaces were limited which would affect the examples they would choose and may also 

affect how they use those examples.  

Group II. Students in this group were asked to provide an example for each definition. The 

students generated examples that were algebraic (49 cases), graphical (45), non-examples (6) and 

other-examples (4). Interestingly, these students generated similar examples to the ones provided 

to Group I, which suggests that this group had conventional example spaces based on the 

textbooks or instruction used in their class.  

Group III. Students in this group were just given the definitions and the items without any 

prompt or examples. Almost half of these students exemplified the items (that is, they used 

examples to make sense of the conjecture by generating their own examples (Watson & Mason, 

2002; 2005)) while the other half did not use examples or definitions. Interestingly, all of the 

students who used examples to work with the items had similar types of examples as the ones 

given for Group I and Group II. This suggests that their example spaces were limited to 
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conventional example spaces as well.  

In addition to these results, none of the students in this group attempted to make a successful 

general argument by proving the conjectures, but they demonstrated empirical proof scheme 

(Harel & Sowder, 1998) by trying a few examples then generalizing from those examples. Figure 

1a-c shows responses to questions are some examples of their empirical proof scheme:  

 

      
(a)       (b)    (c) 

Response (a) and (c) show that students used an example for each function and showed that the 

conjecture is true for that case, but they did not have a general argumentation for it. Indeed, they 

responses were true for those cases, but the conjecture was a false conjecture so that their 

responses were not correct. Similarly, response (b) shows that a student used two similar 

examples for even functions and made a general argumentation by testing only one case. Her 

response was true, but she did not provide an explanation for it, and this was very common.  

In addition to the result shared above, there are some important results that this study 

revealed, which suggest that students do not have robust understandings of functions. The first 

one is that there was more non-examples type than all of other type of examples about the 

concept of functions.  Indeed, students mostly used examples that are not representation of 

functions, saw functions just as an “input and output,” and were not able to use the basic 

definition of the function to prove the conjectures or to generate examples. Additionally, students 

think about functions as numbers and treat numbers as a general case of functions, which 

suggests that they do not have understanding of functional thinking. For example, the following 

responses suggest that students think of even and odd functions as they do even and odd 

numbers: “Odd function, because when subtracting an odd from an even you will always get 

odd.”  

Or, they see even and odd functions as opposites as they do negative and positive numbers: 

“Neither, because you are adding functions that are opposite, one being positive and one being 

negative” 

In addition, many students mention that they needed an actual function to work with:  

“What is the original function to test with?” 

 “I don’t know what f(x) or g(x) is so I can’t find a solution to the problem.”  

Overall, these results show that there was no difference between the groups in terms of 

example type usage. All three groups used similar kinds of examples types, which suggest that 

their example spaces were similar. A possible explanation for this is that their example spaces 

were based on the textbook or the instruction used in their class. This finding highlights the 

importance of example space. If students don’t have access to a robust example space, they are 

not going to be able to have access to examples and to use examples productively. Indeed, 

Watson and Mason (2002, 2005) claim that “the learners’ potential example space is likely to be 

a subset of what is taken to be conventional by mathematicians and textbooks” (p. 59). One 
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possible explanation for these results is that to accommodate a new mathematical definition, 

students need to generate something new from their example spaces in order to expand their 

example spaces and to move to an abstract level of thinking, which did not happen in this study 

because of their limited example spaces.   

In the first part of the result section, I discussed how students’ example spaces were limited 

to conventional examples, which is indicative of a potential limitation of students’ concept image 

of functions. Students did not understand the properties of the examples that they used since the 

examples they used were based on their conventional example spaces. Watson and Mason (2002, 

2005) claim that “conventional example spaces are generally understood by mathematicians and 

as displayed in textbooks, into which the teacher hopes to induct his or her students” (p. 76). 

However, as the data shows, these hopes were not achieved in my study. The main reason for 

this, I believe, is that students’ concept definition and concept images about functions were not 

well developed, and students were not able to articulate their understanding, which suggests that 

they were not able to accommodate the knowledge that they encountered. Finally, not 

surprisingly, students tried to use empirical proof schemes (Harel and Sowder, 1998) often, but, 

due to their limited functional thinking and problems with algebraic manipulation, they could not 

achieve empirical proof scheme either, in general.  

 

Conclusion 

The purpose of this study was to investigate how students use examples while exploring 

mathematical conjectures about functions. The results showed that student example usage was 

very limited to conventional example spaces, which were likely based on the instruction and 

textbook used in their college algebra course. This suggests that having conventional example 

spaces does not guarantee that students can use examples strategically. Since students did not 

have a robust understanding of functions, they could not use examples to make sense of the 

conjectures and to generate proofs. In addition, students did not generate a variety of examples 

when they were asked to do so, or they did not know how to use examples when they were 

provided with examples. They could not expand their example spaces in terms of giving 

examples because the domain of function was so far outside of their experiences that they could 

not articulate their examples. Therefore, generating examples is not easy for students. Instead of 

seeing examples as obstacles in proving activities, we should think of ways for how to help 

student generate and use examples.   
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Formal Logic in Early Undergraduate Mathematics:  A Cycle 
 

Morgan Dominy 
Virginia Tech 

 
Topic: Examining the understanding of formal logic by early undergraduates leads to the 
examination of a cycle within the broader scope of math education. Some early undergraduate 
students will eventually become pre-service teachers.  The pre-service teachers will in turn 
become primary and secondary educators.  Finally over time, some of their students will become 
undergraduates leading to a cycle.  This poster proposes the idea that any change of curricula in 
undergraduate mathematics should have a ripple effect on the overall understanding of formal 
logic by students of all levels of education over a period of time as the cycle flows. 
 
Background literature: Several papers serve as motivation for the idea. A. and G. Stylianides 
have developed a course to improve the understanding of formal logic by pre-service teachers 
(Stylianides & Stylianides, 2009). A. Stylianides (2007) deals with the concept of proof in the 
setting of primary education by allowing theorems in mathematics to be taken as axioms in a 
classroom setting. For example basic arithmetic operations and their properties are proved in the 
theory using the foundational axioms, but in a classroom settings student intuition is built upon 
by allowing the properties themselves to be taken as axioms. D. Thomson, et al conducted a 
study of published high school math texts and found that less than 6% of the exercises involved 
proof-related reasoning (Thomson, et al, 2012).  M. Inglis and L. Alcock made the use of 
modern technology to objectively measure the “warrant-seeking” behavior of both 
mathematicians and undergraduates when reading proofs. (Inglis & Alcock, 2012). 
 
Research potential: Just as Inglis and Alcock have measured student understanding of proofs, it 
should be possible to devise similar methods to quantify and measure student understanding of 
formal logic on all educational levels.  If done over a long period of time, the effects of the 
implementation of ideas such as the course designed by the Stylianides can be measured.  
Additionally by comparing results from different educational levels, it should be possible to 
identify the level of education that requires the most improvement leading to a sort of triage. 
 
Current focus: In many undergraduate mathematics curricula, a course in formal logic is not a 
prerequisite for earlier courses such as calculus, differential equations, and linear algebra.  
However all three of these subjects rely upon student understanding of formal logic when solving 
non-routine problems related to concepts such as limit, infinite series, and linear independence.  
A possible avenue of quantitative research in this area would involve measuring student 
responses to non-routine problems from the aforementioned courses and comparing the 
responses of the students who had taken a formal logic course or are currently enrolled in one to 
those who had not.  This may lead to the offering of equivalent courses with a greater 
instructional focus on the logical concepts covered in the course.  Any such change in curricula 
will cause a far reaching effect over time that can also be studied.  The purpose of this poster is 
to start a dialogue about this idea among math educators and obtain valuable insight about what 
direction to take with a research program. 
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CALCULUS STUDENTS’ UNDERSTANDING OF UNITS 

           Allison Dorko    Natasha Speer 
  Oregon State University          University of Maine 
          dorkoa@onid.orst.edu      speer@math.umaine.edu 
 
Units of measure are critical in many scientific fields. While instructors often note that students 
struggle with units, little research has been conducted about the nature and extent of these 
difficulties or why they exist. This study investigated calculus students’ unit use in area and 
volume computations. Seventy-three percent of students gave incorrect units for at least one task. 
The most common error was the misappropriation of length units in area and volume 
computations. Analyses of interview data indicate that some students think that the unit of the 
area or volume computation should be the same as the unit specified in the task statement. 
Findings also suggest that some students have difficulties correctly indicating the units for 
computations that involve the quantity π. In addition, findings suggest that calculus students’ 
difficulties with units are linked to their difficulties with understanding area and volume as 
arrays.  
 
Key words: undergraduate students, units, area, volume, arrays 

 
Background and Research Question 

Units of measurement are important in many disciplines including those in science, 
technology, engineering and mathematics (STEM). Many of our future scientists and engineers 
get their foundational understanding of the key ideas of measuring quantities (e.g., rates, rates of 
change) in an undergraduate calculus course. Success in any STEM discipline requires both the 
knowledge needed to obtain quantitative answers and the knowledge of how those quantities 
relate to the physical world, including the units in which such quantities are measured. Findings 
from research indicate that many of these sorts ‘applications’ of mathematics, such as 
optimization (min-max problems), related rates, and volumes of solids of revolution are difficult 
for students (Engelke, 2008; Martin, 2000; Orton, 1983). It is not known how students’ 
knowledge of spatial measure and its units interact with the calculus necessary in these problems, 
and clarifying this is potentially useful for bettering instruction. Other researchers have noted 
how useful units are in making sense of a problem and knowing what quantities to combine, yet 
students rarely have these sorts of skills (Redish, 1997; Rowland & Jovanoski, 2004; Rowland, 
2006; Saitta, Gittings, & Geiger, 2011). Investigating calculus students’ understanding of units 
has implications for calculus instruction and possibly for students’ unit understanding in other 
fields.  

The purpose of this study was to investigate differential calculus students’ success with 
and understanding of the units for area and volume computational problems. The few studies that 
exist about undergraduate students’ understanding of units provide evidence that units pose 
difficulties. Chemistry education researchers have documented that dimensional analysis is 
difficult for students, even though unit conversions are often taught in a variety of subjects over a 
variety of grade levels (Saitta, Gittings, & Geiger, 2011). In a study about students’ 
understanding of the units in differential equations, researchers found that many students did not 
understand that both sides of the equation must have the same units (Rowland, 2006; Rowland & 
Jovanoski, 2004). Students also struggled with determining the units of a proportionality constant 
and explaining the meaning of the terms in the equation (Rowland, 2006; Rowland & Jovanoski, 
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2004). Redish (1997) found that physics students may interpret the symbols in an equation as 
pure numbers rather than as standing for physical quantities.  

There is a broader base of literature about elementary school students’ understanding of 
units and spatial measure. These students frequently misappropriate units of length for area 
calculations and do not see the need for a unit of cover (Iszák, 2003; Fuys, Geddes, &Tischler, 
1998; Lehrer, Jenkins, & Osana,1998). Elementary school students also have difficulty using the 
unit structure of an array of cubes to determine the volume of a rectangular prism (Battista & 
Clements, 1998; Curry & Outhred, 2005). These findings indicate that elementary school 
students struggle with dimensionality, which may result in difficulty determining the correct 
units of measure.  

Given the importance of units and their use in computations modeling physical situations, 
it seems worthwhile to investigate undergraduate students’ understanding of units and to see if 
the issues present in elementary school students persist into students’ university years. We 
surveyed and interviewed 198 differential calculus students to find out the following: 
• What percent of differential calculus students write correct units for area and volume 

computational tasks? What is the thinking and reasoning of these students? 
• What percent of differential calculus students write incorrect units for area and volume 

computational tasks? What is the thinking and reasoning of these students?  
In the next section, we describe the tasks we used to investigate these questions and our method 
of analysis.  

Method 
 We collected data from differential calculus students at a large northeastern university. 
First, we had 198 such students complete the following area and volume computation tasks: 

• Area of a rectangle (12 cm x 4 cm) 
• Area of a circle (r = 5 in) 
• Volume of a rectangular prism (5 cm x 4 cm x 10 cm) 
• Volume of a cylinder (r = 3 in, h = 8 in) 
• Volume of a right triangular prism (prism h = 8 ft; triangle base = 4 ft, triangle h = 3 ft) 

 We then analyzed these data and interviewed students whose survey responses fell into the 
categories identified in the written data. The interview tasks were the same as the written tasks. 
The strength of our survey-then-interview method was that we are able to report quantitative data 
about students’ success rates on the problems as well as qualitative data regarding the sorts of 
thinking and reasoning behind correct and incorrect answers.  
 We used a Grounded Theory inspired approach to data analysis (Glaser & Strauss, 1967). 
Specifically, we looked for commonalities across responses and developed codes and categories 
based on these emergent themes. We chose to look at the unit only, and not the magnitude, in 
each response. We assigned codes to each response, not to each student; that is, we looked at 
each answer individually. The first round of coding was for correct units, incorrect units, and no 
units. On the area tasks, we marked as ‘correct unit’ any squared unit (e.g. cm2, in2 , units2 ) and 
any cubed unit (e.g. cm3 , ft3 , units3) on the volume tasks. Any non-square unit on the area task 
or non-cubic unit on a volume task was marked as ‘incorrect unit’ (e.g., cm, in, ft4). Any 
magnitude without a unit was marked as ‘no unit.’ This coding allowed us to answer the first part 
of the two research questions regarding students’ success with area and volume tasks. We found 
percentages of correct/incorrect/no units (Table 1) for each task, as well as how many students 
had correct units for all of the tasks.  
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Following this first layer of coding, we looked for patterns in the ‘incorrect unit’ and ‘no 
unit’ categories. We noticed two themes: many students gave length units for area/volume 
computations, and the responses to the circle and cylinder tasks had a higher proportion of ‘no 
units’ than the other tasks. This led to two more rounds of coding. The first was to look at the 
‘incorrect unit’ responses and see how many of those were length units such as ‘cm’ or ‘in’ 
(Table 2). The second was to investigate the circle and cylinder tasks. We had noticed that while 
many of these responses did not have a unit, they did include the symbol π. In this coding, we 
coded how many students had no units for either the circle task, the cylinder task, or both. Based 
on interview data (discussed later), we termed these categories ‘π with no unit,’ (e.g., 72π, 25π) 
and ‘answer with unit’ (e.g., 72π in, 25π in2). We also looked at the units students used with the 
other tasks.  

We then turned to our interview data to learn the thinking and reasoning behind students’ 
answers. We coded the area/volume computation in the interview as ‘correct unit,’ ‘incorrect 
unit,’ or ‘no unit,’ and then used Grounded Theory to look for patterns in the collection of 
interview excerpts that fit each category. For example, we identified interviewees who had all of 
the units correct and looked for patterns in their reasoning. A number of students talked about 
arrays and/or dimensionality, so we paid attention to the appearance of those words and ideas as 
we analyzed data. As a second example, students with incorrect or no units for the circle and 
cylinder problems often talked about the symbol π as troublesome. Details of how transcript 
excerpts were coded are presented in conjunction with the results. In the next section, we present 
our quantitative results and the findings from the interview data about the thinking and reasoning 
behind students’ answers.  

Results & Discussion 
Table 1 shows the results of the first round of coding, which was the broadest level to determine 
what percentage of students used correct units, incorrect units, and no units on the tasks.  
 
Table 1. Correct, Incorrect, and No Units  
Task Area of 

rectangle 
Area of circle Volume of 

rectangular 
prism 

Volume of 
cylinder 

Volume of 
triangular 
prism 

n total 197 197 197 197 128 
n responses 195 195 196 182 107 
Correct unit 

% of responses 
159 

81.54 
113 

57.95 
 

165 
84.18 

 

125 
68.68 

 

77 
71.96 

Incorrect Unit 
% of responses 

 

26 
13.33 

 

27 
13.85 

 

23 
11.73 

 

23 
12.64 

 

19 
17.76 

 
No unit  

% of responses 
 

10 
5.13 

 

55 
28.21 

 

8 
4.08 

 

34 
18.68 

 

11 
10.28 

 
 
The percentages in the table are the percent of the total responses (not all students answered all 
questions). For instance, 84.18% of students had the correct unit for the volume of the 
rectangular prism task. We also looked at how many students had correct units for all of the 
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tasks, and found that of 169 students who answered all of the tasks, 45 (26.6%) had correct units 
with all of their responses.    

Interview data helped us understand how students thought about the units of the 
problems. We found that interviewees who had correct units talked about at least one of the 
following: dimensionality, arrays, and rules of exponents. For instance, Steven and Isaac had 
correct units for all of the problems. They explained how they decided what unit was correct as 
follows: 

Steven: Area is a square [unit]. Every time we multiply one dimension by the 
 next, we’re multiplying centimeters by themselves. We change from a linear to an 
 area, then area to volume. It’s recognizable that volume is cubic, as opposed to 
 area, which is squared. [The volume of the rectangular prism] is the length times 
 the width of the base times the height. It’s like the area formula only now we have 
 a vertical dimension so we have 200 little centimeter boxes inside.  

Isaac: If we think about this [5 cm x 10 cm face] in terms of an area – you have 
 50 boxes [draws a 5 x 10 array of squares on the face]. You know that you have 
 four of these, fifty times four. So you can think of it as having four layers of this 
 area because the difference between volume and area is just adding another 
 dimension … so we can think of it as four sheets of 50 squares.  
Steven thought about dimensions and rules of exponents as he identified a correct unit. Isaac, 
who determined that the volume of the box was 200 cm3, thought about arrays, and used the idea 
of sheets of squares (we suspect he meant ‘sheets of cubes’) to reason that the unit should be 
cubic centimeters. These students’ thinking is representative of others who had all the units 
correct. Therefore, we can conclude that ideas of dimensionality, arrays, and rules of exponents 
are helpful for students to understand the units of a spatial computation. 
 Table 2 shows the results of coding for length units.  
Table 2. Misappropriation of Length Units  
 Area of 

rectangle 
Area of 
circle 

Volume of 
rectangular 
prism 

Volume of 
cylinder 

Volume of 
triangular 
prism 
 

n total 197 197 197 197 128 
n responses 195 195 196 182 107 
Length Units 
% responses 
 

29 
14.87 

 

25 
12.82 

 

18 
9.14 

 

13 
7.14 

 

16 
15.00 

 
One finding about elementary school students’ understanding of units is that some elementary 
school students believe length to be an adequate measure of area (Lehrer, 2003). As evident from 
the table above, this belief may persist in some undergraduates. Though only two students used 
length units on all of the tasks, a number of students used length units on one or more of the 
tasks (as detailed in Table 2). Interviewees who used length units for all the tasks told us that the 
unit of the computation was [to paraphrase] ‘the same as the unit you’re told in the problem.’  
Rae, Alex, and Jolie were three such students; they wrote “cm” with their answers. Here, they 
respond to the interviewer asking them to “tell me about the centimeters.”  
 Rae: That’s the thing that goes along with the sides. Whatever the side is in, that’s what 
 the answer is in.  

Alex: We were given a unit. The numbers are centimeters.  
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While students who had correct units thought about dimensionality, rules of exponents, and 
arrays, there is no indication from Rae and Alex that they were thinking about these things. This 
supports our conclusion of the importance of understanding dimensionality, rules of exponents, 
and arrays in understanding the units of spatial computations. We provide one final example to 
support this. Jolie wrote length units for all of the tasks except the triangular prism, in which she 
wrote ‘60’. The interviewer directed her back to the area of the rectangle task: 

Interviewer: On this rectangle question, you wrote 48 centimeters. Does this 
question have anything like that [points to the ‘cm’]? 
Jolie: Well, it’s feet, but I don’t know if it’s cubed because it’s a triangle. I know 
it wouldn’t be just feet. 
Interviewer: Do you remember volumes of other things being cubed when you’ve 
done volume problems before? 
Jolie: I don’t remember. 

Jolie knew the measurement was not just feet, but was not sure whether or not it was cubed. Her 
hesitation may have been due to a perceived mismatch of a triangular shape and cubic units. That 
she was unsure about the units suggests that she did not understand the connection between units 
and dimensionality. This seemed to be the case for many of the interviewees who struggled with 
units.   

Coding the circle and cylinder tasks for “π with no unit” revealed that 55 of 195 students 
(28.21%) had an answer like 25π for the circle task and 34 of 182 students (18.68%) had an 
answer like 72π for the cylinder task (the magnitudes of the answers may have differed). This is 
interesting because the percentages are much higher than the ‘no unit’ percentages for the other 
tasks (see Table 1). We found 10 students who had π and no other units for both of the tasks 
(these 10 students are a subset of the 55 and 34). Eight of these ten students had given units for 
all of the other tasks, and the other two students did not give units with any of the tasks. That 
eight of these students included units with the other tasks seems a compelling piece of evidence 
that something about circle and cylinder area/volume computations causes students to have 
issues with the units. While a possible alternative explanation is that the students ‘forgot’ the 
units or were being ‘careless,’ interview data leads us to believe otherwise. For instance, Amy 
and Bob said that they “forgot” the unit because of the π involved:  

Amy: I probably didn’t even think of it because I was using pi, so I left pi in it 
and I didn’t think to label it. But I labeled all the rest of them. That’s really weird. 
Well I know pi is an actual value, but I guess I would … I don’t know. It probably 
just slipped my mind because I was using pi to represent a number rather than 
saying 3.14 and I probably just forgot to put a label on it. I probably have a 
tendency to do that with circles because you really only use pi with circles and it 
kind of doesn’t have a label on it. And I guess it makes sense that I would use it 
consistently with circles. You can multiply it out [multiply 25 * 3.14], but I tend 
to leave pi as pi. I don’t know.  
Bob: I think it’s because I forgot [the units for the circle problem]. Either that or the pi 

 threw me off and then I forgot. Pi doesn’t have a unit. I think I forgot because of the 
 unitless pi. 
These students say that their lack of unit with the circle and cylinder task was a result of the 
presence of the symbol π. Our data does not fully explain what is happening with the circle tasks, 
but the findings do suggest that π being related to unit difficulties warrants further investigation.  

588 17th Annual Conference on Research in Undergraduate Mathematics Education



 Symbolic forms. Sherin’s (2001) theory of symbolic forms may explain some of 
the results of this study, most notably the	  π and incorrect unit findings. Developed to explain 
how students understand and construct equations in physics, the symbolic forms framework 
hypothesizes that students have conceptual schema with which they associate certain symbol 
patterns in equations. Sherin (2001) developed a list of these symbolic forms, noting that it is not 
comprehensive and hypothesizing mathematics-specific symbolic forms also exist for 
mathematics equations. Izsák (2000) explored the existence of a few symbolic forms in students’ 
modeling of physical situations with algebra. It is important to note that in Sherin and Izsák’s 
work, the symbolic form is connected to understandings that students have about the situation 
they are modeling. That is, a symbolic form and symbol pattern are not something that arise from 
rote memorization or how something is “supposed to” look: rather, the form and symbol pattern 
have meaning to the student. For instance, students who understand upwards acceleration and 
acceleration due to gravity as competing forces might write an equation with a ☐ - ☐ symbol 
pattern because that specific pattern represents a “competing terms” form. Neither Sherin’s nor 
Izsák’s accounts of forms include forms regarding units, but our data lead us to believe that (a) 
such forms exist and (b) they may explain students’ unit use. We might say that students 
understand an area or volume calculation to be measuring something, and because it is a 
measurement, it has a unit. We propose that there may be a measurement symbolic form and an 
associated symbol pattern as shown in Figure 1. The larger box indicates the magnitude and the 
smaller box indicates a unit. 

 
 
 
	   	  
Figure 1. Symbol pattern for “measurement” symbolic form. 

If this form exists, it might explain some students’ tendency to write a unit with a measurement 
calculation, even if it is not the correct unit. This form might also explain some student’s 
tendency to include π, but not a unit, for circle and cylinder computations and units on other 
problems. If “measurement” cues the symbol pattern in Figure 1, π may fill the second box, and 
students may think the symbol pattern is satisfied. They may then proceed to a different task 
(say, the volume of the rectangular prism), activate the same measurement schema, and include a 
unit to satisfy the symbol pattern.  Some students might have a form like the one in Figure 2, in 
which they think of a measurement as represented by a magnitude, the general units of measure 
(e.g., yards or meters), and the dimension of that unit (e.g., square yards or cubic meters).  
	  
	  
	  
	  
 Figure 2. Nuanced symbol pattern for “measurement” symbolic form.  
Though further research is needed regarding the existence of these forms, their existence would 
explain students’ unit use and the sometimes contradictory behavior of including units on some 
problems but not others, or including an incorrect unit. From an instructional viewpoint, this 
would suggest good news that students do indeed connect area and volume with the 
measurement concept. We discuss further instructional implications next.   
  
 

17th Annual Conference on Research in Undergraduate Mathematics Education 589



Summary 
 We found that units of spatial measure cause difficulties for differential calculus students. 
In particular, only 26.6% of students gave correct units for all of the tasks. One common 
incorrect unit was a length unit for an area or volume computation. This finding is similar to that 
of Lehrer (2003), who noted that elementary school students often misappropriate units of length 
for other spatial measure. We found that students who gave correct units could connect their unit 
choice to arrays, dimensionality, and rules of exponents. In contrast, students who struggled with 
units did not seem to have this sort of knowledge. This has implications for teaching area and 
volume using array models from early grades on, and connecting units to rules of exponents after 
students have had algebra.  

A second important feature of students’ responses was not giving units for the circle and 
cylinder computations. More research is needed to investigate how students think about the 
symbol π; in particular, we are interested if there might be some connection between the lack of 
units here and students being instructed in geometry to ‘leave your answer in terms of/in units of 
π’ or students being accustomed to things like 3π/2 in trigonometry, where there is a π but no 
other unit. Finally, further research is needed to investigate our hypothesis about the existence of 
symbolic forms for students’ unit understanding.  
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GENERALIZING CALCULUS IDEAS FROM TWO DIMENSIONS TO THREE: 
HOW MULTIVARIABLE CALCULUS STUDENTS THINK ABOUT DOMAIN AND 

RANGE 

Allison Dorko & Eric Weber 
 Oregon State University  

 
We analyzed multivariable calculus students’ meanings for domain and range and their 
generalization of that meaning as they reasoned about domain and range of multivariable 
functions. We found that students’ thinking about domain and range fell into three broad 
categories: input/output, independent/dependent variables, and/or as attached to specific 
variables. We used Ellis’ (2007) actor-oriented generalizations framework to characterize 
how students generalized their meanings for domain and range from single-variable to 
multivariable functions. This framework focuses on the process of generalization – what 
students see as similar between ideas in multiple contexts. We found that students generalized 
their meanings for domain and range by relating objects, extending their meanings, using 
general principles and rules, and using/modifying previous ideas. Our results about how 
students understand and generalize the concepts of domain and range imply that the domain 
and range of multivariable functions is a topic instructors should explicitly address.  

Key words: Calculus, function, generalization  

Introduction 
This paper focuses on (a) how multivariable calculus students think about domain and 

range in two and three dimensions and (b) how they generalize their meaning of domain and 
range from single to multivariable functions.  We have two foci because how students 
generalize their ideas cannot be studied without first identifying what those ideas are. While 
it is clear to experts that multivariable calculus topics are natural extensions of single-variable 
calculus topics, how students come to see the relationship between ideas like function and 
rate of change in single and multivariable contexts is not well understood. Though some 
recent advances have been made with regard to student thinking about these ideas, these 
studies are only preliminary (Kabael, 2011; Martinez-Planell & Trigueros, 2013; Trigueros & 
Martinez-Planell, 2010; Yerushalmy, 1997). Additionally, while there is a large body of 
knowledge about how students understand various single-variable calculus concepts, far 
fewer studies exist regarding students’ understanding of topics in multivariable calculus. For 
instance, there is a wide body of knowledge about students’ understanding of derivatives of 
single-variable functions (Asiala, 1997; Orton, 1983; Zandieh, 2000), but not much about 
students’ understanding of derivatives of multivariable functions. This scarcity creates two 
issues: one, we do not know how students in multivariable calculus think about the concepts 
presented to them and two, we do not understand how they develop those understandings 
through the process of generalization.  

Gaining insight into these two issues is crucial to many STEM fields, as most 
mathematics used in the real world involves functions of many variables. For instance, in 
thermodynamics, energy is a function of pairs of pressure, temperature, volume, and entropy; 
in engineering, density may be a function of x, y, and z. If the mathematics STEM students 
are to use involves functions of many variables, it makes sense to study how students 
understand these functions so that instructors can use that knowledge to address specific 
difficulties and misconceptions. It is likely that students’ understanding of single-variable 
functions plays a role in their understanding of multivariable functions. Thus this study aimed 
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at not only describing one particular aspect of students’ multivariable function understanding, 
but how that thinking relates to their prior knowledge: in short, what they see as similar 
between domain and range of single and multivariable functions. More broadly, knowing 
how students generalize in mathematics is useful for instruction in that we can better build on 
students’ prior knowledge and exploit the connections they naturally see between 
mathematical ideas.  

We use domain and range as a ‘case study’ of how students generalize the meaning of a 
concept learned with single-variable functions to its meaning for multivariable functions. 
While domain and range appear in initial instruction about functions, they receive little to no 
attention in multivariable calculus. For instance, McCallum et al. (2009) do not discuss the 
domain and range of a function at all. Rowgawski (2008) and Thomas (2010) define and give 
a few examples of the domains and ranges of multivariable functions. None of these standard 
texts, however, talk about domain and range in terms of inputs and outputs or independent 
and dependent quantities, as is commonly done in algebra. Thus most of our subjects had not 
thought about domain and range in three dimensions, and we were able to observe their initial 
fits and starts with the ideas and observe detailed and sudden generalizations. This paper 
centers on the following three organizing themes:  
1. What meanings do multivariable calculus students have for domain and range in two 

dimensions? 
2. What meanings do multivariable calculus students have for domain and range in three 

dimensions? 
3. How do multivariable calculus students generalize the concept of domain and range from 

two dimensions to three dimensions? 
Background Literature 

There are few articles that discuss students’ understanding of domain and range. We 
searched for articles about students’ understanding of domain and range, and when that 
yielded nothing, we switched to associated terms like ‘function machines,’ ‘input and output,’ 
and ‘students’ notion of variable’. We searched for ‘independence and dependence’ in both 
function literature and statistics education literature. None of these searches resulted in 
articles that explicitly discuss domain and range, though there are some findings in the 
function literature related to students’ understanding of functions that are relevant to the 
present study. For instance, one way to define domain and range is the set of inputs and 
outputs of the function, respectively. According to Oehrtman, Carlson, and Thompson 
(2008), thinking about a function in terms of an input and corresponding output is the 
beginning of a robust function conception. Monk (1994) found that most calculus students 
have developed this pointwise view of function but fewer develop an across-time view of 
function, in which students’ conception of function progress to thinking about the function 
for infinitely many values and understanding how the a change in one variable affects the 
other(s). That is, a robust function conception involves not only the ability to pair an input 
with an output, but an understanding of the relationship between quantities. Confrey and 
Smith (1995) say the beginning of this understanding occurs as students form connections 
between values in a function’s domain and range. However, as function is introduced in 
algebra and/or precalculus, the functions instructors ask students to reason about are single-
variable functions. How students build an understanding of multivariable functions is not 
known. Our investigation of students’ meanings for domain and rage contributes to the 
function literature by documenting how students think about domain and range of single- and 
multivariable functions, and how they generalize the ideas of domain and range.   
Generalization  
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We chose to study this sense making in terms of generalization because the ideas in 
multivariable calculus are connected to those in single-variable calculus (and, in the case of 
domain and range, to ideas from algebra), and it is widely believed that students use their 
prior knowledge in making sense of new topics. More specifically, the ideas in multivariable 
and single variable calculus are similar and students are likely to pick up on similarities such 
as terms (e.g., function, domain, range, variable) and symbols (e.g. notations like f(x) and 
f(x,y); integral symbols). Studying the extension from single to multivariable calculus allows 
us to see the nature of the connections students make and how they make them. Though there 
have been many studies about generalization in algebra (e.g. Amit & Klass-Tsirulnikov, 
2005; Carpenter & Franke, 2001; Cooper & Warren, 2008; Ellis, 2007), these studies are 
largely about generalizing patterns, and there are fewer studies of generalization of 
undergraduate mathematics topics, or studies of the generalization of meaning. As 
generalization is a critical component of mathematical thinking (Amit & Klass-Tsirulnikov, 
2005; Lannin, 2005; Mason, 1996; Peirce, 1902; Sriraman, 2003; Vygotsky, 1986), it is 
important to extend knowledge of how students generalize in higher mathematics, and in 
particular how they generalize conceptual meanings.  

Theoretical Framework 
We studied generalization from an actor-oriented perspective. The actor-oriented 

perspective attends to what students see as similar in mathematical situations. This is in 
contrast to an observer-oriented perspective in which students’ ideas are compared to what an 
expert would see as similar across situations. Such perspectives often find that students 
cannot or do not generalize ideas from one setting to another, and focus on the product – the 
final general rule or principle – as opposed to the generalization process itself. The actor-
oriented perspective allows us to privilege students’ perceptions of similarity, and thus their 
generalization process, even if their perceptions are not necessarily consonant with what an 
expert would see as similar. We follow Ellis (2007) and Lobato (2003) in thinking about 
generalization as “the influence of a learner’s prior activities on his or her activity in novel 
situations” (Ellis, 2007, p. 225). This was a useful lens for looking at how students viewed 
domain and range, a topic they had experienced prior with single-variable functions, in the 
novel situation of multivariable functions.  
 Our corresponding analytic framework is Ellis’ (2007) generalizations taxonomy. The 
taxonomy distinguishes between generalizing actions, or “learners’ mental acts as inferred 
through the person’s activity and talk” (Ellis, 2007, p. 233) and reflection generalizations, 
which are students’ public statements about a property or pattern common to two situations. 
Generalizing actions include relating, searching, and extending (Figure 1). Reflection 
generalizations include identifications and statements, definitions, and influence (Figure 2). 
We used this framework to analyze how students generalized their meanings for domain and 
range.   

GENERALIZING ACTIONS 

Ty
pe

 I:
 R

el
at

in
g 

 

1. Relating situations: The 
formation of an association 
between two or more 
problems or situations. 

Connecting Back: The formation of a connection 
between a current situation and a previously-
encountered situation. 
Creating New: The invention of a new situation  
viewed as similar to an existing situation. 

2. Relating objects: The 
formation of an association 
between two or more present 
objects. 

Property: The association of objects by focusing 
on a property similar to both. 
Form: The association of objects by focusing on 
their similar form.  
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Ty
pe

 II
: S

ea
rc

hi
ng

 1. Searching for the Same Relationship: The performance of a repeated action in 
order to detect a stable relationship between two or more objects. 
2. Searching for the Same Procedure: The repeated performance of a procedure in 
order to test whether it remains valid for all cases. 
3. Searching for the Same Pattern: The repeated action to check whether a detected 
pattern remains stable across all cases.  
4. Searching for the Same Solution or Result: The performance of a repeated action 
in order to determine if the outcome of the action is identical every time.  

Ty
pe

 II
I: 

Ex
te

nd
in

g 
 

1. Expanding the range of Applicability: The application of a phenomenon to a 
larger range of cases than that from which it originated. 
2. Removing Particulars: The removal of some contextual details in order to 
develop a global case.  
3. Operating: The act of operating upon an object in order to generate new cases. 
4. Continuing: The act of repeating an existing pattern in order to generate new 
cases.  

Figure 1. Generalizing actions for domain and range. Adapted from Ellis (2007).   
 

REFLECTION GENERALIZATIONS 

Ty
pe

 IV
: I

de
nt

ifi
ca

tio
n 

or
 

St
at

em
en

t 

1. Continuing Phenomenon: The identification of a dynamic property extending 
beyond a specific instance. 
2. Sameness: 
Statement of 
commonality 
or similarity. 

Common Property: The identification of the property common to 
objects or situations. 
Objects or Representations: The identification of objects as similar 
or identical. 
Situations: The identification of situations as similar or identical.  

3. General 
Principle: A 
statement of 
a general 
phenomenon. 

Rule: The description of a general formula or fact.  
Pattern: The identification of a general pattern. 
Strategy or Procedure: The description of a method extending 
beyond a specific case.  
Global Rule: The statement of the meaning of an object or idea.  

Ty
pe

 V
: 

D
ef

in
iti

on
 1. Class of Objects: The definition of a class of objects all satisfying a given 

relationship, pattern, or other phenomenon. 

Ty
pe

 V
I: 

In
flu

en
c

e 

1. Prior Idea or Strategy: The implementation of a previously-developed 
generalization.  
2. Modified Idea or Strategy: The adaptation of an existing generalization to apply 
to a new problem or situation. 

Figure 2. Ellis’ (2007) reflection generalizations  
 

Data Collection Methods 
We interviewed 20 students enrolled in multivariable calculus at a mid-size university in 

the northwestern U.S. The students were volunteers selected from all the multivariable 
calculus students enrolled during that term, and were compensated for their participation. The 
course topics included vectors, vector functions, curves in two and three dimensions, 
surfaces, partial derivatives, gradients, directional derivatives, and multiple integrals in 
different coordinate systems. Each student participated in a semi-structured interview that 
lasted about an hour. We recorded audio and written work from each of the interviews using 
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a LiveScribe Echo Pen, which provides a recording consisting of synced audio and written 
work. These recordings also allowed us to create dynamic playbacks of the interviews during 
data analysis. The tasks and rationale for their inclusion are shown in Table 1.  
Table 1. Interview tasks and rationale 
Task Rationale 
1. What does domain mean? What does 
range mean? 

 

The purpose of this question was to elicit 
how students thought about domain and 
range, and what they associated with the 
terms, when they were not tied to a specific 
problem or function.  

2. What are the domain and range 
of f (x) = 4+1/ (x −3)? 

This question was included to gain insight 
into how students operationalized their 
definitions for domain and range as they 
worked with a single-variable function.  

3. What are the domain and range of 
f (x, y) = x2 + y2 ? 

This question was included to gain insight 
into how students thought about domain 
and range for a multivariable function. We 
used this task as one way to investigate 
how students generalized their meanings 
for domain and range.  

4. What are the domain and range of 
x2 + y2 + z2 = 9 ? 

This question was included to gain insight 
into how students thought about domain 
and range for a multivariable function, and 
how they thought of domain and range for 
a function written in a different form than 
f(x,y).  

We had two research foci and thus preformed two separate data analyses. We used a 
constant comparative analysis (Corbin, 2008) to answer our first two questions, (what are 
students’ meanings for domain and range of single- and multivariable functions?) then did a 
second analysis using Ellis’ (2007) generalizations framework to answer the second (how do 
students generalize those meanings?). We present the analysis methods, findings, and 
discussion of students’ meanings for domain and range first, then we turn to the analysis, 
results, and discussion about students’ generalizations.  

Data Analysis I: Students’ Meanings for Domain and Range 
We used a constant comparative analysis (Corbin, 2008) to identify what meanings 

students held for domain and range. Researcher 1, who had done all but two of the 
interviews, randomly selected half of the interview transcripts and highlighted phrases 
relating to how students thought about domain and range. Students used words like input, 
output, result, function as a whole, independent variable, dependent variable, domain goes 
with x (or x and y), range goes with y (or z), domain goes with the horizontal axis (or plane), 
range goes with the vertical axis, codomain, and so on. Researcher 1 then read the other half 
of the transcripts, marking the same words and looking for any other words or phrases 
students used in thinking about and explaining domain and range. Researcher 1 then looked 
for themes in this collection of students’ phrases, and found that they fit the following 
categories: (a) Domain and range are associated with specific variable symbols in an 
equation, (b) Domain and range are inputs and outputs, and (c) Domain and range relate to 
independent and dependent variables. Researcher 1 created coding criteria for each of these 
categories for both single and multivariable functions, and both researchers coded all of the 
data independently. The two researchers compared their results, discussed any differences, 

17th Annual Conference on Research in Undergraduate Mathematics Education 597



and agreed upon the set of codes shown in Table 2. They then used the data within each 
category to form descriptions of the meanings students held for domain and range. In the next 
section, we give examples of data for each category and describe students’ meanings.    
Table 2. Codes and criteria for meanings of domain and range  
 Criteria 
Code  Single-Variable Multivariable 

D
om

ai
n 

is
 x

, 
R

an
ge

 is
 y

 
 

Student says that domain is the x 
values and range is the y values 
without reference to the notion of 
function. That is, the student does 
not mention input, output, 
independent variable, or dependent 
variable.  

Student is answering a question about f(x,y) 
and gives a domain for x and a range for y. The 
student may talk about the f(x,y) or the z value, 
but still identifies domain as corresponding to 
x and range as corresponding to y.   

In
pu

t /
 O

ut
pu

t 
 

Student talks about domain as an 
input, a value that goes into a 
function, or a value that “satisfies” 
the function. Student talks about 
range as an output value, a ‘return 
value’, or the ‘result value.’ There is 
a clear reference to the notion of 
function.   

Student is answering a question about f(x,y). 
Student talks about domain as inputs and 
identifies that there are multiple inputs because 
it is a function of more than one variable. 
Student talks about range as the output, the 
result of the function, the ‘function value,’ or 
the function ‘as a whole’. There is a clear 
reference to the notion of function.   

In
de

pe
nd

en
ce

 / 
D

ep
en

de
nc

e 
 

Student identifies that domain 
corresponds to the independent 
variable and range corresponds to 
the dependent variable.  

Student is answering a question about f(x,y). 
Student identifies that domain corresponds to 
the independent variables and range 
corresponds to the dependent variable. The 
student may use the phrase ‘determined by’ 
rather than the terms independent / dependent 
(e.g., “z determined by x and y”)  

Results & Discussion I: Students’ Meanings for Domain and Range of Single and 
Multivariable Functions 

The three broad categories in Table 1 correspond to students’ meanings for domain and 
range. Below, we consider each of these meanings in detail. 
Domain is x, range is y 

One meaning that students had for domain and range was that domain meant the possible 
values for x and range means the possible values for y. This meaning was based on the 
presence of symbols in the equation rather than a notion of function. That is, probing 
questions about why domain was x or range was y did not yield any underlying explanations 
of x and y as inputs, outputs, or independent/dependent variable.  

The strongest evidence that some students think of domain and range as related to specific 
symbols is that many students said that the domain was x and the range was y for f(x,y). For 
instance, Adam and Gabe both defined domain as the possible x values and range as the 
possible y values for a single-variable function. For f(x,y) = x2 + y2, they said  
Adam:  It’s a helix, or spinny spring looking thing. Domain and range, so the domain of 

this would be all real numbers for x values, so x can equal any number, and it 
changes what z equals, but even negative numbers squared equal positive z. And 
the range is all real numbers because there is no value of y for which the graph is 
undefined. 

Gabe:   So the domain [of f(x,y) = x2 + y2,] is all real numbers because it’s a square so 
 there’s no restrictions. And it’s the same thing with y, it’s the same as the x2. 
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Int.:  What would it mean if I said 4 is in the domain? 
Gabe:  You’d just plug it in. 
Int.:   But do I have to say it for x and y? If I just say 4 is in my domain and I haven’t  
   specified if it’s x or y? 
Gabe:  I look at the domain as just being x values. 
Int.:  So if I said 4, it would mean that x = 4 is in the domain? 
Gabe:  Yeah. 
Int.:   What if I made that same statement about the range, if I said 4 was in the range?  

  What would I be looking at? 
Gabe:  The y value.  
Adam talked about changes in x causing changes in z, indicating he understood there was a 
relationship between x and z. However, he said that the range was y. Thus ‘range’ seemed to 
be attached to a specific symbol, rather than the idea of the dependence of one value on 
another, as he had mentioned earlier. Gabe associated domain with only x values, and range 
with only y values for both f(x) and f(x,y). In summary, the meaning of domain and range for 
these students was that domain corresponds to x and range corresponds to y, whether the 
function was a single variable function or a multivariable one.  
Input/Output 

One way to think about function is as a machine that takes inputs and returns outputs. 
Many students thought about domain and range as related to this notion of function. To these 
students, domain meant the possible inputs to a function and range meant the possible 
outputs. For single-variable functions, students identified a singular output. For multivariable 
functions, students explained domain as corresponding to multiple inputs, as Jim did by 
identifying an x input and a y input. The input-output meaning often included a link between 
the inputs and outputs, such that each choice of input produced a particular output. For 
instance, Deb talked about ‘return values for each x in the domain’.    
Deb:  In terms of f(x) = y, domain would be all the value that go into the function. The  
   domain will be all of the values for x that return a unique, I think, value for y. The 
   range would be all the return values for each x in the domain. 
Jim:  Domain is your input values, otherwise known as your x values. It could also   
   represent your independent values. The range is your output, your dependent   
   variables, y values. 

[Q3] There would be two different domains. You have your x input and your y 
 input. Your x domain and your y domain give you a range of a different variable. 
 It’s the range of z or f(x,y). 

Note that Jim talked about both inputs/outputs and independence and dependence, so his 
answer was coded as belonging to both categories. It was fairly common for students to 
understand domain and range in terms of both input and output and independence and 
dependence.  
Independence / Dependence 

A function may be thought of as a relationship in which the value of one variable depends 
on the value of another variable. For students who thought about function this way, domain 
meant the possible values of the independent variable and range meant the possible values of 
the dependent variable. Kathy gave a good example of this with equations, and Leah talked 
about independence and dependence graphically by thinking about a “y plane” as determined 
by x values. Both Leah and Phillip identified that a multivariable function has multiple 
independent variables.  
Kathy:  Domain is the range of x values that a function can have. And I guess x is just the  

  independent variable. If the function were f(y), the domain would be y. Range is  
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  the values that a function has for the given domain. Usually it’s f(x) = y. Then y  
  has the range. 

Leah:  Domain is the range of values the dependent variable can take. No, it’s the 
 independent. It’s the y plane determined by the x value, or the z determined by the  
 x and y.  

Phillip: [Q3] It’s a function of two variables. X and y are both independent variables, 
rather than the dependent variable. You could say the domain is the independent 
variable and range is the dependent variable. 

In summary, the meanings students held for domain and range included ‘domain is x and 
range is y’; domain as input and range as output; and domain and range as related to 
independent and dependent variables. In the next section, we describe how we analyzed 
students’ generalizations of these meanings from their meaning in f(x) to their meaning in 
f(x,y).  

Data Analysis II: Coding Students’ Generalizations 
Our second analysis was to determine how students generalized their meanings for 

domain and range as they moved from working with f(x) to thinking about f(x,y). We based 
this analysis on Ellis’ (2007) generalizations framework. The framework distinguishes 
between generalizing actions, which are “students’ activity as they generalize” (Ellis, 2007, 
p. 198), and reflection generalizations, which are “final statements of generalization (verbal 
or written) or the use of a result of a prior generalization” (Ellis, 2007, p. 198). In the next 
subsections, we explain how we used this framework to code our own data.  
Generalizing Action: Relating 
Relating is a generalizing action in which “students form an association between two or more 
problems, situations, ideas, or mathematical objects. They relate by recalling a prior situation, 
inventing a new one, or focusing on similar properties or forms of mathematical objects” 
(Ellis, 2007, p. 198). We only found two instances of relating situations. One student who 
defined domain and range as relating to independent and dependent variables connected back 
to a physics lab in which an experiment had had such variables. A different student, who 
defined domain and range in terms of inputs and outputs, engaged in creating new by 
describing temperature in California as a function of temperature in Oregon, and explained 
that the temperature in Oregon would be the input.  
 Relating objects was far more common. We found that students related both equations 
and graphs or coordinate axes. For instance, both Leah and Mimi related the coordinate axes 
of R2 to the coordinate axes of R3: 
Leah:   Range is the y plane determined by the x value, or z determined by x and y.    
   [Relating objects: property] 
Phillip: Lets call z the dependent variable here and move the x and y to the other side. 

Now the domain is x and y.  
   [Relating objects: property] 
Mimi:   You can’t have negative z but I don’t know if that’s the domain or the range. I’m  
   going to say it’s the range, and treat the z axis like the y axis of the function. 
   [Relating objects: form]  
Leah and Phillip related the coordinate axes based on the property of independence and 
dependence, which Leah called ‘determined by.’ Mimi did not use a mathematical property to 
relate the axes, but instead seemed to see as similar the vertical position of the y axis in f(x) 
and the z axis in f(x,y).  
 One clear instance of relating objects by their form was the category of students who said 
that domain was x and range was y for both f(x) and f(x,y). In these cases, the presence of x 
and y in an equation seemed to trigger students to say that domain was the possible x values 
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and range was the possible y values. Ian and Gabe’s descriptions of domain and range are 
good examples: 
Ian:   [Q1] [Domain] is whatever the x value can be. The values the x component can be 
   composed of. [Range] would pretty much be the same thing except for the y   
   component.  

[Q3] so whatever x is, it would be whatever values z is because that would   
 be the radius [writes ‘domain: -z < x < z’]. And the y is the same [writes   
 ‘range: - y < z < y’].  

   [Relating objects: form]  
Gabe:   So the domain [of f(x,y) = x2 + y2,] is all real numbers because it’s a square so 

 there’s no restrictions. And it’s the same thing with y, it’s the same as the x2. 
Int.:  What would it mean if I said 4 is in the domain? 
Gabe:  You’d just plug it in. 
Int.:   But do I have to say it for x and y? If I just say 4 is in my domain and I haven’t  
   specified if it’s x or y? 
Gabe:  I look at the domain as just being x values. 
Int.:  So if I said 4, it would mean that x = 4 is in the domain? 
Gabe:  Yeah. 
Int.:   What if I made that same statement about the range, if I said 4 was in the range?  

  What would I be looking at? 
Gabe:  The y value.  
For Ian and Gabe, domain meant x and range meant y. Thus what they saw as similar in f(x) 
and f(x,y) was that both had an x and a y. They generalized their meaning for domain and 
range based on the presence of the variables in the equation. This was true of all students in 
the ‘Domain is x, Range is y’ category: students who thought domain was x and range was y 
in both single-and multivariable functions seemed to have made that generalization based on 
the presence of the variables in the equations rather than based on a conceptual meaning for 
domain and range.   
Generalizing Action: Extending 

Ellis (2007) defines extending as a generalizing action that “involves the expansion of a 
pattern, relationship, or rule into a more general structure. Students who extend widen their 
reasoning beyond the problem, situation, or case in which it originated” (Ellis, 2007, p.198). 
Our students extended the range of applicability and removed particulars. The following 
excerpts are representative of the ways in which students engaged in extending. 
Jim:  [Q1] Domain is your input values, otherwise known as your x values. It could also 
   represent your independent values. The range is your output, your dependent   
   values, your y values.   

[Q3] There would be two different domains because there are two different inputs. 
I guess the range could be any number just dependent on the domain, like you 
could put anything into the domain and you would get a range number out. Your x 
domain and your y domain give you a range of a different variable. So it would be, 
the range would be of f(x,y). 

   [Extending: removing particulars] 
Bailey:  I think in 2 dimensions, whatever your domain is, you put that in and that’s what  
   your output is. I suppose that’s the same in 3D as well: the array of possible   
   values I can get out of the function.  
   [Extending: removing particulars] 
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Deb:  [Q1] The domain is all the values for x that return a unique value for y. The range  
   would be all of the return values. In 3D, the domain is all values for x and y and  
   the range is all values for z. 

[Q4] I am going to use a graph because I know it’s a sphere. So the domain would 
be all the values between… it’s like R but it’s kind of limited between 3 and -3 on 
each part. So -3 to 3 for x, y, z. Those are domains. The range, it won’t be 3 any 
more because we have… I am not sure about the range. What are the return 
values. I’ll write it as . Now the range would be, that is R.  

   [Extending: expanding the range of applicability]  
What Jim saw as similar between the domain of f(x) and f(x,y) was that in each case, domain 
meant input. He thus extended his idea of domain-as-input to domain-as-inputs, and likewise 
extended the idea of ‘getting a range number out’ to f(x,y) representing that number just as 
f(x) did. We coded this as extending: removing particulars because Jim removed the 
contextual details of the problem (that is, the function f(x,y) = x2 + y2) in order to develop a 
global case: domain is the input(s) and range is the output. He put the actual equation while 
foregrounding the meaning of domain and range. Likewise, Bailey extended the idea of range 
being “the array of possible values I can get out of the function” to decide that range was “the 
same in 3D.” In stating this, she removed the particulars of the specific equation as Jim had. 
Deb also removed particulars, extending the idea of range as a “return value” when she 
worked with the equation for the sphere. Deb’s meaning for range in 2D had been a return 
value or a z value. However, the equation for the sphere was written differently than the other 
equations. Deb extended by asking herself what the return value was, then solved the 
equation for z so she could apply her meaning for range. In doing so, she extended the range 
of applicability because she applied a meaning to something different from which it had 
originated.    
Reflection generalization: Identification or statement: General principle 

Ellis (2007) defines a general principle as “a statement of a general phenomenon” (Ellis, 
2007, p. 200). General principles come under the categories of ‘identification or statement’ in 
which students make their generalizations public by explicitly writing or stating them.. Our 
students frequently stated global rules as they tried to think about the meaning of the domain 
and range of f(x,y). That is, one way in which they made meaning of the concepts “domain of 
f(x,y)” and “range of f(x,y)” was to state their meaning of the concepts “domain of f(x)” and 
“range of f(x)”, linking the meaning in each context to form a description of the general 
phenomenon. For example,   
 
Mimi:  Like you’ve got x, you’ve got y, and z is kind of like the function value. It equals  
   f(x,y) kind of like y = f(x). It’s the dependent variable, not the independent.  
Philip:  The range… is the result of the function, so I guess that would be z. The range is  
   … the dependent variable. X and y are both independent  variables. You could give 
   a better definition than in question 1 and say domain is the independent variable  
   and range is the dependent variable. 
Mimi and Phillip used two ideas in their meaning of range: that of the “function value” or 
“result of the function” and that of dependency. The function value meaning allowed Mimi to 
see z = f(x,y) as analogous to y = f(x). Likewise, Phillip saw z as the “result” of the function 
of x and y. He stated a global rule that domain corresponds to the independent variables and 
range corresponds to the dependent variable. In talking about the function’s value or result 
and independence/dependence, the students were stating the meaning of domain and range.  
 Phillip’s statement is a good example of the relationship between generalizing actions and 
reflection generalizations. Ellis (2007) notes that reflection generalizations often come on the 
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heels of generalizing actions. Phillip extended his idea about “the result of a function” from 
the single-variable to the multivariable case, and this extension was immediately followed by 
a synthesizing comment about the meaning of domain and range in general.    
Reflection Generalization: Influence  
There are two reflection generalizations classified as Influence. The first is prior idea or 
strategy, in which a student implements a previously developed generalization. The second is 
a modified idea or strategy, in which a student adapts an existing generalization to apply to a 
new problem or situation. Quincy and Neil’s statements illustrate the difference well: 
Quincy: [Q1] Range is how far the function spans. Range is the set of numbers the function 
   can have. 
   [Q4] I think the range is 9 for this one… because that's the value on the other side  
   of the equal sign. So it can't really range to any other values.  
Neil:  [Q1] Domain is the span that the x value can take on. Range is the span that the y  
   value can take on. 

[Q3] In this instance the range is z, the output value. So I would say the variables  
 applied to the function doesn’t necessarily correspond to domain as x, range as y. 
 So if I looked back to my definitions in question one, I could define domain and 
 range in 3D space with domain as the span of values that can occur on the 
 horizontal plane and I would define range to be the span of values that are 
 dependent on the domain and span the vertical plane.   

Quincy directly applied his generalization that “range is the set of numbers the function can 
have” to the equation for the sphere, noting that the only number the x, y, and z could add to 
was 9. Thus the “set” of numbers that function had consisted of one element (namely, 9). In 
contrast to Quincy, who implemented an existing generalization, Neil modified his existing 
generalization that domain was x and range was y. Since that generalization did not seem to 
apply to f(x,y) = x2 + y2, he adapted his idea such that to domain was the horizontal plane and 
range was a dependent quantity, illustrated graphically as the vertical plane.   

Results & Discussion II: How Students Generalize Their Meanings for Domain and 
Range 

We found that students generalize their meanings for domain and range by relating 
situations, relating objects, and extending their meanings beyond the cases in which they had 
originated. However, our students did not engage in all of the generalizing actions or 
reflection generalization that Ellis (2007) identifies. We think that this is likely an artifact of 
how the data were collected: Ellis’ data come from a problem-based teaching experiment 
focused on deriving linear relationships, while our data comes from a single interview.  
Table 3. Generalizing actions for domain and range.  

Ellis (2007) framework Example in domain/range data 

T
yp

e 
I:

 R
el

at
in

g 

1. Relating 
situations: 
The 
formation 
of an 
association 
between 
two or more 
problems or 
situations. 

Connecting Back: The 
formation of a 
connection between a 
current situation and a 
previously-
encountered situation. 

Domain is your input values. It could also 
represent your independent values. I am 
trying to think like in terms of my physics 
lab where there are independent and 
dependent variables and you plug in the 
numbers that you use. 

Creating New: The 
invention of a new 
situation viewed as 
similar to an existing 
situation. 

Say you need to calculate temperature and 
you have the temperature relative to 
California and you have some conversion, 
so the input values are the temperatures in 
Oregon and the output values are the 
temperature in California.  
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2. Relating 
objects: The 
formation 
of an 
association 
between 
two or more 
present 
objects. 

Property: The 
association of objects 
by focusing on a 
property similar to 
both. 

Lets call z the dependent variable here and 
move the x and y to the other side. Now the 
domain is x and y. 

Form:  The association 
of objects by focusing 
on their similar form. 

You can’t have negative z but I don’t know 
if that’s the domain or the range. I’m going 
to say it’s the range, and treat the z axis like 
the y axis of the function. 

T
yp

e 
II

I:
 E

xt
en

di
ng

 

1. Expanding the range of 
Applicability: The application of a 
phenomenon to a larger range of 
cases than that from which it 
originated. 

Domain is your input values, otherwise 
known as your x values. It could also 
represent your independent values. The 
range is your output, your dependent values, 
your y values. 

2. Removing Particulars: The 
removal of some contextual details in 
order to develop a global case. 

I am a little fuzzy on range in 3D. I think in 
2 dimensions, whatever your domain is, you 
put that in and that’s what your output is. I 
suppose that’s the same in 3D as well: the 
array of possible values I can get out of the 
function. 

Relating objects was a common way that students generalized their meanings of domain 
and range. When students related equations, some saw the symbols f(x) and f(x,y) as serving 
a similar purpose in the equation, namely as the output or the “result” of the function. This 
allowed them to justify that range, meaning the output or result of a function, would apply to 
f(x,y). Others related coordinate axes, some incorporating an independence/dependence 
meaning (e.g., Leah’s y axis determined by the x axis and z axis determined by the xy plane) 
and others seeming to see as similar the axes’ orientation in space (e.g., range applies to 
whatever axis is vertical and domain to whatever axes are horizontal). A final relation of 
objects was students’ seeing as similar that both f(x) equations and f(x,y) equations contained 
the same variables. Students who used this relation often said that the domain of f(x,y) was x 
and the range was y because that was true for f(x,y).   

Our students also generalized by extending their meanings of domain and range in the 
single-variable case to the multivariable case. These extensions often involved expanding the 
range of applicability, such as extending the ideas of an independent x and a dependent y to 
an independent x and y and a dependent z or extending the idea of an input x and an output y 
to an input of x and y and an output z. For some students, extending involved removing 
particulars (like the actual equation) to focus on the meaning of domain and range (e.g., as 
input and output). When students extend, they place in the background the equations they are 
reasoning about and foreground the meaning of the concepts.  

The reflection generalizations our students stated came in the form of general principles, 
prior ideas, and modified ideas. Ellis (2007) notes that students’ reflection generalizations 
often mirror their generalizing actions, and it makes sense that our students’ extensions 
(generalizing actions) often resulted in statements of global rules, or statements in which they 
used or adapted a previous generalization to incorporate the new case of multivariable 
functions. As with generalizing actions, not all of Ellis’ (2007) categories for reflection 
generalizations were present in our data. The omissions are continuing phenomena, sameness, 
and definition. The reflection generalization taxonomy for these data are in Table 4.  
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Table 4. Reflection generalizations for domain and range.  
Ellis (2007) framework Example in domain/range data 

T
yp

e 
IV

: I
de

nt
ifi

ca
tio

n 
or

 
St

at
em

en
t 

3. General 
Principle: A 
statement of 
a general 
phenomenon. 

Rule: The 
description of a 
general formula 
or fact. 

[Q3a] Domain of this would be all real 
numbers for x values, so x can equal any 
number, and it changes what z equals, but even 
negative numbers squared equal positive z. 
And the range is all real numbers because there 
is no value of y for which the graph is 
undefined. 

Global Rule: The 
statement of the 
meaning of an 
object or idea. 

Z is kind of like the function value. It equals 
f(x,y) kind of like y = f(x). It’s the dependent 
variable, not the independent. 

T
yp

e 
V

I:
 In

flu
en

ce
 

1. Prior Idea or Strategy: The 
implementation of a previously-
developed generalization.   

[Q1] Range is the set of numbers the function 
can have. [Q3b] I think the range is 9 for this 
one… because that's the value on the other side 
of the equal sign. So it can't range to any other 
values.  

2. Modified Idea or Strategy: Z 
is kind of like the function value. 
It equals f(x,y) kind of like y = 
f(x). It’s the dependent variable, 
not the independent. 

In this instance the range is z, the output value. 
So I would say the variables applied to the 
function doesn’t necessarily correspond to 
domain as x, range as y. So if I looked back to 
my definitions in question one, I could define 
domain and range in 3D space with domain as 
the span of values that can occur on the 
horizontal plane and I would define range to be 
the span of values that are dependent on the 
domain and span the vertical plane.   

That our data contained many of Ellis’ (2007) categories for how students generalize supports 
the framework as useful for analyzing students’ generalizations.  

Implications for Instruction 
Devoting Time to Domain and Range 

The actor-oriented transfer theoretical framework is useful for exploring generalization 
because it characterizes what students see as similar without comparing students’ 
perspectives to those of experts. However, judging whether students’ generalizations are 
congruent with experts’ ideas becomes useful when thinking about implications for 
instruction. For instance, some of the ways in which students related objects allowed them to 
generalize that the domain of f(x,y) = z was x and y and the range was z. Students who formed 
this generalization commonly used a meaning for domain and range as input and output or 
independent and dependent variables along with their generalizing action of relating objects. 
In contrast, students who generalized incorrectly –(relating f(x) = y to f(x,y) = z by 
concluding that the x and y were present in both equations, and thus played the same role in 
both) seemed to not have a conceptual meaning for domain and range, but rather a definition 
that was a link between a word and a symbol (that is, x is domain, y is range). As it seems to 
be the underlying meaning the first set of students had that allowed them to relate objects in a 
productive way, instructors might focus on the meaning of f(x,y) as a function with multiple 
inputs, similar to f(x) (a function with one input). Many of our students stated that the 
interview was the first time they had thought about the domain and range of multivariable 
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functions. Given some students’ incorrect generalizations, it would likely be beneficial for 
instructors to devote time to talking about the domain and range of multivariable functions.  
Complementing with a Focus on Covariation 

 We also recognize that a strong notion of input and output is not necessarily enough 
for students to think about function in the ways instructors intend. A generalized notion of 
input and output has limitations because it relies on the notion that one quantity is dependent 
on another. In most real world situations, the notion of independence and dependence is 
contrived because one quantity’s value is not actually determined by another quantity’s value. 
While it may be useful to treat one quantity as dependent for ease of calculation of 
simplification of some physical situation, thinking about functions in terms of covariation is 
crucial to students’ success in calculus (Thompson & Silverman, 2008). In short, thinking 
covariationally means the student thinks about a function as an invariant relationship between 
quantities’ values not necessarily coupled with a notion of input and output (Thompson, 
2011). For example, consider a situation in which a person is moving and there are two 
quantities: the amount of distance she has traveled and the amount of time elapsed since she 
began traveling.  One would be reasoning covariationally if a) she conceived of both 
quantities and their individual variation (i.e. time varies, distance varies) and b) she 
conceived of those quantities varying simultaneously, so that when she thinks about a 
person’s distance traveled, she has an image of the amount of time needed to travel that 
distance. There is no sense of input or output required (though it may be present) within 
covariational reasoning. Inputs, outputs, independence, and dependence ideas may (i.e. 
elapsed time causes elapsed distance, or vice versa) arise because of the person’s conception 
of the situation, not because one quantity has been designated as an input and one as an 
output. It is important to note that covariational reasoning does not preclude an approach 
involving input and output. Instead, it focuses on a quantitative relationship as the basis for a 
function from which an input-output metaphor may or may not be drawn. Thus, while this 
study shows ways in which one might generalize notions of input and output, it is important 
that multivariable functions not be presented and talked about solely in terms of input and 
output. While it maybe a useful way to think about domain and range, it does not guarantee 
that students think about functions as they need to (that is, in terms of covariation) as is useful 
for calculus.    
 

Suggestions for Further Research 
Our tasks included functions of one and two variables. It would be interesting to include 

functions of more than two variables, such as f(w,x,y,z). A task including this might yield 
interesting results with students who have the ‘variable perspective’ (i.e., domain is x and 
range is y) as they must now think about variables which do not appear in f(x) = y. That is, 
the symbol w does not appear in this equation and thus as students try to explain its place in 
f(w,x,y,z), they might reveal things about their concepts of domain and range which were not 
revealed in our tasks.  
 This study was done with multivariable calculus students, but the concepts of domain and 
range are used in mathematics outside of calculus. For instance, domain and range are critical 
in linear transformations. Thus how linear algebra students generalize ideas of domain and 
range would provide an additional opportunity to study generalization, as well as the 
meanings for domain and range students have after a higher mathematics course.   
 Finally, as noted earlier, domain and range were a ‘case study’ of generalization in higher 
mathematics. There are many more single- and multivariable calculus ideas in which to 
explore students’ generalizations; of particular interest to us are how students generalize ideas 
of derivatives and integration.  
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Graduate students Teaching Assistants’ (GTAs’) beliefs, instructional practices, and 
student success 

 
Jessica Ellis 

San Diego State University 
 

In this report I present findings from a large, national study focused on Calculus I instruction. 
Graduate student Teaching Assistants (GTAs) contribute to Calculus I instruction in two ways: : 
as the primary teacher and as recitation leaders. As teachers, GTAs are completely in charge of 
the course just as a lecturer or tenured track/ tenured faculty would be, although they lack the 
experience, education, or time commitment of their faculty counterparts. In this study, I 
investigate how GTAs compare to tenure track/tenured faculty, and other full/part time faculty 
on their (a) beliefs about mathematics; (b) instructional practices; and (c) students’ success in 
Calculus I. Findings from this report point clearly to a need to  prepare GTAs adequately for the 
teaching of calculus but also for further examination of the nature and implications of the 
differences between GTA and other instructor types’ beliefs about teaching and teaching 
practices. 
 
Keywords: Graduate student Teaching Assistants (GTAs), Calculus instruction, beliefs, 
instructional practices, student success 

 
In this study I investigate the relationship between Graduate Student Teaching Assistants 

(GTAs) and various aspects of Calculus I instruction. Graduate student Teaching Assistants 
contribute to Calculus instruction in two ways: as the primary teacher and as recitation leaders. 
As teachers, GTAs are completely in charge of the course just as a lecturer or tenured track/ 
tenured faculty would be, although they lack the experience, education, or time commitment of 
their faculty counterparts. In the College Board of Mathematical Sciences (CBMS) 2010 report, 
GTAs were found to have taught seven percent of the 234,000 students enrolled in mainstream 
Calculus I, and 17% of all mainstream Calculus I sections at PhD institutions (Blair, Kirkman, & 
Maxwell, 2012). Mainstream calculus refers to the calculus course that is designed to prepare 
students for the study of engineering or the mathematical or physical sciences. In this report, a 
course was reported to be taught by a GTA only when the GTA was the instructor on record. 
Thus, these numbers exclude the GTAs who ran discussion or recitation sections.  
 GTAs can also be viewed as the next generation of mathematics instructors. Thus, in 
addition to their immediate contribution to the landscape of Calculus I instruction, GTAs 
contribute significantly to the long-term state of Calculus. The preparation GTAs receive to 
prepare them for teaching Calculus therefore influences both their immediate teaching practices 
as well as their long-term pedagogical approach. There has been much discussion about what 
knowledge and experiences are needed to foster excellent (or even adequate) teachers in 
mathematics at the K-12 level (Ball, Thames, & Phelps, 2008; Hill, Ball, & Schilling, 2008; 
Shulman, 1986) and instructors at the undergraduate level (Johnson & Larsen, 2012; Speer, 
Gutmann, & Murphy, 2005). From these discussions, it is clear that expertise in mathematics 
alone is not sufficient in the preparation of teachers. Professional development efforts to improve 
teaching are often aimed at developing teachers’ knowledge, beliefs, and instructional practices 
in order to improve their students’ success and to enculturate new teachers into the teaching 
community (Putnam & Borko, 2000; Sowder, 2007). However, little is known about how GTAs’ 
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compare to other instructor types along these dimensions. Accordingly, I have identified the 
following research question: How do GTAs compare to tenure track/tenured faculty, and other 
full/part time faculty on their (a) beliefs about mathematics; (b) instructional practices; and (c) 
students’ success in Calculus I? 

 
Research Methodology 

To answer this question, I draw upon data coming from a large, nationwide study focused 
on successful calculus programs: Characteristics of Successful Programs in College Calculus 
(CSPCC). The first phase of the CSPCC study comprised of six surveys: three surveys given to 
students (one at the beginning of Calculus I, one at the end of Calculus I, and one a year later), 
two surveys given to instructors (one at the beginning of Calculus I and one at the end of 
Calculus I), and one survey given to the Calculus course coordinator. The surveys were sent to a 
stratified random sample of mathematics departments following the selection criteria used by 
Conference Board of the Mathematical Sciences (CBMS) in their 2005 Study (Lutzer et al, 
2007). For the purposes of surveying post-secondary mathematics programs in the United States, 
the CBMS separates colleges and universities into four types, characterized by the highest 
mathematics degree that is offered: Associate’s degree (hereafter referred to as two-year 
colleges), Bachelor’s degree (referred to as undergraduate colleges), Master’s degree (referred to 
as regional universities), and Doctorate (referred to as national universities). Within each type of 
institution, we further divided the strata by the number of enrolled full time equivalent 
undergraduate students, creating from four to eight substrata. Institutions with the largest 
enrollments were sampled most heavily. In all, we selected 521 colleges and universities: 18% of 
the two-year colleges, 13% of the undergraduate colleges, 33% of the regional universities, and 
61% of the national universities. Of these, 222 participated: 64 two-year colleges (31% of those 
asked to participate), 59 undergraduate colleges (44%), 26 regional universities (43%), and 73 
national universities (61%).  

The goals of these surveys were to gain an overview of the various calculus programs 
nationwide, and to determine which institutions had successful calculus. Success was defined by 
a combination of student variables: persistence in Calculus as marked by stated intention to take 
Calculus II; affective changes, including enjoyment of math, confidence in mathematical ability, 
interest to continue studying math; and passing rates. These variables will be used to discuss 
student success. The instructor surveys address various components of instructors’ knowledge, 
espoused beliefs, and instructional practices. The course coordinator survey addresses 
programmatic qualities that can be used to situate the individual GTAs within their institutions as 
well as to gain a topical understanding of the training and support structures available to GTAs, 
as stated by their course coordinators.  

There were 535 instructors who responded to one of the surveys linked to 6306 students, 
coming from 136 institutions. As shown in Table 1, 30% of the instructors came from a large 
national university (over 20,000 students) and taught 35% of the students, 30% from a small 
national university (less than 20,000 students) and taught 30% of the students, 10% from a 
regional university and taught 6% of the students, 18% from a undergraduate college and taught 
22% of the students, and 13% from a two-year college and taught 6% of the students. As shown 
in Table 2, 46% of the instructors reported being tenure track or tenured and taught 40% of the 
students, 37% reporting to be “other full or part time faculty” and taught 48% of the students, 
and 17% report being GTAs who taught 12% of the students. GTAs only taught at national 
universities, with 67% at large national universities.  
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Table 1. Number of instructors and students from each institution type. 
Institution Type Instructors % Students % 
Two-year colleges 68 12.7 365 5.8 
Undergraduate colleges 96 17.9 1381 21.9 
Regional universities 54 10.1 377 6.0 
Small national universities 
(<20,000) 

156 29.2 1940 30.8 

Large national universities 
(>20,000) 

161 30.1 2243 35.6 

Total 535  6306  
 
Table 2. Number of instructors and students from each instructor type. 
Instructor Type Instructors % Students % 
Tenure track/ Tenured faculty 246 46.0 2477 39.3 
Other full or part time faculty 197 36.8 3052 48.4 
Graduate teaching assistant 92 17.2 777 12.3 
Total 535  6306  

 
I answer the research question by conducting descriptive analyses to determine 

differences between instructor types (tenure track/tenured faculty and other full/part time faculty) 
across a number of variables, addressing knowledge and beliefs about mathematics, instructional 
practices, and student success.  
 

Results 
Beliefs about doing, teaching, and learning mathematics 

The first dimension of teaching practice that I compare between tenure/ tenure track faculty, 
other full and part time faculty, and GTAs is their beliefs about doing, teaching, and learning 
mathematics. As shown in Table 3, there were significant differences between the types of 
instructors for three of the reported beliefs about teaching mathematics: “graphing calculators or 
computers help students understand underlying mathematical ideas (1) or find answers to 
problems” (6) [F(2, 516) = 4.193, p = .016],  and “all students in beginning calculus are capable 
of understanding the ideas of calculus” [F(2, 389) = 3.112, p = .046], and “if I had a choice, I 
would continue to teach calculus” [F(2, 385) = 5.969, p = .003]. For all other beliefs about doing 
teaching, or learning mathematics, there were no significant differences between reported 
frequencies based on instructor type.  

Post hoc comparisons using the Tukey HSD test indicated that the mean response to the 
prompt “graphing calculators or computers help students understand underlying mathematical 
ideas (1) or find answers to problems (6)” was significantly different between tenure track/ 
tenured track faculty (3.62, 1.62) and GTAs (4.17, 1.55), but there were no significant 
differences between the other types of instructors. The mean response to the prompt “all students 
in beginning calculus are capable of understanding the ideas of calculus” was significantly 
different between tenure track/ tenured track faculty (3.63, 1.52) and GTAs (4.15, 1.27), but 

17th Annual Conference on Research in Undergraduate Mathematics Education 611



there were no significant differences between the other types of instructors. Finally, the mean 
response to the prompt “if I had a choice, I would continue to teach calculus” was significantly 
different between tenure track/ tenured track faculty (5.19, 1.04, 1.68) and GTAs (4.66, 1.25), 
and between other full or part time instructors (5.14, 1.09) and GTAs, but not between full or 
part time instructors and tenure track/ tenured faculty.  

These results indicate that GTAs believe that technology serves as a procedural aid more than 
a conceptual aid when compared to tenure/tenure track faculty, that GTAs view their students as 
more capable of understanding calculus than tenure/tenure track faculty, and GTAs are slightly 
less interested in teaching calculus than all other types of instructors. These results also indicate 
that GTAs report holding similar beliefs about doing, teaching, and learning mathematics for all 
others beliefs questions.   

 
Table 3. Beliefs about doing, teaching, and learning mathematics by instructor type.  

Belief about doing, teaching, or learning 
mathematics: 

Tenure 
track/ 

Tenured 
faculty 

Other full 
or part  

time 
faculty 

Graduate 
teaching 
assistant 

From your perspective, in solving Calculus I 
problems, graphing calculators or computers help 
students:** (1=understand underlying mathematical 
ideas; 6=find answers to problems) 

3.62 (1.62) 3.81 (1.45) 4.17 (1.55) 

All students in beginning calculus are capable of 
understanding the ideas of calculus.** (1=strongly 
disagree; 6=strongly agree) 

3.63 (1.52) 3.70 (1.51) 4.15 (1.27) 

If I had a choice, I would continue to teach 
calculus.** (1=strongly disagree; 6=strongly agree) 

5.19 (1.04) 5.14 (1.09) 4.66 (1.25) 

Note.* = p ! .10, ** = p ! .05, *** = p ! .001; Standard deviation in parentheses. 
 

Instructional Practices 
As shown in Table 4, there were significant differences between the types of instructors for 

four of the reported instructional activities: having students work with one another [F(2, 404) = 
6.084, p = .002], holding a whole-class discussion [F(2, 403) = 2.495, p = .084], and having 
students give presentations [F(2, 400) = 3.927, p = .020]. For all other instructional activities, 
there were no significant differences between reported frequencies based on instructor type.  

Post hoc comparisons using the Tukey HSD test indicated that the mean frequency for having 
students work with one another was significantly different between tenure track/ tenured track 
faculty (2.80, 1.68) and other full or part time faculty (3.24, 1.73), and between tenure track/ 
tenured track faculty and GTAs (3.59, 1.86). The mean frequency for holding whole class 
discussion was significantly different between other full or part time faculty (3.20, 1.76) and 
GTAs (2.69, 1.26), but there were no significant differences between the other types of 
instructors. Finally, the mean frequency for having students give presentations was significantly 
different between tenure track/ tenured faculty (1.46, .96) and GTAs (1.87, 1.25), but there were 
no significant differences between the other types of instructors. 

These results indicate that GTAs report having students work together significantly more 
frequently than tenure track and tenured faculty, holding whole class discussion significantly less 
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frequently than other full and part time faculty, and have students give presentations significantly 
more frequently than tenure track and tenured faculty. Taken together, these results indicate that 
GTAs report different instructional practices than tenure track tenured and other full and part 
time faculty.  
 
Table 4. Instructional practices by instructor type.  

During class, how frequently did you: 

Tenure 
track/ 

Tenured 
faculty 

Other full 
or part  

time 
faculty 

Graduate 
teaching 
assistant 

(a) show students how to work specific problems?  5.18 (1.14) 5.28 (.99) 5.14 (.97) 
(b) have students work with one another? ** 2.80 (1.68) 3.24 (1.73) 3.59 (1.86) 
(c) hold a whole-class discussion? ** 3.13 (1.69) 3.20 (1.71) 2.69 (1.26) 
(d) have students give presentations? * 1.46 (.96) 1.68 (1.23) 1.87 (1.25) 
Note.* = p ! .10, ** = p ! .05, *** = p ! .001; Standard deviation in parentheses. 
 

Student success 
The final dimension that I compare GTAs to other instructor types on is their students’ 

success. In order to measure student success in Calculus I, I used five variables: persistence onto 
Calculus II, expected pass rate, and three affective measures – change in confidence in 
mathematical ability, change in enjoyment in doing mathematics, and increased interest in taking 
mathematics. These measures of success were chosen because many students enter Calculus I 
pursuing a STEM degree and change their major away from a STEM field because of a 
decreased interest or enjoyment in mathematics. Research into the reasons students switch out of 
STEM majors consistently points to the calculus classroom environment as the underlying 
commonality (Rasmussen & Ellis, 2013; Seymour & Hewitt, 1997; Thompson et al., 2007). As 
shown in Table 5, there are significant differences in the success of GTAs’ students when 
compared to tenure track/ tenured faculty’s students and other full or part time faculty’s students. 
Specifically, GTAs’ students switch STEM intention at a significantly higher percentage than 
both other types of instructors’, and their students lose confidence and interest in mathematics at 
heightened frequencies when compared to both other instructor types.  

 
Table 5. Student success by instructor type.  

Measure of student success: 

Tenure 
track/ 

Tenured 
faculty 

Other full 
or part  

time 
faculty 

Graduate 
teaching 
assistant 

Percentage of STEM intending students who decided 
not to pursue Calculus II*** 

13.9% 9.8% 20.1% 

Percentage of students expecting to pass. 96% 95.9% 96.9% 
Student change in confidence -.389 (1.06) -.440 (1.12) -.515 (.961) 
Student change in enjoyment** -.255 (1.06) -.356 (1.09) -.419 (1.12) 
This class has increased my interest in taking more 3.94 (1.40) 3.72 (1.42) 3.58 (1.40) 
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mathematics.***  
Note.* = p ! .10, ** = p ! .05, *** = p ! .001; Standard deviation in parentheses. 

 
Discussion 

The above results indicate that in many ways, GTAs are different than other types of 
Calculus I instructors. They express different beliefs regarding the role of calculators, are more 
optimistic about their students’ capabilities, and are less interested in teaching calculus than 
tenured/ tenure track faculty and other types of full and part time faculty. Additionally, GTAs 
report different classroom environments than other types of faculty: students working together 
more, holding less whole class discussions, and having students give more presentations. While 
these results indicate some differences between GTAs and other instructor types regarding their 
beliefs and instructional practices, the most striking differences between GTAs and other 
instructors lies in their students’ success. The students of GTAs decide to not take Calculus II 
after originally intending to do at much higher frequencies and lose significantly more 
confidence and interest in mathematics than the students of other instructor types.  

These results point clearly to a need to prepare GTAs adequately for the teaching of 
calculus but also for further examination of the nature and implications of the differences 
between GTA and other instructor types’ beliefs about teaching and teaching practices. Why do 
GTAs hold a procedural perspective on the role of calculators in the classroom? How does this 
affect their teaching, and how can we prepare them to explore the conceptual advantages of 
calculators? Why do GTAs engage their students in more group work and presentations but less 
whole class discussions? How is this related to their students’ decreased interest in studying 
calculus?  

Beyond these questions examining the connections between the above results and student 
success, are questions regarding the broader implications to teacher preparation at the post-
secondary level. In order to teach Calculus at the secondary level in California (a state with some 
of the most stringent requirements), one must obtain a Bachelor’s Degree (or higher) from a 
credited university, complete a teacher preparation program involving student teaching, and 
demonstrate subject matter knowledge by passing the California Subject Examinations for 
Teachers (CSET) or by completing specified mathematics content courses. In order to teach 
Calculus at the post-secondary level, one must obtain a Bachelor’s Degree and be enrolled in a 
graduate program at the institution, obtain a Master’s Degree and teach as an adjunct or obtain a 
Doctorate and teach as a professor. The difference between these requirements is attention to 
pedagogical training, which demonstrates differing assumptions on what knowledge is needed to 
teach mathematics: at the secondary level, content knowledge, pedagogical knowledge, and often 
pedagogical content knowledge are all prerequisites; at the post-secondary level only strong 
content level is deemed as sufficient to teach.  

Due to this implicit assumption, often the only form of training an instructor receives is 
as a Graduate student Teaching Assistant (GTA). As such, the training of GTAs is one of few 
ways to alter the way post-secondary mathematics is taught, and thus the nature and emphases of 
these training programs are of high significance to the future landscape of post-secondary 
mathematics. The work described here is the beginning of a large project seeking to respond to 
the questions outlined above, as well as build a model for GTA training programs that can be 
used for development of new programs and evaluation of existing programs. 
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GRADUATE STUDENTS’ INTEGRATED MATHEMATICS AND 

SCIENCE KNOWLEDGE FOR TEACHING 
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Previous studies have indicated that effective mathematics teaching relies on teachers’ 

knowledge of both student thinking and mathematical content. Very little is known about the 

integration (combination) of teacher’s mathematical knowledge and science knowledge for 

teaching important topics like derivative and applied derivative problems. The goal of this study 

is to examine the knowledge of mathematics and science that teachers draw on when teaching 

the concept of derivative and applied derivative problems. We conducted task-based interviews 

with nine graduate assistants (GTAs). Findings revealed that GTAs made use of their knowledge 

of science as well as of mathematics when discussing how to teach applied derivative problem. 

In this proposal, we only look at the results of two interviews and try to shed light into the nature 

of science and mathematics knowledge the teachers use for Teaching and how that can lead into 

opportunities in professional development for the novice teachers.  

 

Keywords: Teacher Knowledge, Mathematical Knowledge for Teaching, Scientific Knowledge 

for Teaching, Derivative 

Introduction 

The knowledge teachers have of mathematics influences how they teach. It appears, 

however, that additional kinds of knowledge also play important roles in the learning 

opportunities teachers create for students. The mathematics education community has become 

increasingly interested in this kind of knowledge and the roles such knowledge plays in teachers’ 

instructional practices (Ball, Lubienski, & Mewborn, 2001; Ball & Bass, 2000; Grossman, 1990; 

Grossman, Wilson, & Shulman, 1989; Shulman, 1986). This interest includes discussions about 

how teachers acquire knowledge of student thinking and how preparation and professional 

development programs can best support teachers’ development of such knowledge (Ferrini-

Mundy, Burrill, Floden, & Sandow, 2003; Hill, Rowan, & Ball, 2005; Hill, Schilling, & Ball, 

2004).  

Researchers have documented that elementary and secondary school teachers with richer 

knowledge of typical student difficulties and strategies create richer learning opportunities for 

their students (Carpenter, Fennema, Peterson, & Carey, 1988; Carpenter, Fennema, Peterson, 

Chiang, & Loef, 1989). This research area has served as the basis for professional development 

programs and associated research projects demonstrating teachers’ capabilities in gaining 

knowledge of student thinking and consequently transforming their instructional practices 

(Franke, Carpenter, Fennema, Ansell, & Behrend, 1998).  

In science education, researchers have also witnessed that students’ achievement depends 

on teachers’ pedagogical content knowledge and subject matter knowledge of the science they 

teach (Magnusson, Krajcik, & Borko, 1999; Davis, & Smithey, 2009; Luft, 2012). In practice, 

many mathematical ideas are taught using science contexts. However, research into the role of 

the two domains of science and mathematics knowledge in teaching have been independent of 

each other. This is the case even though some science education researchers have borrowed the 
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original idea of teachers’ “knowledge for teaching” from the mathematics education community. 

In this present research, we explore how graduate students use their science and mathematics 

knowledge in their teaching practices.  

Although this is part of a larger study focused on novice and experienced mathematics 

and physics teachers’ knowledge for teaching derivative and applied derivative problems, we 

focus here on findings from only two graduate students’ task-based interviews. The analysis 

shows that they utilize both their science knowledge and their mathematics knowledge while 

doing the teaching tasks and do so in a way that we refer to as “integrated knowledge.” The word 

integrated is used to describe the bringing together or incorporating of different parts of a 

teacher’s complex system of knowledge for teaching. Our research questions addressing these 

issues are:  

 Can the existing model of teachers’ mathematical knowledge for teaching describe 

teachers’ knowledge for teaching applied derivative problems? 

 If not, what is the nature of the other knowledge they draw on while teaching these 

problems? 

Theoretical Framework 

Researchers have identified multiple domains of mathematical knowledge that teachers 

use in teaching (McCrory, Ferrini-Mundy, Floden, Reckase, & Senk, 2010; Gess-Newsome, 

2002; Magnusson, Krajcik & Borko, 1999; Grossman, 1990; Shulman, 1986).  Although the 

specific boundaries and names of categories vary across publications, in this research we use one 

of the most agreed upon sets of categories: Ball, Thames, and Phelps’s (2008) model (Figure 1) 

which was produced by modifying the original categories defined by Shulman (1986) in order to 

more completely describe the knowledge teachers use in teaching mathematics.  

 

 
Figure 1. Existing Categories of Mathematical Knowledge for Teaching 

Previous studies have investigated students’ multiple ways of thinking about derivative 

and their difficulties in solving applied derivative problems (graphical, optimization and related 

rate problem). The tasks used in the interviews in this study were inspired by those from existing 

findings. For instance, White & Mitchelmore (1996) looked at students’ difficulties with applied 

derivative problems like a task which was used in the interviews (shown in Figure 2). The 

findings about students’ difficulties and thinking about derivative were also used from several 

different sources (Abboud, M., & Habre, S., 2006; Kendal, M., & Stacey, K., 2003; Zandieh, M. 

J., 2000; Bezuidenhout, J., 1998; White, P., & Mitchelmore, M., 1996; Monk, S., & Nemirovsky, 

R. (1994); Monk, S., 1994, 1987).  

Research Design 

Participants and Setting 

We interviewed nine graduate teaching assistants (GTAs), six teaching differential 

calculus, three with more than four semesters experiences and three with no teaching experience. 
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We also interviewed three GTAs who were teaching physics (classical mechanics) with more 

than four semesters teaching assistantship experience in introductory physics. All of the 

interviewees volunteered from a northeastern university for a fifty-minute semi-structured 

interview. In this paper, we discuss the data from two differential calculus GTAs with more than 

two years experiences, Viky, and Shai (pseudonyms). They were selected because they both 

several years of experience with differential calculus classes.       

Instrument 

As mentioned earlier, our interview tasks were based on previous and ongoing work on 

students’ difficulties and understanding of derivative and applied problems. Using these tasks, 

we designed an interview protocol (similar to Frank, B., & Speer, N., 2011, 2012) to target the 

possible domains of knowledge teachers may use for teaching derivative and applied derivative 

problems. Figure 2 shows one of the tasks used in the interviews. 

 
If the edge of a contracting cube is decreasing at a rate of 2 centimeters per minute, at what rate 

is the volume contracting when the volume of the cube is 64 cubic centimeters? (Provide an 

explanation for your answer.) 

Figure 2. One of the tasks that interviewees were asked to do and talk about students’ difficulties 

and ideas. 

The interviews were semi-structured clinical interviews (Hunting, 1997). The interview 

had two parts: a section about mathematical knowledge for teaching derivative and a section 

about their mathematical knowledge for teaching applied derivative problems. The interview 

questions for both the concepts of derivative and applied derivative problems included: 

• How would the participants teach or present the concepts to the students?  

• What do they know about students’ difficulties with the concept? 

• What evidence would they use in assessing the students’ works? 

• How would they examine samples of students’ written work?   

Data Analysis Methods 

To analyze the interview transcripts, the findings from previous research work on 

students’ understanding of the derivative and applied derivative problems were used. To 

document the teachers’ knowledge for teaching, the domains in Figure 3 were borrowed from 

existing research work. The acronyms are defined in Figure 1. The interviews were transcribed 

and the teachers’ knowledge of students’ thinking and difficulties about derivative were 

compared to that found in existing research and described using the existing domains of teachers’ 

mathematical knowledge (Figure 3). Analysis included identifying possible domains that they 

used in explaining or answering the interview tasks.   

 

• SMK: Teachers’ abilities to not only understand that something is so but also to 

understand why it is so.  

• SCK: The mathematical knowledge and skills unique to teaching. Knowledge not 

typically needed for purposes other than teaching.  

• PCK: This represents “the blending of content and pedagogy into an understanding of 

how particular topics, problems, or issues are organized, represented, and adapted to 

diverse interests and abilities of learners, and presented for instruction” (Shulman, 1986, 

p8). 

• KCS: Knowledge that combines knowing about students and knowing about mathematics 

(Ball, Thames, & Phelps, 2008, p.9). 
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• KCT: Knowledge that combines knowing about teaching and knowing about 

mathematics.  

• KCC: “Represented by the full range of programs designed for the teaching of particular 

subjects and topics at a given level, the variety of instructional materials available in 

relation to these programs, and the set of characteristics that serve as both the indications 

and contraindications for the use of particular curriculum or program materials in 

particular circumstances” (Ball, Thames, & Phelps, 2008, p.2). 

Figure 3: Descriptions of the Teachers’ Knowledge Domains use in the Analysis 

Findings  

We found that the existing model (Figure 1) did not capture all the elements of the GTAs’ 

mathematical knowledge for teaching. This was particularly evident in the GTAs’ responses to 

the tasks about derivative applications and students’ difficulties with this topic. We found that 

participants were using abilities, skills, knowledge, etc. that were accessed from their domains of 

knowledge for teaching science. For example, when Viky was asked to give an example of 

application of derivative, she said:  

I think a good way to start would come if you have a distance graph, showing that you 

take the derivative to find the velocity at any given point. Oh you know start with the 

maximums and minimums and when they occur. In general for graphs is to apply those I 

guess more in real world situation. 

Using the existing model of teacher’s mathematical knowledge for teaching, we propose 

that Viky is using her SMK since she is using a physics example as an applied problem but also 

knows the reason for using it being “more in real world”. We also propose that she is using her 

KCS and KCC elements of PCK since distance-velocity applied derivative problems are a 

particular way of introducing derivative applications to the students. However, it seems that 

Vicky’s use of the concepts of velocity and distance from physics shows she is accessing 

knowledge from beyond just mathematic and is using integrated mathematics and science 

knowledge for teaching applied derivative ideas.  

As a second example, Shai was asked to explain why someone who is not a mathematics 

major should care about derivative or if he could give examples of where the concept of 

derivative might be used. He responded: “if [he is a] physics student, it is very important for him 

because he always needs to deal with velocity, acceleration.” Like Viky, it seems Shai is 

accessing KCC and KCS elements of PCK to give a particular example of applied derivative 

problem but he continues saying “I always think biology has a lot of relationship with 

mathematics because like well, I think they don’t need to use any math when they are undergrad 

but when they want to go to graduate school, math becomes very important for them.” Again it 

seems as though he is accessing his mathematics and science knowledge for teaching applied 

derivative problems within the KCC and KCS sub-categories of PCK.  

As was the case with Vicky, the broad categories of KCC and KCS do not account for 

Shai’s knowledge of examples of other disciplines. One can argue that the science knowledge he 

has about application of derivative in other discipline can be categorized as an expansion of PCK 

within KCC and KCS categories and perhaps this is where it overlay into the teacher’s science 

knowledge for teaching.  

Conclusions & Implications 

The previous examples as well as additional analysis of both participants’ interviews are 

consistent with the claim that knowledge is complex and cannot be easily categorized into 

distinct and separate domains.  By using the existing model, we noticed that participants were 

620 17th Annual Conference on Research in Undergraduate Mathematics Education



using two domains of knowledge simultaneously. The term integrated were used because our 

analysis showed the complex nature of teachers’ knowledge especially the complex nature of 

integrated mathematical and scientific knowledge for teaching applied derivative problems.  

These are preliminary results, and we expect further analysis to reveal the nature of integrated 

mathematical and scientific knowledge for teaching.  

 As we see from Viky’s and Shai’s explanations, the mathematical knowledge required for 

teaching is indeed multidimensional therefore the professional education should perhaps be 

organized to help teachers learn the range of knowledge and skills they need in teaching. By this 

research we are hoping to identify the opportunities that we can provide our teachers with, in 

order to learn mathematics and sciences necessary for teaching mathematics and propose 

development of effective professional developments. 

Discussion Questions 

 Can this category of knowledge be explained in the context of knowledge of content and 

curriculum? 

 What are the possible approaches we can adopt into our professional development of the 

novice teachers that can enhance their scientific and mathematical knowledge for 

teaching?  
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Working Together on Mathematics Homework:  
A Look at How University Students Spend Their Time Outside the Classroom 

Gillian Galle  
New York University 

 
Despite the large amount of time university students are expected to spend studying material 
and learning on their own outside of the classroom, little is known about what specific 
student study habits look like. This study sought to start developing a description of what 
activities students engage in when studying together in self-formed groups outside of the 
classroom. By identifying a set of macrotasks, verbally-cued transactions that identify what 
activity the group is currently engaged in doing, this study provides a way to compare how 
different study groups allocate their time and distinguish between the enactment of social 
and sociomathematical norms outside of the classroom. 
 
Keywords: Group Work, Study Habits, Norms 
 

Introduction 
There’s an expectation that university students spend up to 3 times the number of hours 

spent in class working on their own (Wu, 1999). While several studies address student study 
habits, they do not provide much information on how students spend their time studying 
outside of the classroom. At best they provide confirmation of the ideas that students work 
with peers outside of the class while studying and exhibit a variety of study behaviors. 
However, these studies base their conclusions on self-reported data collected via surveys and 
interviews and do not provide any descriptive detail addressing what these self-reported 
study behaviors look like in action.  

This study sought to add the missing descriptive element of what transpires when 
students study together in groups by answering the research question: How are students 
spending their time while working together? 

Framework 
Several important ideas contribute to how we understand students working together in 

groups and why we can expect to see patterns in their interactions. Rogoff’s (2003) 
description of guided participation provides some insight into why students negotiate a 
common understanding while working together. Lave and Wenger (1991) also recognize the 
creation of shared resources in their communities of practice. One way of interpreting these 
shared resources and communally developed interactions is by comparing them with Cobb 
and Yackel’s (1996) social and sociomathematical norms. 
Guided Participation and Communities of Practice 

“Guided participation provides a perspective to help us focus on the varied ways that 
children learn as they participate in and are guided by the values of and practices of their 
cultural communities” (Rogoff, 2003, p. 283-284). Thus, guided participation can reasonably 
account for varying forms of participation in a variety of sociocultural activities such as study 
groups or communities of practice (Lave & Wenger, 1991). 

Rogoff (2003) explains guided participation as the result of coordinating two basic 
processes: the bridging of meaning and the structuring of participation. The individuals 
involved have to develop a common language or perspective in order to share their ideas with 
each other as well as negotiating the ways in which they interact. Peers that share equal 
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levels of understanding would enact these two processes as a collaborative negotiation. In the 
event that the skill level varies between participants, the decisions made by the expert peer, 
or the peer that is more confident with the material, will more heavily influence the 
negotiation that occurs during guided participation. 

Similar to Rogoff’s guided participation, Lave and Wenger (1991) defined legitimate 
peripheral participation in communities of practice. Communities of practice are comprised 
of three dimensions (Wenger, 1998, para. 8): 

(1) What it is about—its joint enterprise as understood and continually renegotiated by 
its members 

(2) How it functions—the relationships of mutual engagement that bind members 
together into a social entity 

(3) What capability it has produced—the shared repertoire of communal resources 
(routines, sensibilities, artifacts, vocabulary, styles, etc.) that members have 
developed over time. 

Due to its fluid definition, communities of practice can be found anywhere. Within the 
context of this study then, there is a community of practice at the university level, at the 
classroom level, and at the study group level. The first two dimensions of community of 
practice at the level of the student study groups become:  

(1) What it is about – students gathering in order to perform activities related to 
furthering their class preparation 

(2) How it functions – the tasks, especially those that are frequently repeated, that the 
students participate in and what the students bring with them to contribute to the 
group’s overall endeavors 

The third dimension, the shared repertoire developed within the study group, will be 
comprised of all the elements Wenger listed. Of particular interest to this study are the 
routines and repeated interactions that give structure to the time the study groups spend 
working together. While many of these interactions are governed by social and cultural cues, 
when students are working on mathematics problems together they will also be utilizing 
implicit rules for how they propose new ideas and problem solving strategies and how they 
defend these ideas to their peers. These shared activities that comprise the group’s shared 
repertoire of communal resources and may also be included in what Yackel and Cobb (1996) 
term social and sociomathematical norms.  
Social and Sociomathematical Norms 

Cobb and Yackel (1996) state that classroom social norms “characterize regularities in 
communal or collective classroom activity and are considered to be jointly established by the 
teachers and students as members of the classroom community” (p. 178). These norms are 
not specific to the content of the class, so classroom social norms such as explaining an 
answer could be found in a history classroom as well as a mathematics classroom. 

Subsequently, Cobb and Yackel identified sociomathematical norms as the “normative 
aspects of whole-class discussions that are specific to student’s mathematical activities” 
(Cobb & Yackel, p. 178). So while typical classroom social norms include the expectation 
that students will engage in the explanations, justifications, and argumentation, 
sociomathematical norms require students to understand mathematical difference, 
mathematical sophistication, and acceptable mathematical explanation and justification 
(Yackel & Cobb, 1996, p. 461). 
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Although Cobb and Yackel’s (1996) interpretation of the social perspective was meant to 
provide a way to describe the activities enacted within a classroom, it has implications for 
any community of practice. In particular, it may be applied to student study groups since the 
study groups that are formed by students outside of the classroom constitute their own 
communities of practice with their own cultural expectations. 

Data Collection and Analysis 
Participants were all students of at least second year standing that were enrolled in an 

undergraduate course that blended topics from linear algebra, differential equations and 
multidimensional calculus. While the instructor of this course encouraged students to 
collaborate in class, none of the groups from this class that worked together over the 
semester, either inside or outside of class time, were the result of assignment by the instructor 
or the researcher.  All groups were self-formed and self-directed. 

Students were observed studying together in groups outside of the classroom in a space 
that was equipped with tables, chairs, internet access, and white boards. Video-recordings 
were made of all study sessions and were supplemented with field notes and journal entries 
that students completed at the end of each session.  

All study sessions were transcribed and coded in several passes using a combination of 
Goos, Galbraith, and Renshaw’s (2002) coding scheme and Blanton, Stylianou, and David’s 
(2009) coding schemes. While the combination of these two sets of codes encompasses most 
of the interactions that could be expected, the researcher also employed an open coding 
scheme in order to add codes as needed should an utterance defy categorization in either of 
the two schemes.   

This paper focuses on the results of analyzing two study groups as they worked on the 
same homework assignment over the course of a week. Group A was comprised of Abigail, 
Josh, Amy, and Zoey while Group B was made up of Hugh, Phil, and Ben. Names have been 
changed to protect the anonymity of the participants. The assignment they were working on 
was given during the middle of the semester, thus patterns in behavior and routines could be 
taken as established norms. 

Results and Significance 
By performing a discourse analysis several times and varying the grain size under 

scrutiny, I identified a set of macrotasks, or general activities that the students of both groups 
engaged in over the course of a study session. While many of these macrotasks are general 
enough to be occurrences in study group sessions dedicate to non-mathematical work, similar 
to social norms, several of them were avenues for observing course-specific interactions, or 
sociomathematical norms. 
Macrotasks 

Throughout a study session, student dialogue gives insight into what objectives the group, 
or the individual participating in the group, is currently focused on. By reviewing the 
discourse analysis, I was able to identify several themes that arose repeatedly. I refer to them 
as macrotasks to distinguish them from the specific steps that may be taken to achieve them.  
For instance, doing problems would be considered a macrotask while actions such as reading 
the problem or calculating a solution would be tasks that the students need to complete 
within that macrotask. Thus we can view a study session as being comprised of a series of 
macrotasks,  

The majority of each observed session was dedicated to the macrotask of doing problems. 
As its name suggests, portions of the session receiving this designation featured the students 
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reading problems, discussing methods of solution, and comparing answers. Other macrotasks 
that arose throughout the sessions included:  

• Getting situated – covers interactions such as greeting each other upon arrival, 
physically re-arranging tables, chairs, and seating arrangements, procuring 
necessary materials like pencils, paper, or calculators. 

• Assignment (HW) planning – Discussions regarding what problem is going to be 
worked on next. 

• Session planning – Negotiations over how long the group will be able to work that 
day, what goals the individuals would like to accomplish during this particular 
session. 

• Checking the group’s progress – Typically enacted whenever an individual joins 
the group study session, it covers a comparison of what problems the group does 
and does not have solutions for. 

• Planning to ask the professor a question – Discussions revolving around what 
questions to ask the professor, typically during office hours, and negotiations over 
which individual will be responsible for visiting the professor to ask the 
questions.  

• Reporting the professor’s response – Discussions in which an individual relays 
the professor’s response to the group’s questions. 

• Discussing the homework write-up – Discussions relating to proper presentation 
of a problem’s solution such as which steps to include and what comprises a 
complete argument. 

• Planning future study sessions – Negotiations over date, time, and location for 
future meetings of the study group. 

• Off-topic discourse – Any dialogue that does not directly relate to the objectives 
for the study session, the course content, or the class sessions themselves. 

• Recognizing off-topic talk – Acknowledgement that an off-topic conversation has 
taken the group off course or has gone on for too long accompanied by efforts to 
refocus the group on the task or problem at hand. 

• Filling out journal entries – Specific to the nature in which the data was collected, 
there was a developed norm of students completing their journal entries and 
checking with each other regarding amount of time they spent in the study space 
for the particular session and which problems they felt they had completed. 

As can be seen in Table 1, both groups exhibited many of these macrotasks over the two 
observed study sessions included in this analysis. In both groups the majority of their time 
was spent doing problems with off-topic discourse taking up the second largest amount of 
time. Group A and Group B also spent similar amounts of time getting situated. However, 
there were also differences in the macrotasks enacted by each group. Group A spent more 
time on checking the group’s status and session planning while Group B spent more time on 
assignment (HW) planning. 

Additionally, as the two groups tended to meet at different times of day they had different 
levels of access to the professor. Since Group A typically met in the mid-afternoon during the 
professor’s office hours, whereas Group B met in the evenings, Group A spent more time on 
the macrotasks of planning to ask the professor a question and reporting the professor’s 
response.  
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Macrotask Enactment Over Observed Sessions: 

Minutes (%) 

Macrotask Group A Group B  
(230.45 Minutes Total) (231.532 Minutes Total) 

Doing Problems 127.166 (55.18%) 161.300	  (69.67%)	  
Getting Situated 6.067 (2.63%) 5.466	  (2.36%)	  
Checking the Group’s Status 5.717 (2.48%) 2.516	  (1.09%)	  
Assignment (HW) Planning 3.916 (1.70%) 6.884	  (2.97%)	  
Session Planning 4.583 (1.99%) 1.366	  (0.59%)	  
Off-Topic Discourse 72.917 (31.64%) 41.950	  (18.12%)	  
Recognizing Off-Topic Talk 0 (0.00%) 0.550	  (0.24%)	  
Planning to Ask Prof. a Question 1.684 (0.73%) 0 (0.00%) 
Reporting Professor Response 1.983 (0.86%) 0 (0.00%) 
Homework Write-Up 1.617 (0.70%) 0 (0.00%) 
Future Study Sessions 1.783 (0.77%) 0 (0.00%) 
Journal Entries 3.017 (1.31%) 11.500	  (4.97%)	  

Table 1. A comparison of amount of time spent on each macrotask by Group A and Group B. 
 
Enactment of Normative Behaviors 

Yackel and Cobb claim that the “social norms implicit in the inquiry approach to 
mathematics instruction […] foster [students’] development of social autonomy” and that 
sociomathematical norms “foster[s] the development of intellectual autonomy” (1996, 
p.473). Thus the macrotasks identified in this study provide a way to look for enactments of 
the social and sociomathematical norms in student behavior observed outside of the 
classroom context, where the students practice their social and intellectual autonomy.  

  Norms 
  Social Sociomathematical 

Macrotasks 

Getting Situated Doing Problems 
Assignment (HW) Planning 
Session Planning  Planning to Ask the Professor a 

Question Checking the Group’s Progress  
Planning Future Study Sessions Reporting the Professor’s 

Response Off-Topic Discourse  
Recognizing Off-Topic Talk  Discussing the Homework 

Write-up  Filling Out Journal Entries 
Table 2. Classification of the macrotasks across norms. 

 
Macrotasks such as doing problems, deciding to ask the professor, and reporting the 

professor’s response all featured moments of students enacting sociomathematical norms as 
negotiated by their group. Other macrotasks, such as checking the group’s progress and 
getting situated, are strictly social. Thus the norms the students enact within this latter set of 
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macrotasks would also be considered socially established routines and may be generalizable 
to study groups for other courses with non-mathematical content. Table 2 provides a 
complete classification of the macrotasks with respect to the norms students may enact 
during the task. 

Conclusions and Directions for Future Study 
The significance of the macrotasks is two-fold. First, the identification of macrotasks 

helps give an overview of what transpires during a study session and provides a way to 
compare what different study groups are spending time on. In this respect, the results of this 
study mark one of the first efforts in the field to provide a meaningful method for describing 
what occurs in student study groups outside of the classroom. 

The other contribution made by the identification of macrotasks is the start of identifying 
social and sociomathematical norms outside of the classroom environment. Given the 
hypothesis that student behavior is learned in the classroom, especially during group work 
activities, and can be influenced by behaviors modeled by the instructor (Yackel & Cobb, 
1996), a basis for comparison with student behaviors outside of the classroom is needed. Left 
to their own devices, the students in this study often resorted to the methods of verification 
that they are most comfortable with, typically a very procedural approach to the verification 
of their answers to problems despite the inquiry-based techniques their professor promoted.  

In light of this, the findings of this study lay the groundwork for future studies in what 
sort of transfer exists from in-class student behavior to student behavior out of the classroom. 
It may be that if an instructor wants his students to engage in more conceptual dialogue 
outside of the classroom he may have to do more than implicitly demonstrate the behavior in 
class. It could be case that the instructor needs to explicitly draw the students’ attention to the 
activities and discourse demonstrated in class in order to introduce changes in the students’ 
behaviors outside of the class. 
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MATHEMATICS TEACHERS’ MODLES OF QUANTITATIVE REASONING 

David Glassmeyer, Kennesaw State University 

Michael Oehrtman, University of Northern Colorado 

Jodie Novak, University of Northern Colorado  

The purpose of this study was to document mathematics teachers’ models of quantitative 

reasoning as they participated in a Model Eliciting Activity (MEA) grounded in their 

classroom practice. This MEA was designed and implemented in a master's course of 21 in-

service mathematics teachers. The documents produced by the teachers were analyzed using 

a models and modeling perspective to determine how teachers’ models of quantitative 

reasoning developed through the MEA. Findings from this study included a framework 

describing the two ways teachers developed their model of quantitative reasoning. First, 

teachers’ models of quantitative reasoning became more coherent by being better articulated 

and connected between abstract and practical settings. Second, the middle school teachers’ 

models became more aligned with mathematics education literature by referring to quantities 

and quantitative relationships as aspects of quantitative reasoning, while most high school 

teachers’ models did not become more aligned with literature. 

Key words: quantitative reasoning, mathematics teacher education, model-eliciting activity 

Introduction and Literature Review  

Mathematics education literature lacks details on how teachers think about mathematical 

ideas presented in education reform efforts, especially the Common Core State Standards for 

Mathematics (Confrey & Krupa, 2010; Sztajn, Marrongelle, & Smith, 2011). One focus for 

research efforts has been to investigate and promote mathematics teachers’ quantitative 

reasoning (Thompson, 2011, 2013). This purpose of this study was to address this focus by 

answering the research question: How do mathematics teachers’ models of quantitative 

reasoning develop through a Model Eliciting Activity (MEA) grounded in their classroom 

practice? 

To frame the study, we first clarify definitions regarding quantitative reasoning and 

MEAs for teachers. The work of Thompson (1990, 2011) and colleagues (Smith & 

Thompson, 2008) offer a theory of quantitative reasoning, highlighting the role of learners 

constructing quantities and quantitative relationships. Quantities are a cognitive object, 

according to Thompson’s theory, and are composed of four components: (a) an object, event, 

or idea, (b) a measureable attribute, (c) a unit of measurement, and (d) a conceivable 

numerical value or possible values. Quantitative relationships are formed as a person’s 

conceptualized quantities are joined in quantitative operations. Thompson (1990, 2011) calls 

a person’s mental network of quantities and quantitative relationships their quantitative 

structure. This structure may contain multiple layers, all within the individual’s mind rather 

than in the world. Thompson views quantitative reasoning as the mental process where a 

person’s quantitative structure is used to achieve a goal. Quantitative relationships differ from 

numerical relationships, which deal only with arithmetic operations. Moore, Carlson, and 

Oehrtman (2009) summarize quantitative reasoning, in light of Thompson’s theory, as 

attending to and identifying quantities, identifying and representing quantitative relationships, 

and constructing new quantities. In the remainder of this document, we refer to both 

Thompson (1990, 2011) and Moore et al.’s (2009) definitions of quantity, quantitative 

relationship, and quantitative reasoning for a common reference point for what is meant by 

the term. 

Teacher MEAs provide a way to investigate teachers’ ways of thinking about 

mathematics and their practice. MEAs are tasks that engage teachers in thinking about 
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realistic and complex problems embedded in their practice in order to foster ways of thinking 

that can be used to communicate and make sense of these situations (Doerr & Lesh, 2003; 

Lesh & Zawojewski, 2007). MEAs have been shown to contribute to teacher development 

because these activities make teachers engage in applicable mathematics, consider student 

reasoning more deeply, and reflect on beliefs about problem solving (Chamberlin, Farmer, & 

Novak, 2008; Schorr & Koellner-Clark, 2003; Schorr & Lesh, 2003). While these studies 

have implemented successful MEAs for teachers, there is a need for additional activities 

given the recent demands the CCSSM place on teacher education programs (Confrey & 

Krupa, 2010; Garfunkel, Reys, Fey, Robinson, & Mark, 2011).  

Methods 

The theoretical perspective we used for the study is a Models and Modeling Perspective, 

as described by Lesh and colleagues. A Models and Modeling Perspective incorporates 

MEAs to simultaneously investigate and improve teachers’ models, or systems of 

interpretation, within educational problem-solving situations. Thus this perspective provided 

us a powerful lens for understanding teachers’ ways of thinking, their development, and 

provided a mechanism for analyzing and piecing together findings (Koellner-Clark & Lesh, 

2003; Hiebert & Grouws, 2007; Sriraman & English, 2010). 

For this study, we designed and implemented an MEA in a master's course of 21 in-

service mathematics teachers. We focused the study on a newly developed mathematics 

education course called Quantitative Reasoning in Secondary Mathematics, which was 

offered four weeks in the summer. The MEA, worth 50% of the course grade, asked teachers 

to create and refine a quantitative reasoning task for their students with the intention of 

teachers implementing the task in the following fall. Teachers worked in groups of three or 

four and were roughly clustered by the content they taught: the high school Groups 1, 4, and 

5 taught algebra 2, pre-calculus, and trigonometry, while the middle school Groups 2, 3, and 

6 taught algebra 1 or pre-algebra. Each group received MEA feedback from several sources, 

including the instructor, each other, undergraduate students, and in some cases, their own 

students. Each type of feedback prompted an updated iteration of the task and supporting 

documents that captured how teachers’ models develop. Data collection consisted of the 

iterations of documents generated by the MEA (see Table 1). The Pre-Assignment and 

Version 5 were individual documents, while Versions 1-4 were group documents. Using 

content analysis on the documents, we identified patterns in the ways teachers’ thinking about 

quantitative reasoning tasks developed due to this process. 

Table 1. Summary of Quantitative Reasoning (QR) documents analyzed 

Assignment Name  Short Description of Components 

Pre-Assignment Document including initial models of QR, QR tasks, QR course  

Version 1 

Four documents including (a) Quantitative Reasoning Task; (b) 

Facilitator Instructions; (c) Assessment Guidelines; (d) Decision Log 

Instructor’s Feedback  Instructor’s comments and suggestions to Version 1.  

Version 2 Updated Version 1 in response to the instructor’s feedback.  

Teachers’ Feedback Groups swap Version 2 and offer comments and suggestions  

Version 3 Updated Version 2 in response to the teachers’ feedback.  

Undergraduate Work  Student work after completing QR task (part (a) of Version 3)  

Version 4 
Updated Version 3 in response to student work, plus evaluation of 
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student work.  

Version 5 

Updated Version 4 in response to the feedback received from 

implementation, plus the actual evaluation of the K-12 student work. 

Findings 

We found two basic structures comprised the framework about mathematics teachers’ 

models of quantitative reasoning. First, teachers’ models of quantitative reasoning became 

more coherent by being better articulated and connected between abstract and practical 

settings. Specifically, teachers more clearly described aspects of quantitative reasoning and 

referred to these aspects when attending to their classroom practice. Second, as the MEA 

progressed, the middle school teachers recognized aspects of quantitative reasoning in ways 

that became more aligned with mathematics education literature. Specifically, by the MEA 

conclusion middle school teachers made statements referring to quantities and quantitative 

relationships, while high school teachers tended not to make such statements. Since quantities 

and quantitative relationships are vital components of quantitative reasoning according to 

Thompson (2011) and other leading mathematics education researchers (Moore et al., 2009), 

this collection of statements indicated middle school teachers’ models became more aligned 

with literature. This section details each basic structure underling this framework and 

includes reasons for changes in teachers’ models. 

First, teachers better articulated and connected aspects of quantitative reasoning across 

different settings. We make a distinction between how teachers provided information about 

quantitative reasoning in abstract settings, which is not specific to any context, and the 

information teachers provided in practical settings, such as when teachers were designing, 

implementing, and evaluating actual instructional activities. Teachers initially provided less 

information regarding quantitative reasoning in abstract settings. For instance, at the start of 

the MEA three individual teachers and Groups 2, 5, and 6 did not provide information about 

quantitative reasoning in abstract settings.  

The teachers that did initially make statements referring to aspects of quantitative 

reasoning did so by identifying aspects in abstract settings that were different than the aspects 

they said in practical settings. An example of one teacher’s Pre-Assignment responses that 

referred to different aspects of quantitative reasoning between abstract and practical settings 

was Joyce. Joyce abstractly defined quantitative reasoning as being “strongly associated with 

number sense and the ability to visualize (or conceptualize in some way) certain amounts.” 

When describing quantitative reasoning in practical settings, such as what this looks like in 

her classroom, she stated, 

When I teach lessons, my goal is to help students think quantitatively as we work through 

problems.  I want them to make sense of what they are doing, not to just do it…when my 

students and I work with logarithms, I spend a lot of time discussing what a particular 

problem means. In general (overall), I do not constantly give lengthy explanations so as not 

to cause algebraic processes to become tedious and disjointed, but these explanations are 

necessary at the appropriate times. 

Joyce did not mention number sense or visualization of amounts as aspects of quantitative 

reasoning in this setting, but instead focused on sense-making when working with functions 

in a problem. While number sense could have been included in sense-making, Joyce’s 

responses did not provide evidence of this, and thus she did not connect her aspects of 

quantitative reasoning across her responses in a way we could observe. Similar to these 

patterns in individual responses, Groups 1, 3, and 4 made statements referring to aspects of 

quantitative reasoning that differed across abstract and practical settings. Only six teachers 
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initially provided statements about quantitative reasoning that were connected across abstract 

and practical settings 

By the conclusion of the MEA, every teacher provided more information about aspects of 

quantitative reasoning in abstract settings. All 6 groups and all 21 teachers made statements 

referring to at least one aspect of quantitative reasoning that was connected across abstract 

and practical settings. For example, Charlotte recognized the aspects of quantities and 

quantitative relationships in her final MEA documents, first by saying in her Decision Log 

that quantitative reasoning was: 

making sense of a problem by trying to visualize in your mind a model, interpreting data by 

breaking it down so one can identify relevant quantities and their meanings, representing 

relationships between quantities using graphs, tables, and algorithms then trying to create a 

formula through that reasoning. It’s essential for students to focus on recognizing 

relationships and having them write or explain their thought processes in how quantities 

relate to one another and showing they work together in a process not individually, as well 

as, constructing new quantities that are not given to form a conclusion. 

Here she identified quantities as an aspect of quantitative reasoning, and referred to 

quantitative relationships by considering how quantities covary in relationships and how 

these relationships create new quantities. Thus Charlotte made statements that referred to the 

aspects of identifying quantities and quantitative relationships in this abstract setting. These 

aspects are seen in the next paragraph when she referred to the practical setting in the context 

of her group’s task:  

Our group’s MEA relates to quantitative reasoning when we have students reason about 

which would be the best fundraiser for their school and explaining why it would be the best 

choice, identifying quantities (varying and not), determining what quantities mean and how 

they relate to each other, creating visuals to identify relationships, having students explain 

what it means to have quantities co-vary, constructing general equations through these 

discoveries, and presenting their work to peers and teachers. 

Since quantities and quantitative relationships were in her group’s task, Charlotte’s response 

from this practical setting here shared aspects with her earlier response given in an abstract 

setting. Thus Charlotte’s responses emulated how teachers better articulated and connected 

aspects of quantitative reasoning across these settings as the MEA progressed. Teacher 

reflections about their development suggested peer feedback, student feedback, and course 

materials influenced them to better articulate and connect aspects of quantitative reasoning. 

The second basic structure in how teachers’ models of quantitative reasoning developed 

was that the middle school teachers recognized aspects of quantitative reasoning in ways that 

became more aligned with mathematics education literature. At the beginning of the study, 

teachers attended to few aspects of quantitative reasoning. Only two teachers made 

statements suggesting quantities were an aspect of quantitative reasoning, and only one 

teacher made a statement suggesting quantitative relationships was an aspect of quantitative 

reasoning. Furthermore only one of the six groups initially made statements in their Version 1 

documents referring to quantities and quantitative relationships as aspects of quantitative 

reasoning. Instead, most teachers made statements about what we called pseudo-quantities in 

their initial MEA documents. Pseudo-quantities are numerical values, unknowns, or other 

features of a contextual setting where the teachers did not fully distinguished the object, 

attribute of the object, and units of the object being considered. For example, Penny gave the 

response that quantitative reasoning was “giving students a problem involving quantities 

where they have to determine a strategy for solving the problem,” with no further statements 

about what was meant by “quantities.” Since her use of this word was vague and had no 

evidence of attending to an object, a measurable attribute of the object, a way to assign values 

to this measure, or an accompanying unit, her response was coded as referring to pseudo-
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quantities. Rather than quantitative relationships, teachers identified numerical relationships, 

which are the conceptual relationships between variables or measures of quantities based only 

on the arithmetic operations involved. 

During the MEA, middle school teachers made statements indicating their models of 

quantitative reasoning became more aligned with mathematics education literature. The three 

middle school groups (2, 3, 6) all made statements in their final MEA documents that referred 

to both quantities and quantitative relationships as an aspect of quantitative reasoning. For 

example, Group 2 incorporated a table “designed to help [students] think critically about what 

quantities would be present in fundraising situations.” This table was in the Quantitative 

Reasoning Task and had accompanying expectations in the Assessment Guidelines that asked 

students to identify the object, attribute, unit, for “all of the varying and unvarying quantities 

that are present in a fundraising situation.” These expectations indicated Group 2 referred to 

quantities as an aspect of quantitative reasoning by the MEA conclusion.  Teachers said 

student feedback prompted them to be more explicit about quantities in their MEA 

documents. Peer feedback and course materials, such as Pathways to Calculus (Carlson & 

Oehrtman, 2011), gave teachers examples of how quantities could be incorporated in their 

MEA. Middle school teachers did not say why they included quantitative relationships, rather 

than numerical relationships, in their MEA documents. 

Most of the high school teachers’ models of quantitative reasoning did not develop in 

ways aligned with literature. These teachers continued to refer to pseudo-quantities and 

numerical relationships when making statements about quantitative reasoning. The exception 

to this pattern was Group 5. Group 5 referred to quantities and quantitative relationships as 

aspects of quantitative reasoning in both initial and final MEA documents. Two of the 

teachers in Group 5 also made statements about coordinating quantitative relationships at the 

MEA conclusion.  

Implications 

This study has three main implications for the field of mathematics education. First, this 

study supports and extends prior work regarding how teacher MEAs can document teachers’ 

models within teacher education settings. This study provided evidence an MEA can 

document development in teachers’ models and provide answers to research questions 

regarding mathematics teachers’ models of quantitative reasoning. Designing and 

implementing these successful activities for teachers is both novel and significant to the field 

of teacher education (Confrey & Krupa, 2010; Garfunkel et al., 2011). Second, the 

framework created by answering this study’s research question offers researchers a tool to 

better understand in-service teacher thinking about quantitative reasoning beyond the context 

of this study. Researchers need ways to understand teacher thinking, including how they 

think about quantitative reasoning and other CCSSM standards for mathematical practice 

(Confrey & Krupa, 2010; Sztajn et al., 2011; Thompson, 2013). This study was designed to 

address these needs, and does so by providing a novel framework for how one population of 

teachers thought about quantitative reasoning.  

Third, this study established sharable practices other teacher educators can use to develop 

teacher ways of thinking about quantitative reasoning that are connected to practice and 

aligned with literature. Based on this study’s findings, we recommend that teacher educators 

have mathematics teachers develop a task and supporting documents for their own classroom 

practice, and provide the opportunity for teachers to revise their documents after receiving 

various forms of feedback. Feedback from students and peers promoted teachers to address 

inconsistencies when thinking about quantitative reasoning across different settings, while 

course materials helped teachers align their ways of thinking about quantitative reasoning 

with literature. Future research should focus on identifying ways to provide extra support for 
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secondary teachers’ thinking about quantities and quantitative relationships. Future research 

can also continue determining how mathematics teachers think about quantitative reasoning 

and finding ways to support productive ways of thinking.  
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AN OBSERVATION INSTRUMENT FOR ASSESSING THE K-16 MATHEMATICS 
CLASSROOM 

Jim Gleason, University of Alabama 

We describe the development of a new observation protocol instrument for 
classroom instruction that is mathematics-specific, spans K-16 mathematics, 
improves validity and reliability compared to existing instruments, and 
encompasses the Standards for Mathematical Practice.  The instrument may 
be helpful for educators/researchers engaged in classroom evaluations of K-
16 mathematics teaching. 

Key words: Classroom research, observation protocol, instrument development 

Background 
One of the most widely used instruments for mathematics instruction is the Reformed 
Teaching Observation Protocol (RTOP), developed by the Evaluation Facilitation Group 
(EFG) of the Arizona Collaborative for Excellence in the Preparation of Teachers (ACEPT).  
It was designed to capture “reformed teaching” in mathematics and science.  The RTOP was 
developed and validated based on 141 observations, but only 38 of these (approximately 
27%) were mathematics lessons and the remainder were science (Sawada et al, 2002).    
Furthermore, some of the language in the RTOP reads as science-specific making it unclear 
as to how to interpret and apply some items to mathematics instruction (e.g., Item 12: 
“Students made predictions, estimations and/or hypothesis and devised means of testing 
them.”).  Finally, the factor loadings indicate that the majority of the variance loaded onto 
factor one (“inquiry orientation”), with only one item loading uniquely in factor three (Piburn 
&Sawada, 2000). 

Our team, comprised of three mathematics educators, a mathematician, and an 
educational statistician, addressed these areas to develop a new observation instrument that 
was: 1) focused on the essential and unique aspects of standards-based mathematics 
instruction, 2) measured three foundational classroom components underlying the Standards 
of Mathematical Practice, 3) based on observations of and designed for use in K-16 
mathematics classrooms, 4) increased reliability and validity, 5) distributed loadings across 
three factors.  
 

Theoretical Framework 
The Common Core State Standards initiative has one unifying aspect across all K-12 grade 
bands in the Standards for Mathematical Practice.  The Standards of Mathematical Practice 
define the expectations for all teachers of mathematics to develop mathematical proficiencies 
in their students (CCSS, 2010).  The eight practice standards began with the NCTM process 
standards of problem solving, reasoning and proof, communication, representation, and 
connections (NCTM, 2000) and finished with the NRC’s proficiency strands of adaptive 
reasoning, strategic competence, conceptual understanding, procedural fluency, and 
productive disposition (NRC, 2001).  The merging of the NCTM process standards and the 
NRC proficiency strands have resulted in the Standards of Mathematical Practice and the 
belief that students should see mathematics as sensible, useful, worthwhile, and that they will 
believe in their own diligence with a positive self-efficacy.  Though these standards usually 
are in the context of the K-12 classroom, they are easily generalized to the undergraduate 
mathematics context. 
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When our team examined the eight practice standards, we found three overarching themes of 
what a classroom should “look like”.  These three themes (or constructs) represent (1) how 
students are engaged during class and with what they are engaged, (2) a well-designed lesson 
enacted in a manner to promote deep mathematical understanding, and (3) a classroom 
culture of respect that generates positive productive discourse for students with both teachers 
and their peers.  These three key elements of student engagement, lesson design and 
implementation, and class culture based in discourse are essential to enacting the practice 
standards well.  While it is difficult to implement all eight practice standards daily, these 
three themes are crucial for current and future teachers during their continual development in 
the teaching profession.  Therefore, the development of our instrument was grounded in the 
eight practice standards, which can be found within the final instrument. 
 

Educational/Scientific Importance 
There are various ways to categorize events that unfold in the course of teaching a 
mathematics lesson.  The RTOP assesses inquiry orientation, content propositional 
knowledge, and collaboration; the Mathematical Quality of Instruction (MQI) protocol 
assesses the relationships between the teacher, student, and mathematical content; and the 
UTeach Observation Protocol (UTOP) creates an in-depth analysis of the math or science 
classroom.  Additional vantage points, such as those used by this instrument, could provide 
further insight into demystifying and naming what effective teaching of mathematics entails.  
This instrument is unique because it assesses the three underlying classroom components of 
the Standards of Mathematical Practice (student engagement, lesson design and 
implementation, and class culture based in discourse).  To date, the mathematics education 
community lacks a classroom observation instrument with the vantage point grounded in the 
underlying constructs of the Standards for Mathematical Practice. This continues to be a 
timely and pressing need in mathematics education research and teacher education given the 
goal of successful, large-scale implementation of the Common Core State Standards 
nationally.  As the Science and Mathematics Teacher Imperative (SMTI)/The Leadership 
Collaborative (TLC) Working Group on Common Core Standards (CCSS) stated, “we simply 
do not know enough about the effective instructional strategies for teaching…mathematics to 
all students” (APLU, 2011, p.6).  The development of this instrument for use in K-16 
mathematics instruction with the aim of generating a mathematics-specific, valid and reliable 
observation instrument which can now be used to contribute to a) future research on 
classroom teaching, b) provide feedback to preservice programs, c) improve the transitions 
within K-16 mathematics, and (d) guide mathematics instruction across K-16 classrooms.   
 

Methods 

Instrument Development 
Using the RTOP as an initial guide, the research team created and/or revised items to fit the 
Standards of Mathematical Practice and the three constructs of student engagement, lesson 
content, and classroom culture and discourse.  These items were then revised following use 
analyzing classroom videos.  Additionally, a training manual was developed to improve inter-
rater reliability and fidelity to the item intent. 

Data Collection 
Two types of data were collected in the analysis of the protocol instrument.  The first set of 
data relates to the face validity of the protocol with the items sent out to practitioners in the 
field of mathematics education to determine if the mathematics education community 
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believes that the items measure important components of the mathematics classroom and 
align with the standards of mathematical practice. 
The protocol instrument was then used in a variety of undergraduate mathematics classrooms 
at a large public university in the southeastern United States.  These classrooms varied in size 
from 15 to 150 and in level from College Algebra to Introductory Real Analysis. 

Analysis 
The analysis of the data includes a factor analysis to determine the construct validity of the 
protocol instrument and a regression analysis using a subset of the observed classrooms to 
determine the predictive validity of the protocol instrument on student achievement. 
  

Questions for Audience: 
• What are some uses for such an observation protocol for research in 

undergraduate mathematics education? 
• Are there essential components of the mathematics classroom that this protocol is 

missing? 
• Are there additional data points needed or additional analyses that should be 

performed on the data? 
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An Investigation of College Students’ Statistical Literacy 
 

Erin Glover             Sean Larsen 
Portland State University       Portland State University 

 
Introduction 

Statistics educators consider statistical literacy a vital skill because it supports students in 
thinking critically about the way data is used in everyday social, political and medical 
contexts.  Statistical literacy goes beyond simply reading graphs to include interpreting 
their meaning and evaluating, with a questioning attitude, the information being 
presented (Shaughnessy, 2007; Gal, 2002; Watson & Moritz, 1997). Watson (1997) 
describes statistical literacy in terms of a three-tiered hierarchy delineating the skills 
necessary for interpreting stochastic information. 
 

Tier 1: a basic understanding of probabilistic and statistical terminology 
Tier 2: an understanding of probabilistic and statistical language and concepts 

when they are embedded in the context of wider social discussion 
Tier 3: a questioning attitude, which can apply more sophisticated concepts to 

contradict claims made without proper statistical foundation\  
The researchers conducted a classroom teaching experiment in an introductory college 
statistics course that aimed to support the development of the skills described in Watson’s 
model. This research report investigates advances in students’ statistical literacy, focusing 
both on advances in their language and usage of statistical concepts, and advances in their 
ability to contextualize situations that would produce a given data set. In the teaching 
experiment, students were given a set of graphs and asked to interpret them, compare and 
contrast them, and to describe real life contexts that might explain differences between 
them. Four weeks later in the course students revisited these same graphs. Our analysis of 
student responses highlights students’ development in statistical literacy, in particular, 
their advances in using statistical language correctly in real-world contexts. 
 

Theoretical perspective 
Watson’s model describes three categories of skills required to fully understand, 
interpret, and communicate stochastic information.  The instructional approach was 
designed to develop the skills described in all three categories. While students were 
learning statistical terminology (Tier 1) they were simultaneously engaged in exploratory 
data analysis (Tier 1 and Tier 2), creating and critically interpreting statistical models 
(Tier 1 2, and 3), using their newly acquired terminology to describe and support their 
findings. These statistical literacy tasks required students to engage in sophisticated 
reasoning about distributions of data. The analysis of students’ reasoning was guided by 
the work of Noll & Shaughnessy (2012).  
  
Noll & Shaughnessy’s (2012) presented a framework meant to support characterizing 
students’ reasoning about sampling concepts. The hierarchical framework characterized 
student reasoning primarily in terms of three levels. Additive reasoning described 
frequency-based reasoning in student responses (e.g., “there are more red ones”). The 
second level includes four categories of single-attribute reasoning: Weak Center, Shape, 
Variation, and Proportional (Strong Center). Weak Center reasoning is indicated by 
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attention primarily on modes while Strong Center reasoning is indicated by responses 
referred to population proportions (percentages, means, or medians). Distributional 
reasoning involves the coordination of two or more of the (second level) single-attribute 
characteristics. 
 

Methods 
Data Collection: The author implemented the CATALST curriculum materials (Garfield, 
delMas, & Zieffler, 2010) using TinkerPlotsTM software in an undergraduate introductory 
statistics course at a large commuter university. Students enrolled in this course as a 
prerequisite for the traditional statistics sequence, or to satisfy the required math elective 
needed to graduate. A total of 21 students enrolled in the course and all students 
consented to be participants in the study.  The data collected consisted of student work 
and video recorded engagement with tasks during in-class activities and individual 
interviews. This analysis will focus on work from a homework activity completed on 
week 2 and an exam taken during week 6 which included a follow-up to the week 2 
activity.    
Data Analysis: The process of characterizing student responses in the teaching 
experiment drew on the Noll & Shaughnessy framework (2007).  While this framework 
emphasizes the distinction between Additive and Proportional reasoning, the focus here 
was on characterizing student responses according to how they analyzed and 
contextualized graphical information. The analysis of student work uncovered three main 
characteristics addressed in student responses, which were coded as Variation, Shape, and 
Location/Placement. When students were able to coordinate more than one of these 
characteristics, a Distributional Reasoning code was used. The Variation, Shape, and 
Distribution codes were consistent with the corresponding categories of the Noll & 
Shaughnessy framework, while the Location/Placement code emerged from the analysis 
in order to capture students’ attention to where the data was located in a distribution.  
 

Application of the Variation, Shape, and Distribution codes in the analysis of this work 
was consistent with the Noll & Shaughnessy’s definitions of these constructs. The 
framework characterized student responses as Variation if they included concepts such as 
range, standard deviation, interquartile range and variability.  Additionally, in this study 
the use of words such as, “spread” (from the center), “cluster”, or “outlier” resulted in a 
variation code. The Noll & Shaughnessy framework characterized student responses with 
Shape if language such as “skewness”, “normally distributed”, “bell curve”, “evenly 
distributed”, “smooth”, or “bumpy” was used to describe distributions. Seeing similar 
responses in the analysis of the work presented in this paper, student arguments based on 
these characteristics were coded as Shape. For the purpose of this research, both 
statistical terminology (like “normal distribution”) and naïve language (like “gaps” or 
“smooth”) was also included in the Shape code. The Noll & Shaughnessy framework 
identified student responses that coordinated one or more of the attributes from Shape, 
Variation, or Proportional reasoning were described to be “Distributional” reasoning.  
Similarly, student responses that coordinated two or more characteristics within the 
Shape, Variation or Location/Placement codes were coded as “Distributional Reasoning” 
in this analysis.     
The curriculum often prompted students do contextualize information presented in 
graphical information, so it became necessary to code these responses separately into two 
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categories: Reasonable or Unreasonable.  If the student did not provide an appropriate 
context (Unreasonable) a Level-0 code was given. If the context provided by the student 
could be coded as reasonable, then one of three sub-codes was used to describe their 
response.  If the response gave a general context that fit the situation but did not speak to 
the graph characteristics, a Level-1A code was given.  A level-1B code was given if the 
student responded to context-based problems with descriptions of statistical measures. If 
the student met the criteria for both Level-1A and Level-1B codes, then a Level-2 code 
was used.   
 

Results 
The results will be presented in two parts.  The first will be the analysis of student 
responses around distributional thinking.  The second will be the student results around 
contextualizing graphical information.  The analysis will show marked improvement in 
both categories, but will be treated separately.  
Distributional Thinking. In the second week of the course students were presented with 
two sets of three graphs in a homework activity that asked the students to compare and 
contrast graphs and provide real-life contexts that might explain differences between 
them.  The	  students	  were	  told	  that	  the	  graphs	  represented	  exam	  scores	  for	  different	  
classes	   and	   provided	   no	   other	   information	   about	   them. In the sixth week of the 
course, students revisited these same graphs during their midterm exam. They were asked 
again to compare and contrast the graphs, but they were also asked to state which class 
they would prefer to be in and why.    
Set 2: Exam Scores for Classes D, E and F 

 

 
 
In the second week of the course, students’ comparisons were often focused on the 
location and/or placement of the data.  Many of the students listed statistical measures, 
but lacked coordination of the statistical concepts with their contextual statements. By the 
sixth week of the course, students’ responses coordinated the location and placement of 
data with variation and/or shape arguments as well.  
 
The categories of student reasoning of interest here can be illustrated by considering the 
responses given by one student, Aaron. In Week 2, Aaron described the characteristic that 
distinguished the three graphs to be “the mode of each classes' exam scores.” This 
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response was coded with a Location/Placement code.  Revisiting the same graphs in 
Week 6, Aaron’s comparisons used more sophisticated language and included statistical 
concepts.    
Aaron: Class D has the highest variation, but shares about the same variability with 
Class E. That is, in Class D, while the data fall off from the typical value quicker than in 
any other class, the range of variability is almost the same with Class E. The range in 
Class D is 20, while Class E’s is 25. This is notable only because Class F’s range of 
variability is much greater, sitting at about 50. The centers of all the graphs are almost 
the same, at around 71. The shapes of all three either condense around 71 or fall out 
from it.   
Aaron’s Week 6 response was coded with Location/Placement, Variation and Shape. 
Because Aaron was coordinated these three kinds of characteristics, his response was also 
coded as Distributional reasoning.  
Examining classroom results for the second set of graphs, eight of 21 students 
coordinated at least two of Shape, Location/Placement and Variation in their Week 2 
responses resulting in a Distributional Reasoning categorization.  This number increased 
to 17 by Week 6.    
 

Week 2 Code Counts Week 6 Code Counts 
Shape=4 
Variation=14  
Location/Placement=11  

Distributional 
Reasoning= 8 
Other =2 

Shape=10 
Variation=17 
Location/Placement=18 

Distributional 
Reasoning=17   
Other =2 

 
Context Ideas. To illustrate our analysis of students’ contextualizing of graphical 
information, we look again to Aaron’s responses to the 2nd set of graphs. In Week 2, 
Aaron provided a Level-1A response since he provided an appropriate context, but did 
not use statistical measures in his argument.   
Adam: Perhaps in class D, where most of the students received the same score, more of 
the students studied together for the exam, and therefore wrote down the same answers 
on their tests.   
Looking forward, during week 6 Adam received a level-2 code because he uses 
reasonable contextual language and ideas  (Level-1A) for a particular graph, but also uses 
statistical measures (Level-1B) to form his argument.   
Adam: If we’re talking about a curved exam here, I’d be best off in Class F where 
everyone is getting nearly the same grade. Because people are not likely to get a grade 
significantly above a 71, I’d be best with a score of 71.  
 
Examining classroom results for the 2nd set of graphs, there was notable improvement in 
students’ ability to contextualize graphical information. In Week 2, nine of the 21 
students used Level-2 context responses.  That number increased to 17 in Week 6. 
 

Week 2 Code Counts Week 6 Code Counts 
No Response= 3     
Level-0=1       

Level-1= 8      
Level-2= 9 

No Response= 3 
Level-0=0      

Level-1= 1     
Level-2=17 

 
 

Conclusions and Directions for Future Research 
It is clear that the students exhibited improvement in their responses when asked to 
compare the same sets of graphs in week 2 and again during week 6 of the course. 
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Students used more sophisticated reasoning later in the course, and also showed progress 
in contextualizing graphical information. While this research does not make claims about 
what exactly led to students’ improvement, the analysis contributes to the statistics 
education literature in three key ways. First, the analysis of student work produced a 
category of student reasoning which compliments the Noll & Shaughnessy framework. 
Students' consideration of centers are categorized by the Noll & Shaughnessy framework 
as either "weak center" or "proportional” (strong center) depending on whether they 
involve proportional reasoning (mean) or not (mode). Our analysis did not focus on this 
distinction, but rather revealed that students used a variety of notions including centers to 
describe “where” a distribution was positioned. We observed students providing 
sophisticated explanations involved the coordination of such notions of 
location/placement and other single-attribute characteristics such as shape and variation. 
Secondly, the tasks of comparing graphs and providing contexts to support the graphical 
information seem particularly effective at eliciting expressions of students’ reasoning.  
Notice how Aaron’s responses give us detailed information about how he reasoned about 
the graphs contextually using distributional thinking. This suggests that activities like this 
can be useful for researchers interested in studying statistical literacy. Finally, because 
the tasks elicited such sophisticated student reasoning, it can be conjectured that repeated 
engagement in similar tasks could support development of statistics literacy. Future 
analyses of the data set will be focused on investigating whether and how the curriculum 
and instructional approach supported students’ learning.  
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Abstract 

The CSPCC (Characteristics of Successful Programs in College Calculus) project is a large 
empirical study, investigating mainstream Calculus 1, that aims to identify the factors that 
contribute to successful programs. The CSPCC project consists of two phases. Phase 1 entailed 
large-scale surveys of a stratified random sample of college Calculus 1 classes across the United 
States. Phase 2 involves explanatory case study research into programs that were identified as 
successful based in part on the results of the Phase 1 survey. This second phase will lead to the 
development of a theoretical framework for understanding how to build a successful program in 
calculus and in illustrative case studies for widespread dissemination. Technology was one of the 
topics we explored with students, instructors, administrators, and other individuals that we 
interviewed during our case study site visits. In this preliminary report, we will focus on calculus 
instructors’ views on instructional technology.  

 
 

Study Background and Research Question 
The CSPCC (Characteristics of Successful Programs in College Calculus) project is a large 
empirical study, investigating mainstream Calculus 1, that aims to identify the factors that 
contribute to successful programs. The CSPCC project consists of two phases. Phase 1 entailed 
large-scale surveys of a stratified random sample of college Calculus 1 classes across the United 
States. Phase 2 involves explanatory case study research into programs that were identified as 
successful based in part on the results of the Phase 1 survey. Specifically, institutions were 
selected based on student persistence (continuing on to take Calculus 2), success (pass rates in 
Calculus 1), and reported increases in students’ interest, confidence, and enjoyment of 
mathematics as a result of taking Calculus 1. This second phase will lead to the development of a 
theoretical framework for understanding how to build a successful program in calculus and in 
illustrative case studies for widespread dissemination. 

Technology was one of the topics we explored with students, instructors, administrators, and 
other individuals that we interviewed during our case study site visits. The questions we asked 
were designed to explore the role of technology in successful calculus programs. In this 
preliminary report, we will focus on calculus instructors’ views on instructional technology.  

Relation of this work to the research literature 
Incorporating technology into mathematics education has been of interest for the last few 
decades.  During the calculus reform movement in the 90’s, mathematics researchers turned their 
attention towards how technology could be used effectively in teaching, and what approaches 
would be successful. An abundance of new technologies have become available for teachers and 
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students alike, so there is continued interest how technology can be leveraged to improve 
mathematics instruction (Dick, 2007). Researchers have noted that computational technology 
(calculators and CAS) can allow students to focus on conceptual knowledge rather than 
procedural skills (Demana, 1990). More recently, researchers have been looking at how to 
integrate more dynamical technology (e.g., GeoGebra) to support students’ visualization 
(Simonsen & Dick, 2007). As Simonsen & Dick note, "The use of technology in mathematics 
classrooms raises several areas of concern for teachers: curriculum issues, classroom dynamics, 
training and support, and technological accessibility." It stands to reason that teacher's 
perceptions of technology may have a major impact on how the potential of these tools can be 
realized. Our analysis will contribute to the research literature around educational technology by 
providing characterizations of instructors' perspectives about technology in institutions identified 
as having successful Calculus 1 programs. 
  

Research Methods and Analytic Framework 
Our research team conducted site visits at five bachelors granting institutions. Four of the 
institutions were universities (two had very recently transitioned from colleges to universities). 
Three of these universities were private, while the fourth was a large urban public university. 
The final case study institution was a private liberal arts college. While on campus, we 
interviewed students, instructors, administrators, and others involved in the calculus program at 
the institution.  This report will focus on the instructor interviews. We interviewed a total of 25 
instructors over the course of the five case study site visits. Here, we will report on our ongoing 
analyses of the instructors’ views about technology as revealed by both the instructors’ responses 
to questions directly about technology and spontaneous comments about technology in response 
to other questions.  
 
The first stage of our data analysis involved the larger CSPCC project team and the full 
collection of interviews conducted with students, instructors, department chairs, calculus 
coordinators, and selected administrators at all four institution types. This stage involved 
“tagging” all transcripts by identifying the relevant topics addressed by the interviewee in each 
of their responses. For example if an instructor said, “some of my students are not prepared to 
handle the algebraic procedures needed to use the derivative concept on the application problems 
that we put on our common exams” this response would be tagged with the following codes: 
student subject characteristic, assignments and assessments, course coordination, and content. 
The CSPCC tagging scheme consists of 24 different tags including: teaching and learning, 
course structure, instructional materials, and (most relevant for this report) technology. This 
tagging was done using Hyperresearch, which allowed us to run reports of all instances in which 
technology was mentioned by an interviewee. Two coders tagged each transcript independently 
and a final version of the coding was created (for each response) by taking the union of the tags 
used by the two coders. This approach allows us to be confident that a very high percentage of 
the relevant interview excerpts related to technology have been identified so they can be 
analyzed in depth.  
 
The second stage of analysis will involve (primarily) open coding (Corbin & Strauss, 2008) of 
the instructors’ statements about technology. However, this process will also be informed by the 
categories of issues identified by Simonsen & Dick (2007) in their investigation of high school 
teachers’ perceptions of the impact of graphing calculators. Table 1 presents a subset of the 
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major trends that emerged from Simonsen & Dick’s analyses of the teachers’ perceptions. Our 
analysis will attend to these themes as well as others that emerge from our data.  
 
Advantages Disadvantages Classroom Dynamics 
Less distraction w/ computation Logistical difficulties  Less teacher-centered  
Immediate feedback Fear of calculator dependency More open-ended questions  
Enhancement of visualization  Time spent learning calculator More cooperative learning 
 

Results of the research 
Survey Results. There were a few questions on the instructor surveys that give us some insight 
into how much technology use was happening at the selected case study schools. One of the 
findings from the survey analysis is that instructors at the selected institutions reported 
significantly greater use of graphing greater use of graphing calculators. In particular, the survey 
results showed that instructors at selected schools permitted (and required) use of graphing 
calculators at a significantly higher percentage than the schools that were not selected. 
Additionally, these instructors reported more demonstrations in class using graphing calculators 
and more use of graphic calculators by students during class (both of these differences were 
statistically significant).  While we cannot make claims that the use of technology was a cause of 
success (defined by our selection criteria) at these institutions, these results do present us with a 
correlation worth investigating further. Additionally, they suggest that, when we analyze our 
interviews, we will be investigating the views of calculus instructors at successful intuitions 
where technology use is more prevalent than average. 
 
Sample of Interview Results and Directions for Ongoing Analysis. Simonsen & Dick’s (2007) 
research suggested that technology was used by many instructors to aid in students’ visualization 
of mathematical concepts and providing immediate feedback to students. Preliminary analyses of 
our interviews suggest that the instructors at the selected case study institutions used technology 
in and out of the classroom for similar reasons.  
 
“I think it really helps aid their visualization of a variety of things. It’s not always relevant, so I 
don’t use it for everything, but often it will draw a graph of this function a lot nicer than I would 
on the board, and then I can also manipulate that in certain ways.” 
 
“…online homework where they get immediate feedback and they can keep doing it many times 
until it’s correct with a few exceptions.” 
 
Although technology is often used by instructors to assist students in learning calculus concepts, 
not all instructors agree that the use of technology, such as calculators or web-based calculators 
(like Wolfram Alpha) are appropriate for learning calculus concepts. As Simonsen and Dick 
found in their research on calculators, a prevalent issue was logistical difficulties with 
implementing the tool.  Our preliminary analysis suggests instructors at successful institutions 
had similar difficulties. 
 
“I felt like it put up an unnecessary wall between my students and the learning because at first 
there were tons of errors with WeBWorK and they may understand the material, but it like -- 
enter it in the computer and it just -- they just were angry all the time.” 
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One instructor, in particular, believed that some computational technology did not do students 
“any service because it gives them a false sense that they know what they’re doing.” 
 
These preliminary results suggest that some of the perceptions of the teachers studied by 
Simonsen and Dick (2007) are shared by the instructors at our case study institutions. Further 
analyses will be dedicated drawing more complete comparisons between these two groups and 
investigating other issues that may be unique to our population (e.g., instructor driven teaching 
innovations using technology).  
 

Discussion Questions: 
 

• How could we use our student focus group interviews to address our research question? 
• What topics should we search interviews for in conjunction with technology in order to 

address our research question?  
• What kind of analysis will help us to identify potential connections between teachers’ 

views and their teaching practice (and ultimately their students’ success)?  
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Although teacher quality is positively correlated with student achievement, easily quantified 

measures of teacher quality are not accurate measures of quality; teacher pedagogical 

content knowledge and skills are better predictors, but difficult to measure. Professional 

development may be a cost-effective vehicle for developing new skills in in-service teachers, 

but there is conflicting research on whether professional development measurably raises 

student achievement on high stakes standardized tests. The purpose of this causal-

comparative study was to examine Andrew, an in-service, high school teacher participant in 

the master’s program. State mathematics assessment and student demographic data were 

collected from school districts for 4 academic years spanning from pre-program through 

program completion. One-way ANOVA analysis on student scale scores factoring by year 

showed a significant decrease in student mathematics scale scores potentially attributable to 

differences in population. Independent-samples t tests on the final two years showed a 

statistically insignificant increase in student growth percentiles. 

Key words: in-service teachers, professional development, secondary education, student 

achievement 

The general consensus is that high quality teachers improve student achievement, but 

demonstrating this association quantitatively as any easily measured credential is not 

necessarily an accurate measure of teacher quality (Foster, Toma, & Troske, 2013; Rockoff, 

2004), and the pedagogical content knowledge, which appears to account for most of the 

variance in teacher quality, is difficult to measure (Dash et al., 2012). Although professional 

development can help in-service teachers to examine and improve their practice, the 

conflicting research on the relationship between professional development and student 

achievement indicates that this relationship may be dependent on the specifics of a given 

professional development program (Blank & de las Alas, 2009; Huffman, Thomas & 

Laurenz, 2003; Ross, Hogaboam-Grey, & Bruce, 2006). Furthermore, even when there is 

significant achievement gains attributable to professional development, increased student 

achievement occurs after the professional development has ended (Harris & Sass, 2007). 

This study investigates the relationship between professional development and student 

achievement of participating teachers in a 2-year, blended face-to-face and online delivered 

master’s program in mathematics for in-service secondary teachers. The question guiding this 

research was: do Math TLC master’s program teacher participants’ students’ state 

mathematics scores differ between pre-program and post-program controlling for 

demographic variables and teachers’ pedagogical content knowledge? 

Methods 

Setting/Participants 

The Math TLCmaster’s program is a 2-year, blended face-to-face and online delivered 

program for in-service secondary teachers. Offered through a joint effort at two Rocky 

Mountain region universities, cohorts of 16 to 20 new teacher participants each year complete 

a 2-year master’s program in mathematics with an emphasis in teaching (about half of course 

credits in mathematics, half in mathematics education). The primary goals of the program are 
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to develop content proficiency, cultural competence, and pedagogical expertise for the 

teaching of secondary mathematics.  So far, 31 teachers from 3 cohorts have successfully 

completed the program.  

This is a quantitative causal-comparative study (Gall, Gall, and Borg, 2007) on the state 

scores of the students of one teacher participant of the master’s program. We have collected 

the participant’s students’ demographic and state assessment data for four years. We also 

have conducted quantitative observations of the teacher participant’s teaching both before 

and after his enrollment in the program (Hauk, Jackson, & Noblet, 2010; Goss, Powers, & 

Hauk, 2013) measures of his pedagogical content knowledge for teaching using a written 

instrument (Hauk, Toney, Jackson, Nair, & Tsay, 2013) throughout his participation in the 

program, and measures of his intercultural competence pre-program and post-program. We 

focus this report on the student outcomes from one teacher participant from the first cohort. 

The participant for this study is Andrew who began the program in the summer of 2009 

and completed it in 2011. Andrew started the program teaching at a high school of 

approximately 1500 students within a district of 19,000 students with a high school 

graduation rate of 72.4%. Two years into the program, Andrew transferred to another high 

school of 1100 students within a new district of 4600 students with a graduation rate of 86%. 

Andrew taught grades 9-12, but only 9
th

 and 10
th

 graders complete the state assessment. 

We considered the state assessment scores of Andrew’s 9
th

 and 10
th

 grade  students from 

four academic years: (0) prior to his beginning the program, (1) his first year in the program, 

(2) his second year in the program, and (3) the year following his completion of the program. 

Prior to his beginning the program, Andrew taught 15 students in 9
th

 grade, 94 students in 

10
th

 grade in the course of Geometry which typically is taught at the 10
th

 grade level 

indicating his 9
th

 graders this year were in an advanced class. In his first year of the program, 

Andrew taught 54 students in 9
th

 grade and 76 students in 10
th

 grade in the courses of Algebra 

1 and Geometry. In his second year in the program, he taught 35 students in 9
th

 grade and 21 

students in 10
th

 grade in the courses of Algebra 1 and Algebra 2. In the year following his 

completion of the program, he taught 62 students in 9
th

 grade and 5 students in 10
th

 grade in 

the courses of Algebra 1 and Everyday Math.   

The Colorado state assessment is administered to students in grades 3-10 in the subjects 

of mathematics, English/Language Arts, and science in the spring of each academic year. For 

each subject, students receive a scale score, a proficiency level, and growth percentile rating. 

Scale scores are conversions from raw scores that represent the same level of achievement 

regardless of the year in which the test was administered (Colorado Student Assessment 

Program, 2011). The growth percentile reports each student’s progress by comparing each 

student’s current achievement to students in the same grade throughout the state who had 

similar scores in past years and is only reported if the student completed the assessment in 

two consecutive years. 

The writers of the state assessment strived to establish content validity by having content-

area specialists, teachers, and assessment experts develop a pool of items that measured the 

state’s assessment frameworks in each grade and content area. The state reports the 9
th

 and 

10
th

 grade mathematics test showed good internal consistency (Cronbach’s alphas range from 

.91 to .94) and interrater reliability on constructed response items showed kappa values 

ranging from .60 to .93 (Colorado Department of Education, 2009, 2010, 2011, 2012). 

Data Collection 

From the participants’ districts we requested both teacher and student data. We requested 

students’ demographic data, state scale mathematics scores, state mathematics proficiency 

levels, student growth percentiles, and state English and Language Arts scale scores. For each 

teacher, for each of the given years, we requested all data for students in that year plus all 

data for those same students for the previous year.  We have obtained students’ mathematics 
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scale scores from Andrew’s first two years; these scores have not been linked to students’ 

previous year’s scores or their growth percentiles. We have obtained all requested variables 

from the second two years. 

Data Analysis 

Andrew’s students’ scale mathematics scale scores for the four years requested have been 

collected. We conducted one-way ANOVA analyses on the mathematics scale scores; the 

students enrolled in Andrew’s classes in the four academic years composed the four groups. 

We conducted post-hoc Tukey analyses. For the two years that student growth percentiles 

have been collected, we conducted independent-samples t tests on those growth percentiles. 

Note that these growth scores were not available for all students enrolled. 

Results 

Table 1 presents the mean and standard deviation for each year for Andrew’s students’ 

state scores. There was a decrease in scores between the year prior to entering the program 

and the first year of his program at his first school. After transferring to his second school, 

there was also a decrease in scores. 

Table 1 

Descriptive Statistics Student Mathematics Scale Scores 

Year N M SD 

Prior to entering program (0) 109 610.03 66.83 

First year in program (1) 130 582.83 73.52 

Second year in program (2) 65 592.02 58.72 

After completing program (3) 68 550.87 52.41 

An ANOVA shows a significant difference in Andrew’s students’ scale mathematics 

scores across his years of enrollment in the master’s program (see Table 2). Post-hoc Tukey 

tests presented in Table 3 confirm that the decreases in mean scale mathematics scores are 

statistically significant. 

Table 2 

Summary of ANOVA 

 SS df MS F p 

Between  Groups 148838.25 3 49612.75 11.473 <.001 

Within Groups 1543779.97 357 4324.31   

Total 1692618.22 360    

Table 3 

Tukey HSD Comparison for Number of Years Since Beginning the Master’s Program 

(I) 

Years 

(J) 

Years 

Mean 

Difference 

(I-J) SE P 

0 1 27.20 8.54 .009 

 2 18.01 10.88 .349 

 3 59.16 10.21 .000 

     

1 2 -9.19 10.58 .821 

 3 31.87 11.97 .007 

     

2 3 41.15 11.97 .004 

We also conducted independent-samples t-tests on the growth percentiles for Andrew’s 

students from his two years in the second district. We found an increase in growth percentile 

between year 2, his last year in the program (M = 46.35, SD = 25.52) and year 3, the year 
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following his completion of the program (M = 50.18, SD = 30.21), but it is not statistically 

significant: t(112) = 0.72 , p = .471. 

Discussion 

Andrew’s students’ scale mathematics scores significantly decreased across years. This 

potentially can be attributed to the difference in student populations across years which 

cannot yet be accounted for due to the unavailability of students’ previous years’ scores. In 

the first year analyzed, Andrew taught geometry classes that included a group of 9
th

 grade 

students advanced beyond their grade level. In the year following his completion of the 

program, he taught Algebra 1 and a class of Everyday Math, a course typically designed as an 

intervention for students below grade level. Alternatively, the literature suggests a significant 

drop in student scores can be expected as significant rises in scores are typically not seen 

until two years after the completion of professional development (Blank & de las Alas, 2009).  

Although statistically insignificant, the increase in growth percentiles across the two years 

analyzed indicates more research on the growth percentile variable across all four years is 

warranted. Continuing data collection efforts strive for students’ current years’ test scores to 

be linked with their scores from previous years as well as collecting state calculated growth 

percentiles.  

We anticipate the collection of student data for 20 of the teacher participants who have 

completed the program. We plan to analyze student assessment scores controlling for 

previous test scores and other student demographic and teacher data. Past research team 

efforts have collected scores for pedagogical content knowledge and intercultural 

competence, we plan to use linear modeling to see how these variables, time in the program, 

and student demographic variables contribute to student state mathematics assessment scores.  

1. Previous research team efforts have collected measures of teacher participant PCK 

and intercultural competence. What other statistical models should we try?  

2. Requesting and collecting data from K-12 school districts is difficult as the data 

professionals employed by the district do not often have time built into their schedules 

for such data-pulls. How can we better facilitate data-sharing? 

3. Past literature has indicated that there is often a lag between completion of PD and 

implementation of what was learned into the classroom. Should we continue to collect 

data on our same teachers in years to come? 
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DO EXPERTS AND NOVICES GESTURE DIFFERENTLY?  
 

Brent Hancock, Marki Dittman, & Hortensia Soto-Johnson 
University of Northern Colorado 

 
Previous gesture studies conjecture that as individuals develop expertise 
in a field of mathematics their gestures tend to become more metaphoric, 
iconic, and dynamic. In this mixed-methods study, we compared the 
gestures of six experts and four pairs of novices as they geometrically 
described the complex number arithmetic operations z+w, zw, and 1/z. An 
ANOVA revealed that the factors Task and Gesture were statistically 
significant, but there was no statistically significant difference between the 
two groups’ gesture use. A Hierarchical Cluster Analysis directed the 
qualitative analysis where we found that novices exposed to technology 
appeared to produce gestures that were innovative or similar to the 
experts’ gestures. These findings suggest that facilitating students’ 
awareness of their own and the instructors’ gestures as well as exposing 
students to technology may help them develop more dynamic gestures and 
in turn possibly facilitate a more geometric perspective of the arithmetic 
of complex numbers.      

 
Keywords Complex variables, Embodied cognition, Expert, Gesture, Novice 
 

Introduction 
The purpose of this mixed methods study is to explore two areas of research: the 

study of gesture and the field of complex variables. Gesture has become an increasingly 
popular topic in the field of mathematics education, specifically as a tool to interpret 
students’ understanding or misunderstanding of a mathematical notion. Goldin-Meadow 
(2003) summarized much of the literature on gesture; however, these studies tend to 
center on elementary students as they work on arithmetic tasks. In fact, few researchers 
have explored the role of gesture in undergraduate-level mathematics. Exceptions include 
Marghetis and Núñez (2010), who explored graduate students’ use of gesture as they 
proved a fixed point theorem, and Sinclair and Tabaghi (2010), who investigated 
mathematicians’ use of gesture while explaining their conception of eigenvectors. Our 
research differs from these studies in that we compared experts’ and novices’ use of 
gesture as they worked on tasks related to arithmetic operations of complex numbers. Our 
research questions were:  

1. Is there a statistically significant difference in the number and types of 
gestures exhibited by experts and novices as they explained their geometric 
perception of complex number arithmetic?  

2. What is the nature of experts’ and novices’ use of gesture as they explain 
their geometric perception of complex number arithmetic?   

Review of Literature 
Despite the belief that gesture may provide insight into mathematical cognition, 

the variety of research on the subject is limited. A large portion of mathematics education 
research articles related to gesture center on mathematical tasks commonly encountered 
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in the primary grades (Alibali, Bassok, Solomon, Syc & Goldin-Meadow, 1999; Goldin-
Meadow, Kim & Singer, 1999; Goldin-Meadow, Nusbaum, Kelly & Wagner, 2001; 
Perry, Church, Goldin-Meadow, 1988). However, some researchers have investigated 
individuals’ conceptions of more advanced mathematical topics in ways that are pertinent 
to our research. For instance, Marghetis and Núñez (2010) demonstrated how 
mathematical constructs whose definitions suggest a static object are in fact perceived 
and communicated through individuals’ gestures as dynamic entities. Additionally, 
Sinclair and Tabaghi (2010) demonstrated the kinetic and temporal characteristics of 
experts’ conceptions of eigenvectors. Both of these studies suggest that a dynamic 
conception of mathematical constructs appears to be an inherent characteristic of 
reification (Sfard, 1992) of a mathematical notion.  

While the overlap of literature on gesture and advanced mathematics is minimal, 
even less research (Danenhower, 2006; Panaoura, Elia, Gagatis & Giatilis, 2006; 
Nemirovsky, Rasmussen, Sweeney & Wawro, 2012) exists regarding understanding of 
complex numbers. Panoura et al. investigated high school students’ ability to solve 
complex arithmetic equations or inequalities using either a primarily algebraic or 
primarily geometric approach. Panoura et al. found that students who used a geometric 
approach were more successful at correctly completing tasks than those who used an 
algebraic approach. In a similar study, Danenhower investigated undergraduate 
mathematics majors’ willingness and ability to switch between different forms used for 
expressing complex numbers. He characterized students’ level of understanding based on 
their ability to use a single form, represent an expression in different forms, translate 
between forms, and judge when to shift from one form to another. One pertinent result 
from this study was that the students held an object understanding of the algebraic and 
vector forms, but only a process understanding of the exponential form. Both of these 
studies indicate students’ inflexibility or inability to navigate between representations and 
forms of complex numbers and equations involving complex numbers, a finding that our 
study substantiates.  

Nemirovsky et al. (2012) investigated preservice teachers’ conceptions of 
complex arithmetic, specifically their geometric interpretation of the addition and 
multiplication of complex numbers. In the study, students used tape, string, and stick-on 
dots, in conjunction with a tiled floor in order to invent ways to perform complex 
addition and multiplication tasks. Students in the study expanded their own “realm of 
possibilities,” (p. 291) that is, the collection of all possible outcomes associated with 
some perceptuo-motor activity for complex arithmetic as they utilized their environment 
to enact specific operations, such as multiplication by i. This work offers promising 
teaching techniques for developing an object view of the addition and multiplication of 
complex numbers and informed our choice of a theoretical perspective. 

Theoretical Perspective 
It is important for researchers investigating gesture to adopt a theoretical 

perspective that addresses the multifarious contributions from language, social 
interaction, and the embodiment of human activities and thoughts, all of which shape 
individuals’ gestures. McNeill (2005) argued that gestures fuel thought and speech and 
that “gestures, language and thought are all different sides of a single mental/brain/action 
process” (p.1). This Vygotskian perspective necessitates viewing gestures as part of 
language itself. Given social constructivism’s emphasis on language and discourse 

664 17th Annual Conference on Research in Undergraduate Mathematics Education



(Miller, 2009), McNeill’s perspective is appropriate for investigating gesture because it 
claims that gestures are inseparable from language. However, while social constructivism 
illuminates many desirable parallels between communication and thought, it does not 
account for the belief that gestures are both bodily and culturally grounded.  

As Núñez, Edwards, and Matos (1999) point out, “Meaning is in many ways 
socially constructed, but it is not arbitrary” (p. 53). The authors argue that meaning is 
subject to the constraints imposed by biological, embodied processes and the interaction 
of individuals within socially and culturally significant environments. Sfard (2009) also 
points out that the communicative effectiveness of gestures is strengthened by “our 
spontaneous ability, grounded in our cultural experience, to relate certain body 
movements to certain familiar things in the world” (p. 194). Indeed, the emerging 
theoretical perspective of embodied cognition posits that cognitive processes are deeply 
rooted in humans’ bodily interactions with the surrounding world (Alibali & Nathan, 
2012; Edwards, 2009; Núñez et al., 1999; Wilson, 2002). For instance, Alibali and 
Nathan suggested that the existence of gesture points to the framework of embodied 
cognition since a) gestures can reflect the grounding of cognition in the physical 
environment; b) representational gestures (those which are iconic and metaphoric) 
manifest mental simulations of action and perception; and c) metaphoric gestures reflect 
body-based conceptual metaphors. It is this additional connection to the body that 
influenced us to adopt embodied cognition as our theoretical perspective.  

Methods 
This research is part of a larger study where six experts and eight novices 

participated in a 90-minute audio and videotaped interview. The six experts included five 
mathematicians (Agustin, Ernie, Sarah, Luke, Diana) who frequently teach complex 
analysis or complex variables and one physicist (Bruno) who teaches courses that require 
notions from complex variables and who uses complex variables in his research. Novices 
were interviewed in four groups: two graduate pairs (Jim and BJ, Deb and Tim) and two 
undergraduate pairs (Gus and Rog, Amy and Kim). Participants were allowed as much 
time as needed to respond to various tasks, thus, some participants responded to more 
questions. The results of this study are based on three tasks, which all the participants 
completed. For each task the participants had access to a board with a figure of the 
Argand plane and two points z, in the second quadrant, and w, in the third quadrant pre-
drawn. The participants were asked to use the diagram to complete the following tasks: 1) 
Where is 𝑧+𝑤 located? 2) Where is zw located? and 3) Where is 1/z located? Participants 
were informed that we were interested in their geometrical interpretation of complex 
numbers including gestures, diagrams, illustrations, facial expressions, etc. 

To best align with the goals of our research, we chose to define gesture as a 
movement of the upper limbs that fulfills a communicational function and is co-produced 
with mathematical speech. This definition is similar to definitions posed by others 
(Goldin-Meadow et al., 1999; Goldin-Meadow et al., 2001; McNeill, 1992). After 
transcribing all the interviews with descriptions of gestures, we began the coding process. 
Using our definition of gesture, all researchers concurrently coded one expert’s interview, 
using McNeill’s (2005) classification of gestures: deictic, iconic, metaphoric, or beat. 
McNeill described a deictic gesture as pointing with one’s hand or fingers, an iconic 
gesture as a semantic image of a concrete entity, a metaphoric gesture as presenting an 
abstract image, and a beat gesture as a hand beating with time.  An upper body motion 
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was coded as a gesture if the movement occurred within two seconds of a participant’s 
speech related to the current task. 

After the initial classification gestures labeled iconic, deictic, or metaphoric were 
categorized as dynamic or static as defined by Marghetis and Núñez (2010). A dynamic 
gesture is a smooth and continuous motion, whereas a static gesture consists of beats and 
broken motion or a smooth movement bookended by beats or broken motion (p. 5). 
Gestures that had multiple phases, or multiple gestures within one phrase, and contained 
both static and dynamic segments were classified as both dynamic and static, whereas 
gestures with indistinct dynamic or static portions were classified as ambiguous. For both 
groups, gestures that were classified as either ambiguous or both made up approximately 
10% of the total number of coded gestures (Experts: 10%; Novices: 10.5%) and were not 
included in the statistical analysis. Since beat gestures align with the prosody of speech 
and do not express semantic content, beat gestures were not classified as dynamic or 
static (Alibali & Nathan, 2012). 

After the initial group coding session, five researchers individually transcribed 
and coded the remaining interviews. At least two researchers coded the same 
transcription in order to measure inter-rater reliability. Reliability between coders was 
established for both the number of gestures and number of dynamic and static gestures. 
The average inter-rater reliability (IRR) for number of gestures was 90.41%, while the 
average IRR for the number of static and dynamic gestures was 88.61%.  

Results 
An Analysis of Variance (ANOVA) model comprised of the factors Group 

(novice and expert), Task (addition, multiplication, and division), and Gesture (iconic, 
deictic, metaphoric, and beat) revealed that the factors Task and Gesture were statistically 
significant (p < .001 for each). The number of gestures exhibited for the multiplication 
task was significantly more than the number of gestures displayed for the addition task. 
Similarly the number of deictic gestures exhibited was higher compared to the other 
gestures. Group was, to our surprise, not a statistically significant factor (p =0.772); this 
led us to perform a Hierarchical Cluster Analysis (HCA) which clusters the participants 
based on their gestures. In conducting the HCA, we explored the categories shown in 
Table 1 and each HCA was performed at the five-, four-, and three-cluster level. This 
analysis allowed us to explore how the participants were clustered for the different tasks 
and gestures. The HCA served as a guide in determining which participants would be 
compared and contrasted as part of the qualitative analysis. 
Table 1  

Cluster Categories 
All Tasks by Gesture Type (All Tasks Type) Division by Gesture Type (Div. Type) 
All Tasks by Dynamic/Static (All Tasks D/S) Division by Dynamic/Static (Div. D/S) 

Addition by Gesture Type (Add. Type) Iconic 
Addition by Dynamic/Static (Add. D/S) Deictic 

Multiplication by Gesture Type (Mult. Type) Metaphoric 
Multiplication by Dynamic/Static (Mult. D/S) Beat 

A chief finding from the HCA was that one pair of novices, Amy and Kim, 
comprised their own cluster in six of the categories. Amy and Kim shared a cluster at all 
three levels with the male undergraduate students (Gus and Rog) for Division by Gesture 
type; this was one of few instances in which the novices gestured similarly. The graduate 
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students (Jim and BJ, Tom and Deb) were clustered together in the Div. Type, All Tasks 
Type, and Deictic categories. A surprising result was that Gus and Rog shared a cluster 
with experts in all but three categories at the five-cluster level. Moreover, even within the 
expert category, participants did not always behave similarly. For instance, Bruno formed 
his own cluster in several categories, a finding we further substantiated qualitatively. The 
above clustering underscores the finding that Group was not a significant factor in the 
ANOVA model, despite the fact that novices were occasionally paired together.  

The HCA corroborated the statistical significance of Task in our ANOVA. For 
instance, Bruno formed his own cluster in the Add. Type, Add. D/S, Mult. Type, and 
Mult. D/S categories. Additionally, Deb and Tom formed their own cluster at all cluster 
levels in the Add. Type and Add. D/S categories. Amy and Kim similarly formed their 
own cluster at all levels with respect to Mult. Type and Mult. D/S. Regarding the Gesture 
factor, the HCA did not suggest any particular trends amongst the participants. However, 
the percentages of different gesture types used by participants are useful in explaining the 
significance of Gesture as a factor. For instance, nearly three fourths of all gestures made 
by either of the graduate student pairs were deictic. In fact, the majority of gestures were 
deictic for all participants with the exception of Amy and Kim, who exhibited primarily 
iconic gestures (58.8%). Sarah also exhibited a large number of iconic gestures (40.9%). 
On the other hand, several participants displayed relatively few gestures in some 
categories. For example, less than ten percent of all gestures made by three novice pairs 
and one expert were metaphoric.  

With a sample size of 10 interviews, differences between novices and experts may 
have been difficult to detect. Recognizing the substantial time commitment that coding 
interviews from a larger sample size would demand, we instead proceeded by conducting 
a qualitative extension of our quantitative findings, as suggested by Clement (2000). In 
order to tease out some of the intricacies not captured by our ANOVA but suggested by 
the HCA, we examined several episodes from the interviews through a qualitative lens. 
The qualitative component substantiated the lack of gestural homogeneity amongst our 
participants relative to their classification as a novice or expert that our quantitative 
results initially suggested. For example, during a particular portion of the multiplication 
task, novices Gus and Rog exhibited verbiage and iconic, dynamic gestures that closely 
resembled those of several experts (see Figures 1-3). Meanwhile, Amy and Kim 
demonstrated a rather unique conception of the complex arguments of z and w, treating 
one argument as a “negative angle” and the other as “positive” (see Figure 4).  

Moreover, experts themselves didn’t always gesture similarly, as evidenced by 
Bruno the physicist, who exhibited the largest proportion (32.4%) of metaphoric gestures 
out of all participants. Crucially, many of these metaphoric gestures coincided with 
unprompted verbiage discussing physics applications. Another significant finding was, 
unlike the novices, the experts consistently knew which form would be best for a 
particular task and effortlessly switched to another form. Furthermore, the novices with 
the longest interview times all struggled selecting an appropriate geometric 
representation, as well as switching between the algebraic and geometric representations 
of the tasks.  
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Figure 2.  Rog: “Then we’re going to be 
multiplying by factors less than one, so it [the 
modulus of zw] is going to be shrinking” 
(pinches his pointer finger and thumb, then 
continuously moves his hand downward).  
 

 
Figure 3.  Sarah: “I’m still adding the angles, but 
now when I multiply the moduluses I’ll get 
something smaller, right, because when you 
multiply two numbers less than one, it [the 
product] gets even smaller” (pinches hands 
together, palms facing each other). 

 

           
Figure 4.  Kim depicted the argument of the complex number was a 
“negative angle,” emanating clockwise from the positive real axis, 
whereas she chose the conventional orientation (counterclockwise from 
the positive real axis) for the argument of z. 
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Discussion and Implications 
Our research underscores the conclusion of existing studies that possessing 

representational fluency is important for developing a comprehensive understanding of 
mathematics generally and complex arithmetic specifically (Danenhower, 2000; 
Panaoura et al., 2006; Zbiek, Heid, Blume & Dick, 2007). While most studies address 
geometric vs. algebraic representations, this study includes gestures as a representation 
and our results have implications for both teaching and further research.  

 The quantitative results indicate that both groups expressed more gestures for the 
multiplication task compared to the addition task. As such, it may be productive for 
instructors to acknowledge and highlight their own gestures when explaining the 
geometric interpretation of the product of two complex numbers. We also encourage 
instructors to have students explain their gestures. This may assist students to capture and 
to develop their own dynamic perspective as well as to help them become aware of the 
representation associated with their own gesturing. Another educational practice that has 
been linked to improving representational fluency is the incorporation of dynamic 
geometry programs such as Geogebra, Geometer’s Sketchpad, or Cabri Geometry into 
the classroom. Such software has the potential to improve students’ ability to conjecture, 
experiment, and devise novel solutions to problems, and have even been described as 
“cognitive reorganizers” (Arcavi & Hadas, 2000; Barrera-Mora & Reyes-Rodriguez, 
2013; Olive, 2000; Robutti, 2006; Zbiek et al., 2007). While we naturally assumed the 
graduate students in our study would solve the tasks with greater ease and efficiency than 
the undergraduates, the results indicated the exact opposite outcome. Given that one of 
the main differences between the undergraduate and graduate student participants was the 
undergraduates’ exposure to Geogebra, technology may account for the quantitative and 
qualitative differences. As such, conducting further research regarding the impact of 
gesture awareness and technology on students’ conceptualization of complex numbers 
specifically could prove to be a fruitful endeavor for further research.  

Given Bruno’s gestures were quite different from other experts, another line of 
inquiry could explore the distinction of “mathematical expert.” As a physicist, Bruno may 
employ his mathematical expertise in a unique way compared to mathematicians. This 
outcome suggests the possibility that gestural behavior may be significantly different 
depending on how a given expert is accustomed to using complex numbers in his or her 
area of expertise. Thus, a possible topic for future research could be exploring the 
existence of these differences amongst experts who use complex numbers in a variety of 
fields.  
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 Understanding Students' Conceptualizations of Logical Tools 

Casey Hawthorne 

Abstract 

While a significant amount of research has been devoted to exploring why university students 

struggle applying logic, limited work can be found on how students actually make sense of 

formal logic itself and the logical mechanisms used to communicate logical equivalence. This 

project borrows the theoretical framework of unitizing and reification, which have been 

effectively used to explain the types of integrated understanding required to make sense of 

symbols involved in numerical computation and algebraic manipulation, to investigate students’ 

conceptualization of truth tables and implication statements.  By using a continuum as a 

framework to analyze the degree to which students’ thinking of each is compartmentalized 

versus unified, results indicate that students tend to favor one logical mechanism over another, 

without establishing a holistic view of both or an integrated view of the two together.   

 

Introduction and Literature Review 

As students continue to struggle bridging the gap from the more computationally focused 

mathematics courses of the K-12 US curriculum and low-level university courses to the more 

proof centered work in later mathematics studies, many universities have begun to incorporate 

the explicit instruction of proof into their curriculum, creating “transition to proof” courses 

(Moore, 1994).  While the exact curriculum and coursework differs from institution to institution 

and class to class, a common component is the introduction of formal logic.  For most 

mathematics educators its inclusion seems quite logical for multiple reasons.  First of all, in order 

for students to write a proof, students must be aware of what is necessary to establish a statement 

is true or false (Epp, 2003).  The rules that govern mathematical arguments and mathematical 

statements are different from those used in everyday speech.  For example, the statements “There 

is a mother for all children” and “All children have a mother” are commonly used 

interchangeably inferring the later mathematical meaning (Dubinsky & Yiparaki, 2000).  

Teaching logic makes clear to students the approach and methods employed by the mathematical 

community.  Also, logic creates a structure for students to shape and systematize their intuition.  

As students explore and develop examples, logic can help to organize these observations and 

illuminate their relevance as they apply for more general cases.  It provides a supportive 

framework to actually teach students to reason mathematically.  Logic acts as a scaffolding tool, 

making the abstract nature of argumentation more concrete (Epp, 2003). 

As compelling as the instruction of logic appears, there is evidence that such a focus results in 

limited to no improvement in student achievement.  In a well cited article Cheng, Holyoak, 
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Nisbett, and Oliver (1986) found no difference in performance between university students who 

had taken an introductory logic course and a control group of students who had not.  One 

explanation is that students have difficulty connecting abstract logic to real life applications.  

Selden & Selden (1995) found that students often struggle decoding statements written with a 

more familiar, colloquial structure and translating them into formal mathematical language.   

Unable to link the two domains, students are unable to tap into the power of formal logic. 

To further examine the apparent divide between formal logic and its applications, this study was 

designed to explore the ways and extent in which students make use of formal logic to 

manipulate and work with conditional statements in different contexts.  Individual student 

interview questions were purposely written in a recognizable if/then form in an effort to 

minimize translation issues and focus on how students coordinated the meaning between 

contextualized statements and corresponding symbolic representation(s).  While the coordination 

between symbolic representations and contexts was the initial focus of the study, what emerged 

in the analysis was a different phenomenon.  As students were asked to operate on symbolically 

written logical statements and comment on their associated understanding, their explanations 

revealed insight into not simply how they made use of the logic in relation to contexts, but to a 

much larger degree, how they thought about and made sense of the logical tools themselves, in 

particular the symbolic expression p→q  and its related truth table.  As participants employed 

these logical tools, it became clear that some students viewed the hypothesis p and conclusion q 

as quite separate entities, while others seemed to considered the conditional statement in a more 

holistic way. Similarly, in comparing the logical equivalence of various statement forms (p→q, 

 p˅q, ~q→ ~p), some students treated the different cases of possible truth values for p and q in 

a piecewise or compartmentalized manner, while others conceptualized the various combinations 

as more connected and unified.  Therefore, it seems suitable to use these views to represent 

different ends of a continuum as a means to frame how students conceptualize logical tools. 

Theoretical Background    

To date, math educators have put forward various characterizations to capture the integrated and 

hierarchal nature of mathematics and more importantly the type of knowledge necessary to fully 

conceptualize it.  One earlier such effort was Steffe (1983) who proposed the notion of unitizing 

in the context of numbers.  He asserted that for students to possess a rich understanding of 

numbers, they cannot be presented as some pre-existing entities that students find and retrieve, 

but rather must be envisioned as composite unities that are actively constructed as a collection of 

individuals taken together.  Lamon (1996) added to this notion, describing unitizing more 

generally as the cognitive assignment of multiple mathematical entities into a combined whole. 

This newly constructed abstract object can then be used to reason with as a single unit.  Lamon 

emphasized that the key to unitizing is the ability to connect multiple ideas and envision them as 

a single, collective chunk while at the same time retaining an appreciation of their individual 

parts relative to each other and to the newly conceptualized whole.   
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Another theoretical framework that captures this phenomenon is the idea of reification.  

Mathematical constructs can be understood not only at different levels of their embedded 

hierarchal structure, but also in terms of the different roles they play.  Depending on one’s point 

of view, a given mathematical concept, while expressed by a single symbolic representation, can 

simultaneously take on two distinct, yet connected interpretations.  As such, mathematical 

notation naturally possesses a double meaning.   First, mathematical symbols can take on an 

operational conception, where notation is viewed as a set of instructions for a particular process 

(Sfard & Linchevski, 1994).  At the same time, these expressions can embody a structural 

conception and represent the result of these processes.  With this interpretation, the process has 

been reified and each of the various computations is considered as a whole unified and 

completed object.  As such, this newly created mathematical entity can then be treated as a single 

unit and acted on as an object. In this way, the mathematical object becomes the basis for a new 

process, resulting each time in a more complicated and tightly packed symbol. 

As Sfard (1995) points out, this dual role enables mathematical notation to be an extremely 

powerful tool.  It allows the user to understand and conceptualize a very complex and involved 

process, while at the same time treat it as a simple object, disconnected from semantic meaning.  

It can then be manipulated and simplified syntactically, without the large burden that the 

operational mode of thinking places on the working memory.  This capacity though can also act 

as a double edged sword, what Sfard and Linchevski (1994) refer to as a pseudostructural 

conceptualization.  Often students are introduced to powerful symbolic notation along with 

various procedures to apply to them, but fail to develop an underlying grasp of the processes the 

notation embodies.  Students with such an approach might be able to consider the symbols as 

objects, what seems like reification, but the notation is void of any semantic meaning.  As such, 

they are unable to connect any conceptual meaning to the notation and simply carry out 

algorithms mechanically, without any understanding of the significance of their actions. With the 

operational underpinnings of the abstract objects far removed, they are unable to deviate from 

the systematic techniques and flexibly apply any associated procedures.  As Sfard (1995) 

highlights, notational expressions become viewed as “meaningless symbols governed by 

arbitrary established transformations” (p. 30).   In the end, the manipulation itself becomes the 

focus of the activity, and the symbolic results are seen as producing the answer themselves.   

While these two constructs, unitizing and reification, have been used to explain the types of 

integrated understanding required for numerical computation and algebraic manipulation, a 

similar conceptualization seems to be necessary for the symbolic understanding and application 

of logic as well. As students compartmentalize different notational pieces of logical symbols, or 

treat the symbols without reference to the semantics they represent, it seems evident that they are 

failing to appreciate the different layers and meanings which the symbols embody.  Therefore, 

this study makes use of these theoretical constructs as a basis to understand students’ ability to 

conceptualize various notational structures used in formal logic, namely implication statements 

and associated logic tables, as they make sense of logical equivalence.   
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Methods 

The participants for this study were all drawn from a discrete mathematics course that 

simultaneously functions as a transition to proof course, introducing and engaging students in the 

fundamental elements of mathematical proof and communication, and as a computer science 

course, ensuring coverage of the mathematical content ordinarily associated with discrete 

mathematics such as set theory, logic, induction, and combinatorics.  The six participants, 

interviewed towards the end of the course, were all in the top quarter of the class, having 

demonstrated mastery of topics on assessments throughout the semester.  Each student 

participated in a 60-minute semi-structured clinical interview (Ginsburg, 1997).  As such, a 

detailed protocol was used to guide the interview, but the researcher followed up with multiple 

clarifying questions to develop a more detailed understanding of each participant’s precise 

thinking.   While the interview protocol consisted of two main sections, almost all of the relative 

data were taken from the first half which was designed to explore how participants interpreted 

and made sense of notation and logical statements in symbolic form.  This section comprised of 

two main questions.  First, the participants were asked to analyze the equivalence of various 

logical statements relative to p→q and explain how they understood such equivalence or not.  

Second, they were asked to make sense of the negation of a conditional statement, presented in 

the symbolic form ⌐(p→q) and give an example to illustrate their understanding.   

Each interview was videotaped and transcribed.  The participants’ answers were reviewed using 

a grounded theory approach (Strauss & Corbin, 1994).  The initial coding pass relied on open 

coding in which evidence was collected to make sense of how students conceptualized logical 

statements and interpreted logical equivalence.  After a detailed review of the videos and their 

accompanying transcripts, data suggested that it was the degree to which participants viewed 

both logical statements in general and their associated logic tables in a unified or 

compartmentalized fashion that distinguished the participants’ approaches to making sense of 

logical equivalence.  A continuum was proposed along these two dimensions (statements and 

logic tables) as to the extent they were considered holistically or not and each participants’ 

answers were further analyzed and compared in terms of these two scales. After the student 

interviews were initially examined and reviewed, the professor of the course was then asked the 

same questions in order to provide a comparison between the students’ conceptualizations to that 

of an expert.   

 

                                                                          Results 

Using a continuum as a framework to analyze the degree to which students’ conceptualizations 

of both truth tables and implication statements are compartmentalized versus unified provided 

interesting insight into how students make sense of these logical mechanisms.  As highlighted in 

the following chart, the analysis resulted in specific descriptions in the various ends of each 

spectrum.  Students who tended to compartmentalize truth tables, often did not fully appreciate 
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that the given compound statements could have four possible truth combinations.  They 

translated the symbols directly, interpreting ⌐p˄q to mean that p is false and q is true.  In other 

cases they demonstrated a belief that the symbols took on only the meaning that would make the 

statement true, for example, p→q was construed to mean p is true and q is true.   In addition, 

once constructed, these students did not compare statements by the four cases collectively.  

Often, they believed that only one line of the truth table corresponding between two statements 

was sufficient to establish equivalence.  This was in comparison to students who had a unified 

conception of the truth tables.  Most of these students were able to quickly run through the 

various possibilities in their head.  They strategically focused on cases that they knew might not 

be equivalent.  When they produced a truth table, it was as a way to record their previously 

established verbal ideas and better organize their thinking. 

Truth Table 

Compartmentalized Unified 

 Interpreting symbols as only taking on the 
meaning that makes the statement true. 

(For example, p q means p is true and q is 

true)  

 Considering symbols literally, or as a direct 

translation.  (For example:   p˄q means p 
is false and q is true.) 

 Seeing the truth table as an organizational 
tool to represent the four possible cases 

 Ability to consolidate cases when 

strategically useful 

 Connecting semantic meaning to each case 

 Facility in determining missing parts given 
the truth of any of the various components 

or of a compound statement as a whole. 
 

For the students who compartmentalized the implication statement p→q, their approach to 

compare equivalence or negate statements tended to involve a method similar to algebra as a 

means to manipulate symbols.  Not knowing any rules to negate an implication, they would 

substitute the “or” statement  ⌐p˅q without any explanation why this was possible in order to 

proceed.  Even when given or when they provided an explicit real life example, they continued to 

make use of symbols to determine valid changes and then translate the final results back into 

words.  Interestingly, not one student who successfully arrived symbolically at the equivalence 

(p→q)↔ (⌐p˅q), was able to explain semantically why these were equivalent.  In contrast, 

students who indicated a unified understanding of  p→q used an example to explain why the 

negation would be p and not q.  Unfortunately, both students who used this approach were 

unable to correctly express their understood equivalence symbolically.  One (Sofia) resorted 

back to what she believed would be a rational symbolic way, negating each piece separately for 

⌐p→⌐q.  The other (Khaled) tried to simply translate his final idea into symbols, writing p→⌐q, 

indicating still a compartmentalized appreciation of the symbols. 
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p q 

Compartmentalized unified 

 Looks at symbols in an isolated manner 
without making meaning of them as a 

whole piece. (For example: negates 

conditional statement by distributing 

negation to both p and q.) 

 Compares statements based on notational 
structure instead of meaning. (For example: 

negation of implication must be an 

implication.)  

 Tendency to invoke algebraic symbol 

manipulation  

 Comprehending the premise and 
conclusion as one statement.   

 Connecting the symbolic representation to 
its semantic meaning. 

 

 

Finally, after each student was assessed on each continuum separately, their results were graphed 

on an axis containing both continuums simultaneous as shown below.  This provided an 

interesting analysis as it highlights that no student demonstrated a unified conception of both 

logical structures.  While almost every student possessed a unified conception of one, the two 

seemed almost inversely proportional.  Also, students seemed to compensate for which ever 

conceptualization was compartmentalized by attempting to use the other mechanism, even when 

it was not productive.   This was in contrast to the professor who demonstrated a clearly unified 

conception of each logical structure.  Not only did he articulate a unified understanding for both, 

but in his description, he was unable to disentangle the idea of an implication from its associated 

truth table.  He quickly alternated between discussing p→q holistically, then in parts, then in 

terms of its various possible truth values.   
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Discussion 

This paper has both potential research contributions as well as instructional implications.  As for 

research, this project explores a seemingly overlooked area of logic.  While a significant amount 

of research has been done to understand students’ struggles in applying logic, very little work has 

gone into investigating students’ conceptualization of the notational tools used to understand 

logical equivalence.  By bringing in constructs from other areas of mathematics, it provides tools 

for researchers to analyze and describe the type of understanding necessary to make sense of the 

symbols associated with logic.  Further research could be devoted to looking into connections 

between where students fall on these continuums and their ability to flexibly apply logic in 

different applications.  It seems reasonable that a narrow view of the underlying logical 

mechanisms could contribute significantly to a student’s ability to apply them.   

In terms of instructional implications, this work provides new insight into students’ 

conceptualization of logical structures and associated difficulties.  As such, these findings have 

the potential to make professors of discrete math or transitional courses more aware of the type 

student thinking connected with the logical structures presented in class.  It provides them with 

specific areas to attend to with their students and break down what might previously be 

categorized as a general problem with logic into concrete difficulties.    
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EVALUATING PROFESSIONAL DEVELOPMENT WORKSHOPS QUICKLY AND 
EFFECTIVELY 

Charles Hayward and Sandra Laursen 
Ethnography & Evaluation Research, University of Colorado Boulder 

 Abstract 

Many funding agencies require evaluation of the impact of professional development projects 
they support. However, improved student outcomes, the ultimate goal, may take longer to be 
realized than the project time frame allows. Instructors need time to implement and refine 
new skills before positive student outcomes are realized, a delay that may be exacerbated in 
classes that are not taught frequently. We report on one example of an efficient and cost-
effective self-report measure designed to detect the initial changes in teaching practices that 
lead to improved student outcomes over time. We discuss the ability for timely and accurate 
measures through this instrument. Results support the interpretation that instructors’ 
reported teaching practices show changes consistent with methods taught at professional 
development workshops on Inquiry-Based Learning in mathematics. Additionally, 
correlations with self-reported level of implementation suggest that instructors are reporting 
honestly, and not just socially desirable changes consistent with their concept of “real 
Inquiry-Based Learning.” 

Key words: Evaluation, Measurement, Professional Development, Inquiry-Based Learning 

Background 
After decades of innovation and research it is clear that certain reforms of classroom 

practice improve undergraduate education in science, technology, engineering and 
mathematics (STEM). Research in cognitive science and education offers persuasive 
evidence that students can and do learn better through active, student-centered forms of 
instruction (Hake, 1998; Springer, Stanne, & Donovan, 1999; Bransford, Brown, & Cocking, 
2000; Prince, 2004; Ruiz-Primo, Briggs, Iverson, Talbot, & Shepard, 2011; Deslauriers, 
Schelew, & Wieman, 2011). Yet relatively few students experience these proven, “high-
impact” educational practices during college (Kuh, 2008). The President’s Council of 
Advisors on Science and Technology (PCAST, 2012) advocated active learning strategies in 
order to meet its goal of an additional 1 million STEM graduates over the next decade. 

Uptake of these methods by large numbers of faculty at diverse institutions is now the 
bottleneck in improving STEM higher education (Fairweather, 2008; Henderson & Dancy, 
2007; 2008; 2011). To broaden uptake of student-centered teaching and learning approaches, 
professional development of college instructors (CIPD) is crucial. But efforts to broaden the 
reach of CIPD must be based on good evaluation evidence about whether it is having the 
desired effect on teaching. While improved student learning is the ultimate goal of CIPD, 
measuring student outcomes directly is not always feasible due to the cost and complexity. 
Additionally, the impact on students lies far downstream from the intervention itself (Guskey, 
2002) as instructors must apply and refine the methods before positive student results can be 
detected. Instructors may not teach a course every year, resulting in a large lag between the 
CIPD and any detection of positive student outcomes.  

Given this time lag, positive student outcome results may help to demonstrate the merit of 
a particular CIPD intervention, but they do not provide formative feedback to help instructor 
developers to diagnose or improve a particular intervention. Measuring the impact of CIPD 
through its effect on student outcomes can contribute to the research base, but does not 
provide a nuanced and flexible evaluation tool that is responsive on the time scale on which 
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CI developers—those who plan and lead the professional development—must adapt, refine, 
and report results of their intervention. Rather, we need reliable and valid evaluation tools to 
measure whether and to what extent CIs have made changes to their instruction as a result of 
CIPD interventions. Measuring changes in instructional practices is challenging. Multiple 
observation protocols have been developed to measure changes in teaching practices, 
however they are often time-consuming and disruptive to classrooms (Hora & Ferrare, 2012). 
Surveys are easier to conduct, but some have argued that they are inaccurate due to 
respondent biases (Desimone, 2009). 

This study reports on evaluation of professional development workshops for college 
instructors on inquiry-based learning (IBL) in mathematics. IBL is a form of active learning 
that helps students develop critical thinking through ill-defined problems and by constructing 
and evaluating mathematical arguments. IBL is based on the teaching practices of R.L. 
Moore (1882-1974), a mathematician at the University of Texas, Austin. His teaching method 
involved students using definitions, logic, and precise language to prove mathematical 
theorems (Mahavier, 1999). Students worked independently and were not allowed to consult 
other students or textbooks. They then presented proofs in class and were critiqued. Today, 
this method is typically modified to allow more student collaboration and is referred to as the 
Modified Moore Method. IBL has emerged as a broader umbrella term encompassing 
Moore’s method as well as others that share the spirit of student inquiry through deep 
engagement with mathematics and collaboration with peers (Yoshinobu & Jones, 2013). [For 
an example, see (Schumacher, 2010).] In all forms of IBL, students learn through analyzing 
ill-defined problems and constructing and evaluating arguments (Prince & Felder, 2007; 
Savin-Baden & Major, 2004). This supports deep learning of mathematical concepts (Moon, 
2004; McCann, Johannessen, Kahn, & Smagorinsky, 2004). To teach in this manner, many 
instructors must transition from traditional lecture methods to more student-centered teaching 
approaches. [For an example, see (Retsek, 2013).] The professional development workshops 
we have studied aim to help instructors make this transition. 

Conceptual Framework 
Guskey (2000) classifies evaluation of professional development (PD) into five levels of 

increasing complexity. At higher levels, evaluation requires increased time and resources. 
Each level builds upon those before it and varies as to the questions evaluators address, how 
the data is gathered, what is measured, and how the information is used. The first level 
comprises participants’ immediate reactions to the PD, while Level 2 goes further to address 
what participants have learned from the PD. In Level 3, evaluation measures organizational 
support and change. Participants’ use of new knowledge and skills is measured in Level 4, 
and Level 5, the most complex, addresses student learning outcomes. Our larger project 
evaluates professional development workshops for college instructors on Inquiry-Based 
Learning in mathematics at Levels 1 through 5. Since student learning (Level 5) is very 
difficult to assess within the timeframe of grant-funded projects, this report focuses on the 
next highest level (Level 4), evaluation of participants’ use of new knowledge and skills. 

While many evaluation efforts at this level use classroom observation protocols to assess 
participants’ implementation of methods presented during professional development 
workshops, these are time- and resource-intensive and may interfere with normal classroom 
dynamics (Guskey, 2000). On the other hand, surveys are cost-effective but rely on self-
report, which may be prone to bias. Participants are not always good at judging their own 
learning since they do not yet have accurate benchmarks (Kruger & Dunning, 1999). Self-
report may also be affected by social desirability if participants feel pressure to answer a 
certain way (Desimone, 2009). However, when instructors report concrete behaviors without 
evaluative components, self-reports correspond well with observations (Desimone, 2009). 
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Therefore, our instrument minimizes these self-report pitfalls by having teachers report on 
their use of concrete teaching practices, rather than subjectively judging their own knowledge 
or evaluating the quality with which they implement new techniques. 

While evaluators should be concerned with the quality of implementation, this will likely 
improve over time and may require repeated measurements. Many professional development 
programs are funded through short-term grants. Time is spent developing and conducting the 
professional development, and therefore, not much time is left for participants to use and 
develop the new knowledge and skills in their own classrooms before evaluation must be 
conducted. As a result, professional development workshops may be deemed ineffective 
when in reality, skills may continue to develop and benefits may not be fully realized until 
well after the project has ended. 

In this paper, we report on a self-report measure for IBL workshops that is designed to 
quickly and accurately detect the initial changes in teaching practices following professional 
development workshops. Our main research questions are: 

1) Are cost-effective and efficient self-report measures of changes in teaching 
practices an accurate way to evaluate outcomes of professional development? 

2) In what capacity can evaluation efforts assess the implementation of new 
knowledge and skills from professional development workshops within the short-
term cycle of grant funding? 

Research Methods 
The study sites were four workshops for mathematics faculty, led by universities with 

IBL Mathematics Centers where an extensive menu of IBL courses had been developed and 
taught over several years. Thus, faculty with expertise on IBL were available to lead each 
workshop. Through funding from the National Science Foundation, the universities 
developed and implemented annual IBL workshops from 2010 to 2013 for four cohorts of 
math faculty new to IBL. Workshops spanned four or five days and included a mix of invited 
talks, open discussions, video observations, expert panels, hands-on exercises, and work time. 
Each workshop had a slightly different style; the 2010 and 2012 workshops were highly 
interactive, while the 2011 and 2013 workshops were more conference-like. 

As evaluators for the workshop project, our team conducted pre- and post- workshop 
surveys at each workshop. We also conducted one-year follow-up surveys for the first three 
cohorts (2010 through 2012). All three surveys included both quantitative items and open-
ended questions. Evaluation instruments addressed Levels 1-5 in Guskey’s framework. Level 
1 was assessed on post-workshop surveys where participants rated and commented on the 
quality of the workshop and logistics and the aspects they found most and least helpful. Level 
2 was measured with Likert-scale items to reflect participants’ knowledge, skills, and beliefs 
about inquiry teaching, as well as their motivation to use inquiry methods. By assessing these 
items before participants attended the workshop, immediately afterwards and again one year 
later, we could identify significant changes in their knowledge and perceptions. Participants 
also wrote definitions of IBL on each survey to reveal their current perception and level of 
understanding. To assess Level 3, participants rated the levels of support for IBL from their 
departments, their chairs, their colleagues, and their institutions. Participants also completed 
open-ended responses about ways they have and have not been supported in implementing 
IBL. On follow-up surveys, thirteen Likert-scale items and two open-ended items addressed 
student gains (Level 5) from IBL. 

A large portion of the follow-up survey was aimed at Level 4 evaluation. In one item, 
participants reported if they had not implemented IBL techniques, implemented some IBL 
techniques, or implemented one or more fully-IBL courses. Teachers also rated the frequency 
with which they used eleven different teaching practices. Both pre-workshop and follow-up 
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surveys included these eleven items, so comparisons allowed us to detect changes for each 
individual instructor. Some items described teaching behaviors consistent with IBL methods 
while other items were not. Open-ended questions collected data on the challenges and 
supports experienced in implementing IBL techniques in the first year after the workshop. 

Results 

Participants 
In total, 167 participants attended the workshops. They came from a variety of 

institutions. Most taught at four-year colleges (37%), Ph.D.-granting research universities 
(37%), or master’s-granting comprehensive universities (23%), and a small number taught at 
two-year colleges (4%). About 13% of participants taught at minority-serving institutions. 
Many were tenure-track faculty that were not yet tenured (35%); some were tenured (34%), 
and some were not tenure-track (27%). A small number were high school teachers (<1%) and 
graduate students (3%). The largest group had between 2 and 5 years of teaching experience 
(27%), while some had less than 2 years experience (20%), and many had more: 19% had 6-
10 years experience, 18% had 11-20 years experience, and 16% had more than 20 years 
experience. A small number had experienced IBL classes as a student (25%) and almost half 
had some prior experience using IBL methods as an instructor (46%). 

Most participants were male (58%), but the percentage of women (42%) was higher than 
among math faculty as a whole (National Science Foundation, 2008). Most participants 
identified as of European descent (74%), and a small percentage were of Asian descent 
(10%). These proportions are about the same as in U.S. math faculty as a whole (National 
Science Foundation, 2008). 

While pre-workshop, post-workshop, and follow-up surveys were all collected 
anonymously, they were matched using two pieces of non-identifying individual information. 
Details about the numbers of surveys collected from each workshop are presented in Table 1. 

Table 1. Survey response rates as a percentage of attendees. 

Cohort Attendees Pre-
Surveys 

Post-
Surveys 

Matched 
Pre/Post Follow-Up Matched 

Pre/FU 
2010 42 37 (88%) 41 (98%) 33 (79%) 31 (74%) 23 (55%) 
2011 55 47 (85%) 43 (78%) 29 (52%) 36 (65%) 21 (38%) 
2012 42 40 (93%) 41 (95%) 38 (88%) 29 (69%) 25 (60%) 
2013 28 22 (79%) 26 (93%) 21 (75%) TBD, Fall 2014 
Total 167 146 

(87%) 
151 

(90%) 
121 

(72%) 
96 (69%) 69 (50%) 

Teaching Practices: Changes in Practices 
Participants reported teaching practices on both pre-workshop surveys and follow-up 

surveys. For each specific practice, respondents indicated on a 5-point scale whether they did 
it in ‘every class’ (5), ‘weekly’ (4), ‘Twice a month’ (3), ‘Once a month’ (2), or ‘Never’ (1). 
On follow-up surveys for the first three cohorts, 69% of participants responded, of which 69 
(50% of attendees) supplied matching pre-workshop and follow-up surveys. We used 
Wilcoxon Signed Rank tests to measure changes in the ordinal data. 

Teachers reported changes in practices consistent with IBL teaching. Overall, participants 
reported significant decreases in the frequencies of Instructors lecturing, and Instructors 
solving problems at the board. They also reported significant increases in Student-led whole 
class discussions, Small group discussions, and Students presenting problems or proofs. 
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There were no significant differences in practices that are not specific to IBL methods, 
including Instructors asking conceptual questions, Instructor-led whole class discussions, 
Students solving problems individually, Students writing individually, or Computer assisted 
learning. These non-IBL items were added to detect response biases; non-significant changes 
suggest that instructors are using the full scales and are reporting honestly. Indeed, in our 
other evaluation of professional developments, we have found that college instructors tend to 
be more self-critical on surveys and use the full range of scales, whereas K-12 teachers tend 
to use just the extreme answers (Hayward, Laursen, & Thiry, 2013). Additionally, Student 
collaborative work in small groups is characteristic of some types of IBL teaching. While 
participants did report increased use of this strategy, the difference was outside the range of 
statistical significance (p=0.086).Teaching practices on pre-workshop surveys and one-year 
follow-up surveys are compared below in Figure 1. 

Figure 1. Self-reported teaching practices. 

 
 
Teaching practices data were also analyzed for differences between two different types of 

IBL presentations. All participants in the 2011 workshop and about half of the participants in 
the 2012 workshop were presented with a groupwork-centered version of IBL (n=20 
respondents), while all participants at the 2010 workshop and the other half of participants in 
the 2012 workshop were presented with a Modified Moore-method approach to IBL that uses 
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Figure 2. Changes in teaching practices by cohort. 

 
*p<0.05, **p<0.01, ***p<0.001 
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1977). So, while participants seem to have self-identified their one-year follow-up teaching 
practices by using the Moore Method as a benchmark for “real IBL,” the changes in their 
teaching practices in comparison to pre-workshop surveys encompass a broader definition of 
IBL inclusive of both whole-class and small group discussions. Since instructors have 
reported teaching practices different than those they consider to be “real IBL,” this suggests 
that participants are providing honest responses rather than the socially desirable responses. 

Implications for Future Research 
Initial results suggest that in addition to being cost-effective and efficient, this self-report 

measure of changes in teaching practice shows promising indicators of accuracy. Changes 
from pre-workshop surveys to one-year follow-up surveys were consistent with the teaching 
practices presented at the IBL workshops. Trends in data suggest that self-report measures 
may also be sensitive to the type of IBL presented. Correlations on one-year follow-up 
surveys between self-reported implementation levels of IBL and teaching practices indicate 
that participants largely consider the Moore Method to be the “real” IBL. So, participants are 
reporting changes in their teaching practices in line with those presented at the workshop, but 
they do not necessarily identify themselves as doing “real IBL.” One of the main critiques of 
the accuracy of self-report measures is that participants often report only socially desirable 
answers (Desimone, 2009). However, these nuanced differences indicate that for this 
measure, instructors may be accurately reporting teaching practices that are not consistent 
with the socially desirable definition of “real IBL.” These surveys will continue to be used to 
evaluate future workshops, and increased sample sizes should provide greater statistical 
power. Additionally, we have received NSF funding to formally validate the survey 
instrument through comparisons with classroom observations. 

This measure was simple and efficient to administer. While we did not address the quality 
of implementation, we were able to measure the extent of change in practice following the 
professional development workshops in a timely and cost-effective manner. This self-report 
tool is especially useful given the short time frame and tight budgets of many grant-funded 
PD projects. While this particular survey is best suited for IBL workshops, it could easily be 
adapted to professional development workshops on other topics or in other disciplines by 
changing the target instructional practices.

688 17th Annual Conference on Research in Undergraduate Mathematics Education



References 
 
Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.). (2000). How people learn: Brain, 
mind, experience, and school. Washington D.C.: National Academy Press. 

Desimone, L. M. (2009). Improving impact studies of teachers' professional development: 
Toward better conceptualizations and measures. Education Researcher , 38 (3), 181-199. 

Deslauriers, L., Schelew, E., & Wieman, C. (2011). Improved learning in a large-enrollment 
physics class. Science , 332 (6031), 862-864. 

Fairweather, J. (2008). Linking evidence and promising practices in science, technology, 
engineering, and mathematics (STEM) undergraduate education: A status report for the 
National Academies Research Council Board of Science Education. Retrieved April 23, 
2011, from http://www7.nationalacademies.org/bose/Fairweather_CommissionedPaper.pdf 

Guskey, T. R. (2000). Evaluating professional development. Thousand Oaks, CA: Crowin 
Press. 

Guskey, T. R. (2002). Professional development and teacher change. Teachers and Teaching: 
Theory and Practice , 8 (3/4), 381-391. 

Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-
student survey of mechanics test data for introductory physics courses. American Journal of 
Physics , 66 (1), 64-74. 

Hayward, C., Laursen, S., & Thiry, H. (2013). Survey of teacher participants in professional 
development workshops conducted by the Biological Sciences Initiative, 2010 – 2012: Final 
report. Report to the Biological Sciences Initiative. Boulder, CO: Ethnography & Evaluation 
Research. 

Henderson, C., & Dancy, M. H. (2007). Barriers to the use of research-based instructional 
strategies: The influence of both individual and situational characteristics. Physical Review 
Special Topics - Physics Education Reform , 3 (2), 0201102. 

Henderson, C., & Dancy, M. H. (2011). Increasing the impact and diffusion of STEM 
education innovations. Retrieved July 1, 2013, from Comissioned paper for Forum on 
Characterizing the Impace and Diffusion of Engineering Education Innovations: 
http://www.nae.edu/File.aspx?id=36304  

Henderson, C., & Dancy, M. H. (2008). Physics faculty and educational researchers: 
Divergent expectations as barriers to the diffusion of innovations. American Journal of 
Physics , 76, 79-91. 

Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force Concept Inventory. The Physics 
Teacher , 30 (March), 141-158. 

Hora, M. T., & Ferrare, J. J. (2012). A review of classroom observation techniques used in 
postsecondary settings. White paper. Prepared for the Measurement of Teaching Practices in 
Undergraduate STEM workshop hosted by AAAS/NSF. 

17th Annual Conference on Research in Undergraduate Mathematics Education 689



Jones, F. B. (1977). The Moore method. The American Mathematical Monthly , 84 (4), 273-
278. 

Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: How difficulties in 
recognizing one’s own incompetence lead to inflated self-assessments. Journal of Personality 
and Social Psychology , 77 (6), 1121-1134. 

Kuh, G. (2008). High-impace educational practices: What they are, who has access to them, 
and why they matter. Washington D.C.: AAC&U. 

Libarkin, J., & Anserson, S. W. (2005). Assessment of learning in entry-level geoscience 
courses: Results from the Geoscience Concept Inventory. Journal of Geoscience Education , 
53, 394-401. 

Mahavier, W. S. (1999). What is the Moore Method? Problems, Resources, and Issues in 
Mathematics Undergraduate Studies , 9 (4), 339-354. 

McCann, T. M., Johannessen, L. R., Kahn, R., & Smagorinsky, P. (Eds.). (2004). Reflective 
teaching, reflective learning: How to develop critically engaged readers, writers, and 
spearkers. Portsmouth, NH: Heinemann. 

Moon, J. A. (2004). A handbook of reflective and experiential learning: Theory and practice. 
New York: RoutledgeFalmer. 

National Science Foundation. (2008). TABLE 3. Employed doctoral scientists and engineers 
in 4-year educational institutions, by broad field of doctorate, sex, faculty rank, and years 
since doctorate: 2008. Retrieved July 29, 2013, from Characteristics of Doctoral Scientists 
and Engineers in the United States: 2008: http://www.nsf.gov/statistics/nsf13302/pdf/tab3.pdf 

National Science Foundation. (2008). TABLE 4. Employed doctoral scientists and engineers, 
by selected demographic characteristics and broad field of doctorate: 2008. Retrieved July 
29, 2013, from Characteristics of Doctoral Scientists and Engineers in the United States: 
2008: http://www.nsf.gov/statistics/nsf13302/pdf/tab4.pdf 

PCAST. (2012). Engage to excel: Producing one million additional college graduates with 
degrees in science, technology, engineering, and mathematics. Executive Office of the 
President. 

Prince, M. (2004). Does active learning work? A review of the research. Journal of 
Engineering Education , 93 (3), 223-231. 

Prince, M., & Felder, R. (2007). The many facets of inductive teaching and learning. Journal 
of College Science Teaching , 36 (5), 14-20. 

Retsek, D. Q. (2013). Chop wood, carry water, use definitions: Survival lessons of an IBL 
rookie. Problems, Resources, and Issues in Mathematics Undergraduate Studies , 23 (2), 
173-192. 

Ruiz-Primo, M. A., Briggs, D., Iverson, H., Talbot, R., & Shepard, L. A. (2011). Impace of 
undergraduate science course innovations on learning. Science , 331 (6022), 1269-1270. 

690 17th Annual Conference on Research in Undergraduate Mathematics Education



Savin-Baden, M., & Major, C. H. (2004). Foundation of problem-based learning. 
Maidenhead, UK: Open University Press. 

Schumacher, C. E. (2010, June 29). Instructor's resource manual for use with Chapter Zero - 
Fundamental Notions of Abstract Mathemeatics, 2e. Retrieved August 7, 2013, from 
http://www2.kenyon.edu/Depts/Math/schumacherc/public_html/Professional/Research/Zero/
guide.pdf 

Springer, L., Stanne, M. E., & Donovan, S. S. (1999). Effects of small-group learning on 
undergraduates in science, mathematics, engineering, and technology: A meta-analysis. 
Review of Educational Research , 69 (1), 21-51. 

Yoshinobu, S., & Jones, M. (2013). An overview of inquiry-based learning in mathematics. 
Wiley Encyclopedia of Operations Research and Management Science , 1-11. 

 

 

17th Annual Conference on Research in Undergraduate Mathematics Education 691



70

692 17th Annual Conference on Research in Undergraduate Mathematics Education



CONSIDERING MATHEMATICAL PRACTICES IN ENGINEERING CONTEXTS 
FOCUSING ON SIGNAL ANALYSIS  
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In the light of a rough description of the different contexts in which mathematics is learned 
and used in engineering studies, this report addresses epistemic relations between 
mathematics in higher mathematics lectures and mathematics in advanced engineering 
courses. In particular it elaborates on how different meanings of symbols, as subjectively 
relevant aspects of mathematical objects, are related to different institutional contexts and 
their dominant discourses. It is argued that modeling cycles are not an adequate tool in this 
context. Instead, we suggest using concepts from Anthropological Theory of Didactics (ATD). 
Inspired by (Castela & Romo Vázquez, 2011), exemplarily concepts from ATD are applied to 
topics and data from signal analysis. Finally, we claim this research could serve as a step 
towards investigating empirical questions relevant to students’ learning and competences 
and, in particular, optimizing curricula and teaching in undergraduate mathematics. 

Key words: Engineering, Higher Mathematics, Epistemological Aspects, Modeling Cycles, 
Anthropological Theory of Didactics 

Introduction 
It is well-known that mathematics plays an important role in engineering studies. All 

students have to pass basic courses in higher mathematics, and in theoretically-oriented 
engineering courses, mathematics is one of the major tools and obstacles. There is a general 
consensus that these difficulties with mathematics are a major reason for the high dropout 
rate in engineering studies, and thus, the teaching and learning of mathematics in engineering 
studies should be improved.  

The German project KoM@ING1 addresses this problematic situation by exploring the 
following question: Which topics, concepts, heuristic strategies and competences are relevant 
for being successful in basic theoretical courses like “Technical Mechanics” or “Theoretical 
Basics in Electrical Engineering” and in more advanced courses like “Systems and Signals” 
or specific lab courses? Answers to these questions are worked out by a specific combination 
of quantitative IRT-models and more qualitative process-oriented studies. The latter 
perspective causes a need for developing approaches that allow us to analyze students’ use of 
mathematics in engineering contexts.  

In the light of a rough description of the different contexts in which mathematics is 
learned and used in engineering studies, this report focuses in particular on epistemic 
relations between mathematics in higher mathematics courses and mathematics in 
engineering courses and how these relationships are reflected in two well-established 
approaches: modeling cycles and the Anthropological Theory of Didactics (ATD) 
(Chevallard, 1992, 1999). We focus on both of these approaches for the following reasons: 
Nowadays modeling cycles are very prominent and claim to conceptualize an important 
competence regarding school mathematics and, in particular, the application of mathematics 
to the “real world” and the role of mathematics in our daily lives. Assuming that students 
develop modeling competences in school, we question whether the use of mathematics in 
engineering studies could also be grasped by this approach, particularly in the transition from 
school to university. We show that, at least in our context regarding epistemological relations, 
                                                 
1 This research was supported by BMBF 01PK11021D. 
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modeling cycles are generally not an adequate tool.2  We then discuss concepts from ATD, 
since it claims to allow us to reflect on the use of mathematics within different institutional 
contexts, conceptualize related epistemological issues, and sketch ATD’s potential regarding 
two different examples from signal analysis. Finally, we summarize our main conceptual 
results and propose possible subsequent research.   

Mathematics in Engineering Studies  
Students in engineering courses learn mathematics in at least three contexts. First, they 

have to pass courses in higher mathematics. Here the students learn mathematical concepts 
from analysis, linear algebra and sometimes elementary numerical analysis. These topics are 
mostly presented in a more or less theoretical mathematical setting. Rarely concrete 
applications relevant to engineering are presented.  

Second, students must apply mathematics in their basic engineering courses. Since most 
of the mathematical concepts required in these courses have not been presented in the higher 
mathematical courses until that moment, often additional seminars are offered that 
accompany the engineering courses. But in those seminars the presentation is as a rule not as 
mathematically precise as in the mathematics courses.  

While exact mathematical definitions and/or justifications for the mathematical concepts 
used in the basic theory-oriented engineering courses are often presented later in the higher 
mathematics courses, this is generally not the case for the more advanced mathematical 
concepts applied in courses like signal analysis. For example, a concept like delta-distribution 
is typically not covered in the mathematical courses attended by an electrical engineering 
student.  

It is not clear how, if at all, students are able to integrate these variations of mathematics. 
To study this problem, it would be helpful to have methods that represent, relate and reflect 
these variations under a didactical perspective. The most prominent school-related approach 
that claims to conceptualize “mathematics in applications” is based on modeling cycles. 

Modeling Cycles 
All modeling cycles start with a situation where a problem or task from the world outside 

of mathematics has to be “solved”. (For this paragraph see for example (Blum & Leiss, 2005; 
Haines & Crouch, 2010).) In a first step, or, depending on the concrete modeling cycle, in a 
series of steps, the problem has to be translated or transformed into a mathematical problem. 
This mathematical problem is then solved within the “mathematical world” by mathematical 
manipulations. Finally, the mathematical outcome has to be translated back to the “rest of the 
world” (that is, the world outside mathematics) and evaluated in view of the starting point. It 
is well-known that even in the case of modeling tasks in school, i.e. tasks which are 
specifically designed for applying some version of a modeling cycle, solution processes often 
do not follow such a cycle exactly. The stated purpose of this approach is that it permits the 
researcher to describe all possible, meaningful sequences of particular cognitive activities in 
solution processes (descriptive function) and it represents a helpful heuristic strategy for 
treating modeling tasks (normative function).  

In our context, the crucial point is that, whether the tasks or situations in engineering 
studies are reasonable or not, students do not have to create the mathematical models by 
themselves. It is our impression that the tasks in signal analysis represent either mathematical 
problems or a problem that is already mathematically formulated in a signal analysis model. 
These models lie at the core of signal analysis as scientific discipline and are described, 
justified and explained in lectures and books. From the beginning, signal analysis and in 
                                                 
2 Whether our arguments and conclusion interfere with the significance of this concept for school mathematics 
is besides the scope of this paper. 
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general also other topics in engineering courses are presented in a mathematically formulated 
and evenly formatted world that is the result of a scientific development that has happened 
through the course of history. The student has to act in view of this historically-evolved result 
but does not have to (re-)create it.3  

Let us add some remarks in view of epistemological considerations worked out  by  
(Wahsner & Borzeszkowski von, 1992) regarding mathematics in physics. They argue that, 
historically, specific physical achievements include figuring out which “behavior” can be 
considered as “property” and as “measurable” quantity, and, most important in our context, 
the physically adequate but often mathematical inconsistent use of mathematical symbols. 
Analogously, for an engineer or engineering student the symbols primarily represent context-
related and context-embedded objects. For example, differentials are not understood as (in 
some sense) “ideal” infinitesimals or elements of a cotangent space but as finite, “physical” 
and even “measurable” quantities. We should expect students to treat these objects as a kind 
of physical quantities, since this allows students to do things with these objects that are as 
such mathematically inconsistent but enable them to understand and solve engineering tasks 
(see also our later discussion of the delta distribution). 

Thus, there is not only no point “in the rest of the world”, but there is also no point in a 
pure mathematical world. Therefore, modeling cycles seem to be not an adequate tool for 
grasping either the engineering or the mathematical side of tasks and solution processes.4  

Assuming that the successful engineering student has to learn such an inconsistent use of 
symbols, an important but open question is how, and if, students and experts experience 
precisely this somehow contradictory (or better “dialectic”) relation between different uses 
and meanings of mathematical symbols. 

The very specific different meanings are realized or constituted within discourses related 
to the aforementioned different institutional contexts. The mathematical meaning is addressed 
in higher mathematics, and the context-specific meaning is mostly addressed in engineering 
courses such as signal analysis. An approach that claims to allow reflecting mathematics in 
different institutional contexts is ATD. Therefore we see potentialities in using ATD for 
reinterpreting modeling cycles in a more adequate way. In the next section, we will 
concentrate on ATD for better understanding the mathematical practices in signal analysis.  

ATD and Signal Analysis 
ATD (Chevallard, 1992, 1999) aims at a precise description of knowledge and its 

epistemic constitution. In the background of this approach is the conviction that a cognitive-
oriented approach tends to misinterpret contextual or “institutional” aspects as personal 
dispositions, which sometimes obstructs the view on possible interventions.  

A basic concept of ATD are praxeologies, which are represented in so called “4T-models 
(T,τ,θ,Θ)” consisting of a practical and a theoretical block. The practical block (know how, 
„doing math“) includes the type of task (T) and the relevant solving techniques (τ). The 
theoretical block (knowledge block, discourse necessary for interpreting and justifying the 
practical block, „spoken surround“) covers the technology (θ) explaining and justifying the 
used technique and the theory justifying the underlying technology (Θ).  

In the end ATD ends up with local and regional mathematical organizations that allow 
contrasting and integrating practical and epistemological aspects of mathematical objects in 
view of different “institutional” contexts. We expect that this approach is in particular helpful 
in analyzing mathematical knowledge and its transformation to and within the three learning 
contexts of students in engineering courses mentioned above. This expectation is supported 
                                                 
3 This argument as such does not necessarily contradict a constructivist perspective on learning.   
4 The importance of modeling cycles in school mathematics, its related “discourse” and what it reflects and 
constitutes, goes beyond the scope of this report. 
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by related but differently focusing ATD analyses in (Castela & Romo Vázquez, 2011) 
considering teaching signal analysis topics in mathematics and two control theory courses. 

Next we sketch exemplarily an ATD analysis of the introduction of the delta-distribution 
in (Girod, Rabenstein, & Stenger, 2007)5: In a specific linear and time-invariant system it is 
asked, whether there an input signal can be found that produces the “system function” as 
output signal (T). It turns out that one could introduce a sequence of rectangle impulses, 
which produces a sequence of output signals converging to the “system function” of the 
specific system. Whereas the convergence of the output signals could be understood in a 
pointwise limit sense, hence in a sense coherent with a concept covered by higher 
mathematics courses, the “limit” of the rectangle input signals is a new object, which could 
mathematically be understood as a functional operating on test functions. But this 
understanding is generally beyond the scope of an introductory signal analysis lecture. 
Instead it is written “

0
0 0
lim ( ) ( )TT

x t tδ
→

= ”, where the Dirac impulse δ is addressed as the 

pointwise limit function
0  für 0

( )
 für  0

t
t

t
δ

≠
= ∞ =

. Additionally the effect of the Dirac impulse is 

symbolically represented by the integral ( ) ( ) (0)f t t dt fδ
∞

−∞
=∫ , which relates to the concept 

image of an integral as infinite sum of infinitesimal small pieces ( )f t dt  weighted by the 
“function” ( )tδ .  In terms of ATD, applying the sequence of rectangle impulses etc. could be 
seen as τ (technique), “justifying” the limit of the infinitely narrow and infinitely high 
rectangle impulses via aspects of the concept image of the “limit”- and the “integration”-
discourses represent θ (technology, discourse). Facets of Θ (theory) are graphical 
visualizations that are connected with the effect idea of integration and in particular 
symbolically based “analogies” to former learned mathematics. 

The crucial point is that the signal analysis technique τ does not fit with higher 
mathematical discourses (technologies). The students have somehow to “learn” that they 
should neglect specific aspects from those discourses, for example they have to ignore 
concept definitions (The Riemannian integration of the Dirac impulse is not possible etc.) and 
at the same time, they have to realize aspects from them, for example specific parts of the 
“concept image” of integration and limits. 

Finally we shortly discuss preliminary results from our qualitative study in KoM@ING: 
Based on teaching materials from several signal analysis courses we analyzed solutions to 
tasks which were given as voluntary homework in a signal analysis course at the University 
of Kassel6. A typical “simple” task looks at follows: 

Let be given a low-bass-bounded signal ( )s t with Fourier transform

{ }
1,  for | |
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0,  for | |

f W
F s t

f W
≤

=  >
. Considering ( )s t as input signal classify the following assertions 

as true or false and justify your answer: i) The band-with of the output signal generated by a 
linear system is always less or equal to W.  ii) The band-with of the output signal generated 
by a linear time-invariant system is always less or equal to W.  
Ad i) Solution based on mathematical techniques ,( )sig mathτ from the course: The system 
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5 For another analysis of this topic we refer to (Castela & Romo Vázquez, 2011, pp. 114-116). 
6 The authors are grateful to Prof. Dahlhaus (University Kassel) for placing the tasks and student solutions at our 
disposal. 
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{ } { } { }0 02 2
0 [ , ] [ , ] 0( ) ( ) ( ) ( ) ( ) ( ) ( ),i f t i f t

W W W WF e s t f F e F s t f f f d f fπ π δ τ χ τ τ χ
∞

− −
−∞

⋅ = ∗ = − − = −∫
the output signal with spectrum { }1

[ , ] 0 [ , ] 02 ( ) ( ) ,W W W Wf f f fχ χ− −− + + which represents a 
signal with a shifted band-with. Hence the assertion i) is false. An answer using a more 
intuitive signal analysis argument ,( )sig sigτ  would be: In a general linear system the transfer 
function changes in time, which could induce new frequencies and change the band-with.   

Ad ii) “ ,( )sig mathτ -type solution”: For a linear and time-invariant system the output signal 

of the input signal ( )g t  is given by { } { }( )( ) ( ) ( ) ( ) ( )F L g t f H f F g t f= .This relation implies 

that the assertion is true, since { } { }supp ( )( )  supp ( )F L g t F g t⊆ . “ ,( )sig sigτ -type solution”: 
Since the transfer function does not change in time, no new frequencies arise. 

In view of the approaches presented in the course lectures and the course material we 
expected in part ii) that both types of solutions arise in the students’ homework. In fact 
mainly solutions that fit into the mathematical-type were given. In the subsequent 
observational study also ,( )sig sigτ -type solutions were presented. It’s interesting that the 

students mostly supplemented a ,( )sig mathτ -type solution. 
All reasoning trials to part i) are of mathematical type. While the students’ homework 

solutions are far from being correct and complete, the answers in the observational study 
(shortly after the exam) were mainly correct. Despite the complexity of the ,( )sig mathτ -type 

solution no student tries a ,( )sig sigτ -type solution.  
Both examples illustrate that ATD might allow identifying aspects and major differences 

in concepts and students’ solution processes that are strongly related to epistemological issues 
and institutional contexts. We expect that the ongoing data collection (in particular problem 
focused guided interviews) will shed further light on our preliminary observations leading to 
a deeper understanding of students’ mathematical practices in engineering contexts.  

Summary and outlook 
We discussed certain aspects of the use of mathematics in engineering studies. Our 

question was how are different mathematical practices in higher mathematics lectures and in 
advanced engineering lectures grasped. This relates to the different meanings of symbols and 
how they are related to different institutional contexts and their dominant discourses. We 
argued that modeling cycles are not an adequate tool in this context. Instead, we suggested 
using concepts from ATD and applied them to data from signal analysis.  

It can be expected that, in solving a specific task, students have to make specific decisions 
regarding the relevance of knowledge, in terms of ATD “technic, technology and theory”. In 
(Tuminaro & Redish, 2007) task-specific “decision” processes were studied from a cognitive 
point of view. Combining these ideas with ATD and taking into account culture-historical 
approaches like “communities of practices” (see for example (Lave, 1988; Wenger, 1998)) 
could shed further light on those subjectively localized but essentially societally mediated 
“decision” processes. We believe that those processes include in particular sub-jectification 
mechanism (see for example  (Brown, 2008a)) that are constituted by discourses, which are 
itself (dialectically) related to mathematical praxeologies.  

Following this line, ATD analyses could serve as a step towards investigating empirical 
questions such as: Which meanings are actualized in the context of specific tasks and 
situations? In the end, answers to those questions will give hints for optimizing curricula and 
teaching of undergraduate and higher mathematics courses as well as signal analysis. 
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DIFFERENCES IN EXPECTATIONS BETWEEN EXPLICIT STATEMENTS  

AND ACTUAL PRACTICES USING VECTORS IN A TRIGONOMETRY AND 

PHYSICS COURSE 

 

Wendy James 

University of Central Oklahoma 

 

Science and engineering instructors often observe that students have difficulty using or 

applying prerequisite mathematics knowledge in their courses.  Historically, transfer theory is 

used to investigate students’ issue applying their vector knowledge from a trigonometry course 

to a physics course, but this qualitative case-study is positioned differently epistemologically and 

theoretically from transfer theory to understand and describe the mathematical vector practices 

in the two courses.  Saussure’s (1959) concept of signifier and signified provided a lens for 

examining the data during analysis.  Multiple recursions of within-case comparisons and across-

case comparison were analyzed for differences in what the instructors and textbooks explicitly 

stated and later performed as their practices.  While the trigonometry and physics instruction 

differed slightly, the two main differences occurred in the nature and use of vectors in the 

physics course. 

 Key words:  Vectors, Trigonometry, Physics, Semiotics, Transfer, Literacy 

 

Background of the Problem 
Science and engineering instructors often complain that the prerequisite math courses do 

not prepare the students for their courses, and as a result, the instructors feel they still have to 

teach the mathematics along with the science and engineering.  Knight (1995) offered a study in 

which 86% of the students in his study reported remembering that they had studied vectors prior 

to the physics course, but when their knowledge was evaluated, only a third of the students came 

with sufficient knowledge, and “a full 50% entered with no useful knowledge of vectors at all” 

(p. 77).   In addition, Nguyen and Meltzer (2003) found that even after a full semester of physics 

“more than one quarter of students beginning their second semester of study in the calculus-

based physics course, and more than half of those beginning the second semester algebra-based 

sequence, were unable to carry out two-dimensional vector addition,” (p. 630).  While these 

studies contribute evidence that students lack the requisite mathematical vector knowledge, they 

do not explain why the phenomenon occurs.  Further research is necessary to seek an 

explanation, which this project contributes. 

Historically transfer theory was used to explore why students have a difficult time 

applying their prerequisite knowledge to a new context.  The problem with traditional transfer 

theory is that it assumes that students learned what they were supposed to learn with varying 

degrees of acquisition, but over the past decades, researchers have gradually adjusted their 

assumption about student learning from students acquiring knowledge to students constructing 

knowledge (Kieran, Forman, & Sfard, 2001).  The change in assumptions about how students 

learn is accompanied by changes in assumptions about the nature of mathematics itself.  

Historically, mathematical symbols have been viewed as having fixed referents with the 

capability of embodying those fixed referents, but more recently math researchers recognize the 

multiple, nuanced meanings symbols hold depending on the context in which they are used (e.g. 

Sfard, 2000).  Learners construct the meaning of a symbol much like the meaning of any word:  

through context and use (Sfard, 2003).    
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Sometimes instruction provides intentional and unintentional messages about the 

meaning of symbols.  For example, “The symbol which is used to show equivalence, the equal 

sign, is not always interpreted in terms of equivalence by the learner” (Kieran 1981, p. 317).  

Because students repeatedly see the equal sign separating the problem from the answer and 

representing the operating button on a calculator, they come to believe the meaning of an equal 

sign is operational—a “do something” signal.  Jones and Pratt (2005), Falkner, Levi, and 

Carpenter (1999), Saenz-Ludlow and Walgamuth (1998) found that in adjusting the student-

learning activities, students in their studies seemed to adopt equivalence as the meaning of an 

equal sign.  The mathematics class activities were unintentionally causing students to interpret 

the meaning of the equal sign differently than would have been explicitly stated by the instructor. 

Students use the symbols and symbol systems even before they know exactly what the 

symbols mean and signify, and as a result, the student also constructs the meaning of the symbols 

from the process of using them (Sfard, 2000, 2003).   Borrowing ideas expressed in literacy 

theories, students construct their understanding of different mathematical literacies, and these 

literacies may vary across communities of practice.  Wenger (2006) writes, “Communities of 

practice are groups of people who share a concern or a passion for something they do and learn 

how to do it better as they interact regularly.”  Because separate communities of practice—even 

within the same specialized area—exist, separate literacies form, and over time, these 

communities of practice adjust their content, processes, and ways of thinking resulting in the 

literacies being historically-contingent and evolving.   

In a mathematics class, instructors are seasoned members of the mathematical community 

of practice, and students are required to learn both the mathematical content and processes, and 

the accompanying symbols and manners of symbolizing required by the content and processes.  

Likewise, in a physics class, instructors are seasoned members of the physics community of 

practice, and students are required to learn both the mathematical content and processes and the 

physics content and processes and the accompanying symbols and manners of symbolizing.  The 

aspects of what instructors know and students must learn are the very elements necessary to be 

considered mathematically literate in the particular subject matter being taught.  This paper 

contributes a description of some of the practices concerning vectors used during instruction for 

a trigonometry and a physics course in order to offer the reader ideas concerning what may 

contribute to students’ difficulties with vectors.   

 

Methodology 
The purpose of this project was to begin to characterize the various practices of two 

academic disciplines, specifically trigonometry and physics, with respect to the concept of 

vectors and to describe any differences in their practices.  These practices are modeled and 

described in course instruction; therefore, the research design for this project required accessing 

and objectifying the instruction for analysis while not stripping the instruction of its complexity 

(Lemke, 1998; Patton, 2002).   

Videos from one college trigonometry course and one college, algebra-based physics 

course were selected for analysis, and the two courses were designed as separate case studies for 

in-depth study and comparison (Patton, 2002).   The trigonometry course had a two-day vector 

unit; both days were videoed.  Physics uses vectors throughout the course; this project videoed 

instruction up through the first exam, which covered the first three chapters of the textbook 

(mathematical chapter, a 1-D motion chapter, and a 2-D motion chapter).  The trigonometry 

instructor had an engineering background, and the physics instructor had a mathematical 
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background.  Instructor interviews, live observations during the course lecture taping, and course 

textbooks served as qualitative data to support and complicate the analysis and patterns 

stemming from course videos.     

 Borrowing language and ideas from Saussure (1959), mathematical symbols, objects, 

and vocabulary could all be considered to be signs.  Each sign has two parts: its signifier and its 

signified.  The signifier is the visually accessible form of the sign, and the signified is the 

concept and/or meaning that is being represented by the signifier.  For example, “½” or “half” 

are both signifiers.  The use of the numbers 1 and 2, where 1 is above the 2 and has a line 

between them, signifies the same thing as the word using the letters h,a,l,f, and in both cases, 

what they signify is the quantity of half of an object or half of a set of objects.  Saussure’s (1959) 

concept of the duality of a sign in having both a signifier and signified was used as a way of 

examining the data during analysis.   Signifiers for vectors (notations, graphs, algebraic 

expressions, …) were collected and compared across instruction.  The signifiers were then 

analyzed for patterns in use for intended signification. 

Multiple recursions of within-case comparisons and across-case comparison were 

analyzed for differences in what the instructors and textbooks explicitly stated and later 

performed as their practices.  All signifiers introduced by the instructors concerning vectors 

(notation, diagrams, and vocabulary) were individually analyzed for patterns in their meaning 

and use within and across the instruction.   

 

Analysis 
 When the physics instructor and textbook teach a mathematical lesson on vectors prior to 

introducing the physics unit, their lessons are very similar to the instruction provided by the 

trigonometry instructor and textbook.  Both the trigonometry and physics instructors spent part 

of two lectures introducing what vectors are, styles of notation, how to express vectors 

algebraically and graphically, and how to perform algebraic and graphical operations with two-

dimensional vectors.  The instruction was very similar, but not all together identical.  For the 

brevity of this paper, a description of their similarities and differences are not fully described 

here.  To summarize, the instruction had strong agreement in introducing vectors as geometric 

objects that would be sketched as arrows, that vectors could be labeled and named with notation 

such as   , that the purpose of using vectors is to represent paired information, and that vectors 

could be added, subtracted, and multiplied by a scalar.  Despite the similarities across the two 

courses’ mathematical instruction toward vectors, three interesting conflicts between explicit 

statements and the actual practices while “doing physics” surface:  vectors are not always 

graphed as arrows, vectors are not always expressed algebraically and graphically as paired 

information, and vectors do not always extend “from one place to another in the coordinate 

plane.”  The following paragraphs provide a brief explanation of each. 

  When introducing vectors, instructors’ explicit statements introduce vectors as 

geometric objects depicted as arrows.  The trigonometry instructor states vectors are defined as 

“directed line segments” (emphasis by researcher) as she draws line segments and adds arrows to 

indicate their directions.  The physics instructor began his unit wanting his students to recognize 

“that there are two major kinds of structures” that are used in physics:  scalars and vectors.  He 

explained how most students do not see vectors and scalars as different from one another; 

therefore, his instruction began by describing scalars as quantities and vectors as quantities 

requiring the additional description of direction within a referenced system.  He explained mass, 

temperature, and weight can be measured as a singular quantity, which he calls scalars, but 
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position, velocity, and acceleration would require them to use vectors.  He then transitioned to 

begin his instruction on the mathematics of vectors.  Similar to the trigonometry instructor, the 

physics instructor referenced a diagram of an arrow while he defined vectors.   In two informal 

verbal and one written statements, the physics instructor states “vectors go/point/extend from one 

point/place to another/other in the coordinate system/plane.” 

Despite these explicit statements, once the physics unit begins, vector quantities are 

depicted for almost all of the next two lectures without being depicted in graphs as arrows.  For 

example, in Figure 1 velocity is not graphed as an arrow in the velocity-verses-time graph.  

Instead, velocity is being depicted simply as various numerical values.  Further research is 

needed to explore whether students’ expectations from explicit statements during instruction that 

vector quantities should be graphed as arrows cause difficulties negotiating the meaning of 

graphs having vector quantities as numerical values paired with time.     
 

Graphing Relationships Problem
Given an object’s velocity vs. time graph below, create the following 

graphs for the object between t = 0 s and t = 6 s:

• a vs. t

• x vs. t  

v {m/s}

t {s}
1 2 3 4 5

2

4

6

8

6

 

 
Figure 1.  Excerpt from the physics instructor’s lecture.  PowerPoint slide 5 on day 3 of analysis 
does not depict vector quantities as arrows—rather they are numerical values paired with time 
in the velocity-verse-time graph. 

A second difference between what is explicitly stated by the instructors and then later 

performed when “doing physics” is the manner in which vectors are algebraically written.  When 

the trigonometry and physics instructor introduce vectors, they both introduce several styles of 

notation.  Some notation is used as a means of naming vectors, and some notation is used as a 

means of algebraically describing vectors.  The trigonometry instructor introduces          and     as 

ways of naming vectors and paired coordinates P(-2, 4)Q(4, 7), rectangular coordinates      , 
and         as ways of algebraically describing vectors.  Similarly, the physics instructor 

introduced    as a way of naming vectors and rectangular coordinates (x, y), polar coordinates (R, 

 ), and         as ways of algebraically describing them.  Both instructors emphasize that 

vectors are described algebraically using paired information and can be written with one of these 

manners of notation.   
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Despite explicit statements introducing vectors as paired information and the various 

styles of algebraic expressions, the physics instructor and textbook do not use these styles of 

notation to express vectors algebraically in the Kinematic unit.  Instead, two-dimensional vectors 

are broken into their components and labeled using component notation, and one-dimensional 

vectors are simply labeled with component notation.  Throughout the trigonometry instruction, 

vectors are always algebraically depicted using one of the given notations.      

The graphs in Figure 1 and Figure 2 provide two samples of the physics instructor’s 

manner of referencing vector quantities as scalars.  Figure 1 provides an example of a velocity-

verses-time graph in which velocity is depicted as scalar values.   In addition, Figure 2 has the 

beginning of the physics instructor’s board work while solving a two-dimensional kinematic 

problem.  Notice the vectors in the sketch are being labeled with component notation, and the 

vectors have been listed in the table to the right as separate components—not using the algebraic 

notation taught in the previous math-centered lessons.  For example, acceleration is not written 

using the previously introduced style of algebraic notation, such as              or          ; 

instead, the table describes the acceleration as two independent variables as Ax = 0 and Ay = -g.  

The majority of all the problems by the physics textbook and instructor referenced acceleration 

just as ay = -g with no reference to the x-component at all.  As the physics instructor continues to 

solve this problem, Kinematic equations are used, and these numerical values in the table are 

substituted into the equations.  During none of the process of working Kinematic problems are 

vectors algebraically written as paired information nor are vector operations performed.   

 
 

Figure 2.  Excerpt from the physics instructor’s lecture.  Setting up to solve a two-dimensional projectile 
motion problem using Kinematic equations.  Notice arrows are not labeled with vector notation, and the 
table describes vectors as two independent variables (components) rather than using vector notation. 

A third difference between what is explicitly stated by the instructors and then later 

performed when “doing physics” concerns a quality of the vectors. When introducing vectors, 

the trigonometry instructor, the trigonometry textbook, the physics instructor, and physics 

textbook all seem consistent in conveying that vectors are geometric objects that begin and end 

at particular places.  The trigonometry instructor states vectors are defined as “directed line 
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segments” (emphasis by researcher), and she clarifies that line segments have end points (line 

26), which is where the vectors begin and end.  The physics instructor states in his two verbal 

and one written statements that vectors go/point/extend from one point/place to another/other in 

the coordinate system/plane (emphasis by researcher).  Similarly, the physics textbook states 

“The vector     from point 3 to point 4 … has the same length and direction as the vector      from 

point 1 to point 2” (italics added by researcher).   

Despite statements introducing vectors as beginning and ending at particular 

points/places, the manner in which vectors are used to represent some vector quantities seems to 

contradict the explicit statements.  Vectors that represent force, velocity, or acceleration do not 

go from one point to another in the coordinate plane; whereas, vectors that represent 

displacement or that are context-free go “from one endpoint to the other” (see Figure 3).   

 
Figure 3.  Excerpt from p. 33 of physics textbook offering an example of a displacement vector 
extending from x1 to x2 while the velocity vector is not fixed to a particular location on the 
coordinate axes like the displacement vector is.   
 

Because the physics instructor and textbook use displacement vectors and context-free vectors 

while they introduce vectors, their original statements accurately describe the original vectors, 

but later when vectors represent velocity and acceleration, vectors no longer “extend from one 

place to another in this coordinate plane.” 

 

Discussion. 

Using literacy as a metaphor for students participating in communities of practice to 

develop the ways of speaking, reading, and doing mathematics seemed to elucidate some 

differences that may have gone unseen by earlier research.  Mathematics is not a fixed concept 

and, as such, can develop multiple meanings and uses in separate communities of practice.  This 

project assumed the possibility that the mathematics of vectors used by a trigonometry course 

and a physics course may have differences that effect student learning success.  The differences 

between what was explicitly stated and then practiced was not a result of poor teaching.  The 

textbooks, which are created by multiple authors with innumerable revisions followed the same 

patterns as the instructors.  These differences seem to be insignificant to people who are 

seasoned members of the community, but they may be difficulties for new learners.   

Sfard (2003) writes, “The act of naming and symbolizing is, in a sense, the act of 

inception, and using the words and symbols is the activity of constructing meaning” (p. 374).  
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When students observe the activities using vectors, they observe different practices of reading 

and writing vectors as compared to the practices explicitly stated in strictly mathematical 

situations.  The initial moments of inception in which arrows and notation are infused with 

meaning differ from the meanings the arrows take later and the manner in which the notation is 

later used.  Is it possible that separate mathematical literacies between trigonometry and physics 

communities is causing students problems?  Can conversations between instructors help bridge 

the gap in differences in the manner in which the mathematics is used?  This study only observed 

vector use during the first two chapters of instruction when motion along a straight line and in a 

plane was being studied.  Are there other differences in the use of the mathematics that might 

further strengthen an argument toward separate mathematical literacies?  Do these differences 

impact students as they learn physics?  Further conversations and research is encouraged.   
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Proof Conceptions of College Calculus Students 

Introduction 

 There has been “increasing awareness that reasoning is central to mathematics and 

mathematics learning” (Yackel & Hanna, 2003, p. 227) among education researchers, which 

raises questions about student conceptions of reasoning, argumentation and mathematical proof.  

Mathematicians and mathematics education researchers have consistently asserted the crucial 

roles deductive reasoning and proof play in discovering, communicating, verifying, 

understanding, and systematizing mathematics (Hanna, 2000; Ko, 2008; Thurston, 1998). In 

response to the many affirmations of the importance of proof for learning and understanding 

mathematics, there has been extensive study of students’ conceptions of mathematical proof, 

their abilities to construct and understand proofs, and the frequency with which inductive 

evidence is accepted as sufficient verification of mathematical conjectures (Bell, 1976; Healy & 

Hoyles, 2000; Ko, 2008; Stylianides, 2009; Varghese, 2009).  

 These studies have provided valuable insights into “what types of reasoning students are 

capable of at various age and grade levels, how their notions of reasoning and proof develop over 

time, and what limitations in reasoning they exhibit” (Yackel & Hanna, 2003, p. 230). 

Researchers have focused on different populations, ranging from elementary school students to 

advanced university mathematics students, and they have yielded several consistent and useful 

findings. Broadly speaking, many students at all grade levels have difficulty with the processes 

of creating and evaluating deductive mathematical proofs, and many believe simple empirical 

arguments are convincing proofs.  

 Past research has focused primarily on three groups: students in high school geometry 

courses, pre-service and in-service teachers, and students in advanced undergraduate courses 

who have received formal instruction in proof writing. However, little attention has been given to 

examining students’ understanding of proof after the completion of a high school geometry 

course, but before taking a course explicitly focused and dependent upon proof.  The purpose of 

this study is to fill this gap in the literature by examining university students enrolled in Calculus 

courses. 

 The following two research questions were used to frame the study: 

 1. What are college Calculus students' views and thinking about the nature and purpose of 

 mathematical proof? 

 

 2. What forms of empirical arguments are accepted by Calculus students as proof  of a 

 mathematical conjecture? 

 

 The Common Core State Standards for Mathematics, or CCSSM, which have now been 

adopted by 45 states and three U.S. territories, emphasizes the importance of reasoning and proof 

in K-12 mathematics education. The CCSSM states that secondary school students must learn to 

“construct viable arguments and critique the reasoning of others,” to “reason abstractly and 

quantitatively,” and to begin “using more precise definitions and developing careful proofs” 

(National Governors Association, 2010, p. 74). The NCTM Standards (2000) make the more 

forceful claims that “systematic reasoning is a defining feature of mathematics” (p. 57), and that 

secondary students should “recognize reasoning and proof as fundamental aspects of 

mathematics” and “develop and evaluate mathematical arguments and proofs” (p. 342).  

 Studying students in an introductory college calculus courses can contribute to evaluating 

whether recent high school graduates have an understanding of mathematical reasoning and 
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proof consistent with what is called for by the CCSSM and NCTM standards. By knowing which 

aspects of reasoning and proof remain particularly for this population, researchers and 

practitioners can more effectively develop and evaluate targeted interventions for K-12 

mathematics students.   

 

Methods 

 All data were collected and analyzed within a cognitivist theoretical framework, and it is 

therefore assumed that inferences can be made about the conceptual understandings students 

possess through the analysis of their voluntary responses to written and verbal prompts. Many 

previous investigations related to student understanding of mathematical proof have similarly 

used this framework in investigating student understanding of reasoning and proof with data 

from written questionnaires, in-person interviews, and classroom case studies. Thus, especially 

given that some of the analysis involves comparisons to findings from these prior studies, it is 

believed to be a suitable framework for the present study. 

 An eight-item written survey, titled the Mathematical Reasoning Questionnaire, 

comprised of mathematical tasks used during past investigations of the conceptions of 

mathematical proof of secondary school and undergraduate students was the primary data 

collection instrument. In the present study, only results from the first three survey items are 

presented and discussed. Coding schemas devised during prior studies of student proof 

conceptions were used to code student responses to questionnaire and interview responses. 

Adhering to the coding categories that have been used in the past when analyzing survey and 

interview data will permit comparisons to prior studies, and this allows for a discussion the 

significance of results in the context of previous work. 

 Participants were solicited to complete the questionnaire from an introductory differential 

Calculus course at mid-sized northeastern university. At this level in the typical undergraduate 

mathematics sequence, students are assumed to not have received substantial formal instruction 

in the creation and evaluation of mathematical proofs beyond what they may have received in 

secondary school. Further, for many students, Calculus may be their last purely mathematical 

formal educational experience, and thus their conceptions of mathematical proof may reach their 

peak development at this level. Fifty-two students completed the questionnaire. Four versions of 

the survey with differing question orders were used, but question order was not found to be a 

significant factor in responses. 

 

Results and Analysis 

 The first item on the questionnaire, shown in Figure 1, has not been used in prior studies, 

but similar questions are common in introductory abstract mathematics courses. This item is 

designed to provide information about which strategies and forms of argument are favored by 

students during the construction of an elementary proof. The concepts of integer and parity 

involved are basic enough that all participants can be reasonably expected to be familiar with the 

terminology and underlying concepts. Responses were classified as using either inductive or 

deductive proof schemes, and were further differentiated by the criterion outlined in Table 1, 

which are modeled after a framework for classifying student proofs proposed by Bell (1976).  

Several categories pertaining to the enumeration and testing of all possible cases were removed 

from Bell’s (1976) framework because they were not applicable to tasks involving infinite 

domain sets. 
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Figure 1. Survey question one 
 

Proof Scheme 

Category 

Description n % 

1: Systematic Inductive Student believes several sets of cases must be tested and attempts to 

empirically test subsets from each set. 

1 1.9 

2: Non-systematic 

inductive with many 

examples 

Student tests two or more discrete cases without explicit reason for testing 

the particular cases 

18 34.6 

3: Non-systematic 

inductive with one 

example 

Student tests only one discrete case without explicit reason for testing that 

particular case. 

9 17.3 

4: Complete systematic 

and deductive 

Student constructs a valid deductive proof using accepted axioms. 0 0.0 

5: Systematic with gap 

and deductive 

Student creates a logically valid argument, but appeals to principles that 

cannot be taken as true without further verification. 

1 1.9 

6: Partially systematic 

and deductive 

Student analyzes the situation deductively and produces some relevant 

information, but fails to build a complete, connected argument. 

8 15.4 

7: Non-systematic and 

deductive 

Student recognizes a need to verify deductively and attempts to represent 

the conjecture in general terms, but a subsequent argument is nonexistent 

or contains many serious errors. 

4 7.7 

8: Solves equation Student solves the equation 9x+2 = 0 and attempts to draw a conclusion 

from the result. 

4 7.7 

No Response Student chose not to answer the question or wrote only “true” or “false.” 7 13.5 

  52 100 

Table 1. Survey question one coding categories and responses 
 

 62.2% of respondents used inductive arguments and 37.8% used deductive arguments. 

While significant differences exist in the types of arguments used (              ), there is 

insufficient evidence to conclude that a statistically significant difference exists between the 

proportions of calculus students using inductive instead of deductive arguments (p > 0.1). 

However, it is clear that students are at least as likely to use purely empirical evidence as they 

are deduction, and the demonstration of several random cases, classified as proof scheme 2 in 

Table 1, was the most commonly form of argument relied upon for justification. Balacheff 

(1988) describes this as naïve empiricism, which “consists of asserting the truth of a result after 

verifying several cases” (p. 218).  

 The empiricist approach of testing many cases may be effective, although perhaps 

cumbersome, in some discrete systems where only a finite number of possibilities exist. 

However, many mathematical conjectures apply to infinite domains, and this makes naïve 

empiricism only a way to provide fragmented evidence in support of a conjecture rather than a 

method for producing a complete proof. This approach is inconsistent with the views of 

mathematicians and the demands of the CCSSM, and in situations where a counterexample is not 

immediately obvious, the naïve empiricist strategy can quickly lead students to make false 

conclusions. 

 Survey items two and three, which were first used in a study by Martin and Harel (1989) 

(1989), are based on the notion that for many students, the perceived validity of a mathematical 

argument is dependent upon superficial characteristics. Both are Likert-style items that require 

students to rate arguments for elementary integer divisibility theorems. Only item two, shown in 

 (1) Determine if the following statement is true or false and justify your answer: if x is odd integer, then 9x+2 is an 

odd integer. 
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Figure 2, is shown due to space considerations. In both questions, the arguments to be rated are 

structured to follow the proof schemes outlined in Table 2. The purpose of including two items 

with such a high similarity is to gauge the level of consistency in student reasoning.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

Figure 2. Survey question two 
 

Proof Scheme Description 
Argument A: Single example A single example supporting relationship is used as proof. 

Argument B: Extreme example An example of the relationship holding for case perceived as extreme, 

such as a large number, is used as proof.  

Argument C: Example and non-example The combination of evidence from a supporting example and a non-

example are used as proof. 

Argument D: Many examples A list of many examples supporting the relationship is used as proof.  

Argument E: False deductive A false proof of the generalization. This is not truly a deductive proof, 

but may be viewed as such by students because of its ritualistic aspects 

(Vinner, 1983).  

Table 2. Survey question two and three argument classifications 

  

 Consistent with the methods of Martin and Harel (1989), responses of “1” or “2” were 

categorized as not supporting the argument and responses of “3” or “4” were categorized as 

supporting the argument. The    goodness of fit test was used to compare the proportions in 

each category with the alterative hypothesis that the proportion supporting was greater than the 

proportion not supporting the argument. Results for items two and three are shown in Table 3 

and Table 4, respectively. Survey question three did not include an argument based on an 

extreme case, so the argument B column is omitted from Table 4. 

 

 

 

(2) Consider the following statement and arguments. Using the space provided, rate how well each argument 

convinces you of the truth of the statement on a scale of 1 to 4 using the following criteria:  

    1: Not a convincing mathematical proof 
    2: Slightly convincing mathematical proof 

    3: Mostly convincing mathematical proof 

    4: Completely convincing mathematical proof 

 

Statement: If the sum of the digits of any whole number is divisible by 3, then the number itself is divisible by 3. 

 

Arguments: 

A. _______ The sum of the digits of 123 is 6, which is divisible by 3. The number 123 is also divisible by 3.  

 

B. _______ We can pick any number so the sum of its digits is divisible by 3, say 731234082. The sum of the digits 

is 30, which is divisible by 3, and the number itself is also divisible by 3.  

  
C._______ 31 is not divisible by 3, and the sum of its digits is 4, which is not divisible by 3. On the other hand, 36 is 

divisible by 3, and the sum of its digits is 9, which is divisible by 3. 

 

D. _______ If we list several numbers that we know are divisible by 3, say 3, 6, 12, 15, 18, 24, 36, 48, 1002, 1008, 

and so on, we can see that the sums of their digits are always divisible by 3. 

 

E. _______ Let a be any whole number such that the sum of its digits is divisible by 3. Assuming  its digits are x, y, 

and z, then a = xyz. Since x + y + z is divisible by 3, the xyz is also divisible by  3. Therefore, a is divisible by 3.  
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 A B C D E 

Support argument 26 31 30 38 27 

Do not support argument 24 19 20 12 23 

  , p            
p>0.1 

           
p<0.1* 

       

p>0.1 
           
p<0.01* 

          
p>0.1 

 Table 3. Question two responses  * Significant result 

 

 A C D E 

Support argument 29 30 41 30 

Do not support argument 22 21 10 21 

  , p            
p>0.1 

        

p>0.1 
        

p<0.01* 
          
p>0.1 

  Table 4. Question three responses * Significant result 

 

 The data indicate that most introductory calculus students will accept an inductive 

argument as a complete mathematical proof. A significant majority of students indicated that the 

testing of many cases is a convincing and complete form of mathematical proof. A significant 

majority also indicated that the testing of an extreme case, evidenced by argument B results in 

Table 3, is acceptable as proof. Martin and Harel (1989) similarly reported a significant 

acceptance of argument styles B and D in their study of 101 pre-service elementary teachers. 

These findings suggest that many students are not completing school school with a sufficiently 

robust view of the role of empirical evidence in mathematics, and that the treatment of these 

subjects in K-12 education and during college calculus must be examined.   

 Perhaps among the most concerning was the finding that the calculus students sampled 

were equally likely to accept false arguments that possessed superficial features of some 

deductive proofs, such as the use of variables and references to established mathematical 

principles, as they were to reject them. This phenomenon has been identified in past research by 

Vinner (1983) and Martin and Harel (1989), but little is known about which instructional 

practices can help students to form effective strategies for critically evaluating mathematical 

arguments in ways that expose nonsensical proofs. The data indicates that many calculus 

students evaluate and accepts proofs based on the form of the argument or the authority of its 

source rather than the coherence of the argument.  

 Proof construction and evaluation is clearly are clearly difficult skills to develop, so K-12 

mathematics and university calculus instructors must be cautious to not leave students behind 

when dealing with these topics. A sizable proportion of students may report that they understand 

proofs used in class, which may lead instructors to incorrectly gage the proficiency of his or her 

students, when in reality the underlying mathematical arguments are largely being ignored.  

 

Questions for the Audience 

1. What other types of survey tasks could be used to provide insights into the research questions? 

2. How could interviews be structured to learn more about the empirical proof schemes of 

calculus students? 

3. What are the strengths and limitations of using college calculus courses as a proxy for 

studying the mathematical reasoning skills developed during K-12 education? 
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TWO METAPHORS FOR REALISTIC MATHEMATICS EDUCATION DESIGN 
HEURISTICS: IMPLICATIONS FOR DOCUMENTING STUDENT LEARNING 

 
Estrella Johnson 

Virginia Tech 
 
The primary goal of this work is to articulate a theoretical foundation based on Realistic 
Mathematics Education (RME) that can support the analysis of student learning. To do so, I will 
first frame the guided reinvention and emergent models design heuristics separately in terms of 
both increasingly general student activity and in terms of concept development. Then, I will 
consider how the RME design heuristics could inform how one conceptualizes student learning. 
To do so, I will draw on two metaphors for learning and, by drawing on these two perspectives, 
propose ways in which the RME design heuristics can inform the analysis of student learning. 
 
Key Words: Realistic Mathematics Education, Learning, Emergent Models, Guided Reinvention, 
Analytic Methods  
 

Realistic Mathematics Education (RME) is an instructional design theory used to inform the 
development of inquiry-oriented curriculum. The emergence of such instructional approaches 
creates a need to investigate student learning in these contexts. However, as it was designed to be 
an instructional design theory, the current formulations of RME are not articulated in a way that 
readily supports investigations of student learning. Part of the difficulty in using the current 
formulations of RME to investigate student learning is due to variations in the ways that the 
RME design heuristics are discussed in the research literature. In particular, the RME design 
heuristics are routinely discussed both in terms of increasingly general student activity and in 
terms of concept development. For instance, both the guided reinvention and emergent models 
design heuristics are intended to support the creation of a new mathematical reality. However, 
the creation of a new mathematical reality is discussed both in terms of an activity (Rasmussen, 
Zandieh, King, & Teppo, 2005) and in terms of object reification (Rasmussen, & Blumenfeld, 
2007). As a result, efforts to document the creation of a new mathematical reality (which can be 
viewed as student learning) are not supported by a clear theoretical foundation.  

Building on the work of Johnson (2013), this paper will discuss the RME design heuristics of 
emergent models and guided reinvention in order to articulate RME in a way that supports 
analytic techniques for documenting student learning. I will first frame the design heuristics 
separately in terms of both increasingly general student activity and in terms of concept 
development. Then, I will consider how the RME design heuristics could inform how one 
conceptualizes student learning. To do so, I will draw on two metaphors for learning and, by 
drawing on these two perspectives, propose ways in which the RME design heuristics can inform 
the analysis of student learning. 
 

RME Design Heuristics in Terms of Activity and Concept Development  
Within RME there are a number of heuristics that are meant to guide the design of instruction 

that supports students in developing formal mathematics by engaging them in mathematical 
activity. With the guided reinvention design heuristic the goal is for “learners to come to regard 
the knowledge they acquire as their own, personal knowledge, knowledge for which they 
themselves are responsible” (Gravemeijer & Terwel, 2000, p. 786). This reinvention process can 
be described by progressive mathematizing, in which students cycle between mathematizing 
reality (horizontal mathematizing) and mathematizing their own mathematical activity (vertical 
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mathematizing) (Gravemeijer & Doorman, 1999). With the emergent model design heuristic, the 
goal is to support students’ reinvention of mathematics by designing starting point tasks that can 
elicit informal student strategies that	  anticipate more formal mathematics. With this heuristic, 
informal and intuitive models of students’ mathematical activity transition to models for more 
formal activity (Gravemeijer, 1999).  

Captured within both the guided reinvention and the emergent model design heuristics is the 
duality of engaging in more generalized activity and developing mathematical concepts. By 
teasing apart these two aspects, two lenses for describing the purpose of these RME design 
heuristics come into focus. One lens, which considers the two design heuristics in terms of more 
generalized student activity, places the emphasis on instruction that promotes “socially and 
culturally situated mathematical practices” (Rasmussen et al., 2005, p. 55). The other lens, which 
considers the two design heuristics in terms of concept development, places the emphasis on 
instruction the supports the reification of student activity.  

 

Increasingly General Activity  
An emphasis on the students’ activity within a given problem context is at the forefront of 

Rasmussen et al. (2005) discussion of progressive mathematizing, which can be understood as 
the mechanism supporting guided reinvention. Instead of framing progressive mathematizing in 
terms of the concepts being developed (e.g., fractions or long division), Rasmussen et al. frame 
progressive mathematizing in terms of the practices students engage in that promote the 
evolution of such concepts. As they explain, “this is a nontrivial modification because it calls for 
attention to the types of activities in which learners engage for the purpose of building new 
mathematical ideas and methods for solving problems” (p. 55). This focus on student activity is 
also captured by Zandieh and Rasmussen’s (2010) conceptualization of the emergent models 
heuristic and their definition of a model, where they define a model as “student-generated ways 
of organizing their activity with observable and mental tools” (p. 58). However, with either 
design heuristic the point is not merely to design instructional sequences that engage students in 
mathematical activity. The point is to design instructional sequences that engage students in 
mathematical activity that is more and more general.  

With the guided reinvention heuristic, instruction can be designed with purpose of supporting 
student activity through progressive mathematizing. During the process of progressive 
mathematizing, the students’ activity shifts repeatedly from horizontal to vertical mathematizing. 
Initially, horizontal mathematizing is limited to the specific problem context. As students 
transition to vertical mathematizing, this specific problem context is no longer the focus of the 
activity, rather the students mathematize their own mathematical activity to support their 
reasoning in a different or more general situation (Gravemeijer & Doorman, 1999; Rasmussen et 
al., 2005). Similarly, within the emergent models heuristic, there is an intention to progress 
students from activity situated within a specific task context to referential, general, and formal 
activity. In particular, the model-of/model-for transition is linked to a shift in the students’ 
activity from referential (where their activity references aspects of the original task setting) to 
general (where the students activity is no longer tied to the original task setting) (Gravemeijer, 
1999). As the students move into general activity, they begin to mathematize aspects of their 
emerging model. In this way the transition between referential and general activity can be 
interpreted as the result of vertical mathematizing. Therefore both the guided reinvention and the 
emergent models heuristics can be framed in terms of increases in the generality of student 
activity, either as they progress thorough more general layers of activity (in the emergent models 
heuristic) or as they engage in progressive mathematizing (in the guided reinvention heuristic).  
 

716 17th Annual Conference on Research in Undergraduate Mathematics Education



Concept Development  
Instead of focusing on the activity in which the students are engaged (and the context in 

which the student activity is taking place), we could instead focus on the evolution of a 
mathematical concept. Both the guided reinvention and emergent models heuristics have been 
connected to reification (Gravemeijer, 1999; Gravemeijer & Doorman, 1999). One can conceive 
of the guided reinvention and emergent models heuristics as processes through which student 
activity becomes reified into mathematical objects (Gravemeijer, 1999). This emphasis on 
reification offers a lens to describe these two design heuristics in terms of the development of the 
concept, where aspects of the students’ mathematical activity become reified as they engage in 
more general activity. 

The guided reinvention heuristic describes this evolution as an expansion of what is 
experientially real for the students (Gravemeijer, 1999). By engaging in horizontal 
mathematizing, the students translate aspects of their mathematical reality into mathematical 
terms. The artifacts of horizontal mathematizing may include inscriptions, symbols, and 
procedures that represent aspects of an already familiar problem context (Rasmussen et al., 
2005). During vertical mathematizing, it is the students’ own horizontal mathematizing (and 
resulting representations/artifacts) that are mathematized. Instead of resulting in representations 
of an already familiar context (as with the artifacts of horizontal mathematizing), vertical 
mathematizing results in objects that are now accessible to students on an intuitive level (i.e., 
these objects are now incorporated into the students’ experiential reality). Similarly, the shift 
from model-of to model-for is related to the process of reification (Gravemeijer, 1999). As 
students shift from referential activity to general activity “the model becomes an entity in its own 
right and serves more as a means of mathematical reasoning than as a way to symbolize 
mathematical activity grounded in particular settings” (p. 164). Therefore, the model – which 
Gravemeijer (1999) describes as “an overarching concept” (p. 170) – transitions from an artifact 
of the students’ mathematical activity to a mathematical object independent of the students’ 
original activity. Therefore, both the guided reinvention and the emergent models heuristics can 
be described as processes through which the engagement in progressively more general activity 
supports the development of mathematical concepts through the reification of student activity.  
 
Framing RME Design Heuristics as Lenses on Student Learning: Two Metaphors 

While RME is primarily an instructional design theory, the design heuristics carry with them 
a view of what it means to learn mathematics. As described by Cobb (2000), RME contends that 
1) mathematics is a creative human activity, 2) learning occurs as students develop effective 
ways to solve problems, and 3) mathematical development involves the creation of a new 
mathematical reality (p. 317). This suggests that RME can be used to describe the process 
through which learning takes place. Specifically, learning happens as students engage in activity 
that is situated in accessible contexts, where this activity brings forth a new mathematical reality. 

In the following sections I will discuss how Sfard’s (1998) two metaphors for learning, the 
participation metaphor and the acquisition metaphor, can be used to provide insight into how the 
design heuristics support student learning. By considering the implication of these two 
metaphors for learning, I will present two conceptualizations of the notion of a “new 
mathematical reality”. Finally, I will discuss the implications of these two perspectives for 
analyzing student learning in cases where the instructional design is consistent with the RME 
design heuristics of guided reinvention and/or emergent models.   
 

Participation Metaphor 
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Sfard (1998) describes the participation metaphor for learning as a view in which “learning” 
is synonymous with becoming a participant in a community, and “knowledge” is synonymous 
with aspects of practice/discourse/activity (p. 7). With this view, the emphasis is placed on what 
the student is doing, and the context in which that practice is taking place (as opposed to 
emphasizing the mental constructs the students have).  

Both the guided reinvention and the emergent models heuristics can be framed in terms of 
increases in the generality of student activity. With this framing, the process of progressive 
mathematizing (guided reinvention) and the progression thorough more general layers of activity 
(emergent models) are consistent with Rasmussen et al.’s (2005) notion of advancing 
mathematical activity – where advancing mathematical activity is understood as “acts of 
participation in different mathematical practices” (p. 53). Therefore, one way to conceptualize 
student learning in a way that is consistent with an RME perspective is to view student learning 
as participating in situated activity. Continuing with the participation metaphor, one could ask 
what it means for student activity (i.e., learning) to support the development of a new 
mathematical reality. I propose that, from a participation perspective on learning, the creation of 
a new mathematical reality can be understood as the creation of a new context for further 
activity, and new ways for students to participate in that context.  

When analyzing student learning from a participation perspective, the RME design heuristics 
provide powerful lenses for documenting student practice and changes in these practices. The 
various mathematizing activities described in the literature provide examples and 
characterizations of mathematical practices. Such practices include the mathematizing activities 
of translating, describing, organizing symbolizing, algorithmatizing, defining, and generalizing 
(Gravemeijer & Doorman, 1999; Rasmussen et al., 2005; Zandieh & Rasmussen, 2010). 
Documenting student participation in such practices is a necessary component to documenting 
student learning. However, it is also necessary to understand changes in the students’ practice. 
The RME design heuristics provide two avenues for analyzing changes in practice. Learning 
trajectories based on supporting students in progressive mathematizing and/or progressing 
through layers of generality provide a framework for analyzing how the mathematical practices 
of the students are changing in regards to the generality of their activity. Additionally, the notion 
of a new mathematical reality provides a way to discuss both changes in the context of the 
students’ activity and changes in how students participate in this new context.    
 

Acquisition Metaphor  
With the acquisition metaphor, learning is viewed as the acquisition of knowledge and 

concepts. This perspective “makes us think about the human mind as a container to be filled with 
certain materials and about the learner as becoming an owner of these materials” (Sfard, 1998, p. 
5). Therefore, this perspective places the emphasis on concept development, where “concepts are 
to be understood as basic units of knowledge that can be accumulated, gradually refined, and 
combined to form ever richer cognitive structures” (p. 5).  

This perspective comes to the forefront when the guided reinvention and emergent models 
heuristics are framed in terms of reification. With guided reinvention, mathematical concepts 
develop as a result of horizontal and vertical mathematizing. During vertical mathematizing, the 
students mathematize their own horizontal mathematizing (and resulting 
representations/artifacts). This results in the students’ activity becoming a new type of object that 
is accessible to them on an intuitive level. Similarly, the emergent models heuristic describes a 
process through which students’ activity emerges first as a model-of the students’ informal 
activity and then transitions to being a model-for supporting students’ more formal reasoning 
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(and thus an object in the students’ mathematical reality). From this perspective, learning not 
only supports the creation of a new mathematical reality (as it did with the participation 
metaphor), learning can be viewed as synonymous with the creation of a new mathematical 
reality. I propose that, from an acquisition perspective on learning, the creation of a new 
mathematical reality can be conceptualized as the incorporation of new mathematical objects into 
the students’ experiential reality. These new mathematical objects can be understood as concepts 
that form “ever richer cognitive structures” (Sfard, 1998, p. 5), and the fact that they become 
incorporated into the students’ experiential reality reflects that the students are able to access 
these concepts on an intuitive level.  

In order to document student learning from an acquisition perspective the focus must be on 
the development of the mathematical concepts. With both the emergent models and guided 
reinvention design heuristics, the mathematical concepts develop as aspects of the students’ 
mathematical activity become reified. Instead of considering the reification of a global concept, 
we can consider a smaller grain size of analysis by discussing the documentation of local 
evidence of student learning. For the emergent model construct, local changes can either be 1) 
related to the form of the model the, as described by the chains of signification construct 
(Gravemeijer, 1999), or 2) related to the function of the model, as described by the record-
of/tool-for construct (Larsen, 2004). Documenting such local shifts may include looking for 
indications that one sign has slid under a subsequent sign and looking for indications that a 
record-of student activity is serving as a tool-for subsequent student activity. Both of these local 
shifts support the reification of the global model (i.e., student learning from an acquisition 
perspective). In the case of the guided reinvention heuristic, the goal is to find evidence of an 
expansion in what is experientially real for the students. These additions reflect that aspects of 
the students’ activity have become objects that are now accessible for further mathematizing. 
From an acquisition perspective, this is understood as a creation of a new mathematical reality, 
where new mathematical objects become incorporated into the students’ experiential reality. 
 
Conclusion 

This paper was written to explore the implications of RME for documenting student learning. 
Both the guided reinvention and emergent models design heuristics support the development of 
new mathematical realities by engaging students in increasingly generalized activity, and both 
can be described either in terms of more generalized activity or in terms of concept development. 
By focusing independently on these two aspects of the design heuristics, I was able to draw on 
Sfard’s (1998) participation and acquisition metaphors for learning in order to discuss how these 
design heuristics support student learning. 

Considering the design heuristics in light of these two perspectives on learning afforded a 
powerful lens for making sense of the idea of a new mathematical reality and for discussing what 
could be considered as evidence for student learning. I propose that, from a participation 
perspective, the creation of a new mathematical reality can be understood as the creation of a 
new context for further activity, and new ways for students to participate in that context. From a 
participation perspective, the RME design heuristics suggest a number of ways to document 
student learning. This includes: documenting the mathematizing activities that students are 
engaged in, documenting how the mathematical practices of the students are changing in terms 
of the generality of their activity, and documenting changes in the students mathematical reality 
– both in terms of the context of the students’ activity and in terms of how students participate in 
this new context. From an acquisition perspective on learning, I propose that the creation of a 
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new mathematical reality can be conceptualized as the incorporation of new mathematical 
objects into the students’ experiential reality. The incorporation of these new objects reflects that 
they have become accessible to students on an intuitive level. Again, the RME design heuristics 
suggest a number of ways to document student learning from an acquisition perspective. This 
includes: documenting when that one sign has slid under a subsequent sign, documenting when a 
record-of student activity is serving as a tool-for subsequent student activity, and documenting 
incremental additions to the students’ mathematical reality.  
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HOW TO MAKE TIME: THE RELATIONSHIPS BETWEEN CONCERNS ABOUT 
COVERAGE, MATERIAL COVERED, INSTRUCTIONAL PRACTICES, AND 

STUDENT SUCCESS IN COLLEGE CALCULUS 
 

Estrella Johnson   Jessica Ellis and Chris Rasmussen 
    Virginia Tech          San Diego State University 

 
This report draws on data collected by the Characteristics of Successful Programs in College 
Calculus project in order to investigate issues around coverage and pacing. This includes 
identifying what topics are being taught in Calculus I, determining the extent to which 
instructors and departments feel pressure to cover a set amount of material, and investigating 
possible relationships between concerns over coverage, instructional practices, and the nature of 
the material covered at five institutions selected for having successful Calculus programs.  
 
Key Words: Calculus, Coverage, Teaching Practices, Pacing  
 

The Characteristics of Successful Programs in College Calculus (CSPCC) project is a large 
empirical study designed to investigate Calculus I across the United States. While Calculus I is 
offered at nearly every college and university across the nation, and taken by approximately 
300,000 students every fall, prior to CSPCC very little data had been collected about what 
happens in Calculus I (Bressoud et al., 2013). The primary focus of the CSPCC project is to 
identify factors that contribute to student success and understand how these factors are leveraged 
within highly successful programs. However, in addition to addressing these primary research 
goals, the CSPCC project has also amassed a wealth of data on the nature of Calculus I courses 
across the nation. In this report, we aim to draw on the CSPCC data in order to investigate issues 
around coverage and pacing. This includes investigating what topics are being taught in Calculus 
I and determining the extent to which instructors and departments feel pressure to cover a set 
amount of material. Further, because concerns over coverage are often cited as reasons to not 
implement reform-oriented instructional practices (Christou et al., 2004; Johnson et al., 2013; 
McDuffie & Graeber, 2003; Wagner, Speer, & Rossa, 2007; Wu, 1999) we will investigate 
relationships between teaching methods and concerns over coverage.  
 

Theoretical Background 
Students are citing poor instruction in their mathematics and science courses, with calculus 

instruction and curriculum often singled out, as a contributing reason for why they are 
discontinuing in STEM fields (Rasmussen & Ellis, 2013; Seymour, 2006; Thompson et al., 
2007). Some specific problems with their learning experiences that students identified include: 
courses that were over-stuffed with material; pacing that inhibited comprehension and reflection; 
not including applications or conceptual discussions; and “faculty modes of teaching that 
suggested that they took little responsibility for student learning” (Seymour, 2006, p. 4). Thus, as 
reported by students, shallow treatments of large amounts of material and unresponsive teaching 
strategies are contributing to their reasons for leaving STEM majors.  

The response from teachers seems to be that pressure to cover a set amount of material 
precludes efforts to adopt reform-oriented teaching strategies. For instance, in a case study of 
two mathematicians trying to implement reform curriculum in mathematics courses for pre-
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service teachers, McDuffie and Graeber (2003) identified a number of institutional norms and 
policies that curtailed the mathematicians’ efforts. As stated by one of the mathematicians:  

 
If you’ve got courses that link together, as most of the math curriculum does…there’s an 
expectation that a certain amount of material be covered… And so you’re fighting this 
constant battle…It means that you’re limited on how much time you can spend to do real 
constructivist activities where the depth of knowledge is really greater (McDuffie & Graeber, 
2003, p. 336).  
 

Wu (1999) echoed this sentiment. In an op-ed reaction to mathematics education reform, he 
proposed that, “if the amount of material to be covered in a course can be greatly reduced … and 
students are expected to spend 8 years in college… then we can all safely abandon the lecture 
format and engage in a wholesale application of the guide-on-the-side philosophy” (p. 4). As 
examples of deliberate reduction in the material to be covered, Wu offers the textbooks Calculus 
by Hughes-Hallet et al. and Calculus Concepts by La Torre et al.  

Taken as a whole, these reports from teachers and students suggest that 1) calculus courses 
are overburdened with content, and 2) in order to cover such large amounts of material teachers 
cannot implement reform-oriented instruction. In this study, we draw on the CSPCC data to 
investigate the validity of these claims using data collected at 197 research universities across the 
nation, including five institutions that have been selected for having particularly successful1 
Calculus I programs. Specifically, we investigate the following question: In the PhD granting 
institutions with successful calculus programs, what is the relationship between concerns about 
coverage, instructional practices, and the nature of the material covered?  

Embedded in this question are issues regarding the expectations of students and faculty. 
These expectations relate to who is responsible for learning, where learning occurs, and how 
much material is reasonable to cover. Theoretically, we see these types of expectations as part of 
the didactical contract (Brousseau, 1997). The notion of didactical contract refers to the set of 
reciprocal expectations and obligations between the instructor and the students, most of which 
are implicitly formed through patterns of interaction. For example, at the secondary school level 
students do not expect to have to cover large amounts of material on their own at home. Much of 
learning therefore occurs in class and students and their teacher are mutually responsible for 
learning. At the university level, however, these expectations and obligations may shift – the 
amount of material covered increases, instructors tend to lecture more compared to secondary 
school teachers, and instructors expect students to learn more on their own at home. Students are 
often left feeling that their calculus course is overstuffed and taught in an uninspiring and 
unresponsive manner (Seymour, 2006). It is precisely these aspects of the didactical contract that 
we aim to unpack at institutions with more successful calculus programs.  

 
Research methodology 

In order to answer our research question, we draw on data collected in the two phases of the 
CSPCC project. The first phase of the CSPCC study involved surveys sent to a stratified random 
sample of students and their instructors at the beginning and the end of Calculus I. These surveys 
were designed to gain an overview of the various calculus programs nationwide, and to 
determine which institutions had more successful calculus programs. Here success was defined 
by a combination of student variables: persistence in Calculus as marked by stated intention to 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Our measures of success are outlined in the “Research methodology” section. 
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take Calculus II; affective changes, including enjoyment of math, confidence in mathematical 
ability, and interest to continue studying math; and passing rates. In the second phase of this 
project, surveys were analyzed in order to select four or five successful schools of each type 
(community college, Bachelor’s granting, Master’s granting, and Doctoral granting). We then 
conducted three-day site visits at each of the 18 institutions selected, during which we: 
interviewed students, instructors, and administrators; observed classes; and collected exams, 
course materials, and homework.  

To understand departmental2 concerns about coverage, we drew on instructors’ agreement 
levels to the following survey prompts: When teaching my Calculus class, I (a) had enough time 
during class to help students understand difficult ideas, and (b) felt pressured to go through 
material quickly to cover all the required topics. To understand the departmental instructional 
practices, we drew on instructors’ reports or the frequency of 8 instructional activities: (a) show 
students how to work specific problems; (b) have students work with one another; (c) hold a 
whole-class discussion; (d) have students give presentations; (e) have students work individually 
on problems or tasks; (f) lecture; (g) ask questions; and (h) ask students to explain their thinking. 
For both sets of questions, instructors were prompted to provide a response ranging from 1 to 6 
on a Likert scale, with 1 meaning “not at all” and 6 meaning “very often”. Descriptive and 
correlational analyses were conducted on these questions, with results discussed below.  

There were 238 instructors who answered the above questions, 50 of who came from one of 
the five selected Doctoral granting institutions: Western Religious University (WRU), Northern 
Tech (NT), University of West Coast State (UWCS), University of Northern State (UNS), New 
England Polytechnic Institute (NEPI). Table 1 provides a brief overview of these institutions.  
 
Table 1. Summary of selected institutions  
Doctoral Institution Instructors 

with 
survey 
responses 

Term 
length 
(weeks) 

Text Used 

Western Religious 
University (WRU) 

3 15 Single Variable Calculus: Early 
Transcendentals by Stewart 
 

Northern Tech (NT) 7 14 Calculus, Single and Multivariable 
(Fifth Edition) by Hughes-Hallett, et al. 
 

University of West Coast 
State (UWCS) 

4 11 Calculus: Early Transcendentals by 
Jon Rogawski 
 

University of Northern State 
(UNS) 

30 15 Calculus, Single and Multivariable 
(Fifth Edition) by Hughes-Hallett, et al. 
 

New England Polytechnic 
Institute (NEPI) 

6 7 Calculus: Early Transcendentals (7th 
edition) by Edwards and Penny 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  For the purposes of this analysis, we consider instructor responses together as representative of 
department concerns about coverage and instructional practices. In later analyses we consider in 
depth the variation among instructors within departments.	  
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To understand the nature of the material covered, course syllabi and the departmental course 

list of required sections to be covered were analyzed. A master list of section titles was sorted 
into five categories: function review, limits, derivatives, differentiation rules, applications of 
differentiation, and integrals. Equivalent section titles were then grouped together to better 
reflect commonalities between the topics. For instance, the sections entitled The Derivative as a 
Rate of Change, Rates of Change, and The Derivate and Rates of Change were condensed into 
one heading.  

 
Results 

To answer our research question, we first report on departmental concerns about coverage; 
departmental teaching practices; and, for the five selected institutions, the material intended to be 
covered. We then present on how each these are related to one another.  
 
Departmental concerns about coverage 

As shown in Table 2, there are no significant differences between how concerned the 
departments are about coverage. On average, instructors at both the selected and not selected 
institutions reported having enough time to help students understand difficult ideas with around 
4/6 frequency, and reported feeling pressured to go through the material quickly to cover all the 
required topics around 3/6 frequency.  
 
Table 2. Departmental reports of concern for coverage at selected and not selected institutions. 

When teaching my Calculus class, I:   
(1=Not at all; 6=Very often) 

Not Selected Selected 

had enough time during class to help students understand 
difficult ideas. 

4.19 (1.31) 4.42 (1.14) 

felt pressured to go through material quickly to cover all the 
required topics. 

3.06 (1.46) 3.33 (1.35) 

Note.* = p ≤ .10, ** = p ≤ .05, *** = p ≤ .001; Std. dev. is in parentheses. 
 
Departmental instructional practices 

As shown in Table 3, there are significant differences between the reported instructional 
practices of the instructors at the selected and not selected institutions. Specifically, instructors at 
the five selected institutions report higher frequencies of having students work with one another, 
holding a whole-class discussion, having students give presentations, and asking students to 
explain their thinking.  
 
Table 3. Instructor reports of instructional activity at selected and not selected institutions. 

During class time, how frequently did you: 
(1=Not at all; 6=Very often) 

Not Selected Selected 

show students how to work specific problems? 5.14 (1.12) 5.22 (.89) 
have students work with one another? *** 2.71 (1.65) 4.28 (1.84) 
hold a whole-class discussion? ** 2.68 (1.56) 3.32 (1.66) 
have students give presentations? *** 1.47 (.91) 2.35 (1.74) 
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have students work individually on problems or tasks? 2.82 (1.60) 3.18 (1.66) 
lecture? 5.25 (1.20) 5.12 (1.17) 
ask questions? 5.15 (1.08) 5.08 (1.09) 
ask students to explain their thinking?** 3.77 (1.50) 4.30 (1.42) 
Note.* = p ≤ .10, ** = p ≤ .05, *** = p ≤ .001; Std. dev. in parentheses. 

 
Nature of material covered at selected institutions 

Analysis of the common syllabi from the five selected institutions identified six areas that 
were included in at least one of the Calculus I programs: Function Review, Limits, Derivatives, 
Differentiation Rules, Differentiation Applications, and Integrals. Only two of the schools, 
UWCS and UNS, covered sections in all six areas. Table 4 shows the number of sections in each 
area that the five schools included in their Calculus I course as well as their pace (number of 
topics per week). Notice that WRU did not include any review sections, NT did not include any 
sections on limits, and NEP did not cover any sections on integration. 
 
Table 4. Nature of material covered at selected institutions 

Topic covered Institution 

 
WRU NT UWCS  UNS NEPI 

Function Review 0 6 3 6 5 
Limits 4 0 8 2 4 
Derivatives 2 4 3 6 1 
Differentiation rules 4 7 7 7 5 
Differentiation Applications 7 4 8 7 13 
Integrals 6 8 6 5 0 
Total 23 29 35 33 28 

Pacing (Topics per weeks in term) 1.53 2.07 3.18 2.20 4.00 
 

Differences were also found within the main areas. In total, syllabi from the five schools 
included 84 different sections. However, only 7 topics were common to at least four of the five 
schools. These topics were: Limits and Continuity, Differentiation Rules (power, sum, product, 
quotient, exponential, chain, trigonometric), Related Rates, Max/Min/Optimization, 
Optimization and Modeling, Linear Approximations, and The Fundamental Theorem of 
Calculus. Additionally, there was variability among the sections that defined the derivative, both 
in terms of the number of sections covered and in terms of the topics. In this area sections names 
included: The derivative as the slope of a tangent line, The derivative as a rate of change, 
Derivative at a point, Derivative Function, and Definition of the Derivative. Finally, the schools 
varied greatly in the pace at which they went through sections, ranging from 1.53 sections per 
week at WRU to 4 sections per week at NEPI. 
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Relationship between concerns about coverage and nature of the material covered at the 
selected institutions.  

In order to understand the relationship between departmental concerns and the nature of the 
material covered at the selected institutions, we first conducted correlation analysis between 
instructors’ responses to the two questions regarding concerns about coverage and the intended 
pacing as determined in the syllabi analysis. There is no correlation between (a) departmental 
reports of having enough time during class to help students understand difficult ideas and 
intended pacing, r(48) = .053, p = .713; or between (b) feeling pressured to go through material 
quickly to cover all the required topics and intended pacing, r(48) = .070, p = .632.  

We then looked in depth at the two schools with the largest difference in the number of 
sections covered per week: WRU with 23 sections included in their required section list to be 
covered in a 15-week term (1.53 topics per week) and NEPI with 28 sections in their 
departmental syllabi to be covered in a 7-week term (4 topics per week). When asked if they felt 
that they had enough class time to help their students understand difficult ideas, 2 of the 3 
teachers from WRU responded that they did not feel like the had enough time (both answering 
with a 2 out of 6 on a Likert scale with 1 being not at all and 6 being very often). When 
answering the same question, only 1 of the 6 NEPI instructors gave a rating of 3 or less. 
Additionally, when asked if they felt pressured to go through material quickly to cover all the 
required topics, all 3 of the WRU replied with a score of 4 or more (again on a Likert Scale with 
1 being not at all and 6 being very often). For the same question, 4 of the 6 NEPI replied with a 
score of 4 or more. These findings indicate that while instructors at NEPI (the institution with the 
quickest pace) felt pressured to go through the material quickly, they also felt like they had time 
to help their students understand difficult ideas. Conversely, instructors at WRU (with the 
slowest pace) felt both pressured to quickly cover the material and like they did not have enough 
time to help their students understand difficult topics.   
 
Relationship between instructional practices and the nature of the material covered at the 
selected institutions. 

To understand the relationship between departmental instructional practices and the nature of 
the material covered, we again first conducted correlational analyses between the eight reported 
instructional practices and the intended pacing at each of the five selected institution. Of the 
eight instructional practices, only one is correlated to pacing. There is a strong negative 
correlation between the frequency that students worked together and the intended pacing, r(48) = 
-.548, p < .001. This result implies that instructors who cover material quickly do not have 
students work in groups often. Indeed, instructors at the two institutions with the quickest pacing, 
NEPI (4 sections per week) and UWCS (3.18), reported that they rarely had students work in 
groups. However, at both UNS (2.2 section per week) and NT (2.07 sections per week) the 
majority of instructors reported that they often had students work in groups.  

 
Relation between concerns about coverage and instructional practices at selected and not 
selected institutions.  

Lastly, we looked at the relationship between reported departmental concerns about pacing 
and instructional practices. Again, we conducted correlational analyses between the two 
questions regarding concerns about coverage and the eight questions regarding instructional 
practices. Among the five selected institutions, there was a slight positive correlation between 
having enough time during class to help students understand difficult ideas and the frequency of 
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the instructor asking the students questions, r(48) =  .268, p = .060, and between feeling 
pressured to go through material quickly to cover all the required topics and the frequency of 
lecture, r(47) = .263, p = .068. These results suggest that, at the selected institutions, instructors 
who reported having enough time to help their students with difficult ideas often asked their 
students many questions during class, and those instructors who felt pressured to rush through 
material quickly tended to lecture more.  

Among the not selected institutions, there was a strong correlation between having enough 
time during class to help students understand difficult ideas and the frequency of showing 
students how to work specific problems, r(186) = .296, p < .01, and a slight correlation between 
having enough time during class to help students understand difficult ideas and the frequency of 
having students give presentations, r(184) = .134, p = .068. Additionally, there were strong 
negative correlations between feeling pressured to go through material quickly to cover all the 
required topics and showing students how to work specific problems, r(182) = -.204, p = .006, 
and having students give presentations, r(180) = -.182, p = .014. These results indicate that, at 
the institutions not selected, instructors who reported having enough time to help their students 
with difficult ideas often showed their students how to work specific problems and had them 
give presentations. Further, instructors who felt pressured to rush through material quickly 
tended to infrequently do these activities. 

 
Discussion  

Given that these five institutions were selected based on student success (including 
persistence in Calculus, positive affective changes, and high pass rates), these results may 
suggest components of didactical contracts that support student success. For instance, between 
the selected and not selected institutions, there were no differences in the amount of time 
instructors felt like they had to help students through challenging material. However, there was a 
difference with how the instructors chose to use their time. When instructors report having 
enough time to help student understand difficult material, instructors at the selected institutions 
are more likely to use that time asking their students questions during class and instructors at the 
not selected institutions are more likely to use that time showing their students how to work 
specific problems and having them give presentations. Additionally, between the selected and 
not selected institutions, there were no differences in the amount of pressure that instructors felt 
to cover material (and in fact, when looking at the five selected institutions, there is no 
correlation between the reported concerns about coverage and the intended pacing of the course). 
There was, however, a difference in how instructors at the selected and not selected institutions 
chose to cover the material. Instructors at the selected institutions reported higher frequencies of 
having students work with one another, holding a whole-class discussion, having students give 
presentations, and asking students to explain their thinking. Thus, at these selected institutions it 
appears that part of the didactical contract between the instructors and their students involves 
covering material, sometimes large amounts, in ways that will involve and engage students in 
their learning.  
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THREE CONCEPTUALIZATIONS OF THE DEFINITE INTEGRAL IN 
MATHEMATICS AND PHYSICS CONTEXTS 

 
Steven R. Jones, Brigham Young University, Provo, UT 

 
Student understanding of the integral is a topic of recent interest in undergraduate 
education. We are just beginning to learn how different interpretations of the definite 
integral influence student thinking in both mathematics and science classrooms. This paper 
examines the relative “productivity” of three conceptualizations of the definite integral in 
mathematics and physics tasks. It appeared that the notion of the integral as an “addition 
over many pieces” was especially useful for understanding applied problems. 

 
Key Words: Integration, Calculus, Summation, Accumulation, Physics and engineering 

 
Student understanding of the integral is a valuable topic, since students who continue into 

further calculus courses will encounter the integral often (Stewart, 2012; Thomas, Weir, & Hass, 
2009) and since integration serves as the basis for many real world applications (Beichner, 1994; 
Christensen & Thompson, 2010; Pollock, Thompson, & Mountcastle, 2007). The integral is used 
to define and compute various quantities in physics and engineering (Hibbeler, 2012; Serway & 
Jewett, 2008). However, an overreliance on certain interpretations of the integral, such as an 
“area under a curve,” might limit the integral’s applicability to these other areas (Jones, 2013; 
Sealey, 2006). Improved application of the integral to science classes should be of primary 
concern for calculus instructors due to its nature as a service course and the large portion of 
science students enrolled in them (Bressoud, 2012; Mustoe, 2002). 

Calculus textbooks primarily speak of the definite integral in three ways: (a) the area under a 
curve, (b) the difference in values of an anti-derivative, and (c) the limit of Riemann sums (see 
Stewart, 2012; Thomas et al., 2009). Recent research has also shown some additional meanings 
and nuances students give to these three notions. Jones (2013) discusses (a) students 
incorporating the ideas of a perimeter, created by the integrand, differential, and limits of 
integration; (b) a function-matching game where the integrand is thought to have come from 
some other “original function;” and (c) an addition over infinitely many infinitesimally small 
pieces. Hall (2010) also shows how everyday language can influence how students interpret 
words such as “definite” integrals. Sealey and others investigated how students understand 
Riemann sums and incorporate them into their understanding of limits (Engelke & Sealey, 2009; 
Sealey & Oehrtman, 2005). 

Yet none of these studies attempts to deeply analyze how these various conceptualizations of 
the integral play out in understanding expressions and equations involving the definite integral in 
mathematics and physics settings. This paper contributes an analysis of the “productivity” of 
these three interpretations of the definite integral in both mathematics and physics contexts. 

Symbolic Forms of the Integral and Framing 

Symbolic forms (Sherin, 2001) are a subset of cognitive resources (Hammer, 2000), which 
are elements of cognition that are accessible by an individual as a unit. However, unlike the 
traditional idea of a unitary “concept” within a person’s cognition, a cognitive resource may be 
made up of other, smaller resources (Hammer & Elby, 2002). As an example, a student’s concept 
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of integration might not be a single entity, but may rather be made up of smaller units, including 
ideas of area, summations, functions, or differentials. Each of these may be further made up of 
even smaller units, such as lines, perimeters, rectangles, parts of a whole, the power rule in 
reverse, and so forth. If this is the case, one cannot claim that a student’s concept of integration is 
one fixed cognitive object that is either correct or incorrect (see Hammer, 2000). Thus certain 
interpretations of the integral may turn out to be useful and productive in one context, but turn 
out not to be useful nor productive in another. 

A symbolic form (Sherin, 2001) is a specific type of cognitive resource consisting of a blend 
(Fauconnier & Turner, 2002) between two components: a symbol template and a conceptual 
schema. A symbol template is merely the arrangement of the symbols in an expression or 
equation. In this paper, the symbol templates under consideration are that of the definite integral, 

[]

[]
[] []d  or 

[]
[] []d , where each “box” can be filled with a symbol. A conceptual schema, on the 

other hand, refers to the meaning underlying the symbols. Students have demonstrated several 
ways to assign meaning to these symbols, including function matching, perimeter and area, and  
adding up pieces (Jones, 2013), which correlate with the (a) values of an anti-derivative, (b) area 
under a curve, and (c) limit of Riemann sums conceptualizations, respectively. Note that even 
though the anti-derivative notion is often thought of as the province of indefinite integrals, 
students showed a strong tendency to conceptualize definite integrals through the anti-derivative 
lens as well (Jones, 2013). A brief description of these three symbolic forms is now provided. 

Function matching: This symbolic form may be considered the reification of the anti-
derivative process into an object (Sfard, 1991). Students give the integrand the meaning of 
having come from some other “original function,” which became the integrand through a 
derivative (Jones, 2013). The meaning of the integral is a matching game, trying to get back to 
the original function. The limits of integration refer to the “competing terms” (Sherin, 2001) of 
values of an anti-derivative. 

Perimeter and area: This symbolic form is related to the conception of an integral as an area 
under a curve. Students imbue each “box” in the symbol template with the meaning of being part 
of a perimeter of a shape in the plane (Jones, 2013). The limits of integration are represented by 
vertical lines for the two sides and the differential dictates which axis serves as the “bottom” of 
the shape. In this conception, the region of interest is not divided up, but is considered as a static 
whole, often represented by shading in the entire area all at once. 

Adding up pieces: This third symbolic form bears a resemblance to the Riemann sum. The 
region of interest is conceptually held to be divided into “tiny pieces,” which are often thin 
rectangles. Generally, only one of these pieces, called a representative rectangle (Jones, 2013), is 
used to analyze the integral and determine its properties (though “rectangle” can be expanded to 
include any shape depending on the integral). The quantities represented by these small pieces 
are systematically added up in a dynamic fashion with a “starting” piece and an “ending” piece. 
Interestingly, most students thought of there being an infinite number of tiny pieces, requiring an 
infinite summation over those infinite number of pieces (Jones, 2013). 

Since students may hold several different notions of the integral in their cognition, a tacit 
“choice” must be made about which conceptualization to draw on for a given task. This choice is 
made through framing (MacLachlan & Reid, 1994), which means “a set of expectations an 
individual has about the situation in which she finds herself that affect what she notices and how 
she thinks to act” (Hammer, Elby, Scherr, & Redish, 2005, p. 97). Thus, a student’s expectations 
regarding the interview context, the specific task they are working on, and what counts as a 
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“good answer” all affect which cognitive resources the student might employ for a given 
problem. Fortunately, this allows for the opportunity to determine how useful or productive 
certain conceptualizations of the integral are, depending on the context. 

Data Collection and Analysis 

Interviews were conducted with eight students selected from a major university on the West 
Coast of the United States. The students were each interviewed twice, in pairs. The first 
interview consisted of “mathematics-framed” tasks, making use of integrals similar to those 
found in typical calculus texts (Stewart, 2012; Thomas et al., 2009). The second interview, which 
happened one week later, consisted of “physics-framed” tasks, using integrals like those found in 
calculus-based physics and engineering texts (Hibbeler, 2012; Serway & Jewett, 2008). 

The students discussed their responses to the tasks with each other at the board until both 
participants were satisfied. The videotaped interview sessions and the researcher’s notes were the 
primary sources of data for the study. The data were analyzed by determining locations in the 
interviews where students demonstrated usage of a particular symbolic form, and then 
scrutinizing the data, in several iterations, for confirming or disconfirming evidence of that 
symbolic form (see Strauss & Corbin, 1998). Once a student’s usage of a symbolic form 
appeared to have secure footing, the form was contextually examined for evidence of its effects 
on student thinking in mathematics-framed and physics-framed settings. 

Productivity in Mathematics-framed and Physics-framed Contexts 

In this section I discuss the relative “productivity” of the three conceptions described in the 
previous section in both mathematics and physics contexts. Here, “productivity” means the 
ability of a symbolic form to facilitate an understanding of the integral that is satisfactory to the 
student and generally sound in its relationship to commonly accepted notions of the integral. 

Function Matching 

One student, who I call Darius, consistently favored the function matching symbolic form in 
his work. By relying on this type of thinking, Darius had a well-conceived motivation for why he 
could calculate pure mathematics integrals in the way he did. After working out the solution to 

 2 3 2

1
2 x x dx  with his partner, he offered this explanation for what the integral meant. 

Darius: In an integration the dx is always essential, because it shows that this entire thing 
[waves hand over the integrand, “2/x3 – x2”] is a derivative of x… The fact that this entire 
thing is sitting right next to each other, and dx outside, means that basically this entire 
function [motions hand over “2/x3 – x2”] is the derivative of an original function. 

Darius used the idea of trying to recover an “original function” that became the integrand via 
a derivative as the key motive for why the rules of differentiation needed to be done “in reverse” 
to determine the solution. If a derivative yielded an “x2” then an integral needed to figure out 
what function would turn into x2 under differentiation. In this way, the function matching 
symbolic form was productive for Darius in the pure mathematics context by allowing him to 
feel satisfied with his reasoning for the procedures he carried out. 

However, by contrast, the function matching conceptualization failed to be as effective in the 
physics-framed context, where multivariate functions are often encountered. Carlos and Curtis 

attempted to employ this thinking to understand the integral equation 
S

F P dA  , in which the 
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pressure over a surface, S, is used to calculate the total force exerted on S. The students began 
their discussion by talking about how they could go about calculating the answer through anti-
derivatives. 

Carlos: Like, will that [points to P] be a function of dA? 
Curtis: That means P has to be a function of, uh, with respect to A, I guess. Because… yeah, 

so we would have to be given, in order to solve this with actual values, we would need to 
be given P, pressure, as a function of area… [quietly to Carlos] How would you say that? 
[Long pause.] 

By focusing on creating an anti-derivative that “matches” with the integrand P, these students 
were led to assume that P had to be a function of A since the differential indicates how to take the 
anti-derivative (Jones, 2013). But this would lead to a meaningless express, such as 2P A A   
for example, which does not accurately represent the physics context, since P is not a function of 
A. Hence, this conceptualization proved less productive for understand physics integrals. 

Perimeter and Area 

During the mathematics-framed interview, Carlos and Curtis often relied on the perimeter 
and area symbolic form to understand the meaning of the integrals. They solved the integral 

 2 3 2

1
2 x x dx  by splitting it up into 

2 3

1
2 x dx  and 

2 2

1
x dx  and subtracting the results. 

Curtis used the “area under a curve” thinking to explain why this was a valid approach. 
Curtis: Like, if we have two curves [draws one curve with a second one below it], instead of 

having a single integral to solve this total area all at once, we’re finding the integral of the 
top one [spreads hands from the upper curve to the horizontal axis] and then we’re 
subtracting this area [outlines shape from the lower curve to the horizontal axis]. 

The conceptualization of the integral as an area under a curve allowed Curtis to understand 
this property of integrals, namely splitting up over subtraction. He could appeal to areas to 
intuitively explain why the resulting two integrals were equal to the original. By “removing” the 
portion below the lower curve from the overall area under the higher curve, he was able to justify 
why this calculates the area in between the curves. Thus, this conception was productive for him 
in understanding pure mathematics integrals. 

Yet, like function matching, the perimeter and area notion was less effective in the physics 
context. For example, Brian struggled to use this reasoning to interpret the meaning of the 

integral equation  S
PdAF . Brian drew a one-dimensional curve in the plane, labeled it P, 

labeled the horizontal axis A, and marked off vertical lines for the left and right sides of a 
bounded region. However, after Brian had produced this graph, he appeared unsatisfied and did 
not know how to use his picture to explain the integral. 

Brian: So, if we took the integral of that, it would be, it would be all this… [shades in the 
region underneath the P-curve]. And that would be the total force it would exert… 
umm… I feel like I skipped a step. 

Brian was at a loss as to how to reconcile his use of A as an independent variable on the 
horizontal axis with the fact that the area of the surface should not be changing. Furthermore, he 
seemed uncomfortable in describing why the area of the region he had just created should even 
represent the total force at all, stating that he felt like he “skipped a step.” Thus, this 
conceptualization of the integral was less productive for making sense of the physics equation. 
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Adding Up Pieces 

By comparison, students drawing on the adding up pieces symbolic form not only understood 
pure mathematics integrals, but were also able to satisfactorily explain a variety of applied 
physics integrals. Since the Riemann sum, which consists of an addition of values over many 
(small) pieces, is used as the basis for a common mathematics definition of the definite integral, 

10
lim ( )

n

kkx
f x x

 
 , it suffices to say that the adding up pieces conception is productive in the 

pure mathematics context. Instead of focusing on the mathematics context, I focus here on how 
Curtis and Brian switched from function matching and perimeter and area to adding up pieces, 
which enabled them to push past their difficulties in making sense of the physics equation 

 S
PdAF . Curtis began switching from function matching to adding up pieces by drawing a 

rectangular surface, S, and then drawing a small representative square inside of it. 
Curtis: So, force equals pressure times area. We have the area [points to the small square] 

and we have the pressure function [makes “incoming” motion toward the square]… And 
then we have pressure times area, so we’re actually finding… force… So, we’re 
integrating over these infinitesimally small [pieces], which each one composes of a force, 
so we’re integrating force, and adding up all the infinitesimally small pieces of force, to 
find the total force. 

Similarly, after Brian pondered his “skipped step” for a while, I told him to think of the table 
I was sitting at as S and asked him if the integral applied to that situation. He then began to think 
of breaking S into small strips and used a representative strip to structure his understanding. 

Brian: I believe that, uh, I’m just trying to relate this to rectangles. If we just took the area of 
this piece of the rectangle here, this part of the table, and found the total force exerted on 
that, you would get some kind of estimate… [Draws a large rectangle to represent the 
table.] Let’s just say this is dA [references a small strip at one end of the table]. This 
whole thing [i.e. the strip] is dA… And you have pressure pushing on that, on all that 
area. So you can multiply P times dA and you get the total force pushed, exerted on that 
part of the table… Yeah, if you make that area smaller and smaller and smaller and then 
add up those infinite, those really small areas on the whole table, you get the total force. 

By drawing on the adding up pieces symbolic form, both Curtis and Brian were able to push 
past the difficulties they encountered by relying on anti-derivatives and areas under curves. This 
notion gave them a conceptual framework for understanding how the integrand and differential 
interacted within each small piece to give a small amount of the resultant quantity. All of the 
small amounts of force were then added up to capture the total amount of force. Their language 
suggests they were both more confident and satisfied by their adding up pieces explanations. 
Thus, this conceptualization appears to be highly productive for understanding physics integrals. 

Conclusion 

There are several ways to interpret the definite integral, including notions of areas, values of 
anti-derivatives, and summations, each of which appears useful for simple, basic mathematics 
integrals. The results of this study, however, show that in the physics context the adding up 
pieces symbolic form proved most productive for making sense of integrals. This is not to say 
that areas under curves and anti-derivatives are not important or should not be taught. Rather the 
results suggest that understanding the integral as an addition over many pieces is a key idea that 
should receive at least an equal share of attention in calculus courses. This corroborates with 
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conclusions by others that the idea of accumulation is particularly helpful for fully understanding 
integration (Thompson, 1994; Thompson & Silverman, 2008). The results demonstrate a need 
for curriculum and instruction to develop this particularly important way to interpret the integral, 
especially in order to support the application of this important concept to science. 
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STUDENT VIEWS ABOUT TRUTH IN AXIOMATIC MATHEMATICS 

Brian Katz 
Augustana College 

An undergraduate mathematics major should come to hold appropriate views about the 
conclusions reached by our disciplinary methods. This project explores the views about truth 
in axiomatic mathematics of a group of students who are (mostly) in their final proof-based 
course, Modern Geometry. Do these students hold expert-like views about truth in 
mathematics, and do those views change during a course that emphasizes epistemological 
themes? I find preliminarily that many of these experienced students do not distinguish the 
truth-value of theorems from that of definitions or axioms at the start of the term, but they 
develop more expert-like perspectives on truth during the course. 

Key words: epistemology, truth, axiomatic mathematics, Geometry, concept maps 

Background and Research Questions 
One goal of an undergraduate program is that its graduates internalize an epistemic stance 

toward a discipline that approximates the stance of an expert and with which the graduates 
can evaluate and contextualize claims made in that discipline; this general goal can be 
specified to each discipline and at different levels. One such specification in mathematics is 
captured in the following articulated view: Once axioms are chosen for a domain within 
mathematics, they are viewed as true; statements in this domain are theorems if they can be 
proved rigorously starting from the axioms, and as a result these theorems are true as well. 

At my institution, junior mathematics majors generally take three proof-based courses: 
Abstract Algebra then Real Analysis then Modern Geometry. The first two courses are 
required of all mathematics majors; Geometry is required only of the pre-service secondary 
education majors. Modern Geometry is usually the final proof-based course for these students 
and is the most explicitly axiomatic course in the department. Moreover, the course includes 
activities designed to help students focus on the nature of axiomatic mathematics and reflect 
on their own views about axiomatic mathematics. As a result, Modern Geometry offers an 
exciting position in the program at which to assess the views held by the students about truth 
in axiomatic mathematics, which brings us to my research questions. 

1. Do these Modern Geometry students hold expert-like views about truth in 
mathematics, whether at the beginning or end of the course? 

2. Do these Modern Geometry students’ views about truth in mathematics change during 
the course; if they change, in what ways do they change? 

These questions necessitate a cognitive approach to the data from this course; however, I 
hope to turn eventually to related questions about the complex social interactions that led to 
nuclear classroom episodes and the establishment of norms for rigor and truth. 

In 1991, Sfard described a framework for integrating the operational and structural facets 
of mathematical conceptions that are “dual” and “complementary”. These conceptions are 
conjectured to move from procedural to structural through phases that she calls 
interiorization (becoming familiar with the processes involving the new conception), 
condensation (squeezing lengthy sequences of operations into manageable units), and 
reification (conceiving of the conception as an integrated object). Sfard’s examples of 
conceptions include “number” and “function”; college students are certainly expected to have 
reified these conceptions in some form by the end of their first year in college. In lower-
division courses, the operational facets of a conception are generally computational; however, 
in upper-division courses, proof becomes one of predominant operational facets. Just as 
arithmetic eventually becomes reified and studied as an object in algebra, an extension of 
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Sfard’s framework might predict that proof would become reified near the end of an 
undergraduate mathematics major and studied as axiomatic mathematics. 

Other researchers have investigated ways in which students validate proofs of individual 
theorems. For example, Alcock and Weber (2005) investigate student line-by-line validation 
of proofs. Using the language of Toulmin’s (1969) framework for proof validation, they give 
students a short proof in which all data and conclusions are valid but one implicit warrant is 
false. They find that Toulmin’s framework explains the behavior of the majority of their 
students, though a large portion require prompting to consider the implicit warrant. In theory, 
viewing truth in an axiomatic system could be approached like validating a large argument, 
with the axioms serving as data, the theorems as conclusions, and the proofs as warrants. In 
this manner, Toulmin gives us a few critical terms and connections to observe. 

As a clarifying example, let’s try to use the framework from Sfard to interpret Alcock and 
Weber’s findings. The students who (correctly) see the prompting proof as invalid notice the 
false implicit warrant, which is evidence of proof (or proof validation) having been 
interiorized; these students may have condensed proof validation as a conception, and the 
difference between those who were successful with and without prompting might be the 
thoroughness or appropriateness of that condensation. The students who reject the proof 
because “it doesn’t use definitions” may have a naïve or partial interiorization. Those 
students who accept the proof as valid don’t seem to think of proof validation as a process 
and hence may be struggling to start interiorizing proof (at least in this content domain). 

Using this extended version of Sfard’s framework, I am interested in understanding the 
extent to which proof has been reified as a conception for my students and how the structural 
aspects of this conception compare between the students and an expert. Importantly, Sfard 
concludes that the development of conceptions will be hierarchical and that reification at a 
lower level and interiorization at the next higher level are “prerequisites for each other”. Her 
prediction suggests that my Modern Geometry students may reify proof only as they 
interiorize the axiomatic method during the course, not before. 

Data and Methods 
The students in Modern Geometry engaged in a concept-mapping task centered on 

“mathematical truth” that included a detailed explanation of concept-mapping and a list of 15 
other required terms such as “proof”, “axiom”, “rigor”, and “definition”. The students 
engaged with exactly the same task on the first and last days of the course, and their maps 
were not discussed explicitly between these events. After the second mapping event, the 
students were given their original concept-map and asked to compare and contrast their two 
concept-maps in their own words. I also collected multiple reflective writings produced by 
the students in response to prompts and (sometimes) course readings. The data for this project 
represent artifacts from 19 students from two sections of the course, taught quite similarly by 
the same instructor (the author) over two consecutive years. 

A mathematician (the author) processed all of the concept maps by first coding each 
connection as accurate/appropriate, inaccurate/inappropriate, or vague/confusing. I then 
looked for terms that appeared as endpoints in inaccurate or confusing connections among 
multiple students; I also compared the connections made by the same student at different 
times and then read the student’s own interpretation of those differences. Similarly, I scanned 
passages from the student reflective writings for epistemological themes and coded them as 
accurate, inaccurate, or confusing. 

Preliminary Results 
It may not surprise you, given the abstract nature of the concept-mapping task, that the 

pre-course maps contain large numbers of confusing connections and small numbers of both 
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accurate and inaccurate connections. Happily, the post-course maps contain large numbers of 
accurate connections and small numbers of inaccurate and confusing connections. Somewhat 
surprisingly given the level of confusion, there were some patterns to the inaccurate 
connections in the pre-course maps. In particular, most of the students put either “definitions” 
or “axioms” (or both) as “sister” connections to “theorems/corollaries” or “lemmas”. This 
indicates to the author that most of the students did not or could not differentiate the truth-
value of a definition (which do not have truth-values) from that of axioms (which may be 
seen as choices for “true”) and theorems/corollaries (which should be seen as consequences 
hence “true”) at the start of the term. 

The concept-maps demonstrate at least three related approaches to framing mathematical 
truth, generally observed through the implied subject of the verbs used to label connections in 
the map. In a psychological map, the student explains a way that an individual mind comes to 
learn about the truth of certain mathematical conceptions. In a procedural map, the student 
explains a way that a theorem comes to be proved, focusing on the process of doing 
mathematics. In an epistemological map, the student explains a way that truth flows through 
an axiomatic system, from choices to conclusions. 

The Appendix contains an example pair of pre- and post-course maps from the same 
student. The pre-course map is an example of a map that does not separate “axioms” from 
“theorems/corollaries”; this map is mostly of the epistemological type. The post-course map 
is impressively accurate/appropriate and highly procedural. 

The student writings provide a more nuanced window into each student’s views. One 
interesting theme that has bubbled to the surface addresses the truth-value of axioms. From 
my perspective, it is equally reasonable to think of axioms as true or as choices (and hence all 
other truth is relative to those choices). Most of the students found Kant’s notion of a 
“synthetic a priori truth” extremely comforting because it allowed them to return to a position 
from which the axioms are true in some absolute sense and hence mathematical truth is a 
form of universal truth. The rest of the students were more comfortable accepting the truth of 
mathematical statements as contextual, with choices of axioms serving as part of the world in 
which mathematics is done; from this position, truth is relative and yet somehow not random 
or arbitrary. The number of students is small, but the pre-service teachers almost all accepted 
axioms as absolutely true while the “pure” mathematics majors generally accepted axioms as 
the foundation for relative truth. 

Using the language derived from Sfard above, each student appears to have moved from 
interiorizing or condensing proof into at least partial reification by the end of the course. 
Without this reification, the concept-mapping task would be quite difficult to parse, a claim 
that might explain the large number of vague/confusing connections in the pre-course maps. 

Discussion 
I have several concerns about the methods and analysis above and am sure there are other, 

possibly serious concerns. (i) The student concept-maps are analyzed mostly by comparison 
to one, un-articulated map in the mind of the author; not only does this put reliability into 
question, it tacitly assumes that my map is an accurate representation of an imaginary map 
held by all mathematicians or a universal map outside of practitioners. (ii) It is not clear how 
appropriate it is to use a concept-mapping task this abstract to measure the student views 
about truth. As mentioned above, the pre-maps could largely be the result of the students’ 
inability to parse the task. At the very least, Alcock and Weber demonstrate an effect from 
prompting, which this task does by its very design. (iii) More generally, as a mathematician 
who is new to education research, I do not feel at all secure in my ability to use and articulate 
appropriate theoretical frameworks and methodologies. I am quite certain that my own 
worldview is at play and almost unchecked in the analysis above. Some questions: 
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1. Are there frameworks or methodologies that I should employ to add rigor to my 
analysis? More generally, is there any reason to believe that I am accessing the same 
aspect of student thinking as any other extant approach? 

2. Are there modifications of my concept-mapping task that would make it less likely to 
distort the form of my students’ views? Are there other types of data I should use to 
triangulate the results of my analysis? 

3. What are specific questions that I might ask about the classroom environment in light 
of the data about student cognition above? 
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TEACHING INQUIRY-BASED MATHEMATICS TO IN-SERVICE TEACHERS: 

RESULTS FROM THE FIELD 

 

Karen Allen Keene 

North Carolina State University 

 

Celethia McNeil 

North Carolina State University 

 

We present results from a classroom teaching data collection that involved practicing teachers 

as they participated in an inquiry-oriented differential equations (IO-DE) course.  Data was 

collected to investigate how the teachers’ participation in this kind of course, different from any 

of their previous mathematics courses, may influence their conceptions of teaching, mathematics, 

and student learning. Preliminary results indicate that the perceptions of teachers were changed 

by their experience in the class, at least as expressed in interviews. The teachers were likely to 

attempt to use more student-centered methods in their classrooms and believe that student 

learning is better in the student-centered environment.  Additionally, attitudes about non-lecture, 

although mixed, did indicate a positive tone towards the constructivist perspective on learning. 

Finally, the teachers’ participation in argumentation increased during the IO-DE course. 

 

Keywords: inquiry, teacher change, differential equations, teacher conceptions 

 

The President’s Council of Advisors on Science and Technology (PCAST) recommended in 

their recent report that the United States needs to improve a) training for Science, Technology, 

Engineering, and Mathematics (STEM) teachers and b) undergraduate STEM education (2012).  

Specifically, the call has gone out to increase the quality of undergraduate STEM education, 

integrate the different STEM subjects in interdisciplinary ways, and increase the quality and 

number of K-12 STEM teachers. In this preliminary report, we report on one new direction we 

are taking to address these issues by studying an undergraduate level student-centered 

mathematics curriculum that was implemented at the master’s level for high school mathematics 

teachers. 

      In this research, we used previously developed inquiry-oriented differential equations (IO-

DE) materials that had been taught at the undergraduate level and taught it in a graduate 

mathematics course for teachers. We investigated to see if there is evidence that this type of 

instruction changes attitudes and orientations of teachers, and affects instruction when the 

teachers go back to the classroom. We also investigated whether there is an increase in 

understanding of mathematics, teachers’ willingness to discuss mathematics, and their 

motivation to use more contextual based teaching. 

Literature Review 

Part 1. IO-DE research 
Inquiry-oriented differential equations (IO-DE) (Rasmussen & Kwon, 2007) has been 

developed and used in a number of classrooms in the United States and internationally.  Several 

research publications have provided evidence that students’ participation in this student-centered 

course allows them to develop a conceptual understanding of solutions to differential equations 

(Rasmussen, Kwon, Allen, Marrongelle, & Burtch, 2006), retain the knowledge better (Kwon, 

Rasmussen, & Allen, 2005) and find ways to use their prior knowledge to understand differential 

equations (Author, 2008). The course focuses on differential equations as dynamic rate of change 
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equations and emphasizes autonomous differential equations, and systems of differential 

equations. The students work in cycles of small group and whole class. 

The research base developed in IO-DE includes results that elaborate the construct of 

students’ dynamic reasoning (Author, 2007) as well as publications that discuss results including, 

but not exhaustive, emergent models (Rasmussen & Blumenfeld, 2007), technology’s role in 

learning undergraduate mathematics (Keene & Rasmussen, 2013) and building on realistic 

starting points to help students construct understanding of the mathematics (Rasmussen, 2001).  

 

Part 2. Research on what influences teachers’ instruction 

Space does not permit discussion of the large body of literature that study teachers’ practices 

and the influence on such practices.  Stein, Remillard, and Smith (2007) provide a nice overview 

and use the notion of “enacted curriculum”. Early research in this area has led researchers to 

hypothesize that one true statement about teachers is “Teachers teach how they were taught” (see 

Zeichner & Tabachnick, 1981 for an example).  There have been many professional development 

workshops and other experiences to provide ways for teachers to experience the learning of 

mathematics in a more constructivist environment, but as professional development Sztajn, 

2011).  There is less research about how teachers’ participation in university classes after they 

have been teaching might make a difference (see work from Arizona State University for 

example).   We use the word “conception” as Lloyd and Wilson (1998) used it: “to refer to a 

person’s general mental structures that encompass knowledge, beliefs, understandings, 

preferences, and views” (p. 249) and meld this with the enacted curriculum description for our 

theoretical framework.  To that end, we ask the following questions: 

 How do practicing teachers in a student-centered post-calculus math course change their 

conceptions of mathematics, teaching and learning, and the value and usefulness of 

mathematics? 

 How does it affect teachers’ practice?  

 How does the significant use of argumentation in mathematics look in an advanced 

mathematics course and how does it improve student understanding and views of 

mathematics?  

 

Research Methods 

Setting and Participants  
The course where the research took place was a master’s level mathematics course for high 

school mathematics teachers pursuing their master’s degree in a large southeastern university. 

The instructor was also the primary researcher and had experience teaching the specific course.  

There were 20 students in the course, 14 of whom were enrolled in the mathematics education 

masters program and teaching in high schools or community college. These 14 were the 

participants in our study.  Their teaching experience ranged from 0 to 6 years. Additionally, there 

were six PhD students who were enrolled in the course and were participants in the study.  They 

did however play a significant role in the class discussions and contributed to the student-

centered environment. 

   

Data Collection 

Following is the data collect that are relevant to the proposed presentation: 
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 Differential Equations Relational Understanding Assessment (Author, 2011). A 

quantitative instrument used to determine how conceptual understanding of differential 

equations improved. 

 Class Video-Taping.  The class met 14 times for 2 hours and 45 minutes for each class 

session. Two cameras were used to tape all of the whole class discussions, where one 

camera focused on the teacher and the other on the students.  During small group work, 

the cameras were focused on one of the small groups to understand what transpires in that 

setting.    

 Interviews. Approximately 9nine months after the end of the class, we conducted one 

hour interviews with 8 of the participants in the class.  These interviews were semi-

structured and led by one of the authors. The questions were designed to answer the 

research questions and participants were allowed to elaborate on answers as they desired.  

 

Data Analysis 

We are in the early stages of analyzing the data and report on some of the analysis at this 

time. Specifically, we have been working on the data from the surveys and final exams, whole 

class discussions and the individual interviews.  We first watched all the class videos and broke 

the class discussions into segments.  Each segment is 15 minutes focused on one particular 

mathematical task, presentation, or dialogue. We then transcribed the videos while noting 

important discourse and any interesting observations from the video. 

The interviews were conducted and transcribed.  We used axial coding (Strauss & Corbin, 

1998) to develop a set of codes for each of the statements made by the interviewed teachers. One 

of the researchers did the primary coding and the other researcher did confirmatory checking.  

The codes were either identified as pedagogical or mathematical and the codes were refined and 

combined where appropriate.  Plans are for themes to emerge; we will report on these themes at 

the conference. 

 

Results 

Some of the primary codes that we think will tie to the important themes are listed in Table 1.  

We provide a brief discussion and illustration of two themes here and will discuss all the themes 

in the presentation. 

Table 1. 

Theme Mathematical or Pedagogical 

Frustration in different types of 

instruction 

Pedagogical 

Want to make changes to teaching in 

own classroom 

Pedagogical 

Tied together earlier mathematical 

knowledge 

Mathematical 

Context was useful and important to 

learning 

Mathematical/Pedagogical 

Differential equations as rate of change 

was important 

Mathematical 

 

Preliminary results indicate that teachers have made changes in beliefs about learning in 

mathematics, which applies to the first research question. Six of the teachers made statements in 
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their interviews that indicate that using this kind of instruction was something they would like to 

implement in their classroom.  For example,  

Interviewer: Did your experience in this class make any difference in the way you teach? 

Why or why not? 

Teacher 1:  Yea, um...I...as much as I hated that type of student-centered... when I did figure 

something out, I was really pumped and I got really excited about it. And so every unit or 

two, I'd threw something in where they had to figure out why is this the formula...or what 

does this constant really  mean in this equation and that kind of stuff.  

Mathematically, teachers remembered some of the content after nine months, specifically, they 

recalled some of the more difficult concepts such as analyzing phase plans and how they 

remembered it because of the kind of instruction. 

Teacher 2: Or I really didn't have a good understanding of it or something, but by the end 

of that class, I really understood the idea and I understood how it relates to differential 

equations. So, for me it was big, that part. 

Results for Research Questions 2 and 3 will be discussed at the presentation. 

 

Conclusion and Implications for Teaching 

These results, although found in a single classroom, provide some ideas of what the future 

use of more student-centered instruction in preservice and inservice teacher programs could look 

like and contribute. We believe that this applies to both practicing teachers and preservice 

teachers that are still in an undergraduate mathematics program. It is not enough to teach our 

future mathematics teachers in a more student-centered class in their methods classes, but to also 

influence those who are currently practicing.  Additionally, we need to introduce more 

mathematics classes to this style of instruction.  In the long term, this may will more significantly 

affect mathematics education at the K-12 level.  

 

Questions for Audience 

1. Should mathematics instruction for preservice teachers be different than for mathematics 

majors? How and why? 

2. How important is context when teaching differential equations and/or other 

undergraduate mathematics courses? 

3. Do you think this line of inquiry is useful and relevant? How could we extend it into the 

undergraduate classroom? 
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THE EFFECTIVNESS OF 5-MINUTE PREVIEW VIDEO LECTURES USING 

SMART BOARD, CAMTASIA STUDIO, AND PODCASTING ON 

MATHEMATICAL ACHIEVEMENT AND MATHEMATICS SELF-EFFICACY 

 

Ph.D. Minsu Kim 

University of North Georgia 

 

The purpose of this study is to examine the effectiveness of 5-minute preview video lectures 

for each lecture using podcasting in terms of mathematical achievement and mathematics 

self-efficacy in intermediate algebra and college algebra courses at a university. Data from 

128 students in 6 sections collected for two semesters through first and final exams, 

questionnaires, a classroom observation checklist, and the Mathematics Self-Efficacy Scale. 

The preliminary findings indicate no significant difference on the mathematical achievement 

and mathematics self-efficacy between the control group who did not watch the preview 

lectures and the treatment group who watched the preview lectures while the treatment group 

slightly developed their mathematics self-efficacy and abilities for mobile technology. In 

addition, the treatment group was significantly satisfied with the preview lectures. When the 

treatment group was divided into intermediate low and high subgroups based on the first 

exam, the intermediate low subgroup significantly improved their mathematical achievement.  

Key words: Preview Video Lectures, Podcasting, Mathematical Achievement, Mathematics 

Self-Efficacy, Mobile Technology 

Introduction 

Mathematics instructors at colleges and universities have improved pedagogical 

environment both inside and outside the classroom for students through technology. Because 

of the technologies such as class websites, educational software, Smart Boards, and 

podcasting, mathematics instructors also have developed their resources in terms of how 

content is delivered after their lectures. For example, students are able to find electronic 

versions of PowerPoint slides or PDF handouts on the class websites (Copley, 2007). After 

the appears of podcasting, instructors were able to record their lectures as streaming videos 

and distribute them through podcasting in order to help students learn materials at their 

convenience  (Laing et al.,2006; Sharples, 2000). Even though instructors provide the 

opportunities for students to learn the materials on class websites, a number of students attend 

class with copies of the lecture notes or handouts without reading the materials before their 

classes. How do mathematics instructors encourage students to be interested in up-coming 

lectures through the technologies? 

While podcasting has become a popular media on the Internet (Searls, 2005), researchers 

in higher education have been interested in podcasting as an educational tool. Duke 

University evaluated the effectiveness of mobile learning such as iPods from more than 1600 

students in learning and teaching in 2004 (Belanger, 2005). According the Belanger’s 

research in 2007, students’ achievement had improved in quality at the same time as the 

students’ motivation and use of resources online had increased (Sutton-Brady, Scott, Taylor, 

Carabetta, & Clark, 2009). Several studies have shown that streaming video significantly 

influences students’ achievement in higher education (Carlson, K., 2009; Mark, S., 2004; 

McGrann, R. T. R., 2005; Reed, R., 2003). In addition, instructors have used podcasting in 

order to provide podcast streaming video recordings of lectures for students to review and 

revise after their classes (Laing et al., 2006).  

Research has also provided several advantages for students’ learning in terms of use of 

podcasting in higher education. Students are able to revise and study content through 
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replaying podcast episodes on diverse devices (Laing, Wootton, & Irons, 2006; Shannon, 

2006). In addition, students have opportunities to manage their times in order to learn content 

instead of only scheduled lecture times (Sharples, 2000). Other researchers have studied 

supplementary podcasts, which are short podcasts including 5-minute summaries of 

presentations (Calder, 2006), interviews for past and upcoming lecture content, and 

announcements (Bell, Cockburn, & Wingkvisit, 2007).  Even though researchers have raised 

their concerns for applications of podcasting as an innovative tool in education, there is still 

limited evidence on the pedagogical strategies for student learning in mathematics education 

and the effectiveness of podcast video lectures in terms of students’ mathematical 

achievement and mathematics self-efficacy. In addition, there are few studies on the effect of 

short-format podcasting of upcoming core-lecture content regarding students’ performance 

and their mathematical self-efficacy. 

The purpose of this study is to examine the effectiveness of preview video lectures about 

5 minutes in length for each lecture using Smart Board, Camtasia Studios, and Podcasting in 

terms of mathematical achievement and mathematics self-efficacy in intermediate algebra 

and college algebra at a university. The aim of this research is to answer the following two 

research questions and two sub-questions: 1) How do students who watch preview lectures 

and students who do not compare in their mathematical achievement? Is there a significant 

difference in mathematical achievement between two groups in terms of the average final 

examination scores? 2) How do students who watch preview lectures and students who do not 

compare in their mathematics self-efficacy? Is there a significant difference in mathematics 

self-efficacy between the two groups? Two hypotheses were tested in this study: 1) The mean 

of final exam of students who watch the preview video lectures is not significantly higher 

than the mean of final exam of students who do not watch the preview video lectures. 2) The 

mean of mathematics self-efficacy scores of students who watch preview lectures is not 

significantly higher than the mean of mathematics self-efficacy scores of students who do not 

watch preview lectures. 

 

Theoretical Rationale 

Increasing the use of portable devices, podcast video lectures has become a potential tool 

for learning and teaching in higher education regarding flexibility (Kukulska-Hulme, Traxler, 

and Pettit, 2007; Traxler, 2008). In addition, Chan and Lee (2005), Chan, Lee, and 

McLoughlin (2006), Bell, Cockburn, and Wingkvist (2007), and Sutton-Brady, Scott, Taylor, 

Carabett, and Clark (2009) suggested short-format podcasts have more benefits for student 

learning rather than an hour-long recorded podcasts have regarding the pedagogical design of 

podcasts. Based on these studies on effectiveness of podcasting, students will have the 

opportunities to improve their readiness for the next classes and encourage students to be 

interested in lectures, utilizing 5-minute podcast video lectures through their mobile devices. 

Finally, the use of 5-minute preview podcast video lectures will support students in 

mathematical achievement and mathematics self-efficacy. This study will show the use and 

effectiveness of short-format podcast video lectures in student learning and teaching in 

mathematics.  

 

Methods 

This study used a quasi-experimental pretest/posttest design to answer the research 

questions. The participants were 128 students in 6 sections, 3 intermediate algebra and 3 

college algebra courses with the same instructor from the fall of 2012 to the spring of 2013 at 

a university. The schedules of the 6 sections were between 9:00 am to 5:00 pm, not evening 

classes. The participants enrolled in the classes according to their schedule and other 

preferences. In this study, 59 students participated, consisting of 39 in 2 intermediate algebra 
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courses and 20 in 1 college algebra course in the fall of 2012. There were 38 male and 21 

female students in the fall of 2012. The participants served as the control group and did not 

watch the preview video lectures. In the spring of 2013, 69 participants served as the 

treatment group and watched the preview video lectures before attending each class. The 69 

participants consisted of 19 in 1 intermediate algebra course and 50 in 2 college algebra 

courses. In addition, there were 24 male and 45 female students in the sections of spring 2013. 

If students in intermediate algebra courses participated in this study in the fall of 2012, the 

students were removed from the study of the spring 2013 classes. I employed three different 

data sources: the first and final exams, questionnaires, a classroom observation checklist, and 

the Mathematics Self-Efficacy Scale (Betz & Hackett, 1993).  The exams were the same 

question formats with different numerical values between the two semesters.  

I collected the data of the first exam as a pretest and the final exam as a posttest each 

semester in order to measure the students’ mathematical achievement. After the first exam, 

the participants completed the first questionnaire with a consent form and the pre-

Mathematics Self-Efficacy Scale. The first questionnaire consisted of background 

information and abilities in mobile technology. In addition, I gathered the second 

questionnaire, satisfaction of the 5-minute preview video lectures, and the post-Mathematics 

Self-Efficacy Scale at the end of semester.  

To answer the research questions, I performed t-tests and ANOVAs to compare the 

mathematical achievement and the Mathematics Self-Efficacy between the control and 

treatment groups, using Minitab 16, software for statistics. The independent variables were 

class type: non-preview video lectures (NPL) and preview video lectures (PL); the first exam 

score, in order to measure incoming level of mathematics: intermediate low (IL) and high 

(IH) groups; gender; and class attempts: first time student (FS) and repeating student (RS). 

The dependent variables were mathematical achievement by the final exam and the post-

mathematics self-efficacy. For the first and second null hypothesizes, I conducted two 

independent-sample t-tests. Similarly to Cohen (2001), I used a significance level of 0.05 for 

this study. In addition, I performed ANOVA to compare the pretest to posttest changes in 

mathematical achievement and the mathematics self-efficacy scores of the control and 

treatment groups.  

 

Preliminary Findings and Discussion 
By the two independent-sample t-tests, there was no significant difference on the mean of 

first exam scores between the control and treatment groups, even though the mean of first 

exam scores of the control group was higher than the mean of first exam scores of the 

treatment group. In addition, the treatment group slightly developed their mathematics self-

efficacy and abilities for mobile technology, although there was no significant difference on 

the mathematical achievement and mathematics self-efficacy between the control group who 

did not watch the preview lectures and the treatment group who watched the preview 

lectures. Moreover, the treatment group was significantly satisfied with the preview video 

lectures by an independent-sample t-test. When the treatment group was divided into 

intermediate low and high subgroups based on the first exam scores, the intermediate low 

subgroup significantly improved their mathematical achievement because p=0.028 is less 

than α=0.05. The preliminary findings indicate that the preview video lectures significantly 

influence the lower-intermediate students’ mathematical achievement.  

Even though there are several limitations in terms of the number of students and the 

different courses and semesters, the study will show the effectiveness and pedagogical design 

of short-format podcast video lectures. The preliminary results of this study will have 

potential implications for mathematics faculty and online system developers of textbooks and 
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contribute to our knowledge of pedagogical approaches outside the classroom, using 

technologies in mathematics education.  

 

Questions to the Audience 

What theoretical rationale is appropriate for this study? 

What other methodologies could I use to analyze the data? 
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In this preliminary report, we share the design and results of the first phase of our on-going 
research study. Our three-phase study is designed to investigate individual student’s transfer 
of learning of linear algebra concepts along with social mathematical interactions in which 
such concepts developed in group-based courses. We first frame our study in relation to 
current literature, then discuss our initial analysis from the first phase. Finally, we give a 
description of upcoming phases along with questions we wish to discuss with the audience. 

Key words: Transfer of learning, Actor-oriented transfer, Linear algebra, Function 

Many current transfer research frameworks adopt a cognitive lens to focus on an 
individual student’s transfer of “knowledge pieces” or mathematical concepts from one task 
to another (see Mestre, 2005 for some of these approaches, more recent one Wagner, 2010, 
also some earlier studies e.g., Bassok, 1990; Gick & Holyoak, 1983). Some critiques of these 
frameworks highlight the need of sociocultural perspectives on transfer issues. This particular 
approach, however, becomes problematic as meanings of notions such as “learning”, 
“understanding”, “knowledge” create different constructs under such perspectives (Lave, 
1988; Tuomi-Grohn & Engestrom, 2003; Hatano & Greeno, 1999). For example, within a 
cognitivist perspective, knowledge is generally viewed as a static object, acquired or 
constructed by an individual. In contrast, sociocultural perspectives assume a dynamic view 
of knowledge and its communal creation through communication. Thus, the definition of 
transfer itself becomes problematic under sociocultural perspectives. Under these critiques, 
new frameworks were developed to investigate issues further (e.g., Lobato, Rhodehamel, & 
Hohensee, 2012).  

Seeing communication as an important aspect of learning and transfer is an important 
social addendum to our perspective and contributes to existing research (Lobato, 
Rhodehamel, & Hohensee, 2012). We approach transfer from a social constructivist 
perspective through implementation of the Actor Oriented Transfer (AOT) framework 
(Lobato, 2006), using contributions from Vygotsky’s (1978) developmental processes in 
inter- and intramental planes to help us delineate actor’s experiences. This allows us to focus 
on how an individual student sees a mathematical concept (function) as similar to another 
(transformation) in a target situation. In this case, we are not asking the question of “does a 
student transfer particular knowledge or mathematical practices?”; rather, we ask “what does 
a student transfer from their group-based linear algebra course to the target tasks, and in what 
ways do they see their learning experience as similar to the target situation (in regards to 
specific concept and practice)?” A careful reader might argue that we are interested in 
exploring if a student transfers function knowledge from the classroom to the interview tasks. 
However, this is not our goal and we believe transfer is not a static knowledge transfer. Given 
that, in any course, students are exposed to different mathematical concepts and practices, we 
need a narrower focus in our target tasks. Thus, our attention in data analysis will be given to 
the concepts of functions and linear transformations, and we will consider the mathematical 
practice (or strategy) of “making connections.” For us, the “making connections” practice 
means exhibiting explicit connection-making efforts among experiences. In the linear algebra 
course, students will engage in this “making connections” practice by asking questions such 
as “Have I done anything similar before? Why do I think it is similar or different? If it is 
similar, what tools can I apply here? If not, what do I need to know?” These questions are 

17th Annual Conference on Research in Undergraduate Mathematics Education 757



purposefully context-free so that students can modify them to fit the activities in the 
classroom. 

Our research questions for the main study are: 1) In what ways do students see interview 
tasks on linear algebra topics as similar to their prior experience in a group-based linear 
algebra course?; 2) In what ways do students make connections between the interview tasks 
and in-class practices? 

Relevant Literature on Linear Algebra  
Students' difficulty with transfer of learning in linear algebra has not been investigated 

enough (Karakok, 2009). Studies focusing on students’ learning difficulties in linear algebra 
courses identified several issues, including: 1) Students’ lack of ability to switch between 
different modes of thinking required in a linear algebra; 2) Students’ lack of ability to connect 
different representations; and 3) Students’ perception of axiomatic approach as pointless 
(Carlson et al., 1997; Dorier, 2000; Harel, 1989; Hillel & Sierpinska, 1994; Sierpinska, 
Nnadozie & Ortac, 2002; Stewart & Thomas, 2006). Results of such studies guided educators 
to develop instructional practices to help students (Siepinska, 2000; Wawro et al., 2012). 
Dubinksy (1997) highlighted that such attempts must consider students construction of their 
own ideas about important concepts. He further added that students must have a better 
understanding of background concepts that are not necessarily part of the course. He gave an 
“obvious example […] that having strong function concept is essential for understanding 
linear transformations” (p. 93). Therefore, we choose to focus on the concept of function and 
how students' conceptions of function relate to their conceptions of linear transformations. 

Further research on the connection among functions and linear transformations was also 
investigated by Zandieh, Ellis, and Rasmussen (2012). Their research indicated three main 
resources students used as they worked on the interview questions: properties, computations, 
and metaphors. Researchers categorized students’ statements as property if they indicated use 
of a property of a function or a linear transformation or a property of another related concept. 
Computations were used to indicate students’ use of computation language or actions while 
working on tasks. Metaphors were used to identify different metaphors students called upon 
while reasoning. Researchers noticed that even though most of the participants agreed that 
linear transformations are a type of function, participants called upon different metaphors as 
they reasoned with linear transformations and functions. Such distinctions demonstrated by 
students are important in students’ conception of linear transformations and transfer of 
learning of related linear algebra topics.  

Methodology  
Table 1 provides a summary of the phases of this on-going study. Our goal in the first phase 
of our study was to document students’ pre-existing conception of function after taking the 
first semester calculus course but prior to taking an introductory linear algebra course. 
Results from the first phase will help us to understand how students could develop their 
understanding of linear transformation with their existing conception of function during the 
linear algebra course, and how they would use these experiences in the phase three 
interviews.  

We interviewed one group of two students and another group of three students. These 
groups were selected from a first semester calculus course in which they worked together on 
labs. This course was video-taped throughout the semester to explore students' development 
of conception of function and to allow us to select groups of students who worked 
productively on in-class tasks. 
 
 
Table 1 Summary of Phases of the Study 
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Phase 1 Students’ prior conception of functions after taking 
Calc 1 (via group interviews) 

Fall 2012, Spring 2013 

Phase 2 Students’ in-class group interaction (audio recording 
of groups and video recording of whole class) 

Fall 2013 

Phase 3 2 Individual-group-individual group interview cycles 
with 2 groups (up to 6 individuals) 

Spring 2014 

 
The data collected for Phase 1 consisted of four group interviews for each of the two 

groups, the first two interviews focusing mostly on functions and the second two interviews 
focusing on linear transformations. The goal of including questions on linear transformations 
was to investigate how the students would attempt to solve the problems using their existing 
conception of function. 

Results 
The preliminary interview data analysis indicated that participants had varying 

conceptions of function that appeared as they worked on the interview tasks. Four major 
themes surfaced: 1) vertical line test (VLT), 2) input/output relationships, 3) meaning of 
inverse, and 4) function descriptions.  

At the outset, students were asked directly what they considered a function. They 
commonly answered with utterances such as a function being something that “passes the 
vertical line test.” Upon further probing, students articulated their understanding of a 
relationship between input and output. For example, at the beginning of one interview, one 
participant stated  

 “… [the two graphs] do both pass the vertical line test because there's not 
two points right here , not two points right there, there's only one point. 
There's only one output for every input. So yeah they're both functions.”  

Later in that same interview, the students stated,  
 “Ok [the equation] is a function. This is why I say it’s a function. For 
every input you're gonna get a different output. There's no way I'm gonna 
get this output without this input. I can't choose a point right here and get 
this output.” 

Contradictory statements such as these emerged from all participants in each group, and 
indicated a wavering conception of functions as input and output relationships. 

When investigating linear transformations, two distinct meanings of inverse emerged 
from one group. First, students described an inverse function as one that “undoes” the 
original function. As they investigated the inverse of a given function, the students recalled 
the process of switching the x and y variables. From that point on, a second meaning of the 
word “inverse” emerged, used to describe any process or function that switched the x and y 
variables, even in two-variable functions. 

The students used numerous descriptors of functions, including: formulas or equations, 
geometric transformations, a mapping from object to object, and a relationship that makes 
two things “go together.” Our results provide similarities with the three resources described 
by Zandieh, Ellis and Rasmussen (2012). We plan to provide details on this aspect during our 
presentation. 

Discussion 
In our second phase, we will teach an introductory linear algebra course in which students 

will work on activities in their groups. As students work on new tasks each week, our 
instructional goal is to help them focus on strategies such as making connections. We plan to 
document any other emerging sociomathematical norms from this particular course. After this 
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second phase, students who participated in the first phase and others will be invited to the 
third phase of the study. At our presentation, we hope to get feedback from the audience on 
the interview questions we have, and facilitate discussion on theoretical framing on transfer 
issues, specifically: 

1) What are some mathematical practices that we should explore in the group and 
individuals interviews as we conduct interviews and analyze data? 

2) What are some theoretical framing issues you notice from our paper and presentation, 
as well as in our on-going research? 
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Investigating Instructors’ Concerns about Assessments  
in Inquiry-Based Learning Methods Courses 

 
Inah Ko                       Vilma Mesa 

University of Michigan University of Michigan 

 
Preliminary Research Report 

Abstract 
We present initial findings of ongoing research that investigates the nature of instructors’ 
concerns as they design and use assessments for their students using inquiry-based learning 
(IBL) approaches. Using data collected from biweekly online-teaching logs written by 39 
instructors, we categorized concerns into three major themes: Item Design/Assessment, 
Course/Resources, and Student difficulty. We compare two areas of concerns (designing 
assessment and using quizzes, tests, and exams) according to the type of concern and the 
instructor’s experience with IBL, course level, and year by using the frequencies of each 
category cited for each log. Our work will contribute to IBL research by analyzing instructors’ 
challenges as a preliminary study to enhancing IBL teaching and learning in college 
mathematics education. 
Keywords: Inquiry-based learning, Assessment design, Assessments 
  

17th Annual Conference on Research in Undergraduate Mathematics Education 763



As the growing number of studies present the positive outcomes of Inquiry-Based Learning 
methods (IBL) in college students’ mathematics learning (Smith, 2005; Rasmussen & Kwon, 
2007; Hassi, 2009; Lauresen et al., 2011), a wide body of educators and researchers are turning 
their attention to IBL. The key principle of the IBL methods is based on the Moore method 
named after R.L. Moore, which aims for student-centered instruction in which students are 
encouraged to create knowledge by themselves (Coppin, Mahavier, May, & Parker, 2009). 

Current interest in the inquiry-based learning methods (IBL) has sparked several 
investigations on how faculty navigates this kind of instruction. In particular, Laursen and 
colleagues report that instructors also benefited from their IBL teaching as IBL teaching enabled 
instructors to have deeper understanding of students and learning (Laursen et al., 2011). 
However, most positive results are from experimental environments where IBL instruction is 
designed by researchers. In addition, in adopting an innovative approach to instruction, the most 
problematic area that challenges even the most experienced teachers is assessment (Macdonald, 
2005). Instructors who use IBL methods should be able to assess students based on a variety of 
student products, including written exams, presentations, and activities. This feature creates 
many challenges for instructors, so we focused on instructors’ concerns when they design and 
use IBL assessments. Thus, in this study we want to find answers to the following questions: 
1. What concerns or challenges do IBL faculty face when they assess their students? 
2. What are the differences between the concerns expressed by faculty who indicate having 

little experience with the method versus faculty who indicate having more experience with 
the method? 

3. What are the differences between the concerns expressed by faculty teaching lower division 
courses, upper division courses, or courses for future teachers? 
Organizing and documenting instructors’ concerns contributes to finding solutions to address 

concerns that instructors have faced with IBL and providing suggestions for practice. We believe 
that our work to be the first step for teachers’ professional development that will lead toward 
effective IBL teaching and learning. 

Methods 
Primary source of data used in this report are entries in online teaching logs collected over 

two-year period from 54 instructors teaching with IBL in college mathematics courses. In the 
logs instructors were asked to write the challenges that they faced and the concerns they had 
when they design and use IBL assessments for their student as well as solutions used or planned 
to resolve the challenges. They submitted logs every other week for the duration of the course.  
Prior to recruitment, each instructor selected a level experience with IBL teaching from four 
possible categories (Beginner, Novice, Advanced, Expert) according to their own measure. The 
instructors who classified themselves as ‘Beginner or Novice’ are instructors who believe they 
have little experience with IBL. The instructors who identified as ‘Advanced or Expert’ are those 
who have had more experience with the method. We also collected course information in order 
to identify whether the course was intended to lower or upper division students, or whether it 
was intended for future teachers. Table 1 shows distribution of faculty submitting logs. 
 
 
 

764 17th Annual Conference on Research in Undergraduate Mathematics Education



Table 1: Distribution of faculty in sample submitting logs. 

 Novice/Beginner Advanced/Expert Total 
Future Teachers 12 7 19 
Lower Division 15 7 22 
Upper Division 8 5 13 
Total 35 19 54 

To derive and develop a main theme of instructors’ concerns according to their logs, we looked 
into each log and tagged codes to every incident that represented a concern contained in a log. 
We used the qualitative method of comparing incident with incident (Corbin & Strauss, 2008) in 
the process of coding. As we moved along with coding logs, each incident in each log is 
compared to previous codes for differences or similarities. If the incident is found to have similar 
theme to the previous coded one, we used the existing same code or grouped them together under 
higher dimensional codes. Otherwise, we created new codes and put the incident under a 
different category. After tagging all incidents with codes, we listed all codes that we created and 
merged some of them with more broad conceptual codes for multi-dimensional analysis.  

Findings 
Over the two-year period 30 instructors submitted 69 incidents in their logs on concerns they 

had when they designed IBL assessments and 33 instructors submitted 107 incidents on concerns 
related to quizzes, tests, or exams. Each incident was assigned to one of three categories of 
concerns: Item Design/Assessment, Course/Resources, and Student difficulty.  

Designing Assessments  
The categories of concerns about designing assessments and its frequencies are shown in 

Table 2. First, an analysis of concerns in the area of ‘Designing assessments’ shows that the most 
frequently cited category of concern was ‘Item Design/Assessment’ (62%, 43/69). The concern 
labeled ‘Item Design/Assessment’ refers to the challenge of creating/designing specific 
problems/tasks, or it can refer to concerns about the individual assessment itself in an IBL 
environment. Specifically, 42% (18/43) of the ‘Item Design/Assessment’ incidents were about 
designing good problems for a specific math subject or problems that accurately reflect the 
teacher's purpose (e.g., “Wanted to create an assignment that have more conceptual values than 
being computational.” Log4.3_ A). Another 28 % (12/43) of these incidents were about 
difficulties with adjusting the level of assessment (e.g., “I am still struggling to design 
appropriately challenging problems that are better targeting group work.” Log1.3_A). The 
second most frequently reported concerns in the area of ‘Designing assessments’ comprised 
concerns about ‘Course/Resources.’ This category represents the challenges that arise from the 
ways that IBL courses differ from other courses or that arise from a lack of IBL resources (23%, 
16/69, e.g., supporting materials for designing the assessments, grading tools, adequate time for 
IBL tasks). This category encompasses a wide range of concerns caused by institutional 
responsibilities or course-level challenges rather than by student assessment itself. For example, 
31% (5/16) of all of the concerns that were tagged in ‘Course/Resources’ are about grading IBL 
assessment (e.g., “I am having my student give oral presentations, and I wanted to determine an 
effective way to score these presentations. I am trying to find a way to give a fair grade based on 
the students work.” Log2.5_B). These concerns reflect the need of a fair scoring system that 
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integrates various types of IBL assessments, including oral exams, student presentation, and 
take-home exam. We assigned these concerns into the category of ‘Course/Resources,’ because 
the solution to these would require course-level improvements and resources rather single 
assessment-level solutions. In addition, 25% (4/16) of all comments were about time 
management, that is, the teacher's challenges in managing time for IBL-based teaching.  

Finally, 14% of the comments (10/69) about ‘Designing assessments’ concerns among all of 
the tagged incidents in the logs over two year period were about student difficulty/level. We 
defined this category as the concerns that instructors see their students are experiencing as they 
take an IBL assessment or understand the concept of IBL. 
Table 2. Frequency of Concerns on Designing Assessments (N = 69) 

Category Frequency (%) 
Item Design/Assessment 
(Desigining good problems, Appropriate level) 

43 (62%) 

Course/Resources (Grading, Time management, 
lack of resources) 

16 (23%) 

Student Difficulty/Level 10 (14%) 
Total 69 (100%) 

Using Quizzes, Tests, or Exams 
In contrast with the concerns about ‘Designing assessments,’ the most frequently cited 

category of concern in the area of ‘Quizzes, tests, or exams’ among the three major categories 
comprises concerns about ’Student Difficulty/Level.’ Fifty-six percent (60/107) of the incidents 
were about the students’ poor performance on quizzes and exams or concerns about the students’ 
lack of preparation (e.g., “Students just hadn't prepared well enough for the exam,” Log3.7_D). 
Thirty percent (32/107) of the tagged concerns were about ‘Item Design/Assessment’, that is, the 
challenges that teachers encounter while creating various types of IBL-based assessments (e.g., 
balancing question types, creating multiple-choice questions or take-home exam). The remaining 
14% (15/107) were concerns about ‘Course/ Resources’. A typical example of a course-related 
concern is the increase in the teacher’s workload (e.g., "These quizzes and exam corrections have 
been time-consuming, and would not be possible without the help of an excellent TA this 
semester." Log2.3_E). See Table 3. 
Table 3. Frequency of Concerns on using Quizzes, Tests, or Exams. 

Category Frequency (%) 
Student Difficulty/Level 60 (56%) 
Item Design/Assessment 32 (30%) 
Course/Resources 15 (14%) 

Total 107 (100%) 

Our analysis suggests two trends. First, Beginner or Novice (BegNov) instructors have more 
concerns about IBL-based assessments than do the Advanced or Expert (AdEx) instructors, and 
AdEx instructors have more concerns about their students (student performance, difficulty) than 
about themselves as compared to the BegNov instructors. Second, instructors who are teaching 
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low division (LD) courses tend to have more concerns in general than do the instructors who are 
teaching courses for future teachers (FT) or upper division (UD) courses. As a next step in our 
analysis, we will be determining whether these differences between groups are statistically 
significant. 

Discussion 
Overall, regarding concerns about ‘Quizzes, tests, or exams’, most instructors were worried 

about the students rather than about themselves or external resources. For example, instructors 
were more concerned about their students’ preparedness or about the students’ poor abilities in 
the new IBL environment than they were about their own preparedness or their ability to lead 
IBL instruction. However, relatively few instructors mentioned the students’ low performance or 
difficulties as concerns that they have when they design IBL assessment. During the design 
stage, they focused more on their knowledge of creating/designing good problems. This result 
might be consequential to the nature of the questions that we used. In other words, the pre-
determined name of area ‘Designing assessments’ might cause instructors to focus on 
themselves, because the main agent of designing is the instructors, whereas ‘Quizzes, tests, or 
exams’ reminds them of more of the general difficulties in solving IBL problems. In addition, 
many instructors seem to have concerns and feel pressure due to their view of what is ‘IBL’. 
Most of them feel very much inclined to use ‘IBL’ assessments (although this definition is not 
very clear), but regard these assessments as conflicting with standard assessments (define) or 
requiring too much additional work. 

Questions for the Audience 
1. We categorized instructors’ concerns by merging similar concerns and creating higher level 

of code. What could be other conceptual layered codes that could be used to capture 
essentials from logs as well as differences between concerns? 

2. We collected not only concerns but also solutions. However, most solutions instructors wrote 
were too generic (e.g., “spend too much time” or “find a good resources”) or not useful (“I 
have no idea”). What types of questions could be added to the logs so that we can utilize 
collected solution data for further analysis of their concerns or their perception about IBL 
assessments? 
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Deploying Tasks Assessing Mathematical Knowledge for 
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Abstract. Mathematical knowledge for teaching (MKT) has been shown to be a measurable construct 

impacting instructional quality and student outcomes. The primary examples that educators have for MKT tasks are 
those that were designed and validated for assessment purposes. It is not known to what extent features of a task that 
support its use as assessment may support or hinder its use in instruction. We examine this tension by studying the 
use of two such MKT tasks in a course for prospective teachers. Key considerations for using MKT tasks in 
professional preparation tasks were how the MKT task represents teaching practice and the possible purposes of 
using that representation in teacher education.  

  
Purpose 

In recent years, evidence has been amassing that K-12 mathematics instruction is impacted by teachers' 
knowledge (e.g., Baumert et al., 2010; Hill, Rowan, & Ball, 2005; Rockoff, Jacob, Kane, & Staiger, 2011). These 
studies, demonstrating positive relationships between teachers' knowledge and student outcomes, point to the 
importance of mathematical knowledge for teaching (MKT) (Ball, Thames, & Phelps, 2008) as a form of 
professional knowledge of content. However, the relationship between MKT as a measurable construct and MKT as 
a learnable, teachable body of knowledge requires more study if teacher education programs are to prepare teachers 
in MKT (National Academy of Sciences, 2010).  

Assessment of knowledge relates to – but is distinct from – knowledge development.  One reason why it may be 
difficult to bridge the gap between research on MKT and the practice of teacher education is that prevalent examples 
of MKT, such as the Learning Mathematics for Teaching instrument (e.g., Learning Mathematics for Teaching, 
2008) were originally designed for assessment, and were often generated based on data from practicing teachers. 
This situation suggests potential difficulties for the use of such MKT tasks in preparation programs; the tasks may 
not match with prospective teachers' perceptions of teaching practice, and features of the tasks that are valuable in 
assessment may be less appropriate for teacher education.  Our research addresses the questions:  What features of 
an MKT assessment task, which represent teaching practice, can be support for using the task in instruction? What 
about these features can be in tension with using the task in instruction? 

 
Theoretical and conceptual perspectives 

This paper takes the perspective of the theory of mathematical knowledge for teaching outlined in Ball, Thames, 
and Phelps (2008), which continues earlier work by Shulman (1986) building an understanding of the professional 
knowledge base required by teaching. Mathematical knowledge for teaching is the mathematical knowledge 
required to carry out the recurrent work of teaching. Such work may include, for example, analyzing student work, 
giving an explanation, or selecting an example.  

Tasks created for MKT assessment often include pedagogical context: the task presents a teaching scenario 
whose features are intended for use in solving the task (e.g., Baumert et al., 2010; Hill, Schilling, & Ball, 2004). 
This context constitutes much more than just window dressing for a traditional mathematics problem, and in fact 
situates the test taker in ways that partially define the construct being tested.  Features of this context include the 
content, students, and instructional purpose; such features orient the test taker to approach the task as a legitimate 
problem of teaching (Lai, Jacobson, & Thames, 2013; Phelps, Howell, & Kirui, 2013). 

To know that an MKT task functions well as part of an MKT assessment, it must be validated as capturing 
professional knowledge for mathematics teaching.  The MKT tasks discussed in this paper were designed for 
assessment under the Bill and Melinda Gates funded Measures of Effective Teaching (MET) project (Bill and 
Melinda Gates Foundation, 2012), and validated under Kane's (2006) validation framework (Gitomer, Phelps, 
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Weren, Howell, & Croft, in press). Kane (2006) specifies, however, that both target population and intended use are 
key components of a validity argument, suggesting it would be problematic to assume tasks validated for assessment 
uses with in-service teachers are valid for instructional uses of either in-service or preservice teachers. However, 
these and other similar assessment tasks (for example, the Learning Mathematics for Teaching tasks) currently 
constitute the main body of examples used by educators to understand MKT.  

We investigate the use of MKT tasks, whose answer requires bringing MKT to bear on the solution process, as 
a resource for teaching and learning (c.f. Brousseau, 1997). How a task is set up by an instructor to use prospective 
teachers' prior knowledge and experiences, as well as how the task is enacted, that is, how an instructor directs and 
scaffolds the prospective teachers' work, impacts what prospective teachers learn from working on an MKT task 
(Stein, Grover, & Henningsen, 1996). The set up and enactment consist of instructional interactions: the interactions 
between the content, the instructor, the learners, and the environment. This study uses the conception of teaching as 
the management of instructional interactions between teacher, content, students, and the environment (Cohen, 
Raudenbush, & Ball, 2002). We use intended MKT task to refer to the original version of a task, and enacted MKT 
task to refer to the version of the task used in instruction (cf. Stein et al., 1996). 

Data and Method 
To examine the affordances and tensions that MKT tasks designed for assessment can bring to instruction, 

particularly the management of interactions between instructor's purposes, the MKT tasks, and teachers, we used 
data from a semester-long mathematics methods course for prospective high-school teachers which emphasized 
MKT and during which MKT assessment tasks were used by the instructor as curricular material. Primary sources 
include audio recordings of the lessons, planning notes, and slides used in the 14 lessons that semester. Secondary 
sources include pre and post lesson interviews with the instructor who taught the course. The instructor used MKT 
assessment tasks from the MET project in 2 lessons, and in 9 others used MKT tasks of her own design based on her 
exposure to MET and LMT generated tasks.  For clarity, in this paper we will refer to the instructor who taught this 
course, who is one of the authors, as instructor, to the prospective teachers enrolled in the course as prospective 
teachers, to the named teacher described in an MKT task as teacher and to the implied students described by an 
MKT task as students.  

Design of Analysis: Interaction between Instructional Purpose and MKT Task 
In this paper we discuss two cases of the interaction between an MKT task and the instructor’s purposes, 

illustrating how the interactions of these played out in instruction in ways that reveal both the tensions and the 
affordances around the use of such materials. The two cases are oriented around the MKT tasks titled “Kane” and 
“Anderson”, named for the hypothetical teacher in the task scenario.  

As Hiebert and Grouws (2007) write, teaching consists of "classroom interactions among teachers and students 
around content directed toward facilitating students’ achievement of learning goals’’ (p. 372). How learning goals 
are emphasized and tasks are managed influence opportunities to learn (Hilbert & Grouws, 2007).  Sleep (2012) 
introduced the notion of "steering instruction towards the mathematical point" – work a teacher does to ensure that 
students are engaged in intended mathematical work that serves the learning goals.  We use the notion of "steering 
instruction" toward intended work with MKT.  Interaction between teacher purpose and curriculum material plays 
out in instruction – our point is to illustrate specific ways in which these interact when the curriculum material is 
MKT problems and to analyze whether there are specific attributes of either problem or purpose that make certain 
types of interactions more or less likely. 

We consider the MKT task itself to be one input to each episode of instruction; a set of codes was developed to 
describe each MKT task in terms of its implicit purposes, types of student work represented, and other relevant 
features. All MKT tasks utilized in the course were coded, but our analysis is restricted to the two lessons in which 
MKT tasks originally drafted for assessment purposes were used in their original form. This restriction is partly 
motivated by our observations that these tasks, because they were drafted for a specific and different purpose, have 
more clearly defined descriptors independent of their use in this course. Other MKT tasks, because they were 
adapted or created by the instructor to begin with, are more difficult to analyze in terms of how their original form 
interacted with the instructor’s purpose because they were not utilized in an original form that was entirely free of 
adjustment. It is also partly motivated by practical concerns. Assessment tasks are the form in which much recent 
work around MKT exists and is publicly available, and an understanding of how these existing resources can be of 
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use in teacher education opens the door for a rich set of resources to become available for use in this way.  
We consider the instructor’s purposes to be a second input to each instructional situation. The instructor's 

purposes are described in detail, based on the data records, and were similarly coded descriptively as to the nature of 
each purpose. Finally, we look at the outcomes, which are the episodes of instruction as they played out in the 
semester course. We coded transcripts of the course for evidence of interactions between the instructor’s purposes 
and the underlying features of the MKT tasks. We take it as given that there are interactions between the MKT tasks 
and the instructor’s purposes – our goal here is not to provide evidence that the teacher’s purpose interacts with 
curricular resources – rather it is to describe the nature of these interactions, with particular attention to points of 
tension and to interactions that are suggestive about the usefulness of MKT tasks more generally.  

Example MKT Task and Episode of Instruction 
We find it helpful in describing our methods to ground the discussion in an example from the data. In the 

section that follows, we discuss the Kane task, an MKT task used in the course, and how instruction around this task 
unfolded. We then use this example throughout to clarify our coding and analytical decisions.  

The Kane task is typical of other MKT assessment tasks in its use of an instructional scenario to set the stage 
and in its presentation of records of practice, in this case examples of student work, as stimulus for the test taker to 
respond to. The work to be done here is mathematical, as the task is to determine whether the reasoning is correct; 
this mathematical work is situated in a teaching context. Teachers and non-teachers alike might be called on to solve 
equations correctly. Only teachers, however, would be called on to evaluate unconventional solutions techniques 
produced by others, particularly in a context where the presentation of the work might be unclear or incomplete.  We 
begin by describing the task itself, then present a summary of the data collected in the form of a teaching episode in 
which the instructor used this task in a course for prospective teachers.  

The Kane task. The Kane MKT task (see Figure 1) asks the reader to analyze five given examples of student 
work, all of which lead to a correct solution. For each example, the essential question to answer is whether the steps 
shown, which vary in detail and clarity, correctly lead to the given answer.  

The student work shown in options (A), (C), and (E) is correct. The approach shown in (A) typifies a 
conventional approach, although the variable is on the right rather than left hand side of the equation just prior to 
solving for x.  However, such a choice is often made by students in order to make it possible to work with positive 
rather than negative coefficients when solving for a variable. Not all steps are shown; for example, the test taker has 
to infer that 5x has been added to each side of the equation in the first step. However, valid arithmetic properties can 
be used to justify each line of the student's work. The work in (C) is more detailed. The student has subtracted 13x 
and added 10 to both sides of the equation, and prior to solving, the variable terms are expressed in the left hand side 
of the equation. The student completes solving the equation by multiplying by –1/18, which is correct although 
probably not the most common student approach. The student in (E) solves similarly, showing work and using 
routine notational convention to indicate additive inverses.  

Option (B) is more difficult to follow as less work has been shown, but it appears the student has added "unlike" 
terms on each side, for example, obtaining the sum 3x from adding –5x and 8. Although the student coincidentally 
arrives at the correct answer, the solution is not correct. Option (D) shows a similar mistake. In this case, the student 
combined unlike terms only on the right hand side, again arriving at a correct answer only coincidentally. 
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During a lesson on solving multistep equations, Ms. Kane asked her students to solve the 
equation –5x + 8 = 13x – 10. While walking around the classroom looking at what the students were 
writing, she noticed several different strategies.  For each of the following student solutions, indicate 
whether or not the work provides evidence that the student is reasoning correctly about this problem. 

(A) 

 

(B) 

 

(C)

 
(D) 

 

(E)

 

 

 

Copyright © 2012 Bill & Melinda Gates Foundation and Educational Testing Service, all rights reserved.     

Figure 1. The Kane Task 
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The common student mistake showcased in this MKT task is that of "combining unlike terms". This 
misconception is often related to purely procedural instruction in which students learn as a rule that addition can be 
performed only between "like" terms but that multiplication can be performed on “unlike” terms. The underlying 
mathematical idea is that combining "like" additive terms is possible because terms are "like" when their variable 
factor is the same, and this variable factor (here, x), can be factored (making way for the use of the addition 
operation on coefficients) and then distributed. The records of practice (student work)  presented also provide a 
space for thinking about a number of issues that an instructor might raise if sharing this MKT task with a class of 
prospective teachers. An instructor might use the opportunity to focus on diagnosing not just the errors but also the 
non-errors; what do the students who made mistakes likely already understand? The three correct solutions vary 
from one another in mathematical structure, providing an opportunity to discuss what makes a solution strategy 
conventional or unconventional, whether or in which contexts this should matter, and whether solutions strategies 
are fully general or apply to only subsets of problems. They also provide examples of approaches students might 
typically take, and illustrate that even simple problems can elicit correct student responses sufficiently complex that 
a teacher must work to make sense of them. The variation in how much work is shown is also typical of students, 
and provides an opportunity to think about correctness versus completeness of solutions, the difficulties teachers 
encounter in trying to follow student work, and the use of notational conventions (such as, for example, writing the 
division of both sides on the equation in a single step) that help or hinder the reader of a solution in trying to follow 
the work. Activity with this MKT task could also allow for discussion of how one can diagnose, on the basis of 
written work, what a student might be doing more generally.  

In addition, the embedded instructional purpose implies certain values about teaching. For example, implicit in 
the task situation is the idea that teachers should be examining student solutions at the individual level, and that 
understanding what students might understand or not understand is important work of teaching. Implicit in the 
scoring (that the work in (A), (C), and (E) "provide evidence that the student is reasoning correctly", and that the 
work in (B) and (D) does not) is that a solution that is correct but not detailed can be sufficient, at least in the 
instructional situation outlined in the task.  

That artifacts of student work are presented in the task has potential to be both useful and problematic in using 
such a task with novice teachers. Examining student solutions to a mathematics problem is unquestionably part of 
the routine work of teaching mathematics, and the authenticity of this particular task situation hinges on how 
authentic the artifacts of student work are. If seen as authentic, the artifacts are examples of the types of things that 
students do with such problems and may help novice teachers to appreciate the range of responses and what it takes 
to respond to them. On the other hand, because the teachers may have little experience with student work, the 
situation may not ring true if they do not believe that students actually take such approaches.  This concern is 
supported by analysis of MKT assessments showing that MKT tasks associated with analyzing student work 
differentiate more strongly between in-service and pre-service teachers, suggesting that pre-service teachers may not 
have the necessary MKT to address such tasks, or to be able to approach the problems from a teaching perspective 
(Phelps, Howell, & Schilling, 2013). 

Vignette: The Kane task in instruction. What happened when the instructor used this task in a course for 
prospective teachers?   

At the beginning of the lesson, the prospective teachers worked on warm-up problems, one of which was the 
Kane task. The prospective teachers were asked first to respond to the student-level task “solve the equation –5x + 8 
= 13x – 10” and then to respond to the Kane task itself. The instructor had planned for the Kane task to serve as a 
context for practicing the work of assessing and diagnosing student understanding. Additionally, she wanted 
teachers to learn to frame diagnoses of student understanding in terms of underlying mathematical properties and 
laws.  Her reasoning for this was that if the prospective teachers could learn to view routine exercises such as 
solving –5x + 8  = 13x – 10 as involving procedures that have a conceptual basis, perhaps they would be able to help 
their future students do the same, thus heading off some of the errors shown in the task.   

As the prospective teachers' discussion wound down, the instructor called the class to attention. Before 
launching into the mathematical diagnoses, she wanted to make sure that the prospective teachers would work from 

774 17th Annual Conference on Research in Undergraduate Mathematics Education



	   	   	   	   	  

	   	   	   	  

6	  

	  

a common understanding of which solutions were correct and which were incorrect. The instructor asked the 
prospective teachers, "Are there any questions about the fact that (B) and (D) show incorrect reasoning, and (A), 
(C), (E) show evidence of correct reasoning?"  

Unwilling to judge the students' work as either "correct" or "incorrect," Marisa said that the student showed 
"some understanding." Karen agreed: "It looks like they knew to move, to add, the terms to one side. They got rid of 
the –10 and then got 3x. I thought maybe it was a copy error so they did understand but they just had the wrong 
problem. So it was correct reasoning, but the problem was incorrect. That's how I saw it." In considering what a 
student might have understood, Marisa and Karen concluded that there may have been at least partial understanding. 
The options available to choose from -- "does provide evidence" and "does not provide evidence" – were not 
sufficiently nuanced for the point they wanted to make, which was that there is some evidence that some reasoning is 
correct and insufficient evidence to conclude that the reasoning is definitely incorrect. 

However, Marshall responded, "It could well have been a copy error, like they rewrote the line incorrectly, but I 
think what's more likely is that they had a misconception about like terms. What I think is likely is that the students 
combined 13x and –10 and got 3x out of that. So I think that shows there's not complete evidence that the student 
shows understanding." Marshall later noted that this misconception "happened on larger scale" with 5x and 8. 

Jonathan commented that perhaps all the students were "getting to the right answer" because the solution to the 
equation is x = 1. 

At this point the instructor transitioned the discussion from answering the Kane task to an extended purpose of 
using Ms. Kane's students' work to diagnose the underlying mathematical laws or properties that the students might 
have misunderstood.  She had hoped that the prospective teachers would see that incorrectly adding "unlike" terms 
is related to students not thinking about summing "like" terms as an application of the distributive property, and that 
this might serve as an example of how attention to the underlying laws can actually provide a conceptual basis for 
understanding simple algebraic procedures that colloquial but succinct descriptions like “combine like terms” lack.  

Several prospective teachers pointed to procedural aspects of the students' work. Melissa commented about the 
student work in (D) that "they know how to add the same thing to both sides, so they add 5x to both sides, and then 
they divide both sides by 8."  Isabelle added that, "Along with that, I think the student knows to get like terms on 
both sides."    

One prospective teacher pointed at a difference between mathematical properties of addition and multiplication. 
"I think that students might be confused because you can multiply 3x times 2, but you can't add 3x plus 2. So they 
can get confused – 'Why can't I add and subtract like terms?'"  This comment begins to touch on the idea that the 
instructor was aiming for, but still in colloquial language more like that a student would use, and not in the 
mathematically precise language the instructor was hoping for. 

The instructor reframed the prospective teachers’ comments in terms of mathematical principles, saying that the 
students perhaps understood inverse operations, but not necessarily how to add the terms in the equation.  She then 
pointed at the prospective teachers' activity throughout their work on the Kane task, saying, "How we did this was 
put ourselves in the students' shoes. We thought about what they've seen before, what steps they took, and why. 
Another thing we did was look for patterns. Finally, we thought about common rules and how they might have not 
been applied correctly. ... Three common rules that are often misapplied are distributive property, adding fractions, 
and simplifying expressions. We just saw these."  The instructor then moved on to another activity. 

In what ways did the instructor’s purposes interact with the MKT task in the enactment of instruction? Clearly, 
the instructor had multiple purposes in using the task. One was simply to engage the prospective teachers in 
answering the task as written, a task that requires analyzing the student work samples to decide if they are correct. 
Another related purpose was to engage them in practicing the skill of diagnosing student thinking, including what 
students do understand as well what they don’t. And a third purpose was to engage the prospective teachers in 
thinking about the underlying mathematical properties that justify the procedures the students were misapplying. All 
three purposes make sense in the context of the given MKT task, although only the first matches the purpose of the 
task as originally presented as an assessment task. Why is the second purpose achieved by the instructor but the third 
is not?  While a number of factors are certainly at play in the instructional episode, our focus is on the interaction of 
the instructor’s purposes and the task features. Did the framing of the student work, for example predispose the 
prospective teachers to talk about the work samples in student-friendly language, undermining the instructor’s 
efforts to focus them on mathematical properties expressed in mathematical language? We examine in this paper, 
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more generally, what features of an MKT assessment task support or limit the task’s use in instruction. 

Coding Pedagogical Context of MKT Tasks 
We define the pedagogical context of an MKT task as the elements of teaching and learning provided in the text 

of the task (Lai et al., 2013; Phelps, Howell, and Kirui, 2013). Following Lai, Jacobson, and Thames  and Phelps, 
Howell, and Kirui, we analyzed the text of each MKT task to identify the purpose of the actor portrayed in the task 
(usually a named teacher), instructional records of practice such as student work, student background, and the way 
in which instruction as portrayed in the MKT tasks is organized; these elements, as a set, capture the pedagogical 
context in tasks including those of LMT and MET  assessments (Lai, Jacobson, & Thames, 2013). Table 1 provides 
a summary of the codes used in this analysis, using the Kane task as an example when possible. 
 

 
Table 1. Codes used in this analysis. 

Pedagogical context code Description Example 
Purpose of the actor portrayed in the 
task (usually a named teacher) 

Purpose within MKT tasks for 
actor or hypothetical teacher in the 
pedagogical context of the task, as 
stated or implicit in the task text. 

Determining whether or not the 
given samples of student work 
provide evidence that each student 
is reasoning correctly about the 
task.  

Primary records of practice include 
records to which other 
(supplementary) records respond. 
Cases where only one record is 
presented are coded as primary. 

Primary and supplementary 
records of practice are 
distinguished by whether one 
depends on the other. For 
example, if the scenario describes 
a problem the teacher assigned 
and then shows student responses 
to the problem, the problem is 
coded as a primary record and the 
student work as supplementary 
records.  

Asked her students to solve the 
equation: 

−5x + 8 = 13x − 10. 
 

    
Supplementary instructional records 
of practice 

Records in response to a primary 
instructional record, e.g., student 
work on an assigned task where 
the task was also given. 

Student work on the task, e.g., 
−5x + 8 = 13x − 10 

8 = 18 x- 10 
18 = 18x 

1 = x. 
Student background Background information given, 

possibly including information 
about when in a unit of instruction 
the given instructional moment 
occurred, the grade level of the 
students, or particular concerns 
the teacher might have.  

No example provided in the Kane 
task. The instructor later uses the 
Kane task students' 
misconceptions as a premise for an 
activity. For this activity, the 
students misunderstanding of 
aspects of solving multi step 
equations is information about the 
student background.  

Organization of instruction Information about the nature of 
instruction, e.g., involving group 
work, circulating, discussion. 

Walking around the classroom 
looking at what the students were 
writing.  
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Coding Instructional Purposes of MKT Tasks 
We define an instructional purpose as a purpose – such as a message that prospective teachers were to take 

away or the reason for doing something – stated by the instructor about an MKT task, either in the text of planning 
notes or spoken aloud to the prospective teachers in instruction.  

One of the instructor’s purposes associated with the use of the Kane task, for example, mirrors Ms Kane’s 
purpose as represented in the pedagogical context: "to practice determining whether students' work provides 
evidence of correct reasoning." The instructor states this as a goal for the class in her planning notes and interview 
about this lesson. A closely related purpose was for prospective teachers "to practice analyzing student thinking by 
using sample student work to consider what the student might understand and not understand." This goal statement 
was extracted from the instructor's statement to the prospective teachers, "Now we'll get to student thinking. So the 
goals here are to practice analyzing, assessing, responding to, and soliciting student thinking. We're going to start 
with analyzing student thinking by using a sample of student work." The planning notes further specified that the 
"goal" of the Kane task was to "use a sample of student work to consider what the student might understand and not 
understand."  

Another purpose associated with the use of the Kane task was for prospective teachers "to understand that 
common mis-applied 'rules' include distributive property, especially with negatives and variables; adding fractions, 
especially with variables; and simplifying expressions of the form ax+b or a+bx." When the instructor concluded the 
activity on the Kane task, she stated, "We thought about common rules and how they might have been applied 
correctly ... Here are three examples... the distributive property. Adding fractions. Simplifying expressions. This is 
what we just saw." The accompanying slide gave more detail about each of these "examples" of commonly mis-
applied rules. 

After coding the data for evidence of the instructor’s purposes for use of each of the MKT tasks, we then 
described these purposes with brief text descriptors and analyzed the set of descriptors for trends. We noticed five 
distinct kinds of purposes for the instructor's use of MKT tasks. Below we describe each type. Table 2 summaries 
these five kinds of purposes with examples. 

Knowledge of mathematics, mathematics teaching, or pedagogy.  This code describes cases where the 
instructor’s purpose in using the MKT task is specific to the content (mathematical or pedagogical) that it 
showcases. For example, the task might emphasize attributes of mathematical topics or illustrate the difference 
between procedural and conceptual approaches.  

Modeling good teaching practice. This code is applied to cases in which the instructor uses the MKT task as 
an opportunity to model good teaching practice, either by showcasing good teaching by the implied teacher of the 
task or by herself modeling practice around the task. For example, the task context might model attentiveness to 
unconventional student solutions on the part of the teacher even if it is not explicitly stated that the implied teacher’s 
goal is to be attentive to unconventional solutions.  

Norms and responsibilities to advocate. The instructor uses the MKT task as part of an argument, generally 
explicit, for particular norms or responsibilities of the teaching profession. 

Practice by prospective teachers.  This code describes cases where the instructor’s intention is that the 
students practice some skill, whether mathematical, pedagogical, or both. 

Showing that a situation can or does occur in teaching practice. This code describes instructor purposes that 
indicate the instructor is using the MKT task or some component of it as evidence that something can or does 
happen. This includes purposes where what is being illustrated is types of student responses to a situation.  
 
Table 2. Types of instructor purposes associated with instruction using MKT tasks. 

Purpose type Examples 

Knowledge That “gathering like terms” is an application of the distributive property. 

Model To model how a teacher might think about a problem from the student’s point of 
view in order to understand the student’s work. 
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Norms and responsibilities To argue that focused questions are important because they are a resource for 
helping students build confidence and see their own progress. 

Practice To practice analyzing student thinking by using sample student work to consider 
what the student might understand and not understand. 

Show That students misapply "rules" such as the distributive property, especially with 
negatives and variables; adding fractions, especially with variables; and 
simplifying expressions of the form ax + b or a + bx.  

 

Coding Role of MKT Task in Instruction 
To investigate the role of MKT tasks in instruction, we analyzed the use of the MKT task by the instructor. In 

particular, we examined instructional interactions between the instructor's purposes, the prospective teachers' 
actions, and the MKT task in which the use of the pedagogical context of MKT tasks was visible. Such interactions 
were coded according to the ways in which the task was an affordance relative to the instructor’s purposes, and for 
the ways in which there was tension visible in the instructor’s use of the task. In many cases, an interaction was 
considered to have both affordances and tensions. Our interest was less in whether an interaction was coded for 
affordance, tension, or both, and more in characterizing the ways in which these affordances and tensions played out 
and what features of the MKT task and of the instructor’s purposes might influence the interaction.  

Example. An example of an interaction can be seen in the class’s work with the Kane task. The records of 
practice (student work samples) from the Kane task engaged prospective teachers; prospective teachers evaluated 
the hypothetical students' work as intended and cited specifics in supporting their claims about what the students did 
or did not understand.  The prospective teachers even went further than required by the task as written by using the 
records to determine the ways in which students demonstrated understanding or not, and used them as a common 
reference from which to hear and respond to other prospective teachers' contributions. The instructor was later able 
to use this discussion about the records of practice to introduce a heuristic for diagnosing student work that included 
considering what a student may or may not understand. This supported one of the instructor’s purposes, that the 
prospective teachers practice  diagnosing student work. On the other hand, the instructor’s knowledge purpose was 
for the prospective teachers to know the specific underlying mathematical laws. Although the prospective teachers 
identify where evidence of lack of understanding occurs in the records provided by the MKT task, their descriptions 
of these locations tended to be procedural (e.g., "They know to get the x on one side", "They know to add the same 
thing to both sides") rather than statements about exactly which mathematical laws or properties are being used in 
valid or invalid ways.  Each procedural error could be described in terms of the mathematical laws or properties 
being misused but the instructor does not seem to be able to move the prospective teachers' contributions toward the 
end of identifying specific mathematical laws.  This example illustrates how interactions between the instructor’s 
purposes and the MKT task can simultaneously be cases of affordance and tension, often because there are multiple 
purposes layered on a single activity as enacted in instruction. What is of interest here is the ways in which these are 
affordances and tensions, which is explained in the following section. 

Instructional use of pedagogical context as affordance for an instructor's purpose.  We analyzed the 
transcripts, audio records, and visual records to determine whether and how instruction used elements of 
pedagogical context towards a purpose of the instructor. Recall that "instruction" refers to interactions between the 
instructor, the prospective teachers, and the MKT task. Here, by "used toward a purpose of the instructor", we mean 
that a counterfactual absence of the element would remove the context for statements made by or actions taken by 
the instructor or prospective teachers that supported the purpose of the instructor, i.e., what happened would not 
have been likely to happen absent the specific contextual element. Such actions might include those that generated 
conviction towards the purpose or promoted engagement with activities that supported the purpose. In the above 
example, the records of student work were clearly necessary in order for the prospective teachers to engage in the 
instructor’s purpose of them practicing diagnosing student work. We also argue that an implicit purpose of the Kane 
task, Ms. Kane’s desire to determine whether students understand, is an element used in instruction, as the situation 
would make little sense without this contextual framing. 
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We also recorded whether a modified version of the element was used in this sense; in these cases, we also 
recorded a description of the modified element.  In coding whether an element of the pedagogical context of an 
MKT task was used for a purpose, we used Y, XI, XT, N, and O to denote categories of use. Table 3 summarizes 
these codes. Additionally, we described how the instructor and prospective teachers' interactions with elements 
moved instruction towards the purpose. The records of practice in the example above moved instruction toward the 
instructor’s purpose by providing material that engaged the prospective teachers and offered them a reference point 
for discussion. The implicit purpose may have moved instruction toward the purpose in a more subtle way, by 
creating a scenario in which the close examination of student work is reasonable and plausible, allowing the 
prospective teachers to go further and analyze the student work samples more deeply than was required to answer 
the MKT task itself. 

Instructional use of pedagogical context as source of tension for an instructor's purpose.  We characterized 
the instructional use of the pedagogical context as a source of tension analogously: if a counterfactual absence of the 
element would remove the context for statements and actions that moved away from a purpose of the instructor. We 
described how the instructor and prospective teachers' interactions with elements moved instruction away from the 
purpose. In reviewing our descriptions, it seemed that these situations had a common structure: the interactions 
seemed to position related but distinct aspects of instruction against each other. We then described the aspects of 
instruction positioned against each other. In the example above, the use of records of practice (student work 
samples) written in simulated student handwriting and presented as authentic student work supported the prospective 
teachers’ engagement but may also have supported their use of student-like language to describe the student 
thinking, using phrases like “get x on one side” because this is the way the envisioned students would think about 
this step. But by doing so, the records may be positioned in opposition to the goal of describing the underlying 
mathematical laws, simply because this is not the way one might generally approach the task of dealing with 
authentic student work from real students.   

In the next section, we discuss affordances and tensions that can arise in instruction when using MKT tasks. We 
then discuss the ways that the assessment-related features of MKT tasks – the elements of pedagogical context and 
their use in solving the intended MKT task – each can combine with instructional interactions as affordances and 
tensions relative to the instructor's purposes. 
 
Table 3. Categories of use of elements of pedagogical context in instruction. 

 
Categories of use of elements of pedagogical context of MKT task and their meanings 

Y The instructor or prospective teachers used an element of pedagogical context as provided by the 
MKT task 

XI The instructor used an introduced or modified element of pedagogical context as provided by the 
MKT task 

XT The prospective teachers used an introduced or modified element of pedagogical context as 
provided by the MKT task 

N Neither the instructor nor prospective teachers used an element of pedagogical context that was 
provided by an MKT task 

O This element of pedagogical context was not provided by the MKT task and no such element was 
introduced by either the instructor or prospective teachers. 

 
Results: Instruction and MKT Tasks in Professional Preparation 

Our analysis suggested several affordances and tensions that can arise in instructional interactions around 
an MKT task, and that elements of pedagogical context contribute to these affordances and tensions. In this section, 
we present an additional vignette describing how the Anderson task played out in instruction. We then describe 
affordances and tensions, and finally we discuss the role of elements of the pedagogical context of MKT tasks in 
instruction.   
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Vignette: The Anderson Task in Instruction 
Instruction in this lesson used the Kane and then Anderson task. Instruction with the Kane task was described 
previously. Here we describe instruction with the Anderson task (Figure 2). 

 

Mr. Anderson asked his students to simplify the 
following algebraic expression. 
 

 
 

 
 
One of his students gave the incorrect solution shown 
to the right. 
 
Of the following descriptions, which best characterizes 
what is wrong with this student's work? 
 
(A) This student used the distributive property 

incorrectly. 
(B) This student confounded mixed fractions with 

factors. 
(C) This student forgot to cancel common factors in 

several places. 
(D) This student needs to apply a more formal 

procedure by finding the common denominator 
and then adding all terms. 

 

Copyright © 2012 Bill & Melinda Gates Foundation and Educational Testing Service, all rights reserved.     

Figure 2. The Anderson Task as Intended 
 

Anderson task as intended. The Anderson task asks the person solving it to characterize an error made in a 
sample of student work on an algebraic expression. The task statement is shown in Figure 2.  

To solve the Anderson task, one must take stock of the student work line by line, deduce the reasoning that the 
student might have taken, and then evaluate the way the student may have employed mathematical properties in 
valid or invalid ways. Like the Kane task, the student work "skips" steps, particular between the second and third 
line, right before the error occurs; however, the expressions in the second and third line are equivalent, so there is no 
evidence in these beginning lines of lack of understanding. Note that in the third line, the student has – correctly – 
expressed the quantity "3" as the mixed fraction "2 6/6." The fourth line contains the error, where the notation for 
mixed fractions has been – incorrectly – interpreted as notation for multiplication. Had this expression actually 
represented multiplication, then the notation 2 6/6 + 2/6 would have represented a quantity equivalent to the product 
2(6/6 + 1/6), a usage of the distributive property that would have been mathematically valid.  Thus option (A) does 
not accurately describe the source of error. However, the expression does not represent multiplication, and therefore 
the option that best characterizes "what is wrong with this student's work" is option (B): "This student confounded 
mixed fractions with factors."  

Although the student's work does show several fractions whose denominator and numerator have common 
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factors, there are no errors that result from using the fractions as is, so option (C) does not capture the error. Finally, 
the error made in the work does not directly stem from the absence of finding common denominators as much as it 
does the notation for fractions and products, so option (D) does not capture the error either.   

Anderson task as enacted. The instructor modified the Anderson task to ask prospective teachers to predict 
how student misconceptions might surface instead of asking to diagnose a specific instance of student error.  The 
instructor displayed a truncation of the Anderson task on a slide, reading: 

 

Mr. Anderson asked his students to simplify this expression:  
 2(a + 1) 2 6a – 2 
 3a + 3 – 3a – 6 . 

 

 
Prior to this display, the instructor had assigned, as part of the warm-up to the lesson, the simplification of this 

expression. There are many possible ways to simplify this expression. One is: 
 

 2(a + 1) 2 6a – 2 
 3a + 3 – 3a – 6  

 
2a 2 2 6a 2 = 3a + 3a + 3 – 3a – 6 + 6 

 
2 1 = 3 + 3 – a + 3  

 

= 4 – a . 

 
The instructor had asked one of the prospective teachers to write down a correct simplification on the board, 

and then made sure that the prospective teachers understood that the original expression was algebraically equivalent 
to 4 – a. Following the warm-up, the instructor discussed the Kane task (Section 3.2.2). As she brought the Kane 
activity to a close, she emphasized that students commonly misconstrue: 

• Distributing, especially involving negatives and variables; 
• Adding fractions, especially with variables; and 
• Simplifying expressions of the form ax + b or a + bx. 
She then showed the slide with the truncated Anderson task and prompted the prospective teachers:  
"Mr. Anderson asked his students to simplify this expression, which simplifies to 4 – a. What are some things 

that could go wrong with this?" 
While planning for this lesson, the instructor modified the Anderson task in response to several prior 

experiences using the task with preservice and novice teachers for the purpose of practicing diagnosing student work 
and showing a type of student error that can result from weak understanding of arithmetic operations and properties. 
During these instances, those working on the Anderson task would correctly identify the line in which the student 
work shows evidence of incorrect reasoning. However, the discussions in each of these instances had sidelined the 
instructor's purpose for using the task when preservice teachers or beginning instructors would question whether the 
records genuinely exemplified student work, often claiming that a student who had performed work shown in the 
mathematically correct lines would be unlikely to err as the hypothetical student had. In the instructor's prior 
experiences using the Anderson task, doubt as to the authenticity of the MKT task's presentation of student work had 
been consistently in conflict with the purpose of the task as exemplifying a kind of student error.   
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Regardless of the sample student work, the premise that the algebraic expression had been given to students to 
simplify had not previously contributed any distraction. Moreover, the types of misconceptions that could surface 
while simplifying this expression include those that arise in the Kane task. No matter the process used, simplifying 
the given expression to 4 – a requires understanding the distributive law (e.g., in working with the term 2(a+1)/3 or 
–(6a – 2)/6), adding fractions involving variable expressions, and correctly simplifying variable expressions. Thus 
the Anderson task as enacted – given the contextual purpose of predicting student errors – had the potential to 
reinforce the instructor's purpose of identifying common student misconceptions using a mathematical frame.  

Anderson task in instruction. After closing discussion on the Kane task, the instructor displayed the algebraic 
expression from the Anderson task and asked the prospective teachers to predict misconceptions students might 
display when simplifying the expression. The prospective teachers had previously simplified this expression 
themselves during the warm up. 

"You don't distribute the negative to the –6a and the 2," Tracy said.  
"I think it's also tricky because there are two different denominators. When I started it, I didn't even see that 

there were two different denominators, so I did 3a but then there was a 6 and I had to go back and multiply by 2," 
Brittany observed, reflecting on her own solving process. 

The instructor responded, "Yes, this would be a tough first problem." Brittany had put herself in the student’s 
shoes, a key approach that serves one of the instructor’s purposes, but in a way that does not support the purpose of 
framing student misconceptions in mathematical terms. Instead she described the work from her own point of view 
as though she were the student, and using language a student would likely use. 

"Along the lines of the negative sign, it's hard for students to decide where the negative sign goes, so a lot of the 
time, they'll put it on the top and the bottom," Jason commented, taking an approach that moves back to the teacher 
viewpoint. 

A chorus from the prospective teachers affirmed Jason's answer, "Oh yeah ... nice." 
The instructor reframed, using more mathematically precise language, "So it's adding –2 divided by –3a." Jason 

agreed, but did not follow up to describe the structure of the misconception, and the conversation then shifted once 
more back to the prospective teachers' own work. 

"I found it interesting that in Tara's work and in Danica's work, there was no finding common denominators, 
because you don't need to for this problem. The 2/3a and the 2/3a, there are two of them, and one of them is 
positive, and one of them is negative, so they cancel out," Marshall observed about a possible simplification. 

The instructor responded, "Which is a point about the design of the problem." Marshall's articulation provided 
insight into why the expression is equivalent to an algebraic expression without fractional expressions.  Looking for 
and making use of structure such as this is a useful mathematical practice, and is part of the work of designing 
examples for students to use as well as understanding the mathematics. Thus Marshall was engaged in reasoning 
pertinent to the work of teaching; but not in a way that served the instructor’s purpose of practicing mathematical 
articulations of student misconceptions. 

"Yeah. Yeah. It's weird. So if the goal of Mr. Anderson is to get students working with common denominators, 
then this might not be the most useful assessment. But if that's not his goal, then it might be useful," Marshall 
finished.  His reasoning displayed thoughtfulness about goals and problem design that served a broad purpose of the 
instructor for the course as a whole: cultivating in prospective teachers the norm that teaching actions should be 
predicated on goals. Marshall's comments demonstrate a tension between the purposes of the instructor more 
generally, which they serve, and moving the instruction of the moment toward the lesson's intended purpose which 
they do not. Tara and Danica commented on Marshall's observations. 

"One of the reasons I didn't find common denominators is because I know a lot of times ... I don't remember to 
multiply everything even when I should, so for students, especially when it's a longer expression like this, where 
there are 4 terms, trying to multiply out to find the common denominator would cause all kinds of errors," Danica 
said.  Danica's comment also showed reasoning that teachers engage in at times: helping students perform work 
accurately. Next, Tara commented, "In what could go wrong, everyone's referencing the negative, but I was thinking 
about combining everything at once. I wasn't sure what level," moved the instruction back to the embedded purpose 
of the enacted Anderson task. However, her answer displayed uncertainty about what was being asked.  

The instructor replied that all grade levels of student errors are appropriate to think about; the types of 
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misconceptions that arise in working with algebraic expressions in lower grades can persist into upper grades. Tara 
responded, "This isn't necessarily shown, but if you add 3a+1 on the bottom, then they split it up and get 2/3a + 
2/1".  She modified the problem herself to name a type of error that occurs, although the language used ("bottom", 
"split it up") again does not directly capture the underlying mathematical principles. 

After these comments, the instructor closed the discussion about the Anderson task. Below, we examine the 
instructional interactions further, arguing that these interactions constitute particular affordances and tensions that 
were used and could have been used toward the instructor's purposes. 

Affordances and Tensions in Instruction with MKT Tasks 
As with any instructional resource, using MKT tasks in instruction can bring about affordances and tensions to 

manage toward aims of professional preparation. Our analysis suggested five such affordances and tensions that 
interactions between the instructor’s purposes and the pedagogical context of the MKT tasks raised. In the next 
sections, we first provide an overview and then discuss examples of each. We then synthesize observations about the 
role of the elements of pedagogical context in their interaction with purposes of the instructor.  

Five affordances and tensions to manage. Several affordances and tensions were present in the data and 
visible in the Kane and Anderson examples presented. First, the elements of pedagogical context provided an 
"anchor" for public reasoning about teaching, allowing prospective teachers to hear each others' reasoning in a 
particular teaching context. Second, the pedagogical context engaged prospective teachers.  Although at times the 
engagement seemed to introduce ideas and framings that were not aligned with the instructor's purposes, there were 
also times that the engagement did serve the instructor's purposes. Third, the pedagogical context provided a 
structure for the instructor to use with prospective teachers as well as for the instructor to create further MKT tasks 
that demonstrate related work of teaching that occurs in a particular context, extending the task. Fourth, the richness 
of the pedagogical context contributed to unexpected or unexpectedly complex interpretations of two kinds of work: 
the work expected of the prospective teachers as preservice prospective teachers enrolled in a methods course, and 
the work of teaching as perceived by the prospective teachers when using an MKT task. We describe such 
interpretations as “uncharted” for the instructor in the sense that the instructor may not have been able to anticipate 
or steer the interpretations toward an intended purpose for the MKT task. Finally, uncertainty of purpose was 
visible.  The prospective teachers' perception of the work of teaching can conflict with the way the task represents 
that work of teaching.  In uncharted interpretations of work, the prospective teachers may not be aware of 
differences between the work that they engage in and the intended work; they engage with their interpretations 
unproblematically although these interpretations may be in tension with the instructor’s purpose. When there is 
uncertainty of purpose, prospective teachers may realize that their interpretation of teaching does not cohere with the 
interpretation they read into the MKT task. These affordances and tensions are summarized in Table 4. 
Table 4. Affordances and Tensions to manage in instruction. 

Affordance Description 

 Anchor example Instructor or prospective teachers used the specifics of the pedagogical context 
as basis for reasoning about the work of teaching; the instructor used specifics 
of the pedagogical context of the MKT task itself as basis for modeling a 
practice. 

 Engaged prospective 
teachers toward 
purpose 

Prospective teachers willingly reasoned within the given pedagogical context 
in a way that engaged them in the work of teaching. Moreover, in these 
instances, the prospective teachers' experience working on the MKT task 
supported a purpose of the instructor, even if the purpose was broader than 
that given by the pedagogical context or a particular planned purpose specific 
to that MKT task. 

 Structure for work  Instructor uses pedagogical context provided by MKT task, including the 
purpose, to structure prospective teachers' in-class activities around the work 
of teaching; can include extending the purpose to structure prospective 
teachers' in-class activities around related work of teaching not originally 
specified by the MKT task's context. 
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Source of tension Description 

 Uncharted 
interpretations of 
work 

Prospective teachers engage in work that differs from the work intended (by 
the instructor) without realizing that they are doing so. Consequently, the 
prospective teachers' interactions with MKT task may not be straightforward 
for the instructor to use toward an intended purpose, or the interactions 
sideline an intended purpose of the instructor.  

 Uncertainty of 
purpose 

The prospective teachers' perception of the work of teaching described by the 
MKT task comes into conflict with the way the task represents that work of 
teaching.  

 

 

We now discuss examples of each affordance and source of tension. 

Anchor example. The pedagogical context of an MKT task can provide a common basis for public reasoning 
about teaching. In the Kane episode, when Marisa and Karen explain why they believe Ms. Kane's student displays 
some understanding, they point to the students' equating 13x – 10 with 3x. Marshall counters that it is more likely 
that this algebraic manipulation evidences student misconception, and goes on to point out that it happened on a 
"larger scale" in Ms. Kane's class. In providing concrete examples of student work, the pedagogical context was an 
anchor for the prospective teachers' reasoning; the context facilitated the prospective teachers’ discussion by 
providing reasons for agreements and disagreements. They were able to hear and respond to each other in a form of 
professional problem solving around the specific mathematics as presented in the MKT task. 

Operationally, we coded instruction with an MKT task as using the pedagogical context as an anchor example if 
the instructor or prospective teachers used the specifics of the pedagogical context as a basis for reasoning about the 
work of teaching, or the instructor used specifics of the pedagogical context as a basis for modeling a practice.  

The reasoning facilitated by anchor examples, as well as experiences of working within the pedagogical context 
provided by an MKT task, can serve to engage prospective teachers toward a particular purpose of the instructor, as 
we discuss next. 

Engaged prospective teachers toward purpose. The representation of teaching by an MKT task can 
potentially engage prospective teachers in ways that align with specific purposes of professional preparation. Not 
only are the prospective teachers' interactions with the Kane and Anderson tasks lively, there are also several 
instances when the prospective teachers' experiences and reasoning exemplify the purposes that the instructor had 
intended to convey in this lesson or across the course. Tracy’s comments about the distributive property in the 
Anderson task and Ryan’s comments about confusing surface similarities between multiplication and addition 
properties are examples of this. In each case, they are framing observations about potential student misconceptions 
in mathematical ways – one of the purposes of the instructor. When Marshall argued that the value of the algebraic 
problem shown in the Anderson task depends on Mr. Anderson's goals, and goes on to provide examples of goals 
and arguments for and against the task based on these goals, he models a disposition that the instructor had set as a 
broad goal for the course: that decisions in teaching should be predicated on teaching purpose.  

We coded instruction with an MKT task as engaging prospective teachers toward a purpose if prospective 
teachers willingly reasoned within the given pedagogical context in a way that engaged them in the work of teaching 
and if the prospective teachers' experience working on the MKT task supported a purpose of the instructor. This 
might be an immediate purpose or one broader than that of the specific MKT task. Cases in which the potential to 
engage toward a purpose was only partially fulfilled are also coded, because this is an instance in which the 
affordance can be seen, even if it was not fully realized in this particular enactment.  

The reasoning and experiences that come out of engagement with an MKT task support an instructor's use of 
the MKT task to structure activities for the prospective teacher in ways that help unpack the work of the profession. 

Structure for work. An MKT task can be used as a resource for elaborating work of the profession that relates 
to but extends beyond the literal pedagogical context provided. Strictly speaking, the pedagogical context of the 
Kane task only included five short instances of student work responding to a fairly routine problem; a succinct 
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description of a teacher's actions (walking around a room); and a singular purpose of determining whether or not the 
students' work provides evidence of correct student reasoning.  However, the interactions with this context as set up 
by the instructor branched out into teaching actions and reasoning that are related but not directly provided by the 
MKT task, as well as pursuing nuances to the work of teaching directly described by the MKT task. The instructor 
uses the Kane task not just to provide practice for determining evidence of correct student reasoning. The instructor 
also structures work around the Kane task – first asking prospective teachers to  "Solve the equation 5x + 8 = 13x – 
10" as a warm-up, then to do the Kane task as written, then to discuss teachers' reasoning about students' reasoning 
as represented by the Kane task . All this serves as a potential platform for articulating the mathematical principles 
that would underlie correct student reasoning, and as a potential way for prospective teachers to experience a 
process of diagnosing student reasoning (starting from analyzing the student work for evidence of misconceptions to 
identifying the misconceived mathematical principles). The instructor's use of the Anderson task provides another 
example of using MKT tasks for structuring work; in this case, the instructor uses the Anderson task as an 
application of potential learning from the Kane task. She used the Kane task to situate mathematical framings that 
prospective teachers could then work with the Anderson task to see further examples of – and to go beyond 
recognizing examples of misconceptions to anticipating specific misconceptions.  

We coded instruction with an MKT task as an affordance for structuring the work if the instructor used the 
pedagogical context provided by MKT task, including the purpose, to structure prospective teachers' in-class 
activities around the work of teaching; this can include extending the purpose to structure prospective teachers' in-
class activities around related work of teaching not originally specified by the MKT task's context. 

The interactions that arise within an activity's structure are shaped by prospective teachers' interpretations of the 
work expected of them, and this interpretation draws from prospective teachers' perception of the work of teaching. 

Uncharted interpretations of work. As with instruction in general, instruction using MKT tasks can lead to 
interpretations of the expected work that may be in tension with an instructor's perception of how to use the MKT 
task towards a particular purpose. While interactions with the Kane task and Anderson task led to mathematical 
framings of student misconceptions, which aligned with the instructor's purpose, the interactions also led to other 
work that related to the work of teaching but would have needed further management to support the instructor's 
purpose for that lesson directly. In their interactions with the Kane and Anderson tasks respectively, Jonathan and 
Marshall analyzed the mathematical structure of the problem but did not make use of their observations to make 
inferences about specific student misconceptions of mathematical principles.  In the use of the Anderson task, 
Brittany and Danica both discussed features of their own work that, though potentially relevant to teaching with the 
Anderson task, did not directly serve the instructor's purpose for using the Anderson task. These raised tensions 
between the prospective teachers' interpretations of the work, the purposes embedded in MKT tasks, and the 
instructor's purposes. 

We coded instruction with an MKT task as containing uncharted interpretations of work when prospective 
teachers engaged in work that differed from the work intended (by the instructor) without realizing that they were 
doing so. Consequently, the prospective teachers' interactions with MKT task were not straightforward for the 
instructor to use toward an intended purpose, or the interactions might have sidelined an intended purpose of the 
instructor.  

At times, the prospective teachers may attend to the purpose embedded in an MKT task in a way that is aligned 
with the purpose, but which raises doubt in their mind as to what the purpose means. 

Uncertainty of purpose. The representation of teaching purpose in an MKT task can differ from prospective 
teachers' perception of teaching in ways that lead to uncertainty in how to approach an MKT task. In the Kane task, 
Marisa1 and Karen perceived the Kane task's embedded purpose of evaluating student reasoning to be about student 
understanding, not just the validity or invalidity of reasoning. Consequently they found the binary constraint of 
"correct" or "incorrect" to be insufficiently nuanced. In the Anderson task, Tara understood that a purpose was to 
articulate potential instances of misconceptions, but she was unsure of what might count as an appropriate answer 
because the grade level was unspecified. Neither the originally intended nor the enacted versions of the Anderson 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  All	  names	  are	  pseudonyms	  
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task specfied the grade level, although the intended Anderson task was originally authored as part of an assessment 
of mathematical knowledge for teaching algebra at the middle and secondary levels. However, students' algebraic 
misconceptions that first arise in elementary and middle school levels can persist into their secondary education, and 
in this sense, the level does not need to be specified for either the enacted or intended Anderson task. 

We coded instruction with an MKT task as containing uncertainty of purpose when the prospective teachers' 
perception of the work of teaching described by the task comes into conflict with the way the task represents that 
work of teaching.  

Affordances and tensions as tensions and affordances. Interactions with an MKT task afford instruction 
toward a purpose when they elicit reasoning or provide experiences that align with that purpose. Interactions with an 
MKT task are a source of tension when they elicit reasoning or provide experiences that move away from that 
purpose. As stated previously, we coded instructional use of pedagogical context as an affordance or source of 
tension if the counterfactual absence of the element would remove the context for statements or actions that moved 
toward or away from a purpose. Furthermore, we noted that interactions that were a source of tension seemed to 
position related but distinct aspects of teaching against each other. 

Affordances and tensions can, respectively, be tensions and affordances. For instance, an anchor example can 
engage prospective teachers in work of teaching away from a particular purpose, even if it is legitimately work of 
teaching.  

Interactions of Elements of Pedagogical Context with Instructional Purposes 
Our central question in this paper is how the features of an MKT assessment task support or limit the task’s use 

in instruction. The prior section outlined affordances and tensions visible in instruction as we coded them in the 
data. Clearly many other factors mediate the use of a task in instruction besides the task’s features, including the 
instructor’s purposes but also the ways in which the instructor uses the task and manages the conversation. Our goal 
is not to draw conclusions about this instructor’s particular use of the MKT tasks but to use it as a lens to see what 
such a use might reveal about the usefulness of task features. In this section we consider these affordances and 
tensions as they pertain to the features of the MKT tasks themseles.  

Purpose provided by MKT task. Instruction structured around MKT tasks can use or extend the task’s 
original purpose by using the purpose to orient the prospective teachers' work.  For instance, in the Kane task the 
purpose of evaluating evidence of understanding was extended during instruction to the broader purpose of 
considering what a student might understand or not understand based on evidence in the student’s written work, and 
this purpose guided the prospective teachers’ work. On the other hand, if there is a conflict between teaching as 
represented by MKT task and prospective teachers' perception of teaching, this can create tension for the instructor 
to manage. For example, Marisa and Karen extend the purpose of the Kane task unprompted, possibly because for 
them the purpose of understanding the student’s reasoning in a more nuanced way was a more reasonable purpose 
for Ms. Kane to have than simply deciding if the reasoning was valid or not. As it turns out, this extension was in a 
direction intended by the instructor, allowing her to capitalize on what might otherwise have been a problematic 
misunderstanding of what the Kane task was asking for. 

One purpose of each original MKT task is to orient the test taker in to how to use the task. Used in instruction, 
the purposes given explicitly to the prospective teachers by the instructor also oriented the prospective teachers 
work, but in a less constrained way. The purpose of the original MKT task is clearly constrained in order to support 
its use in assessment – a clear and defensible answer depends on a clear statement of what is to be evaluated. But 
this feature, key for assessment purposes, may be inauthentic to teaching practice in ways that create tension when 
the task is used in instruction. In our data, the instructor’s adjustment to a more open-ended purpose was productive, 
but also added instructional complexity for the instructor to manage, and the potential for the prospective teachers to 
become confused about the purpose.  

Another way in which purpose was in tension with instruction is when the prospective teacher's perception of 
teaching was in conflict with the task's representation of teaching. For example, the Kane task, by asking the 
question "Does provide"/"Does not provide", implicitly sets this as a reasonable criterion on which to judge student 
work. Prospective teachers working on this task sometimes did not know how to answer the question because they 
believed that each of the sample pieces of work potentially showed some understanding.  In a sense, attending to all 
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evidence of student understanding, even when it is weak evidence or evidence of partial understanding, is a more 
authentic and desirable way to interact with student work than the interaction assumed by the original task. Again,  
because the MKT task was originally constructed for assessment purposes, it requires a clear task statement. It may 
seem obvious to say that the closer the instructor’s purpose was to the purpose of the intended MKT task, the more 
likely it was that this feature would support use in instruction. However, one can imagine this happening with any 
task that prompts the test taker similarly, and we argue that this is potentially a point on which it is likely tensions 
will arise between teacher education purposes and the original assessment purposes for which many MKT tasks 
were written.  

Records of practice. Records of practice (both the given mathematical problem and the student work samples 
around that problem) engaged prospective teachers in ways that provided relevant experience that promoted 
conviction toward purposes of the instructor. They provided reference points for prospective teachers to hear and 
respond to each other’s contributions. On the other hand, they were also a source of complexity in instruction in the 
way that prospective teachers' engaged with them, as can be seen in the work prospective teachers engaged in 
around the Kane task. Prospective teachers might meta-analyze the problem in ways that do involve interesting 
MKT but that don't have to do with the point at hand, as for example in Jonathan's analysis of design of records in 
Kane. Such records can also serve to “set the tone” for further conversation. For example, discussion about the Kane 
task used student-like language and the instructor was unable to bring more mathematically precise descriptions to 
bear; the use of student work to ground the conversation may have set the tone that prospective teachers were 
discussing things as students would, creating tension with the instructor’s purpose of moving the discussion away 
from student-talk.  

Records of practice provide anchor examples in that prospective teachers and the instructor can base arguments 
on them and for the instructor to use in modeling practice. In the Anderson task, for example, Marshall analyzed the 
task for information that it may or may not provide about students' understanding, and hypothesized about Mr. 
Anderson's purpose based on the specifics given, creating potential for a more general discussion about teaching 
purpose within the very specific examples given.   

For records of practice to be effective reference points, they need to be believable. This was a motivation, for 
example, for the instructor’s modification of the Anderson task based on past use of the task in which prospective 
teachers did not believe the represented student error to be consistent with the level of the student’s work as 
represented in other steps. This is a particularly important point of tension to note because preservice teachers do not 
necessarily have the experience needed to correctly determine if records of practice are authentic, particularly when 
they represent student work, and this is often precisely why an instructor might want to introduce such examples. In 
the Kane task, for example, the instructor was able to use the task to help prospective teachers articulate a particular 
and common student error (combining like terms), and part of doing so was showing that students do in fact commit 
such errors. The primary mechanism for doing this was through the records of practice. Had the prospective teachers 
found the representations to be inauthentic, however, as they did in past use of the Anderson task, they might instead 
have simply dismissed the work as something student don’t do and been unable to engage. Authenticity is in part a 
feature of the given MKT task – often there is research-based evidence that supports claims that particular student 
errors are or are not, in fact, common errors – but authenticity is also in part in the eye of the beholder. 

Student background and organization. Neither of the example tasks provided in this paper provided detail 
about the level of the students in the task scenario or the class organization; the information given contributes to the 
plausibility of the task. For example, in the Kane task it is not strictly necessary for solving the task to know that the 
teacher is walking around the classroom, but this image creates a context in which the question “valid or not” is a 
reasonable question to be asking. These features were, however, important in the instructor’s extension of the tasks 
to new purposes, as, for example, in the Anderson task, where considering the level of the students became a part of 
the conversation about anticipating what kinds of mistakes a student might be likely to make.  

Discussion: Future Directions for Professional Preparation Using MKT Tasks 
This work begins to bridge the research and practice gap between MKT assessment and MKT as curriculum for 

teacher education, and contributes to the conceptualization of MKT as mathematical knowledge integrated with 
teaching purpose.  The reported study provides examples of MKT assessment tasks used as a resource for MKT 
instruction, which has significance both theoretically and practically.  Prior research shows that the integration of 
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teaching purpose is essential for valid assessment; this study further shows that this integration can be used to 
communicate MKT as professional knowledge because it can be used to problematize mathematical aspects of 
teaching.  Such examples are of direct use to instructors in considering whether and how to make use of MKT 
assessment tasks now becoming publicly available, such as the released MET measures (Bill and Melinda Gates 
Foundation, 2012). Further, there is evidence of interest within the professional community from instructors who 
wish to use these assessment-oriented materials in instruction. 

Positing that instruction with MKT tasks is shaped by interactions between purpose and pedagogical context, 
next steps for research and practice include mapping the instructional geography of purposes that can be interpreted 
from MKT tasks, developing norms and processes for designing MKT tasks for use in instruction, and improving 
practitioners' abilities to manage instructional interactions towards particular purposes. These next steps can 
leverage current directions in the field of mathematics education and teacher education. 

The uses made of the Kane and Anderson Tasks in this study suggest that multiple purposes can be interpreted 
from and layered onto the context provided by an MKT task, by both instructors and prospective teachers. In 
general, whether students are K-12 students or prospective teachers, and the teacher is an instructor or a K-12 
teacher, there are many purposes that a teacher may choose to use a particular activity toward. Some of these 
purposes may turn out to be better suited to the intended activity than others. As well, students may read purposes 
that are different from the purposes of the teacher into the intended activity.  There may be an instructional 
geography of purposes – that, given a particular purpose, some purposes are more likely to pair well with the given 
purpose than others, and that some purposes are more likely to be misread into a given purpose than others. Such 
purposes would be located nearer to the given purpose than others in the geography, which would be located farther 
away. For instance, in terms of purposes of the instructor to provide to prospective teachers, it seems plausible that 
the purpose "determine whether the work shown below provides evidence of correct reasoning" would be near the 
purpose "diagnose the misconceptions that may be likely given this work", and these purposes might be near the 
purpose "select or design an example that would elicit a this misconception". We believe that if this geography of 
purposes is to be useful, it must be closely aligned with current efforts to decompose teaching practice into teachable 
and learnable components (e.g., Grossman et al., 2009; Ball & Forzani, 2009), as well as efforts to understand the 
work of teaching that arises when teaching particular subjects (e.g., Herbst et al., 2009).  

Designing MKT tasks for instruction brings with it, at a minimum, the challenges of developing an initial 
concept of the pedagogical context, revising the task to clarify the features of the pedagogical context and how they 
function toward a solution to the MKT task that is true to the work of mathematics teaching, and ensuring that the 
alignment of features and mathematics teaching remains through revisions. Writing valid MKT assessment tasks is a 
time-consuming process; one expert item writer estimates the total time required to produce a usable MKT 
assessment task at around 10.5 hours (B. Weren, personal communication, January 10, 2014). It makes sense to 
leverage the time and energy put into design for multiple uses, even where those uses may require adjustment of the 
task itself. Recent efforts at writing MKT assessment tasks show promise that the process can become less time 
intensive by building on efforts of previous MKT task writing processes (Herbst & Kosko, 2012). As well, in the 
area of mathematics problem writing, processes for developing mathematics problem writing skills are being 
developed for tasks exemplifying the Common Core content standards, and eventually, practice standards (e.g., 
Illustrative Mathematics, n.d.).These efforts could potentially be leveraged to develop the professional skill of 
mathematics instructors in writing or adapting MKT tasks that can be shared and used across teacher education 
programs. 

Fluency in the geography of purposes and in constructing MKT tasks both contribute to improving instructors' 
ability to manage instruction with MKT tasks. The geography of purposes could help instructors mediate how 
prospective teachers may interpret purposes, design modules for prospective teacher preparation and development, 
and structure curricula for teacher education. By having a better grasp of nearby purposes that prospective teachers 
may read into a given purpose, instructors may be better able to predict how prospective teachers may interpret an 
MKT task, observe prospective teachers' interpretations more readily, and use prospective teachers' interpretations to 
help reinforce or craft learning goals for prospective teachers.  

A set of MKT assessment tasks has been recently released by the Measures of Effective Teaching (Bill and 
Melinda Gates Foundation, 2012), and other validated assessments are being developed; in time, these efforts may 
also release sample tasks. These validated tasks constitute a dominant representation of MKT and its use to 
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educators. A fluency in the geography of purposes would benefit instructors who want to build professional 
preparation activities from released MKT assessment tasks, or of any other MKT tasks that instructors may come 
across or design.  Understanding the process of constructing MKT tasks may help instructors adapt existing MKT 
tasks to local contexts. Beyond understanding the terrain purposes and the construction of MKT tasks, there is also a 
need to develop pedagogical knowledge for using MKT tasks, such as frameworks for orchestrating discussion. 

Although MKT tasks can convey aspects of the teaching profession and its entailed knowledge and practices, 
the validation of MKT tasks with practicing teachers means that there will be inherent mismatches between MKT 
tasks as assessment and MKT tasks as problems to use in the instruction of preservice teachers. This may be 
especially important where records of practice are presented by an MKT task and where the instructor’s purpose is 
to use these records as examples or evidence of what student work tends to look like. The study further suggests that 
further supports are needed for instructors’ effective use of MKT tasks in instructional tasks. Our findings indicate 
both promise and caution in using MKT assessments as resources for teacher education. 
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Abstract 
The CSPCC (Characteristics of Successful Programs in College Calculus) project is a large 
empirical study, investigating mainstream Calculus 1, that aims to identify the factors that 
contribute to successful programs. The CSPCC project consists of two phases. Phase 1 entailed 
large-scale surveys of a stratified random sample of college Calculus 1 classes across the United 
States. Phase 2 involves explanatory case study research into programs that were identified as 
successful based in part on the results of the Phase 1 survey. During our case study site visits, we 
interviewed calculus instructors and asked a number of questions that prompted them to discuss 
their students. The purpose of the analyses we will present here is to characterize the ways that 
calculus instructors talk about their students. To do so, we will examine instructor survey 
responses and analyze instructor interviews conducted at the case-study institutions (PhD and 
Bachelors granting levels).  

 
 

Study Background and Research Questions 
The CSPCC (Characteristics of Successful Programs in College Calculus) project is a large 
empirical study, investigating mainstream Calculus 1, that aims to identify the factors that 
contribute to successful programs. The CSPCC project consists of two phases. Phase 1 entailed 
large-scale surveys of a stratified random sample of college Calculus 1 classes across the United 
States. Phase 2 involves explanatory case study research into programs that were identified as 
successful based in part on the results of the Phase 1 survey. Specifically, institutions were 
selected based on student persistence (continuing on to take Calculus 2), success (pass rates in 
Calculus 1), and reported increases in students’ interest, confidence, and enjoyment of 
mathematics as a result of taking Calculus 1. This second phase will lead to the development of a 
theoretical framework for understanding how to build a successful program in calculus and in 
illustrative case studies for widespread dissemination.  

During our site visits, we interviewed calculus instructors and asked a number of questions that 
directly or indirectly prompted them to discuss their students. The purpose of the analyses we 
will present in this preliminary report is to characterize the ways that calculus instructors talk 
about their students in an attempt to understand how their perceptions of their students may 
be related to their approach to teaching calculus. To do so, we will examine instructor survey 
responses for all surveyed institutions (of all types) and analyze instructor interviews conducted 
at the selected case-study institutions at the PhD and Bachelors granting levels.  

 
Relation Research literature & Theoretical Perspective 
Our decision to focus on instructors’ views of their students is informed by a belief that teachers’ 
views of students inform their classroom interactions and teaching practices. This notion is 
supported by Blumer’s (1969) perspective of Symbolic Interactionism (SI). The first premise of 
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SI states that, “human beings act toward things on the basis of the meanings that the things have 
for them” (Blumer, 1969, p. 2). From this perspective, teachers act towards students (at least in 
part) based on the meanings that students have for them. For example, if teachers view students 
as disengaged and incapable, this may influence their instructional decisions. This idea is 
supported by empirical research looking at relationships between teachers’ beliefs and their 
teaching practice. For instance, Thompson (1984) presented a case study of a middle school 
mathematics teacher, Lynn. As described by Thompson, the most important factor influencing 
Lynn’s teaching practice was “her low expectations of the students and her pervasive concern to 
get through the day’s lesson in a manner that would minimize the potential for student disruptive 
behavior” (p. 117).  Thompson goes on to state that, “implicit in her [Lynn’s] attitude was a 
belief that little could be accomplished in terms of teaching and learning given the poor 
disposition of the students and the wide diversity in their background knowledge” (p. 117).   
 
Research methods 
Our research team conducted site visits at five bachelors granting institutions and five PhD 
granting institutions (Table 1). While on campus, we interviewed students, instructors, 
administrators, and others involved in the calculus program at the institution.  This report will 
focus on the instructor interviews. We interviewed a total of 54 instructors over the course of the 
10 case study site visits.  
 

Table 1: Institution characteristics 
Institution Highest 

Degree 
Type Unduplicated 

head count 
Calculus 
Class size 

Instructor 
Interviews 

B1  Bachelors Non-Profit 9,000 25-30 7 
B2  Bachelors Public 30,000 30-40 3 
B3  Bachelors Non-Profit 4,500 20-25 6 
B4  Bachelors Non-Profit 4,000 20-28 3 
B5  Bachelors Non-Profit 6,000 25-30 6 
P1  PhD Non-Profit 40,000 30-200 5 
P2  PhD Public 7,500 35-45 5 
P3  PhD Public 31,000 200-250 6 
P4 PhD Public 31,000 30-35 8 
P5  PhD Non-Profit 6,000 30-35 5 

 
 
The first stage of our data analysis (of interviews) involved “tagging” all transcripts by 
identifying the relevant topics addressed by the interviewee in each of their responses. For 
example if an instructor said, “some of my students are not prepared to handle the algebraic 
procedures needed to use the derivative concept on the application problems that we put on our 
common exams” this response would be tagged with the following codes: student subject 
characteristic, assignments and assessments, course coordination, and content. (The scheme 
consists of 24 tags.) Two coders tagged each transcript independently and each response was 
ultimately tagged with the union of tags applied by the two coders. Using these tagged transcripts 
in HyperResearch, we will run reports of all instructor responses that refer to student 
characteristics. We will also run reports of to identify which of these responses also include 
statements about teaching and learning, pacing, assignments and assessments, or other topics 
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that will allow us to contextualize the instructors’ statements about students and examine 
relationships between the instructors’ views about students and their (stated) instructional 
practices. We will then analyze instructors’ comments about their students in order to identify 
categories of meanings that students have for teachers.  Our goal is to develop a taxonomy of 
categories that we can then coordinate with our analyses of the teachers’ instructional practices 
in order to generate conjectures about relationships.  
 
Results of the research 
Survey Results.  There were several questions posed on the instructor pre and post surveys that 
relate to characteristics of students: 
• (Pre) Approximately what percentage of students currently enrolled in your Calc I course do 

you expect are academically prepared for the course? 
• (Pre) Estimate the percentage of students currently enrolled in Calc I that will: (outcome 

options) 
• (Post) Approximately what percentage of your students were prepared for the course 
• (Post) What percentage of students received a C or better? 
• (Post) All students in beginning calculus are capable of understanding the ideas of 

calculus (Likert scale) 
 
Taken as a group, the instructors at selected case study schools (all levels) predicted higher 
percentages of prepared students and higher percentage of successful students on the pre-
surveys. Further, these instructors reported higher levels of preparation and success on post-
surveys. All of these differences were statistically significant. These instructors also expressed a 
higher level of agreement that students in beginning calculus are capable of understanding the 
ideas of calculus. However, this difference was only significant at a .1 level. Of course, the 
differences we see in predicted/reported levels of preparation and success could simply indicate 
that these teachers tend to work with students who are better prepared and more successful. 
Therefore, given the survey data alone, it is impossible to draw any conclusions about the impact 
of the instructors’ views of their students on their practice (and their students’ success). In an 
effort to unearth additional insight into how calculus instructors view their students at the 
selected case study schools, and to better understand what impact this may have on their practice, 
we have begun the process of carefully analyzing our instructor interviews.  
 
Sample of Interview Results and Directions for Ongoing Analysis 
Analysis of the interviews is just underway, but it is already clear that calculus instructors talk 
about students in a variety of ways and that there are relationships between these views and their 
(reported) instructional practices. Below we see three different quotes (all from instructors at 
institution B3. 
 
Dr. Young: Yeah, they’re not good at algebra. It’s getting worse and worse. Yeah. They need an 
algebra class, except they’ve had like 14 algebra classes before now. 
 
Dr. Adams:  I think -- well, I like the age that I teach. They tend to be freshmen. So I get to work 
with students who are in the process of transitioning to college life. 
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Dr. Bell: …when we have so many students coming in with AP Calculus thinking they 
understand calculus and -- well, my experience has been is that they know how to do problems 
mechanically, but their understanding is not very deep. And so that makes it very hard because 
they have this “I already know what you’re going to do” like sort of mentality, and “You can’t 
teach me anything.” And that is a really hard thing to overcome. 
 
From these quotes, we can see that instructors may think about students in terms of their 
academic abilities, their attitudes, and where they are in their lives. Ongoing analyses will enable 
us to add to and refine these categories as well as explore relationships to teaching practice.  
 
Questions for the Audience: 
 
What data might we look at in order to better understand our quantitative analysis of the survey 
questions (e.g., student SAT scores)? 
 
How could we use our student focus group interviews to address our research question? 
   
 
 
References 
 
Blumer, H. (1969) Symbolic Interactionism; Perspective and Method. Englewood Cliffs, NJ:  
 Prentice-Hall 
 
Thompson, A. G. (1984). The relationship of teachers’ conceptions of mathematics and  

mathematics teaching to instructional practice. Educational Studies in Mathematics, 15(2),   
105–127. doi:10.1007/BF00305892 

	  
 

17th Annual Conference on Research in Undergraduate Mathematics Education 795



84

796 17th Annual Conference on Research in Undergraduate Mathematics Education



IMPLEMENTING INQUIRY-ORIENTED INSTRUCTIONAL MATERIALS IN 
UNDERGRADUATE MATHEMATICS 

 
Christine Larson 

Florida State University 
 

Megan Wawro 
Virginia Tech 

 

Michelle Zandieh 
Arizona State University 

Chris Rasmussen 
San Diego State University 

David Plaxco 
Virginia Tech 

Katherine Czeranko 
Arizona State University 

 
Over the past years, research in the RUME community has driven the development of inquiry-
oriented instructional materials in a number of undergraduate mathematics content areas 
including abstract algebra, differential equations, and linear algebra.  Literature at the K-12 
level has documented challenges inherent to scaling up the implementation of this kind of 
instruction.  In this study, we explore how instructors make sense of and implement inquiry-
oriented instructional materials in undergraduate mathematics, and the nature of supports these 
instructors report using and wanting when planning for instruction.  We consider instructors’ 
interpretations and desired supports as they relate to prior pedagogical experience and 
institutional setting.  Data is taken from surveys, interviews, and video-taped instruction of three 
participating instructors at three different institutions as they work to implement two inquiry-
oriented instructional units in undergraduate linear algebra.   
 
Key Words: Linear Algebra, Inquiry-Oriented Instruction, Scaling Up 
 

Over the past years, research in the RUME community has driven the development of 
inquiry-oriented instructional materials in a number of undergraduate mathematics content areas 
including calculus, abstract algebra, differential equations, and linear algebra (e.g., Swinyard, 
2011; Larsen, 2009; Rasmussen & Kwon, 2007; Wawro, Rasmussen, Zandieh, Sweeney, and 
Larson, 2012).  Literature at the K-12 level has documented challenges inherent to scaling up the 
implementation of this kind of instruction, particularly considering the role of institutional 
factors (e.g., Elmore, 2004; Gamoran et al., 2003; Bond, Boyd, & Montgomery, 1999).  In this 
study, which is part of a newly funded NSF grant, our project team explores how instructors 
make sense of and implement two inquiry-oriented instructional sequences in undergraduate 
linear algebra.  Additionally, we identify supports these instructors report using and wanting 
when planning for instruction, and we consider instructors’ interpretations and desired supports 
as they relate to prior pedagogical experience and institutional setting.   

This project will enable us to contribute to a growing body of literature in undergraduate 
mathematics education that considers issues of instructor learning and practice.  Specifically, we 
will consider literature from educational policy and leadership, teacher professional 
development, instructional practice, and instructional design.  In doing so, we hope to move 
toward the development of a framework for sharing and scaling up inquiry-oriented instruction 
in undergraduate mathematics.  

This preliminary report targets two broad goals.  First, we aim to work with participating 
instructors to inform the design of the instructional materials themselves.  This will allow us not 
only to incorporate instructor feedback to refine the materials, but also to better understand the 
ways in which instructors interpret and use these kinds of materials to plan for instruction.  
Second, we aim to work with participating instructors to better understand the kinds of supports 
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that will be needed by future instructors in order to implement the materials as intended.  As 
such, we aim to answer the following research questions:  

1. How do instructors make sense of inquiry-oriented instructional materials in 
undergraduate mathematics? 

2. What forms of support (including material supports and professional interactions) do 
instructors report using, needing, and wanting to accompany these instructional materials? 

3. In what ways do instructors’ prior pedagogical experiences (e.g. training, mentorship, 
teaching experience) and institutional settings (e.g. formal structures of their 
university/college/school/department, departmental culture, informal colleague support) 
relate to instructors’ interpretation and implementation of such materials? 
 

Literature 
Effectively implemented inquiry-oriented instructional approaches have been related to 

improved levels of conceptual understanding and equivalent levels of computational 
performance in areas ranging from K-12 mathematics, to undergraduate mathematics, physics, 
and chemistry (e.g., Rasmussen & Kwon, 2007; Cai, Nie, & Moyer, 2010; Deslauriers, Schelew, 
& Wieman, 2011; Lewis & Lewis, 2005). More specifically, students who engage in cognitively 
demanding mathematical tasks have shown greater learning gains than those who do not (Stein & 
Lane, 2006). Furthermore, Stein and Lane (2006) found that those gains were greater in 
classrooms in which students were encouraged to use multiple representations, multiple solution 
paths, and where multiple explanations were considered; gains were lower in classrooms where 
the teacher demonstrated a process students could use to solve the task. 

Research has shown, however, that instructors often struggle to transition to an inquiry-
oriented teaching style. For instance, Wagner, Speer, and Rossa (2007) investigated the struggles 
that Rossa, a university mathematician with little inquiry-oriented teaching experience, had in 
trying to implement an inquiry-oriented approach to differential equations. These challenges 
included facilitating productive whole class discussions, identifying appropriate learning goals, 
and assessing students’ progress toward these goals (e.g., making decisions about what 
constitutes an adequate student understanding and how/when to move on to a new topic). A 
central theme in this and other research documenting mathematicians’ efforts to implement 
inquiry-oriented curricula is the need for an understanding of student thinking to plan for and 
lead discussions that effectively build on students’ solution strategies (Johnson & Larsen, 2012; 
Speer & Wagner, 2009).  
 

Inquiry-oriented Instructional Materials 
This proposal is part of a larger study that aims to produce (a) student materials composed of 

challenging and coherent task sequences that facilitate an inquiry-oriented approach to the 
teaching and learning of linear algebra; (b) instructional support materials for implementing the 
student materials. Our framework for designing student materials draws on heuristics of Realistic 
Mathematics Education (RME; summarized by Cobb, 2011). First, a task sequence should be 
based on experientially real starting points. In other words, the initial tasks of a sequence should 
be set in a context that enables students to engage in, interpret, and make some initial 
mathematical progress. Second, the task sequence should be designed to support students in 
making progress toward a set of associated mathematical learning goals. Third, classroom 
activity should be structured so as to support students in developing models-of their 
mathematical activity that can then be used as models-for subsequent mathematical activity. 
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Finally, with instructor guidance, students’ activity evolves toward the reinvention of formal 
notions and ways of reasoning about the mathematics initially investigated. This framework 
facilitates a transition from students’ current, informal ways of reasoning about key concepts in 
linear algebra towards more formal, mathematically sophisticated ways of reasoning. 

Following the model described by Lockwood, Johnson & Larsen (2013), the instructor 
support materials for each instructional unit includes rationale for the instructional sequence, 
insight into student thinking, and ideas about implementing the unit. The rationale for these 
features is firmly rooted in the literature (Ball & Cohen, 1996; Collopy, 2003; Davis & Krajcik; 
2005) and has been shown to be useful for instructors (Lockwood et. al., 2013). 
 

Participants & Data Sources 
In this project, we work with three participating instructors at three different institutions to 

implement two instructional units in an intact introductory linear algebra class.  Each 
participating instructor is paired with a member of our project team who was involved in the 
development of the instructional materials.  The purpose of this partnership is to provide support 
for the participating instructor as they plan for instruction with the materials and to obtain 
feedback on planning with and implementing the materials.  In addition, we interview and survey 
each participating instructor to document the setting in which they teach, their pedagogical 
experiences and training, the student populations they serve, and their views of teaching and 
linear algebra.  As part of our efforts to develop instructional support materials, we collect 
information on both how instructors make use of those support materials and additional supports 
the instructors feel would be helpful. This will allow us to embed research-based revisions of the 
instructional support materials into the ongoing work of the project.  

Data collection for the first phase of the project is currently ongoing (to be completed at the 
end of the Fall 2013 semester), and the data set will consist of three primary components.  First, 
each participating instructor will work with his/her project team member to co-plan each 
instructional unit using the instructional materials.  This audio-taped co-planning interview will 
document the instructor’s learning goals for his/her students, the activities he/she intends to use 
with the students (noting any modifications and/or supplementation of the provided materials), 
and how the instructor intends instruction of the unit. If the instructor develops a written lesson 
plan, the cooperating project team member will ask to keep a copy. Second, the research team 
will videotape the instructor participants’ enactment of the units. The camera will be focused on 
the instructor, rather than the students, during this data collection. This will allow the research 
team access to data (other than self-report data from the instructors) to examine difficulties and 
successes within the lessons. Third, the participating instructors will debrief with their project 
team member. This debriefing will be audio recorded. The project member will ask the instructor 
to reflect on the implementation of the unit and will follow a debriefing protocol to specifically 
probe on adjustments made to the plan in teaching the unit and the rationale for those 
adjustments. This approach allows us to collect data on instructors’ implementation of the units 
while also providing them with individualized instructional support. 
 

Methods of Analysis 
To answer our first two research questions about instructor interpretation of materials and 

forms of support, we will perform a grounded analysis (Strauss & Corbin, 1998) of audio data 
from the co-planning and debriefing interviews as well as video of their classroom 
implementation of the units.  Here we will consider the participating instructors’ feedback on the 
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instructional materials, their description of their plans for implementing them, and the questions 
they asked and advice they received from their supporting project team member.  We will 
triangulate this with their video-taped instruction to for additional data about their 
implementation, specifically examining how they facilitated whole class discussion before and 
after students worked on the tasks, the use and introduction of language and notation, and key 
ideas emphasized.  This will help us document and understand the variety of ways in which 
instructors may go about implementing the tasks in their classrooms and modifications they 
might make to the instructional sequence. 

We will rely on comparative case study methodology (Yin, 2003) for our analysis to theorize 
about relationships among instructor background, institutional characteristics, desired support, 
and material interpretation/implementation.  This will draw on data from the aforementioned 
interviews, survey, and video-taped instruction.  For this work, we will develop a matrix to 
analyze key dimensions that we believe to be important contextual factors that might influence 
participants’ instructional decisions.  These include factors such as the nature of the introductory 
linear algebra course at their institution, the student population they serve, and, instructor’s 
pedagogical training and experience, departmental culture.  We can then consider how particular 
ways of interpreting, modifying, and implementing the materials align with these characteristics 
as well as the forms of instructional supports desired and received from their partnering project 
team member. 
 

Questions for Audience Discussion 
• A future goal is to explore what might be meant by “effective implementation” of the 

instructional materials. How might this be defined and measured in such a way that 
honors instructors’ expertise as well as the intent of the materials? 

• What institutional factors might afford or constrain instructor efforts to learn about and 
implement instructional innovations that we have not yet considered here? 
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CALCULUS STUDENTS’ EARLY CONCEPT IMAGES OF TANGENT LINES  

 

Renee LaRue, Brittany Vincent, Vicki Sealey, Nicole Engelke 

West Virginia University 

 

In this study, we use Newton’s method as a means to examine first-semester calculus students’ 

understanding of tangent lines. Within that context, we found that many students had difficulty 

sketching and describing tangent lines. We examined the language students use to describe 

tangent lines as well as their graphical illustrations of tangent lines. Task-based interviews were 

conducted with twelve first-semester calculus students who were asked to verbally describe a 

tangent line, sketch tangent lines for multiple curves, and use tangent lines within the context of 

Newton’s method. Six prominent categories describing students’ concept images of tangent lines 

emerged, and we found that individual students often possessed multiple concept images. 

Furthermore, data shows that these concept images were often conflicting, and students were 

usually willing to modify their concept images in different contexts. 

 

Keywords: Calculus, Tangent Line, Newton’s Method, Derivative 

 

Introduction 

In this study, we examine calculus students’ concept images of tangent lines and how these 

concept images manifest as students use tangent lines to graphically understand the iterative 

process of Newton’s method. We compare students’ verbal and graphical responses when asked 

“What is a tangent line?” with their usage of tangent lines within the context of Newton’s 

method. We found that many students were unable to sketch tangent lines even remotely 

resembling the correct line, making it impossible for them to truly understand how Newton’s 

method works. In some cases, we found that students were willing to modify their understanding 

of tangent lines to fit what they believed Newton’s method was trying to do. 

Existing research about students’ understanding of tangent lines often focused on the 

connection between lines tangent to a circle and lines tangent to a curve (e.g. Biza and 

Zachariades (2010), Páez Murillo and Vivier (2013), Vinner (1982)). Vinner (1982) states that 

most educators use one of two approaches when introducing lines tangent to a curve in calculus. 

The first approach is to assume that the students will intuitively develop the correct 

understanding based on previous knowledge from geometry and will need no specific instruction. 

The second uses the geometrical approach and defines a tangent line as the result of a limiting 

process of secant lines. An instructor using this approach would later make the connection 

between this limiting process and the limiting process used in the definition of the derivative. 

According to Biza and Zachariades (2010), there are two main viewpoints from which to 

approach the study of tangent lines – analysis and geometry. In analysis, “the existence of 

tangent line at a point is a property of the curve at this point,” which they consider to be a local 

perspective (p. 219). In geometry, the tangent line is a property of the line together with the 

entire curve, which the authors consider to be a global perspective. Additionally, they state that 

in order to properly understand tangent lines in any context, it is necessary to hold both 

perspectives at the same time. Biza (2008) discussed these viewpoints when she described 

several specific concepts that may contribute to students’ misconceptions about tangent lines. 

Most notable for our research are her observations that students often believe that tangent lines 

must have only one point in common with the curve and that, when extended far beyond the 
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point of tangency, the line could not intersect the curve. Biza summarized these ideas, saying that 

certain properties of tangent lines that arise in specific contexts were taken by the students to be 

defining characteristics of all tangent lines. 

Theoretical Perspective 

For the design and analysis of this study, we refer to Piaget’s structuralism (1970, 1975), 

which allows us to look at structures as a whole as well as the individual parts that make up the 

structure. For this study, we focus on the individual parts (e.g. tangent lines, intercepts, etc.) that 

make up the structure for Newton’s method. The interview questions were targeted at addressing 

these parts in order to discover the strengths and weaknesses of these pre-existing component 

structures as well as to determine how these parts help students to create an understanding of 

Newton’s method. According to structuralism, students need to be engaged in activities that 

allow them to do something with tangent lines that is reflected in and regulated by the underlying 

structure of its component parts. It is then that students can reflectively abstract to further 

develop that structure as well as strengthen connections between existing structures.  

Piaget uses the terms assimilation and accommodation to describe how new information is 

incorporated into structures that have been previously established. When taking in new 

information, it will either fit into the previously established structure or it will cause conflict. If 

the new information does not fit, the learner must either adjust the new information to fit with the 

existing structure via assimilation, or he/she must reorganize the existing structure to allow for 

the new information via accommodation. It is important to note that assimilation and 

accommodation occur simultaneously (Piaget, 1970). In regards to this research, the materials 

used encouraged students to incorporate the structure of Newton’s method into their existing 

tangent line framework (via assimilation), while also allowing students to modify aspects of their 

tangent line structures (via accommodation). Through this process, the students make 

connections between their understanding of both tangent line and Newton’s method. 

Offering additional insight for our analysis is the work of Tall and Vinner (1981) on concept 

image and concept definitions. Different parts of the concept image are activated depending on 

what the student perceives he needs to access at a given time; students encounter confusion when 

two conflicting parts of the concept image are activated simultaneously. This conflict was 

evident in our research when students struggled to construct tangent lines that touched the graph 

only at the point of tangency while still maintaining a correct slope. These two portions of their 

concept image disagreed, and the learner was required to make decisions about how to handle 

this conflict. According to Vinner (1982), activities that stimulate this type of cognitive 

interference are beneficial for the learner when handled properly.  

Methods 

The participants in this study were twelve first-semester calculus students at a large research 

university in the United States. Volunteers were sought to participate in the research project. 

Twelve students consented to the study, agreeing to participate in a 20-30 minute out-of-class 

interview, which was videotaped for further analysis. Six participants were taking calculus for 

the first time and six had previously taken calculus at the college level or in high school. Of the 

students who had previously taken calculus, not all of them were familiar with Newton’s method. 

During the interviews, the students were asked about prerequisite knowledge related to Newton’s 

method, such as how to construct a tangent line, identify x-intercepts, and interpret 

approximations. They were given a short reading describing the process of Newton’s method and 

were asked to use Newton’s method to graphically approximate the roots of a given function. 
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For this paper, we focus our analysis on students’ graphical understanding of tangent line 

throughout the interview process, specifically attending to the different ways each student 

described a tangent line. The students’ verbal and graphical responses from the interviews were 

organized into a chart format, which helped us to consolidate their responses and highlight 

emergent themes among the participants. We then compared students’ graphical representations 

of tangent lines to key phrases used in their verbal descriptions and examined how these 

representations changed when using a tangent line within the context of Newton’s method. 

Results 

Analysis showed six significant categories for students’ concept image of a tangent line: 

slope perspective, secant lines perspective, horizontal tangent perspective, one point perspective, 

multiple tangent lines perspective, and graph of           perspective. Due to the limited 

space in this proposal, we chose to highlight three of these six categories. Several students 

showed evidence of using more than one perspective and were willing to change their concept 

image based on the task they were asked to perform. 

Slope perspective 

The slope perspective was the most prominent perspective occurring in the interviews, with 

nine of the twelve students being classified with this perspective. Students were classified as 

having the slope perspective if they sketched tangent lines by somehow considering the slope of 

the tangent line or the steepness of the graph at a given point. Interestingly, all of the students 

who consistently sketched correct tangent lines used the slope perspective at some point during 

the interview. Some of these students sketched a correct tangent line at a given point; others 

verbalized that they were considering slope, yet sketched a line that did not have the correct 

slope. Excerpts from interviews with three of these students are located in Table 1, below. 

 

Table 1:  Transcript Excerpts from Students Classified with Slope Perspective 

Aaron I’m just kinda guessing a little bit and putting it not so steep. … I’m not sure 

if it’s actually supposed to be like down more, or actually sloping more. 

Lewis 

(see Figure 1a) 

[looks at his first “tangent” line] It should be probably like this [draws a 

correct tangent line] because the slope is going, it’s, the slope is increasing 

so it actually should look like this. 

Qadan 

(see Figure 1b) 

Um, ok, the slope of the tangent line is the same as the slope of the point 

where it where it intersects. 

 

       
Figure 1a, 1b. Lewis’ tangent line based on steepness of graph (left) and Qadan’s tangent 

line based on the “slope of a point” (right). 
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Students had most recently been using tangent lines to sketch the graph of       based on the 

graph of     . For these tasks, students needed to recognize when the tangent lines had positive, 

negative, or zero slopes and whether the slopes were increasing or decreasing on an interval; they 

did not need to consider the exact placement of the tangent line. The interview forced students to 

use their existing understanding of tangent lines to draw a line tangent to a curve at a specific 

point. Some students were able to do this accurately, while others were unable to correctly 

accommodate their existing understanding of tangent lines with the act of drawing one. 

Horizontal tangent perspective   

The horizontal tangent perspective is a classification for students who, when asked to explain 

what a tangent line is, initially responded by describing or drawing a horizontal tangent line at a 

local maximum or minimum. Seven of the twelve participants were classified as fitting the 

horizontal tangent perspective. When analyzing this data, we hypothesized that the students 

responded with horizontal tangent lines because it was easiest for them to draw or explain in 

words. Upon further inspection, we saw students’ verbal and graphical descriptions revealed that 

the horizontal tangent line played a larger role in how students were thinking about tangent lines. 

Three of the seven students referred to the horizontal tangent in their verbal definition of a 

tangent line. Example statements from their responses are given in Table 2. 

 
Table 2:  Excerpts from Students Using a Horizontal Tangent Line to Define Tangent Lines 

Andrea Isn’t the tangent line whenever you’re finding the derivative and that is the line that 

is horizontal to finding zero? 

Bethany When I think of, when I think of tangent line, I think of, uh, basically of it like 

being horizontal and that’s where it’s equal to the derivative. 

Ted Like, the f prime at x where the uh, where it equals zero. It’s like this [begins 

drawing a horizontal tangent].  

Andrea constructed only horizontal tangents with the exception of one incorrect attempt to 

mimic a non-horizontal tangent line drawn by the interviewer. Even when she was given a point 

on the graph whose actual tangent line would have a negative slope, she still drew a horizontal 

line through that point (See Figure 2). Her concept image of a horizontal tangent dominates her 

mental structure of tangent lines. She is situated in the assimilation process without 

accommodating her existing structure of a tangent line to include non-horizontal tangent lines.  

 

  
Figure 2. Andrea’s horizontal “tangent: 

 

Figure 3. Aaron’s result after “tipping over” 

his horizontal line 
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For Aaron, the horizontal tangent line was a starting point from which he constructed all 

other tangent lines (see Table 3 below and Figure 3 above). Aaron’s graphical and verbal 

descriptions indicate that the horizontal tangent line influenced his understanding of tangent lines. 

Figure 3 shows the tangent lines Aaron drew from “tipping over” a horizontal tangent, an 

example of his use of assimilation by using his understanding of horizontal tangents to create a 

better understanding of other tangent lines. From his graph, we see that Aaron’s adaptation of 

“tipping over” a horizontal tangent line is still not correct, but he was able to move slightly 

beyond Andrea, who believed that all tangent lines were horizontal lines drawn through a curve. 

 

Table 3:  Aaron’s Explanation of How He Placed His Tangent Lines 

Aaron ‘Cause if this is horizontal here, it’s not going to get, you know, if it drops down, 

like straight then you know the tangent line would also be straight down if it was a 

really steep one like that. Then you know my tangent line would be steep… 

Interviewer So you’re starting at the horizontal?  And how do I get from the horizontal to this?  

[points at non-horizontal tangent line] 

Aaron Um yeah, I just kinda take the middle point of it and start moving it down and 

slowly I can imagine in my mind like tipping over a little bit.  

 

One point perspective   

Students classified as having the one point perspective were convinced that the tangent line 

must intersect the entire curve at exactly one point. A student with this perspective believes that 

tangent lines, when extended, may never intersect the curve again. The one point perspective is 

equivalent to Biza’s (2010) “geometric global” category and is similar to Vivier’s (2013) “global 

conception,” where students attend to tangent lines globally and believe they cannot intersect the 

function at any point other than the point of tangency.  

This misconception may be rooted in the terminology used by textbooks to introduce tangent 

lines. Kajander and Lovric (2009) note that several of the textbooks they studied used phrases 

like “touches at exactly one point” or similar wording (p. 175). In Biza’s (2010) study, a large 

percentage of her students showed this sort of reasoning, while only two of our twelve students 

demonstrated this perspective. We believe the difference may be linked to Biza’s students’ 

familiarity with the concept of lines that are tangent to circles, which Biza stated was common in 

the students’ curriculum. Tangents to circles were not a part of the curriculum in our calculus 

course, and when we asked our students about tangents to circles, most did not recall covering 

that material in high school. Another possible explanation for the infrequency by which our 

students used the one point perspective could be due to the instruction in the course. Since our 

instructors were aware of research on this common misconception, it is likely that they addressed 

this misconception in class. Nevertheless, we had two students who held to the one point 

perspective. 

Mark demonstrated a strong understanding of a tangent line during his interview, but his one 

point perspective caused him to dismiss correct tangent lines as incorrect. He understood that the 

tangent line would be unique, and he did not try to alter the slope of the tangent line to make it fit 

his understanding. Rather, if the tangent line intersected the curve more than once, he believed 

there would not be a tangent line at that point. Thus, in Figure 4, Mark believed that the line 

drawn in the top graph would not be a tangent line, since “it can only intersect at like one point,” 

but the line drawn in the bottom graph would be a tangent line. The one point perspective was a 
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barrier to his understanding, but Mark was willing to accommodate his view of tangent lines 

after a quick explanation by the interviewer that dismissed this incorrect perspective. 

 

 
Figure 4. Mark’s graphs using one point perspective. 

 

Andrea was the second of our students who held to the one point perspective.  She believed 

that if the tangent line hit the curve at another point, then the line would actually be a secant line.  

Notice in the excerpt below, Andrea was also using the horizontal tangent line perspective, and 

started by drawing a horizontal “tangent” line through a point on the graph whose tangent line 

should actually have a negative slope (See Figure 2). 

Andrea: Yeah. I’m still thinking it would still be like drawn this way [draws a horizontal 

line] oh no there’s another point there [indicates a second intersection point] so it does 

have to be this way [draws what resembles a normal line] because you would run into a 

point here [indicates the second intersection of the horizontal line] and then that would 

make that the secant line instead of the tangent line. 

Discussion 
Recall that six prominent categories emerged from the data, but we only reported on three of 

those categories, due to the limited space in this proposal. Some of these categories were 

discussed in other research literature, but other categories that we found do not appear in the 

literature. A much larger study will need to be done to determine if these six categories are the 

only categories that arise from student thinking (we hypothesize that there are others that we did 

not see). At this stage, our research brings together several articles in the field as well as 

contributes to the research community’s knowledge of how students think about tangent lines. 

Throughout the interviews, the students were usually willing to modify their existing concept 

image to accommodate new information.  They did not have a fully developed tangent line 

structure, and therefore, learning new concepts such as Newton’s method posed difficulties for 

them. Students were simultaneously working to take in new information (Newton’s method) 

while still working to develop their concept image of tangent line. This process involves both 

assimilation and accommodation of material as new information was being processed and old 

information (tangent lines) was modified and adjusted to form a structure that makes sense for 

both conceptual domains. 

When initially asked, “What is a tangent line?” most students used a piece of paper to sketch 

graphical examples of what they believed were tangent lines. One student, Bethany, seemed 

willing to change her understanding of tangent lines to match the information she was given 

about Newton’s method, which suggests that the concept of a tangent line was far from solidified 

for her. When she was told to completely ignore the rest of the problem and just sketch a tangent 
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line at a given point, she did it perfectly. However, as soon as she returned to the context of the 

problem, she began sketching incorrect tangent lines again. Likewise, after making several initial 

mistakes, Aaron drew a correct tangent line when he was asked to sketch tangent lines at specific 

points on a graph. Later, however, when he was sketching tangent lines to approximate the root 

of a function, Aaron drew tangent lines that ran through the curve (See Figure 3) rather than 

alongside the curve. Zandieh (2000) explains this phenomenon, noting that “students do not 

automatically connect an understanding of a process in one context with the same process in 

another context” (p. 125). 

We suggest that instructors need to be aware that students hold multiple misconceptions 

about tangent lines and that the concept of a tangent line to a curve is perhaps not as simple for 

students as one might think. Phrases such as “touches the curve at only one point” are not 

sufficient explanation and can sometimes cause more confusion for students. It is worth the time 

to have students sketch several examples of tangent lines on multiple functions. Instructors 

should also note that, contrary to what might be expected, many students do not enter calculus 

having a strong concept image of a tangent line to a circle or any other graph, so these students 

are often constructing the concept image of a tangent line for the first time in calculus.  

It is interesting to note that nine of the twelve students in the study were classified as using 

the slope perspective, making this the most common perspective that appeared during the 

interviews.  This is consistent with Zandieh’s work (Zandieh, 2000), which examined student 

understanding of derivative in several contexts including slope, rate of change, physical contexts, 

and the difference quotient.  She found that the graphical representation of slope was “the most 

frequently mentioned interpretation with six [of the nine] students mentioning it most often” (p. 

119). Zandieh also noted that “beginning students’ preferences are not uniform but that they 

become more similar as students’ knowledge of the concept increases” (p. 119).  Our research 

shows that this holds true for students’ concept images of tangent lines, as well.  Interestingly, all 

of the students who consistently sketched correct tangent lines used the slope perspective at some 

point during the interview.   

Implications for Teaching 

As a starting point, instructors should be aware that tangent lines can be conceptually 

difficult for students. Phrases such as “touches the curve at only one point” are not sufficient 

explanation and can  cause confusion for students. Instructors should also note that, contrary to 

what might be expected, many students do not enter calculus having a strong concept image of a 

tangent line to a circle or any other graph, so these students are often constructing the concept 

image of a tangent line for the first time in calculus. Further implications for teaching are 

expanded upon in another article that is under review at this time (LaRue et al). 
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Over 50,000 students take trigonometry at two-year colleges in the U.S., yet little is known 

about their instruction.  We report an analysis of activities in trigonometry classes taught at a 

community college attending to two dimensions, the type of knowledge used (Factual, 

Procedural, Conceptual, and Metacognitive) and the cognitive processes (Remember, 

Understand, Apply, Analyze, Evaluate, Create) intended in the activity as enacted by teachers in 

their lessons. Most of the 163 activities were classified as applying procedural knowledge; over 

one-fifth of the activities were coded as remembering factual knowledge or understanding 

conceptual knowledge. We discuss these findings in light of the community college setting and 

offer some questions for further research.  

 

Keywords: Lecture, Trigonometry, Instructional Activities and Practices, Community College 

 

Many post-secondary institutions offer trigonometry as part of a sequence of preparatory 

courses that lead to a calculus sequence. As of 2010 nearly 56,000 students take trigonometry at 

two-year colleges (Blair, Kirkman, & Maxwell, 2013), yet we know very little about how this 

topic is taught. As part of a larger study of mathematics instruction at community colleges, we 

collected a corpus of audio recordings of three consecutive trigonometry lessons.  In this 

preliminary research report we discuss our analyses of the nature of the examples that teachers 

solved in the classroom. Specifically we sought to establish the type of knowledge and the type 

of cognitive processes that were predominant in these lessons.  Our overarching research 

question is: “What are the types of knowledge used and the intended cognitive processes in 

activities enacted by these community college trigonometry teachers.”  We were curious to see 

whether, in this foundational course, students were being exposed to more than factual and 

procedural knowledge and whether the cognitive processes went beyond recalling and applying 

procedures.  Most of the literature on mathematically demanding work suggests that students 

need to have challenging tasks in order to develop their understanding of mathematics. As part of 

this study we were interested in determining the extent to which trigonometry courses provided 

opportunities to learn rich mathematics for students seeking to major in a STEM degree. 

 

Literature Review 

Research on tasks used in mathematics classroom indicates that tasks that address novel 

mathematical questions are better at promoting student understanding than tasks that focus on 

routine or repetitive activities (Doyle, 1984, 1988). The way in which the tasks are enacted in the 

classroom matters. Students of teachers who systematically reduce the cognitive complexity of 

the tasks by asking simpler more routine questions perform worse on standardized tests than 

students of teachers who systematically maintain or increase the cognitive complexity of the 

tasks they work on (Silver & Stein, 1996; Stein, Grover, & Henningsen, 1996).  One difficulty 

we had in characterizing task complexity at community colleges was due to the limited 
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availability of instruments to capture elements of instruction in a mostly lecture-based setting. 

Anderson and colleagues (2001) proposed a revision of Bloom’s taxonomy (Bloom, 1994) that 

provides a framework for analyzing the type of knowledge that can be elicited in an activity, as 

well as the different cognitive processes that students might engage in when working on the 

activity. Whereas the different types of knowledge are complementary—that is, one needs all of 

them in order to ensure an adequate knowledge of a subject—the cognitive processes differ in 

terms of the demand they impose on students and the amount of resources required (see Table 1). 

Table 1: Definitions of the categories of the cognitive complexity coding scheme  

(Anderson, et al., 2001). 
Type of Knowledge Cognitive Processes Dimension  

Factual Knowledge—Basic elements students must know 

to be acquainted with a discipline or solve problems 

in it, including knowledge of terminology and of 

specific details. 

Conceptual Knowledge—Interrelationships among the 

basic elements within a larger structure that enable 

them to function together. It involves knowledge of 

classifications and categories, of principles and 

generalizations, and of theories, models, and 

structures. 

Procedural Knowledge—How to do something, method 

of inquiry, and criteria for using skills, algorithms, 

techniques, and methods. It includes knowledge of 

subject-specific skills and algorithms, of specific 

techniques and methods, and of criteria for 

determining when to use appropriate procedures. 

Metacognitive Knowledge—Knowledge of cognition in 

general as well as awareness of one’s own cognition. 

It includes strategic knowledge, knowledge about 

cognitive tasks (including appropriate contextual and 

conditional knowledge), and self-knowledge. 

Remember: Retrieve relevant knowledge from long-

term memory, including recognizing and recalling. 

Understand: Construct meaning from instructional 

messages, including oral, written, and graphic 

communication. It involves interpreting, 

exemplifying, classifying, summarizing, inferring, 

comparing, and explaining. 

Apply: Use a procedure in a given situation. It involves 

executing and implementing. 

Analyze: Break material into its constituent parts and 

determine how the parts relate to one another and 

to an overall structure or purpose. It involves 

differentiating, organizing, and attributing. 

Evaluate: Make judgments based on criteria and 

standards. It involves checking and critiquing. 

Create: Put elements together to form a coherent or 

functional whole and reorganize elements into a 

new pattern or structure. It involves 

hypothesizing, designing, and producing.  

 

Methods  

Participants  

We analyzed 21 trigonometry lessons taught by five instructors of varying experience 

(See Table 2).  The data was collected during Fall 2008 and Winter 2009 around the sixth week 

in the term, when most norms of classroom instruction had been established.  Each instructor 

was observed for three consecutive lessons of each section taught (one of the instructors was 

teaching three sections). The lessons were audio-recorded and extensive field notes were taken 

documenting how the students were seated, who spoke in the classroom, and what was written 

on the board. The audio of the lessons was transcribed and the field notes added to the transcript 

to create a full description of the lesson. 

Table 2: Instructor Characteristics 
Instructor Academic Background Years of college 

teaching experience 

Status 

Ed Mathematics, BS, MS 3 Part-time 

Elizabeth Mathematics, BS, MA 7 Full -time 

Elliot Economics, BS 6 Part-time 

Emmett
a
 Physics, PhD 16 Full-time 

Evan Physics, BS; Mathematics, BS; Mathematics, MA 8 Part-time 

a. Emmett taught three sections of the course. 
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Analysis 

Transcripts and field notes were first reviewed to identify the examples teachers were 

using during instruction. We called these examples ‘activities’ or ‘tasks’ and used them as our 

unit of analysis.  The first author made the identification, which was then verified and discussed 

with the second author. In general activities included discussion of examples in which there was 

an active exchange between students and teachers around the mathematics. We excluded 

activities that were not done with the whole class (e.g., discussion of problems with individual 

students at the beginning or end of the lesson). Activities were then coded along the two 

dimensions of the taxonomy.  In coding the activities we considered the extent to which material 

was new to the students, the nature of students’ questions or responses to teachers’ questions, 

and teachers’ language.  It was frequent for teachers to emphasize different aspects in one 

activity; hence each activity could be assigned more than one of the codes in each category.  The 

first author coded all the activities. During regular meetings with the second author all coding 

challenges were resolved and used to clarify the way in which the activities were coded. Below 

is an example of an activity that was coded as Factual, Remember.  In this excerpt the teacher is 

emphasizing basic trigonometric angles that he expects students to know:  

Teacher: (writes on board) Sine of x equals square root of 3 over 2 and you guys 

know, I think by now, the sine of 30, 45 and 60, which one of those equals square 

root of 3 over 2? 

Student: 60. 

Teacher: Sine of 60 degrees. So x has to be 60 degrees, if we’re talking about 

degrees.  If we’re talking about radians? 

Student: Pi over 3.  (Elliot, 322-328) 

In contrast, the following activity was coded as Procedural, Apply. Here, the teacher solved a 

problem from the book and summarized what had been done, emphasizing that using identities 

will “always work” in solving this type of problem: 

Teacher: … But this, the method of using trig identities does not rely on special 

triangles. … I repeat, this always works. The triangle only works if you recognize 

the triangle or is it a special type of triangle like 3-4-5.  12-5-13, that’s a special 

triangle too.  6-8-10 triangle. But if you have different numbers it won’t work. 

However, the identities always work. (Emmet, 230-239) 

 

Results and Discussion 

Altogether in these trigonometry lessons there were 163 activities, which received 207 

codes. After this analysis we found that tasks that emphasized application of procedural 

knowledge were the most frequently used (57%), followed by tasks that emphasized 

understanding or applying conceptual knowledge (17%) and applying or remembering factual 

knowledge (16%). There were a small percentage of tasks in other codes (such as understanding 

procedures, 4%). No activities were coded as Create with any type of knowledge (see Table 3). 

One way to interpret these results may be in the context of teachers’ concern for students’ 

affect.  Asking students to create new knowledge can be unsettling for students and it has been 

documented that in general, mathematics teachers in the community college setting tend to be 

concerned with the affective well-being of their students (Mesa, 2012). Thus teachers tend to 

offer activities that are within students’ level of understanding and to avoid activities that require 

struggles that may undermine students’ sense of mathematical capacity.  Given that community 
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colleges enroll a disproportionate number of students who need remediation (Lutzer, et al., 

2007), this concern is easily understandable.   

Table 3: Number and Types of Tasks per Instructor 
    Emmett     

 Ed Elizabeth Elliot 1 2 3 Evan Total 

% of 

codes 

 % of  

tasks 

Factual  

Remember 1 2 5 1  1 5 15 7% 9% 
Factual  

Understand 1      1 2 1% 1% 
Factual  

Apply 1 1 4 3 1  8 18 9% 11% 
Conceptual 

Understand 2 1 0 5 5 10 1 24 12% 15% 
Conceptual 

Apply 1 1 1  5 3 2 13 6% 8% 
Procedural 

Remember   2 1    3 1% 2% 
Procedural 

Understand   1 1  3 3 8 4% 5% 
Procedural 

Apply 12 20 27 31 10 9 10 119 57% 73% 
Procedural 

Analyze      1  1 0% 1% 
Metacognitive 

Apply  1   1   2 1% 1% 
Metacognitive  

Evaluate  1    1  2 1% 1% 

Total codes 18 27 40 42 22 28 30 207   

Total tasks 18 21 33 34 21 21 15 163   

 

The large number of activities coded as applying procedures suggests to us that this 

category will need to be re-examined, as it does not discriminate the different ways in which 

these teachers are presenting these procedures.  In addition, we did not look at the entire lecture.  

We chose to look at only at activities because they seem to offer students the most opportunity to 

interact with the material.  Yet this choice does not tell the whole story of what is going on in the 

classroom because teachers may have emphasized other cognitive processes and dimensions of 

knowledge in other parts of their lectures.  Another area of interest is the quality of problems in 

textbooks used to teach this content. We found that our teachers chose a majority (72%) of their 

activities from the course textbook; as there is evidence that the examples available in these 

textbooks tend to be of low cognitive complexity (Mesa, Suh, Blake, & Whittemore, 2012) part 

of these results might be due to the low complexity of the tasks in the textbooks.   

 

Questions: 

1) Analyzing primarily lecture-based instruction is challenging.  We chose to analyze activities 

because this offered the most opportunity for student participation and learning.  Clearly, 

students may participate (take notes) in other parts of a lecture or they may ignore an 

instructor doing examples at the board.  Are there other ways to get at opportunities for 

student learning in a primarily lecture-based classroom? 
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2) The method that we chose to use for analysis was not specific to mathematics. Other methods 

of analysis considered (Stein, Grover, & Henningsen, 1996) were specific to mathematics, 

but tended to focus on student work.  As community college instruction is primarily lecture-

based, we did not feel this was an appropriate method.  Are there other types of analysis or 

methods that could have been used instead? 

3) These instructors overwhelmingly chose to present activities in ways that emphasized 

applying procedural knowledge.  Trigonometry tends to be a foundational course for other 

courses.  Is there a way in which this method of presenting activities might not be seen as a 

problem? 
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CALCULUS INSTRUCTORS' RESOURCES, ORIENTATIONS AND GOALS IN 

TEACHING LOW ACHIEVING STUDENTS  
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Teaching and learning calculus has been the subject of mathematics education research for 

many years. Although the body of research is mainly concerned with students’ difficulties 

with calculus, in this study we will be focusing our attention on the professors and instructors 

of calculus.  In this research we used Schoenfeld’s framework to examine four instructors’ 

resources, orientations and goals in teaching calculus to low achieving students.  So far, the 

preliminary results of the interviews show that although the professors thought differently 

about many aspects regarding teaching calculus, they all claimed that the first step to 

succeed in calculus courses is being prepared and having the right background. 

Keywords: Calculus, Resources, Orientations, Goals, Low Achieving Students 

Introduction  

Calculus has been acting as a critical filter for many careers and continues to play a major 

role in STEM subjects. For a few decades mathematics educators have been concerned with 

teaching and learning of calculus. Artigue (2000) listed and discussed many difficulties that 

students have with calculus and considered the historical development of the curriculum to 

suggest ways of improving the current teaching. Norman and Prichard (1994) were alarmed 

that if the reports regarding the learning of calculus coming from various institutions around 

the United States were true “this country is in an abysmal state” (p. 65). The authors used 

Krutetskii’s (1976) idea of flexibility, reversibility and generalization together with research 

on cognitive obstacles as a framework to understand students’ difficulties in calculus. They 

found that the particular cognitive obstacles were very much tied to the state of mathematics 

instruction and suggested a reform of the mathematics curricula particularly in calculus. 

Robert and Speer (2001) believed that students’ difficulties with calculus was universal and 

divided the research available in calculus into three categories of a) theory-driven, b) practice 

driven and c) convergence of the two. They believed that “the field will make progress on 

effective teaching and learning if it deals meaningfully with theoretical and pragmatic issues 

simultaneously” (p. 297). More than a decade later, has the research in calculus made any 

progress? Recently a large-scale survey of Calculus I was performed by the Mathematical 

Association of America (MAA) (Bressoud, Carlson, Pearson & Rasmussen, 2012). Although 

the study has given some insights into why students decide to opt out of calculus, the authors 

are still working on the analysis of the data and are not ready to make definite conclusions as 

yet.  

Although, there are some research available on calculus students’ difficulties, research on 

mathematics professor’s day to day activities is scarce (Speer, Smith and Horvath, 2010). In 

response to this need, Sofronas and DeFranco (2010) did an extensive research to explore the 

knowledge base for teaching (KBT) among seven college and university mathematics faculty 

teaching calculus at 4-year institutions in the Northeastern United States. The authors 

developed a KBT framework among mathematics faculty teaching calculus. One of their 

findings was that “in the absence of any formal knowledge of learning theory, participants 

developed implicit “self-created” theories of student learning which influenced their teaching 

practices” (p. 193).  To take the research one step further, in this study we are applying Allen 
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Schoenfeld’s (2010) framework to examine calculus instructors’ resources, orientations and 

goals.  

Theoretical framework 

The theoretical aspects of this study are based on Schoenfeld’s (2010) recourses, 

orientations and goals (ROGs).  He claims that “if you know enough about a teacher’s 

knowledge, goals and beliefs, you can explain every decision that he or she makes, in the 

midst of teaching”(2012, p. 343).  By resources Schoenfeld focuses mainly on knowledge, 

which he defines “as the information that he or she has potentially available to bring to bear 

in order to solve problems, achieve goals, or perform other such tasks” (p. 25). Goals are 

defined simply as what the individual wants to achieve. The term orientations refer to a group 

of terms such as “dispositions, beliefs, values, tastes, and preferences” (p. 29).   

Although, the theory was originally considered as applying to research on school 

teaching, (Aguirre & Speer, 2000; Thomas & Yoon, 2011; Törner, Rolke, Rösken, & 

Sririman, 2010), it clearly has applicability to research on university teaching (Hannah, 

Stewart & Thomas, 2011; 2013; Paterson, Thomas & Taylor, 2011). 

  Based on Schoenfeld’s theory we have developed a framework (see Table 1) to examine 

instructors’ ROGs while teaching calculus. Our research questions are: What are instructors’ 

resources, orientations and goals in teaching calculus courses? How does knowing teachers’ 

ROGs result in helping the low achieving students?  

Method 

The research described here is a case study and it is as part of the first author’s PhD thesis 

conducted at a large research University in 2013. The four participants (F1, F2, F3 and F4) in 

this research were tenured professors and an undergraduate advisor who have taught calculus 

courses in this research university more than two semesters.   In order to fully explore the 

instructors’ thought processes, three types of data related to the instructor’s ROGs were 

collected: classroom observation field notes, instructor interviews, and course curriculum and 

information. The semi-structured interviews were from 40 to 90 minutes long. They were 

audio recorded and later transcribed. Some of the interview questions were: What do you 

expect students to learn from your calculus course? What do you think about investing class 

time to review and repeat problems to help students who do not follow the lecture easily? 

What is the level of mathematical understanding of your class? How do you evaluate yourself 

as an instructor in terms of dealing with low achieving students? Have you ever used 

technology to teach a calculus course? If yes, what kinds of technology have you used?  Do 

you think using technology is helpful in teaching calculus? Inductive analysis approach was 

applied to the transcriptions of the interviews.  The key step to analyze qualitative data was 

the tasks of comparing, contrasting, aggregating and ordering. The data were coded and 

analyzed based on the proposed framework. So far some of the emerging themes are: 

instructors’ knowledge and views toward students; their effective teaching methods and 

orientations toward the curriculum and calculus. In the next section we will illustrate a brief 

account on the data that has been analyzed so far.  

Preliminary Results 

       For the purpose of this proposal we have organized our preliminary result section into the 

following four categories: 

Calculus  

     All four participants in this study reported that calculus is a subject requiring strong prior 

knowledge to build on.  Even though they had differences in other areas regarding teaching 

and learning calculus, all of the interviewees agreed that if the students do not have adequate 
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prior knowledge, there is nothing the instructor can do for them. Therefore, being in a right 

class is crucial to students. One instructor informed that many students desire to be in a 

higher level course:  

 

Table1.  A Framework to Illustrate Calculus Instructor’s ROGs. 

 

   

 

Resources Orientations  Goals 

Intellectual resources 

· Knowledge of the nature of 

understanding calculus 

- Calculus requires conceptual 

understanding. 

- Instructor’s awareness of 

issues with difficulty of 

calculus. 

· Pedagogical content 

knowledge 

- Instructor’s knowledge 

regarding most useful forms of 

representation, an 

understanding of what makes 

the learning of specific topics 

easy or difficult. 

Contextual resources 

· Curriculum and content 

knowledge. 

- Instructor’s awareness of 

calculus curriculum and school 

policies.  

Knowledge of students 

· Knowledge of student’s goals 

- Why do students take a 

calculus course? 

  

 Pedagogical orientations  

· Orientation about calculus 

lectures 

- Calculus lectures may design 

in such a way to allow students 

to solve real life problems as 

well as gain understanding by 

discovery.  

· Orientation about technology 

- Critical reflection is necessary 

while using the technology.  

- The role of technology must 

be clear in order to assist 

students’ learning. 

Learning orientations 

· Orientations about learning 

calculus 

- To learn the subject well, 

students must be attentive and 

have adequate exposure to 

variety of problems. 

- Calculus students must have 

basic trigonometry as pre-

knowledge.     

 

Pedagogical goals 

· Goals of calculus lectures 

- Calculus lectures have to be 

motivating and act as a 

foundation for advanced 

mathematics courses. 

· Goals of using technology 

- The use of technology has to 

be based on a well-thought out 

pedagogical theory.     

- Calculus lectures may offer 

students opportunities for 

discovery using technology.

  

Subject matter goals 

· Goals of calculus concepts 

- The geometrical 

representation of concepts must 

be clearly emphasized in 

lectures. 

- The material must be 

presented in such way that 

students gain conceptual 

understanding as well as 

adequacy to perform routine 

procedures. 
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F1: … depending on the level the students to begin with it might not bring them up to the 

level they need to be. But it might be a start. And here again, that’s why placement is so 

important placing the student in the correct course when they come in.  

Students   
Regarding the question, why do students take calculus courses?  All the interviewees 

agreed that since calculus is a requirement for many other areas of science, students   become 

less motivated in learning the concepts. They were also aware of many difficulties that 

students were facing while studying calculus. However, the common belief was that, students 

can improve their mathematics abilities if they work hard, for example, by reading a 

textbook, doing questions over and over again, and using other resources to get help. 

 

F3: If they have questions or if they have difficulties they have to come up and be encouraged 

to ask. Things are not going to come to them. They have to come.  

Teaching Goals  

    All of the instructors showed that the success of the course depended on the learner’s 

conceptual understanding. They believed people would forget formulas but they won’t forget 

concepts if they understand them well.  

 

F4: You should understand why it is true and even you can’t prove it later you should at least 

know that once you saw and understand why this is true.  

    One instructor also emphasized that calculus concepts are related closely to each other and 

exemplifying this relationship to students is her main teaching goal.   

 

Effective Teaching Methods   

     Each instructor stated his/her own philosophy on effective teaching methods. They 

believed that using resources outside of the classroom such as mathematics help center, 

teaching assistants, and forming study groups would be helpful for many calculus students.   

Although all of the instructors emphasized that students should be more actively engaged in 

their learning, the way they encouraged students to utilize available resources varied by the 

individual. One instructor said: 

 
F2: I gave her few extra points ... mostly I wanted to encourage her to keep coming back so she was 

given some small incentives to come here. 

       The instructors also expressed some limitations on helping students effectively, for 

example, factors such as teaching large size classes.  

 

Questions 

1. We would like your opinion on the proposed framework, specifically to know whether we 

have covered all the main resources, orientations and goals of a professor while teaching a 

typical calculus course.  

2. While analyzing the data, deciding between orientations and goals of the professors has 

been challenging. We would like to know if anyone has had similar experiences in analyzing 

such data. 
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 1 

DIAGRAMS IN ADVANCED MATHEMATICS: AFFORDANCES AND 
LIMITATIONS 

We report a case study aimed at researching the rationale of a university mathematics 
professor for using diagrams in his analysis lectures, what he hoped his students would learn 
from these diagrams, the ways students understand these diagrams, and what they learn from 
them. Preliminary analysis suggest that by focusing on specific properties of the diagrams 
presented in mathematics lectures, or by attributing little importance to them, students fail to 
fully understand what professors hoped they would learn from these diagrams. 

Key words: Proof, Diagrams, Mathematics Lecture, Visualization. 

Kristen Lew        Tim Fukawa-Connelly     Juan Pablo Mejia-Ramos         Keith Weber 
Rutgers University       Drexel University              Rutgers University         Rutgers University 

Introduction 
The undergraduate mathematics lecture is often criticized for focusing too specifically on 

the formal aspects of mathematics. One common critique challenges the notion that rigorous 
mathematical proof, at least as it is traditionally presented in mathematics lectures, is the best 
means of communicating mathematical explanations and justifications to students (e.g., 
Hersh, 1993; Thurston, 1994). The rigor present in these proofs can prevent students from 
having an intuitive understanding of why theorems are true (Hersh, 1993) and discourage 
them from using informal ways of understanding mathematics to construct proofs (e.g., 
Fischbein, 1982). 

Thus, several researchers have called for undergraduate mathematics teaching to focus on 
more informal representational systems, specifically on the employment of diagrams and 
other visualizations to represent abstract mathematical concepts and proofs (Zimmerman & 
Cunningham, 1991). However, as pointed out by Speer, Smith, and Horvath (2010), there is 
very little systematic empirical research studying the actual teaching of university 
mathematics. In particular, there is little empirical data on how diagrams are being used in 
mathematics lectures, for what specific purposes, and what students understand from the use 
of diagrams in these presentations. 

In this study, we consider the professor and students of an introductory undergraduate real 
analysis course and the diagrams encountered in a lecture covering the Riemann integral. As 
our theoretical orientation, we recognize that no matter what meaning instructors attempt to 
convey, students construct their own mathematical understandings (Thompson, 2013). We 
investigate these constructed understandings and how they align with the instructor's intended 
understanding. Specifically, we intend to provide insights into the following research 
questions: How and why are diagrams used? What types of mathematical insights do 
professors intend to convey to their students through the use of diagrams in lectures? How do 
students understand these diagrams? Do students gain the insights the professor hoped they 
would gain?  If students do not gain these insights, what factors are inhibiting them? 

Methods 
In this study we consider one section of an introductory real analysis course taught at a 

large research university in the northeast of the United States.  
Participants. This section of the course was led by a full professor with over 50 years of 

teaching experience at the university. This professor, who we will henceforth call Dr. A, was 
chosen for this study due to his reputation among his colleagues of being a careful and 
thoughtful lecturer, his very high instructional ratings in post-course student surveys, and for 
being an avid self-proclaimed proponent of using diagrams in his mathematics instruction. 
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Five students (two female, three male) were recruited from this class to participate in the 
study (students were modestly compensated for their participation). These students were 
pursuing either a major or a minor in mathematics (varying from first-year to fourth-year into 
their program) and demonstrated a range of mathematical aptitude according to the 
professor's assessment. We will use the codes S1, S2, S3, S4, and S5 for the five students.   

Procedure. With the permission of Dr. A, the first author of this paper observed and 
videotaped one of his lectures. The first author then interviewed Dr. A to discuss his general 
view on the use of diagrams in mathematics instruction, his rationale for choosing the 
specific proofs, examples and diagrams he presented in the observed lectures and what he 
hoped to convey to his students in that lecture.  Dr. A was then asked to watch a video clip of 
his presentation and explain why he had included each of the diagrams used, what he hoped 
to convey to his students through their presentation, and how he hoped his students would 
interpret each of these diagrams. 

Next the first author individually interviewed each of the five students. These interviews 
focused on two of the diagrams Dr A. used in his lecture: a diagram used in the presentation 
of the definition of Upper and Lower Sums of the Riemann integral (Appendix A) and a 
diagram used in the presentation of a proof that the function f(x)=x has an integral from 0 to 
1, which is equal to 1/2 (Appendix B). As an assessment of their understanding of the first 
diagram, each student was first asked to draw the upper and lower sums on the diagram of a 
different function/partition (Appendix A).  Each student then discussed the definitions of 
upper and lower sums and how they related to the diagram they created, and what would 
happen if the partition were further refined.   

Next, the students were asked to discuss the proof that the integral of the function f(x)=x 
exists and is 1/2. They were asked what they remembered about this proof, what they felt 
they learned from its presentation, and what they believed the professor was trying to convey 
through it.  Each student then watched the video of the professor’s presentation of this proof 
and was asked how the proof related to the diagram, and (once again) what they believed Dr. 
A was trying to convey through this presentation. Finally, as a way of assessing their 
understanding of this proof, each student was asked to attempt to prove that the integral of the 
function f(x)=x2 exists and is 1/3, a proof that Dr. A indicated in his interview that his 
diagram presentation should enable students to tackle.  Students then discussed their proof 
attempt and their use (or lack of use) of a diagram. At the end of the interview, students had 
an opportunity to discuss their thoughts on the use of diagrams in mathematics in general.  

All interviews have been transcribed and all transcriptions have been summarized to give 
a general description of the participants’ responses. Preliminary analysis of these responses 
has been conducted using the constant-comparative method (Strauss & Corbin, 1990). 

Preliminary Results 
Upper and lower sums diagram. In his presentation of the definition of Upper and Lower 

Sums of the Riemann integral, Dr. A used a diagram as a tool to highlight a concept that is 
central in the understanding of the definition. More specifically, he used the diagram to show 
what the least upper bound and greatest lower bound of a function looks like within an 
arbitrary interval of a partition. Furthermore, in a clear attempt to convey an intuitive 
understanding of what the upper and lower sums are, Dr. A explained to the class that "the 
upper sum will be an approximation which has a larger area than the actual area, and the 
lower sum will give you approximately a smaller area". Dr. A then used an analytic approach 
to represent the sums themselves. 

In our interview, Dr. A said that he had used this diagram in particular to help the 
students remember the definition. Dr. A said: "the symbols by themselves do not produce in 
the mind a structure which can be easily remembered, so that, what you want to do is 
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associate concepts' symbols with geometrical symbols."  Further when asked what he wished 
to convey to the students with this diagram, he replied "the idea that the representation we're 
seeking is an approximation of area." 

Of the five students, S1, S2, and S3 were able to successfully draw the upper and lower 
sums on the graph in Appendix A, while S4 and S5 were unable to complete the task 
successfully, even after watching the video of Dr. A's presentation of the definition. Further 
consideration of S4's and S5's work revealed serious confusion on the part of the students 
regarding both the definition and intuition of the upper and lower sums: S4 thought the upper 
and lower sums were simply the sums of the least upper bounds and the greater lower 
bounds, while S5 viewed the upper and lower sums as the areas above and below the 
function, respectively (as a consequence, S5 believed that a refinement of the partition would 
not alter the upper and lower sums at all).  

Furthermore, when discussing how their own diagrams of the upper and lower sums 
related to the definition, it became clear that even S1 and S2 had some misconceptions.  For 
instance, S1, S2, and S4 believed that the difference between the upper and lower sum yields 
the integral of the function. 

The integral of f(x)=x proof. In his presentation of a proof that the function f(x)=x has an 
integral from 0 to 1, which is equal to 1/2, Dr. A drew the function, chose an arbitrary 
interval in a partition of n intervals of length 1/n, pointing out what the least upper bound and 
the greatest lower bound were, and where they occurred on that interval.  The proof then 
progressed in an analytic manner by setting up the sums, using series to solve them, and 
applying the Archimedean property to prove that the integral exists. In the interview, Dr. A 
explained that he had used this example and diagram as a "simple illustration of the concepts" 
presented in that lecture.  Further he wished to convey the notion that "the approximation 
through upper and lower sums can actually be calculated."  Dr. A also said he hoped the 
students saw the relevance of the graph as it is related to the proof.   

When asked what they felt the professor was trying to convey through the presentation of 
this proof, each of the students responded that this proof was used to convey a new technique 
of finding an integral or to use the various concepts covered in class to prove an integral 
exists. After watching the video, S1 and S5 discussed the techniques and structure of proving 
that an integral exists, while S2 and S4 expanded on this pointing out that there are two parts 
of the proof, proving the integral exists and proving that the integral is equal to a particular 
number. However, after watching the video, S3 seemed more confused about the proof than 
when she had discussed it previously. 

When asked what they believed Dr. A was trying to convey to them using the diagram, 
the students generally gave a description that was similar to Dr. A’s intended understanding. 
S1, S4, and S5 responded that the diagram was used to help students visualize the actual 
upper and lower sums. S2 said the diagram was used in order to aid the construction of the 
proof in a rigorous way. However, S3 said she was not sure what Dr. A intended to convey.     

Of the five students, only S1 and S2 were partially successful at completing the proof that 
the integral from 0 to 1 of the function f(x)=x2 exists and is equal to 1/3. Of these two 
successful students, only S1 drew a diagram for his proof.  S2 reported that he visualized the 
graph while attempting to construct his proof and drew it subsequently. S3 outlined the 
structure of the proof without being able to do the necessary computations and neither S4 nor 
S5 were able to get beyond an attempt to set up the upper and lower sums.  S4 and S5, 
however, did attempt to draw diagrams. 

Thus, while students could state the purpose of the diagram in the lecture when 
specifically asked about it, the diagram was not useful to all of the students in understanding 
the content or in their proof-writing.  In particular, S2 did not realize the professor had used a 
diagram in his presentation, S4 and S5 did not have the diagram in their notes (and could not 
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remember much about it), and S3 was very confused by the diagram and did not understand 
its application.  

Questions for the audience 
What can we do to further analyze our data? Why do you think the use of diagrams was 
unsuccessful for students in this instance? Is there something that the professor could have 
done differently? What additional data might we want to collect from the students to help us 
decide whether they understand a diagram that an instructor presents in support of a proof? 
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b) Task for the upper and lower sums diagram. Students were asked to draw the upper and 
lower sums on the diagram. 

Appendix B: Example proof diagram 
 
 

 
Diagram used by Dr. A in his presentation of the proof that the integral of the function f(x)=x 
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WHY LECTURES IN ADVANCED MATHEMATICS OFTEN FAIL 

Research on mathematicians’ pedagogical practice in advanced mathematics is sparse. The 
current paper contributes to this literature by reporting a case study on a proof that a 
professor presented in a real analysis course. By interviewing the professor, we focus on his 
learning goals in this proof and the actions that he took to achieve these goals. By 
interviewing six students, we investigate how they perceived the proof and what they learned 
from it. Our analysis provides insight into why students did not learn what the professor 
desired from this lecture. 

Key words: Lecture; Proof; Proof comprehension; Proof presentation 

Many researchers in mathematics education claim that lectures in advanced mathematics do 
not enable students to build a robust understanding of mathematics. It is for this reason that 
Leron and Dubinsky (1995) asserted that there is a broad consensus amongst teachers and 
students that “the teaching of abstract algebra is a disaster and this remains true almost 
independently of the quality of the lectures” (p. 227). Indeed, “this is especially true for some 
excellent instructors” whose “lectures are truly masterpieces” (p. 227).  Although these 
comments were specific to abstract algebra, Leron and Dubinsky’s assertion that lectures 
often fail are applicable to lectures in any other subjects in advanced mathematics. However, 
Speer, Smith, and Horvath (2010) noted that these beliefs about lectures are usually based on 
popular opinion or personal opinion rather that systematic empirical study. There is little 
research on what goes on in lecture, what professors intentions are, and what students learn 
from lecture. The present study aims to fill this gap. 

Related literature 
Most studies on the teaching of advanced mathematics are composed of interviews with 
mathematicians about their teaching or self-reports in which mathematicians reflect on their 
own teaching (Speer, Smith, & Horvarth, 2010). The results of these studies are not presented 
here for the sake of brevity. 
In terms of observations of teaching advanced mathematics, researchers primarily have used 
case studies. Author found that when one abstract algebra instructor presented proofs, she 
would model many of the mathematical behaviors associated with proof writing. She also 
consistently wrote out the logical details of the proof while only saying orally why some of 
these details needed to be justified (Author). In another study, Mills (2011) studied the 
different ways that a mathematician used examples to instantiate mathematical concepts. 
Author performed a semester-long case study on how one professor taught real analysis, 
regularly interviewing him about his teaching practices. He found the professor’s practices 
were based on a coherent belief system and a good deal of thought, that like the professors 
studied by Author as well as Author, he would sometimes use informal representations of 
concepts such as examples and diagrams to help students understand the content.  

Theoretical perspective 

Purposes of proof 
This study draws from two theoretical perspectives. First, we use de Villiers’ (1990) purposes 
of proof to categorize what students might learn from a proof. According to de Villiers, proof 
can serve five purposes for mathematicians: to obtain conviction, to provide explanation, to 
promote discovery, to facilitate communication, and to systematize a theory. In the current 
study, systematization and communication did not play an important role in the proof that we 
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studied; neither our research team nor the professor highlighted either role when discussing 
the proof. Hence, we will not consider these purposes of proof further in this proposal.  
As deVilliers noted, an important function of proof is supplying conviction. If 
mathematicians are sure a proof is correct, they will feel compelled to accept the theorem 
being proven as true. However, studies with mathematicians reveal that conviction is not the 
primary reason that mathematicians read proofs (Author). Another purpose of proof is 
providing explanation. Hanna (1990) and Hersh (1993) argued that this, rather than 
conviction, should be the primary role of proof in the classroom. While there is not 
agreement on what constitutes an explanatory proof in mathematics education (Raman, 
2003), here we follow Author in viewing a proof as explanatory for a student if that student 
can follow the proof in terms of informal representations (e.g., graphs) that are personally 
meaningful to him or her. A third purpose of proof is promoting discovery, where the prover 
or the reader can adopt the method of the proof to discover other theorems and proofs. 
According to mathematicians, this is the most important reason that they read proofs in the 
literature (Author) and exposing students to new methods of reasoning should be an 
important reason that students observe proofs in the classroom (Hanna & Barbreau, 2008). 

Codes, competencies, and behaviors 
In this paper, we follow the New Literacy Studies movement (Gee, 1990) and conceptualize 
the text of the proof as extending beyond symbols printed on a sheet of paper. Instead, we 
treat the totality of a lecture, including the oral words spoken by the professor, chalk 
inscriptions, and kinesthetic movements, as a single coherent piece of text. Treating the 
lecture as text allows us to use Weinberg and Weisner’s (2011) framework for reading 
mathematics as a lens to interpret this data. 
Like all genres of text, mathematics proofs contain codes that signify content. For instance, in 
the case of (written) proofs, Konior (1993) noted that an indented section of text indicates a 
sub-proof that can be read independently from the rest of the text. To comprehend text, 
students would need the competencies, or “the mathematical knowledge, skills, and 
understandings” (Weinberg & Weisner, 2011, p. 55), to understand these codes. Students 
would also need to engage in behaviors, or “sequences of actions (physical or mental) 
enacted by the implied reader” (p. 52), that would allow students to interpret this text in the 
way the author intends. 

Research questions 
This paper is based on a case study of a single proof in a lecture-based real analysis course. 
We study what content the professor intended to convey with this proof and what content the 
students gained from the proof. (We treat “content” broadly and refer to any insight or lesson 
that the professor attempted to convey or the student gained from reading the proof as 
content).Using the theoretical frames of deVilliers (1990) and Weinberg and Weisner (2011), 
we address the following research questions: 
(1) What content did the professor hope to convey in the proof? Did it align with the goals of 
mathematics educators and include explanation and methods? 
(2) How, if at all, did the professor hope to convey this content? Would it be recognizable to 
those enculturated into advanced mathematics? 
(3) Did the students have the competencies to understand the lecture? That is, if shown a 
particular utterance or transcription from the professor, could the students decode what the 
professor was attempting to say? 
(4) How did the students understand the proof that the professor presented? Did they have the 
understandings that the professor was intending to convey? If not, why not? Were their 
behaviors or competencies insufficient to comprehend the proof? 
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Methods 

The proof 
Our analysis focuses on an 11-minute proof about contractive sequences-- i.e., sequences 
with the property that |xn – xn-1|<rn for an r such that 0<r<1. The theorem that was proven is 
that contractive sequences are convergent.  
This proof was video-recorded during the eighth week of a 15-week semester. The videotape 
focuses exclusively on the actions of the professor, Dr. A (a pseudonym), and recorded what 
comments he said orally, what he wrote on the blackboard, and the gestures that he made. 

The instructor’s perception of the proof 
The first author met individually with Dr. A for a 75-minute interview. During the interview, 
she first asked Dr. A why he chose to present this proof and what he was trying to convey to 
students through this proof. He was then asked to view the videotape of his lecture and stop 
the tape at every point at which he felt he was conveying content to the class and to describe 
what he was conveying. For each piece of content that Dr. A mentioned, we categorized the 
content as conviction, explanation, and method, as well, and how it was encoded. 

Students’ perception of the proof 
Six students from the analysis course agreed to participate in video-taped interviews. The 
students were interviewed in pairs, on the rationale that this method might facilitate 
conversation between students and more authentic data (cf., Schoenfeld, 1985). Students 
were asked to bring their notes from the lecture to the interview, which were photocopied by 
the interviewer.  
The interview format focused on students’ understanding of the proof; four passes through 
the proof were made with each pair of students. First, students were shown a written copy of 
the proof (as Dr. A wrote on the blackboard) and asked what they thought Dr. A was trying to 
convey; the students were encouraged to consult their notes. Next, they were shown the proof 
in its entirety, asked to take notes and otherwise behave as they ordinarily would, and again 
asked what they thought Dr. A was trying to convey. Third, students were shown the eight 
videoclips that Dr. A highlighted as conveying information and were asked what they thought 
Dr. A was trying to convey (this pass directly investigated students’ competencies at 
recognizing the codes that Dr. A used). Fourth, students were told that one purpose of the 
proof was to convey something that Dr. A had earlier identified as important and asked if 
they thought the proof accomplished this. We used a semi-open coding scheme, with the 
goals listed by Dr. A as a priori categories, to code students’ responses. 

Results 
For the sake of brevity, we only highlight the main results; the presentation and full paper 
will discuss less central results as well as illustrate all results with transcripts. To answer each 
research question, the first was that the content that Dr. A aimed to convey primarily 
concerned method and conceptual explanation. Method content included providing a template 
for proving sequences converge; the importance of the triangle inequality; noting that one 
wants to show a sequence converges but does not have a candidate for limit, one can show 
the sequence is Cauchy; and expanding students’ toolboxes to work with inequalities by 
keeping quantities small. For explanation, Dr. A sought to convey why the theorem was true 
with pictures representing convergent, contractive, and Cauchy sequences.  
Second, Dr. A expressed all his content goals through oral comments. The only thing he 
inscribed on the blackboard was a fairly polished conventional proof. Some of his professed 
explanation goals, such as illustrating the theorem with pictures were accidentally omitted 
from the proof. For instance, when asked what he was trying to convey in the proof, he used 
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the word “picture” 32 times in a six-minute period but when he saw the videotape of the 
proof, he said, “this a poor example. There are no pictures here! [laughs]”.  
 In the first two passes through the proofs with students, the students mentioned almost 
none of the content that Dr. A claimed he was trying to convey. Their performance improved 
somewhat in the third and fourth passes through the proof. For the third question, we note 
that students were able to discern some of Dr. A’s content, such as the importance of triangle 
inequalities and when one should prove sequences are Cauchy. However, other topics were 
more elusive. For instance, when students were asked about toolboxes of techniques to keep 
quantities small, students cited things such as using Mathematica and proof structures-- in 
other words, the toolbox to these students were any useful mathematical techniques. We 
noted that this tended to occur when the words that Dr. A signified conceptually rich 
mathematical structures and were repeated often by Dr. A. Students learned to repeat the 
words, but they did not signify the meaningful Students learned to repeat the words, but they 
did not use them in a way that signified the meaningful mathematics that Dr. A intended. For 
the fourth question, we noticed that one reason students did not cite content in the first two 
passes through the proof even though they had the competencies to decode it is that in the 
third pass five of the six students focused on the proof on the blackboard instead and did not 
record any of Dr. A’s oral comments. As oral comments were the way that Dr. A conveyed 
his content, this could account for why so much of the content was not recalled by the 
students. 

Significance 
As a case study, we cannot be sure what we observed will generalize to other professors or 
other proofs in real analysis with this professor. However, the themes that we observed offer 
guided hypotheses for why lectures are unsuccessful: professors sometimes unintentionally 
omit conceptual pictures from their proofs (see also Alcock, 2010; Author), students do not 
focus on ideas that are stated orally within proofs and most of the important content of the 
proof was presented orally by the professor, and some ideas, especially when short phrases 
signify rich mathematical structures, are not comprehensible to students in the way the 
teacher intends. 
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THE VALUE OF SYSTEMATIC LISTING IN CORRECTLY  
SOLVING COUNTING PROBLEMS	  

	  
Elise Lockwood  __  Bryan Gibson_____ 

Oregon State University       University of Wisconsin-Madison	  
	  

Abstract: Although counting problems are easy to state and provide rich, accessible problem 
solving situations, there is much evidence that students struggle with solving counting problems 
correctly. With combinatorics (and the study of counting problems) becoming increasingly 
prevalent in K-12 and undergraduate curricula, there is a need for researchers to identify 
potentially effective instructional interventions that might give students greater success as they 
solve counting problems. In this study, we tested one such intervention – having students engage 
in systematic listing of what they were trying to count. We found that even creating partial lists 
of the set of outcomes was a significant factor in students’ success on problems. Our findings 
suggest that more needs to be done to refine instructional interventions that will facilitate listing. 
We discuss these findings, suggest follow-up studies, and request feedback from the audience.	  
	  
Key Words: Combinatorics, Systematic listing, Counting problems, Experimental design	  
	  

Introduction and Motivation	  
Enumerative combinatorics, or the solving of counting problems, has practical applications in 

probability and computer science, and it also provides a rich context for mathematical problem 
solving. As such, the solving of counting problems has become increasingly prevalent in K-12 
curricula and in undergraduate mathematics courses. However, students tend to struggle with 
solving counting problems correctly, and there is a need for investigations into effective ways to 
improve students’ counting. In this preliminary report, we share findings from a study that 
examined the effects of having students engage in systematic listing – that is, to create an 
organized list (or even a partial one) of the outcomes they are trying to count. We seek to answer 
the following research question: Does engaging in systematic listing have a significant effect on 
students’ solving counting problems correctly? 	  

	  
Literature Review and Theoretical Perspective	  

For the most part, research on students’ work on counting problems suggests that students 
struggle mightily with solving counting problems. Godino, Batanero, and Roa (2005) note that in 
Roa’s (2000) study, 118 undergraduate mathematics majors “generally found it difficult to solve 
the problems (each student only solved an average number of 6 [of 13] problems correctly)” (p. 
4). Eizenberg and Zaslavsky also reported low success rates, with their students correctly giving 
only 43 out of 108 initial correct solutions. Other researchers report specific mathematical 
features of counting problems that are especially difficult, such as issues of order (Lockwood, 
2013; CadwalladerOsker, et al., 2012; Mellinger, 2004) and overcounting (Lockwood, 2011b, 
2012; Annin & Lai, 2010). There is also evidence that students rely on memorized surface 
features of problems such as key words (e.g., Lockwood, 2011a), and that they struggle to know 
how to identify what a problem is asking (e.g., Hadar & Hadass, 1981). Mathematicians also 
acknowledge that counting can be difficult, and it is a domain in which “there are few formulas 
and each problem seems to be different” (Martin, 2001, p. 1). Given the overwhelming struggles 
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that students seem to face when solving counting problems, there is a need to identify potentially 
productive interventions that may help students be more successful. 	  

Theoretically, our focus on systematic listing stems from the idea that students may benefit 
from grounding their counting activity in the concrete set of outcomes they are trying to count. 
We hypothesized, based on prior experience and existing literature, that having students list 
might prevent them from blindly applying formulas and committing common errors of 
overcounting. This attention to the set of outcomes is suggested implicitly by a number of 
researchers (e.g., English, 1991; Hadar & Hadass, 1981; Mamona-Downs & Downs, 2004) and 
has been explicitly advocated by Lockwood (2011a, 2012). The study draws upon Lockwood 
(2013) model of students’ combinatorial thinking, which proposes three basic components of 
students’ counting (expressions/formulas, counting processes, and sets of outcomes) and 
elaborates on the relationships between these components. This model suggests that students 
may benefit from drawing upon the set of outcomes they are trying to count. The idea of 
systematic listing, and the act of reflecting on how to create an organized list of outcomes that 
correctly answers a counting problem, lies in the relationship between counting processes and 
sets of outcomes. Additionally, in a recent plenary address, Weber (2013) advocated for an 
increase in quantitative studies to complement qualitative studies in mathematics education. This 
study represents an attempt to respond to this call by providing preliminary quantitative data, 
which could better formulate subsequent questions that might be investigated qualitatively.  

 
Methods	  

Forty-two undergraduate students participated in an hour-long written assessment. These 
students were enrolled in an introductory psychology course at a large Midwestern university, 
and they received extra credit in their course for their participation. Demographic information 
revealed varying degrees of experience with counting problems and suggested that almost all of 
the students had seen counting problems before (most typically in high school but not formally in 
college). The written assessment consisted of 9-12 counting problems, which were chosen based 
on the extent to which they might facilitate listing. We wanted some tasks that would encourage 
listing and that could be listed completely. We wanted other tasks with numbers large enough so 
as not to be able to be listed completely, to see if even partial listing might help students organize 
their work and detect patterns. We administered the surveys to students in each of three different 
iterations (the groups sizes were 13, 19, and 10, respectively), and we made some slight 
adjustments between each iteration to improve some of the tasks that seemed ambiguous or too 
difficult for students. In acquiring the data, we used Livescribe pens, which have technology that 
allows for written responses to be recorded in real time. These devices enabled us to examine 
how students formed their lists without conducting videotaped interviews. 	  

The students were randomly assigned to either a listing or a non-listing condition, and each 
assessment involved pre-intervention, intervention, and post-intervention tasks. The tasks were 
the same for each condition; the only difference was in the prompts given to students. For the 
non-listing condition, students were simply asked to solve problems and show their work. For the 
listing condition, the students were additionally prompted with the following during the 
intervention tasks: “In the following 3 problems, please make an attempt to create a list of what 
you are trying to count.” As will be discussed below, this prompt alone was not effective in 
actually getting students to list, but further studies could address particular ways in which listing 
might be elicited more effectively. An example of each type of task is given in Table 1 below. 	  
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Table 1 – Examples of tasks 	  
Pre-intervention 
task	  

There are 5 different Spanish books, 6 different French books, and 8 
different Russian books. How many ways are there to pick a pair of books 
not both in the same language?	  

Intervention task	   You want to give 3 identical lollipops to 6 children. How many ways could 
the lollipops be distributed if no child gets more than one lollipop?	  

Post-intervention 
task	  

How many arrangements of the word CATTLE have the two Ts appearing 
together either at the beginning or the end of the word?	  

	  
The first author coded the responses according to correctness (correct or incorrect) and 

according to four categories of listing (no listing, articulation, partial listing, and complete 
listing). A code of no listing was given if there was no attempt at any kind of partial or complete 
list. Typically a student who did not list would write down a numerical value or would write 
down some kind of formula or expression. A code of articulation emerged during analysis, as we 
realized that some responses were more than just providing a formula, but they were not quite 
suggestive of even a partial list. This articulation code was given when a student wrote down at 
least one instance of they were trying to count (one outcome) but did not create any kind of list. 
A code of partial listing was given if there was some evidence in the written work that the 
student was trying to create a list or partial list of the outcomes, but they may have not written 
the entire list correctly or may have truncated their listing when they identified a pattern. A code 
of complete listing meant a student provided a complete, correct list of the outcomes. Problems 
were coded one at a time to maximize the consistency in coding per problem. Qualitative 
analysis included watching through the students’ work, determining features of productive (any 
lists, partial or complete, which were generated on a problem that the student eventually solved 
correctly) versus unproductive lists (lists that were written on a problem that did not have a 
correct answer), and identifying noteworthy aspects of listing that arose in the interviews. 	  

	  
Results	  

Quantitative results. We combine all three iterations of the experiment for the following 
analysis, and only problems where the answer was clearly correct or incorrect, and where the 
listing behavior was clear were used (a total of 352 problems). On the whole, students struggled 
to solve these problems correctly, with only 24%  (84/352) accuracy. We found that student 
performance on post-test questions, as measured by number of questions answered correctly, did 
not differ significantly between students told to list (intervention) and students who did not 
receive this instruction during the intervention phase. In other words, simply being instructed to 
list did not have a significant affect on future listing behavior. Additionally, if we look at the 
difference between the number of questions answered correctly in the pre-test versus in the post-
test, we again do not see any significant difference between conditions.  

However, if we look at listing behavior itself (and not whether students were instructed to 
list) we discover that listing had an overall positive effect on correctly solving a problem (here, 
we take listing as including a code of either partial or complete listing). If we count up the 
problems answered correctly by each student, the proportion of those where the student either 
partially or completely listed is significantly greater than those where they did not (p < 0.02). 
Simply using listing, then, seems to correlate positively with successfully answering a question, 
suggesting that listing may be a valuable counting activity in which students may engage. These 
results are discussed below.  
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Qualitative results. We also analyzed the students’ written work captured by the Livescribe 
pens, and we distinguish between productive and unproductive lists, as defined above. Because 
of the nature of our data, we cannot make conclusive statements about whether or not a particular 
list actually caused a student to answer a problem correctly. However, we found the productive 
versus unproductive distinction to be helpful as we tried to determine potential aspects of listing 
that seemed particularly beneficial for students’ counting. We identified three key features of 
productive lists: Useful notation and appropriate modeling of outcomes, an organized strategy, 
and evident structure. Student 121’s work on the Lollipop’s problem below (Figure 1) is an 
example of a productive list. She displays a notation that correctly models the outcomes as 
sequences of Cs and Ls (the Ls provide unnecessary information, but they do not distract her). 
The list is well organized, and the systematic way in which outcomes are listed helps her keep 
track of all of the outcomes and correctly determine the total number (to the point that she could 
identify an outcome that she had missed and correct an initial answer). 

Figure 1 – Student 121’s work on the Lollipop problem 

	  
	  

Discussion	  
We note first of all that while there is a correlation between listing and correctly answering a 

problem, we do not claim causation. We acknowledge that it may be the case that stronger 
students may naturally list, and that is why we see the positive correlation. However, because of 
the overarching difficulties that students face with counting, we feel that the findings at least 
warrant more attention, and that the value of listing ought to be more carefully studied. Our 
findings suggest that we clearly were not careful or explicit enough in our instructions so as to 
make the intervention effective, and our encouragement to list was not consistently effective in 
getting students to list. However, given the potential benefit of listing, and given students’ 
clearly documented struggles with counting problems, these initial quantitative findings suggest 
that there might be value in finding better ways to foster listing among students, and the 
preliminary nature of this report lends itself to follow up studies. Specifically, a major focus of 
future work is to investigate ways in which we can more effectively encourage students to list 
and better direct them in their listing activity. Such instructional interventions could be tested 
through interviews, through additional written assessments, and eventually in classroom settings. 	  

	  
Conclusions and Questions	  

Our aim in this study was to test whether or not listing might be a potentially helpful 
intervention. Our findings suggest that while our intervention was not entirely effective as 
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worded, even partial systematic listing of outcomes did have a positive effect on students’ 
correct solving of counting problems. This suggests that listing is a potentially promising aspect 
of work that could warrant further study, perhaps through subsequent in-depth qualitative 
studies. We pose the following questions to the audience: 	  

• Given the nature of our current data, are there other questions that we should investigate?	  
• How else might we test the effectiveness of listing?	  
• Besides correctness, what are other potential factors would convince you that listing 

helps students count effectively?	  
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Abstract: Counting problems provide an accessible context for rich mathematical thinking, 

yet they can be surprisingly difficult for students. While some researchers have addressed these 
difficulties, more work is needed to uncover ways to help students count effectively. In an effort 
to foster conceptual understanding that is grounded in students’ thinking, we had two 
undergraduate students engage in guided reinvention in a ten-session teaching experiment. In 
this experiment, the students successfully reinvented four basic counting formulas. In follow-up 
problems, combinations proved to be the most problematic for them, however, suggesting that 
the learning of combinations may require special attention. In this presentation, we describe the 
students’ successful reinvention, and we discuss potential reasons for the students’ issues with 
combinations. We additionally present potential implications and directions for further research. 
 
Key Words: Combinatorics, Guided reinvention, Counting problems, Teaching experiment 

 
Introduction and Motivation 

Enumerative combinatorics has applications in probability and computer science, and its 
accessible yet challenging problems provide a rich context for mathematical reasoning. As a 
result, counting problems have gained traction in K-12 and undergraduate curricula in recent 
years, particularly in probability units and in discrete mathematics courses for undergraduates. 
Many researchers have described students’ difficulties with counting problems (Batanero, 
Godino, & Navarro-Pelayo, 1997; Eizenberg & Zaslavsky, 2004) and have suggested a number 
of features that make the problems challenging (Hadar & Hadass, 1981; Martin, 2001). There 
remains a need for research that explicates how students can effectively comprehend basic 
counting principles.  

The aim of our study was to gain insight into how students might come to reason coherently 

about four basic counting formulas: n! , nr , n!
(n− r)!

, and n!
(n− r)! r!

. Textbooks typically present 

these early on, following each with numerous examples. Students are generally expected to apply 
them in various contexts throughout the remainder of the course. Research (Lockwood, 2013) 
indicates, however, that students frequently misapply these formulas, which suggests they may 
not understand how and why these expressions differ. We conjectured that engaging students in a 
guided reinvention of these basic counting principles could provide us an opportunity to 
understand how students make sense of them. Studies indicate (Swinyard, 2011; Swinyard & 
Larsen, 2012) that reinvention can be helpful for students to develop coherent reasoning, and 
also for researchers to gain insight into how students come to understand particular mathematical 
concepts. In this study, we engaged a pair of undergraduates in a ten-session teaching 
experiment, during which they solved basic counting problems and then subsequently 
generalized their mathematical activity by reinventing the four formulas above. In this paper, we 
report on the students’ reinvention of the four formulas, addressing both of the following 
research questions:  

1) How might students reinvent these four basic counting formulas?  
2) What cognitive issues might arise for students as they reinvent and use these formulas?  
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Literature Review and Theoretical Perspective 

The vast majority of research on the teaching and learning of combinatorics is relatively new. 
Thus far, researchers have clearly established that students have difficulty with even basic 
counting problems. For example, Eizenberg and Zaslavsky reported that in their study of 
undergraduates, “only 43 of the 108 initial solutions were correct” (2004, p. 31). Some 
researchers have identified common student errors, including over-counting and confusion about 
when order matters (Annin & Lai, 2010; Batanero, et al., 1997; Kavousian, 2006). Others have 
identified factors that might lead to such difficulties (Batanero, et al., 1997; Hadar & Hadass, 
1981) and have identified potentially productive problem-solving and verification strategies 
(English, 1991, 1993; Eizenberg & Zaslavsky, 2004). More recently, Lockwood (2013) has 
proposed an initial model of students’ combinatorial thinking and emphasized the importance of 
focusing on sets of outcomes when solving counting problems. 

Research that emphasizes the student’s perspective has proved useful in other mathematical 
content areas (Swinyard, 2011) and in combinatorics (e.g., Halani, 2012; Lockwood, 2013). 
Following Lobato (2003), Lockwood (2011) examined student-generated connections through an 
actor-oriented perspective, tracking what the students themselves saw as similar among counting 
situations, thus reorienting the perspective toward students’ views of counting.  

With a similar aim of emphasizing the student’s perspective, we drew inspiration from the 
perspective of developmental research (Gravemeijer, 1998). Developmental research leverages 
students’ informal knowledge and supports them in developing sophisticated, abstract knowledge 
while maintaining intellectual autonomy (p. 279). A heuristic commonly associated with 
developmental research is guided reinvention, “a process by which students formalize their 
informal understandings and intuitions” (Gravemeijer, Cobb, Bowers, and Whitenack, 2000, p. 
237). The formalization process necessarily requires students to generalize their previous 
mathematical activity. In line with Freudenthal’s recommendation (1973) to avoid an 
antididactic inversion (where symbolic formalism precedes reasoning), we aimed to create an 
environment that fosters initial exploration of counting problems that emphasizes sense-making 
over conventional symbolization. We conjectured that we might gain useful insight into how 
students come to understand basic counting principles if we engaged them in activities designed 
to foster their reinvention of the basic formulas.  

 
Methods 

The aim of this paired teaching experiment (Steffe & Thompson, 2000) was for the two 
students (Thomas and Robin) to reinvent four basic counting principles based on their 
engagement with a variety of counting problems. The motivation for the paired teaching 
experiment stemmed from the second author’s experience with the reinvention of advanced 
calculus definitions (Swinyard, 2011; Swinyard & Larsen, 2012). The participants in this study 
were two above-average students who had recently completed an integral calculus course taught 
by the second author. They were chosen based on the following criteria: 1) no formal experience 
with combinatorics; 2) strong mathematical background and ability; and, 3) a propensity to 
engage actively with mathematics and articulate their reasoning, as observed by the second 
author during the integral calculus course. 

The teaching experiment consisted of ten, 90-minute sessions and proceeded in two phases. 
During Phase 1 (Sessions 1-3) the students reasoned about and solved ten relatively elementary 
counting problems, thus providing them with a common experience from which they could later 
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generalize. The solution set for most of the problems was small enough that the students could 
completely enumerate the solutions in a table or tree. During Phase 2 (Sessions 4-10), the 
students encountered more challenging tasks, both in terms of the size of the solution set, and in 
the sophistication needed to solve each task. The aim of Phase 2 was for the students to reinvent 
each of the four basic counting formulas. We intentionally increased the cardinality of the 
solution sets so that the students might be motivated to generalize their prior mathematical 
activity in a manner that supported them in efficiently solving similar counting problems.  

The analysis of data occurred at multiple levels. As the teaching experiment proceeded, we 
conducted an ongoing analysis that included reviewing the videotape of each session and 
constructing a “content log.” In creating these content logs, we paid particular attention to 
students’ articulated thoughts that seemed to provide them with leverage, the voicing of concerns 
or perceived hurdles that needed to be overcome, and signs of/causes for progress. Our ongoing 
analysis informed our research team’s decisions about tasks for subsequent sessions. We have 
also conducted a retrospective analysis, in which we review the entire corpus of data at a deeper 
level, so as to refine our descriptions of thematic elements present in the students’ reasoning.  

 
Results 

In this section, we summarize the students’ reinvention of the four fundamental counting 
formulas. At the outset of the teaching experiment, we gave the students ten counting problems, 
which they solved during the first three sessions. The students quickly adopted a consistent 
approach to solving each problem, in which they read the problem aloud, wrote down relevant 
information on the board, and then attempted to write a table of the outcomes they were trying to 
count. Remarkably (given documented low success rates, e.g., Eizenberg & Zaslavsky, 2004), 
despite having no previous formal experience with counting, the students correctly solved all ten 
problems on their initial attempt.  

Initial problem solving. As an example of their typical method of operation, we briefly 
describe their work on one of the initial problems: How many arrangements of the letters in the 
word CATTLE have the two T’s appearing together either at the beginning or the end of the 
word? To solve this problem, the students wrote out the word “CATTLE” on the board, and after 
some discussion decided that Thomas would list ways to arrange the letters with the Ts at the 
beginning, and Robin would list ways to arrange the letters with the Ts at the end. They 
developed systematic ways of listing possibilities, and each wrote all six ways of arranging the 
letters CALE with C as the first letter. Robin’s summary of their solution process below captures 
the problem-solving approach they typically employed for the first ten problems. 

Robin: After doing the first few we realized the pattern. And so we saw that, if we start with 
the C, and do all the swapping, we get six combinations. And if we start with [A] we’re 
going to get another six combinations…But if we start with L we have six more, if we start 
with E we have six more, totaling 24. And his 24 plus my 24 would make a total of 48.  
Reinvention of formulas. After the first ten problems, the students had developed effective 

problem solving techniques and a good rapport with one another. However, we realized that their 
organized listing and pattern detection had not motivated a need for any more generalized 
methods or formulas. Since the aim of the teaching experiment was to gain insight into the 
students’ reasoning as they reinvented four basic counting formulas, we recognized the need to 
provide tasks that would necessitate generalization for the students. Toward that end, we 
presented them with problems whose solution sets were too large to enumerate easily via listing. 
Table 1 shows the problems designed to facilitate the reinvention of each respective formula. 
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Through engaging with the problems, the students successfully reinvented each formula, using 
their own notation. For instance, the f in the last two formulas stood for fans at the basketball 
game.  

Table 1 
Problem Textbook 

Formula 
Students’ 
Formula 

In the downtown public library, there are 648 books in the children’s section. 
In how many different ways can all of those children’s books be arranged on 
the shelves of the library? 

n!  n!  

There are 40 houses in the neighborhood, and they each need to be painted 
this summer. There are 157 paint colors available. In how many different 
ways could all of the houses be painted? 

nr  ab  

There are 19,000 fans at a basketball game. During halftime, a first, second, 
and third place prize are going to be given out to three lucky fans. In how 
many ways can the prizes be given out? 
There are 19,000 fans at a basketball game. Throughout the game, fifty 
randomly chosen fans are going to be given fifty different prizes. How many 
possibilities are there for how the prizes can be distributed? 

n!
(n− r)!  

n!
(n− f )!

 

There are 19,000 fans at a basketball game. During halftime, three lucky fans 
get to participate in a free throw contest. How many possibilities are there for 
which fans can participate? 
There are 19,000 fans at a basketball game. After the game, fifty fans are 
going to be chosen randomly to meet the team. In how many ways can these 
fifty fans be chosen?  

n!
(n− r)!r!
 

n!÷ (n− f )!
f !

 

 
Exploring Choosing. Immediately following their reinvention of the formulas, the students 

successfully solved two problems involving each type of formula with varying contexts. For 
instance, they solved problems like A fair coin is flipped 36 times. How many outcomes have a 
head on the fifth toss? (nr), and, In a shipment of 1000 iPhones, 25 are defective. In how many 

ways can we select a set of 50 non-defective iPhones? ( n!
(n− r)!r!

). Then, to our surprise, the 

students struggled significantly with another combination (or “choosing”) problem: Consider 
binary strings that are 256 digits long. How many 256-bit strings contain exactly 75 0s? We 
designed this as a combination problem, because one can select 75 of the 256 spots to place the 
0s and fill in the rest of the spots with 1s. The students spent over an hour on this problem, and 
for the first time in the teaching experiment they were unable to arrive at an answer.  

We realized that they were not recognizing the problem as a combination problem, and, in an 
effort to guide them toward this realization (without explicitly telling them to select spots), we 
presented them with another problem that could be solved using the combination formula: There 
are 40 houses in the neighborhood, and they each need to be painted this summer. There are 157 
paint colors available. In how many different ways could all of the houses be painted, if exactly 
two of the houses must be red? This problem can be solved by selecting which two of the 40 
houses are red, and then painting each of the remaining houses any of the remaining colors. 
Thomas and Robin correctly noted that they could paint the non-red houses in 15638 ways. 
However, while they indicated a need to determine which two houses were red, they did not 
recognize that they could enumerate this task using their combination formula. They solved the 
problem using careful listing and patterns, recognizing what they called an “adding factorial” in 
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the solution, as there are 40+39+…+3+2+1 total ways to select the houses. Thus, while they 
solved the problem correctly, they still did not recognize it as involving combinations.  

At this point, then, we recognized that while the students had been overwhelmingly 
successful on many problems, there was something about the act of choosing that was 
problematic for them. In the next session, we found further evidence of their struggle with 
recognizing when and how to apply the proper formula in these combination problems. First, we 
gave them the problem: There are 39 flamingos at the zoo. The zoo is going to exchange 6 of 
them with another zoo for 5 peacocks. How many possibilities are there for which flamingos are 
exchanged? Interestingly, they solved this correctly, almost immediately using the combination 
formula. We then gave them another house problem, If there are 40 houses on the block, in how 
many ways can exactly 3 houses be painted blue?, and they did not make the connection and 
again solved the problem through listing outcomes and finding a pattern. The juxtaposition of 
these two problems is striking. From the expert’s perspective, these problems are isomorphic, 
and yet the students clearly did not see them as such.  

 
Discussion 

A number of interesting discussion points emerged in the students’ problem solving, most 
notably the two problems with which they struggled. We find it interesting that Thomas and 
Robin recognized when to apply the combination formula in some contexts but not in others. 
Without question, the students correctly applied the other three formulas with relative ease, but 
only made use of the combination formula in particular contexts. We have two conjectures that 
emerged from the teaching experiment as to why this might be the case. 

 First, it seems as though there were certain features of what was being chosen that affected 
the students’ ability to recognize that the combination formula was applicable. At one point 
Robin stated that she saw the houses as being static – while she could envision people or 
flamingos actually moving and being chosen, she could not do the same with the houses. She 
additionally indicated that she interpreted the houses as being identical: “When I see people I 
think three different people, and when I see houses I think the same house painted blue three 
times.” The different contexts appeared to elicit different features in the objects 
(distinguishability, dynamics, etc.) that influenced the students’ ability to see the problems as 
involving the combination formula. 

We also believe that there may be something fundamental about the abstract act of choosing 
that is related to reification. While the students at times had some notion that they were 
“picking” basketball fans to participate, they did not seem to view the combination formula as 
being applicable across a wide variety of contexts. While they could use the expression in a few 
directly worded problems, they did not seem to be able to abstractly map their own choosing of 
houses (or spots in which to place zeros) onto their understanding of the combination formula. 
We suspect there is something cognitively different between how the combination formula is 
used in these different contexts.  

Another possible factor contributing to the students’ struggle with certain combination 
problems is that their initial understandings of the formulas during their reinvention were not 
sufficiently conceptually grounded. Indeed, in our analysis of these problems we were struck by 
their reliance on patterns. We believe that they relied on what Harel (2001) calls result pattern 
generalization, and their formulas (and their explanations of those formulas) were almost entirely 
grounded in that pattern recognition. As an example, while we repeatedly asked them why they 
needed to divide by f! in their formula, their arguments tended to be because “that was the 
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pattern we saw” and not because they clearly understood the function the f! played. When 
pressed, they could articulate a vague conceptual explanation, but their default explanation was 
to argue based on the patterns. This was true even in the other formulas – indeed, rather than 
being grounded in a fundamental notion of multiplication, even their notions of permutations 
were surprisingly rooted only in the observation of a numerical pattern. 

 
Conclusion and Future Directions 

In this paper, we have described how students might reinvent basic counting formulas. In 
addition to providing insight into a potential trajectory through which students might reinvent 
counting formulas, an interesting aspect of students’ thinking about combinations emerged. This 
work has raised questions that inspire subsequent studies, such as whether or not similar 
difficulties with combinations will arise with other students. If so, can we learn more about why 
choosing in some contexts is so difficult? Additionally, we are curious about how having 
students reinvent these four formulas might support students in handling problems with 
repetition, and in reinventing foundational counting principles (such as the addition and 
multiplication principles).  
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Noticing the Math in Issues of Social Justice  

Ami Mamolo 
University of Ontario Institute of Technology 

This preliminary report examines pre-service secondary mathematics teachers’ engagement with 
problems which contextualized mathematics in issues of social justice. A framework for Teaching 
Mathematics for Social Justice was employed and participant responses were analysed with respect 
to what mathematics they noticed and attended to in and after the problem solving.  Results suggest 
participants had difficulty “seeing” the math in non-math contexts, and that their ability to notice 
the embedded mathematics was influenced by the specific social context as well as their orientation 
towards mathematics (both in general and regarding specific content). Implications for research 
and teacher education are described. 

 
Key words: pre-service teacher education; social justice; context problems 
 

Consider the following contexts: 

 Delivering fresh foods to remote and/or inaccessible communities 
 Informing policies on fair trade of (e.g.) chocolate products 
 Investigating causes and consequences of the Savar building collapse 

If you were asked to think about these issues of social justice from a mathematical point of view, 
what would come to mind?  Would you notice specific mathematics concepts, such as optimization 
or cost analysis, or broader mathematical reasoning, such as spatial or numerical sense? What 
experiences would help with noticing, and mobilizing, the mathematics embedded in these issues? 

These questions highlight the motivation behind the research presented in this preliminary 
report. Specifically, this research addresses the question: What do pre-service teachers notice and 
attend to when exploring social justice context problems – that is, when they are asked to engage 
mathematically with issues of social justice? 

Mathematics lessons that teach to issues of social justice have been used recently to make math 
meaningful in multicultural classrooms (e.g. Bateiha, 2010), to improve student understanding of 
world issues (e.g. Bartell, 2011/2013), and to strive for equity in the classroom (e.g. Stinson, 2013).  
According to Gutstein’s (2006) model for Teaching Mathematics for Social Justice (TMSJ), a 
balance must exist between Social Justice Pedagogical Goals (SJPG) and Mathematics Pedagogical 
Goals (MPG), but this balance can be difficult to achieve (Bartell, 2011/2013).  Social justice 
context problems offer an avenue through which to achieve this balance, however as Beswick 
(2011) observes “enthusiasm for context problems appears to be in advance of the evidence for their 
effectiveness” in learning mathematics (p.387).  This research is part of a broader study which 
explores how the design of social justice context problems, and how engagement with such 
problems, may influence understanding of mathematics and mathematics teaching.   

Background and Theoretical Framework 
The connection between mathematics learning and addressing important and relevant world 

issues related to social justice has begun to flourish in education research.  Attention has focused on 
the possibilities and realities of learning mathematics for social justice, and research has ranged 
from developing pedagogy for multicultural settings (e.g. Bateiha, 2010) and investigating teacher 
challenges when negotiating pedagogical goals (e.g. Bartell, 2011/2013; Esmonde et al., 2013), to 
exploring the impact on student identity (e.g. Gutierrez, 2013) and their understanding of critical 
world issues (e.g. Gutstein, 2003, 2006).  In contrast, the research presented in this proposal attends 
to learning mathematics through social justice issues – a dimension that has not yet been explored 
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empirically in mathematics education research. For the purposes of this paper, the distinction 
between for and through is made to emphasize the scope of the research – it is on individuals’ 
understanding of mathematics as evoked through issues of social justice. 

The theoretical framework that underpinned the methodology and data analysis was that of 
Gutstein’s TMSJ model.  Its two components – Social Justice Pedagogical Goals (SJPG) and 
Mathematics Pedagogical Goals (MPG) – can be emphasized in different ways for different ends. 
As per Gutstein (2006), SJPG include: developing positive social and cultural identities, reading the 
world with mathematics, and writing the world with mathematics (e.g. using mathematics to change 
the world).  MPG include: reading the mathematical world (e.g. developing mathematical powers), 
succeeding academically in the traditional sense, and changing one’s orientation towards 
mathematics. The last of these goals aims to help transition students from “seeing it [mathematics] 
as a series of disconnected, rote rules to be memorized and regurgitated, to a powerful and relevant 
tool for understanding complicated, real-world phenomena” (Gutstein, 2006, p.30). 

While deeply interconnected, these goals can be difficult to negotiate and there is a tendency 
for teachers to prioritize one set over the other (Bartell, 2011/2013). Bartell observed that balanced 
learning goals of improving student understanding of world issues and of mathematics was not 
obvious to teachers, who were more likely to use social justice context problems to emphasize 
awareness of the social issue rather than develop mathematical knowledge. Indeed these teachers 
were observed to sacrifice mathematical content or develop lessons around previously acquired 
mathematical knowledge. In order to facilitate negotiation and balance of Mathematics and Social 
Justice Pedagogical Goals, more research is needed to identify and analyse teachers’ understanding 
of social justice context problems, the related mathematical content, and their orientation toward 
that content. 

Methodology 
In this study, the TMSJ framework was used to develop and analyse social justice context 

problems related to the themes itemized at the beginning of this proposal.  The specific tasks and 
data collection instruments will be provided in session.  Briefly, participants were presented with a 
situation and asked to engage with some context problems which ranged from an explicit address of 
math concepts (e.g. represent data as graphs in different ways) to implicit suggestions (e.g. create 
the ‘best’ travel itinerary and justify your choices). Some further details are provided in the 
discussion section.  Part of the broader research attends to issues in task design, but these are 
outside the scope of this proposal. 

Participants for this study included 25 pre-service secondary school teachers enrolled in a 
methods course.  Data collection occurred in multiple stages and used a mix of written response and 
one-on-one follow up interviews. Briefly, participants were asked to select from a variety of tasks 
that situated secondary school mathematics within issues of social justice. They had two months to 
engage with the task, which included in-class time for question-posing and collaboration.  
Following that, a one-on-one interview which invited them to reflect explicitly on the embedded 
mathematics, and their experiences engaging with the context problem, was administered.  Data 
analysis is on-going, and preliminary results and trends are highlighted below. 

Discussion 
While there is not space to fully discuss the results, some highlights are presented. Analysis 

will focus on the MPG component to Gutstein’s (2006) TMSJ framework. Preliminary results 
suggest that while participants saw a connection between the social justice issues and mathematics, 
and expressed a need to use mathematics to respond to the task, they had difficulty identifying what 
specific mathematical concepts were relevant.   

For instance, in a question related to international fair trade practices, participants were asked 
to create a travel itinerary for their funding agency and to use mathematics and/or statistics to 
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justify their choices.  For the task designers the idea of optimization (of time, distances, money, 
etc.) was at the heart of this problem. However this was not clear for participants, even when 
(heavily) prompted.  For example, Debbie noted that data management was involved in this 
problem, but she did not see a connection to optimization:  “as far as optimization… I don’t see 
how that would fit in… because when I think of optimization, I think of, I don’t know, parabolas 
and things like that, and finding the optimum value.”  Debbie went on to identify issues connected 
with optimization – “dealing with money, dealing with schedules, dealing with time” – though she 
still did not see the connection herself.  Interestingly, trends in the responses to this context problem 
included language which referred to optimization (e.g. choosing locations and means of 
transportation to minimize travel times and fees), but which was not perceived as optimization by 
participants whose attention tended to remain on the social justice issues related to fair trade.  
Connecting this observation to the MPG listed above, there appears to be a relationship amongst 
“reading the mathematical world” (Gutstein, 2006, p.24), changing one’s orientation towards the 
subject (p.26), and changing one’s orientation toward the specific subject matter.  In particular for 
this example, participants needed to think about optimization in a broader context than finding 
vertex points of parabolas in order to notice it in a context about travel plans.   

Participants had different difficulties with context problems that more explicitly identified the 
mathematics required to address the social justice issue.  For example a context problem which 
asked participants to compare specific data related to cost of living and food subsidies in a major 
metropolis versus a remote location in their home country was seen as challenging because it 
contrasted with prior school experiences.  Rudy explained that “school has created a kind of 
stereotype” but for this problem “there’s no neat and final solution” because one cannot separate the 
data from its social context (“you have to see it all together,” and “you need to learn about the 
social issues… otherwise you get confused with the data”).  For Rudy, the task “reinforced how 
powerful mathematics is” and opened for him “a new window… to make teaching relevant, 
meaningful, helpful…”  These comments exemplify the general reaction to this context problem.  
For the most part, participants described the power of using such problems for reinforcing math, but 
not to learn it.  As Frank put it “though I do believe that it is important to help students see how 
math may connect to social issues in society… I do feel that it is necessary to keep to the 
curriculum… I also feel that that to invest the amount of time that this [context problem] would 
require… I would feel like I’m doing my students an injustice by not spending more time on the 
mathematics.”  Thus while Rudy’s comments suggest a shift in orientation towards math teaching, 
Frank highlights the tensions and challenges of such a shift. It is interesting that Frank would use 
the word “injustice” to describe teaching mathematics through a social justice context problem, and 
this suggests a possible refinement of the TMSJ model when applied to teacher education. 

Bartell (along with Gutierrez, 2009) notes that “learning to teach  mathematics for social justice 
is a complex, long-term process and adequate contextualization of social issues, for example, will 
not occur in the course of one professional development experience” (2013, p.160).  This comment 
can also apply to learning math from social justice, as noticing relevant mathematical ideas which 
may be embedded in a social context is not obvious, even for individuals with substantial 
mathematics backgrounds. Further, for teachers to want to teach in such a way, a shift in orientation 
may be necessary.  Extending on Gutstein’s (2006) model, there is a need for teacher educators to 
incorporate pedagogical goals that foster shifts in orientation towards (i) mathematics teaching, and 
(ii) achieving success in school mathematics.  What might such shifts look like? How can teacher 
educators facilitate “seeing” math in social issues and then mobilizing? 
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An eye to the horizon: The case of Delia’s Hexagon 
Ami Mamolo 

University of Ontario Institute of Technology 

This paper explores pre-service secondary school mathematics teachers’ preferences when 
advising a student on how to determine the area of an irregular hexagon. The research attends 
to participants’ personal mathematical knowledge, as interpreted through the lens of Knowledge 
at the Mathematical Horizon. Philosophical notions of inner and outer horizons of conceptual 
objects are adapted to provide a refined analysis of participants’ personal strategies and 
preferences as evoked by an unconventional problem.  The interplay amongst participants’ 
understanding of mathematical structure, their focus of attention when interpreting a problem, 
and the advice they offer to a student are of interest.  Implications for teacher education and 
further avenues of research are suggested. 

Key Words: Knowledge at the Mathematical Horizon; Pre-service Teacher Education; Geometry 

Personal mathematical knowledge of teachers and its influence on lesson planning and 
implementation continue to draw attention from researchers at the undergraduate level (e.g. 
Watson and Chick, 2013).  Facets of teachers’ mathematical knowledge as directly related to the 
curriculum have been widely discussed, categorized, explored; and the research is well-known 
(e.g. Ball, Thames & Phelps, 2008).  With the focus of these conversations in mind, eyes turn 
toward the horizon – namely, teachers’ knowledge at the mathematical horizon (KMH) as 
introduced by Ball and Bass (2009) and extended by Zazkis and Mamolo (2011).  

This research is part of a broader study which explores pre-service teachers’ KMH as they 
respond to and prepare for teaching situations. This proposal explores the connection between 
participants’ personal preferences for addressing a novel (for them) problem and their related 
expectations for student learning. Specifically: What influences pre-service secondary 
mathematics teachers’ preferences when considering recommendations for how to determine the 
area of an irregular hexagon, and what are the bases for these preferences?  The analysis 
intends to shed new light on how different facets of KMH may manifest in pre-service teachers’ 
address of a teaching situation, and what consequences this might have for student learning. 

 
Background 

Mathematical knowledge for teaching, in teaching, of teachers, has been widely discussed 
from a variety of perspectives (e.g. Ball et al., 2008; Davis & Simmt, 2006).  Much of the current 
discussion draws on Shulman’s (1986) landmark distinction between Subject Matter Knowledge 
(SMK) and Pedagogical Content Knowledge (PCK), refining and extending understanding of 
what knowledge is required for the tasks of teaching. While the debate continues, there seems to 
be consensus that teachers “need to know more advanced mathematics than the mathematics they 
are teaching” (Mason & Davis, 2013, p.194).  The nature of such knowledge also attracts 
interest, and as Rowland and Zazkis (2013) suggest, “one’s stance on the mathematical 
knowledge needed (or essential) for teaching depends on one’s perception of teaching itself” 
(p.138).  In their perspective, teaching involves dealing with the unanticipated – e.g. taking 
advantage of unexpected opportunities for making connections or extending student thinking.  
They therefore state that “mathematical knowledge beyond the immediate curricular prescription 
is beneficial and demonstrably essential” (ibid.).  
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In Ball et al.’s (2008) well-known refinement of SMK and PCK, they note that the SMK 
required for teaching are “knowledge and skills not typically taught to teachers in the course of 
their formal mathematics preparations” (p.402). They further state that “Teachers who do not 
themselves know a subject well are not likely to have the [pedagogical content] knowledge they 
need to help students learn this content” (p.404).  Similarly, Potari et al. (2007) observed that 
robust subject matter knowledge allows teachers to interpret and develop student ideas with 
greater ease and effectiveness. They also suggest that teachers’ ability to connect different 
mathematical areas and their awareness of the relevance of these connections were part and 
parcel to their ability to effectively create a rich mathematical learning environment.  Ball, 
Lubienski, and Mewborn (2001) highlighted that: “It is not only what mathematics teachers 
know but also how they know it, and what they are able to mobilize” (p.451). 

Extending on these studies, this research considers pre-service teachers’ address of a 
student’s attempt to solve a non-routine problem, which can be addressed in a variety of ways 
with connections to core concepts in secondary school curricula. Participants’ SMK is analysed 
via the sub-category Knowledge at the Mathematical Horizon, which is discussed in the 
following section. The intent is to offer a refined look at how this specific aspect of individuals’ 
mathematical knowledge can manifest in, and influence, teaching situations. 

 
Theoretical Framework 

Knowledge at the Mathematical Horizon (KMH) is described as a structural, connected, and 
robust understanding of mathematics that goes beyond what is taught in school curricula. Ball 
and Bass (2009; also Jakobsen, Thames, & Ribeiro, 2013) present KMH as a teacher’s 
knowledge of students’ horizon; it includes teachers’ knowledge of major disciplinary ideas and 
structures, key mathematical practices, and core mathematical values as they relate to students’ 
past and future learning (p.5).  Other perspectives identify similar features, but focus on the 
teachers’ horizon (e.g. Zazkis & Mamolo, 2011). This study also attends to teachers’ horizon and 
what mathematics lies “in and out of focus” as they consider a hypothetical teaching situation. 

In line with the description of horizon knowledge as connected, robust, and beyond school 
curricula, Zazkis and Mamolo (2011) extend the construct of KMH to focus on teachers’ horizon 
by connecting it to Husserl’s philosophical notion of a (conceptual) object’s horizon.  Husserl’s 
description relates to an individual’s focus of attention – in particular, when an individual attends 
to an object, the focus of attention centers on the object itself, while the ‘rest of the world’ lies in 
the periphery (Follesdal, 2003). With this perspective, an individual’s KMH is contingent on the 
specific mathematical object under consideration – how it is understood, what aspects lie in 
focus or in the periphery, and what connections the individual is able to make between the in-
focus and peripheral facets. What lies in the periphery is understood as the object’s horizon, and 
according to Husserl it can be described by an inner and an outer horizon. 

Inner horizon refers to specific attributes of an object which are not (at that moment in time) 
in focus for the individual. For example, if one were to imagine a hexagon, there are several 
attributes which might appear in focus – the number of edges and vertices, the lengths of the 
sides, etc.  Other specific attributes of that hexagon – its lines of symmetry, area, etc. – lie in the 
periphery, and as such are elements of the inner horizon.  There is a reflexive relationship 
between what lies in focus and in the inner horizon, and it depends on what catches (and keeps) 
the attention of the individual.  An object’s outer horizon refers to the “broader world” in which 
the object exists, and thus does not depend on the individual’s focus of attention.  The outer 
horizon includes features which embed the object in a greater structure, and consists of 
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generalities exemplified by the specific object.  For example, the fact that one may express 
measurements of the hexagon via algebraic equations (such as for perimeter or size of interior 
angles) would lie in the outer horizon, exemplifying structural connections between strands (e.g. 
algebra and geometry) and between concepts (e.g. ratios of lengths and angles).   

With this in mind, a teacher’s KMH can be interpreted as knowledge of mathematical 
objects’ inner and outer horizons.  Zazkis and Mamolo (2011) use this construct to explore 
examples of KMH as it influenced teachers’ decisions in classroom situations. Extending on this 
work, this research explores what mathematical knowledge is “in focus” as pre-service 
mathematics teachers addressed a non-routine problem about the area of an irregular hexagon. 
The analysis attends to specific instances of inner and outer horizon knowledge and how this 
knowledge influenced participants’ preferred recommendations for a hypothetical student. 

 
Methodology 

Data collection occurred in two stages via written questionnaire with 20 pre-service 
secondary mathematics teachers enrolled in a teacher education program. The questionnaires 
were administered one week apart and took approximately 30 minutes to complete.  Participants 
were informed of the scope of the questionnaires, which sought to explore their mathematical 
and pedagogical knowledge given a hypothetical situation.  They were not told of the specific 
content in advance, aside from the fact that the second questionnaire would follow-up on ideas 
raised in the first session. Participants were told to answer honestly and reflectively, and that it 
was okay to say “I don’t know.”  It was also emphasized that there was no “right answer.” 

The first questionnaire, depicted in Figure 1 below, was designed to uncover participants’ 
strategies and approaches when advising a student.  “Delia’s hexagon” was chosen for this 
questionnaire because of the many applicable concepts and strategies which would (i) allow 
participants to solve by various means, and (ii) provide information on what relevant (and 
irrelevant) concepts were evoked and remained “in focus.”  During this stage of the research, a 
diagram of Delia’s hexagon was deliberately omitted since how (and whether) participants 
constructed their own diagrams would provide further insight into their thinking. 

 

Figure 1: First Questionnaire: Introducing Delia’s Hexagon 

 Since the second questionnaire was designed as a follow-up, it is appropriate to quickly 
summarize the trends and initial analysis of the first questionnaire before presenting the task.  
Briefly, of the 20 participants 18 drew diagrams and all 20 described “deconstructing” the 
hexagon into smaller “easier” shapes. Fifteen participants drew regular hexagons, with the most 
common diagrams depicted in Figure 2 below. The two most prominent trends in participants’ 
recommendations for Delia were: (i) based on broad ideas, such as “put in lines to break up the 
hexagon into shapes which we have established rules and laws to work with” (Sophia); and (ii) 

 Imagine you are a teacher in the following situation: Delia, a high school student with good  
 grades, is working on an extra-curricular math problem and approaches you for help. Here is the 
 problem: 

 You are given a hexagon ABCDEF, where the lengths of the sides are equal to AB = CD = EF = 
 1 and BC = DE = FA = √3, and AB is parallel to DE, BC parallel to EF, and CD parallel to FA.

1. What is the measure of each interior angle? 
2. What is the area of the hexagon? 

 Delia has found that all of the interior angles are of equal measure, but is unsure how to find the 
 area. How do you recommend Delia go about finding the area? 
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Recall Delia’s hexagon ABCDEF, with sides lengths AB = CD = EF = 1 and BC = DE = FA = √3. 
 
 

To determine the area, Delia was given a variety of different recommendations. Here are two of them: 
 

Recommendation A:  
Extend the hexagon into an equilateral 
triangle as in the figure below. Then use the 
areas of the large triangle, and small outer 
triangles, to determine the area of the 
inscribed hexagon. 

 

Recommendation B:  
Decompose the hexagon into three 
triangles (1, 2, 3, which are all equal), and 
an equilateral triangle 4, as in the figure 
below. Then sum the areas of the inscribed 
triangles to determine the area of the 
hexagon.  

 
 
 
Which approach do you prefer, and why?

A B

C

DE

F

A B

C

DE

F

giving step-by-step procedures of how to solve, such as “she can solve the area of the two 
triangles and the rectangle in the middle using formulas for the areas. Once this is calculated, she 
can just add the area of the rectangle and the two triangles” (Abigail). 

a)   b)  

Figure 2: Common “dissecting strategies” 

Initial analyses suggested participants over-relied on the regularity of their depicted 
hexagons, using strategies that were either inappropriate (e.g. Fig.2a) or incomplete (e.g. Fig.2b) 
to generalize to the irregular case.  Thus, the second questionnaire (see Fig.3 below) included 
recommendations that (i) had diagrams of a regular and irregular hexagon, (ii) could apply in 
general without introducing any additional mathematics, and (iii) reflected and contrasted 
participants’ inclination to dissect the hexagon. In the following section, participants’ responses 
to the second questionnaire are analysed in depth. Due to space limitations, the focus is on 
identifying specific instances of participants’ KMH via the refined lens of inner and outer 
horizons, which exemplified the trends and themes observed more generally in the data.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Second Questionnaire: Participant Preferences 

Results and Analysis 
Trends observed in response to the second questionnaire: 

1. Participants who preferred rec. A (11 out of 20) attended to structural features and 
consequences of the provided diagram; 

2. Participants who preferred rec. B (9 out of 20) attended to surface features of the 
solving process and their prior personal experiences; 

With respect to the first trend, attention to structural features and consequences of the diagrams 
was noted both in participants’ acceptance and critique of the two recommendations, 
respectively.  For example, in Sarah’s response she identified the area of the hexagon as the 
difference between the areas of the large triangle and three smaller ones in rec. A, which can be 
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A B

C

DE

F

60

6060

1

interpreted as an instance of KMH at the outer horizon – that a shape’s measurements may be 
determined indirectly through knowledge of other shapes can be considered as knowledge of a 
broader mathematical structure.  Sarah explained rec. A was “easier” because “you’re only using 
equilateral triangles,” a fact which she explained verbally as well as diagrammatically (see 
Fig.4). In her reasoning she made use of structural properties of equilateral triangles, as depicted 
in Fig.4, and used these to deduce information about Delia’s hexagon (outer horizon knowledge). 
She also contrasted this approach with rec. B, which she wrote “is unclear and... seems as though 
there is a lot more work to finding the areas of the triangles.”  This may be seen as an awareness 
that some of the important structural features of rec. A were not present in B. 

 

 

 

 
 

Figure 4: Sarah’s diagrammatic reasoning 

Sarah’s focus on the triangles further suggests a relationship between an individual’s inner and 
outer horizon knowledge.  Her outer horizon knowledge of inferring from shapes allowed her to 
shift Delia’s hexagon to the periphery of her attention, and as such it became part of the 
triangle’s inner horizon (since it is specific to this triangle). This shift permitted Sarah to reason 
with what she believed was “easier,” and it influenced how she would respond to Delia.  

Similarly, Miles also attended to the specific structure of the provided diagrams, showing 
evidence of his inner horizon knowledge.  He wrote: “It must also be noted that both figures 
shown are only one possible configuration. In fact, figure B is further from an accurate scale 
representation than figure A.”  Miles was one of four participants who referred to the inaccuracy 
of rec. B’s diagram, and it was clear that an awareness of different hexagonal configurations 
remained in mind as he assessed the general applicability of the two recommendations. He noted 
that even “if the internal angles aren’t equal, figure A’s approach can still be used. The triangle 
form though, may not be equilateral, but it will be isosceles.” In contrast to prior research which 
observed that teachers’ images of hexagons tended to be restricted to regular prototypes (e.g. 
Ward, 2004), Miles was considering hexagons more broadly. His response suggests that he was 
able to reason with these shapes without having them directly in view. His consideration of how 
the encompassing triangle would differ depending on the specific hexagon and of how “A’s 
approach can still be used” more generally, instantiate both inner and outer horizons, 
respectively.  Both Miles and Sarah also noted that both recommendations should be shown to 
Delia since it will “deepen [her] understanding of the concepts involved.” 

This latter reflection on the value of both approaches is worth noting as it contrasted with 
common responses that preferred rec. B as more familiar, comfortable, and more closely 
connected to strategies used in school. The dominating factors for these participants were 
familiarity and personal comfort levels, and these influenced both what was deemed appropriate 
for Delia and what seemed to be “allowed in view” for participants.  For example, Abigail 
claimed that “rec. B is the approach I would take because of the way I learned geometry. The 
hexagon divided into triangles is the approach I learned in school.” She went on to say that the 
“subtraction method [is] confusing to me, but adding small shapes to make a big shape is easy.”  
Abigail’s desire to stick to the approach she learned in school suggests a limited KMH, and she 
did not seem to find beneficial “mathematical knowledge beyond the immediate curricular 
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prescription” (in contrast to Rowland and Zazkis, 2013).  Further, her reluctance to consider an 
approach that lay outsider her prior experience also seemed to play a part in directing her 
attention toward superficial features of the recommendations – such as the relative sizes of the 
shapes in question, and the challenges of adding versus subtracting. These ideas were echoed by 
the majority of participants who preferred rec. B.   

For instance, Victor replied: “I find it easier to conceptualize adding small portions to get the 
new total portion instead of calculating a larger portion and subtracting from it… only one 
function is required (addition) vs. [rec. A] which requires two functions (addition and 
subtraction).”  In all cases, these operations were not considered in light of the details of their 
implementation – that is, no one attended to what was going to be added or subtracted, or to how 
difficult it would be to determine these values (or how many “functions it would require”).  
Focusing on such surface features can be interpreted as limited horizon knowledge, as well as a 
resistance to consider deeply an approach that was outside of familiar repertoire. The two are 
connected, and in turn connect to how teachers may view and guide their students’ learning.  In 
contrast, with a robust KMH, and a willingness to apply it, individuals could have analysed the 
level of difficulty of the arithmetic with respect to the specific features of Delia’s hexagon (inner 
horizon), and provided justification for their preferences that spoke to the general applicability of 
the proposed recommendation (outer horizon). 

 
Concluding Remarks 

What influences pre-service secondary mathematics teachers’ preferences when considering 
recommendations for how to determine the area of an irregular hexagon, and what are the bases 
for these preferences?  Returning to this research question, several factors were found. In 
resonance with research done with children (e.g. Clements & Battista, 1992; Walcott et al., 
2009), participants relied heavily on prototypes of regular hexagons, which was surprising given 
their strong mathematics backgrounds.  Many participants cited surface features as the bases for 
their preferences, attending to relative sizes of shapes as well as the number of operations needed 
as indicators of the levels of difficulty of solving strategies. In these cases, specific features of 
the recommendations were ignored in favour of general observations and personal preferences.  
These considerations resulted in responses that were either inappropriate (such as in Fig.2) or 
misleading (e.g. Abigail and Victor), and were interpreted as illustrating limited KMH. 

Although Delia’s hexagon was new for all participants, some were more inclined to make 
connections beyond their prior school experiences and to consider the problem on a deeper level. 
These participants (e.g. Sarah and Miles) attended to structural features of the mathematics, were 
more flexible with what was in- and out- of focus, and were interpreted as demonstrating more 
robust KMH, as it related to both inner and outer horizons of the mathematical entities in 
question.  The analysis suggests that comfort and flexibility in what horizon knowledge is 
accessed and mobilized are important features in assessing and recommending appropriate 
solving strategies for learners, and it makes a case for developing such flexibility in teacher 
education programs.  Further, participants who demonstrated this flexibility also seemed more 
willing to set aside their personal and initial preferences for advising Delia, and this is 
particularly significant when considering the potential impact of a teacher’s response to a 
student’s unconventional or unexpected approaches. These results suggest a need for more 
research into how limited or robust Knowledge at the Mathematical Horizon, with particular 
reference to their personal mathematical knowledge (e.g. inner and outer horizons), can influence 
how teachers’ interpret, predict, and respond to student thinking. 
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A FRAMEWORK AND A STUDY TO CHARACTERIZE A TEACHER’S GOALS 
FOR STUDENT LEARNING 

Frank S. Marfai 
Arizona State University 

In this study, a secondary school teacher’s goals for student learning were characterized 
using a framework that emerged from prior work. Observed lessons spanning the use of both 
conceptually rich and conceptually poor curricula were analyzed and lead to unexpected 
findings, suggesting that both challenges and opportunities for professional development 
endeavors exist that center around perturbing a teacher's goals. 

Key words: Teacher Goals, Mathematical Knowledge for Teaching, Teacher Knowledge, 
Teacher Beliefs, Professional Development 

It is widely known that mathematics teaching in the United States has been 
characterized as procedural and disconnected (Ma, 1999; Stigler & Hiebert, 1999), with little 
focus on understanding how mathematical concepts develop and how they are connected.  In 
recent work it has also been documented that it is common for teachers to teach in a manner 
in which they were instructed as students, and that making the transition to value conceptual 
learning and teaching is a difficult transition for teachers to make (Sowder, 2007). 

Theoretical Framework 
 Mathematical knowledge for teaching (MKT) has been described as the domains of 
knowledge that include a teacher’s subject matter knowledge and her pedagogical content 
knowledge (Ball, 1990; Hill, Ball, & Schilling, 2008). MKT has also been described as a 
teacher’s key developmental understandings and how they influence a teacher’s practice 
(Silverman & Thompson, 2008). It has been reported that many teachers do not possess key 
developmental understandings of central ideas of secondary mathematics, and that these 
understandings can only emerge from experiences that promote perturbations that result in 
self-reflection. 

A teacher’s mathematical teaching orientation influences her classroom practices 
(Thompson, Philipp, Thompson, & Boyd, 1994).  A teacher with a calculational orientation 
has an image of mathematics as an application of rules and procedures for finding numerical 
answers to problems. A teacher having a conceptual orientation has an image of mathematics 
as a network of ideas and relationships among these ideas, and strives to support students in 
developing coherent meanings among these ideas. I conjecture that a teacher’s mathematical 
orientation is influenced by her MKT and that this knowledge may also impact the goals a 
teacher has for her students’ learning and her teaching.  

I will define a teacher’s goal as a mental representation of what a teacher is trying to 
accomplish.  This is similar to how other researchers (Locke & Latham, 2002) have 
categorized goals, although this perspective does not explain possible purposes or reasons 
why a teacher may pursue a goal (Pintrich, 2000).  Research has shown that a teacher’s goals 
for student learning do influence her development of powerful pedagogical content 
knowledge (Webb, 2011). 

In the both studies on which this preliminary research report is based, I used 
Silverman and Thompson’s (2008) construct of MKT as a lens for examining how a teacher 
understands ideas and connections among ideas, and how this influences her pedagogical 
decisions and actions. I hypothesize that the transformation of a teacher’s key developmental 
understandings (Simon, 2006) into MKT is developmental as a teacher’s orientation shifts 
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from calculational to conceptual, and examining teachers’ pedagogical goals for a lesson can 
lead to insights underlying this process of growth. 

Research Question 
My research question is as follows:  How might a teacher’s pedagogical goals for 

student learning be characterized in the context of using a curriculum promoting a conceptual 
orientation of mathematics, and how are they similar or different than when using a 
curriculum that promotes a calculational orientation?  

Methods 
To characterize a teacher’s goals for student learning, two studies were conducted.  

The first study was a pilot project in which an initial goal framework emerged from two 
teachers’ goals for student learning using grounded theory (Strauss & Corbin, 1990) keeping 
in mind Silverman and Thompson’s characterization of MKT.  In the second study (the 
follow-up to the pilot study), Robert (pseudonym) from Salt Valley High School 
(pseudonym) in a Southwestern state was selected for observation during two chapters in 
which he taught Trigonometry during the Spring 2013 semester.  Robert was teaching 
Precalculus for the third time using the same conceptually rich curriculum as the teachers in 
the first study, although he had supplemented the course with materials from a traditional 
textbook.  Robert has been teaching for 13 years total at the same high school. Robert was 
identified as a teacher whose key developmental understandings of the Precalculus 
curriculum were well connected and whose pedagogical actions indicated an inclination to act 
on student thinking. 

Twenty-nine classroom observations were videotaped that primarily covered two 
chapters from different texts focusing on trigonometry, in particular angle measure, 
trigonometric functions, identities, and applications using trigonometric functions.  At the end 
of class, the researcher gave a short questionnaire that included asking about Robert’s 
instructional goals, and his goals for student learning that day; he answered the questionnaire 
on the same day via email.  Robert’s goals for student learning were then coded using the 
framework developed from the pilot study. The chapters under which the observations were 
performed had a conceptually rich chapter from reform oriented curricular materials, 
followed by a conceptually poor chapter and sections of a traditional textbook.  In addition to 
observing how curricular context affected Robert’s goals for student learning, the researcher 
also tested the stability of Robert’s goals through follow-up questions designed to perturb his 
goals to higher levels in the framework. 

Results 
Robert’s goals were coded using the goals framework developed from the pilot study; it 

consists of seven levels (rated from 0 to 6 – representing a spectrum of product focused 
actions to do at lower levels in the framework, towards goals focused on student thinking and 
ways to support such thinking at higher levels in the framework) of teacher’s goals for 
student learning (TGSL) at increasing degrees of sophistication.  Table 1 contains the 
framework used in this study. 

Table 1. Levels in a Teacher’s Goals for Student Learning 

Goal Coding Description 
TGSL0 Goals are not stated, or the teacher states that the goals of the lesson are 

unknown. 
TGSL1 
 
TGSL2 

Goals are a list of topics that a teacher wants her students to learn in the 
lesson, each associated with an overarching action. 
Goals are a list of topics that a teacher wants her students to learn in the 
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lesson, each associated with a specific action. 
TGSL3 Goals are doing methods of mathematics that a teacher wants her students 

to learn in the lesson. 
TGSL4 Goals are getting students to think about the mathematics in the lesson, 

without the ways of thinking articulated. 
TGSL5 Goals are getting students to think about the mathematics in certain ways 

during the lesson. 
TGSL6 Goals are about developing ways of thinking about the mathematics in the 

lesson, with attention to how that thinking may develop. 
 

After coding Robert’s goals, statements of his goals for student learning ranged from 
levels 1 to 5 (see Table 2, below), even though based on classroom observations, in a 
majority of class sessions Robert made pedagogical moves to model student thinking and he 
made decisions to act on his model of student thinking either at the group level or in a whole 
class discussion, with varying levels of success. Robert’s pedagogical moves in more 
successful interactions initially suggested that he was mindful of student thinking in the 
planning process, and thus the reason why TGSL6 exists in the framework; however they 
appeared to be unstated goals.  Goals rated at TGSL6 were accessible to Robert, however 
were only stated explicitly in limited contexts after moves were made by the researcher to 
perturb his goals. 

Table 2. Teacher's Goals for Student Learning - Count (Percentage) 

  Conceptually Conceptually 
Goal Level Rich Curriculum Poor Curriculum 

TGSL0 0 (0.0%) 0 (0.0%) 
TGSL1 7 (17.1%) 2 (9.5%) 
TGSL2 10 (24.4%) 1 (4.8%) 
TGSL3 3 (7.3%) 8 (38.1%) 
TGSL4 17 (41.5%) 7 (33.3%) 
TGSL5 4 (9.8%) 3 (14.3%) 
TGSL6 0 (0.0%) 0 (0.0%) 

All Stated Goals 41 (100.0%) 21 (100.0%) 
 

Another interesting finding is when looking at Robert’s goals for student learning 
alone, there was no way to distinguish between the modalities of classes that consisted mostly 
of group work, meaning making, and class discussion versus those lessons in which direct 
instruction with limited opportunities for group work were observed; Robert’s goals for 
student learning were indistinguishable when using reform-oriented curricular materials were 
used, versus when a traditional textbook was used. 

Questions 
 The two primary questions I have for audience members in which I would value the 
feedback and comments from the research community are as follows. 

In early analysis, I have found that Robert’s familiarity with the curriculum resulted in 
superficial attention to planning.  Therefore I hypothesize that explicit attention to goals on 
ways students’ thinking could be developed, promoted, or supported (TGSL6) are not part of 
Robert’s natural inclinations.  The goals framework has been used as a tool to characterize a 
teacher’s goals for student learning, and I have used it as a tool for professional development 
(to promote self-reflection through follow-up question to move a teacher’s goals towards 
higher levels in the framework).  Moves by the researcher to cause perturbations were met 
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with limited success occurring only in certain contexts.  My first question is how might a 
researcher help shift a teacher’s natural disposition toward goals for student learning that 
would be rated as TGSL6, and what role may a teacher’s beliefs and his or her mathematical 
knowledge for teaching contribute to resistance, or amenability, to such shifts? 

I conjecture that a teacher’s planning process and mathematical knowledge for 
teaching contribute to her or his goals supportive of student autonomy and reflection in 
learning of mathematical ideas, through goals that promote students making mathematically 
relevant conjectures and reflections.   From the analysis of the data, I did not see explicit 
evidence of such goals for student learning for Robert, and his classroom practice did not 
reflect consistent attention to these goals either, regardless of the type of curriculum used.  
My second question for the research community is how might teacher’s goals for student 
learning be perturbed to include opportunities for student conjecture and reflection in order to 
promote student autonomy? 
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AN INVESTIGATION INTO STUDENTS’ USE OF GIVEN HYPOTHESES WHEN 
PROVING 

Kathleen Melhuish 
Portland State University 

The mathematical practice of strengthening or weakening a theorem requires careful 
attention to hypothesis and conclusion. Selden and Selden (1987) reported that students often 
unintentionally weaken theorems raising concerns of undergraduates’ attention to 
hypothesis. In this paper, I consider both the prevalence of this error and what the practice of 
strengthening/weakening a theorem may look like. A survey of prove/disprove prompts was 
piloted with five graduate students. A subset of these prompts was then given to 
undergraduates in an introductory group theory course.  Preliminary results indicate that the 
error of weakening the theorem is prevalent amongst both populations. The graduate 
students participated in follow-up interviews where they were prompted to strengthen/weaken 
conjectures to further examine their attention to the hypotheses. In this preliminary report, I 
will present the survey results and one graduate case to illustrate what the practice of 
strengthening/weakening a theorem may look like. 

Key words: proofs, group theory, hypotheses 

Selden and Selden (1987) have previously presented a large taxonomy of proof errors, 
many of which have not been researched further.  Of these error-types, several involved 
students making unfounded assumptions such as: real numbers laws are universal and 
weakening the theorem. In order to explore this phenomenon further, a survey was created 
using prompts were false assumptions could easily lead to an invalid proof. 

In mathematics, the practice of strengthening or weakening conjectures is standard 
(Pólya, 1990). Yet, in traditional undergraduate classrooms, students are rarely asked to 
engage in this practice. Rather, students often start with a statement known to be true and 
begin their exercise of proving. When students unintentionally make a hypothesis weaker (by 
assuming properties not given) or fail to use all pieces of a hypothesis (essentially proving a 
stronger statement), they show an unawareness of what system they are in fact working in 
and likely lack the tools to engage in the practice of strengthening or weakening conjectures 
appropriately. 

In this report, I will be considering the following research questions: 1. Is the error of 
weakening the theorem a frequent issue in introductory group theory courses? 2. Are students 
aware of what parts of a hypothesis are being used? 

Background 
A large body of knowledge has been developed in the past years concerning students 

struggles to prove statements, analyze proofs or evaluate conjectures (Dreyfus, 1999; Harel & 
Sowder, 1998; Hart, 1994; Selden & Selden, 1987, 2008; Weber, 2001). Selden and Selden 
(1987) note students often will weaken the theorem during the proving process. They define 
weakening the theorem as, “when what is used [to prove] is stronger than the hypothesis or 
when what is proved is weaker than the conclusion” (p. 10). This occurs when a student 
assumes a mapping is bijective or that a that a semigroup is actually a group.  

When a mathematician is aware of this weakening or strengthening of a conjecture, they 
are engaged in the process of generalizing or specializing (Pólya, 1990). Pólya defines 
generalization as “passing from the consideration of a given set of objects to that of a larger 
set, containing the given one” (p. 12) whereas specialization is “passing from the 
consideration of a given set of objects to that of a smaller set, contained in the given one” (p. 
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12). Consider the conjecture: all 1-1 group homomorphisms preserve the abelian property. 
The statement, all group isomorphisms preserve the abelian property would be a 
specialization whereas all group homomorphisms preserve the abelian property would be a 
generalization.  

Specialization and generalization require an awareness of the hypothesis and what 
properties apply to the set of objects being considered. In this report, I will present data 
showing students often create inappropriate proofs indicating a failure to pay attention to 
these attributes.  I will also consider how graduate students deal with hypotheses.  

 
Methods 

The results reported here come from two early phases of this study. A series of questions 
were piloted with five graduate students (two current PhD students in Mathematics 
Education, two planning to continue into the PhD program and one current Masters of 
Science in Teaching Mathematics student). Initially, the five students took home a survey 
containing six prove/disprove prompts. After the initial exploration, each student participated 
in a semi-structured follow-up interview.  

For the purpose of this proposal, I will concentrate on the two prompts found in Table 1. 
The two prompts are altered slightly for the two survey versions. The intent was for each 
survey to contain a statement that was too weak, and a statement that was too strong. During 
the follow-up interview, each of the students was asked to consider if a statement could be 
weakened (if false to make true) or if a statement could be strengthened (if true.) For this 
preliminary report, one of these cases will be presented in detail. 

The second phase of the study consisted of surveying an introductory group theory class. 
Version A and B of the survey were distributed as an extra credit homework assignment. 19 
undergraduate students responded (9 with version A and 10 with version B). The results of 
the survey will be broken down into categories based on their correctness, and usage of 
hypotheses.  

 
Table 1 
Survey Prompts 

 
Version A: Prompt 1 

 
Version B: Prompt 1 

 
Version A: Prompt 2 

 
Version B: Prompt 2 
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Results 
The five graduate students surveyed provided interesting cases where each student 

engaged with prompts in very different matter. During this initial investigation hypothesized 
errors came to fruition including one student utilizing the commutative property when a given 
group was not assured to be abelian and two students missing the necessity of a 
homomorphism being surjective to guarantee commutativity is preserved. The following case 
presents one way this generalization/specialization process could unfold. 

 

 
Figure 1. Carissa’s Survey Response. 
 

Case: Carissa. Carissa’s survey response can be seen in Figure 1. She began her proof by 
writing the definition of abelian and homomorphism. Carissa then chose elements from G and 
argued about the commutativity of their image. (This would be a valid argument if the 
mapping was surjective and all elements in H were images of elements in G.) Carissa noted 
that she did not use 1-1. 

During the follow-up interview, I prompted Carissa to expand on her 1-1 statement. 
Carissa explicitly stated concern:  “Just in general terms, you should use all of your given 
information when you are proving something.” This attention to the hypothesis was unique 
amongst her peers and also represented the view that the strongest version of a theorem is the 
standard.  

Carissa then walked me through her argument confirming her false assumption. “I started 
with elements in H. Elements in H are phi of elements in G and I want to show that ends up 
being the same as pound sign the two elements backwards.” Carissa then momentarily 
considered if 1-1 is what allowed these elements to “exist.” I prompted Carissa to share her 
definition of 1-1 at which point she started drawing the diagram seen in Figure 3. She used 
the nonexample y=x2 to explain that when a mapping is 1-1. “I’m figuring out my definition 
based on what it doesn’t do. 1-1 is when they don’t go to the same thing. If I had this over 
here, I would know that there is one and only one that it went to.” At this point, Carissa 
appears to be confounding 1-1 with bijective.  

I then asked Carissa if she was making use of the 1-1. After looking at her diagram she 
responded, “It may be onto-ness not one to one ness. It should be more like: if I had an a and 
a b in H. So maybe this is not necessarily true because what I need is for there to be 
something over here.” By diagraming and considering the definition of 1-1, Carissa realized 
her original mistake. When prompted to prove that it was not true, she sketched the diagram 
in Figure 2. Carissa drew one element in the domain and several elements in the range. She 
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then made the argument specific saying, “Take a nice little identity group going to the 
symmetry group and just map the identity to the identity.” She pondered if this would be a 
homomorphism, argued quickly about identities operating on themselves, and declared “this 
is boringly working.”  

Carissa’s survey result confirmed the expected error: treating the mapping as if surjective. 
Through exploration of the hypotheses, Carissa corrected her error realizing the 
homomorphism must be onto for the statement to hold. Carissa engaged in both specializing 
(surjective homorphisms) and generalizing (removing the one-to-one requirement.) 
 

 
Figure 2. Carissa’s nonexample of a 
surjective homomorphism 
 

 
 
 
Figure 3. Carissa's nonexample of 1-1 
mapping 
 

Undergraduate survey results 
Prompt 1. Version A. Of the 9 surveys, seven students incorrectly identified this 

statement as true. Each of the seven students picked elements in the image of mapping as 
opposed to beginning in H. (This would require the mapping to be surjective to be valid.) The 
two students who said the statement was false did not come up with a valid counterexample 
or note the need for onto. 

Prompt 1. Version B. Of the 10 surveys, all students correctly identified this statement 
as true. Four students presented invalid or informal proofs noting that isomorphism preserves 
properties. Four students provided proofs beginning with image as done in version A while 
only two students currently utilized the onto nature of isomorphism.  

Prompt 2. Version A. Of the 9 surveys, 7 students attempted this prompt. These seven 
students correctly identified the statement as true. In four of the proofs, the students correctly 
utilized H being abelian. The other three did not explicitly use H being abelian. 

Prompt 2. Version B.  Of the 10 surveys, 9 students attempted this prompt. Four of the 
nine marked the statement as true with three of those students assuming H was abelian. Of 
five false answers, two presented valid counterexamples and three noted that H needed to be 
abelian. 

 Sample student work can be seen in Figures 4 and 5 showing students unintentionally 
weakening the theorem. These samples representative of many of the students regardless of 
prompt version A or B.  
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Figure 4. Student Response (Prompt 1, Version B: Homorphism) 
 
 

 
Figure 5. Student Response (Prompt 2, Version B: Not Abelian) 
 
 

Discussion 
Both the survey results and preliminary analysis of the case studies indicate that attending 

to the givens in a conjecture is a nontrivial task. A majority of undergraduate students 
unintentionally assumed a hypothesis was more general than given. The graduate student 
cases reflected similar (although slightly stronger) results. 

Carissa is a case of hypothesis exploration that led to correcting her original proof error. 
More analysis of the graduate cases and follow-up interviews with the undergraduates could 
further flesh out this practice. Weber and Alcock (2004)’s syntactic and semantic reasoning 
could provide a framing for the reasoning occurring during this practice. If the 
generalizing/specializing arise from proof analysis, key idea (Raman, 2003) may also play an 
important role. In Carissa’s case, a specific example was leveraged and so example usage in 
proving (Alcock and Inglis, 2008) may also provide an important lens to the specializing and 
generalizing practice.  

Besides highlighting a common error, this study shines light on an often underdeveloped 
mathematical practice of generalizing and specializing. It is possible that instruction aimed at 
these practices may create better awareness of given statements and help minimize errors 
based on weakening theorems. 

Questions for the Audience 
 

1. What should be my next steps? 
2. What frameworks may help inform the analysis of the practice of 

specializing/generalizing?  
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INSTRUCTORS’ BELIEFS ON THE ROLE OF CALCULUS 
 

       Kathleen Melhuish                  Estrella Johnson                      Erin Glover 
    Portland State University           Virginia Tech          Portland State University 
 
In this report we will draw on the Characteristics of Successful Programs in College 
Calculus data set in order to investigate instructor beliefs about the role calculus 
plays.  Specifically, in this preliminary report, we have analyzed instructor interview 
transcripts in order to address the question: How do instructors perceive the role of 
calculus at successful four-year universities? Our preliminary analysis has uncovered six 
emerging themes. Each will be presented and illustrated with an instructor’s quote.  
 
Key words: Calculus, Teacher Beliefs, Instructional Practices  
 

The Characteristics of Successful Programs in College Calculus (CSPCC) project is a 
large empirical study designed to investigate Calculus I. The primary focus of the CSPCC 
project is to identify factors that contribute to student success and understand how these 
factors are leveraged within highly successful programs. In addition to addressing these 
primary research goals, the CSPCC project has also collected much needed data about 
what happens in Calculus I across the nation. As discussed by Bressoud, Carlson, Mesa, 
and Rasmussen (2013), while Calculus I is offered at nearly every college and university 
across the nation, and taken by approximately 300,000 students every fall, very little data 
had been collected about what happens in Calculus I.  

In this report we will draw on the CSPCC data set in order to investigate instructor 
beliefs about the role calculus plays within the university and their students’ education. A 
great deal of literature has emerged connecting teacher beliefs about mathematics and 
their instructional practices (for instance: Cross, 2009; Thompson, 1992). However, much 
of this past research has largely considered teacher’s beliefs on what constitutes 
mathematics and coming to know mathematics (as well as beliefs about students and 
epistemology in general). This study will consider a different set of teacher beliefs, those 
related to the purpose and role of a specific course.  Specifically, in this preliminary 
report, we will be addressing the question: How do instructors perceive the role of 
calculus at successful four-year universities? 

 
Background 

The CSPCC project is a large empirical study investigating mainstream Calculus I in 
order to identify the factors that contribute to success and to understand how these factors 
are leveraged within highly successful programs. Phase 1 of CSPCC entailed large-scale 
surveys of a stratified random sample of college Calculus 1 classes across the United 
States. During Phase 2, explanatory case studies are being created. These cases were 
selected in part based in part on the results of the Phase 1 survey. Specifically, 
institutions were selected based on student persistence (continuing on to take Calculus 2), 
success (pass rates in Calculus 1), and reported increases in students’ interest, 
confidence, and enjoyment of mathematics as a result of taking Calculus I. This second 
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phase will lead to the development of a theoretical framework for understanding how to 
build a successful program in calculus and illustrative case studies for widespread 
dissemination. Eighteen institutions were selected as case study schools based on the 
results from the survey phase. The set of case study schools includes four community 
colleges, five bachelor’s granting institutions, five master’s granting institutions, and four 
PhD granting institutions. The research reported here is focused on the bachelors granting 
instructions.   
 

Data and Methods 
Our research team conducted site visits at five bachelors granting institutions: Urban 

State University (USU), University of Suburb (UoS), Private College (PC), Fake Catholic 
University (FCU), Regional University (RU). Four of the institutions were universities 
(two had very recently transitioned from colleges to universities). Three of these 
universities were private, while the fourth was a large urban public university. The final 
case study institution was a private liberal arts college. While on campus, we interviewed 
students, instructors, administrators, and others involved in the calculus program at the 
institution.  This report will focus on the instructor interviews. We interviewed a total of 
25 instructors over the course of the five case study site visits. Here, we will report on our 
ongoing analyses of the instructors’ views about the role of calculus. 

In order to address our first research questions, we analyzed two instructor interviews 
from each of the five universities. Initially, transcripts from the instructor interviews were 
read with the intent of identifying relevant excerpts. Most commonly these excerpts were 
found in response to interview questions regarding what the instructors like most/least 
about teaching calculus, what instructors want their students to get from their class, and 
what the instructors want students to get out assignments mathematically. From the 10 
interviews 51 excerpts were identified. Open coding was then done of these 51 excerpts, 
resulting in six views of the role of calculus.  

  
Preliminary Results 

Here we will present the six emerging categories. After a brief description, we will 
provide illustrative quotes from instructors.  

  
Calculus as a gateway - Calculus serving as a weed out course for either higher 
mathematics or client disciplines.  

...it’s the course that sort of tests their mettle and my mettle in terms of trying to 
teach  them, have them learn the material and to be successful at the college 
level.”  (Smith, USU)  
 

Calculus as a service course - Calculus serving to build skills needed in engineering and 
other client disciplines.  

I think there’s interesting applications. So I think even though I’m a pure 
mathematician, I like to talk to the students about why they are sort of forced to be in 
this class. A lot of our students are not there by choice. And so well because there’s 
applications to their majors, I think that’s probably one of my favorite parts.” (Bell, 
FCU)  
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Calculus as a tool for knowing mathematics - Calculus serving to introduce/strengthen 
mathematical practices.  

I also want them to appreciate the importance of being precise. That’s part of also 
why I have them read the section of the book and make sure they understand, okay, 
hey, it’s only five pages here maybe, but reading five pages could take 40 minutes if 
you really want to understand how we go from one step to the next. So 
mathematically understanding that all the statements that are made are made very 
carefully and each word means something.” (Jones, USU)  
 

Calculus for Calculus - Calculus as serving as an independently valuable subject. 
Well, for me, it's, you know, exciting ideas and being able to explain and transmit 
them, and that's especially true about Calculus I. I mean, I was just heading last night 
into the fundamental theorem of calculus. I was telling the students, ‘This is one of 
the great ideas of Western civilization...’ (Bianchi, UoS) 

 
Calculus as the foundation for further mathematics - Calculus serving the role of building 
a mathematical foundation for more advanced courses. 

And then, after 2,000 years, Newton and Leibniz have this other idea that it's sort of a 
foundation of our pure and applied mathematics, and, you know, I find the ideas 
exciting, and I still do.” (Bianchi, UoS)  
 

6. Calculus as the pinnacle of algebra  - Calculus serving as a capstone for the algebra 
sequence.  

So I think the algebra portion is a natural fit for kids, because most kids … regardless 
of their high school background usually have had a bunch of calculus – a bunch of 
algebra, so (inaudible) and algebra connects that, demystifying it. (Wells, PC) 
 

Discussion and Plans for Future Research 
Early analysis suggests that instructors view calculus as serving a multitude of roles. 

The pairs of instructors from each university often share similar views on the subject. For 
instance, both instructors from FPC emphasized the algebraic connections while this 
theme did not emerge in the other schools. Similarly, Calculus was mentioned as a 
foundation course by both instructors at the PC. Further analysis will be done with the 
remaining instructor interviews to further assess the correlation of role view amongst 
instructors at the same institution.  

During the next round of analysis, we will consider possible relationships between an 
instructor’s view on Calculus and their instructional practices and student assessments. 
Final exams have been collected from the various institutions and may capture ways in 
which instructor’s views of the role of calculus could inform calculus instruction. 
Additionally, analysis on intended content to be covered in various calculus courses 
suggests that technology-focused schools may place more of an emphasis on applications 
(Johnson, Ellis & Rasmussen, 2014). This may suggest that instructors who view calculus 
as a service course may favor applications. Finally, because our preliminary analysis only 
considers four-year universities, instructor interviews from community colleges and PhD 
granting institutions could provide more insight into the role of the course. For instance, 
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as transfer plays a much more significant role in community colleges, instructor views 
calculus may reflect this.   
 

 
Questions for the Audience 

1. How might instructors’ views on calculus influence their teaching? Where should we 
look next?  
2. Are these beliefs about different things (e.g., about calculus within mathematics vs. 
calculus within a students education)?  
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CHARACTERISTICS OF SUCCESSFUL PROGRAMS IN COLLEGE CALCULUS 
AT BACHELOR’S GRANTING UNIVERSITIES 

 
             Kathleen Melhuish, Sean Larsen, Erin Glover        Estrella Johnson 
                            Portland State University           Virginia Tech 
 
The CSPCC (Characteristics of Successful Programs in College Calculus) project is a large 
empirical study investigating mainstream Calculus 1 to identify the factors that contribute to 
success, to understand how these factors are leveraged within highly successful programs. 
Phase 1 of CSPCC entailed large-scale surveys of a stratified random sample of college 
Calculus 1 classes across the United States. From these surveys, successful institutions were 
selected as case studies. At each case study institution, Calculus I instructors, students and 
related administration were interviewed. In this report, we will present preliminary analysis 
on the five bachelor’s granting institutions selected. We will discuss common themes and 
factors that have emerged from the five institutions. 

 
Key Words: Calculus, Explanatory Case Study, STEM Student Retention 

 
The MAA’s project: CSPCC (Characteristics of Successful Programs in College 

Calculus) is a large empirical study aiming to identify key factors of successful calculus 
programs across the country. Calculus remains an essential course for nearly all STEM 
majors. With high rates of attrition in STEM majors (Lutzer, Maxwell, & Rodi, 2002), and a 
noticeable decline in students taking Calculus, it is vital that we consider successful Calculus 
models.   

During the first phase of CSPCC, a large-scale survey was giving to a stratified random 
sample of mainstream Calculus 1 classes across the United States. Through analysis of these 
surveys (Bressoud, Carlson, Pearson, & Rasmussen, 2012), sixteen successful case study 
institutions were selected including four community colleges, four bachelor granting 
institutions, four masters granting institutions and four PhD granting institutions.  

An initial pilot study was run (Larsen, Johnson, & Strand, 2013) identifying key features 
of a selected successful four-year institution. For this proposal, we will build on the pilot 
study highlighting commonalities found amongst the pilot institution as well as the four other 
selected institutions.  

Methods 
The five bachelor-granting university case studies were selected based on following 

measures of success that emerged during survey analysis. Regional University (RU), a private 
suburban university, was selected based on a low number of switchers, and high number of 
non-switchers as well as general high numbers on outcomes (persistence, grades, interest, 
confidence and enjoyment.) University of Suburb (UoS), a private suburban university, was 
selected based on outperforming expected pass rates by 12%, having a low number of non-
switchers and high number of switchers and the highest outcome variables. Private College 
(PC), a private liberal arts college, was selected based on outperforming expected pass rates 
by 20%, and strong number of switchers/non-switchers. Urban State University (USU), a 
public urban university, was selected based on outperforming pass rate by 14%, above 
average outcomes and switcher/non-switchers and representing an urban public university. 
Fake Catholic University (FCU), a private urban university was selected based on positive 
attitude towards calculus during pilot and very high pass rates. 

The CSPCC project team creating an interview protocol for case studies based on 
hypothesized areas of influence including:  instructor attributes, departmental focus, 
classroom variables, and out of class expectations. At each institution, we interviewed 
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calculus instructors (a total of 25 at our five case studies) and corresponding student focus 
groups, department chairs, placement coordinators, calculus coordinators, client disciplines, 
teaching learning center directors, college deans and other relevant personal totalling 66 
interviews.  

Through an initial analysis pass, each interview in the five case studies parsed based on 
excerpt relevance to institution (e.g. learning centers, department culture), classroom (e.g. 
assignments, technology), student (demographics, beliefs), instructor (attitudes, staffing), and 
outcomes (e.g. grades, persistence, etc.). For each case, two members of the research team 
highlighted relevant facts and features. A third member of team triangulated these documents 
to produce a summary of relevant features for each of the five cases.  

A more complete analysis is now underway. Based on interview data and survey 
questions, a tagging scheme (24 tags) was developed amongst the CSPCC project team. 
Instructors, department chairs, calculus coordinators, and selected administrator interviews 
are tagged with tags such as assignments and assessments, outcomes, coordination, and 
student subjective characteristics. For example, if  teacher said that, “My students often 
struggle with algebra, but the tutoring center provides good help for them,” the excerpt would 
be tagged student subjective characteristics and learning resources. Each interview is being 
tagged by two team members to assure no important topic is missed. The final tagging 
includes the union of both taggers. After, the tagging is completed, a more thorough analysis 
of cross-cutting features will be developed.  

Through the coordination of initial highlighted facts and features for each university, data 
analysis based on relevant tags, exploratory case studies for each institution will be 
developed. The preliminary report will share emerging cross-cutting factors associated with 
the identified successful universities.  

 
Preliminary Analysis 

During early analysis, several cross-cutting features have begun to emerge.  
 

Placement 
Each of the five institutions emphasized proper placement of students and actively 

evaluated their placement policies. Three of the institutions utilized a placement test (USU - 
Accuplacer; FCU, RU - MAA placement test). The other two institutions did not use a 
placement exam, but did provide easy avenues for students to switch into appropriate classes. 
UoS gives a pretest at the beginning of the term and intentionally schedule their precalculus, 
calculus I and calculus II courses so students could easily switch into the appropriate class. 
PC utilized SAT scores and by policy created a very late drop-back date so students who are 
inappropriately placed could easily switch to the appropriate course.  

 
Staffing  

Most calculus courses were staffed by full-time faculty members with all schools having 
a large portion of sections taught by tenure-track faculty. At UoS, the course has historically 
been taught by 70% full-time faculty. Similarly, at RU, most calculus courses are taught by 
full-time faculty. At FCU and PC, a mix of full-time faculty and adjunct taught the course. 
AT USU, calculus courses are taught exclusively by full-time faculty. 
 
Supporting Instructors 

At all five institutions, instructor support was institutionalized. At FCU, they have a 
Teaching and Learning Collaborative to support, observe and provide feedback to other 
instructors. Faculty also receive generous funds for conferences. At RU, teachers are 
encouraged to be involved in MAA and they have a teaching center dedicated to helping 
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teachers implement changes and assess results. At UoS, Faculty Center for Learning 
Development leads 12-20 workshops each term often emphasizing the use of technology to 
improve student learning. At USU, new faculty members are assigned mentors, there is a 
Center for Faculty Development which hosts discussion groups, learning communities and 
observes classes to provide instructor feedback. They also provide travel money for meetings 
and conferences. At PC, they have a Center for Teaching and Learning which runs many 
programs including teaching workshops and retreats, arranging meetings with new faculty 
cohorts for the first two years, and open Classroom project where faculty open up classroom 
for other faculty to observe. 
 
Technology and Innovation 

Our top four sites all fostered a culture of innovation with an emphasis on using 
technology.  At UoS, the Faculty Center for Teaching and Learning assists teachers with the 
use of educational technology to promote learning. Currently the department is “flipping” 
half of the calculus sections under the funding of an NSF grant.  At USU, technology use 
varied but instructors reported use of SMARTboards, clickers, WeBWork, projects, pencast 
videos, course wikis and Mathematica. At RU, a department committee was recently formed 
for the sole purpose of using technology in instruction. At FCU, the Teaching and Learning 
Collaborative provides support for instructional technologies. Technology varied by 
instructor, but several instructors reported the use of Geogebra in the calculus sequence.  
 
Learning Centers 

 Learning resources were prevalent at each of the five institutions. All five colleges had 
on campus tutoring centers. At UoS, the Student Success Center matches students with tutors 
and academic support. The math department also has a tutoring center staffed by students. 
USU has a university-wide tutoring center staffed by students. FU has tutoring at the 
Academic Support Center for all subjects and the math department also has a drop-in tutoring 
center staffed by students. At FCU, the Learning Resource Center houses the Math Resource 
center which provides tutors for Calculus I students. PC's  Center for Teaching and Learning 
houses a tutoring center where tutors work directly with Calculus I instructors.  
 

Implications for Practice or Further Research 
The goal of the CSPCC project is to create models of successful calculus with the hope of 

changing practice at institutions across the country. The explanatory case studies provide one 
form of these models. As we continue to analyze data, a more complete picture of successful 
calculus programs should emerge.  

In the future, cross-cutting themes will be considered across various institution types with 
the hopes of isolating salient features of successful programs as well as considering the 
differences that may exist as a result of the nature of an institution.  

 
Question for the Audience 

1. What might be a good next step to continue analysis and build a complete case study 
model? 
2. How could we go about analyzing the interviews in order to determine whether and how 
these characteristics support student success? 
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CONCEPTIONS OF INVERSE TRIGONOMETRIC FUNCTIONS IN COMMUNITY 
COLLEGE LECTURES, TEXTBOOKS, AND STUDENT INTERVIEWS 

Vilma Mesa  Bradley Goldstein 

University of Michigan   University of Michigan 

Abstract  
We present a textbook analysis of conceptions of key ideas associated with inverse trigonometric 
functions using Balacheff’s model of conceptions (Balacheff & Gaudin, 2010). We found 
conflicting conceptions of angles, trigonometric functions, and inverse trigonometric functions 
that may help explain difficulties that community college trigonometry instructors and their 
students face when explaining tasks associated with this topic. We make suggestions for further 
research.  
 
Keywords: Trigonometry, Conceptions of mathematical notions, Curriculum 
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CONCEPTIONS OF INVERSE TRIGONOMETRIC FUNCTIONS IN COMMUNITY 
COLLEGE LECTURES, TEXTBOOKS, AND STUDENT INTERVIEWS 

Trigonometry has traditionally been a high-school course, taught either as an independent course 
or as part of a pre-calculus course. Many post-secondary institutions offer trigonometry as part of 
a sequence of preparatory courses that lead to a calculus sequence (Lutzer, Rodi, Kirkman, & 
Maxwell, 2007). Over 55,000 students enrolled in a trigonometry course at two-year colleges in 
2010 (Blair, Kirkman, & Maxwell, 2013, p. 137), yet we know very little about how this topic is 
taught. We have been aware of the paucity of research studies on trigonometric ideas, with very 
few scholars doing work on students’ understanding of radian measure (Moore, 2010), 
discussing advantages and disadvantages of teaching a ratio or a functional approach to the 
trigonometric relationships (Kendal & Stacey, 1997; Weber, 2005), or describing future teachers’ 
knowledge of trigonometry (Fi, 2003). As part of a larger project we studied how instructors 
explained inverse trigonometric functions to their students and also how students interpreted 
those explanations. Perhaps unsurprisingly, we found discrepancies between what teachers did in 
classroom and what their students revealed during interviews. In search for understanding this 
phenomenon, we decided to further investigate how textbooks present ideas associated with this 
topic. We sought to describe the conceptions of inverse trigonometric functions present in 
explanations in textbooks and by instructors and students, and use the discrepancies between 
these as a way to explain difficulties associated with these notions. We describe the theoretical 
framework that guided the investigation, the data collected and the analyses we performed, and 
our findings. 

THEORETICAL FRAMEWORK 

Balacheff’s theory of mathematical conceptions (Balacheff & Gaudin, 2010) defines a 
conception as the interaction between the cognizant subject and the milieu (those features of the 
environment that relate to the knowledge at stake). His basic proposition is that conceptions of 
mathematical notions are tied to particular problems in which those conceptions emerge. Thus 
Newton’s conception of function was substantially different than Dirichlet’s because each was 
working with a different phenomenon (Balacheff, 1998). As mathematics develops and we solve 
new problems, our conceptions get transformed. The combination of all these different 
conceptions is what constitutes a persons’ knowledge (knowing) about a particular mathematics 
notion. This way of understanding conceptions allows for potentially conflicting ideas about a 
mathematical notion to coexist without creating a dissonance in the knower. Indeed, 
discrepancies are only such for observers of the situation, as the knower might be using specific 
problems to conceptualize the mathematical ideas. Conceptions can be distinguished from each 
other because the problems (p) where they manifest require specific operations (r), systems of 
representations (l), and control structures (Σ, the organized set of criteria that helps the knower 
decide what to do in a given situation, determine that an answer has been found, and establish 
that the answer is correct decide whether an answer has been found and whether it is correct). 
This model of conceptions lends itself to an operationalization for analysis of different types of 
data.  
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DATA AND ANALYSIS  

The data collection for this study took place between Fall 2010 and Summer 2011, in the context 
of three courses, trigonometry, pre-calculus, and calculus taught by two community college 
instructors, Elizabeth (trigonometry, pre-calculus) and Emmett (calculus). The teachers proposed 
the topic for investigation, inverse trigonometric functions, and agreed to (1) collect student data 
on knowledge of this topic prior to and after teaching a unit related to the topic in their courses, 
(2) let us interview their students after certain lessons had been delivered in order to collect 
information about their learning, and (3) discuss the findings with us, so we could together 
determine whether changes would be necessary. At the time of the data collection Elizabeth had 
seven years of college teaching experience, while Emmett had 16. We collected three types of 
instructional data: students’ responses to a questionnaire on inverse trigonometric functions, 
interviews with students on various trigonometric ideas, and interviews with faculty on those 
results. We have video-recordings of classroom sessions and of the student and teacher 
interviews. In this study we focus on Elizabeth’s presentation of inverse trigonometric functions, 
trigonometry and calculus students’ interviews on a question addressing this topic. In addition 
we analyzed 10 textbooks: the trigonometry textbook that Elizabeth was using during the data 
collection period, and pre-calculus and calculus textbooks that could help us understand how 
notions related to inverse trigonometric functions were conveyed. As a group the textbooks 
represent a continuum of courses the students would take. We studied more than just the 
textbooks used at the college, because we wanted to have a broad perspective on how textbooks 
treated these topics. We performed the same analysis in each data source. First we identified 
portions of lectures, student interviews, and textbooks that related to inverse trigonometric 
functions. Then we identified each aspect of Balacheff’s model of conceptions: the problems in 
which inverse functions are presented, the operations that are called for (e.g., Restrict the domain 
of sine, Define a new function, Sine, Switch the ordered pairs to obtain an inverse), the 
representations used (e.g., Unit circle, Triangle, Cartesian plane), and the control structure (e.g., 
Solution is in the correct interval, Identity is valid within the given range, Calculator outputs 
correct solutions).  We repeated this analysis with the notions of angles and trigonometric 
relations in textbooks. These different analyses as gleaned from the textbooks help us make 
sense of Elizabeth’s and the students’ conceptions as revealed in lectures and responses to 
interview questions. The analyses allow us to discuss the imports of contradictory conceptions of 
inverse trigonometric functions in the textbooks and lectures, and how that permeates a student’s 
conception of these notions.  

FINDINGS 

Teacher Explanation. Elizabeth begins her discussion about inverse trigonometry by discussing 
how (r) to “chop up” regular trigonometric functions to ensure that they are monotonic over the 
given interval. Initially, it seems that the domain of the sine curve [–π/2 to π/2] is the only part 
of the curve that gets translated to the inverse sine curve. Elizabeth uses a symbolic-graphical 
representation (l) of a unit circle, whose second and third quadrants are shaded in to emphasize 
that because the circle is shaded in on the left side, “we’re not allowed to travel through quadrant 
two and three in order to get” (lines 199-200) to quadrant four. To illustrate what this means, 
Elizabeth brings an example that involves an angle outside of the graph of the function that had 
been restricted: 
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Elizabeth: So we’re looking at the inverse cosine of -√2/2. So the answer here is not 5-
fourths π, is it? It’s outside the domain of inverse cosine. So we have to go up 
here and take the quadrant two angle that has the same output (lines 565-568). 

Elizabeth explains that because we have “chopped off” part of the function, we cannot give a 
solution in that quadrant. While her solution is technically valid, she is implying that her solution 
is the only valid solution. She looses track that she “chopped up” the trigonometric functions to 
make them 1-to-1, not to restrict possible solutions. While Elizabeth usually discounts those 
areas outside of the domain of restricted sine, she sometimes uses expressions that reveal 
confusion about these “chopped off” sections. For example, Elizabeth explains that a calculator 
will only give output for the right hand side of the unit circle, “so anything happening with the 
sine that’s happening in quadrant two or three, we have to compute ourselves using our brains” 
(131-132). Figure 1 illustrates how Elizabeth introduces the restrictions on sine to make it a 
monotonous function, and the answers she gives when confronted with an example outside the 
domain of restricted sine. Elizabeth is clearly aware of the tension between “chopped up” pieces 
as they are used to create a 1-to-1 function versus those same “chopped up” pieces when they 
arise in mathematical processes, but she does not explicitly articulate this tension to the class. 
The figure illustrates two competing conceptions that are related to the process of controlling that 
an answer has been found and that it makes sense. 

Problem: Interpret sin-1(value) OR “for what angle θ, does sin(θ)=value?” 

Conception 1  Conception 2 

• Cartesian plane 
• Unit circle 

Representations • Triangle 

• “Chop off” trig function 
• Shade regions of unit circle to determine which 

angles can be used 
• Use known facts of trig functions for specific 

angles 

Operations • Use Pythagorean theorem 
• Find missing lengths of sides of right 

triangle 
• Use ratio definition of trigonometric 

functions 
• Use the inverse function in the calculator 

• Check that the value is within the range of the 
trigonometric function 

• Use brains 
• Check that the angle in the permitted quadrant  
• Inverse trig functions output angles. 

Control 
 Strategies 

• Angles add up to 180 
• Angles and values are nice and positive 
• Inverse trig functions output angles 

Figure 1: Conceptions of inverse trig functions in Elizabeth’s lecture. 

Textbook Presentation. Most of the textbooks analyzed assume familiarity with angles. 
However, of the textbooks that discuss angles, each focus on how to construct or measure an 
angle (r) rather than on stating what an angle actually is. About half of the explanations give a 
dynamic view of angle using the arc length of a unit circle that is intersected by rays emanating 
from the origin of that circle (l). The other half of describe an angle in relation to the lines 
encompassing ‘it’ (l). The textbooks are similarly divided in their representation of regular 
trigonometric functions between two fundamentally different approaches. On one hand, 
trigonometric functions are seen as a direct translation from the x- and y-coordinates of the points 
at a given angle on the unit circle to the cosine and sine values, respectively, for those angle 
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values (l). On the other hand, trigonometric relationships are represented as relationship between 
the sides of a right triangle (l). The unit circle method is presented as a more ‘advanced method’ 
than the triangle method and one that fits better the changing real world because of the way it 
incorporates periodicity. However, the translation from the (x,y) coordinate axes of the unit circle 
to the (x,y) axes of the sine graph is not well described. No textbook included an explanation for 
how angle values shift from an implicit polar system to become real numbers on the x-axis, or 
how the x-component of the point on the unit circle becomes a number on the y-axis (in the case 
of cosine). A problem (p) arises when constructing inverse trigonometric functions, because 
regular trigonometric functions are not increasingly monotonic on a given interval (they are not 
1-to-1). When explaining why inverse sine has the range that is typically assigned to it  
([–π/2,π/2]), textbook authors are generally divided between the two operations (r) used to obtain 
inverse sine. The first operation simply restricts sine on the domain from –π/2 to π/2. Reasons 
given for this restriction include, “this seems natural” or “this is agreed upon.”  A complication 
becomes apparent, however, when an example involving a function outside the range is 
presented. In that example, symbolic/algebraic representation (l) is used to bring the value into 
the accepted range. The second operation used to create inverse sine defines a new function, 
“Sine” to be sine restricted from –π/2 to π/2 (r). Inverse sine is not the inverse of the common 
sine function; rather, inverse sine is the inverse of the monotonic Sine function. This definition 
generates a new problem when solving an equation such as Sin−1x = y  when y is any number 
outside the range of arcSine. None of the textbooks that had this definition of inverse sine 
addressed this type of problem. Figure 2 illustrates the connection between the opposing 
definitions of angles to similarly opposing definitions of trigonometry and ultimately, inverse 
trigonometric functions. In the figures, the parallel columns exhibit how a small difference in 
something as fundamental as angles can have significant consequences in the conception of 
inverse trigonometry, which is essentially built upon the idea of an angle.  
 

Problem 1: What is an angle? 

Conception 1  Conception 2 

• Line Representations • Rays 

• Rotation around a point on the x-axis Operations • Intersection of two rays 

• Not included Control 
 Strategies 

• Not included 

Problem 2: What is sin of an angle? 

• Unit circle Representations • Right triangle 

• Identify coordinates of points on the unit circle. 
Sin of the angle is the y coordinate of the point. 

Operations  • Identify the length of the sides of the 
triangle 

• Sin of the angle is the ratio of the opposite 
side to hypotenuse of the triangle  

• The representation for sin(5pi/4) and sin(7pi/4) 
are different (another rotation) but they have the 
same value 

Control 
structures 

• The representation for sin(5pi/4) and 
sin(7pi/4) are the same (triangle is oriented 
differently) 

Problem 3: How is sin-1 defined? 

• Unit circle 
• Cartesian plane 

Representations  • Triangle 
• Cartesian plane 
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• Restrict sin to a monotonic interval in which it is 
monotonic 

Operations  • Define a new function Sin-1 on the 
interval [-pi/2, pi/2] 

• Other solutions exist because they are rotations 
on the unit circle 

Control  • All solutions are encompassed here 

Figure 1: Figure 2: Conceptions of angle, trigonometric and inverse trigonometric functions in the textbooks. 

 
Student Interviews. In each of the student interviews, the students are presented with the 
trigonometric identities: cos−1(cos(x)) = x;  0 ≤ x ≤ π  and cos(cos−1(x)) = x;  −1≤ x ≤1 . The true 
reason for the bounds on x in the second identity is because those numbers bound the domain of 
arcsine (and the range of sine). Carl, a calculus student, however, draws a graph of cosine and 
explains: 

Carl:  Cosine between -π and π makes one complete cycle; makes one loop that 
touches -1 and 1 at both ends and –π and π but between -1 and 1 which is 
somewhere short of π over two on each axis, it still fails the horizontal line 
test so that is not one to one, so I do not know if that could be that couldn’t be 
graphed I guess you could not create a function for that. 

Carl is focused on the conditions needed for converting a function to its inverse function. He 
essentially gives a reason why cos-1(cos(x)) = x must be bound by 0 and π. He does recognize 
that when computing cosine of arccosine, there is no need to worry about monotonic functions 
anymore, because arccosine is defined to be the inverse of cosine, and thus defined to necessarily 
be one-to-one. Figure 3 shows Carl’s circular reasoning about the nature of inverse trigonometric 
functions. He states that the cosine must pass the horizontal line test (be 1-to-1) in order to have 
a “proper inverse.” When confronted with a value outside of the domain, he acts as if the 
restriction given is the only restriction possible and that a value outside of the domain would 
result in it “repeating itself over and over again” and cannot exist. He does not consider taking a 
different monotonous interval of the cosine function to find the value outside of the typical 
domain of inverse cosine. 

 
Figure 3: A calculus student conception of inverse trigonometry revealed in interviews. 

DISCUSSION 

This analysis of explanations given by a teacher, the textbooks, and a student highlights 
unresolved conflicts about notions of inverse trigonometric functions emerging from the very 
definition of angles. A typical trigonometric problem, find the angle of a given value, requires 

890 17th Annual Conference on Research in Undergraduate Mathematics Education



 

consistent definitions of angles, of trigonometric functions, and of their inverses. The control 
structures will vary depending on how these are defined and in some cases, it is problematic to 
account for all possible angles if one wants to recognize the periodicity of these functions. The 
crux is: Is there such a thing as an inverse sine? Do we need to define a new function? Is it a 
matter of convenience only? The ways in which the teacher argued for what needs to be done to 
find answers makes us think that these issues are not totally transparent. But they are not 
transparent in the textbooks either. We found different treatments to the issue, but in general we 
believe the presentations gloss over the complexity of reconciling these conceptions. The 
competing conceptions of inverse sine make it salient that these notions are problematic for 
students. Elizabeth’s emphasis on “chopping” the function, an indirect reference to the need to 
restrict range and domain in defining the inverse masked the complex nature of what resolution 
was presented to the problem. The resolution does not seem to be completely satisfactory. 
Indeed, it is not clear what are the values of angles that one should be concerned about when 
finding answers to equations such as sin-1(4r). An intriguing result is the little attention that is 
given to the definition of angle in textbooks; this is an interesting finding in light of what Matos 
(1990, 1991) has identified as well, that angles have not been yet well defined. It is important to 
notice the impact of the definition on how trigonometric and inverse trigonometric functions are 
operationalized in textbooks and to explore the implications for teaching and learning. 

LIMITATIONS AND AREAS FOR FURTHER RESEARCH 

We acknowledge some limitations regarding the nature of the data we collected. It would have 
been useful to have the teachers comment on their explanations and to see whether they could 
identify the same discrepancies we identified. It would have been also useful to inquire about 
how they perceived the textbook’s presentation regarding the nature of the inverse trigonometric 
functions. At the time of the data collection, we had other purposes in mind, which precluded us 
from collecting this information. A future study would include teachers’ reflection on their own 
explanations and on the discrepancies in the book.   
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ACADEMIC AND SOCIAL INTEGRATION REVEALED IN CHARACTERISTICS 
OF SUCCESSFUL PROGRAMS IN COLLEGE CALCULUS PROJECT: THE TWO-

YEAR COLLEGE CONTEXT 

Vilma Mesa Nina White Helen Burn 

University of Michigan University of Michigan Highline Community College  

We present an analysis of features common across four Calculus I programs at two-year 
colleges identified as successful in the Characteristics of Successful Programs in College 
Calculus (CSPCC) study. In this paper we discuss how these features emerged in the analysis 
of the four cases and their connection to theories of student academic and social integration. 
Student academic and social integration have been identified as closely related to student 
persistence in college. We used a constant comparative analysis to identify themes within and 
across institutions, using transcripts of 22 interviews with faculty, staff, and administrators, 
and student focus groups. We discuss three of the seven major themes that arose, High 
quality instructors, Faculty autonomy and trust in the teaching of calculus, Supporting 
students academically and socially, and Attention to placement, which support a model of 
student academic and social integration. We present further research steps and some 
implications for practice. 

Key words: Student persistence, Calculus, Two-year colleges 

 Given national need to strengthen our STEM-trained work force, understanding how 
institutions manage to keep students in the calculus track becomes an issue of national 
importance. The National Study of Calculus (Bressoud, Carlson, Mesa, & Rasmussen, 2013) 
collected survey data from over 200 institutions to describe program success, using measures 
at the student level regarding course standing (pass rates in Calculus I course and retention 
rates into Calculus II) and changes in student attitudes (growth in students’ confidence, 
interest, and enjoyment in mathematics) over a semester of Calculus I. Based on these 
measures, the CSPCC team identified 17 successful institutions: five PhD granting, and four 
each of master’s granting, baccalaureate granting, and associate’s degree granting (see Hsu, 
Mesa, & The Calculus Case Collective, 2013 for details). The authors conducted intensive 
site visits at the two-year colleges in the sample (n=4) in order to identify features that 
contributed to being selected as a successful program and to understand these features in the 
context of the two-year college. Two-year colleges are particularly significant because they 
are responsible for a substantial portion of the undergraduate mathematical preparation, both 
in the form of remediation and in the preparation of the first two years of a STEM degree. 
Indeed, the latest figures report that 46% of students enrolled in a mathematics course in the 
U.S. are taking it a public two-year college (Blair, Kirkman, & Maxwell, 2013). This context 
is also significant because these institutions are increasingly seen as a viable pathway into 
STEM degrees. In this paper we sought to answer the following questions: What are common 
themes across the four two-year college cases that participants identify as being directly 
associated with the success of their calculus program? Do the themes suggest that successful 
programs help students integrate academically and socially into college? We present seven 
themes derived from our analysis and describe three in greater depth. 
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Theoretical and Analytical Frameworks 
A number of scholars in higher education have hypothesized about the reasons students leave 
college without a degree. We use Tinto (1975) as the main model for our analytical 
framework; his work is derived from Durkheim’s work on suicide (Durkheim, 1951). This 
model posits that an important feature of dropping out of college lies in the level to which 
students integrate academically and socially with their institutions: the more complex the 
network of relationships the individual develops with the institution, academically and 
socially, the less likely that the individual will drop out. Institutional features such as athletic 
teams, learning communities, and extracurricular activities are nowadays promoted under 
these premises. Research is mixed about the extent to which these models apply to non-
residential campuses, such as two-year colleges, and whether these models can be used to 
interpret departure within specific academic programs, such as mathematics, and in particular 
course tracks, such as calculus.  
 A more nuanced conceptualization of the integration model suggests that integration 
is a process that evolves over time, and that it is possible to identify various phases of the 
process: separation, transition, and incorporation (Tinto, 1975, 1988, 1993). In early stages, 
students experience a disruption of ties and connections with their communities (exemplified 
by their moving from the high school to the college environment, or by leaving their 
hometown), followed by a period in which students start to understand the norms, behaviors, 
and rules of engagement in the new environment, which allows them to relativize the norms, 
behaviors, and rules they were used to, to then get into a period in which the students identify 
with, and own fully, the norms, behaviors, and rules of engagement of the new environment. 
Tinto posited that residential campuses had potential advantages in terms of this process, that 
the dual environment of home- or work-college could potentially compromise the full 
integration of the students. This could partially explain the lower graduation rates observed in 
two-year colleges. Further, the academic identity of two-year college students revealed in 
recent research (Cox, 2009a, 2009b) suggests the key role that faculty in two-year colleges 
play in both the academic integration and the social integration of students. In this paper we 
propose that some of the features of calculus programs that are common across the four 
successful two-year colleges in the CSPSS study offer corroboration of the importance of 
academic and social integration identified by Tinto, and that these features are especially 
relevant to two-year colleges in general.   

Method 

Data 
 The data used for the analysis reported herein come from interviews with key 
participants (instructors, department chairs, administrators) collected at the four two-year 
colleges included in the CSPCC sample. Table 1 shows institutional and departmental 
characteristics of the four colleges in the sample.  
 
Table 1: Characteristics of the two-year colleges in our sample. 
College US Region FTEa  

(2010) FT:PTb Number Calc I 
sections/term 

Class Size 

City College Southeast 4,292 7:10 2 30-35 
Urban College Midwest 9,488 9:20 3 to 4 30 
Rural College West 2,788 7:0 1 30 (52c) 
Suburban College Southeast 12,492 35:30 10 30 (15d, 22e) 
a. Full-Time Equivalency student enrollment.  
b. FT:PT is the ratio of Full-Time to Part-Time instructors in the mathematics department. 
c. Number of students in the day of the observation, clearly exceeding the college’s norm.  
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d. For honors sections. 
e. Average by the end of the course. 
 
 Interviews were conducted with instructors teaching calculus, other instructors in the 
department (e.g., curriculum committee instructors), staff (e.g., people responsible for 
teaching or learning centers), and administrators (deans, chairs, etc.). The interview protocols 
were designed to understand elements affecting the Calculus I program from various levels: 
institutional (e.g. resources, communication with transfer universities or units), collegial 
(connections with other disciplines), departmental (e.g., coordination, selection of 
curriculum, assessment practices), and instructional (e.g., mode of instruction). We 
hypothesized that these features would allow us to understand the success measures (pass 
rates, retention rates, and changes in student enjoyment, confidence, and interest in 
mathematics) for each institution. The interviews lasted between 35 and 120 minutes and 
were transcribed. In addition, we observed as many Calculus I classes as possible, talked to 
groups of students in those classes, and collected classroom artifacts (syllabi, homework 
assignments, quizzes, and exams; see Table 2). 
 
Table 2: Data Collected at the Four Community Colleges in the CSPCC Sample 

College Instructor 
Interviews 

Other 
Interviews 

Classroom 
Observations 

Student Focus 
Groups 

City College 3a 6 2 4 (43 students) 
Urban College 5b 8 2 1 (26 students) 
Rural College 1 5 1 1 (42 students) 
Suburban College 8c 9 5 3 (39 students) 

a. Includes interviews with a Calculus II instructor and a Calculus III instructor.  
b. Includes two current Calculus I instructors and three instructors who have taught it regularly in the past.  
c. Includes five current Calculus I instructors and three instructors who have taught it regularly in the past. 

Analysis 
 The analysis of the data took place in two phases. The goal of the initial phase was to 
create a Facts & Features document that could be shared with our liaison at each college 
(typically the department chair) for member checking. The purpose of the Facts & Features 
document was to identify features that “key” interviewees described as contributing to the 
success of their calculus program. The 22 key interviews in this phase included the 
department chair and/or calculus-knowledgeable faculty (n=7), instructor interviews (n=9) 
and the majority of the interviews with high-level administrators (n=6) at each site. We 
limited the analysis to features that corresponded to actual practice (rather than opinions, 
judgment of those practices, or desired practices). Pairs of researchers generated summary 
lists of features for each of the interviews, which were then compared to create a consolidated 
list for each interview. Next, a master list of features was recorded for each institution, 
integrating each new interview analysis as it was completed. We used the student focus group 
transcriptions to corroborate and augment the features already identified. In the second phase, 
we analyzed the four Facts & Features documents to identify cross-cutting themes. To 
accomplish this, each author independently reviewed the documents and created broad 
categories such as “Faculty,” “Students,” and “Instruction/Content/Assignments” and 
distributed the features under each report into one of these categories. The large categories 
were further subdivided into more (and more) nuanced themes and new themes were created 
as needed (e.g., “Placement,” “Learning Centers,” “Transfer”, “Interactive Lecture,” “Diverse 
Student Characteristics,” “Homework,” “Student Preparation”). This was an iterative process. 
The themes that emerged were remarkably similar across researchers. Themes that arose in at 
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least three of the four colleges form the basis of our findings. At this point, the analysis began 
to suggest that Tinto’s model could be a useful lens to interpret some of the themes.. 

Findings 
 Our analysis generated seven themes that interviewees identified as related to the 

success of their calculus program and that were common across the colleges. We organized 
these themes into the three major categories shown in 

 

Figure 1: Instruction in Calculus, Student Support, and Improvement Efforts. While some of 
these themes can also be seen at other types of institutions, some were very specific to the 
two-year college setting, particularly themes 2, 5, and 6 (see Table 3).  

 

Figure 1: Major categories for themes identified in the cross-case analysis of two-year 
colleges. 

Table 3: Cross-Case Analysis Themes.  
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Discussion 
 There exist theoretical perspectives that shed light on all of these themes. In this 
discussion, we use Tinto’s model of student departure, which posits the importance of 
academic and social integration, as an analytic lens for understanding three of the themes in 
particular in greater depth. There is a high risk for academic and social separation for the 
two-year college population because the students live in two, sometimes, three worlds: work, 
family, and college. Tinto’s model would suggest that this separation could facilitate drop-
out, both at the institution and programmatic level. Three themes appear especially relevant 
in this context to mitigate this potential problem in separation. 

High Quality Instructors 
 When our interview subjects used the word “quality” in describing their calculus 
instructors, their descriptions suggested that instructors were filling an important role in 
students’ academic and social integration. For example, one of the oft-mentioned 
characteristics of the high-quality instructors teaching in these colleges was their commitment 
and dedication to the students. Instructors were described variously as approachable, 
available, and caring. Instructors likewise saw as their mission to assist their students the best 
they could. Rather than focusing solely on student learning gains or quality of curricular 
materials, most of the interview subjects (both student and faculty) described instructors’ 
pedagogical strengths as providing support and encouragement to students. This seems to 
directly imply that instructors were filling an important role integrating students not just 
academically but socially as well, through their personal rapport and obvious dedication and 
caring.  

Supporting Students Academically and Socially 
 Opportunities to receive academic support outside of class are key to students’ 
academic and social integration in community college. Some forms of academic support we 
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observed at our sites were institutional, such as campus-wide learning centers. More subtly, 
teachers and students often spoke of the importance of student study groups for best learning 
the difficult content of calculus. The importance of learning communities is well-known from 
Treisman’s (1992) work with minority students, but also fits well into Tinto’s model. In the 
colleges we visited, the importance of these groups was greater because in most cases the 
support available in the learning centers was limited to courses lower than calculus. In this 
context, the study groups became a social and academic support for the relatively smaller 
population of calculus students. All of our sites also had specific social supports within the 
context of the math department (e.g., math clubs, math teams, math competitions) that 
ostensibly support Tinto’s model. However, it was unclear the extent to which students 
participated in these offerings, so they are not relevant to our main point. This is in contrast to 
informal study groups described above, in which students in focus groups readily reported 
participating actively. 

Attention to Placement 
 The first step in students’ academic integration in community colleges is through 
course placement. All cases attended to effectively placing students into Calculus I. 
Specifically, at the two smaller sites, department chairs reported that virtually all of their 
Calculus I students took Precalculus at the same institution, rather than placing directly into 
Calculus I via a placement test. This “in-house” preparation was described by the Calculus I 
instructors as very effective. While there are certainly curricular forces at work in these cases, 
Tinto’s model also helps explain why this might be effective; students are going through a 
program together with a common experience, and have become a community of learners by 
the time they reach Calculus I. 

Implications and Future Directions 
 This paper focused specifically on how the process of integration described in Tinto’s 
(1975, 1988) model was supported in the successful sites we visited. The importance of this 
paper lies in part in exposing the mathematics education community to Tinto’s model, which 
has aspects of the “emergent perspectives” by combining cognitive and social elements of 
learning (Cobb & Yackel, 1996) but extending its reach to the program level. The findings 
have implications for practice for mathematics faculty teaching calculus at two-year colleges 
in helping them consider the extent to which they collectively attend to students’ social 
integration either within the classroom or through out-of-class support. Encouraging 
participation in informal study groups can be a simple strategy that can be tried out. 
Departments or individual faculty can use the examples of social and academic integration 
that emerged from our themes as a starting point for such an exploration. 
 This line of study has clear future directions in both breadth and depth. In terms of 
depth, augmenting Tinto’s model with related theories from higher education, such as 
“involvement” (Astin, 1984), “engagement,” (Kuh, 2008) and “validation” (Rendon, 2006) 
could enhance our theoretical framework in future analyses.   
 In terms of breadth, there were observed themes (e.g., transfer policies or use of data) 
that may require different theoretical perspectives to explain their prominence. Incorporating 
more areas of theory will allow us to better understand the remaining four of the seven 
identified themes. For example, the interest these institutions had in collecting data resonates 
well with the notion of “continuous planning” for improvement described by Briggs and 
colleagues (2003). Yet it is unclear that there was clarity within institutions about the value of 
the data collected.  
 Also, in addition to having the “program” as the unit of analysis, we plan to consider 
the “department” and the “institution” and their roles in facilitating student success. The 
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CSPCC interview data with department and college administrators could help describe the 
ways in which not just key faculty but other institutional players contribute to students’ 
academic and social integration. The theoretical perspectives helpful in understanding a 
“successful” program (e.g. Tinto) would apply equally for these contexts. 
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FACTORS ASSOCIATED WITH THE SUCCESS OF FEMALE MATHEMATICS 
DOCTORAL STUDENTS 

Emily Miller 
University of Delaware 

Although the gender gap in participation in undergraduate mathematics has 
narrowed, disparities persist at the doctoral level. Only 30 percent of recent doctoral 
recipients in mathematics were women (Hill, Corbett, & St. Rose, 2010). To increase 
retention of women in mathematics doctoral programs, it is critical to study the factors that 
are associated with success.  A survey was distributed to 142 female mathematics professors 
to assess the impact of factors that could have contributed to their success.  Results point to 
changeable factors that can be implemented to narrow the gender gap.  Salient factors 
include persistence and dedication, strong undergraduate preparation and quality doctoral 
courses, and support from the doctoral advisor.  Results show that gender still has an impact 
on the experiences of the participants, but there may be reason for optimism.  Respondents 
who received their doctorates more recently reported less gender discrimination. 

Keywords: Gender equity; doctoral mathematics; retention 

Although the gender gap in participation in undergraduate mathematics has narrowed, 
disparities still exist at the doctoral level. Only 30 percent of recent doctoral recipients in 
mathematics were women (Hill, Corbett, & St. Rose, 2010).  Women attempting to obtain 
doctorate degrees in mathematics complete degrees at a lower rate than men (Berg & Ferber, 
1983), and even those who do complete their Ph.D.’s take longer to do so, on average, than 
men (Herzig, 2004).  By identifying factors that affect the quality of women’s experiences, 
doctoral programs can be improved to increase the success of this group. 

Prior research has focused on attrition.  Given that retention can be viewed as the absence 
of attrition, it is reasonable to hypothesize that factors, operating in a reverse direction, might 
help retain female doctoral students in mathematics. There have been few studies that 
examine this hypothesis. In this study, I identify factors that affect retention, as reported by 
female mathematics professors, using a large-sample quantitative survey methodology. 

Theoretical Framework 
Although there is no model of doctoral persistence specific to mathematics, Tinto (1993) 

proposes a three-stage framework to examine doctoral persistence across all fields. The first 
stage, transition and adjustment, lasts for about the first year of doctoral study and is the 
process of socialization and accommodation into the norms of the graduate department. The 
second stage, development of competence, usually begins at the second year of the doctoral 
program and ends as the student passes her candidacy examinations. The initiation of the 
third stage signifies that the student has acquired the knowledge and skills required to 
conduct doctoral-level research, in the form of a dissertation.  The third stage, dissertation 
completion, culminates with a successful dissertation defense. 

A review of the relevant literature led to a list of 16 factors that could contribute to 
attrition. Two additional factors were added based on my own hypotheses.  These 18 factors 
can be organized based on theoretical framework, and partitioned into two groups: (a) 
personal factors, which are unique to each student, and (b) program factors, which describe 
characteristics of the student’s doctoral program.  Each of these factors has the potential to 
affect the student’s ability to be successful in her doctoral program in mathematics. 
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Goals and Research Questions 
A desired result of this research is to identify factors that women view as critical to their 

success in obtaining a Ph.D. in mathematics so that these factors can be used to inform the 
design of doctoral programs that facilitate women’s success.  My research questions are: (1) 
What are the experiences of successful female mathematics doctoral students, as reported by 
female mathematics professors, and how do they describe the effects of those experiences? 
(2) What factors are most important to the success of female mathematics doctoral students, 
as reported by female mathematics professors? 

Methods 
Sample 

The desired population for this study consists of female, tenure-track mathematics 
professors with doctorate degrees in mathematics who are employed in prestigious 
universities in the U.S.  To obtain a sample from this population, the top 85 universities were 
selected from U.S. News & World Report’s 2012 National University Rankings (U.S. News 
& World Report, 2012).  The mathematics faculty listings for these top universities were then 
obtained online. Email addresses of potential participants were identified from these listings. 

Although this sample is not randomly selected, it is sufficient for this study.  In searching 
for factors that allow women to be successful in doctoral mathematics programs, it is relevant 
to study those who were particularly successful, as evidenced by their hiring in tenure-track 
positions at prestigious universities. If, despite their success, the women in this sample still 
identify aspects of their doctoral program that hindered their progress, this may be even more 
meaningful in understanding the factors that affect retention. 
Participants 

Survey invitations were sent electronically to 392 potential participants.  Ten invitations 
were undeliverable because of inaccurate email addresses.  Of the remaining 382 invitations, 
182 responses were received, for a response rate of 47.6 percent. Thirty-one responses were 
omitted from data analysis because the respondents did not fit the selection criteria. Nine 
respondents did not complete the survey and were not included in data analyses.  This left a 
sample size of 142 available for data analysis.  Forty one percent of the respondents are full 
professors, 24 percent are associate professors, and 35 percent are assistant professors.   
Ninety-two percent of the respondents work at institutions that grant Ph.D.’s in mathematics. 
Instrument Design 

A survey instrument was designed based on findings from a literature review.  The survey 
has four blocks of questions.  The first block gathered demographic information and was 
included to ensure that only the appropriate participants completed the survey.  The second 
block consisted of open-ended questions, asking about what the participants believe made 
them successful and what challenges they overcame to receive their doctorate.  Two open-
ended questions were also included at the end of the survey.  The first asked about the 
respondents’ teaching style preferences, and the second asked for any additional thoughts. 

The third block of questions utilized a two-step format.  First, the respondents were 
presented with 18 factors that may have contributed to their success.  The participants were 
asked to indicate whether they experienced these factors during their doctoral program by 
answering “True” or “False” for each statement.  If the respondents selected “True,” they 
were directed to a Likert scale, ranging from “Extremely negative effect on my ability to be 
successful” to “Extremely positive effect on my ability to be successful.” If the respondent 
selected “False,” they were directed to a separate five-point Likert scale, with identical labels. 
This scale asked respondents to assess the impact on their success of the factors they stated 
were not present during their doctoral program.  Each of the factors was now reworded in the 
negative to more accurately reflect the respondent’s experience.  Finally, in the fourth block, 
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the respondents were presented with the factors and were asked to choose the five factors that 
were most influential in their success and to rank them in order of importance. 

Results 
RQ1: The Experience of Female Mathematics Doctoral Students 

The personal factor of persistence and dedication, along with the program factors of 
strong undergraduate content preparation and high quality graduate instruction were the most 
impactful on the experiences of the respondents in this sample.  Comparing the “True” and 
“False” lists of personal factors that were rated significantly higher or lower than the others, 
the impact of persistence and dedication is apparent.  This factor appears as having one of the 
highest ratings (indicating a positive effect on the respondents’ ability to be successful) for 
those who had it, and one of the lowest negative ratings (indicating a negative effect on the 
respondents’ ability to be successful) for those who did not.  Similarly, for the program 
factors, the quality of the content preparation from the respondents’ undergraduate program 
and the quality of the courses the respondents took while enrolled in their doctoral program 
appeared on both lists.  Those who had high quality instructional experiences at the 
undergraduate and graduate level found it to have a highly positive impact on their success, 
and those who did not found it very detrimental. 
RQ2: Importance of Factors to the Success of Female Mathematics Doctoral Students 

The statement “I was persistent and dedicated to my work during my doctoral study in 
mathematics” was the highest ranked personal factor in terms of importance, with a mean of 
2.61.  For the program factors, the highest ranked was “I received strong support and 
encouragement from my doctoral advisor in mathematics,” with a mean of 2.24.  The 
program factor “I received strong support and encouragement from my doctoral advisor in 
mathematics” was ranked first most often overall, with 30 out of 134 respondents (22.4 
percent) selecting that factor as most important to their success.  The personal factor “I was 
persistent and dedicated to my work during my doctoral study in mathematics” was ranked as 
most important by 26 out of 134 respondents (19.4 percent), second most often overall and 
the most often out of the six personal factors.  The personal factor, “I was persistent and 
dedicated to my work during my doctoral study in mathematics,” was the most common 
factor selected for the top five for the ranking question, with 99 out of 134 respondents (73.9 
percent) ranking that factor. 
The Impact of the Doctoral Advisor 

When asked about the most important contributors to their success in obtaining a 
doctorate in mathematics, nearly half of respondents (46.7 percent) included the support of 
their doctoral advisor in their ranked list.  Furthermore, the support provided by the doctoral 
advisor was second only to persistence in the mean ranking of importance.  Similar results 
can be seen from the Likert data, where nearly all of the respondents who agreed that their 
advisor was supportive said that this had a positive or extremely positive effect on their 
ability to be successful in their doctoral program.  The open-ended data was used to gain a 
more comprehensive description of the participants’ meanings of support from their doctoral 
advisor.  Specifically, they spoke about receiving mentoring, assistance in choosing an 
appropriate thesis or ���dissertation topic, helpful and timely feedback on work, recognition of 
progress through the program, and financial support through grants and fellowships. 

However, an overwhelming majority of respondents (95.8 percent) stated that their 
doctoral advisor was male. Only 6 respondents (4.2 percent) had a female doctoral advisor. 
This is most likely due to the dearth of female professors in most university math 
departments, evidenced by the fact that 85.2 percent of respondents expressed that they did 
not have enough female mentors available to them.  Over a third of the sample responded that 
this lack of female mentors had a negative effect on their ability to be successful. 
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The Impact of Undergraduate Preparation 
Undergraduate mathematics preparation was posited to be a factor that could have a large 

effect on the success of women in doctoral programs. Almost a third of the sample claimed 
they did not have strong content preparation in mathematics from their undergraduate 
program. Eighty-two percent of these women reported this factor had an extremely negative 
or negative effect on their ability to be successful in their program. Sixty nine percent 
reported having strong content preparation in mathematics from their undergraduate program, 
and 94 percent of this group reported this factor had an extremely positive or positive effect 
on their ability to be successful in their doctoral studies. Whereas 90 percent of the sample 
attended a university in the United States during their time as a doctoral student, 48 percent 
of the women in the sample received the entirety of their undergraduate training in 
mathematics in countries other than the United States. Women who received their 
undergraduate training in mathematics in the United States were more likely to report that 
they did not receive strong content preparation at the undergraduate level.  Forty out of 74 
women (54.1 percent) who had undergraduate preparation in the United States claimed that 
their preparation was strong, while 56 out of 65 women (86.2 percent) who were prepared for 
their doctoral studies outside of the United States reported strong preparation. Results of a 2 x 
2 chi-squared analysis show a statistically significant difference between groups (chi-squared 
= 16.689, df = 1, p < .001).  In fact, the odds ratio for this data is 5.31, meaning that women 
who had undergraduate preparation in the United States were over five times as likely to 
report weak preparation than those who did not. 
Reports of Gender Bias 

Even though the number of women choosing to pursue mathematics has been rising, 
gender continues to exert an influence on their experiences in mathematics doctoral 
programs.  Approximately 17 percent of respondents believed the other students in their 
program thought they were less likely to be successful than a male student, while a similar 
percentage of respondents (16 percent) had the same belief about the professors in their 
doctoral program.  About three-quarters of respondents holding each of these beliefs felt that 
the inequity had a negative effect on them. This suggests negative stereotypical beliefs about 
the competency of women in mathematics still pervade some women’s experiences. 

Although they were not prompted to discuss instances of gender bias or discrimination, 
many respondents nevertheless decided to write about this topic in their open-ended 
responses. Twenty-five respondents (17.6 percent) described an occurrence of overt gender 
bias, whereas 20 respondents (14.1 percent) explicitly stated they had not experienced gender 
bias or made similar gender-blind statements. The instances of gender bias were summed up 
by one respondent as “a nagging sense that [she] was intruding on a ‘boy's club.’” However, 
these experiences were not the case for everyone.  Almost as many respondents stated in their 
open-ended responses that they had never experienced any form of bias in their doctoral 
program.  One additional unexpected finding also arose from the open-ended responses.  
Although not prompted to discuss this on the survey, six participants described their belief 
that the gender discrimination they experienced worsened as they transitioned into an 
academic career.   One respondent stated: “The discrimination just gets worse and worse the 
higher you go.” Although this may not be surprising, given that the numbers of women 
dwindle even further at the faculty level, this may be an area for further study, given the 
number of women that volunteered this comparison without being directly asked. 

Discussion 
 Although women have made great strides in equalizing the gender gap in participation 
in mathematics at the undergraduate level, the environment of doctoral level mathematics is 
still dominated by men.  In order to increase the numbers of women pursuing advanced 
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degrees in mathematics, it is necessary to evaluate the personal and program factors that help 
to retain women in these programs.   
 In this study, a quantitative survey methodology was used to assess the impact of 18 
factors on the success of female mathematics doctoral students.  The sample consisted of 
female mathematics professors employed at prestigious universities in the United States.  The 
impact of persistence and dedication was found across data sources, as well as the importance 
of strong undergraduate preparation and quality courses at the graduate level.  These three 
factors were rated as highly beneficial for those participants who experienced them, and 
extremely detrimental for those who did not. However, in a departure from previously 
published results, there was little agreement on what the participants considered to be good 
teaching.  The responses were wide-ranging, suggesting that efforts to retain women should 
focus on other aspects of mathematics doctoral programs. The importance of having a 
supportive doctoral advisor also appeared as an influential factor. 
 The importance of strong undergraduate preparation arose as one of the most striking 
findings of this study, since women who received their undergraduate degree in the United 
States were much more likely to report that their undergraduate training in mathematics was 
weak, when compared to those who received their undergraduate degree elsewhere.  This has 
implications for how American universities are preparing their students for the transition to 
graduate study.  If female students from the United States are to be successful in doctoral 
study in mathematics, their preparation must become on par with their international 
counterparts. 
 Although personal characteristics are outside the scope of the doctoral program’s 
influence, improvements made to program factors can ameliorate the impact of any negative 
personal factors.  In particular, confidence, motivation, persistence, and dedication could be 
improved through the implementation of student-student or student-faculty mentoring 
programs.  This type of socialization could be provided through university chapters of the 
AWM; however, only 19.7 percent of respondents reported the availability of such a program 
during their doctoral study.  Issues related to family responsibilities can be improved through 
greater understanding and flexibility on the part of the graduate department.  Since the age of 
graduate study for most women coincides with young adulthood, when many choose to start 
families, an essential part of making the mathematics doctoral program environment 
welcoming for women is becoming more accepting of the competing “greedy institutions” of 
academic and family life (Herzig, 2010, p. 198). 
 Although Tinto’s (1993) longitudinal model of graduate persistence was not designed 
to be specific to female students in male-dominated disciplines, the alignment of the model 
with the results of this is apparent.  In the first stage, transition and adjustment, the female 
mathematics doctoral student must determine the compatibility of her expectations with her 
experiences in the graduate department. Early instances of gender bias may cause her to deem 
the environment unsuitable.  Even if she stays, these experiences could decrease her 
persistence or confidence, or commitment to doctoral study.  During the second stage, 
development of competence, her qualifications as a mathematician are called to the forefront.  
This could serve to reawaken questions of inadequate undergraduate preparation.  This stage 
is also focused on socialization and integration, which may be more difficult for female 
students with a lack of female mentors or role models with the mathematics department.  
Lastly, in the final stage, dissertation completion, the role of the advisor becomes central to 
the student’s experience.  With a supportive advisor, the student may very well thrive and 
complete her degree.  However, with an unsupportive or unsuitable advisor, the student may 
leave her program at this advanced stage. 
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TEACHING THE CONCEPT OF MATHEMATICAL DEFINTION USING 

STUDENT CONSTRUCTION AND SELF-ASSESSMENT 

Susanna Molitoris Miller 

Kennesaw State University 

Definitions are an important part of the study of mathematics, yet many students struggle 

with successfully understanding and using this construct. It has been suggested that students 

may improve their understanding of mathematical definitions by engaging in the act of 

writing definitions (de Villiers, Govender, & Patterson, 2009). Through a mixture of survey 

and teaching experiment methodology this study explores pre-service elementary teachers’ 

understanding of mathematical definitions before and after engaging in a teaching 

experiment which provided many opportunities for the participants to write their own 

mathematical definitions for familiar and novel classes of quadrilaterals. Definitions were 

assessed as having necessary, sufficient and minimal conditions. It was found that while 

many students initially struggled to write definitions that meet these qualifications, the 

process of trying to construct their own definitions did improve students’ understanding of 

these characteristics of mathematical definitions. 

Key words: Definitions, Geometry, Teaching Experiments, Elementary Teacher Training 

Mathematical definitions play an important role in the study of practically every area of 

mathematics (de Villiers, Govender, & Patterson, 2009; Usiskin & Griffin, 2008; Vinner, 

1991). They serve as a means of communicating about mathematical ideas by describing 

concepts in a precise and efficient manner which would allow the reader to differentiate the 

concept being defined from other similar concepts (de Villiers, Govender & Patterson, 2009). 

In axiomatic systems, the way a concept is defined can affect which statements are regarded 

as given facts and which must be proved as theorems and corollaries (Usiskin & Griffin, 

2008).  

Difficulties with Mathematical Definitions  

Unfortunately, many students struggle with the important concept of mathematical 

definition. Zaslavsky and Shir (2005) found that 12
th

-grade students have mixed and varied 

conceptions of the form and purpose of a mathematical definition. The students in their study 

questioned the importance of minimal sets of conditions, whether or not any statement 

containing necessary and sufficient conditions could serve as a definition, which properties of 

an object can be included in a definition, and if there can be more than one correct definition 

of a concept (Zaslavsky & Shir, 2005). Several studies have shown that during their training 

pre-service teachers also have a deficient understanding of the form and purposes of 

mathematical definitions (e. g., Leikin & Winicki-Landman, 2001; Linchevsky, Vinner, & 

Karsenty, 1992).  Fujita (2012) found that pre-service elementary teachers were not fluent 

with the concept of mathematical definition as evidenced by their reliance on prototypical 

examples rather than applying definitions when solving problems. Chesler (2012) found that 

pre-service secondary teachers near the end of their preparation program struggled to 

complete tasks involving selecting, applying, comparing, and interpreting definitions of a 

function.  

Research Question  

In response to these difficulties, there have been some suggestions as to how we might 

better assist students in understanding and using mathematical definitions. De Villiers, 

Govender and Patterson (2009) encouraged allowing students to engage in the process of 
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constructing mathematical definitions, conjecturing that such experiences could improve 

students’ understanding of “geometric definitions, and of the concepts to which they related” 

as well as “ the nature of definitions” (p. 201). I designed a qualitative study involving a 

blend of survey, teaching experiment, and case study methodologies to explore the potential 

of that recommendation. This paper/presentation will address the following research 

question: How do students’ understandings of mathematical definitions change after they 

engage in activities involving the composition of mathematical definitions?  

Characteristics of a Mathematical Definition 

Throughout this study I use the term “mathematical definition” to refer to definitions with 

the following characteristics as described by de Villiers, Govender, and Patterson (2009). 

These authors state that “definitions are very concise, contain technical terms, and require an 

immediate synthesis into a sound concept image” and that definitions function as “tools for 

communication, for reorganizing old knowledge, and for building new knowledge through 

proof” (p. 189). They recognize definitions as “human ‘inventions’” (p. 191) which can come 

in a variety of types. One distinction concerns how definitions relate to the relationships 

between sets. A hierarchical (or inclusive) definition “allows the inclusion of more particular 

concepts as subsets of the more general concept” but partitional (or exclusive) definitions 

describe a system in which “the concepts involved are disjoint from each other” (p. 191). 

They consider a definition “correct” if it contains both necessary and sufficient conditions. 

These attributes mean that “the condition applies to all elements of the set” and “whenever 

[the condition] is met, we obtain all the elements of the set we want to describe” respectively 

(p. 193). Definitions can be “economical” if they contain “a minimal set of necessary and 

sufficient conditions” but “uneconomical” definitions contain “redundant properties” (de 

Villiers, Govender, & Patterson, 2009, p. 196). The following study contributes to the filed 

by exploring pre-service teachers’ understanding of the structure of mathematical definitions 

focusing specifically on necessary, sufficient, and minimal sets of conditions. 

Methods 

I designed this study using a combination of survey and teaching experiment 

methodologies in order to explore pre-service teachers’ understanding of mathematical 

definitions via their abilities to write mathematical definitions for various types of 

quadrilaterals. In the first part of the study I used survey data from 44 elementary education 

majors to get an overview of how pre-service teachers think of mathematical definitions by 

exploring how they define quadrilateral types before formally studying either definitions or 

geometric shapes on the college level. In the second part of the study I performed a 

conjecture driven teaching experiment (Confrey & Lachance, 2000) with three students who 

were carefully selected as case studies based on the results of the initial survey. The teaching 

sessions focused on activities which relate a definition to the set of figures to which it 

corresponds as a means of improving students understanding of the structure of a 

mathematical definition including necessary sufficient and minimal conditions. A post-

measure survey was also used to assess student growth or changes.  

 The teaching experiment portion of this study was based on a learning trajectory 

informed by three theories, shown in Figure 1. The first theory, the Conceptual Learning and 

Development Model, is a theory describing stages for the acquisition of concepts in general 

(Sowder, 1980). The second theory, the van Hiele theory of development of geometric 

reasoning, is a theory which also includes stages but is focuses specifically within the context 

of geometry (Burger & Shaughnessy, 1986). The third theory, concept image, applies to the 

learning of concepts in general and describes the non-linear accumulation and organization of 

knowledge over time (Vinner, 1991). Multiple theories were used in order to explore multiple 
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facets of how students learn about mathematical definitions. Previous work has often focused 

on only one theory related to one component of the learning trajectory while this study 

highlights the importance of all three sets of arrows included in the trajectory as well as the  

 

 

Figure 3.1: An image of the hypothetical learning trajectory used in this study. The top row 

represents evolutions in definitions, the second row represents changes in dominant van Hiele 

level, and the third level represents changes in conceptions of shape types. 

 

interactions between them. The hypothetical learning trajectory created serves as a potential 

basis for additional studies which combine multiple theoretical perspectives and explore 

multiple facets in order to achieve a more comprehensive description of the learning process. 

Nearly every task used in the teaching experiment portion of the study involved 

composing a mathematical definition in some way. Every time a student composed a 

definition she was prompted to self-assess it by being asked the following questions: “Is 

everything in your definition true about all examples of a [concept]?” “Are there enough 

details in your definition to tell the difference between an example of a [concept] and 

something that should not count as a [concept]?” and “Do you need all of the parts that you 

have included in your definition in order for it to still distinguish between examples and non-

examples?” these question were chosen to highlight the need for necessary, sufficient, and 

minimal conditions, respectively.  

Results 

The results of the initial survey revealed that the majority of students were not capable of 

consistently composing definitions with necessary, sufficient and minimal conditions at the 

beginning of the study. A more detailed account of how students performed with definitions 

of each quadrilateral type can be found in Table 1.  

Based on the survey results, three students were chosen to participate in the teaching 

experiment portion of the study. These students represented each of the following cases, a 

student who knew relatively little about mathematical definitions, a student who wrote 

definitions which were lengthy but accurate descriptions, and a student consistently wrote 

definitions with necessary, sufficient, and minimal characteristics. All three students showed 

improvement in their understanding of mathematical definitions in some way. They all began 

anticipating and adjusting for the self-assessment questions addressing necessary, sufficient, 

and minimal conditions. This generally improved their defining ability and showed that they 

understood and valued these qualities of a mathematical definition. By the end of the study all 

three students included some equivalent description of definitions as having necessary, 

sufficient, and minimal conditions on their final survey.   
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 Improvements were evident in various ways for each student including the kind of 

definitions they wrote and the way they described definitions in general. The first student 

greatly improved her ability to write definitions with necessary and sufficient and sometimes 

minimal conditions improving from four necessary, no sufficient, and no minimal definitions,  

 

Table 1 

 

The Number (and Percent) of Definitions Which Contained Necessary, Sufficient, and 

Minimal Sets of Conditions by Quadrilateral Type (N=44) 

 

Quadrilateral Type 

 

Necessary Sufficient Minimal 

Quadrilateral 

 

 

27 

(61%) 

27 

(61%) 

20 

(45%) 

Square 

 

 

44 

(100%) 

22 

(50%) 

14 

(32%) 

Parallelogram 

 

 

39 

(89%) 

18 

(41%) 

10 

(23%) 

Trapezoid  

 

 

13 

(30%) 

9 

(20%) 

6 

(14%) 

Rectangle 

 

 

41 

(93%) 

16 

(36%) 

4 

(9%) 

Kite 

 

 

10 

(23%) 

3 

(7%) 

3 

(7%) 

Rhombus 

 

 

30 

(68%) 

10 

(23%) 

2 

(5%) 

Totals (N=308) 204 

(66%) 

105 

(34%) 

59 

(19%) 

 

to seven necessary, five sufficient, and four minimal on a set of definitions for seven terms. 

The second student acknowledged the importance of minimalness and was now able to more 

consistently compose definitions with this characteristic. It appeared that the third students’ 

initial desirable set of definitions resulted more from memorized fact and limited knowledge 

of the concepts being defined rather than from a mastery of the concept of definitions. By the 

end of the study she retrogressed in her ability to write definitions with minimal conditions 

but increased her knowledge and understanding of definitions in general as evidenced by her 

ability to identify but not correct the shortcomings of her final set of definitions.  

Implications 

Although this particular study was conducted in the context of elementary education 

majors and basic geometry, the results provide implications which can be adapted for 

teaching definitions to many different audiences and in a variety of content areas. It supports 

de Villiers, Govender and Patterson’s (2009) proposal that the act of composing 
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mathematical definitions will increase students’ understanding of mathematical definitions in 

general. This suggests that writing definitions can be a productive and worthwhile endeavor 

for any doers of mathematics who does not fully understand this construct. This can be 

especially true for undergraduates who may never have developed a complete understanding 

of definition on the high school level and are about to encounter sophisticated mathematical 

definitions and related proofs at the undergraduate level.  

The results also inform undergraduate mathematics educators with regard to the role of 

students’ previous knowledge. Theories such as van Hiele theory (Burger & Shaughnessy, 

1986) and the Conceptual Learning and Development Model (Sowder, 1980) rely on a 

student’s ability to compose a mathematical definition as evidence of a certain level of 

understanding of the concept being defined. However some students, like the third student in 

this study, may be able to provide accurate definitions as a result of previous exposure and 

memorization rather than as a result of conceptual understanding. This highlights the 

importance of always reviewing concepts and verifying students understanding rather than 

assuming understanding based on the use of definitions alone.  
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PRESERVICE SECONDARY TEACHERS’ UNDERSTANDING OF THE 
CARTESIAN CONNECTION AND EQUIVALENCE  

 
Kyunghee Moon 

University of West Georgia 
 

Both prior research and national standards emphasize the importance of critical ideas, such 
as the Cartesian Connection and equivalence, in algebra problem solving. The mathematics 
education community, however, has yet to determine whether the secondary teachers who 
teach such ideas fully grasp these ideas themselves. To investigate this, I interviewed a 
cohort of nine preservice secondary teachers in a teacher education program with two 
algebra problems that embed these ideas. The results showed that many of the teachers failed 
to understand equivalence as a relation between geometric objects, and thus could not solve 
an algebra problem by relating algebraic equations to their corresponding graphs. Many 
also misinterpreted the meaning of the term “solution,” and thus could not use the Cartesian 
Connection to find a solution of an equation. It is advisable that secondary teacher education 
programs focus more on these critical ideas so that secondary teachers can impart such 
ideas on their students. 

 
Keyword: Cartesian Connection, Equivalence, Representations, Preservice secondary 
teachers 

 
Introduction 

This study investigates preservice secondary teachers’ content knowledge, and in particular 
their ability to connect algebraic and graphical representations in algebra problem solving. The 
Principles and Standards for School Mathematics (NCTM, 2000) and the Common Core State 
Standards (CCSS) emphasize the role of representations in mathematical teaching and learning. 
Prior research also suggests that connecting representations is vital for successful problem 
solving or mathematical understanding (Brenner et al., 1997; Hiebert & Carpenter, 1992; 
Tompson, 1994). Many of these studies have showed that connecting representations is not 
trivial even for those who have advanced mathematical training (Even, 1998; Gagatsis & 
Shiakalli, 2004; Knuth, 2000).  

Studies (Kieran, 1981; Knuth, 2000; Moschkovich, Schoenfeld, & Arcavi, 1993; You, 2005) 
have suggested that the failure to understand critical ideas in mathematics, such as the Cartesian 
Connection: “a point is on the graph of the line L if and only if its coordinates satisfy the 
equation of L” (Moschkovich, Schoenfeld, & Arcavi, 1993, p. 73), is a main cause of students’ 
difficulties in connecting representations. Studies have also documented that many teachers do 
not understand students’ difficulties with these critical ideas (Postelnicu, 2011). Due to lack of 
research, however, the mathematics education community does not understand whether 
secondary teachers themselves (who are, or will be, teaching these ideas) are indeed equipped 
with full understanding of these critical ideas. In this research, I examine preservice secondary 
teachers’ knowledge of these ideas through the use of interviews. In particular, I focus on two of 
the most discussed ideas in algebra—the Cartesian Connection and equivalence.  

 
Conceptual Framework 

This study examines preservice teachers’ understanding of  “big ideas”—the Cartesian 
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Connection and equivalence. Big ideas are “central organizing ideas of mathematics—principles 
that define mathematical order” (Schifter & Fosnot, 1993, p. 35). These ideas are considered 
“big” because “they are critical to mathematics and because they are big leaps in the development 
of children’s reasoning” (Fonsnot & Jacob, 2010, p. 29). The relationship between one’s problem 
solving ability and translation ability among representations is documented in research (Brenner 
et al., 1997; Hitt, 1998; Thompson, 1994). The association of big ideas to one’s translation ability 
is also documented in prior research, as shown in Moschkovich et al. (1997) and Knuth (2000), 
with the big idea of the Cartesian Connection. As such, individuals’ problem solving abilities are 
closely related to their understanding of big ideas. 

The two big ideas this study focuses on are the Cartesian Connection and equivalence in the 
topic of algebra. The Cartesian connection is an idea that connects algebraic and graphical 
representations relating a point on the graph of an equation and its coordinates as a solution of the 
equation. Equivalence is an idea that has been previously discussed mostly within the algebraic 
context, but is extended in this study as an idea that relates algebraic and graphical 
representations.  

Research has showed that many secondary students and K-8 teachers do not firmly grasp the 
idea of the Cartesian Connection, and thus use algebraic approaches in problem solving when 
geometric approaches are more efficient. For instance, Knuth (2007) showed that more than three-
fourths of the study’s participants (178 high school students) used algebraic approaches to find a 
solution of the algebraic equation, ?x + 3y = -6, when a solution could be found simply by 
inspecting the given graph. You’s study (2006) also showed that only 27 out of 104 elementary 
and middle school teachers were able to provide a solution correctly for the same question Knuth 
used. Among those teachers who provided a correct solution, only 7 teachers used a geometric 
approach. The study by Moon et al. (2013) also showed prospective secondary teachers’ 
difficulties in applying the Cartesian Connection in an inquiry-based, problem solving class. 
Moon et al. extended the definition of the Cartesian Connection to  “A point is on the graph of the 
mathematical relation 

€ 

R(x,y) = 0 if and only if its coordinates satisfy 

€ 

R(x,y) = 0” (p. 204) to 
discuss the idea in the context of conic curves.   

Equivalence is the idea that ‘the equal sign denotes an equivalence relation between two 
quantities’ (Kieran, 1981; Knuth, Stephens, McNeal, & Alibali, 2006). Most students in primary 
grades hold an operational view of the equal sign, and thus provide an answer such as 12 or 17 for 
the question asking the missing value in 4 + 3 + 5 = __ + 5, by performing operations with the 
numbers involved in the equation (Alibali, 1999). Many middle grade students also possess this 
operational view and have difficulty finding the value of m using appropriate algebraic 
approaches when solving equations such as 4m + 10 = 70 (Knuth et al., 2006). Many high school 
or college students also do not use the equal sign correctly in problem solving, providing a 
mathematical statement such as x + 3 = 7 = 7 – 3 = 4 (Kieran, 1981).  

Although this idea of equivalence is treated in research and practice mostly as a relation 
between two algebraic objects, it is a big idea that relates algebraic and graphical representations 
and that leads to successful problem solving in algebra. For example, in order for a student to 
explain an Algebra standard: “why the x-coordinates of the points where the graphs of the 
equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x)” (CCSS, p. 
66), the student needs to understand equivalence as a relation between two geometric objects, 
along with other big ideas such as the Cartesian Connection and ‘the graph of an equation as the 
set of points whose coordinates satisfy the equation’. To be more specific, the student should be 
able to see the equal sign in the algebraic equation, f(x) = g(x), as a relation between two algebraic 
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objects, f(x) and g(x), and at the same time should be able to connect the algebraic objects to 
geometric objects—the graphs of functions, 

€ 

y = f (x)  and 

€ 

y = g(x) . The student also needs to 
understand that the intersection points of the two graphs, which could be denoted by (a, b) 
(representing unknown points), indeed lie on both graphs, and as such the pair, 

€ 

x = a and 

€ 

y = b, 
has to satisfy both equations, 

€ 

y = f (x)  and 

€ 

y = g(x) , applying the idea of the Cartesian 
Connection. The student then needs to understand that the relations b =

€ 

f (a) = g(a)  explain 

€ 

x = a  
as the solution of the equation f(x) = g(x). Yet, as illustrated in Dufour-Janvier (1987) with a case 
of one high school student, an individual who only sees f(x) = g(x) as an algebraic relation might 
not be able to accept the fact that the solutions of the equation f(x) = g(x) can be explained by the 
intersection points of the graphs of 

€ 

y = f (x)  and 

€ 

y = g(x) , even after observing the graphs of the 
equations. 

As seen above, both the Cartesian Connection and equivalence as a relation between 
geometric objects are big ideas that are crucial to successful problem solving, the ideas that 
teachers need for secondary teaching. Thus, in this research, I study a cohort of preservice 
secondary teachers to answer the research question: “What is preservice secondary teachers’ 
understanding of the Cartesian Connection and equivalence as shown in algebra problem 
solving?”  
 

Methods 
This study was conducted at a large public university located in southern California. In the 

2010-2011 school year, 14 preservice secondary mathematics teachers (PSMTs) entered the 
teacher education program to pursue secondary teaching credentials in mathematics. The teacher 
education program was a one-year graduate program, and as such, all PSMTs held a bachelor’s 
degree in mathematics, science, or engineering. The PSMTs took a mathematics methods course 
in the fall quarter, mathematics pedagogy courses in the winter and spring quarters, and a 
mathematics problem solving course in the spring quarter. Both methods and problem solving 
courses emphasized the importance of connecting representations in mathematical problem 
solving and understanding. However, there was no specific instruction on the Cartesian 
Connection or equivalence in these courses.  

The data source used in this study is a portion of data used for larger research that dealt with 
PSMTs’ mathematical knowledge for teaching. Specifically, it was from a one-hour interview, 
designed to examine PSMTs’ abilities to connect representations, which was conducted during 
the winter quarter. Out of 5 interview questions, 2 questions concerned the Cartesian Connection 
and/or equivalence (see Figure 1). Only 9 of the 14 PSMTs participated in the interview. During 
the interview, PSMTs were asked to “think aloud” so that their thought process could be visible 
through their words. They were also asked to do mathematical work on the interview sheets. The 
interview was videotaped using a video camera and was transcribed before analysis.  

Figure 1 shows the two questions used in this study. The first question Q1 was designed, 
inspired from Dufour-Janvier et al. (1987), so that the three subquestions (A), (B) and (C) would 
measure PSMTs’ understanding of equivalence as a relation between algebraic objects, 
equivalence as a relation between geometric objects, and the Cartesian Connection, respectively. 
The second question Q2 was quoted straight out of Knuth (2000) to examine PSMTs’ 
understanding of the Cartesian Connection.  
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Figure 1. Interview Questions 
 

 
For analysis, I coded PSMTs’ written work and the transcription of their interviews. For Q1, I 

coded PSMTs’ problem solving abilities in each of the three subquestions: to find the solution of 

€ 

x = x − 2  algebraically from Q1(A), to connect the equation

€ 

x = x − 2  to its corresponding 
graphs from Q1(B), and to connect the intersection points of graphs back to the solution of the 
equation from Q1(C).  

For Q2, I coded PSMTs’ problem solving strategies, similar to Knuth (2000). For Q1(A), I 
examined whether the participants used the given graph (without solving the equation) or the 
algebra equation as the main means to find a solution. For Q2(B), I coded whether PSMTs 
substituted the x and y coordinates of a point from the graph directly into the equation, 

€ 

? x + 3y = −6 , to look for the missing value, or whether they found the slope of the equation first 
and then used the slope to look for the missing value. 
 

Results 
Results of the analysis are presented here, first for Question 1 and then for Question 2. For 

Question 1, I explain PSMTs’ understandings of equivalence as an algebraic relation and of 
equivalence as a geometric relation, along with their understanding of the Cartesian Connection. 

Q1. Cynthia has a hard time in figuring out the solution(s) to the equation  
(Dufour-Janvier et al., 1987). 

(A) How would you help her? 
(B) How could you use graph(s) to help her understand? 
(C) How is the solution of the equation 

€ 

x = x − 2  related to the graphs in (B)? 
 

Q2. The graph below represents the equation, ?x+ 3y= -6. (We do not know the value 
of the coefficient of x.) (Knuth, 2000) 
(A) Is it possible to find a solution to the equation without the missing value? Explain 

your answer.  
(B) How could we find the missing value? Explain your answer. 
	  

€ 

x = x − 2
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For Question 2, I explain their understanding of the Cartesian Connection and an unexpected 
issue that PSMTs encountered in problem solving. 
 
 Q1: The Solution of

€ 

x = x – 2 
Equivalence as an algebraic relation. When asked to find the solution of the equation, 

€ 

x = x − 2  (Q1(A)), all nine PSMTs used algebraic approaches. Eight PSMTs squared both sides 
of the equation to convert the equation to 

€ 

x 2 − 5x + 4 = 0  and found the solutions, 1 and 4, of the 
resulting equation, 

€ 

x 2 − 5x + 4 = 0 . Four of those eight PSMTs followed up by inputting the 
numbers in the original equation

€ 

x = x – 2 and then claimed that 4 was the only solution. The 
other four PSMTs claimed that both 1 and 4 were the solutions with no further work. When asked 
if both were the solutions, however, two of those four PSMTs input the numbers in the original 
equation and revised their answers to state that 4 was the only solution. The other two PSMTs 
checked the numbers by using the equation 

€ 

x 2 − 5x + 4 = 0  instead, and claimed that both 1 and 4 
were the solutions of the equation 

€ 

x = x – 2. When asked if checking with 

€ 

x 2 − 5x + 4 = 0  was a 
valid method, those two PSMTs answered that it was valid because 

€ 

x 2 − 5x + 4 = 0  was derived 
from

€ 

x = x – 2. These two had a problem with understanding logical equivalence: ‘if a = b then 
a2 = b2, but a2 = b2 is not an equivalent statement to a = b’. Two PSMTs, including one of the four 
PSMTs who solved it correctly above, used a different algebraic approach. They first changed the 
equation

€ 

x = x – 2 to x –

€ 

x – 2 = 0 and then factored the second equation into (

€ 

x - 2)

€ 

( x +1) . 
They then claimed that 4 was the only solution of the equation as there is no real value of x that 
makes 

€ 

x = -1. It seemed that all nine PSMTs had no problem seeing the equal sign in

€ 

x = x – 2 
as an algebraic relation, but some of them had difficulty with this question due to their lack of 
understanding in logical equivalence.  

 
Equivalence as a geometric relation and the Cartesian Connection. In order to investigate 

PSMTs’ understanding of equivalence as a geometric relation and of the Cartesian Connection in 
Q1, I categorized the participants according to their problem solving abilities in Q1(B) and Q1 
(C). The vertical side of Table 1 is for Q1(B). If a participant related graphs to the equation 

€ 

x = x − 2  on their own, I categorized the participant into “Using graph with no assistance.” If 
not, I categorized the participant into “Using graph with assistance.” The horizontal side of Table 
1 is for Q1(C). If a participant interpreted the x-coordinate(s) of the intersection point(s) of the 
graph(s) as the solution(s) of the equation, I categorized the participant into “Able to connect the 
solution to the intersection points.” If not, I categorized the participant into “Unable to connect 
the solution to the intersection points.”  

 
Table 1 

Problem Solving in Q1(B) and Q1(C) 

 Q1(C) 

 
Q1(B) 

Able to connect the solution to 
the intersection points 

Unable to connect the solution 
to the intersection points 

Using graph with no assistance 4 participants (Cell 1) 1 participant (Cell 2) 
Using graph with assistance 4 participants (Cell 3) 0 participant (Cell 4) 
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Interpreting the results of the categorizations, four PSMTs (Table 1, Cell 1) showed an 

understanding of equivalence as a geometric relation and of the Cartesian Connection. Three of 
these four PSMTs related

€ 

x = x – 2 to functions, y = 

€ 

x  and y = x – 2, and sketched the graphs 
of the functions (equivalence as a geometric relation).  They then claimed that the equation 

€ 

x = x − 2  had only one solution 4 as the two graphs met at one point (the Cartesian 
Connection). These three PSMTs were in fact among those four PSMTs who solved Q1(A) 
correctly by using an algebraic approach. One PSMT sketched a graph of 

€ 

y = x 2 − 5x + 4  instead 
of graphs of y =  and y = x – 2. This PSMT was one of the two who had come up with two 
solutions for Q1(A), believing that

€ 

x = x – 2 embedded the same information as 

€ 

x 2 − 5x + 4 = 0 . 
Although she worked with the incorrect equation, her work showed that she had an understanding 
of both equivalence as a geometric relation and the Cartesian Connection.  

One PSMT (Table 1, Cell 2) showed an understanding of equivalence as a geometric relation, 
but not of the Cartesian Connection. This PSMT sketched graphs of y = 

€ 

x  and y = x – 2 on her 
own. However, with the graph of y = 

€ 

x  vastly skewed, her two graphs did not intersect. She 
was not bothered by this conflicting information—no intersecting points even though she had 
already found one solution of the equation using an algebraic approach. With my assistance, she 
fixed her graphs with the two graphs meeting at one point. However, when asked to interpret the 
solution of the algebraic equation 

€ 

x = x − 2  related to the graphs, she said, “if there are two 
statements, there is a solution. But I am not sure if that is the intersection.” I asked if the solution 
x = 4 was related to the intersection point, and she answered “not necessarily.” It was obvious that 
her knowing that the number of solutions of the equation 

€ 

f (x) = g(x) is the number of 
intersection points in the graphs 

€ 

y = f (x)  and 

€ 

y = g(x)  was from her memorization of the rule, 
and not from an actual understanding of the Cartesian Connection.  

Four PSMTs (Table 1, Cell 3) did not show an understanding of equivalence as a geometric 
relation, but did show an understanding of the Cartesian Connection. When they were asked to 
explain the solution of

€ 

x = x – 2 using graphs, their replies were, “how can I make this as y 
equals something like x to have input and output values? There is no y,” “every time when 
somebody says to draw a graph, it is in y equals form. But when I see this, there is no y or f (x) or 
anything like that,” “I just can’t add y,” and “I know how to graph y = 

€ 

x , but not 

€ 

x = x – 2.” 
However, when prompted to sketch the graphs of the equation y = 

€ 

x  and y = x – 2, all four 
PSMTs were able to sketch both graphs correctly (with one PSMT needing some assistance). 
When they were asked to interpret the solution of the equation using graphs, all of them claimed 
that x = 4 was the unique solution of the equation 

€ 

x = x – 2 by referring to the intersection point 
of the graphs (the Cartesian Connection).  
 
Q2: The Solution of  ?x + 3y = -6 

The Cartesian Connection. Before interpreting PSMTs’ understanding of the Cartesian 
Connection in the problem solving of Q2, I will first explain how Knuth (2000) interpreted high 
school students’ understanding of the Cartesian Connection where the students were examined 
by a paper and pencil test. Knuth categorized students’ problem solving approaches as either 
geometric or algebraic. If a student used the given graph as the main means to find the solution—
for instance, visually inspecting the graph to find the answer—, Knuth categorized the approach 
as geometric. If, however, a student used an algebraic procedure as the main means, such as 

€ 

x
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finding the slope of the line and using the slope algebraically, he categorized the approach as 
algebraic. Knuth reported that more than three-fourths of the high school students in his study 
used algebraic approaches and that more than 90% of the students who used algebraic 
approaches found the slope of the line as part of their solution methods. He claimed that 
“students' reliance on algebraic-solution methods was due to their failure to recognize the points 
used in calculating a slope as solutions to an equation,” which explained the lack of 
understanding of the Cartesian Connection (p. 505). 

Using interviews as my research instrument (although using the same questions as Knuth 
did), I encountered an unexpected situation: While solving question Q2(A), six of the PSMTs 
asked or confirmed with me the meaning of the term “solution” in the context of the problem. 
When I asked them what they believed the “solution” meant, all of them replied that the 
“solution” would mean the missing value, ?. In order to help them move forward, I told them that 
“solution” in the context of the problem meant x and y values, information which affected their 
problem solving approaches, and hence my analysis of their responses. 

Table 2 shows my categorization of PSMTs’ responses to Q2(A) and Q2(B). The vertical 
side of Table 2 shows their responses to Q2(A). If a participant found a solution by simply 
inspecting the given graph and did not ask me to clarify the term “solution,” the participant was 
categorized as “Geometric approach with no assistance.” If a participant found a solution by 
inspecting the given graph and asked for my assistance on the meaning of “solution,” the 
participant was categorized as “Geometric approach with assistance.” If a participant used an 
algebraic approach for Q2(A), such as changing the equation ?x + 3y = -6 into the slope-intercept 
form 

€ 

y = (−?/3)x − 2  and determining ? using the slope of the equation, the participant was 
categorized as “Algebraic approach” regardless of my assistance on the meaning of “solution.” 
The horizontal side of Table 2 is the categorization of their responses to Q2(B). If a participant 
simply substituted the x and y coordinates of a point on the graph into the equation to find the 
value of the missing value, the participant was categorized as “Direct substitution.” If a 
participant found the value of the slope and used the slope to determine the value of ?, the 
participant was categorized as “Using slope.”  

  
Table 2 

Problem Solving Approaches in Q2(A) and Q2(B) 

 Q2(B) 

Q2(A) Direct substitution Using slope 

Geometric approach with no 
assistance 

2 participants (Cell 1) 0 participant (Cell 2) 

Geometric approach with 
assistance 

3 participants (Cell 3) 2 participants (Cell 4) 

Algebraic approach 0 participant (Cell 5) 2 participants (Cell 6) 

 
 Interpreting the results from the categorizations in Table 2, only two PSMTs in Cell 1 (Table 

2) showed a sound understanding of the Cartesian Connection, as they used efficient problem 
approaches based on the Cartesian Connection in both Q2(A) and Q2(B). These two PSMTs 
would surely have solved both problems using geometric approaches even in a paper-and-pencil 
environment as in Knuth (2000). For the next group of three PSMTs in Cell 3 (Table 2), I 
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interpret that these PSMTs also had a sound understanding of the Cartesian Connection, as they 
were able to use efficient approaches in both Q2(A) and Q2(B). However, it is not predictable 
how they would have responded to those questions had they been tested in a paper-and-pencil 
format, as they were confused about the meaning of the term “solution.” The two PSMTs in Cell 
4 had partial understanding of the Cartesian Connection. Although they used a geometric 
approach in Q1(A), they used an inefficient approach in Q2(B)—finding the slope of the line to 
look for the missing value—which could be solved much more simply had they used the 
Cartesian connection. This group surely would have been placed in the group showing lack of 
understanding of the Cartesian connection in Knuth’s study. The last group, two PSMTs in Cell 6, 
most certainly showed a lack of understanding of the Cartesian Connection, both in my analysis 
and Knuth’s. One PSMT used inefficient approaches after consulting with me about the meaning 
of “solution” and the other did so without consultation. 
 

Discussion 
The results of this study indicate that many preservice secondary teachers have difficulty 

applying in problem solving the ideas of the Cartesian Connection and equivalence as a geometric 
relation. They also suggest that many have difficulties interpreting the term “solution” when an 
equation has both variables and an unknown value. On the question that asked for a “solution” of 
the equation ?x + 3y = -6 and the value of the question mark, only two out of nine PSMTs 
interpreted the word “solution” correctly and showed a sound understanding of the Cartesian 
Connection without any assistance. Three of them showed a sound understanding of the Cartesian 
Connection with my assistance on the meaning of the term “solution,” while four of them showed 
a lack of understanding of the Cartesian Connection. Considering the fact that about a quarter of 
high school students in Knuth (2000) used geometric approaches for the same question with no 
assistance (as they were tested in a paper and pencil format), the preservice teachers in this study 
did not perform any better than the high school students in Knuth.  

In the question that asked for a geometric interpretation of the solution of the equation

€ 

x = x − 2 , only four out of nine PSMTs were able to interpret successfully, relating the equation 
to functions and the solution of the equation to the graphs. Out of those five preservice teachers 
who could not successfully interpret the solution geometrically, four of them could not relate any 
graphs to the equation

€ 

x = x − 2  (showing a lack of understanding of equivalence as a relation 
between geometric objects). The remaining one PSMT was able to relate the equation to the 
graphs of the functions 

€ 

y = x  and 

€ 

y = x − 2, but was unable to explain that the solution of the 
equation was the x-intercept of the intersection points of two graphs (showing a lack of 
understanding of the Cartesian Connection). Dufour-Janvier et al. (1987) discussed this problem 
with a case of a high school student who could only make sense of the solution of the equation 
through algebraic procedures. Unlike the student in Dufour-Janvier, none of the preservice 
teachers in this study had a problem accepting the fact that the solution of the equation was 
related to the graphs of the corresponding functions, once they were told that the graphs of the 
functions, 

€ 

y = x  and 

€ 

y = x − 2, are related to the equation 

€ 

x = x − 2 .  
This study suggests a few implications for secondary education and secondary teacher 

education. First, the mathematics education community needs to understand the complexity 
involved in many national standards such as CCSS. For instance, the CCSS simply states that 
students need to be able to “explain why the x-coordinates of the points where the graphs of the 
equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x)” (p. 66), 
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without specifying what ideas or skills are involved in this process. As shown in this study with 
the example of 

€ 

x = x − 2 , successfully performing such a task is not trivial. A student needs to 
understand the meaning of the problem’s “solution,” solve it algebraically, see 

€ 

x = x − 2  as a 
relation between geometric objects—the graphs of the functions,

€ 

y = x  and 

€ 

y = x − 2, correctly 
transfer the function equations 

€ 

y = x  and 

€ 

y = x − 2 to their graphs, and interpret the intersection 
point of the graphs connected to the equation

€ 

x = x − 2 . Without unpacking the core ideas and 
skills behind the standards, it would be very difficult to help students meet the standards. 

This study also suggests that secondary teachers might not be fully equipped with the critical 
mathematical ideas that they need for teaching, an implication that dampens the community’s 
hopes that secondary teachers with advanced mathematics courses have sound understanding of 
content, at least in algebra. These critical ideas were cognitive blocks for successful problem 
solving not only for students (Dufour-Janvier, 1987; Kieran, 1981; Knuth, 2000), but also for 
secondary teachers, as seen in this study. Teachers’ knowledge of content influences their 
teaching and/or student learning (Borko & Eisenhart, 1992; Stein, Baxter, & Leinhardt, 1990). As 
such, it is important that these secondary teachers are provided with opportunities to develop such 
knowledge through mathematics courses and professional development programs.  

There is an urgency to improve students’ understanding of mathematics at the secondary 
level. Without the development of mathematical concepts/ideas and reasoning skills, there is only 
a slim chance for students to succeed both academically and professionally in this rapidly 
changing world. There is still so much unknown about how to better prepare secondary teachers 
and how to better help students learn mathematics. It is time for the field to pay more attention to 
critical issues in secondary education. 
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WHAT CONSTITUTES A WELL-WRITTEN PROOF? 
Robert C. Moore 

Andrews University 

 

The purpose of this study was to identify some of the characteristics mathematicians value in 

good proof writing.  Four mathematicians were interviewed.  First, they evaluated and scored 

six proofs of elementary theorems written by students in a discrete mathematics or geometry 

course, and second, they responded to questions about the characteristics they value in a well-

written proof and how they communicate these characteristics to students.  Preliminary results 

indicate that these mathematicians agreed that the most important characteristics of a well-

written proof are (a) correct logic and (b) clarity.  Although these mathematicians differed in the 

attention they give to layout, grammar, punctuation, and mathematical notation, they agreed in 

giving these characteristics relatively little weight in the overall score.  The results also showed 

that, in addition to demonstrating good proof writing in class, writing comments on students’ 

papers is an important way they teach their students to write good proofs. 

 

Key words:  Proof writing, Proof evaluation, Proof assessment, Teaching proof 

Introduction and Related Research 

This study is an initial exploration into mathematicians’ beliefs and practices in evaluating 

students’ written proofs.  Speer, Smith, Horvath (2010) have called for research on how teachers 

of undergraduate mathematics design assessments, what they value in students’ responses, and 

how they communicate those values and evaluate students’ work.  Inglis, Mejía-Ramos, Weber, 

and Alcock (2012) also noted that “mathematicians’ grading and instruction on what constitutes 

a proof is a useful avenue for future research” (p. 70).  The present study is a first step toward 

addressing these calls for research on university teachers’ proof assessment practices. 

As identified by Mejía-Ramos and Inglis (2009), one proof-related activity in which 

undergraduate students engage is that of demonstrating understanding by constructing and 

presenting an argument to an expert, namely, their teacher.  A complementary activity, 

performed by the teacher, is that of evaluating a student’s argument against a set of criteria.  

While considerable attention has focused on students’ difficulties and errors in proof 

construction (e.g., Harel & Sowder, 1998; Moore, 1994; Selden & Selden, 1995; Weber, 2001), 

little attention has been given to how mathematicians respond to students’ errors. 

One aspect required in the evaluation of a student’s argument is that of deciding whether the 

argument is indeed a valid proof.  Weber (2008) found disagreement among mathematicians 

about the validity of purported proofs, as did Inglis and Alcock (2012) who concluded that 

“some of these disagreements could be genuinely mathematical, rather than being relatively 

trivial issues related to style or presentation” (p. 379).  In their study of 109 research-active 

mathematicians, Inglis, Mejía-Ramos, Weber, and Alcock (2013) found further evidence that 

there is no universal agreement about what constitutes a valid proof.  They concluded that 

mathematicians’ standards of validity differ and questioned whether students are getting a 

consistent message about what constitutes a valid proof.  

In order to better understand the features that mathematicians value in proofs written for 

pedagogical purposes, Lai, Weber, Mejía-Ramos (2012) observed mathematicians as they 

revised two proofs.  They found that mathematicians often agree, but occasionally disagree to a 

remarkable extent, on whether a proposed revision of a proof will improve the proof or make it 

worse for pedagogical purposes.  Note that this study focused on proofs written by 
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mathematicians for presentation to students.  I am not aware of any empirical studies that have 

examined the characteristics that mathematicians value in students’ proof writing. 

Given that mathematicians sometimes differ on the question of validity and other features of 

a written argument, it is reasonable to expect that they may differ in their assessment of students’ 

work, which requires judgment calls not only on validity, but also on clarity, readability, and 

other features.  Furthermore, in scoring proofs professors must make decisions about partial 

credit.  Thus, this evaluation process, which appears to be more complex than simply deciding 

whether an argument is valid, deserves attention. 

After carefully examining students’ papers, Brown and Michel (2010) created an assessment 

rubric built on three characteristics:  readability, validity, and fluency (RVF).  The authors 

claimed that it aids in the efficiency and consistency of evaluating students’ work, serves as a 

means of communicating to students the characteristics of good writing, and provides feedback 

for improvement.  The question arises as to whether other mathematicians would agree with this 

list of characteristics of good mathematical writing.  Given a student’s proof, would they 

evaluate it the same way? 

 

Research Questions 

These studies motivated the following main questions of this study: 

1. Do mathematics professors agree in their evaluation and scoring of students’ proofs? 

2. What characteristics do mathematics professors consider when evaluating students’ 

proofs? 

 

Methodology 

I conducted individual interviews that lasted about one hour with four mathematics 

professors, three women and one man, all from a small private university.  Each professor had a 

Ph.D. in mathematics, was actively involved in research, and had at least a dozen years of 

university-level mathematics teaching experience, including advanced undergraduate courses.  

Three of them had taught proof-based courses such as linear and abstract algebra, advanced 

calculus, and complex variables.  The fourth professor primarily taught applied mathematics but 

emphasized proofs in her calculus courses and had taught an introduction to proof course once.   

In the first part of the interview, the participants talked aloud as they evaluated five or six 

written proofs by (a) marking on the proof what was correct or incorrect, (b) telling how the 

proof could have been improved, and (c) assigning a score out of ten points to the proof.  In the 

second part of the interview, the participants responded to questions about their beliefs and 

practices in evaluating students’ proofs and teaching students to write proofs. 

The six proofs used for the first part of the interview were proofs of elementary theorems 

written by my students for tests or homework:  five proofs from a discrete mathematics course, 

which serves as a transition-to-proof course for mathematics majors, and one proof from a 

geometry course.   I chose them because they contained a variety of features that I judged to be 

both good and bad that related to readability, validity, fluency, proof frameworks, clarity of 

reasoning, use of definitions, quantifiers, and surface features such as layout and punctuation 

(Brown & Michel, 2010; Lai et al., 2012; Moore, 1994; Selden & Selden, 1995).  As an example, 

Figure 1 shows one of the six proofs.  

The interviews were recorded with a Livescribe smart pen that recorded the participants’ 

handwriting on the proofs as well as their talk-aloud commentary.  I transcribed the interviews 

and analyzed them using an open coding system (Strauss & Corbin, 1990).  I began the analysis 
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by making a detailed chart for each proof that identified all the written marks, corrections, and 

scores.  Next, from the written marks, oral commentary, and responses to the interview 

questions, I developed codes that revealed the participants’ justifications for the marks and 

scores and the characteristics to which they attend when evaluating proofs. 

 

Results 

 Research question 1.  Table 1 shows considerable variation in the scores assigned to the 

proofs by the four professors.  (Due to time constraints, only three professors evaluated Proof 6.)  

While space limitations do not permit a detailed discussion of the professors’ evaluations of the 

six proofs, Proof 2 (Figure 1) will serve as an example.  All four professors focused on the 

proof’s logic and agreed it was essentially correct, but they corrected the following errors:  (a) 

Two noticed yRz should be xRz in line 1, (b) three noticed that Z should be R at the end of line 1, 

and (c) two said the word “let” should be “for some” in line 3.  The professors also focused on 

clarity of reasoning and readability:  (d) Three said the proof should begin with “We want to 

prove” and (e) three said the proof would be clearer by writing x – z = (y + k) – (y – c) = k + c in 

place of the work on lines 4-7.  They paid little attention to punctuation and made no comment 

about how the proof runs diagonally down the right-hand side of the page. 

 The grading of this proof illustrates both agreement and disagreement in the professors’ 

grading.  They agreed that the logic of the proof was essentially correct, that the student 

understood the proof and its key ideas well enough, and that surface features such as layout 

Figure 1. Task 2 and Proof 2 

 Proof 1 Proof 2 Proof 3 Proof 4 Proof 5 Proof 6 

Low score 8 5 6 7 7 5 

High score 10 9.8 9.5 10 9.5 9.5 

Mean score 9.25 7.95 8.13 8.00 7.88 7.50 

Table 1. Scores assigned to the proofs by the professors 
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should carry little, if any, weight in the overall score.  But they disagreed about how serious 

certain errors were, particularly the error of Z, rather than R, at the end of the first line. 

A contextual factor that explains part of the spread in the scores on the six proofs is the 

professors’ judgment about how well the student understands the proof.  These professors said 

they base these judgments not only on the proof itself but sometimes on how well they know the 

student and his or her work in other situations.  This finding is consistent with studies that have 

noted the importance of context in mathematicians’ decisions on the validity of an argument 

(Inglis & Alcock, 2012; Inglis et al., 2013; Weber, 2008). 

Research question 2.  The two characteristics of a well-written proof that emerged strongly 

from the data were logic and clarity.  The professors’ comments about correct logic referred to 

both the overall logical structure, as well as the line-by-line reasoning.  Their comments about 

clarity seemed to encompass a variety of meanings, including readability, justifications for the 

steps in the proof, and the correct use of mathematical language and notation.  Here are 

responses from Professors C and D about the characteristics of a well-written proof: 

D: Yes, the logic and clarity are the two principles.  It seems like everything falls into those 

categories.  

C: A well-written proof?  The most important thing is that it’s logically correct.  If a proof 

isn't logically correct, I'll often take almost all the points off ….  I give them a pretty low 

grade if the logic is incorrect.  So that’s the main thing.  I would say the second thing is 

the readability of the proof.  Is it flowing in complete sentences, or is it like vertical 

scratch work sort of thing? 

 

Implications for Teaching and Further Research 

I also asked the professors how they communicate the characteristics of a well-written proof 

to their students.  Study limitations and space constraints allow me to say only that these 

professors use written comments on students’ papers as an important means of communicating 

what they value in their students’ proof writing.  While classroom observations would help to 

answer this question, we should be aware that much teaching takes place outside of class.  

This study shows that the assessment of students’ proofs is an important means of teaching 

students how to write good proofs, so it behooves us, as professors, to think carefully about how 

we assess proofs.  A rubric, such as Brown and Michel’s (2010) RVF method, may serve as a 

means of communicating a clear, consistent message to students, thereby raising the quality of 

their writing throughout an undergraduate mathematics program.  It is not clear to me, however, 

that mathematicians can agree on a general proof-writing rubric, nor whether a rubric improves 

consistency and efficiency in evaluating proofs, as Brown and Michel claimed.  A follow-up 

study will delve more deeply into these questions.  

Questions for the Audience 

1. What suggestions do you have for a larger study of mathematicians’ proof grading? 

2. Is there evidence that rubrics improve professors’ efficiency and consistency in evaluating 

students’ written mathematical work?  

3. Is there evidence that the use of rubrics improves students’ proof writing?  How could we 

measure this effect? 
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IMPLIED AND EMPIRICAL READERS OF NEWTON’S METHOD 
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The ability to translate a text into a mathematical process is a key goal of mathematics 
education. Knowing when students have the prerequisite knowledge to understand such a 
process is a perennial concern for instructors. Here we use Newton’s method to evaluate 
reader oriented theory as a means to illuminate these issues. Through clinical interviews 
with twelve first semester calculus students, we determined that knowledge of both tangent 
lines and roots is required for students to understand and apply Newton’s method. Analysis 
was done from the perspective of the empirical, implied, and intended readers and was 
examined for the extent to which the empirical and implied readers aligned. It was found that 
although the alignment of the empirical and implied readers was helpful in determining the 
success of the students, it was not in itself a deciding factor. 

 
Keywords: Newton’s method, Reader oriented theory, Calculus, Tangent lines 
 

Newton’s method is an iterative technique using tangent lines and x-intercepts to find the root 
of a function. Because of the distinct concepts involved and where it falls in the curriculum, 
Newton’s method provides an ideal and yet unexplored case study for reader oriented theory. 
Newton’s method is an opportunity for students to put their newly acquired knowledge of 
tangent lines to use while integrating it with previous knowledge of 𝑥-intercepts and roots. This 
study examines the prerequisite knowledge required to correctly apply Newton’s method and the 
capabilities of students who lack some or all of this material. Students were asked to read a 
paragraph describing how Newton’s method works and were presented with a graph and initial 
guess. They were then asked to follow the steps presented to implement Newton’s method. We 
find that alignment of implied and empirical readers is an informative but imperfect predictor of 
success.  

 
Literature Review 

An understanding of the concepts of derivative and of tangent line is important for 
interpreting Newton’s method correctly. While drawing the line tangent to a curve, it may be 
helpful for students to interpret the derivative as the slope of the tangent line. Newton’s method 
requires that students draw the line tangent to a curve at a chosen point and follow it to where it 
crosses the 𝑥-axis. Newton’s method requires the student to draw on the graphical, verbal, and 
symbolic representations of derivative as presented in Zandieh’s (2000) derivative framework. 

The concept of the derivative has been well researched. “It is known that some students are 
introduced to differentiation as a rule to be applied without much attempt to reveal the reasons 
for and justifications of the procedure.” (Orton, 1983, p. 242) In fact, many first semester 
calculus students survive without ever developing a conceptual understanding of the derivative. 
Asiala, Cottrill, Dubinsky, and Schwingendorf (1997) found evidence that students strongly feel 
the need for an expression of a function they can differentiate, rather than being able to interpret 
the derivative as the slope of the tangent line at a point from a graph. They found that students 
sometimes think the derivative and the equation of the tangent line at a point are the same thing.  

Students’ understanding of drawing tangent lines has been studied to a lesser extent than has 
the concept of derivative. Many have identified students’ struggles with drawing lines tangent to 
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curves (Biza, 2011; Biza, Christou, & Zachariades, 2008; Kajander & Lovric, 2009; Páez 
Murillo & Vivier, 2013). Biza et al. (2008)  found that students have difficulty drawing tangent 
lines at inflection points, cusps and at edge points (discontinuities created by breaks in the 
graph). These misconceptions may have been perpetuated by textbooks and teachers alike. 
Mathematics textbooks have said that a “tangent line touches the graph of y = f (x) at only one 
point.” The word touching implies that the line does not share anything in common with the 
curve, while in fact they do share a point in common. Diagrams in textbooks tend to show a 
tangent line that only passes through the curve at one point and do not consider special cases, 
such as cusps, inflection points, and edge points (Kajander & Lovric, 2009).  

 
Theoretical Perspective 

Our theoretical framework comes from reader oriented theory (Weinberg & Wiesner, 2011). 
According to reader oriented theory, there are three important terms: the intended reader, the 
implied reader, and the empirical reader. The intended reader is the particular audience that the 
author expects to read the text. This can be seen in the language that the text uses. For example, 
the use of “we” in mathematical texts when addressing the audience implies that the reader is a 
member of the mathematical community. The implied reader is the set of skills the reader will 
need in order to understand the text. For example, the implied reader needs to carry out certain 
behaviors indicated in the text and should have certain mathematical skills and knowledge. Of 
particular importance to understanding Newton’s method is the definition of tangent line and 
root and the ability to draw a tangent line. The empirical reader is the actual person who reads 
the text. The empirical reader’s concept images will impact how they interpret the text. A 
concept image is “the set of all the mental pictures associated in the student’s mind with the 
concept name, together with all the properties characterizing them” (Vinner & Dreyfus, 1989, p. 
356). A student’s concept image does not necessarily correspond to the mathematical definition 
of the term. In some cases, students’ responses are shaped by their desire to please an authority 
figure. When this happens they may demonstrate pseudo-conceptual behavior, giving answers 
that mirror cognitive thought but are not actually derived from cognitive thought (Vinner, 1997). 

We expected that students who had seen Newton’s method previously would demonstrate a 
higher level of reading comprehension. There is research indicating that children who have prior 
knowledge of a topic show greater fluency and word recognition when reading ability is held 
constant (Priebe, Keenan, & Miller, 2012). We are curious to know if this also holds for older 
students. 

 
Methods 

We created a text for Newton’s method. The aim was to identify characteristics of the 
implied and empirical reader and how those characteristics fostered comprehension of the text. 
Interviews were conducted on a voluntary basis with twelve students enrolled in first semester 
calculus at a large university. Six of the participants had previously taken calculus courses, and 
three of these students had seen Newton’s method prior to the interview. Interviews were video 
recorded and all written work was kept for analysis. 

Interviews were completed prior to instruction on Newton’s method in the classroom, but 
subsequent to instruction on derivative, tangent line, and the Intermediate Value Theorem 
(another tool for approximating roots). Prior to reading, students were asked to give a definition 
of tangent line as well as examples and non-examples. Each student was asked to silently read a 
brief passage describing the uses of Newton’s method, which was adapted by the research team 
from three calculus textbooks. Following the background passage, the student silently read a 
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paragraph describing how to use Newton’s method. After completing the reading, the student 
was asked to re-read the final paragraph aloud and ask any questions he or she may have. The 
student was then given the chance to demonstrate his or her understanding of the text by carrying 
out Newton’s method graphically on the example provided by being asked to find 𝑥2. This was 
followed with additional questions pertaining to Newton’s method and the reading. 

Upon completion, the interviews were transcribed by the authors for analysis. Though initial 
analysis presented several categories of interest, three main ideas were selected for discussion 
here: the tangent line concept, the root concept, and whether the student was able to follow the 
reading to demonstrate Newton’s method. For the tangent line concept, the students were 
partitioned into three categories based on their understanding: conceptual, pseudo-conceptual, 
and none. Those with a conceptual understanding drew various tangent lines correctly and used 
key phrases relating to the correct definition. Those with a pseudo-conceptual understanding 
could draw some tangent lines, but struggled to do so at non-extreme values. With regard to the 
root concept, students were again partitioned into three categories. Students with prior 
knowledge were able to give the definition of root prior to performing Newton’s method while 
students with a developed knowledge used Newton’s method to help them articulate a definition 
and students with no knowledge were unable to give a definition at any point during the 
interview. Finally, the students were once more partitioned into three categories based on their 
ability to follow Newton’s method. Students who were able to follow an iterative process that 
mimicked Newton’s method but with incorrect tangent lines or using 𝑥-values other than the 𝑥-
intercept were categorized as having a partial ability. The remaining students were either fully 
able or unable to follow Newton’s method. 

 
Results 

The implied reader of the Newton’s method document has an understanding of tangent lines 
and roots. These are concepts that first semester calculus students should have encountered by 
this point in the semester. In the following sections, the interviews are categorized based on the 
students’ understanding of the concepts of tangent line and root. Analysis of the interviews 
focused on these concepts to determine whether each was pivotal in the ability to carry out 
Newton’s method based on the reading. Table 1 presents the subjects and categorizes their 
knowledge of these two primary subjects along with their ability to carry out Newton’s method. 

 
Student Tangent Line Concept Root Concept Ability to Follow 
Aaron Pseudo-conceptual Developed Partial 
Andrea Pseudo-conceptual None No 
Bethany Pseudo-conceptual None No 

Dave Conceptual Developed Yes 
Janet Conceptual Prior Yes 
Kevin Conceptual Prior Yes 
Larry None Developed Yes 
Lewis Pseudo-conceptual Prior Partial 
Mark Pseudo-conceptual None Yes 
Qadan Pseudo-conceptual None Partial 
Steve Conceptual None No 
Ted Conceptual Developed Yes 

Table 1: Summary of prerequisite concepts and the ability to follow Newton’s method. 
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Tangent Line Concept 

The students interviewed were categorized into three groups based on their understanding of 
tangent lines: with a conceptual understanding, with a pseudo-conceptual understanding, and 
with no understanding. The level of understanding indicates the alignment of the empirical and 
implied readers with respect to the tangent line concept. 

Conceptual understanding. Five students had a conceptual understanding of tangent lines, 
meaning the empirical and implied readers were fully aligned. Although none of these students 
could effectively verbalize the definition of a tangent, some used key related phrases such as: 

 
Kevin: The tangent line is a representation of the instantaneous rate of change . . . It is the 

derivative. But it’s the slope of what you get the derivative from 
Dave: It’s a line that, uh, passes through a point on a curve once. 

 
Despite their struggles verbally, each of these students was able to draw tangent lines correctly 
regardless of the shape of the function and the chosen 𝑥 value. Each student had a robust concept 
image relating to tangent lines. One of these students, however, was unable to apply Newton’s 
method correctly.  

Pseudo-conceptual understanding. Six of the students showed some knowledge of tangent 
lines but did not demonstrate a complete understanding. This means the empirical and implied 
readers overlapped, but did not fully align. These students showed a pseudo-conceptual 
understanding of tangent lines, generally focusing only on horizontal tangent lines. 

Andrea is very clear at the beginning of the interview that she believes a tangent line only 
occurs where there is an extreme value. When asked to draw tangent lines on a graph, she draws 
tangent lines at the maximum and minimum, saying “right there would be a tangent line because 
the slope would be zero there.” When asked to draw a tangent line at a point on the graph with a 
non-zero derivative, she said “because the slope is constantly changing there, so you could not 
draw a tangent line.” This caused difficulties in Andrea’s ability to carry out Newton’s method 
because a non-horizontal tangent is required in order to approximate the root appropriately. This 
pseudo-conceptual understanding could not be remedied by the interviewer drawing connections 
to tangent lines and circles. Andrea was unable to perform Newton’s method despite being given 
the definition of tangent line during the interview. 

Bethany was not able to successfully carry out the Newton’s method process because her 
pseudo-conceptual understanding of tangent lines was a significant obstacle in her taking 
meaning from the passage. In drawing tangent lines, she started with a horizontal tangent line 
and then tilted it until it became a secant line (Figure 1). After the reading, she tried to draw a 
tangent line that followed the curve exactly so that her line would intersect the 𝑥-axis by tilting 
the tangent line from the horizontal one. 
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Figure 1: Bethany’s process of drawing tangent lines via tilting. 

 
This “tilting” process was also modeled by Aaron, yet in a slightly different manner. Instead 

of beginning with a tangent line and morphing it into a secant line, he used a tilting argument to 
show how the slope of the tangent line changes. When asked how he determined the slope of the 
tangent line, he explained “I just kinda take the middle point of it and start moving it down and 
slowly I can imagine in my mind like tipping over a little bit” (Figure 2). Despite his incorrect 
tangent lines, Aaron was able to correctly follow the reading to perform a series of steps that 
created a succession of 𝑥 values getting closer to the root. Hence, he seemed to understand the 
basic idea of what the described iterative process was intended to achieve.  

Qadan drew tangent lines similar to Aaron’s. Although he was able to determine the sign of 
the slope of the tangent line and how it related to the slopes of the tangent lines at surrounding 
points, he was unable to draw the tangent line correctly. Like Aaron, he was successful in 
performing an iterative process of finding successive x values. 

Mark and Lewis were both on the verge of a conceptual understanding of tangent lines. Mark 
knew that the tangent line should only pass through one point on the curve, but he didn’t realize 
that this only means locally. He was able to remedy his thinking and perform Newton’s method 
correctly later in the interview. Lewis was able to draw several correct tangent lines at the 
beginning of the interview, but drew them through the graph when applied to Newton’s method. 
He continued to talk about lines through the curve being inaccurate, saying “that was just an 
example, like it would be more like on, towards how the actual graph is like going.” Though he 
did not perform Newton’s method correctly, he was successful in performing an iterative set of 
steps based on the reading. 
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Figure 2: Aaron performs an iterative process with incorrect tangent lines. 

 
No understanding. Larry had no understanding of tangent lines. The empirical and implied 

readers did not align at all. He began to try and describe a tangent line as “a line of an angle at 
[pause] a horizontal point,” but abandoned this idea. His next attempt was at drawing the graph 
of the trigonometric function tangent. He ultimately decided that he did not know what a tangent 
line is. The definition and a few examples were then given to him by the interviewer. After 
receiving this information, he was able to carry out Newton’s method correctly. 
The Meaning of Root 

The students were categorized into three groups based on their understanding of root. The 
empirical reader and implied reader were aligned prior to working through the Newton’s method 
process, they became aligned while working through the process, or they did not align at all. 

Prior understanding. Three students had a clear conceptual understanding of root prior to 
carrying out Newton’s method. Two of these students were clear from the beginning, while one 
had to draw on past knowledge to recall the meaning of root. Two of these students were able to 
carry out Newton’s method correctly, while the third was able to construct an iterative process 
based on the reading. Understanding what was being approximated helped guide the process 
being performed and clarify the end goal. 

Developed understanding. Four students had no understanding of root prior to working 
through Newton’s method but were able to deduce the meaning while working through the 
reading on the Newton’s method process. Dave initially placed 𝑟 arbitrarily on the 𝑥-axis and did 
not relate it to the root of the function. After working through the process to find 𝑥4, he saw that 
it was farther away from what he marked as 𝑟 and recognized that there was a problem. In 
realizing what he was trying to approximate, he was able to determine the meaning of root. 
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Int 2: So what should your 𝑟 be? 
Dave: Or uh it’s close to 𝑥. 
Int 2: What’s the root of a function generally speaking? 
Dave: Um where the function equals zero. 
Int 2: Ok, so where does that function equal zero? 
Dave: Oh right there. Ohhhhh look at that. 
 
These students were able to use the given context to connect the root with the value being 
approximated by Newton’s Method, thereby aligning the implied and empirical readers. 

No understanding. Five students had no understanding of root prior to working through 
Newton’s method and were unable to use Newton’s method to deduce the meaning of root. One 
of these students actually knew the meaning of root, but was considered to have no 
understanding because she was not confident in her definition saying “I’m calling this [points to 
the root] like the, the root. Which I don’t think is exactly right, but that’s what I’ve been doing.” 
Of these five students, one was able to carry out Newton’s Method successfully, one was able to 
perform an iterative process based on the reading, and the other three were unsuccessful. 
 

Discussion 
The implied and empirical readers should align with respect to tangent lines to facilitate the 

students’ ability to take what was read and turn it into a mathematical process. Although some 
students were able to carry out an iterative process that produced subsequent 𝑥-values without a 
proper understanding of the tangent line concept, the final graphic was not a true representation 
of Newton’s method. Students frequently had a pseudo-conceptual understanding of tangent lines 
consisting primarily of horizontal tangent lines, likely due to this being the most recent 
application of tangent lines covered in class. This led to difficulties for students as the tangent 
lines required to perform the task must not be horizontal. One thing an instructor may do to 
increase the success of the student is to be sure to present a range of tangent lines and help 
students construct several of their own non-horizontal tangent lines in order to build a solid 
conceptual understanding. Engaging the students in constructing many examples and non-
examples helps to create a well-connected example space from which they can later draw when 
solving new and novel problems. (Sinclair, Watson, Zazkis, & Mason, 2011) We expect that a 
robust example space from which to draw when reading a text would increase success rates. 

To a lesser extent, the implied and empirical readers should align with respect to the root 
concept. Understanding what they were trying to approximate greatly benefited the students who 
could not correctly follow the process at first. This knowledge facilitated the student’s ability to 
see how to draw a tangent line when the function was below the 𝑥-axis. For other students, 
working through the reading helped develop their concept of root. Hence, even though the 
implied and empirical readers were not initially aligned, the text provided an opportunity to 
develop the required root concept, align the readers, and encourage success.  

Possessing knowledge of both tangent lines and roots still may not result in success. A 
common trait among the three students who were unable to translate the reading into a 
mathematical process was a lack of confidence. Two of the students made several comments 
relating to their mathematical struggles and made little effort to really make sense of the 
material. The third student’s lack of confidence created enormous confusion while she was 
attempting to interpret the reading. Building student confidence by incorporating mathematical 
reading exercises into the curriculum may lead to increased understanding. 
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AN EXPLORATION OF MATHEMATICS GRADUATE TEACHING 

ASSISTANTS’ TEACHING PHILOSOPHIES 
Kedar Nepal 

Oklahoma State University 

 

This is an investigation of the teaching philosophies of beginning mathematics graduate 

teaching assistants. Three teaching philosophy statements from each of four participants were 

collected at different stages of a semester-long teaching assistant preparation program and 

analyzed. Principal elements found in these statements before they underwent training and how 

their philosophies changed over time during training will be discussed.  

 

Key words: Teaching Philosophy, Mathematics Graduate Teaching Assistants, Undergraduate 

Mathematics Instruction, GTA Training. 

Introduction and Research Questions 
Studies have shown that teachers’ existing knowledge and beliefs inform and guide their 

classroom practices and decisions (Kim, 2011; Speer, 2008; Thompson, 1992). Since teachers’ 

teaching philosophies (collection of existing beliefs) change over time, careful examination of 

beginning and evolving teaching philosophies may provide insights into the support structures 

necessary to facilitate effective classroom instruction (Simmons et al., 1999). However, very few 

graduate teaching assistant (GTA) preparation programs offered by mathematics departments 

have attempted to understand and incorporate teachers’ beliefs and perspectives in their 

preparation programs. Instead, most programs are designed based on the faculty’s wisdom and 

experience (Chae, Lim, & Fisher, 2009). Because most math GTAs ultimately adopt a career 

teaching collegiate mathematics, it is critical that their professional development be studied and 

nurtured. However, little is known about beginning GTAs’ teaching philosophies, how their 

philosophies change during their pre-service and in-service phases, and what factors affect GTAs 

and their teaching philosophies.  This qualitative study therefore attempts to examine the 

evolution of GTAs’ teaching philosophies, both as pre-service and in-service instructors.  

Research questions 

1. What are the teaching philosophies of beginning mathematics GTAs?  

2. How do their philosophies evolve during the pre-service phase?  

3. How are their evolving philosophies nurtured, and how do they change as they transition 

to an in-service phase?  

4. What are the major contributing factors that affect mathematics GTAs and their teaching 

philosophies during the pre-service and in-service phases?  

Methods 
This study was guided by the context-based adult learning (Hansman, 2001), an extension of 

Vygotsky’s sociocultural theory to adult learning. An assumption to this study was that GTAs’ 

beliefs are developed, changed or reinforced as they learn more about teaching and learning, and 

these changes are reflected in their teaching philosophies.  

In the Fall 2012 semester, the researcher observed all the class sessions of a semester-long 

GTA preparation program course (see Appendix A) offered by the mathematics department at a 
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large public university in the Midwestern US. This was a mandatory pre-service program for all 

beginning mathematics GTAs, who did not need to teach or assume any other TA duties during 

that semester. In order to collect data from the participants, the instructor of the course required 

them to submit three teaching philosophy statements (TPS) in three installments: TPS I at the 

beginning, TPS II in the middle, and TPS III at the end of the semester. The prompts for writing 

these TPSs were discussed between the instructor and the researcher before they were given to 

the GTAs (see Appendix C). After the completion of the course, a purposeful sampling method 

was employed to select four of those GTAs. In order to include the maximum variation possible, 

two of the four GTAs selected were domestic, the other two were international students and each 

category included a female and a male participant. All of these GTAs are currently assuming 

their TA duties. See Appendix B for pseudonymous descriptions of the four GTAs. 

The participants’ teaching philosophy statements were collected and analyzed using open 

coding techniques. The researcher also conducted one-on-one interviews with each participant 

during the Summer 2012 and the Fall 2013 semesters, which were audio-taped for transcription 

and analysis. One more one-on-one interview is scheduled for the Spring 2014 semester.  

Preliminary Results 
All teaching philosophy statements have been coded, but the interviews are still being 

transcribed and analyzed. Therefore data pertaining only to research questions 1, 2, and part of 4 

are currently available.  

Below is a list of the principal themes identified in each of the GTAs’ teaching philosophy 

statements, and also the factors that influenced their philosophies. I expect more refined themes 

to emerge once all the data have been collected and analyzed. Due to space constraints, I was not 

able to elaborate on either of these, or to provide sample quotes from the GTAs. Readers may 

find it difficult to understand the results without further elaboration of these themes and factors; 

however, I hope to provide detail description of each of these themes and factors in future 

publications.  

David. TPS I: positive attitude, concept, content knowledge, equal treatment, high 

expectation for students, sense of humor, and creation of positive feeling towards mathematics. 

TPS II: all themes from TPS I except content knowledge, plus organization, personality, 

preparation, clarity of speech and tone, interaction, promotion of learning, caring, concept as 

well as process. TPS III: all themes from TPS II, plus preparation, experience, carefulness, 

classroom management, dealing with students, friendliness, language fluency, cultural 

understanding.  

Factors: High school and undergraduate experience, a high school teacher, classroom 

practicum, language, culture, undergraduate students.  

Andrew. TPS I: high expectations for students, being tough with students, application of 

knowledge, engaging classroom environment, preparation, balance between teaching and other 

duties, out-of-class support, coping with institutional culture. TPS II: all themes from TPS I, plus 

interaction. TPS III: all themes from TPS II, plus inspiration and encouragement, positive 

attitude, making students think, concept as well as process, self-reflection, solving problems 

using multiple techniques, promotion of individual development. 

Factors: a math professor in undergraduate program, institutional context, personal needs, 

classroom practicum, undergraduate students, subjects learned other than mathematics. 

Rebecca. TPS I: passion for mathematics and teaching, inspiration and encouragement, 

caring, trust, high expectation, concept, enthusiasm, engaging classroom environment, promoting 
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collaboration, out-of-class support, application of knowledge. TPS II: all themes from TPS I, 

plus organization, preparation, attitude. TPS III: all themes from TPS II, plus a welcoming 

classroom environment. 

Factors: undergraduate professor, past experience learning and teaching, classroom 

observation, mentor.  

Jennifer. TPS I: content knowledge, positive attitude, friendliness, equal treatment, caring, 

out of class support, respecting students’ opinions and ideas, inspiration and encouragement, 

making students independent learners, application of knowledge. TPS II: all themes from TPS I, 

plus eye contact. TPS III: all themes from TPS II, plus a welcoming classroom environment, 

patience, respect for students’ privacy, acknowledgement of differing capabilities among 

students.  

Factors: personal background, high school and undergraduate experience, a high school 

teacher, subjects learned other than mathematics, classroom observation, classroom practicum, 

teaching by faculty in own coursework.   

As expected, GTAs expressed varying ideas and beliefs about teaching and learning. 

However, some elements in their TPSs were common to most of the GTAs. Also, some elements 

were found common to a specific group or category (e.g., females, international GTAs). In their 

TPS I, all but Jennifer expressed that having high expectations of students (such as giving hard 

and challenging problems in homework and exams) could force them to think and work hard. All 

but Andrew wrote that a teacher should have a positive attitude towards teaching. Similarly, most 

GTAs believed that instructor should relate mathematical concepts taught in the classroom to 

real life problems, in order to motivate and prepare students to apply their knowledge. All GTAs 

except David underscored the importance of encouraging or inspiring students and helping them 

outside of classroom.  

It was interesting to observe that the international GTAs, David and Jennifer, believed that 

teachers should treat their students equally and that teachers’ content knowledge was key to their 

success. Both domestic students, Andrew and Rebecca, believed that instructors should motivate 

students to think, learn and succeed, instead of just transferring their own knowledge to the 

students. They also expressed that teachers should keep their students engaged in the classroom.  

The female GTAs expressed that teachers should have a caring attitude: they should care 

about their students’ success. Jennifer believed that students should not be judged by their exam 

grades. Rebecca believed that a teacher should win students’ trust. Rebecca was the only GTA to 

express anything about student collaboration, something that most educators think is beneficial 

to student learning. Rebecca also believed that students should see their teacher’s enthusiasm and 

passion towards the subject. Andrew believed (in TPS I) that a teacher should maintain a balance 

between his instructional duties and personal life. He also emphasized the need to cope with the 

institutional culture. He believed that teachers should employ tough love attitude with the 

students. According to him, being ‘too nice’ with students does not help them succeed.    

No GTAs stated that their earlier opinions from TPS I had changed. Instead, they all repeated 

the opinions they had expressed in TPS I, but expressed additional opinions in their later 

statements. In TPS II and III, David expressed that content knowledge alone is insufficient, and 

that a teacher needs to be skilled in preparation, interaction, organization, teaching techniques, 

and speaking clearly. In his TPS III, he also expressed that teachers should be fluent in English 

and have a strong understanding of the American culture. On the other hand, Jennifer 

emphasized teachers’ content knowledge in all her TPSs, and never mentioned the importance of 

fluency in English or cultural understanding. It is interesting to note, however, that David was 
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much more fluent in English than Jennifer. Also, in TPSs II and III, both of them repeated their 

earlier position that teachers should treat their students equally. It will be interesting to see how 

these GTAs’ philosophies evolve during their in-service phase.  

All the GTAs were influenced more than anything by the teaching they had experienced 

during their undergraduate or high school times, especially by the role model teachers they had. 

Pre-service classroom practicum also had some influence on their teaching philosophies. 

I am considering asking one or two peers to code TPSs of at least one GTA to establish 

intercoder reliability. My question to the audience: What would be a better way to elicit their 

current teaching philosophies? How can we detect changes in their philosophies? What could be 

done to corroborate findings?   
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Appendix A 

Description of GTA Preparation Course 

This is a pre-service preparation program offered every fall semester by the mathematics 

department to train beginning GTAs. They do not need to teach or assume any other TA duties 

during their first semester in the graduate program. GTAs in this course learn from weekly 

seminars and a classroom practicum.  

Classroom practicum. GTAs are placed with experienced instructors who serve as mentors. 

GTAs are expected to observe their mentors’ class sessions and participate in all activities 

assigned by them. GTAs are also expected to maintain logs of their practicum experiences in 

their course portfolios. Following each class meeting, they write down their observations, 

questions, and reflections in their practicum logs. Periodically, the logs are reviewed by the 

instructor. GTAs prepare and deliver a few actual classroom presentations under the direct 

supervision of their mentors. GTAs write reflections on their own presentations and discuss these 

reflections with peer GTAs, who also write reflective comments related to their observations of 

the presenter. Mentors submit an evaluation of the GTAs’ performance to the course instructor at 

the end of the semester. 

Weekly seminars. GTAs are expected to complete all out of class assignments, such as 

writing syllabi, lessons, exams, and papers, and retain them in their course portfolios. Most 

seminars begin with a discussion of typical decision making and classroom management issues 

related to undergraduate education. Topics included make-up requests, cheating, responding to 

student emails. As the class progresses, the participants are asked to share their observations, 

questions, and reflections they have noted from observing their mentors’ classroom. GTAs are 

asked to learn routine activities such as preparing syllabi, writing quizzes and exams, using 

technology in the classroom, maintaining a grade book, and posting student grades from their 

mentors. They routinely share their observations with other GTAs and the course instructor.  

GTAs are also required to grade actual student homework and exams. After doing so, they 

display their grades and grading algorithm on the board and are asked to justify their decision. 

Besides several other reading and writing assignments, GTAs are assigned a particularly 

introspective assignment related to ‘Developing Your Philosophy of Teaching’.  

After the completion of this pre-service program, they enter into the in-service phase. They 

begin to teach and assume other TA related duties such as grading and tutoring during this phase.  

Appendix B 

Description of participants 

David (age 24) is an international graduate student from a south Asian country. He finished 

his undergraduate degree from a medium sized university in the midwestern United States. He 

completed high school in his home country. His only teaching experience was tutoring 

mathematics at his undergraduate institution. He conducted two recitation sections of business 

calculus course in the Spring 2013 semester, and did not teach any course in the Summer 2013. 

He is a master’s student and is willing to pursue a Ph.D. degree in applied mathematics. He 

wants to become a professor after finishing his degree. He is fluent in English with a foreign 

accent.  

Andrew (27) is a domestic graduate student who completed school in the southwestern 

United States, and finished his undergraduate degree from a university in the same region. He 

was home schooled during his high school period. He is a Ph.D. student and wants to work in 

industry. His only teaching experience was tutoring undergraduate students. He taught two 
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sections of the Functions in Spring 2013, and a section of Business Calculus during Summer 

2013. 

Rebecca (23) is a domestic student who completed high school in the midwestern US, and 

received her undergraduate degree from a small Catholic university in the same region. Her only 

teaching experience before joining her graduate program was tutoring undergraduate students. 

She taught one section of the Pre-calculus during Spring 2013 and a section of College Algebra 

during Summer 2013. She is a master’s student and does not have any plan to pursue her Ph.D. 

She wants to go to a business field to work in the future. 

Jennifer (30) is an international student who completed her high school and college education 

up to masters’ degree from a north-eastern Asian country. She taught mathematics in a college 

for five years in her home country. She taught two recitation sections of Business Calculus in 

Spring 2013, but did not teach any course during Summer 2013. She is a Ph.D. student and wants 

to become a mathematics professor in the future. She speaks English with a foreign accent but is 

not as fluent as David.  

Appendix C 

Prompts for writing teaching philosophy 

TPS I: Write a short paper of about 2-3 pages discussing what you have learned about 

effective and ineffective teaching from being a student. Describe the teaching of someone who 

was, in your experience, a particularly effective teacher, and analyze why you think this person 

succeeded as a teacher. This is just the beginning on your journey to develop your own 

philosophy of teaching, a philosophy that will probably change several times during your 

teaching career. The conclusion of your paper should be a thoughtful initial statement of your 

emerging philosophy of teaching.  Be sure to include your thoughts on what you believe now. 

TPS II: Earlier this semester you made an initial effort to characterize your philosophy of 

teaching. In this paper, you discussed what you have learned about effective and ineffective 

teaching from being a student. You described the teaching of someone who was, in your 

experience, a particularly effective teacher, and analyzed why you thought this person succeeded 

as a teacher. You concluded this paper with an emerging statement of your philosophy of 

teaching. Your job now is to revisit this paper, rethink its contents, and revise it based on 

reflections on your practicum and seminar experiences this semester - so far. You will have yet 

another opportunity to reflect as we approach the end of the semester. 

TPS III: Earlier this semester you made efforts to characterize your philosophy of teaching. 

In your first paper, you discussed what you had learned about effective and ineffective teaching 

largely from the perspective of being a student. You described the teaching of someone who was, 

in your experience, a particularly effective teacher, and analyzed why you thought this person 

succeeded as a teacher. And, you concluded this paper with an emerging statement of your 

philosophy of teaching. You revisited this paper about midway through the semester, rethought 

its contents, and revised it based on reflections of your practicum and seminar experiences this 

semester - so far. Now, you have the chance to revise it yet a final time. This final revision 

provides you with an opportunity to build into your philosophy statement those most recent 

experiences in the classroom as a teacher. Hopefully, you will recognize and appreciate the 

journey we have taken this semester - a journey that began with your beliefs about teaching 

being based on your experiences as a student and is ending with your beliefs about teaching 

being based on learning first-hand what is involved in the art of teaching. 
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Preservice Elementary Teachers’ Understanding of Number Theory: 
Connecting Content Knowledge to PCK 

Many preservice elementary teachers have a limited understanding of the mathematics that 
they will teach, including many topics in number theory (e.g., Zazkis & Liljedahl, 2004), which 
suggests that they may not be prepared to teach mathematics for understanding. The research 
also suggests that pedagogical content knowledge (PCK) is important for teaching (e.g., Ball, 
Thames, & Phelps, 2008; Shulman, 1986), but little is known about preservice elementary 
teachers’ PCK in number theory.  

The overarching research question of this study is: What is the nature of preservice 
elementary teachers’ understanding of topics in number theory? The primary goal was to 
investigate preservice elementary teachers’ content knowledge and PCK in number theory, with 
topics such as greatest common factor (GCF), least common multiple (LCM), and prime 
numbers. I also explored opportunities preservice elementary teachers have to develop number 
theory PCK as well as if and how their number theory content knowledge might contribute to 
their number theory PCK. I share my findings from the latter endeavor in this report. 

Background 
Number theory content is integrated throughout primary school mathematics education, 

ranging from even and odds in pre-Kindergarten to prime factorization, GCF, and LCM in the 
middle grades. Zazkis and colleagues contributed the bulk of what little is known about 
preservice elementary teachers’ understanding of topics in number theory, such as even and odd 
numbers (Zazkis, 1998), multiplicative structure (Zazkis & Campbell, 1996), and prime numbers 
(Zazkis & Liljedahl, 2004). In general, most participants exhibited a procedural understanding of 
the content and difficulty working flexibly with various number concepts. For instance, Zazkis 
(1998) found that participants struggled to associate “evenness” with “divisibility by 2” and 
having a factor of 2 in the prime factorization. Brown, Thomas, and Tolias (2004) investigated 
preservice elementary teachers’ understanding of LCM and found that many participants had a 
similarly procedural understanding of the content. 
 While it is unclear how a teacher’s content knowledge may affect student learning, the 
research suggests that a teacher’s PCK does impact teacher effectiveness (Shulman, 1986). Ball 
and colleagues have further conceptualized mathematical PCK by proposing subconstructs such 
a knowledge of content and students (KCS), knowledge of content and teachers (KCT), and 
knowledge of curriculum. According to Hill, Schilling, & Ball (2004), KCS pertains to 
“knowledge of students and their ways of thinking about mathematics – typical errors, reasons 
for those errors, developmental sequences, strategies for solving problems”. KCT requires 
“coordination between the mathematics at stake and the instructional options and purposes at 
play” (Ball, Thames, & Phelps, 2008). Ball, Thames, and Phelps also define a type of content 
knowledge specific to teachers called specialized content knowledge (SCK), defined as “the 
mathematical knowledge that allows teachers to engage in particular teaching tasks, including 
how to accurately represent mathematical ideas, provide mathematical explanations for common 
rules and procedures, and examine and understand unusual solution methods to problems” (p. 
377-8). Little is known about preservice elementary teachers’ number theory PCK or SCK. 

The emergent perspective (Cobb & Yackel, 1996) served as the lens for collecting and 
analyzing data. I primarily used the psychological lens since the bulk of the data represent 
individual conceptions about number theory content. On the other hand, via the social lens I 
explored the classroom norms, expectations, and experiences that framed participants’ 
perspectives on number theory content and how they might use it to teach. I also drew from Ball 
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and colleagues’ conceptualization of mathematical PCK (e.g., Ball, Thames, & Phelps, 2008; 
Hill, Ball, & Schilling, 2008) in designing my interview tasks to elicit number theory PCK and 
again to analyze responses.  

Methodology 
This interpretive case study (Merriam, 1998) centered on preservice elementary teachers who 

were seeking a mathematics concentration and enrolled in a number theory course. The majority 
of class time in this course was spent working on problem sets collaboratively (which were 
occasionally geared towards elementary school applications of number theory), and the instructor 
encouraged basic explanations or picture proofs. Data for this study came from multiple sources: 
classroom observational notes, student coursework, as well as responses from two sets of one-
on-one task-based interviews, which served as the focus of the data analysis. Constant-
comparative coding (Corbin & Strauss, 2008) was used as part of the coding process. Among my 
efforts to ensure trustworthiness, I used member checking during the interviews and data 
triangulation afterwards. 

The six interview participants’ had varying coursework experiences prior to the number 
theory course. Brit had taken a number and operations course designed for non-mathematics 
concentration elementary education majors, which encouraged collaborative, non-directive, and 
discovery learning, oftentimes with pictures and manipulatives. Cara, Gwen, and Lucy had 
completed a mathematics education course for mathematics concentration students, with a 
similar emphasis. As part of this course, Cara, Gwen, and Lucy served as teacher aides in the 
number and operations course. For Eden and Isla, the number theory course was their first 
experience with number and operations since grade school. Participants had varying amounts of 
tutoring experience; Brit and Lucy had the most experience. 

Results 
 Some interview tasks posed student scenarios to elicit participants’ number theory PCK, so it 
was unsurprising that analysis of these tasks revealed themes of KCS, KCT, and knowledge of 
curriculum. It was also unsurprising to find that participants used SCK when responding to the 
content of these tasks. The degree to which participants’ PCK depended on their SCK, however, 
was intriguing. Even more intriguing was the finding that this relationship between participants’ 
SCK and PCK appeared to be stronger depending on participants’ perspectives on how 
elementary school students learn mathematics. I discuss these emergent themes here by selecting 
a few interview tasks that elicited rich responses.  
 The tasks I discuss here all exemplify student-teacher interactions where a student presents 
an idea or conjecture and the teacher responds. Mathematics teachers spend a great deal of their 
time evaluating student work. This can range from checking answers to validating new 
conjectures and alternative algorithms, all of which classifies as SCK. As an example, consider 
the interview task in Figure 1. In this scenario, Maria is using colored chips to determine the 
GCF of 8 and 12, only to discover that the difference of 8 and 12 is also their GCF. Participants 
were asked to validate Maria’s conjecture that the difference of two numbers is the same as their 
GCF.  
 

17th Annual Conference on Research in Undergraduate Mathematics Education 951



  
 In response to part (a), all six participants determined that this conjecture did not always 
work, because they were each able to find a counterexample. Having found a counterexample, a 
teacher may merely respond to the student that the conjecture is invalid. However, to give 
credence to Maria’s conjecture and build on her innovation, a teacher may also recognize that the 
GCF divides the difference, i.e., that the difference can be broken into equal groups the size of 
the GCF, which can help Maria to find the GCF and simultaneously build on her conjecture. 
Thus, participants were also asked to explore Maria’s conjecture further in part (b).  
 Although the participants had explored and used the idea that the GCF of two numbers 
divides their difference on numerous occasions in their number theory course, only one 
participant precariously recognized the relationship after producing and comparing several 
counterexamples. Other participants, like Isla, went as far to say that since there was no clear 
relationship between the difference of two numbers and their GCF, she would discourage Maria 
from thinking this way because “it could backfire… and you’d just get into trouble.” While the 
task was not meant to elicit KCT, most participants suggested that they would convince Maria 
that her conjecture was incorrect and discourage her from using it. A stronger response might be 
to encourage Maria to investigate the concept further and guide her to a deeper realization about 
the content. It was unclear here whether participants’ own understanding of the relationship 
between numbers’ GCF and difference hindered their KCT, but it was more evident in other 
tasks.  
 While the previous interview task illustrates an obscure student conjecture, teachers still need 
content knowledge to evaluate and respond to more common student misconceptions. During 
another interview task, I asked participants to validate and respond to Mark, another hypothetical 
student, about his conjecture that the product of two numbers is also their LCM. All participants 
determined that the conjecture was incorrect by generating a counterexample, but they also 
determined that Mark’s conjecture was reasonable since it occasionally worked. Two participants 
suggested that Mark’s conjecture may have resulted from the observation that products of small 
numbers (with which elementary school students are most familiar) are quite often their LCMs. 
Lucy went further to suggest that Mark’s familiarity with area models could have contributed to 
this misconception. She reasoned that since an A by B rectangular array can be broken into A 

Figure 1. Interview Task 1: Student conjecture for finding GCF 
 
 You have given each of your students 8 green chips and 12 blue chips and asked them to use the chips to 

find the GCF of 8 and 12. When she paired up the green and blue chips, Maria, noticed that there were 4 
blue chips left.  

 

 
 
 As a result of this observation, Maria then tried making groups of 4 green chips and 4 blue chips. When she 

was successful, Maria conjectured that the difference between any two numbers is also their GCF. 
 

(a) Is Maria’s conjecture valid? How do you know? 
(b) Is the GCF of two numbers related to their difference at all? How do you know? 

 

952 17th Annual Conference on Research in Undergraduate Mathematics Education



groups of B objects and B groups of A objects, showing that the area, or product, is a multiple of 
both A and B. Participants’ attempts to understand why Mark might believe his conjecture 
exhibited KCS. Three of the participants’ responses drew on knowledge of curriculum. 
 To elicit KCT, I also asked participants how they might respond to Mark to help him 
understand his misconceptions. To respond to Mark in a way that best built on his understanding, 
participants need to understand when and why Mark’s conjecture occasionally works. 
Participants had explored the special properties of relatively prime numbers and the relationships 
between numbers’ LCMs and GCFs at length in their number theory class, but many of them 
struggled to connect this task to their course work. Only three participants stated with confidence 
that Mark’s conjecture only worked with pairs of relatively prime numbers, two of whom 
explained using the relationship between the GCF and the LCM, and one of whom also provided 
a nearly accurate explanation using mods. The other three participants claimed that Mark’s 
conjecture only worked for pairs of prime numbers (Gwen claimed that consecutive integers 
would also work).  Two of these participants explained that these pairs “don’t have anything in 
common”, implying that they do not have any common factors.  
 In responding to Mark, participants drew from their evaluation of his conjecture, depending 
on their SCK. Four participants suggested that Mark investigate predetermined pairs of numbers 
that would lead him to realize the conjecture was false. Three of these participants also suggested 
that they would encourage him to use manipulatives, and two of the participants commented that 
they would emphasize that Mark’s answer would be a common multiple if not the LCM. While 
none of these responses outwardly exhibits weak KCT, participants suggested that they would 
pick pairs of numbers based on the types of counterexamples and examples that they recognized, 
possibly leading Mark to make other conjecture about which types of numbers worked.  
 This may have been counteracted with encouraging Mark to further explore on his own, but 
Eden and Isla, the two participants that had not taken the mathematics education course or the 
number and operations course, said they would demonstrate a counterexample for Mark using 
manipulatives. Eden and Isla explained that many students are visual learners and would benefit 
from this demonstration, while the other participants emphasized the value of learners 
discovering their own misconceptions. Interestingly, even though Cara and Lucy demonstrated 
an understanding of the relationship between GCFs and LCMs, they did not encourage Mark to 
explore this connection or adapt his conjecture.  
 Even more prominent of a misconception in elementary school number theory (and beyond) 
than Mark’s conjecture is the idea that 1 is a prime number, the focus of a third interview task. 
This is a reasonable conclusion when considering the common ‘definition’ of prime: a number is 
prime if it is only divisible by 1 and itself. Many elementary school curricula add that prime 
numbers are greater than 1, but all six participants neglected this caveat when asked to define 
prime. Although this misconception was discussed in participants’ number theory class 
(participants explored reasons why 1 could not be prime and ways for distinguishing it from 
prime numbers), when asked about it during an interview task some participants’ still waivered 
in their reasoning. Half admitted to thinking that 1 was prime prior to the number theory class, 
recalling that their elementary school teachers taught them that 1 was prime.  
 When asked why 1 could not be prime, half of the participants claimed that factor trees 
would never end if 1 were prime. Gwen, however, was not convinced by this argument because 
the branches of a factor tree were supposed to stop once you reached a prime number. She and 
Isla were more comfortable with thinking of prime numbers as having exactly two factors, which 
would mean that 1 was not prime by definition. Cara reasoned that 1 was a square number and 
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that square numbers were not prime. Lucy reasoned that the prime factorization of 1 could have 
infinitely many forms, which was “not alright”, but she neglected to fully address the 
fundamental theorem of arithmetic. All of the participants said they would use the same 
reasoning that had convinced them that 1 was not prime to convince an elementary school 
student of the same idea, thus confounding their KCT with insufficient SCK. A few of the 
participants were also unsure how to make their explanations grade level appropriate, exhibiting 
weak knowledge of curriculum.  

Discussion 
 Each of the interviews tasks described above was designed to elicit number theory 
knowledge for teaching. Using Ball and colleagues’ framework, we see that participants used 
SCK by validating innovative student thinking. Whenever participants explained why a student 
might have a misconception about a concept, they were demonstrating KCS. And while the 
clinical interview setting did not allow for teaching demonstrations, participants’ descriptions for 
how they might help students better understand the material (e.g., using counterexamples or 
manipulatives) suggests they possessed knowledge of content and teaching (KCT).  

Encouraged (to varying degrees) by their constructivist-style learning experiences and by 
personal tutoring experiences, all of the participants expressed an interest in establishing how 
students thought about a concept (KCS) and building on that understanding (KCT). It was clear 
from their responses to the interview tasks that participants drew from their SCK to do this. The 
participants with more constructivist experiences seemed more eager to encourage guided 
exploration rather than demonstrate a predetermined example, which requires less SCK. All 
participants acknowledged that they lacked or needed an advanced understanding of the material 
to best respond to student reasoning. This sentiment is exemplified by a thought from Brit: 

“[It’s important that I] know why it works and the different ways, so that I know the 
higher math (that I don't think [students] need to know), but I have the confidence 
that it works and why it works, so that if [students] really struggle, I can explain 
pieces of that about how it works every time and why it works.” 

In general, I found that participants developed various pedagogical techniques with which to 
respond to students, e.g., guided-discovery. However, they lacked much of the SCK with which 
to apply it, in spite of their more abstract coursework. To better use their content knowledge in 
responding to students, preservice elementary teachers may benefit from further experiences or 
instruction to help them draw from their abstract understanding of the content to develop their 
SCK. 
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THE CONSTRUCTION OF COHOMOLOGY AS OBJECTIFIED ACTION 
 

Anderson Norton 
Virginia Tech 

 
The purpose of this paper is to investigate a theory about the nature of mathematical 
development, in which mathematics is characterized as the objectification of action. Informed by 
existing research on how students construct new mathematical objects, we consider as an 
example the psychological construction of cohomology and related objects of algebraic 
topology. This example extends neo-Piagetian theories of mathematical development from 
elementary school to graduate-level mathematics, while integrating existing research on 
students’ learning of abstract algebra. Results of the investigation affirm the objectification of 
action as a distinguishing feature of mathematics in general, while indicating the kinds of mental 
actions that undergird the objects of advanced mathematics. 
 
Key Words: Abstract Algebra, APOS Theory, Constructivism, Reflective Abstraction, 
Reification 
 
“Mathematics is the science of actions without objects, and for that, of objects we can define 
through action.”  Paul Valéry  (1973, p. 811). 

 
When fields’ medalist William Thurston endeavored to address the plight of mathematics 

education in the United States, he shared the following personal anecdote: 
 

I remember as a child, in fifth grade, coming to the amazing (to me) realization that the 
answer to 134 divided by 29 is 134/29 (and so forth). What a tremendous labor-saving 
device! To me, ‘134 divided by 29’ meant a certain tedious chore, while 134/29 was an 
object with no implicit work. I went excitedly to my father to explain my major 
discovery. He told me that of course this is so, a/b and a divided by b are just synonyms. 
To him it was just a small variation in notation. (Thurston, 1990, p. 5) 

 
Thurston used the story to illustrate the challenge we face, as teachers, when we attempt to 
unpack the mathematical objects we have constructed. Mathematics education researchers have 
taken pains to unpack the object of Thurston’s example in particular, demonstrating how students 
begin to understand fractions (and especially improper fractions, like 134/29) as “numbers in 
their own right” (Hackenberg, 2007). The key to this and similar work has been to identify the 
mental actions that comprise those objects, thus equipping teachers and researchers with models 
for how students might construct those objects through activity.  

Few students in the United States accomplish what Bill Thurston did (Norton & Wilkins, 
2012). In fact, it’s possible that Thurston’s father did not appreciate his son’s revelation because, 
for him, the fraction 134/29 symbolized nothing more than the division of two whole numbers. 
On the other hand, if the elder Thurston had constructed 134/29 as a number, it’s probable that 
he would have forgotten the labor of that construction, which involves coordinating mental 
actions of partitioning and iterating within a three-level structure: 134/29 as a unit resulting from 
134 iterations of a 1/29 unit, which results from partitioning a whole unit into 29 parts 
(Hackenberg, 2007). Figure 1 illustrates such a structure for the simpler fraction, 8/3. This 
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structure supports a conception of the improper fraction as an object defined through its size 
relation with the whole: 8/3 as a number that is eight times as big at 1/3, which has a 1-to-3 size 
relation with the whole. 

Figure 1. 8/3 as a unit of units of units. 
 

Steffe and Olive (2010) have described this way of conceptualizing improper fractions as an 
iterative fraction scheme (IFS). Whereas we have fine-grained models for describing, explaining, 
and predicting the construction of improper fractions, few models of this kind exist for advanced 
mathematics. The scarcity of such models likely owes to two factors: (1) mapping the 
psychological construction of mathematics requires intensive and longitudinal studies of 
students’ development—studies that, so far, have followed a trajectory from infancy to middle 
school mathematics; and (2) although schemes seem adequate for building models of 
development up to that point, modeling students’ constructions of advanced mathematics likely 
requires more complex structures. Here, we will examine construction in an extreme case—
cohomology—to identify key mental actions, even if we cannot model the complexity of their 
coordination.  
 

Theoretical Framework 
Inherent in Piaget’s genetic epistemology is the idea that mathematical objects arise through 

the coordination of actions: “The meaning of objects has two aspects: It is ‘what can be done 
with them’ either physically or mentally… The meaning of object is also ‘what it is made of,’ or 
how it is composed. Here again, objects are subordinate to actions.” (Piaget & Garcia, 1986, pp. 
65-66). As Tall and colleagues (2000) have noted, several theoretical frameworks for teaching 
and learning have arisen from this idea, including APOS theory (Dubinsky, 1991), reification 
(Sfard, 1991), and scheme theory (von Glasersfeld, 1995). Here, we present a broader theoretical 
framework that builds on such work while aligning more closely with Piaget’s characterizations 
of actions and objects, as well as his characterization of mathematics itself.  
APOS Theory 

Dubinsky and colleagues (e.g., Dubinsky & Lewin, 1986) developed APOS theory as a 
means of applying Piaget’s constructivist epistemology to research on undergraduate 
mathematics education. In particular, they demonstrate how mathematical actions may become 
reflectively abstracted as advanced mathematical objects and schemas. Their central tenet is that 
“mathematical knowledge consists in an individual’s tendency to deal with perceived 
mathematical problem situations by constructing mental actions, processes, and objects and 
organizing them into schemas to make sense of the situations and solve the problems” (Dubinsky 
& McDonald, 2001, p. 2). In this framework, actions are defined as transformations of tangible 
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objects (including diagrams and written symbols) and might include carrying out the steps of an 
algorithm, such as computing the left cosets of a particular algebraic group. Reflecting on such 
actions allows the individual to internalize them as mental processes that the individual can 
imagine performing, without the need for tangible objects. Similar to Piaget (1970b), Dubinsky 
and McDonald (2001) argue that this internalization allows students to reverse and compose 
actions. The process becomes an object for an individual when he or she can symbolize it and 
purposefully act upon it. “Finally, a schema for a particular mathematical concept is an 
individual’s collection of actions, processes, objects, and other schemas which are linked by 
some general principles to form a framework in the individual’s mind” (p. 3). 
Reification 

Following Dubinksy (1986), Sfard (1992) further elaborated on Piaget’s (1970a) notion of 
reflective abstraction by prescribing three stages through which students progress from engaging 
in mathematical processes to producing mathematical objects. To illustrate, Sfard provided an 
extended example from the historical development of number: from natural numbers, to positive 
rational numbers, to positive real numbers, to real numbers, and finally to complex numbers. She 
argues that each step-wise development has depended upon stages of interiorization, 
condensation, and reification. In particular, in the production of rational numbers, processes 
involving the division of natural numbers become interiorized so that they “can be carried out in 
mental representation” (p. 18, from Piaget, 1970a). Then they are condensed so that they can be 
combined with other processes, such as measurement. Finally, they are reified, or objectified, as 
a static structure on which to perform further processes, as in the development of positive real 
numbers. In fact, we can find evidence of this kind of development in the personal experience 
shared by Thurston: Whereas 129/34 had been a laborious process to perform, perhaps 
interiorized and condensed over a period of learning, in an instant it became reified as an object 
or “compact whole” (Sfard, 1992, p. 14). Unfortunately, Bill Thurston’s father did not appreciate 
this “quantum leap” (p. 20) from process to object, which we might explain in either of two 
ways, as discussed later in this section. 
Scheme Theory 

Sfard did not make use of Dubinsky’s action-process distinction, allowing processes to 
include actions, whether carried out physically or mentally. Neither did she make use of 
schemas. In contrast, scheme theory relies on a different characterization of action and utilizes a 
construct similar to Dubinsky’s schema, but does not explicitly address the production of objects. 
von Glasersfeld (1995) described a scheme as a three-part structure: an assimilatory template of 
situations that might activate the scheme, a coordinated collection of mental actions carried out 
by the scheme, and an expected result from acting in the situation. Although Dubinsky’s and 
Sfard’s frameworks would include such actions, von Glasersfeld’s description of mental action 
drew more heavily and narrowly from Piaget. For example, in contrast to the more formal 
mathematical actions of dividing and measuring described in Sfard’s analysis of how students 
construct positive rational numbers, a scheme theoretic perspective would focus on the 
psychological actions that undergird them.  
Actions and Objects 

In an attempt to characterize the nature of mathematical objects and their construction, Tall 
and colleagues (2000) reviewed each of the frameworks described here and, noting the common 
theme of encapsulated actions, sought to describe how actions become objectified. Here, we 
broaden these frameworks and extend their purpose by arguing that mathematics is the 
objectification of action—this is what makes our field unique and, in some sense, infallible. 
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Unlike other sciences, languages, or any other field of study, all of the objects of mathematics 
are based on actions and their coordination so that, ultimately, mathematical claims are about 
nothing but the mental actions we can perform. If these actions correspond to (or even predict) 
experiential reality, it is only because we, as humans, have evolved to operate within the world 
we experience (Piaget, 1971/1970). 

Piaget’s epistemological research draws a fundamental distinction between two kinds of 
thought: figurative and operative. Whereas figurative thought pertains to empirical abstractions 
of “perception, imitation, and mental imagery” (1970a, p. 14), operative thought is the domain of 
mathematics. It pertains to reflective abstractions of one’s coordinated activity in the 
construction of mental actions and structures. Unlike figurative objects (such as colors and 
drawings), operative objects remain dynamic on the basis of the actions that comprise them and 
the structures that organize them. Moreover, constructing such objects opens new possibilities 
for action, so that mathematics continually builds upon itself in alternating layers of actions and 
objects. Figure 2 illustrates the basic character of operative thought. 

 
Figure 2. Mathematics as objectified action. 

 
The top arrow in Figure 2 indicates that actions become reflectively abstracted as objects. 

The bottom arrow indicates that, as objects, these objectified actions can be acted upon. This 
pattern lies at the heart of Piaget’s epistemology of mathematics and can also be found Sfard’s 
reification and Dubinsky’s APOS theory. What Sfard and Dubinsky do not address is how 
interiorized actions become organized within psychological (rather than formal mathematical) 
structures—the subject of Piaget’s structuralism. 
Structuralism 

Structuralism focuses solely on operative thought, as an attempt to explain how children 
develop logico-mathematical reasoning. In addition to schemes (discussed above), Piaget 
(1970b) posited algebraic group-like structures that organize mental actions into reversible and 
composable systems. For example, students who have constructed mental actions of partitioning 
and iterating might organize them as inverse elements within a “splitting group”, where iterating 
a part five times undoes the mental action of partitioning a continuous whole into five parts 
(Norton & Wilkins, 2012). They might also engage in recursive partitioning, in which 
partitioning is both an action and the object of that action (e.g., partitioning a continuous whole 
into three parts and then partitioning each of those parts into five parts to produce fifteen parts in 
the whole). Recent research (ibid) indicates that this group-like structure is necessary for the 
construction of IFS—the way of operating Thurston apparently constructed in fifth grade. 

Although Piaget’s epistemology (including his structuralism) equates logico-mathematical 
thought with operative thought, much of what happens in mathematics classroom involves 
figurative thought as well (Thompson, 1985). When the link is broken between a student’s 
mental actions and the objects of a mathematical lesson, the student has little recourse but to 
engage in figurative thought. Sfard and Linchevski (1994) referred to this kind of engagement as 
the pseudostructuralist approach: “The new knowledge remains detached from its operational 
underpinnings and from previously developed systems of concepts” (p. 221). Moreover, 
Thompson (1985) has argued that students foreground some objects of mathematical discussion 
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as operative—acting on them and deconstructing them into their constituent actions—while 
placing other objects in the background, as figurative. For example, functions might be operative 
in the context of high school algebra, as students act on covarying quantities and attempt to 
establish them as invariant relationships, but functions might be treated as figurative within 
cohomology, where they are elements of a group. In any case, what constitutes operative thought 
depends upon the available mental actions of the individual and her goals within the activity. 
Thus, we can say the same for mathematics.  

 
Research on Abstract Algebra from an Action-Object Perspective 

Action-object perspectives (especially Sfard’s reification and Dubinsky’s APOS theory) have 
gained strong influence in research on undergraduate mathematics education (RUME). Here, we 
review RUME studies from an action-object perspective that focus on concepts related to 
abstract algebra, and therefore related to algebraic topology and cohomology (for which no direct 
mathematics education research exists). 

In a study on how college mathematics majors learn group isomorphism, Leron, Hazzan, and 
Zazkis (1995) drew a distinction between students who understood “the relation of two groups 
being isomorphic” and those who understood “the object of isomorphism” (p. 154). They 
identified three phases in students’ transition from the former, action/process conception, to the 
latter, object conception: (1) concepts that reference the student doing something; (2) concepts 
that reference a process that could be carried out by anyone; (3) concepts that make claims of 
subject-independent existence. As students struggled to progress toward an object conception of 
isomorphism, the researchers noticed them “craving for canonical procedures and their fear of 
loose or uncertain procedures, indeed, procedures with any degree of freedom” (p. 171).  

In a similar study with high school teachers, Dubinsky, Dautermann, Leron, and Zazkis 
(1994) focused on the interconnected layers of objects within group theory—group, subgroup, 
coset, normality, and quotient group—and their dependency on existing concepts of set and 
function. The teachers tended to begin by treating groups as sets on which to act and only later 
considered the role of a binary operator (function) in defining groups as objects. In line with 
Leron, Hazzan, and Zazkis (1995), the researchers noted the need for a concept of isomorphism 
in order to construct “group as an equivalence class of isomorphic pairs [of sets and functions]” 
(Dubinsky et al., 1994, p. 290). They also found that teachers construct subgroups in parallel 
with groups, as functions with a restricted domain. However, the teachers were generally not 
successful in constructing quotient groups, which the researchers attribute to difficulty in 
objectifying the process of forming cosets—a prerequisite construction for treating cosets as 
elements of a group. This difficulty was associated with teachers’ tendency to conflate normality 
and commutativity. 

Hazzan (1999) found that undergraduate students deal with the complexity of abstract 
algebra by “reducing the level of abstraction” (p. 71). Students do this in three distinct ways: (1) 
by basing arguments on more familiar mathematical entities (such as sets, rather than groups); 
(2) by dealing with single elements within a more complex collection (for example, working 
with a representative element within a quotient group, rather than the quotient group itself); and 
(3) by reducing objects to the actions that comprise them. Although the three methods are closely 
related, the third method aligns most directly with an action-object perspective. In line with the 
study by Leron, Hazzan, and Zazkis (1995), students can reduce the complexity of an entity by 
imagining actions they can perform to build it up. For example, one student dealt with quotient 
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groups, G/H, by referencing the imagined activity of taking all elements of the normal subgroup, 
H, and choosing an element from the group G by which to multiply them on the right.   

Other studies have demonstrated the efficacy of an action-object perspective as a pedagogical 
tool (e.g., Asiala, Dubinsky, Mathews, Morics, & Oktac, 1997; Brown, DeVries, Dubinsky, & 
Thomas, 1997). For example, Asiala and colleagues (1997) reported on the effectiveness of an 
abstract algebra course that explicitly attended to students’ progressive constructions of actions, 
processes, objects, and schema. In particular, they described an action conception of coset as one 
in which students could work with simple and familiar groups/subgroups to build the coset. 
Students progress to process conceptions of coset when they can imagine computing the products 
just as the student in the example provided above, from Hazzan (1999). Students can then 
progress to object conceptions, in which they do not need to focus on the actions of building the 
coset and instead act on the coset itself. Finally, a coset schema is formed as a network of 
actions, processes, objects, and schemas, by relating cosets to concepts of groups, subgroups, 
normality, and quotient groups.  

 
The Construction of Cohomology 

When considering the complexities of an advanced mathematical idea, diagrams can provide 
some indication of their organization. Specifically, Figure 3 represents various components of 
cohomology and their relationships. However, for most of us, these components and 
relationships remain figurative rather than operative because they do not symbolize mental 
actions that we perform, nor objects that we act upon. The situation is completely analogous to 
that faced by middle school students as they begin engaging in algebraic manipulation without 
reference to underlying mental actions. For example, students commonly solve equations of the 
form ax=b by subtracting a from both sides of the equation. Correcting students’ behavior in 
these instances is unproductive in terms of supporting algebraic reasoning. We need to address 
the source of the problem, that algebraic manipulations should become a proxy for underlying 
mental actions on previously constructed objects.  

 

 
Figure 3. Diagram of cohomology 

 
Previous research has suggested that constructing concepts in abstract algebra relies on 

having constructed functions and sets as objects first (Dubinsky, Dautermann, Leron, & Zazkis, 
1994). Students tend to begin by treating groups as sets on which to act and only later consider 
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the role of a binary operator (function) in defining groups as objects. Also, researchers have 
noted the interdependency of groups and isomorphisms in constructing “group as an equivalence 
class of isomorphic pairs [of sets and functions]” (Dubinsky et al., 1994, p. 290). Figure 3 begins 
at this stage, where Cn, represents a free abelian group generated by the set of n-dimensional 
triangles (e.g., vertices, edges, triangles, tetrahedras, etc.) used to build up the topological space 
under consideration.  represents a “boundary map” from Cn to Cn-1: a homomorphism that 
maps each n-dimensional triangle to its boundary (e.g., the boundary of an edge is the difference 
between its vertices, v2-v1). G represents another, selected group, and the various ϕs represent 
functions from Cn to G. Suppose these are objects for us, in the sense that Asiala and colleagues 
have described (1997): We can act on them and unpack them to their constituent actions (as 
opposed to figurative objects on which we might act but are not themselves composed of 
actions). Now consider the chain complex—the abelian groups, Cn, and the boundary maps, , 
between them—as an algebraic procedure. Thus, Figure 3 serves to identify the boundary 
between algebraic objects and actions, even though we have not yet identified what 
psychological actions might undergird procedures associated the chain complex.  
The Circle 

To proceed, we might compute the homologies of familiar spaces. Computing homology 
allows us to focus on objectifying the chain complex while reducing further complexity 
introduced by cohomology: the inclusion of the “ϕ” functions to group G and the coboundary 
maps, δ. Let us begin by computing the homology of the circle. This decision can be interpreted 
as an attempt to “reduce the level of abstraction” by dealing with a familiar entity (Hazzan, 
1999), which might also make it easier to geometrically interpret the results of our algebraic 
computations. In particular, it is easy to see how a circle can be continuously deformed into a 
triangle, with three vertices and three edges. Thus, the chain complex becomes 0!<e1, e2, 
e3>!<v1, v2, v3>!0; that is, C1 and C2 are abelian groups generated by three elements and, thus, 
both are isomorphic to Z3 (the product of three copies of the group of integers under addition). 
Now, the homology of the circle will be the quotient groups formed by the kernel of ∂n−1  mod 
the image of .  

Research indicates that constructing quotient groups is particularly challenging, even among 
students who have constructed groups as objects (Dubinsky et al., 1994). In the case of 
computing homologies, there is an additional challenge in making sense of the particular quotient 
groups defined by a particular homomorphism—the boundary map. Interpreting results 
geometrically gives these algebraic manipulations a geometric meaning, and the relevant mental 
actions lie therein. In other words, computing and interpreting homologies becomes a proxy for 
geometric actions associated with mapping n-dimensional triangles to their boundaries, equating 
sequences of n-dimensional triangles with an identity element, and forming n-dimensional loops 
around holes in the topological space under consideration. Thus, we begin to understand the 
chain complex as a representation of those actions. For the actions to become objectified, we 
need for them to define a class of spaces, so that homology becomes a proxy for that class.  

In taking on this challenge, motivation quickly arises as a competing factor: Why did 
mathematicians ever bother to invent (co)homology in the first place? This as a competing factor 
because, for simple examples like the circle, sphere, or torus, there is no need for homology (let 
alone cohomology). We do not need to compute quotient groups of boundary mappings in order 
to determine that the torus and the sphere are topologically distinct. On the other hand, for the 
cases in which homology might be useful, the connection between the topology of the spaces and 
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their homology (roughly, the connection between their geometry and their algebra) is opaque. 
We need to begin by working with simpler examples in order to build the connection in a way 
that might extend to ever more complex examples. Along the way, however, new complexities 
arise within the connection itself.  

In working through examples, many of our actions will be conjectural—long sequences of 
tentative activity with depreciating confidence. For example, we might consider, “Why is 
homology invariant of choice of simplexes?” After all, we can build up the same topological 
space in many different ways. As it turns out, we do not even need to use n-dimensional triangles 
to form a chain complex, but can choose any n-dimensional polygon. Specifically, when 
computing the homology of the circle, we can choose any number, m, as the number of vertices 
(0-simplices) and edges (1-simplices). Figure 4 illustrates the cases of m=1 and m=3. 

 

 
Figure 4. Two ways to form simplexes in the circle. 

 
The image on the right of Figure 4 represents our original approach, with chain complex 

0!Z3!Z3!0. The image on the left generates a simpler chain complex: 0!Z!Z!0. Even 
though the images and kernels within these mappings differ considerably, the resulting quotient 
groups are identical. For instance, in computing H0(X), the corresponding kernels are Z and Z3, 
but the corresponding images are 0 and Z2, so that the quotient group is Z in either case. 
Understanding why this happens is part of what it means to objectify the quotient groups that 
define homology. Just as understanding equivalent fractions involves more than showing that 
common factors cancel out, this understanding relies upon mental actions beyond the 
computation. Thus, the objectification of homology involves more than an interiorization of the 
boundary mapping or the process of computing its quotient groups. In particular, every time we 
add a new vertex to the simplex, we must add another edge, and the boundary of that edge will 
consist of two adjacent vertices. Their connectivity, as a single connected component, essentially 
leads to their identification in quotient group: Each vertex is identified with its two adjacent 
vertices, by the edge that connects them.  

This understanding goes well beyond the process of computing kernels and images of the 
boundary map, and without this understanding, developed through simple examples, we would 
not be able to trust the extension of homology to the more complex examples where homology is 
actually useful. In building an understanding for how the algebraic computation of homology 
serves as a proxy from making topological distinctions, we find that relevant mental actions 
include geometric ones, related to vertex-edge graphs, as well as mental actions associated with 
continuity, especially as it relates to homotopy. By itself, the objectification of the boundary 
mapping would be no more useful to me than the algorithm for computing the product of two 
fractions; we would be objectifying something figurative rather than operative, and thus, would 
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not be engaging in mathematics. We dig a little further into these actions by considering two 
nearly identical surfaces: the torus and the Klein bottle. 
The Torus and the Klein Bottle 

Topology is intended to address questions like the following: Are the torus and the Klein 
bottle continuous transformations of one another? Algebraic topology provides an answer by 
showing that the two surfaces have different homologies. Figure 5 demonstrates the homology of 
the torus. 
 

 
Figure 5. Homology of the Torus 

 
Note that the diagram on the left side of Figure 5 represents a torus because the opposite 

edges are identified with one another; i.e., we can produce the torus by gluing opposite edges 
together and, in the process, the four corners become a single vertex, v. Also note that each of the 
boundary maps turn out to be the 0 map because vertices and edges cancel out. Now consider the 
Klein bottle (Figure 6). 
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Figure 6. Homology of the Klein Bottle. 
 

The diagram (and therefore the homology) is exactly the same, except for one twist: A copy 
of e2 is reversed. We can imagine both surfaces being constructed from a cylinder (after the pair 
of e1s are identified), but in order to match up the directions of the two copies of e2, the Kline 
bottle requires that the cylinder pass through itself to attach from the inside (see right side of 
Figure 7), which happens in four-dimensional space. Thus, the Klein bottle is a two-dimensional 
surface that does not exist in three-dimensional space. This fact alone might inform us that the 
torus and Klein bottle are not topologically equivalent, but we intend the comparison as an 
explanatory example for homology rather than a motivating one. We are trying to identify mental 
actions that might underlie our computations. 
 

 
Figure 7. Homology as a proxy for topological actions. 

Note: Images borrowed from Nosco (http://www.nosco.ch/mathematics/notes/torus.php) and 
Wikipedia (http://en.wikipedia.org/wiki/Klein_bottle) respectively. 

 
In the case of the circle, we have already seen how the 0th homology group, H0, indicates the 

number of connected components in the topological space. Although the torus and Klein bottle 
affirm this connection (both are connected and have a single copy of Z for H0), they do not 
provide interesting cases in this regard because we constructed each of them with only one 
vertex. However, they do provide an interesting contrast for H1. How should we interpret the 
quotient groups Z2 and ZxZ2? 

For both surfaces, the kernel of the 1st boundary map (∂1 ) is the group generated by the two 
edges; both of these edges form loops because their boundary is a single vertex, v, and for that 
same reason, they map to 0. For the torus, those loops are maintained when the face is glued on 
because the opposite edges match up. In order for them to match up, their directions must be 
opposite as we go around the boundary, and that is why they cancel out in the 2nd boundary map 
(∂2 ). In other words, the 2nd boundary map is 0 precisely because the opposite edges of the face 
match up. Thus, the image is 0; no paths become identified with 0 in the quotient; and the 1st 
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homology group (H1) is the group generated by the two loops. We can see these loops on the 
torus in Figure 7: One goes around the “inner tube” and one goes around the hole at the center of 
the torus. 

For the Klein bottle, one of the loops is transformed when the face is glued on because one 
pair of opposite edges does not match up. Instead of canceling out, the edge is doubled, and the 
2nd boundary map has an image of <2e2>. Thus, any even number of trips around the 
corresponding loop will be identified with 0. We can see the corresponding geometry in Figure 
7: Tracing a loop around the “neck” of the bottle is just as it was for the “inner tube” of the torus, 
but tracing the other way yields a loop that undoes itself on the second pass because the trace 
moves to the other side of the surface (from inside out, or vice versa). 

In general, the kernel of a boundary map is generated by n-dimensional cycles, and the image 
of the next boundary map is generated by the n-dimensional boundaries of n+1 dimensional 
polygons. In fact, algebraic topologists refer the kernels and images as “cycles” and 
“boundaries,” respectively. In the quotient groups that define homology, the boundaries are 
identified with 0. Geometrically, we can understand this as gluing the cycles together (often in 
intricate ways). However, we can get lost in the computation of cycles, boundaries, and their 
quotients without ever considering the geometric actions to which they refer, much as middle 
school students do when they “complete the square” without ever considering the geometric 
square they are completing. Whether we are completing squares, connecting vertices, or gluing 
faces on to loops, the mathematics is in the geometric action for which the algebraic 
manipulation is a proxy. Once these actions are objectified, they can be symbolized in a way that 
conveys meaning. In particular, the symbols in Figure 3 become more than figurative material; 
they become proxies for objects, and actions on those objects.  

 
Concluding Remarks 

In reflecting on the actions and objects of cohomology, a key distinction arises—one that 
Piaget vigilantly maintained in his studies of young children but one that becomes easier to 
overlook when considering advanced mathematics: The bases for construction of formal 
mathematical objects are not necessarily formal processes. The diagram presented in Figure 3 
might implicate computing kernels and images of boundary maps as primary actions to objectify, 
but subsequent investigation indicates a wide network of mostly geometric actions to coordinate. 
This finding supports the Piagetian notion that mathematics is a product of psychological action 
and not simply the enculturation of formal processes developed in the history of mathematics. 

APOS theory (Dubinski, 1991) and reification (Sfard, 1992) have contributed greatly to 
mathematics education by extending Piaget’s notion of reflective abstraction to advanced 
mathematics. However, researchers tend to use these frameworks as pedagogical tools for 
supporting student mastery of formal procedures, such as computing quotient groups (Asiala, 
Dubinsky, Matthews, Morics, & Oktac, 1997), especially when actions and processes refer to 
formal procedures. Although computations and procedures are integral to mathematical 
development, we must explicitly attend to the mental actions that give them meaning in order to 
support operative (and therefore mathematical) knowledge, rather than figurative knowledge. In 
fact, Sfard herself pointed to the “pitfall” of figurative knowledge when she warned of 
pseudostructuralist approaches to knowledge and learning (Sfard & Linchevski, 1994), which 
are indicated in students’ aversion to “procedures with any degree of freedom” (Leron, Hazzan, 
& Zazkis, 1995). In contrast, a structuralist approach to mathematical knowledge and learning 
focuses on the construction and organization of reversible mental actions (Piaget, 1970b). 
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Scheme theory (von Glasersfeld, 1995) adopts a structuralist approach but has its own 
limitations in modeling the development of advanced mathematics; namely, the simplicity of a 
three-part structure may not accommodate the complexity of advanced mathematical concepts. 
Although we are able to identify some of the mental actions that undergird cohomology, we do 
not have models for their organization. This may explain why we often revert to figurative 
representations of knowledge (e.g., Figure 3) when investigating the development of advanced 
mathematics.   

Our investigation of cohomology supports the argument that mathematics, at all levels, can 
be characterized as the objectification of action. This is the defining feature of mathematics, 
which distinguishes it from all other languages and sciences. Understanding mathematics in this 
way also evokes a degree of empathy as we provoke our students to construct new objects 
through action. In Bill Thurston’s case, the father did not appreciate his son’s accomplishment in 
constructing improper fractions as “numbers in their own right” (Hackenberg, 2007) because he 
could not unpack the coordinated actions of that construct. Likewise, models for teaching and 
learning advanced mathematics are limited by our models of the mental actions that comprise the 
objects of advanced mathematics. 
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BEYOND PLUG AND CHUG: THE NATURE OF CALCULUS HOMEWORK AT 
DOCTORAL INSTITUTIONS  

Kady Hanson Gina Nunez Jessica Ellis 
San Diego State University San Diego State University San Diego State University 

Prior research reflects a positive relationship between homework and student academic 
achievement in undergraduate mathematics courses. Additionally, recent research has indicated 
no significant difference in student learning based upon the medium of the assignment (on-line 
based versus paper-based). These findings led us to ask the question: How does the nature of 
Calculus I homework assignments at doctoral institutions with successful calculus programs 
compare to assignments at institutions with less successful calculus programs? Descriptive 
analyses of student and instructor responses from a large national survey given to mainstream 
Calculus I programs were conducted. Analysis revealed significant differences in the nature of 
homework between successful and less successful institutions, including differences in the 
content and frequency of assignments. The holistic approach to homework taken by successful 
institutions adds to the existing literature on homework at the undergraduate level and indicates 
an interesting relationship between homework and student success in Calculus I courses. 

Keywords: Doctoral Institutions, Calculus, Homework, Student Success, Quantitative Analyses 

This study investigates the nature of homework assignments in Calculus I at doctoral 
institutions and their relationship to student success in Calculus I at these institutions. The 
effectiveness and delivery of assigning homework in order to promote student learning in 
mathematics at the undergraduate level has been investigated over many years (Cartledge & 
Sasser, 1981; Lenz, 2010). This research has revealed that homework assignments can have a 
positive effect on academic achievement when assigned and evaluated (Cartledge & Sasser, 
1981). As innovations such as on-line homework systems emerge into the educational sector, the 
effect of homework on student learning continues to be investigated. For example, recent 
research found no significant difference in student learning whether homework was assigned on-
line versus traditional paper-based homework with similar content (Lenz, 2010). Thus it appears 
that the medium of homework is less important than feedback or the content of assignments. In 
this report we address the following question: How does the nature of Calculus I homework 
assignments at doctoral institutions with successful calculus programs compare to the homework 
at those institutions identified as having less successful calculus programs? 

Methods 
The data for this study comes from a large national study of Calculus I programs. The study 

consisted of two phases, the first of which was a national survey given to calculus students and 
their instructors at the beginning and end of the term. The second phase of this study included 
case studies at five doctoral granting institutions deemed to have successful calculus programs as 
measured by increased student confidence, enjoyment, and interest in mathematics, Calculus I 
grade, and persistence onto Calculus II. This poster presentation will report on analyses of the 
end of term survey data from 3,187 students and 231 instructors as well as student focus group 
interviews at the five case study sites. Of the 3,187 students, 855 came from a case study 
institution – and thus a more successful institution. There were 231 instructors who completed 
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the end of term survey, 49 of which came from a case study institution. Descriptive analyses 
were conducted on both student and instructor responses to understand the nature of the 
homework at successful and non-successful institutions.  

Sample Results 
As shown in Table 1, there were significant differences between student reports of the nature 

of homework assignments at successful versus less successful calculus programs. Compared to 
students in the less successful calculus programs, students at successful institutions report that 
the following happened more frequently: (a) assignments were assigned and collected, (b) the 
homework was returned with helpful feedback, and (c) students worked together on homework. 

Table 1.  Student reports of the nature of the assignments.   
 Less Successful Successful 

1. How frequently did your instructor? (1 = Not at all; 6 = Very often) 
Require you to explain your thinking on your homework?*** 3.08 (1.79) 3.53 (1.76) 

 

2. Indicate how often the following occurred.  (1 = Never; 5 = Every class session) 
My instructor assigned homework. ** 4.06 (1.02) 4.33 (.95) 

Homework was collected (either hard copy or online).* 3.41 (1.33) 3.82 (1.40) 
 

3. Assignments completed outside of class time were: (1 = Not at all; 6 = Very often) 
Completed and graded online. *** 3.79 (2.29) 4.78 (1.92) 

Graded and returned to me. ** 4.36 (2.00) 4.17 (2.00) 

Returned with helpful feedback/comments. *** 2.78 (1.79) 3.15 (1.84) 

Submitted as a group project.  *** 1.42 (1.09) 2.86 (2.02) 

Challenging but doable.** 4.23 (1.36) 4.34 (1.27) 
 

4. The assignments completed outside of class time required that I: (1 = Not at all; 6 = Very often) 
Solve word problems. *** 4.57 (1.25) 4.95 (1.13) 

Solve problems unlike those done in class or in the book. *** 3.80 (1.63) 4.11 (1.53) 

Use technology to understand ideas.*** 2.50 (1.59) 3.14 (1.69) 
 

5. Did you meet with other students to study or complete homework outside of class?*** 
Yes 57.6% 72.1% 

Note.* = p .10, ** = p .05, *** = p .001; Standard deviation in parentheses.  

 
Analysis of survey data from instructors at doctoral institutions indicates a significant 

difference between the content of the homework assignments. Specifically, at institutions with 
successful calculus program a statistically significantly greater percentage of assigned problems 
focused on graphical interpretation, non-trivial or novel word problems, and proofs or 
justifications, as shown in Table 2. Ongoing analysis of focus group interviews at the five case 
study institutions reveals that students report assignments are mathematically challenging, 
faculty are supportive, and ample resources are available when assistance is needed. 
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Table 2. Instructors’ End of Term Survey Response  
On a typical assignment, what percentage of the problems focused 
on: Less successful Successful 

Skills and methods for carrying out computations (e.g., methods of 
determining derivatives and antiderivatives)?*** 

51.15 (19.19) 39.80 (20.46) 

Graphical interpretation of central ideas? *** 21.19 (11.79) 33.75 (20.80) 

Solving standard word problems? * 23.11 (11.64) 27.08 (15.97) 

Solving complex or unfamiliar word problems? *** 15.71 (11.57) 27.71 (23.36) 

Proofs or justifications?** 9.47 (9.09) 14.13 (17.84) 

Note.* = p .10, ** = p .05, *** = p .001; Standard deviation in parentheses.  

	  
The results reveal interesting differences in the nature of homework assignments at 

institutions with more successful calculus programs compared to those institutions with less 
successful programs. In addition to the survey analyses, the poster presentation will provide an in 
depth analysis of the focus group interviews at the five case study sites.  

References 
Cartledge, C. M., & Sasser, J. E. (1981). The effect of homework assignments on the 

mathematics achievement of college students in freshman algebra. Retrieved from 
http://www.johnsasser.com/pdf/article01.pdf 

Lenz, L. (2010). The Effect of a Web-Based Homework System on Student Outcomes in a First-
Year Mathematics Course. Journal of Computers in Mathematics and Science Teaching, 
29(3), 233-246. Chesapeake, VA: AACE.  
 

17th Annual Conference on Research in Undergraduate Mathematics Education 973



109

974 17th Annual Conference on Research in Undergraduate Mathematics Education



Title:  Differentiated student thinking while solving a distance vs. time graph problem 
 
 

Eric A. Pandiscio 
University of Maine 

 
 
Preliminary Research Report 
 
Abstract: 
 
This study probes the thinking of students at different stages:  a) secondary students 
taking calculus, b) college students taking calculus, and c) college students pursuing 
teacher certification taking a mathematics course other than calculus.  The study asks:  1) 
what is the nature of student thinking when solving a graph problem, and 2) do students 
with different levels of mathematical experience solve a graph problem differently?  A 
pilot investigation reveals many students estimate answers, even if they had studied 
calculus.  For the current study, data will be collected during Fall, 2013.  Oral interviews 
will be conducted with a subset of the participants and coded via Grounded Theory 
(Strauss & Corbin, 1990; Dick, 2005).  This work follows physics education 
(McDermott,	  Rosenquist	  &	  van	  Zee,	  1987;	  Thornton	  &	  Sokoloff,	  1990;	  Kim	  &	  Kim,	  
2005),	  and mathematics education (Chiu,	  Kessel,	  Moschkovich	  &	  Munch-‐Nunez,	  2001;	  
Moschkovich,	  1996)	  that describe difficulties students have with graph interpretation.  
 
Keywords: 
Graph comprehension 
Problem solving 
Student thinking 
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This study probes the levels and types of thinking demonstrated by students at 
different stages of their mathematical studies.  The target audience includes three distinct 
groups of students:  a) secondary students enrolled in calculus, b) college students 
enrolled in calculus, and c)  college students in a teacher preparation program who are 
enrolled in a college-level mathematics course other than calculus. The rationale for 
including calculus is that the mathematical task posed to students may be solved using 
calculus, although calculus is not necessary.  
 

Specifically, the study asks the following research questions: 
1) what is the nature of student thinking when solving a graph-based problem? 
2) do students with different levels of mathematical experience solve a graph-based 

problem different from each other? 
 

A pilot administration of the written task to a small sample reveals that many students 
estimate answers.  Even those students who have studied calculus tend not to use calculus 
to identify an exact solution.  The pilot also shows that some students do not distinguish 
between a variable rate of change and a constant rate of change.  Finally, the pilot led the 
researcher to ponder why it is that few students utilize some basic ideas regarding 
geometric properties of the circle to help solve one aspect of the task.  For the full study, 
data will be collected during the Fall, 2013 semester.  Although the pilot only analyzed 
written work, the full study will include oral interviews will be conducted with a subset 
of the participants.  These will be chosen based the nature of the written responses, with 
the intention of identifying categorically different solutions for the oral interviews.  The 
goal is to gain insight into student thinking, such that future work may center around 
curricular and instruction approaches to enhance the range of tools students bring to 
graphical problem solving.  Responses will be coded via a modified Grounded Theory 
(Strauss & Corbin, 1990; Dick, 2005).  The rationale is to establish themes and patterns 
of student thinking across different levels of mathematical experience.  In particular, 
focus will be on progression of thinking patterns at the collegiate level, and also on the 
manner in which those students who plan to teach secondary mathematics approach 
problem solving.  

 
The problem task was chosen from outside a traditional mathematics topic to foster 

the sort of work that is recommended the National Council of Teachers of Mathematics 
which states that mathematics experiences at all levels should include opportunities to 
learn about mathematics by working on problems arising in contexts outside 
mathematics” (NCTM, 2000, pp. 65-66).  Further, mathematical topics must not be 
taught in isolation but in conjunction with problem solving and with applications in real-
world contexts” (Reys, et al 2009, p.19).  The Conference Board on the Mathematical 
Sciences describes the need for major reform in the teaching of college mathematics to 
prospective teachers (one of the target audiences of the study); in particular the 
observation that in the past “learning mathematics has meant only learning its 
procedures” (CBMS, 2012, p. 11) and goes on to suggest that doing mathematics in ways 
consistent with mathematical practice will require a new emphasis on understanding and 
problem solving.  Further, one of the major recommendations is for students to “engage 
in reasoning, explaining, making sense of the mathematics (CBMS, 2012, p. 17).  Finally, 
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since the researcher is concerned about student understanding, following the 
recommendation of the influential How People Learn (National Research Council, 2000), 
the task in the investigation was chosen because of the critical nature of context for 
transfer of learning, and it is important for students to study ideas through multiple 
contexts.  In this case, rate of change is being explored through a graphical representation 
of a physical phenomenon. 

 
The work in this study follows the tradition of studies within both physics education 

research (e.g.	  McDermott,	  Rosenquist	  &	  van	  Zee,	  1987;	  Thornton	  &	  Sokoloff,	  1990;	  
Merhar,	  Planinsic,	  &	  Cepic,	  2009;	  Kim	  &	  Kim,	  2005),	  and mathematics education 
research (e.g. Chiu,	  Kessel,	  Moschkovich	  &	  Munch-‐Nunez,	  2001;	  Moschkovich,	  1996)	  
that pursue the difficulties students have with graph interpretation.  Much of the previous 
work has identified students making mistakes that have been described as either a 
“picture as graph” difficulty or involving confusion between slope and height, early data 
from the pilot show different sorts of difficulties with the given problem.  One goal of 
this study is to elucidate and formalize these sorts of challenges seen in student work.  A 
major aspect of the interviews is to gather more comprehensive explanations by the 
participants regarding why they included, or not, certain features on their graph than was 
visible in the written responses.  As a fuller picture emerges of student difficulties, more 
information will be available to guide additional research aimed at resolving those 
difficulties. 
 
The Graph Problem 
 

Imagine that you are going to walk along the inside lane of a 400 meter track.  
You will start at the midpoint of one of the straightaways, and you will walk at a 
constant speed for two laps, ending at the place where you started. 
 
A simplified diagram of a track is displayed in Figure 1.  Please note that the 
straightaways are each 100 meters long, and the arc on each end is a semicircle 
that is also 100 meters in length. 
1.  Please sketch a graph showing the distance you are from the starting point vs. 
time.  In this context, the distance is considered the shortest straight line from 
your location to the starting point. 
 
2.  Write a brief explanation of why you constructed the graph to look as it does. 
 
3.  Identify the point on the track where you will farthest (again, in a straight line 
distance) from the starting point. 
 
4.  Describe how you determined this point. 
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Preliminary questions for the audience: 
 

1. How might I categorize student work differently such that I gain more insight into 
areas where different student difficulties overlap? 

 
2. How do I extend findings from a single (hopefully robust) task towards 

suggestions for either:  a) curriculum/instructional modifications, or b) a follow-
up investigation with curriculum/instruction? 

 
3. How likely is it that task-based interviews will reveal student reasoning in a 

graph-based problem solving context? 
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MATHEMATICS BEYOND CLASSROOM: STUDENTS’ ‘VALUE CREATION’ 
THROUGH MATHEMATICAL MODELING WITHIN A LEARNING 

COMMUNITY 

Joo young Park 
Teachers College, Columbia University 

 
This study examined how mathematical modeling activities within a collaborative group 
impact on students’ perceived ‘value’ of mathematics. With a unified framework of 
Makiguchi’s theory of ‘value’, mathematical disposition, and identity, the study identified 
the elements of the value-beauty, gains, and social good-with the observable evidences of 
mathematical disposition and identity. A total of 60 college students participated in 
‘Lifestyle’ mathematical modeling project. Both qualitative and quantitative methods 
were used for data collection and analysis. The result from a paired-samples t-test 
showed the significant changes in students’ mathematical disposition. The results from 
the analysis of students’ written responses and interview data described how the context 
of the modeling tasks and the collaborative group interplayed with students’ perceived 
value. The poster will present the main findings and the examples of students’ written 
tasks and responses.  
 
Key words: Mathematical Modeling, Instructional Activities and Practice, Value Creation 
 
A number of studies demonstrated that mathematical modeling, which plays a prominent 
role in the new Common Core State Standards for Mathematics (CCSSM), promotes 
socially situated learning environments with group collaboration and creativity, and it has 
the potential to develops positive disposition toward mathematics and strengthen their 
mathematical identity (Ernest, 2002; Lesh & Doerr, 2003). This study involves inquires 
of what learning environment enables students to engage in meaningful mathematics 
learning and develop positive disposition as well as self-concept. The purpose of this 
study is to examine how mathematical modeling activities within a collaborative group 
impact on students’ perceived ‘value’ of mathematics. The concept of ‘value’ was 
adopted from Makiguchi’s theory of “value creation”(Bethel, 1989, p6).‘Value creation’ 
concerns with human development that enables individuals to gain benefits from 
developing a relationship with the object (mathematics) not only at the personal level but 
also societal level. With a unified framework of the theory of ‘value’, “mathematical 
disposition”(NCTM, 1989, p1), and identity, this study identified the elements of the 
value-beauty, gains, and social good-with the observable evidences of mathematical 
disposition and identity. A total of 60 students who enrolled in a college algebra course 
participated in ‘LifeStyle’ mathematical modeling project within a collaborative group. 
The topics of the modeling project were relevant to social and environmental issues in 
which students engaged in everyday lives. The result from paired samples t-test indicated 
the significant changes in students’ mathematical disposition between pre and post 
survey. Based on the results from the analysis of students’ journals and surveys, eighteen 
focal students were selected for interviews. The findings revealed that students develop 
an appreciation for mathematics as a useful and analytical tool to solve problems through 
engaging in the modeling project, and that participating in collaborative activities 
heightens students’ interest and performance taking responsibility for mathematical 
meaning-making. Social value was created through students’ interactions with the context 
of mathematical modeling and with peers while working in a group. The poster will 
present the main findings and the examples of students’ written tasks and responses. 
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STUDENT CALCULUS REASONING CONTEXTS 

Matthew Petersen, Sarah Enoch, Jennifer Noll 

Portland State University 

 

This paper analyzes how student discourse about Calculus is situated in a graphical 

representation of a physics problem. Students were asked to identify three unlabeled graphs as 

representing the position, velocity and acceleration of a car. Findings showed that the students 

reasoned in three distinct contexts - static-graphical, covariational, and physical. While the 

students were able to communicate effectively between the first two contexts, and leverage them 

to find a solution to the problem, the students' discourse in the physical context did not 

communicate well with their discourse in the other two contexts, nor was it very fruitful in 

finding a solution to the problem. 

 

Key words: [Calculus, Discourse, Physics, Reasoning Contexts] 

 

Introduction & Background 

 

Calculus has long been a gatekeeper for students entering STEM fields. Reform efforts 

geared to make calculus concepts more accessible to students have been underway now for 

multiple decades and so has research geared toward developing an understanding of student 

thinking about calculus. Much progress has been made but there is still much work to be done. 

This research study is part of a larger NSF-funded research study that continues systematic 

inquiry into both curriculum development and research on student thinking. This study 

investigates students from a newly developed calculus curriculum, Process-Oriented Guided 

Inquiry Learning (POGIL). The curriculum is activity based and student centered, and attempts 

to facilitate student construction of their own understanding.  

The research to date reveals that foundational calculus concepts such as function, limit, 

derivative and integral are difficult for students and are often learned with significant 

misconceptions (Baker et al., 2000; Dreyfus & Eisenberg, 1981; Ferrini-Mundy & Graham, 

1991; Tall & Vinner, 1981).  Beyond identifying student conceptions and difficulties with 

calculus concepts, researchers have also investigated types of reasoning students use when 

thinking about calculus, and different theoretical perspectives (e.g., mental constructs, discourse) 

through which to view learning calculus. Researchers (Carlson et al., 2002; Zandieh & Knapp, 

2006) investigating student thinking about derivative and related concepts using graphical tasks 

have identified different types of reasoning. For example, Carlson et al. identified the importance 

of covariational reasoning (the ability to coordinate the idea of a function’s dependent variable 

changing with a given change in the independent variable). Zandieh and Knapp observed that 

students may reason about derivative from a number of contexts such as rate of change, velocity, 

slope of a tangent line, but that these various contexts may not be connected or deep for students. 

Ubez (2004) noted students have particular difficulty using the graph of a function to construct 

the graph of the derivative function.  

Given that graphs and graphing play a key role in developing a deep understanding of 

calculus (and mathematics in general), it is important that students are able to process graphical 

representations of functions, derivatives and second derivatives, if they are to have a deep and 

well-connected understanding of calculus. Many of the studies cited above have made inroads 

into student thinking about graphs in relation to calculus ideas such as limit and derivative. Yet, 
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more work is needed to better understand how student reasoning is situated within different 

contexts, how students make connections across different graphical contexts (e.g. covariational, 

or graphical—slope of a tangent line), as well as what sorts of thinking in these contexts supports 

or hinders learning. In this research study, we analyzed how students reasoned about a calculus 

task focused on a graphical representation of position, velocity, and acceleration of a moving car. 

The research questions guiding the work presented here are: (1) how do the students working in 

small groups on a calculus problem situated in the context of position, velocity, and acceleration 

communicate across contexts (static-graphical, covariational, physical, and equation), and (2) 

how do the various discursive contexts support or hinder their ability to reason about the task? 
 

Theoretical Perspective 
A commognitive framework (Sfard, 2008) is applied in the data analysis for the work 

presented in this paper. Sfard claims that mathematical discourses are distinguished by their 

objects, which arise in the discourse as what she calls a “realization tree”, in which a signifier is 

potentially realized in a chain of realizations, each of which, from a different perspective, can 

also act as a signifier. These realizations can be signified by both verbal explanations, and 

physical gestures (e.g. Sfard, 2009). For the purposes of this study, we are considering the base 

signifier to be a problem-solving task which required the students to reason about position, 

velocity, and acceleration in the context of three unlabeled graphs (see Figure 1). 

Sfard further argues that because the objects are discursive constructs, the realization trees 

are highly situated, and context specific. We have identified three contexts for student discourse: 

static-graphical, covariational, and physical.1 Two of these three contexts, covariational and 

physical, have been identified in prior literature (Zandieh, 2000; Zandieh & Knapp, 2004; 

Carlson et al., 2002). The third context, static-graphical, is a new context developed through the 

current research. Each of these three contexts is discussed in the paragraph below. 

For the first context, static-graphical, the realization tree consists of objects like derivative, 

slope, and concavity. Student discourse within this context is characterized by attention to 

features of the graphs, without treating the graphs as functions that are changing with respect to 

time. Such a discourse may be evident, for example, when a student places their hand 

horizontally along a graph to show where the slope is zero. The second context, covariational, is 

similar to the static-graphical context but the speaker attends to the graphs as if they were 

changing over time. In this second context a student may student move their hand along a graph 

                                                           
1 A fourth context, equation, was also identified, but it is not addressed in this paper. 

Figure 1. The figure above shows the graphs of three 
functions. One is the position function of a car, one is 
the velocity of the car, and one is its acceleration. 
Identify each curve (from Stewart, 2012). 
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to show how the slopes of a graph are changing over time. To help distinguish between a static-

graphical and covariational context, in a static-graphical context, students may characterize a 

curve as concave up, while in a covariational context they may characterize it as increasing but 

getting progressively steeper. In the physical context, students focus on aspects of the concrete 

physical motion, like velocity and acceleration, and students may use gestures such as moving 

their hand forward and backward to demonstrate physical motion. 

It should be emphasized that we are not attempting to draw conclusions about students’ 

internal mental schemes (e.g., Tall & Vinner, 1981), rather, we are attending to how a particular 

discursive context affects the students’ ability to reason about a task. In this study, we analyze 

calculus students’ ability to reason through a graphical problem-solving task. Our analysis 

focuses on the students’ uses of the contexts described above, perceived as the realization trees 

for discourse around the root signifier (in this case, the given graphs and the corresponding 

problem). We investigate the students’ abilities to communicate across these realization trees 

(i.e., across contexts), investigating to what extent their ability to communicate within and across 

these contexts influences their ability to reason about the task. 
 

Methodology 
Data for this paper were collected over the course of two terms from three sections of a ten 

week Calculus I course at a community college in the Pacific Northwest. The sections were all 

taught by the same instructor using the POGIL curriculum throughout the entire term. Students 

were recruited to participate in an interview during the ninth or tenth week of the term by flyers 

handed out during class and a follow-up email sent to those who had expressed interest. The 

volunteer students were interviewed in small groups of 3-4 students from the same class. During 

the interview, the students were given five Calculus problems to work on as a group. The 

students were asked to work together and to share their thinking out loud. While the interviewers 

occasionally probed the students to provide further explanation and gave prompts when it was 

appropriate for the students to move on to the next task, the interviewers, in general, tried not to 

ask many questions so that the students were allowed to work through the tasks fairly 

independently. The interviews were video-taped and the students were asked to record their work 

on a dry-erase board so that it could be visible on the video camera. The video recordings were 

subsequently transcribed. The results presented here are taken from their responses to the first of 

the five questions (see Figure 1).  

Using the framework of the three discursive contexts, the data were analyzed identifying, for 

each line of reasoning a student offered to the group, which context(s) they were using to present 

their reasoning. Students’ discourses were then analyzed with respect to whether or not there was 

interplay between the contexts and to what extent these discursive contexts were useful for 

reasoning through the task. At this time, some preliminary findings will be shared and discussed. 
 

Results 
Two groups addressed the question using a discourse based on a combination of the static-

graphical and covariational realization of the functions. This was particularly striking for one 

group in particular. One student, Tim (a pseudonym), took the lead in analyzing the graph. 

During most of the interview, he focused the question on static-graphical or covariational 

features of the graph. His approach to answering the question is illustrated in the Table 1 below 

where he begins by explaining why graph a cannot be the position function: 
 
Table 1. Student responses and corresponding gestures to the derivative task. 
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Speaker Utterance Gesture Context 

1. Tim a’s not it [the position function], though.   

2. Lucas It’s not?   

3. Noelle Why not?   

4. Tim: ‘cause if a’s the position function, 

there’s—derivative of this [graph a] is 

zero here [maximum of a] and zero here 

[minimum of a]. 

Places his hand 

horizontally along 

the maximum, and 

then minimum of 

graph a. 

Static-Graphical 

5. Lucas: Which means that...   

6. Tim: And there’s no zeros on any of these 

curves [b or c]. 

Trances along the 

graph. 

Static-Graphical 

7. Tim:  But c could be it. See you can see when 

c is increasing [traces his finger along c] 

this [b] is positive as it starts to 

straighten out, b could be the derivative 

of that. And as you were talking [traces 

his finger along c] remember how you 

said there was kinda an inflection point 

here [on c]? 

Traces his finger 

along c as he says 

that c is increasing, 

then along the tail 

end of b. Finally, 

runs his hand along 

c, in the 

neighborhood of its 

inflection point. 

Covariational, 

transitioning into 

static-graphical 

when he 

mentions the 

inflection point. 

8. Lucas Right   

9. Tim That’s where the second derivative 

equals zero [points at the zero of a] that 

could be the inflection point and then 

this [a] is actually the second derivative.  

Points to a as he first 

says “second 

derivative”, then to 

its zero, then back at 

a. 

Static-graphical 

 

We coded utterances 4 and 9 in the transcript above as occurring in a static-graphical context 

because of Tim’s focus on static features of the graphs: the extrema, inflection points, and zeroes 

of the functions. His horizontal gestures in utterance 4, and his pointing to specific locations in 

utterance 9, further support this conclusion. Conversely, we coded the beginning of utterance 7 

as occurring in a covariational context because he attended to dynamic features of the graphs: 

“increasing” and “straightening out”. At the end of utterance 7, he transitions back to a static-

graphical context as he attends to the inflection point of graph c, a static feature of the graph, but 

his gesture tracing along the graph indicates that he may still be reasoning covariationally. 
Another group took a very different approach to the question as their reasoning was heavily 

dependent on a physical context. The following episode in Table 2 is indicative of a physics-
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based approach to the question and the entire passage is identified as occurring in a physical 

context. The group had labeled graph b “function of car”, and graph c acceleration, and Sally 

begins by arguing that the labels should be swapped: 
 

Table 2. Student responses and gestures to the derivative task. 

Speaker Utterance Gesture 

1. Sally I’m thinking that we should swap these two because 

the word in front of function car is position function 

of car. So it’s moving, moving and then, you know, 

just stops moving, but it’s moved. 

Points to graphs b and c 

saying “these two”. Then she 

gestures forward, palm down, 

as she says “moving moving. 

2. Sally And then acceleration, it’s accelerating cause it’s 

moving and then as it slows down and stops it 

would be decelerating. 5:42 

Slowly moves her hand 

forward until “as it slows”. 

4. I So wait [Sally] what are you proposing?  

3. Sally Well, I’m thinking there’s more to position function 

of the car; so it’s not just the function of the car, it’s 

position—as you know—it’s moving forward. Well 

it’s moving forward and it’s not ever going 

backwards, and then accelerating,  

She sharply moves her hand 

forward on “forward” and 

again on “moving forwards”.  

On “backwards”, she moves 

her hand back. 

4. Sally ‘Cause you know, start the car and then you’re 

accelerating, accelerating, accelerating and you 

reach your top speed. And then you start slowing 

down, cause you’re getting close to your destination 

or whatever. And then eventually you peter out and 

then you stop. But in the entire time you moved 

from point a to point b. 

Traces her finger along graph 

b, beginning when she says 

“accelerating”. Her finger is 

at the top of graph b when 

she says “top speed”.  

 

Sally’s discourse around the task is taking place in a strictly physical context, as evidenced 

by her references to motion, acceleration, and speed, while not attending to any graphical 

features such as extrema, increasing or decreasing. This coding is further supported by her 

gestures which simulate the forward and backwards motion of a hypothetical car. In the 

interview from which this second example was drawn, the students frequently attempted to 

reason about the task within a physical discourse, as well as engaging in static-graphical and 

covariational discourses.  However, they were not able to arrive at a reasonable solution within 

the physical discourse and eventually had to abandon this context in order to arrive at a 

reasonable solution. 

Discussion and Conclusion 
The examples given above illustrate two differing discourses (static graphical/ covariational 

and physical) that we observed as these groups of students attempted to reason through a 

problem-solving task involving graphical sense-making. The first group solved the problem by 

focusing on the static-graphical and covariational contexts for the problem, uniting the two into a 

single discourse, where each context informed and strengthened conclusions and ideas from the 
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other. Translation from a static-graphical context to a covariational context seems to have 

occurred relatively fluently, and to have borne much fruit.  The second group, on the other hand, 

attempted work in a physical context along with both covariational and static-graphical contexts. 

However, the use of various contexts seemed to have served more to confound their discourse, 

than to order and direct their communication. Perhaps because of this lack of constructive 

communication and also possibly because of the students’ difficulty understanding acceleration, 

the use of a physical context bore relatively little fruit. 

This research study is still in the preliminary stages of analysis.  We will be interested in 

receiving feedback from our prospective audience and would like to hear their comments 

concerning the following questions:  Do the three contexts described here adequately capture the 

situated discourse that takes place as students reason through problem-solving tasks around 

graphical representations of position, velocity, and acceleration?  How can this analysis of 

students’ reasoning within an interview be connected back to these students’ experiences with 

the POGIL curriculum?   
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STUDENT UNDERSTANDING OF LINEAR INDEPENDENCE OF FUNCTIONS 
 

David Plaxco Megan Wawro Lizette Zietsman 
Virginia Tech Virginia Tech Virginia Tech 

 
In this study, we present preliminary findings regarding student understanding of linear 
independence of vector-valued functions. Students were given a series of homework 
questionnaires and participated in individual and paired interviews. The researchers used 
grounded theory to categorize student approaches for determining linear (in)dependence of 
functions. In order to gain insight into students’ intuitive notions, data were collected before any 
formal instruction about the definition of linear independence of functions. The researchers 
describe initial analyses of student approaches, conjecturing their treatment of vector-valued 
functions at specific t-values or for varying t as a potentially beneficial lens of analysis. Students 
who evaluated specific t-values determined the linear independence of a set of vectors in 2 
rather than the linear independence of the set of functions, themselves elements of a function 
space. The analytical construct of process/object pairs (Sfard, 1991) could be a useful lens to 
explore this distinction. 
 
Key words: Linear Algebra, Differential Equations, Linear Independence, Function Space 
 

Linear algebra and differential equations are important courses for mathematics and 
engineering students, and research shows that students tend to struggle with these courses (e.g., 
Dorier, 2000; Rasmussen, 2001). While research often focuses on student understanding of the 
mathematics in one of these courses, many topics (basis, Eigen theory, etc.) are integral to both. 
The focus of this study is how students make sense of linear independence of vector-valued 
functions, a concept common in linear algebra and differential equations. We focus on students’ 
written responses regarding whether a given set of three functions from  to 2 is linearly 
independent, as well as two students’ discussion of a similar question during a paired interview. 
These were intentionally given to students before formal instruction on linear independence of 
functions to reflect their initial notions of how linear independence might extend to functions. 
We describe initial analyses of student approaches, conjecturing their treatment of vector-valued 
functions at specific t-values or for varying t as a potentially beneficial lens of analysis. We close 
by addressing implications for teaching and by soliciting directions for future analysis and work.  
 

Background and Literature 
While a growing body of literature exists about student understanding of linear independence 

of vectors in ℝ! (e.g., Wawro & Plaxco, 2013; Bogomolny, 2007; Stewart & Thomas, 2010; 
Trigueros & Possani, 2011), we had difficulty finding empirical studies that report on student 
understanding of linearly independence of functions. In one report, however, Harel (2000) 
contended that a reason students have difficulty determining if the set 𝐴 = 𝑥, 𝑥!, 𝑥!, 𝑥!  is 
linearly independent is that the “students have not formed the concept of function as a 
mathematical object, as an entity in a vector space” (p. 181). Considering the definition of linear 
independence for vector-valued functions (see Figure 1), one can imagine that determining if 
there exists nonzero scalars that satisfy 𝑎!𝑓!(𝑡)+  𝑎!𝑓!(𝑡)+…+  𝑎!𝑓!(𝑡) = 0 for all t in I is a 
conceptual leap from determining if there exists nonzero scalars that satisfy 
𝑎!𝒗! + 𝑎!𝒗!+…+  𝑎!𝒗! = 0 for “nonvarying” vectors 𝒗! in ℝ!. Indeed, our preliminary results 
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are consistent with Harel’s contention that student difficulty may rise from their struggle in 
treating the functions as objects in a vector space.  

Instructors often show students the Wronskian when addressing ordinary differential 
equations because it provides an easy way to check if the solution functions are linearly 
independent on an interval. Although the Wronskian is a convenient tool, its use does not 
necessarily deepen students’ understanding of linear independence of functions. Indeed, through 
personal communication, several differential equations instructors have expressed concern over 
students’ insufficient understanding of linear independence of functions. This study strives to 
advance what is known in this area and inform subsequent pedagogical recommendations. 

 
Let 𝑓!:  𝐼 = (𝑎, 𝑏) → ℝ!, 𝑖 = 1,2,… , 𝑛. The functions 𝑓!, 𝑓!,… , 𝑓!are linearly independent on I if 
𝑎! = 0  (𝑖 = 1,2,… , 𝑛) is the only solution to 𝑎!𝑓!(𝑡)+  𝑎!𝑓!(𝑡)+…+  𝑎!𝑓!(𝑡) = 0 for all 𝑡 ∈ 𝐼. 

Figure 1. Definition of linear independence of vector-valued functions. 
 

Methods 
Data were collected during the Fall 2012 semester in a course focused on core concepts in 

linear algebra and differential equations. Most students were first year, engineering or 
mathematics majors, and had scored a 4 or 5 on the Advanced Placement Calculus BC exam. 
Data sources included written work and video recordings of semi-structured individual and 
pairwise problem-solving interviews (Bernard, 1988). The written work was selected take-home 
questionnaires. The interviews were conducted at the midpoint and end of the semester. The key 
data sources for students’ understanding of linear independence of vector-valued functions are 
the 4th and 5th questionnaires, the pairwise interview, and the second individual interview (see 
Figure 2). The questionnaires and pairwise interview occurred prior to students’ encounter with 
the formal definition of linear independence of functions. We present preliminary analysis of 
Questions 2-3 (see Figure 2) in this proposal; analysis of Questions 1 and 4-7 is ongoing.  

We used grounded theory (Strauss & Corbin, 1990) to iteratively analyze student responses 
to Question 2. We first described students’ algebraic approaches and if they answered “linearly 
independent” (the correct answer), “linearly dependent,” or something else. Descriptions were 
then iteratively compared for similarities and differences and grouped accordingly. This axial 
coding resulted in four categories of student approaches. Concurrently, we analyzed a pair’s 
response to Question 3. We transcribed their interaction, watched the video, read the transcript, 
and drew quotes that helped support a base set of hypotheses about student thinking regarding 
linear independence of functions. The data from the paired interview (students discussing 
difficulties with each other, stating how they disagreed, etc.), which served as a counterpoint to 
the written data for Question 2, provided initial ideas of nuance regarding student thinking that 
the written data did not provide. This analysis informs our ongoing process of selectively coding 
(Strauss & Corbin, 1990) students’ responses to Questions 1 and 4-7 (see Figure 2). 

 
Preliminary Results 

Twenty-four students’ responses to Question 2 were sorted into four categories: Fix t First, 
Focus on Scalars, Function Combination, and Previous Rule (see Table 1). Initial analysis of the 
paired interview response to Question 3 provides insight into issues with linear independence of 
functions, namely, the difficulty in interpreting results of functions evaluated at specific t values.  

Eight students’ work indicated they approached Question 2 by evaluating the functions at 
specific values of t and comparing the resulting real-valued vectors; we categorize these 

17th Annual Conference on Research in Undergraduate Mathematics Education 993



approaches as “Fix t First.” Six students using this approach concluded that the functions were 
linearly dependent because the image vectors were linearly dependent in 2, and two incorrectly 
determined that the image vectors were linearly independent in 2 (a correct response but with 
incorrect reasoning). Mathematically, all of the “Fix t first” solutions are incorrect because the 
students answered a different question than was posed. They drew conclusions about a set of 
vectors in 2 rather than about a set of functions in a function space.  

 
Question from written homework questionnaire 4:  

1. Consider the functions 𝐹 𝑡 = 2
1  and 𝐺 𝑡 = sin 𝑡

0  with 𝐹:  ℝ → ℝ! and 𝐺:  ℝ → ℝ!.  Would you say 
these functions are linearly dependent for all 𝑡 ∈ ℝ? Explain. 

Question from written homework questionnaire 5:  

2. “Consider the functions 𝐹 𝑡 = 𝑡
1 ,𝐺 𝑡 = 𝑡!

2
, and  𝐻 𝑡 = 𝑡!

0
 with F: "2, G: "2, and H: 

"2. Would you say these functions are linearly dependent for all t ∈? Explain your reasoning.”  
Question from pairwise interview:  

3. “Consider the functions 𝐹 𝑡 = 2
1 ,𝐺 𝑡 = sin  𝑡

0  with F: "2 and G: "2. Would you say these 

functions are linearly dependent or independent for all t ∈? Explain.” 
Questions from end-of-semester individual interviews  

4. Consider the functions 𝑦! 𝑡 = 𝑒!! 14  and 𝑦! 𝑡 = 𝑒!! 11 .  Are these functions are linearly independent 
for all 𝑡 ∈ ℝ? Explain. 

5. Consider the functions 𝐹 𝑡 = cos!(𝑡)
1

, 𝐺 𝑡 = sin!(𝑡)
0

, and 𝐻 𝑡 = 2
2  with 𝐹:  ℝ → ℝ! and 

𝐺:  ℝ → ℝ!, and 𝐻:  ℝ → ℝ!.  Are these functions are linearly independent for all 𝑡 ∈ ℝ? Explain. 
6. Consider the functions 𝐹 𝑡 = 𝑡

1 , 𝐺 𝑡 = 𝑡!
2

, and 𝐻 𝑡 = 𝑡!
0

 with 𝐹:  ℝ → ℝ! and 𝐺:  ℝ → ℝ!, and 

𝐻:  ℝ → ℝ!.  Are these functions are linearly independent for all 𝑡 ∈ ℝ? Explain. 
7. I think about linear independence of vector-valued functions the same way I think about linear 

independence of real-valued vectors. 
(Not at all)   1        2          3         4                  5  (Very much) 

Figure 2. Questions relevant to linear independence of vector-valued functions. 
 

Seven students’ work indicates that they focused primarily on the parameter scalars in the 
homogeneous vector equation (or corresponding system of equations), coded as “Focus on 
Scalars.” Two of these students concluded that the set of functions was linearly independent, two 
concluded linearly dependent, two concluded linearly dependent for some values of t and linearly 
independent for others, and one could not draw a conclusion. While, overall, responses for this 
group were diverse, the common quality was that they focused on algebraic manipulation on the 
homogeneous equation with three scalar parameters (e.g., a, b, and c) and one variable, t. In most 
of these solutions, the student used the second components of the functions (or the second 
equation in the corresponding system) to eliminate one of the first two parameters and then re-
wrote the first row (or first equation) to determine some relationship between the functions. 
None of these students evaluated the functions for a specific t-value but instead focused on the 
relationships that must hold true given a set of scalars that satisfy the homogeneous equation.  

Six students provided solutions that are coded as “Function Combination.” These students 
focused on whether t and t2 could be combined to result in t3, hence the name “Function 
Combination,” and they all correctly concluded that the set of functions was linearly 
independent. Three of these students phrased their response as a relationship between vectors 
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(written either verbally or algebraically), and the other three students phrased their response in 
terms of powers of t, that is, the first equation from the homogeneous system. Finally, three 
students’ work was coded as a “Previous Rule” response. All three of these students stated that 
the set contained three vectors in 2 and, so, was linearly dependent. Note that given the set is a 
subset of the function space that contains functions from  to 2, not the vector space 2. 

 
Table 1: Categories of Student Responses to the Question 2.	  

 Description Example 

Fix t First 

Students evaluated the functions at one 
or more fixed value of t. Most then 
evaluated if the resulting real-valued 
vectors were LI or LD. 

 

Focus on 
Scalars 

Students carried out algebraic 
manipulations on the homogeneous 
vector equation (or related system of 
equations) without evaluating for 
specific t-values. They typically 
interpreted the results of their algebraic 
work by fixing the set of parameters 
and considering which/how many 
values of t satisfied the equation. 

“It is LI at some values of t for a given a set of values a, b, 
and c but not at others” 

“No, because for any a1, a2, a3, there exists a time t when the 
vectors are linearly independent, except for the zero vector.” 

“There are plenty of t's where aF + bG + cH ≠ 0 with the 
required values of a and b” 

Function 
Combination 

Students seem to attend to linear 
combinations of t, t2, and t3 of a 
variable t that is not constant. These 
students did not evaluate the functions 
for specific t-values. 

“Can't change degree of t with scalar constants.” 
“No linear combination of t and t2 will ever yield t3, so they 
are LI.” 
“No because there is no way you can get one of the other 
vectors from a l.c. of the others. The only solution to a1F(t) 
+ a2G(t) + a3H(t) = 0 is ai = 0, i = 1, 2, 3” 

Previous 
Rule 

Students relied on rules or 
generalizations about vectors in 
Euclidean spaces to determine linear 
(in)dependence of the set of functions. 

“The set of equations would be L.D. because it has 3 
components in R2.” 
“Yes, F(t), G(t), and H(t) are LD b/c there are three vectors 
in R2.” 

 
In the paired interview, Jordan noted that the second components of the functions in Question 

3 (Figure 2) required the scalar of the first function to be zero, but allowed the second scalar to 
be any real number. He then said that, because sin(t) is periodically zero, the second function 
was equal to the zero vector for some values of t – and so the vectors would be linearly 
dependent at those values of t. From this Jordan and Carter debated whether this meant that the 
functions were linearly dependent for all real values of t, or only at those specific values of t. 
Carter stated he needed a better understanding of what linear independence meant with respect to 
functions, pointing out that it might not be the case that “vectors being linearly dependent at 
some values” necessarily meant “linearly dependent at all values of t.” Jordan, on the other hand, 
argued that linear dependence at any point in the interval meant that the vectors were linearly 
dependent on the entire interval. Later, when asked if they thought the functions were linearly 
dependent, the students responded simultaneously – Jordan, “Yes.” and Carter, “No.” 
 

 
 

17th Annual Conference on Research in Undergraduate Mathematics Education 995



Discussion 
In students’ transition from linear independence of vectors in n to linear independence of 

functions in function spaces, we notice students’ tendency to focus on specific t-values and 
consequently draw conclusions about vectors in 2 rather than about functions. The students 
whose work was coded as “Fix t First” drew conclusions about sets of vectors corresponding to 
specific t-values. Similarly, during the paired interview, Jordan focused on values of t for which 
the second function equaled the zero vector. While the sets of output vectors could be found to 
have a nontrivial solution to the homogeneous vector equation at specific t-values, the solutions 
to the homogeneous equation varied with t. All work coded “Function Combination” focused on 
the fact that no constant scalars could change the exponents of t, t2, and t3. To draw inferences 
about students’ understanding of linear independence, we attend to the object on which a student 
acts. Students who evaluated specific t-values determined the linear independence of vectors in 
2 while the “Function Combination” students likely considered the linear independence of the 
functions themselves. We hypothesize that the analytical construct of process/object pairs (e.g., 
Sfard, 1991; Zandieh, 2000) could be a useful lens to explore this distinction. For instance, 
realizing that “no constant scalars could change the exponents of t, t2, and t3” indicates at least a 
pseudo-object view of function. This highlights a need for students to begin to think of such 
functions as objects. Within a function space, linear independence may be defined (equivalent to 
the definition in Figure 1) according to a homogeneous equation in which the “zero” is the zero 
function rather than the zero vector. This indicates a need to modify the way that vector-valued 
functions are typically discussed during instruction so that functions may be viewed as an 
extension of the students’ previous notions of linear independence to a new type of vector space.  

In the talk, we will share updated analysis of Questions 1-7, teaching implications, and ask: 
1. How could we explore hypotheses about student understanding of function and of formal 

logic accounting for difficulties with the definition of linear independence of functions? 
2. Is the process-object lens fruitful / appropriate for categorizing student understanding of 

linear independence for real-valued vectors and for vector-valued functions?  
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LESSONS LEARNED FROM CASE STUDIES OF SUCCESSFUL CALCULUS 
PROGRAMS AT FIVE DOCTORAL DEGREE GRANTING INSTITUTIONS 

 
+Chris Rasmussen, Jessica Ellis, ~Dov Zazkis 

+San Diego State University, ~Rutgers University 
 
In this report, we present initial findings from our case study analyses at five exemplary calculus 
programs at institutions that offer a doctoral degree in mathematics. Understanding the features 
that characterize exemplary calculus programs at doctoral degree granting institutions is 
particularly important because the vast majority of STEM graduates come from such institutions. 
Analysis of over 95 hours of interviews with faculty, administrators and students reveals seven 
different programmatic and structural features that are common across the five institutions. A 
community of practice and a social-academic integrations perspective are used to illuminate why 
and how these seven features contribute to successful calculus programs. 
 
Keywords: Calculus, Student success, Case study 
 

Calculus is typically the first mathematics course for science, technology, engineering, 
and mathematics (STEM) majors. Indeed, each fall approximately 300,000 college or university 
students, most of them in their first post-secondary year, take a course in differential calculus 
(Blair, Kirkman, & Maxwell, 2012). Nationally, there is a pressing need for students to be 
successful in calculus so that they can continue in their chosen STEM major and ultimately meet 
the growing demand of the workplace for STEM graduates (PCAST, 2012). However, student 
retention in STEM majors and the role of calculus in student persistence is a major problem 
(Rasmussen & Ellis, 2013; Seymour & Hewitt, 1997).  

In order to better understand the terrain of the calculus teaching and learning in the 
United States, we are now in the fifth year of a five-year, large empirical study funded by the 
National Science Foundation and run under the auspices of the Mathematical Association of 
America. The goals of this project include: to improve our understanding of the demographics of 
students who enrol in calculus, to measure the impact of the various characteristics of calculus 
classes that are believed to influence student success, and to conduct explanatory case study 
analysis of exemplary programs in order to identify why and how these programs succeed. In this 
report, we present preliminary findings from our case study analyses at five exemplary calculus 
programs at institutions that offer a doctoral degree in mathematics. Understanding the features 
that characterize exemplary calculus programs at doctoral degree granting institutions is 
particularly important because these institutions produce the majority of STEM graduates.  

The overall five-year project was conducted in two phases. In Phase 1 surveys were sent 
to a stratified random sample of students and their instructors at the beginning and the end of 
Calculus I. The surveys were restricted to “mainstream” calculus, meaning the calculus course 
designed to prepare students for the study of engineering or the mathematical or physical 
sciences. Surveys were designed to gain an overview of the various mainstream calculus 
programs nationwide, and to determine which institutions had more successful calculus programs. 
Success was defined by a combination of student variables: persistence in calculus as marked by 
stated intention to take Calculus II; affective changes, including enjoyment of math, confidence 
in mathematical ability, interest to continue studying math; and passing rates. In Phase 2 of the 
project, we conducted explanatory case studies at 18 different post secondary institutions, where 
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the type of institution was determined by the highest degree offered in mathematics. In this 
report, we present findings from ongoing analyses of the five case studies at doctoral degree 
granting institutions.  
 
Theoretical Background 

Analysis of our case study data is grounded in two complementary perspectives, the first 
of which draws on the community of practice perspective put forth by Wenger and colleagues 
(Lave &Wenger; 1991; Wenger 1998). A community of practice is a collective construct in 
which the joint enterprise of achieving particular goals evolves and is sustained within the social 
connections of that particular group. In achieving a particular joint enterprise, such as the 
teaching and learning of calculus, a community of practice point of view highlights the role of 
brokers and boundary objects. A broker is someone who has membership status in more than one 
community and is in a position to infuse some element of one practice into another. The act of 
doing so is referred to as brokering (Wenger, 1998). Boundary objects are material things that 
allow people to cross between different communities and facilitate progress on their joint 
enterprise.  

The second set of ideas that we employ to make sense of our case study data draws on 
research in Higher Education that has extensively studied factors related to student retention at 
the post-secondary level, with a focus on the effects of student engagement and integration on 
persistence (e.g., Kuh et al., 2008; Tinto, 1975, 2004). According to Tinto’s integration 
framework (1975), persistence occurs when students are socially and academically integrated in 
the institution. This integration occurs through a negotiation between the students’ incoming 
social and academic norms and the norms of the department and broader institution.  From this 
perspective, student persistence (a measure of success in calculus) is viewed as a function of the 
dynamic relationship between the student and other actors within the institutional environment, 
including the classroom environment.  
 
Method 

The survey results from Phase 1 provided information on which institutions are enabling 
students to be more successful in Calculus I (as compared to other institutions of the same type) 
per our measures of success. Survey results, however well crafted and implemented, are limited 
in their ability to shed light on essential contextual aspects related to why and how institutions are 
producing students who are successful in calculus. The case studies were therefore designed to 
address this shortcoming by identifying and contextualizing the teaching practices, training 
practices, and institutional support practices that contribute to student success in Calculus I. As 
argued by Stake (1995) and Yin (2003), explanatory case studies are an appropriate methodology 
to study events (such as current practices in Calculus I) in situations in which the goal is to 
explain why or how, and for which there is little or no ability to control or manipulate relevant 
behaviors.  

Four different case study teams (one per each type of institution—community college, 
bachelor, masters, and doctoral) conducted three-day site visits at the selected institutions. 
During the site visit each team, which consisted of 2-4 project team members, interviewed 
students, instructors, and administrators; observed classes; and collected exams, course materials, 
and homework. Common interview protocols for all 18 case studies were developed, piloted, and 
refined in order to facilitate comparison of calculus programs within and across institution type.  

1000 17th Annual Conference on Research in Undergraduate Mathematics Education



At the completion of each site visit the case study teams developed a reflective summary 
that captured much of what was learned about the calculus program, including key facts and 
features that were identified by both the case study team and the people interviewed as 
contributing to the success of the institution’s calculus program. A more formal 3-4 page 
summary report was then developed by reviewing the reflective summary and transcripts and 
sent to the respective department of each institution as part of the member checking process 
(Stake, 1995).  

At the five doctoral degree granting institutions, we conducted 92 interviews with 
instructors, administrators, and students for a total of more than 95 hours of audiorecordings. All 
interviews were fully transcribed and checked by a second person for accuracy and completeness. 
In order to manage this vast amount of qualitative data, a tagging scheme was developed to 
facilitate the location of relevant interview excerpts related to one of more of 30 different areas 
of interest. These areas of interest include such things as placement, technology, assignments and 
assessments, instructor characteristics, etc. Each interview was first chunked in terms of what we 
refer to as a “codeable unit.” A codeable unit consists, more or less, of an interviewer question 
followed by a response. If a follow up question resulted in a new topic being discussed by the 
interviewee, then a new codeable unit is marked. Each codeable unit is then tagged with one or 
more of the 30+ codes. The idea is that once all interviews have been tagged with one or more 
codes, we can then systematically identify all instances in which any interviewee addressed a 
particular topic area. Once these instances have been located, then a more fine-grained grounded 
analysis will proceed. We used the facts and features documents to conduct initial cross case 
analysis. The grounded analysis will allow us to conduct cross institution case analysis arriving 
at an expanded list of important features. 

The set of 30+ codes was developed by representatives from each of the four different 
case study teams and consists of both a priori codes from the literature and codes for themes that 
emerged from the reflective summaries. The final set of 30+ codes underwent an extensive 
cyclical process in which representatives from each case study team coded the same transcripts, 
vetted their respective coding, which then led to refining, deleting, and adding new codes and 
operational definitions. Two different team members coded each transcript and the two coders 
resolved any discrepancies.  
 
Discussion 
 Cross case analysis of the five doctoral degree granting institutions led to the 
identification of seven features that contribute to the success of their calculus program. We first 
highlight what these seven features are followed by a discussion of the seven features in light of 
the communities of practice perspective and Tinto’s academic and social integration perspective. 
 
• Coordination. Calculus I (as well as PreCalculus and Calculus II) has a course Coordinator. 

The Coordinator holds regular meetings where calculus instructors talk about course pacing 
and coverage, develop midterm and final exams, discuss teaching and student difficulties, etc. 
Exams and finals are common and in some cases the homework assignments are coordinated.  

 
• Attending to Local Data. There was someone in the department who routinely collected and 

analyzed data in order to inform and assess program changes. Departments did this work 
themselves and did not rely on the university to do so. Data collected and analyzed included 
pass rates, grade distributions, persistence, placement accuracy, and success in Calculus II.  
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• Graduate Teaching Assistant (GTA) Training. The more successful calculus program had 

substantive and well thought out GTA training programs. These ranged from a weeklong 
training prior to the semester together with follow up work during the semester to a semester 
course taken prior to teaching. The course included a significant amount of mentoring, 
practice teaching, and observing classes. GTA’s were mentored in the use of active learning 
strategies in their recitation sections. The standard model of GTA’s solving homework 
problems at the board was not the norm. The more successful calculus programs were 
moving toward more interactive and student centered recitation sections. 

 
• Active Learning. Calculus instructors were encouraged to use and experiment with active 

learning strategies. In some cases the department Chair sent out regular emails with links to 
articles or other information about teaching. One institution even had biweekly teaching 
seminars led by the math faculty or invited experts. Particular instructional approaches were 
not prescribed or required for faculty at any of the institutions.  

 
• Rigorous Courses. The more successful calculus programs tended to challenge students 

mathematically. They used textbooks and selected problems that required students to delve 
into concepts, work on modeling-type problems, or even proof-type problems. Techniques 
and skills were still highly valued. In some cases these were assessed separately and a 
satisfactory score on this assessment was a requirement for passing the course.  

 
• Learning Centers. Students were provided with out of class resources. Almost every 

institution had a well-run and well-utilized tutoring center. In some cases this was a calculus 
only tutoring center and in other cases the tutoring center served linear algebra and 
differential equations. Tutoring labs had a director and tutors received training.  

 
• Placement. Programs tended to have more than one way to determine student readiness for 

calculus. This included: placement exams (which were monitored to see if they were doing 
the job intended), gateway tests two weeks into the semester and different calculus format 
(e.g., more time) for students with lower algebra skills.  

 
The fact that all five of the more successful calculus programs at doctoral degree granting 

institutions had someone whose official job included coordinating the different calculus sections 
is noteworthy. This role of coordinator was not something that rotated among faculty, such as 
committee assignments do, but rather was a designated and valued permanent position. The 
existence of this position is, however, only part of the story. An equally important part of the 
story is the role that calculus coordinator, among others, played in creating and sustaining a 
community of practice around the joint enterprise of teaching and learning of calculus. In the 
respective communities of practice, calculus was not seen as being under the purview of one 
person, such as the coordinator, but rather calculus was viewed as community property.  

Nonetheless, the calculus coordinator played a unique role within their community of 
practice. In particular, the calculus coordinator functioned as a broker between the more central 
members in the department that typically teach calculus and the many newcomers. At doctoral 
institutions, these newcomers to the calculus joint enterprise include visiting research or teaching 
faculty, post docs, lecturers, and graduate teaching assistants (GTAs). The regular meetings that 
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the calculus coordinator convened provided occasions for newcomers to be enculturated into the 
norms and practices related to calculus. We identified a number of boundary objects that helped 
to facilitate this enculturation, including historical records of passing rates, current grade and 
persistence data, student evaluations, various training manuals (especially for GTAs and visiting 
faculty) and the development of common assignments and assessments. Other brokers in the 
joint enterprise of teaching and learning calculus included, for some of the five doctoral 
institutions, the graduate teaching assistant trainers and leaders, department chair and the person 
whose responsibility it was to collect and disseminate to the department local data concern 
student pass rates and persistence and/or the correlation between these measures of success and 
the placement process. We conjecture that their attention to local data and continual 
improvement efforts contributed to a climate in which those involved with calculus teaching 
were always striving for improvement. Indeed, it was striking to us that none of the five case 
study institutions considered themselves to be particularly successful in calculus. That is, none of 
the five institutions in our case studies felt that they had everything just right.  

A community of practice perspective helps to illuminate the how and why particular 
calculus programs are successful from a point of view that highlights faculty and administration. 
In our view, Tinto’s academic and social integration perspective sheds equally important insight 
into how and why calculus programs are successful from a student point of view. In particular, 
almost without exception the students we talked with at the five doctoral institutions noted that 
they felt their calculus course was academically challenging (despite the fact that the vast 
majority had taken calculus in high school) but that there were a number of resources available to 
them to help them be successful. These resources included well-developed math help centers 
where students felt they received the help they needed and availability of instructor’s and GTAs 
office hours. Other factors that contributed to students’ academic and social integration included 
common space in the math department where students could gather to work on homework, 
dorms that provided them with opportunities to interact with like minded fellow students, and in 
some places a cohort system or strong student culture that provided cohesion between students.   

In summary, our ongoing analysis of the five successful calculus programs at doctoral 
institutions is highlighting a number of structural and programmatic features that other 
institutions would likely to be interested in adapting. The ongoing theoretical analysis points to 
the importance of how these structural and programmatic features come together for faculty so 
that calculus is seen as community property and for the academic and social integration so 
critical for students’ continued interest, enjoyment, and persistence in calculus. Our analysis that 
combines a community of practice perspective with the seminal work of Tinto on academic and 
social integration also sets the stage for the development of a more comprehensive model of 
successful college calculus programs. 
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MEASUREMENT DEFINITIONS FOR ELEMENTARY SCHOOL TEACHERS: LINKS 

TO GRADUATE LEVEL MATHEMATICS 

V. Rani Satyam 

Michigan State University 

 

Undergraduates planning to be teachers often encounter mathematics content textbooks 

written specifically for preservice teachers. Elementary mathematics textbooks of this kind 

provide in-depth definitions of elementary school mathematics to foster deeper understanding of 

these basic concepts. I looked at measurement definitions (length, area, and volume) across six 

preservice textbooks and identified overarching themes, using an open coding method. The 

following themes emerged across the set of definitions: discrete/continuous, unit, no overlaps/full 

cover, interior/exterior, function, measurement as an attribute, and space filling. This links to 

graduate level mathematics and has implications for preservice teachers and their future 

elementary students.  

 

Key words: Measurement, Curriculum Analysis, Preservice Elementary Teachers  

 

Definitions are central to mathematics, allowing for precise communication. Definitions 

also greatly determine how a person understands a concept (Tall & Vinner, 1981). Textbooks for 

teachers largely define the concepts and explanations of said concepts that a preservice teacher 

will pass on to their students (McCrory, 2006). Given this link, my research question is: What 

are the overarching themes in measurement definitions (length, area, and volume) in elementary 

mathematics textbooks for preservice teachers? The focus is on measurement, because studies 

show that young children struggle to understand fundamental measurement concepts (Battista, 

2004; Outhred & Mitchelmore, 2000).  

The data consisted of definitions of length, area, and volume across six elementary 

mathematics textbooks for preservice teachers. The textbook authors include professional 

mathematicians, and their background is reflected in the word choice of their definitions. Using 

grounded theory as a methodology, I employed an open coding strategy to identify frequently 

occurring keywords across the total set of definitions. The following characteristics emerged: 

discrete/continuous, unit, no overlaps/full cover, interior/exterior, function (associating one 

number to another), measurement as an attribute, and space filling. A discrete conception of 

measurement refers to units. For example, area may be defined as the number of units in a 

region. In contrast, a continuous conception refers to entire distance/space, no mention of units.  

These themes are fundamental ideas of graduate level mathematics. The idea of 

interior/exterior links to analysis, the idea of a cover comes from topology, and the 

discrete/continuous difference is key in branches of applied mathematics. That these powerful 

ideas are at play in elementary school is promising, but unfortunately, they tend to be brought up 

informally or not mentioned at all. Preservice teachers may not explicitly think about these 

aspects in relation to measurement, because a concept like leaving no overlaps when measuring 

seems obvious. However, these aspects are not obvious to elementary students learning 

measurement for the first time.  

The results of this curriculum analysis are an example of one way to analyze and 

characterize textbook definitions. The resulting themes also have implications for why teachers 

struggle to teach and students struggle to understand measurement, if there are radically different 

ways of explaining and thinking of measurement, depending on textbook.  
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Mathematicians’ views on transition-to-proof and advanced mathematics courses 

Milos Savic    Robert C. Moore  Melissa Mills 

University of Oklahoma  Andrews University  Oklahoma State University  

 

This study explores mathematicians’ views on 1) transition-to-proof courses, 2) knowledge and 

skills students need in order to succeed in subsequent mathematics courses, and 3) differences in 

the proving process across mathematical content areas. Seven mathematicians from three 

different universities (varying in department size), were interviewed. Precision, sense-making, 

flexibility, definition use, reading and validating proofs, and proof techniques are skills that the 

mathematicians stated were necessary to be successful in advanced mathematics courses. The 

participants agreed unanimously that a content course could be used as a transition-to-proof 

course under certain conditions. They also noted differences in the proving processes between 

abstract algebra and real analysis. Results from this study will be used to frame a larger study 

investigating students’ proof processes in their subsequent mathematics content courses and 

investigating how these skills can be incorporated into a transition-to-proof course. 

  

Key words: transition-to-proof, proof-based courses, mathematicians, proving process 

 

Background Literature 

Many mathematics departments in colleges and universities across the U.S. offer either a 

transition-to-proof course or a content course designated as a transition-to-proof course such as 

discrete mathematics or linear algebra. While there are mathematical topics that such courses 

commonly share, there is considerable variation in the mathematical content and the ways of 

teaching these courses. For example, some courses emphasize truth tables (in a limited sense) 

and logical reasoning explicitly (Epp, 2003), while others tend to focus on proving techniques 

using textbooks (e.g., Velleman, 1994). Some universities use a content course, such as linear 

algebra, abstract algebra, or real analysis as a transition-to-proof course. While students’ proving 

and validation processes have been examined by researchers in different mathematical topics 

(Larsen & Zandieh, 2008; Alcock & Weber, 2005; Larson, Zandieh, & Rasmussen, 2008; Inglis, 

Mejia-Ramos, & Simpson, 2007; Lockwood & Strand, 2011), research studies on the content and 

effectiveness of those courses as a transition-to-proof course are few.  

In one study, Alcock (2010) interviewed five mathematicians experienced in teaching a 

transition-to-proof course. She identified four modes of thinking (instantiation, creative thinking, 

critical thinking, and structural thinking) considered important by the mathematicians for 

successful proving and concluded that “it certainly seems reasonable to claim that collaborative 

classroom environments, in which students investigate, refine, and prove mathematical 

conjectures” (p. 94) foster the flexible use of all four modes. 

Although Alcock and other researchers (e.g., Weber, 2010) discussed pedagogical strategies 

and implications and offered suggestions for teaching the four modes of thinking, they did not 

specify which mathematical topics can be useful in a transition-to-proof course for developing 

these four modes of thinking, nor did she address the question of whether transition-to-proof 

courses adequately prepare students for more advanced mathematics courses. The present study 

will begin to investigate these issues. 

 

Research Questions 
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Specifically, the study seeks to extend the investigation of mathematicians’ views regarding 

transition-to-proof courses by ascertaining their views on the knowledge and skills that students 

need in order to succeed in their subsequent advanced mathematics courses and how those 

knowledge and skills can be incorporated into a transition-to-proof course. Thus, the research 

questions for this study were: 

1. What do mathematicians perceive as the necessary knowledge and skills that students 

need in order to succeed in their advanced mathematics courses? 

2. What mathematical content do mathematicians consider to be appropriate for a transition-

to-proof course? 

3. What differences in proof and the proving process do mathematicians perceive across 

different mathematical content areas, and can these be incorporated into a transition 

course? 

 

Methodology 

Seven participants were interviewed from three different universities in the U.S. Professors 

A1 and A2 were from a small mathematics department (faculty of eight) located in the Midwest. 

Professors B1 (a mathematician researching in mathematics education), B2, and B3 were from a 

large mathematics department (faculty of 138) in the Midwest. Professors C1 and C2 were from 

a medium-sized mathematics department (faculty of 32) in the south central U.S. A 

comprehensive look at the backgrounds of all the professors is given in Table 1. The first row 

gives the professors’ general area of study, the second row provides the professors’ specific area 

of research, and the final row lists some of the courses the professors have taught in the last three 

years. 

 

Table 1: 

 A1 A2 B1 B2 

General  Algebra PDE Math Education Analysis, PDEs 

Specific Lie 

algebra 

Nonlinear 

Elliptic 

Development of Secondary 

Curriculum 

Applications to 

Chemical 

Systems 

Classes 

Previously 

Taught 

Abstract, 

Linear 

algebra 

Advanced 

calculus, 

Applied math 

Transition, Math for elementary 

teachers, Geometry for teachers, 

Capstone course for secondary 

teachers 

Calculus III, 

Foundations of 

applied math 

 

 B3 C1 C2 

General  Mathematical Physics Topology Analysis, Algebra, Math Ed 

Specific Random Schrodinger 

operations 

Low-dimension Finite groups 

Classes 

Previously 

Taught 

Transition, Honors real 

analysis, Capstone 

mathematics course 

Abstract algebra, 

Geometry 

Intro to real analysis, Intro to 

modern algebra, Linear algebra 

 

The interviews included a series of questions pertaining to transition-to-proof courses and 

other advanced mathematics courses. The questions pertaining to this study that were asked in 

the interviews were: 
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1. What knowledge and skills do students need in order to be successful at writing proofs in 

advanced mathematics courses? 

2. Do you think it is appropriate to teach a content course (e.g., linear algebra or analysis) as 

an introduction to proof course? 

3. What are the differences between the proving process and proofs of certain mathematical 

topics, such as topology, algebra, and analysis? 

 

The interviews were transcribed and analyzed by the authors using an open coding system.  

 

Results 

Knowledge and Skills 

The mathematicians stated that there were a number of skills, listed in Table 2, needed in 

order to be successful at writing proofs. Each skill mentioned is accompanied by a representative 

quote from one of the mathematicians that claimed that the skill was necessary. 

 

Table 2:  

Knowledge 

and Skills 

Participants Representative Quote 

Use of 

Definitions 

A1,B1, B2, 

B3, C1, C2 

C1: “I tell them over and over and over again, ‘Definitions tell you 

how to write proofs.’ …you look at the definition and that will tell 

you where to start.” 

Sense 

Making 

A1, A2, 

B3, C1, C2 

B3: “I’ve seen that light come on for some students when they do 

get it, when they realize what it’s about. They make that transition 

from computational to proofing.” 

Learning 

Proving 

Techniques 

A2, B1, 

B2, C2 

B1: “What’s an indirect proof? … What is proof by mathematical 

induction? How do you prove that two sets are equal? … So there 

are a variety of proof techniques that we introduce and talk 

about…” 

Precision A1,B2, B3, 

C1 

A1: “So understanding what it means to be precise… rather than "I 

have a gut feeling and I think I understand how it works." 

Reading/ 

Validating 

Proofs 

A1, A2, C1 A1: “I think it's true that it should be a high priority to read a lot of 

proofs, and part of that is evaluating them.” 

Flexibility A1, B2 B2: “f(x) if I do f(y) it’s the same function…If I change the internal 

variable [x instead of y] [the students think that] everything is new.” 

 

Content course as a transition-to-proof course 

All of the professors stated that teaching a content course (such as an upper-level 

undergraduate real analysis or abstract algebra course) could be possible as a transition-to-proof 

course only if the amount of content was drastically reduced and time was devoted to explicitly 

discussing proving techniques. 

 

A1: “Yes, if the credits and time are increased enough to allow sufficient time to develop the 

habits of mind…I think [habits of mind do] need to [be] explicitly addressed, not just 

implicitly.” 
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C1: “Yes. I absolutely believe so. But, I mean, you have to do it…so I can’t teach a ring 

theory course [as a transition-to-proof course] with the idea that I have to cover a bunch 

of material.” 

 

Differences in proofs and proving between abstract algebra and real analysis 

Mathematicians agreed that there were fundamental differences in proving between abstract 

algebra and real analysis and identified various aspects of those differences: 

 

B1: “Well you have different definitions that are fundamental… In elementary analysis one 

needs to know, not only epsilon-delta definitions but all these tricks: given this epsilon 

we’re gonna construct a delta using some sort of magic that comes from experience and 

you don’t need that technique in an algebra class.” 

B3: “When I teach analysis I try to highlight certain things that are sort of very analysis-y. 

Like proving equality by proving two inequalities, which is not something you typically 

find in an algebra course.” 

C2: “I think the use of quantifiers is more difficult in analysis than in algebra… but I think 

that might possibly be offset a little by the fact that the analysis content area relates so 

solidly to the calculus that they have studied, so they have a good deal of computational 

experience.” 

 

Discussion 

The seven mathematicians mentioned some of the knowledge and skills that have been 

discussed in the literature as problem areas in proving, such as the use of definitions to structure 

proofs, using mathematical language and notation, and having an intuitive understanding of the 

concepts (e.g., Moore, 1994; Edwards and Ward, 2004).  It was interesting that the 

mathematicians, when asked about what skills students needed in proving in order to be 

successful, transitioned into discussing what proving skills their current or former students 

lacked.  

According to the mathematicians, only a content course with enough time and reduced 

expectations on content could be used as a transition-to-proof course. However, the 

mathematicians voiced that there seem to be fundamental differences in the proving processes 

between abstract algebra and real analysis, including the use of quantifiers, difficult definitions, 

and the familiarity of the concepts. This dichotomy raises the question: How can a student 

transition to algebra proofs, for example, if he/she is exposed to proving when real analysis is 

used as an introductory proofs course? Finally, B1 and C2 mentioned quantifiers, which have 

been examined separately in the literature (Dubinsky & Yiparaki, 2000), while B3 mentioned 

proving equality by proving two inequalities. What other fundamental differences, not mentioned 

by the mathematicians, occur in separate courses? These fundamental differences can help with 

the development of curriculum for a transition-to-proof course that may improve the “transition” 

aspect.  

 

Future Research 

These results will be used to inform a larger study examining the proofs and proving process 

of students in their advanced mathematics courses. In the Fall of 2013 we will start a study 

examining the logic and proving process of students’ proofs in different advanced mathematics 

content courses. Identifiable differences in proving across the content areas will inform the 
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design of a transition-to-proof course that incorporates the proving techniques and the different 

modes of thinking from content courses that students will need to use in their subsequent content 

courses. 

 

Questions 

What would be other effective ways of surfacing fundamental differences between content? 

How can these fundamental differences be emphasized in content courses? 
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A PROPOSAL FOR A THEORETICAL FRAMEWORK ON SPECIALIZED 
KNOWLEDGE FOR TEACHING MATHEMATICS 

Thorsten Scheiner 
University of Hamburg, Germany 

 
Several approaches and models, partly distinct and partly overlapping, shape the theoretical 
landscape in mathematics education research on teacher knowledge. These approaches and 
models take Shulman’s (1986) categorization of teacher knowledge, in particular ‘subject 
matter knowledge’ and ‘pedagogical content knowledge’, almost always as a point of 
departure. It seems safe to say that research on teacher knowledge has become more 
sophisticated in the sense that Shulman’s dimensions of teacher knowledge are divided in 
sub-dimensions and looked at in more detail. For instance, subject matter knowledge can be 
further differentiated in terms of Schwab’s substantive and syntactic structures, Harel’s ways 
of understanding and ways of thinking, Bromme’s school mathematical knowledge and 
academic content knowledge, or Ball and her colleagues’ (Ball, Thames, & Phelps, 2008) 
common content knowledge and specialized content knowledge. Although each of these 
contributions shed light into important issues, among them it is only specialized content 
knowledge that can be considered as unique for the purposes of teaching mathematics. 
Building upon recent work addressing the ‘uniqueness’ of knowledge for teaching 
mathematics, the presented work provides a theory-driven and research-based approach 
conceptualizing the construct of specialized knowledge for teaching mathematics. The crucial 
aspect of the conceptualization is its focus on the form of knowledge for teaching, in addition 
to the content that has been given the most attention in recent years. In more detail, the 
underlying philosophy of the theoretical framework is the assumption that the defining 
features of mathematics teacher knowledge cannot be described in terms of more or deeper 
knowledge bases but in terms of a fundamentally different kind of knowledge, namely the 
result of a transformation of knowledge from various knowledge bases. This transformation 
perspective implies the view that initial knowledge bases are inextricably combined and 
restructured into a new form of knowledge that possesses distinct characteristics that were not 
present in their original form. In the case of specialized subject matter knowledge for 
teaching, for instance, the transformation of intuitive and formal mathematical knowledge is 
considered as a new form of subject matter knowledge – as specialized pure subject matter 
knowledge promoting the learning of students. This kind of knowledge is considered as being 
crucial for teaching mathematics at an upper-secondary level. With this, the theoretical 
framework takes into account upper-secondary mathematics teachers in contrast to 
elementary and lower-secondary teachers that have been the predominant focus on past 
conceptualizations of teacher knowledge. Since all teaching knowledge is contextually 
bound, the design of the planned conceptual framework focuses on the deep exploration of a 
few concept-specific subcategories of specialized knowledge for teaching taking into account 
key mathematical concepts in a particular mathematical domain, namely calculus, rather than 
to cover a great deal of material in a superficial way. 
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ARE STUDENTS BETTER AT VALIDATION AFTER  

AN INQUIRY-BASED TRANSITION-TO-PROOF COURSE? 
 
         Annie Selden         John Selden 

     New Mexico State University       New Mexico State University 

 
This paper presents the results of a study of the proof validation abilities and 

behaviors of sixteen undergraduates after taking an inquiry-based transition-to-

proof course. Students were interviewed individually towards the end of the course 

using the same protocol that we had used earlier at the beginning of a similar 

course (Selden and Selden, 2003). Results include a description of the students’ 

observed validation behaviors, a description of their proffered evaluative 

comments, and the, perhaps counterintuitive, suggestion that taking an inquiry-

based transition-to-proof course does not seem to enhance validation abilities. We 

also discuss distinctions between proof validation, proof comprehension, proof 

construction and proof evaluation and the need for research on their interrelation.  
 
Key words: Transition-to-proof, Proof, Validation  

 
This paper presents the results of a study of the proof validation behaviors of 16 

undergraduates after taking an inquiry-based transition-to-proof course emphasizing proof 

construction. Students were interviewed individually towards the end of the course 

employing the same protocol used in our earlier study (Selden & Selden, 2003). Here we 

regard proofs as we did then and use our previous description of proof validation as 

reading and reflection on proofs to determine their correctness (p. 5).  

We provide a detailed description of the validation behaviors the 16 undergraduates 

took – something either not done, or only partially done, in prior validations studies and 

perhaps not at all for this level of student. Past validation studies include: first-year Irish 

undergraduates’ validations and evaluations (Pfeiffer, 2011); U.S. undergraduates’ 

validations at the beginning of a transition-to-proof course (Selden & Selden, 2003); U.S. 

mathematics majors’ validation practices across several content domains (Ko & Knuth, 

2013); U.S. mathematicians’ validations (Weber, 2008); and U.K. novices’ and experts’ 

reading of proofs to compare their validation behaviors (Inglis & Alcock, 2012).  

Our ultimate goal is to understand the process of proof validation. Our specific research 

question was: Would taking an inquiry-based  transition-to-proof course that emphasized 

proof construction significantly enhance students’ proof validation abilities? 

 

Setting: The Course and the Students  

The course the participants attended is meant as a 2
nd

 year transition-to-proof course for 

mathematics majors, but is often taken by a variety of majors and by more advanced 

students.
1
 The students were given notes with definitions, some explanations, and requests for 

examples and statements of theorems to prove. They proved the theorems outside of class and 

presented their proofs in class and received extensive critiques. In addition, about once a 

week, the class worked in groups to co-construct proofs of upcoming theorems in the notes. 

Sometimes, if the students seemed to need it, there were mini-lectures on topics such as logic. 

Sixteen of the 17 enrolled students opted to participate in the study for extra credit. Of these, 

81% (13 of 16) were either mathematics majors, secondary education mathematics majors, or 

                                                           
1
 We have found that students are often afraid of a transition-to-proof course, and that instead of taking it before 

courses like abstract algebra and real analysis (with which it is supposed to help), they take it later. 
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were in mathematics-related fields (e.g., electrical engineering, civil engineering, computer 

science). In addition to homework, which consisted of attempts to prove the next two or three 

theorems in the notes, and presenting their attempted proofs in class, the students had mid-

term and final examinations. Topics included sets, functions, continuity, and beginning 

abstract algebra. The teaching aim was to have students experience constructing as many 

different kinds of proofs as possible, especially in abstract algebra and real analysis. 

 

Methodology: The Conduct of the Interviews  

Interviews were conducted outside of class during the final two weeks of the course. 

The students received extra credit for participating and signed up for one-hour time slots. 

They were told that they need not study for this extra credit session. The protocol was the 

same as that of our earlier validation study (Selden & Selden, 2003). Upon arrival, 

participants were first informed that they were going to validate four student-constructed 

“proofs” of a single number theory theorem. They were asked to think aloud and to decide 

whether the purported proofs were indeed proofs. Only “Proof (b)” was. Participants were 

encouraged to ask clarification questions and informed that the interviewer would decide 

whether a question could be answered. They were given the same Fact Sheet (see 

Appendix 1) about multiples of 3 provided to the participants of our earlier study.  

There were four phases to the interview: A warm-up phase during which the students 

gave examples of the theorem: For any positive integer n, if n
2
 is a multiple of 3, then n is a 

multiple of 3 and then tried to prove it; a second phase during which they validated, one-

by-one, the four purported (student-constructed) proofs of the theorem; a third phase during 

which they were able to reconsider the four purported proofs (presented altogether on one 

sheet of paper), and a fourth debrief phase during which they answered questions about 

how they normally read proofs. (See Appendix 2 for details.) 

The interviews were audio recorded. The participants
2
 wrote as much or as little as they 

wanted on the sheets with the purported proofs. Participants took as much time as they 

wanted to validate each proof, with one participant initially taking 25 minutes to validate 

“Proof (a)”. The interviewer answered an occasional clarification question, such as the 

meaning of the vertical bar in 3|n
2
, but otherwise only took notes, and handed the 

participants the next printed page when they were ready for it. Our 2003 paper contains a 

detailed textual analysis of the purported proofs (pp. 10-18). 

The data collected included: the sheets on which the participants wrote, the 

interviewer’s notes, and the recordings of the interviews. These data were analyzed 

multiple times to note anything that might be of interest. Tallies were made of such things 

as: the number of correct judgments made by each participant individually; the percentage 

of correct judgments made by the participants (as a group) at the end of Phase 2 and again 

at the end of Phase 3; the validation behaviors that the participants were observed by the 

interviewer to have taken; the validation comments that the participants proffered; the 

amount of time taken by each participant to validate each of the purported proofs; the 

number of times each participant reread each purported proof; the number of participants 

who underlined or circled parts of the purported proofs; the number of times the 

participants substituted numbers for n; and the number of times the participants consulted 

the Fact Sheet. Many of these are indicated below.  

 

Observed Participants’ Validation Behaviors  

All participants appeared to take the task very seriously and some participants spent a 

                                                           
2
 Because the purported proofs were constructed by undergraduate students and because the participants in this 

study were also undergraduate students, we will henceforth refer to the undergraduates in this study as 

“participants” to avoid confusion.  

1018 17th Annual Conference on Research in Undergraduate Mathematics Education



 

great deal of time validating at least one of the purported proofs. For example, LH
3
 initially 

took 25 minutes to validate “Proof (a)” before going on, and VL initially took 20 minutes 

to validate “Proof (b)”. The minimum, maximum, and mean times for validating each 

purported proof are given in Table 1.  

 

Table 1: Time (in minutes) taken initially to validate the purported proofs (during Phase 2) 

 “Proof (a)” “Proof (b)” “Proof (c)” “Proof (d)” 

Maximum time 25  20  16 9 

Minimum time 5 2 3 2 

Mean time  8.8  8.5  6.3 4.5 

 

The following (probably beneficial) behaviors
4
 were observed as being enacted by the 

participants; the percentages and absolute numbers are given in parentheses:  

1. underlined, or circled, parts of the purported proofs (100%, 16);  

2. pointed with their pencils or fingers to words or phrases, as they read along 

linearly (50%, 8); 

3. checked the algebra, for example, by “foiling” (3n+1)
2
 (62.5%, 10); 

4. substituted numbers for n to check the purported equalities (37.5%, 6);  

5. reread all, or parts of, the purported proofs (87.5%, 14);  

6. consulted the Fact Sheet to check something about multiples of 3 (56.25%, 9). 

Summarizing the above, participants used focus/reflection aids (1. & 2.); checked 

computations or tested examples (3. & 4.); revisited important points – perhaps as a 

protection against “mind wandering” (5.); and checked their own knowledge (6.). 

 

Participants’ Proffered Evaluative Comments  
The participants sometimes voiced what they didn’t like about the purported proofs. 

For example, CY objected to “Proof (b)” being referred to as a proof by contradiction. He 

insisted it was a contrapositive proof and twice crossed out the final words “we have a 

proof by contradiction”. Fourteen (87.5%) mentioned the lack of a proof framework,
5
 or an 

equivalent, even though the interviewer had informed them at the outset that the students 

who wrote the purported proofs had not been taught to construct proof frameworks.  

Below are some additional features that seemed to bother some participants:  

1. lack of clarity in the way the purported proofs were written, referring to parts of 

them as “confusing”, “convoluted”, “a mess”, or not “making sense” (68.75%); 

2. the notation, which one participant called “wacky”; 

3. the fact that “Proof (d)” started with n, then introduced m, and did not go back 

to n; 

4. not knowing what the students who had constructed the purported proofs knew 

or were allowed to assume: 

5. having too much, or too little, information in a purported proof. For example, 

one participant said there was “not enough evidence for a contradiction” in 

                                                           
3
 Initials, like LH, designate individual participants. 

4
 Ko and Knuth (2013, p. 27) referred to validation behaviors, such as checking line-by-line or example-based 

reasoning as “strategies” for validating proofs. We prefer the term “behaviors” as the act of underlining or 

circling parts of proofs is evidence of focus, not strategy, which usually entails a plan. 
5
 A proof framework is a “representation of the ‘top level’ logical structure of a proof, which does not depend on 

a detailed knowledge of the mathematical concepts, but is rich enough to allow the reconstruction of the 

statement being proved or one equivalent to it.” (Selden & Selden, 1995, p. 129). In practice, in this transition-

to-proof course, this meant writing the hypotheses at the top of the nascent proof, leaving a blank space for the 

details, and writing the conclusion at the bottom of the proof, and perhaps, also unpacking the conclusion and 

writing as much as possible of the structure of the proof. 
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“Proof (b)”; 

6. the “gap” in “Proof (c)” which was remarked on by six participants. 

 

Individual Participants’ Comments 

Below are some participants’ comments,
6
 indicating which are local and which are 

overall. The overall comments often seemed to have more to do with making sense, having 

enough information, or being a “strong” proof, rather than with the structure of the 

purported proofs. Indeed, no participant even commented on the strange division of “Proof 

(a)” into odd and even cases. This general lack of global, structural comments is similar to 

prior findings (e.g., Inglis & Alcock, 2012; Selden & Selden, 2003).  

Local comments on “Proof (a)”: “[I] don’t like the string of = s.” (MO). “3n+1, if n=1, 

is not odd, [rather it] would be even.” (KW). “This [pointing to n
2 
= 9n

2
] isn’t equal.” (AF). 

Overall comments on “Proof (a)”: “[It] needs more explanation -- I can’t see where 

they are going.” (CL). “[The] first case doesn’t seem right.” (CY). “Not going where they 

need to go.” (KW). “Not a proper proof”. (FR). “Partial proof”. (MO). 

Local comments on “Proof (b)”: “Not seeing the closing statement.” (FR). “Not a 

proof because we don’t introduce n, but we use n.” (KK). 

Overall comments on “Proof (b)”: “[This makes] a lot more sense to me [than “Proof 

(a)”]” (CL). “[It’s] not written well.” (SS). “[I] feel like it’s a proof because [they’re] 

showing that the two integers in between are not multiples of 3” (AF). 

Local comments on “Proof (c)”: Commenting on the use of the universal quantifier 

with x, “[The bit about] where x is any integer worries me” (CJ).  

Overall comments on Proof (c)”: “Just can’t get my head around [it].” (CY). “Need 

more information. Don’t buy it.” (CJ). “[This one is] closer [to a proof] than the others.” 

(KK). “Sound proof”. (MO). 

Local comments on “Proof (d)”: “Why would you use m? ... [It’s] kind of confusing 

with that m.” (LH). 

Overall comments on “Proof (d)”: “[He is] putting [in] more information than needs to 

be [there]. [This does] not help his proof.” (MO). “Not a strong proof.” (LH). 

We note that the sample participants’ comments, given in the above two sections, do not 

focus just on whether the theorem has been proved. We suspect participants might have had 

difficulty separating matters of validity from matters of style and personal preference, or even 

from their own confusion. 

 

What Participants Said They Do When Reading Proofs 

In answer to the final debrief questions, all participants said that they check every step of 

a proof or read a proof line-by-line. All said they reread a proof several times or as many 

times as needed. All, but one, said that they expand proofs by making calculations or making 

subproofs. In addition, some volunteered that they work through proofs with an example, 

write on scratch paper, read aloud, or look for the framework. All of this can be helpful. 

Furthermore, ten  (62.5%) said they tell if a proof is correct by whether it “makes sense” or 

they “understand it”. These are cognitive feelings that, with experience, can be useful. Four 

(25%) said a proof is incorrect if it has a mistake, and four (25%) said a proof is correct “if 

they prove what they set out to prove.” These last two views of proof call for some caution. 

 

Discussion and Conclusions  

In answer to the initial research question, the participants in this study took their task 

very seriously, but made fewer final correct judgments (73% vs. 81%) than the 

                                                           
6
 After each comment, in parentheses, we have indicated the participant who made the comment. 
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undergraduates studied earlier (Selden & Selden, 2003) despite, as a group, being 

somewhat further along academically. In this study, 56% (9 of 16) of the participants were 

in their 4
th

 year of university, whereas just 37.5% (3 of 8) of the undergraduates in our 

earlier study were in their 4
th

 year. Because the participants in this study were completing 

an inquiry-based transition-to-proof course emphasizing proof construction, we conjectured 

they would be better at proof validation than those at the beginning of our earlier transition-

to-proof course (Selden & Selden, 2003), but they weren’t. We have tentatively concluded 

that if one wants undergraduates to learn to validate “messy” student-constructed, 

purported proofs, in a reliable way, one needs to teach validation explicitly. We stress this 

because it is counterintuitive. As students most mathematicians have received considerable 

implicit proof construction instruction through feedback on assessments. However, most 

have received no validation instruction, but are very skilled at it. 

 

Future Research  

In addition to proof validation, there are three additional related concepts in the 

literature: proof comprehension, proof construction, and proof evaluation. There has been 

little research on how these four concepts are related. In this study, we investigated one of 

them -- whether improving undergraduates’ proof construction abilities would enhance 

their proof validation abilities and obtained some negative evidence.  

Proof comprehension means understanding a (textbook or lecture) proof. Mejia-Ramos, 

Fuller, Weber, Rhoads, and Samkoff (2012) have given an assessment model for proof 

comprehension, and thereby described it in practical terms. Examples of their assessment 

items include: Write the given statement in your own words. Identify the type of proof 

framework. Make explicit an implicit warrant in the proof. Provide a summary of the proof. 

Proof construction means constructing correct proofs at the level expected of 

mathematics students (depending which year they are in their program of study).  

Proof evaluation was described by Pfeiffer (2011) as “determining whether a proof is 

correct and establishes the truth of a statement (validation) and also how good it is 

regarding a wider range of features such as clarity, context, sufficiency without excess, 

insight, convincingness or enhancement of understanding.” (p. 5). 

While it is still an open question as to how these four concepts are related, in addition 

to our study, Pfeiffer (2011) conjectured that practice in proof evaluation could help 

undergraduates appreciate the role of proofs and also help them in constructing proofs for 

themselves. She obtained some positive evidence, but her conjecture needs further 

investigation. As for proof comprehension, it is an open question as to whether practice in 

comprehension would help any of proof evaluation, proof validation, or proof construction. 

In addition, there is anecdotal evidence that some of today’s transition-to-proof 

courses/textbooks are thought to be inadequate for the task of actually transitioning 

students from lower level undergraduate mathematics courses to upper level undergraduate 

proof-based courses, such as abstract algebra and real analysis. Whether this is the case, 

and to what degree, should be investigated. 

Finally, we feel that there is a need to develop characteristics of a reasonable learning 

progression for tertiary proof construction, going from novice
7
 (lower-division mathematics 

students) to competent (upper-division mathematics students), on to proficient 

(mathematics graduate students), and eventually to expert (mathematicians). 

 

 

                                                           
7
 The terms novice, proficient, competent, and expert have been adapted from the Dreyfus and Dreyfus (1986) 

novice-to-expert scale of skill acquisition. 
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Appendix 1: Fact Sheet 

[from Selden and Selden (2003), p. 32] 
 

FACT 1. The positive integers, Z
+
, can be divided up into three kinds of integers -- those of 

the form 3n for some integer n, those of the form 3n + 1 for some integer n, and those of the 

form 3n + 2 for some integer n. 

 

For example,  

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11… 

  3n 3n+1 3n+2 3n 3n+1 3n+2    

  where n = 1 where n = 2    

 

FACT 2. Integers of the form 3n (that is, 3, 6, 9, 12, . . .) are called multiples of 3. 

 

FACT 3. No integer can be of two of these kinds simultaneously. So m is not a multiple of 3 

means the same as m is of the form 3n+1 or 3n+2. 

 

Appendix 2: Interview Protocol 

[from Selden and Selden (2003), pp. 32-33] 

PHASE 1: ‘Warm Up’ Exercises 

For any positive integer n, if n
2
 is a multiple of 3, then n is a multiple of 3. 

1. Explain, in your own words, what the above statement says. 

2. Give some examples of the above statement. 

3. Does the above statement seem to be true? How do you tell? 

4. Do you think you could give a proof of the above statement?  
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PHASE 2: Sequential consideration of ‘Proofs’ (a), (b), (c), (d). [The purported proofs 

were presented to the participants, one page at a time, during this Phase.  The purported 

proofs are given below under Phase 3.] 
 

PHASE 3: ‘Recap’ on the ‘Proofs’ 

Below are several purported proofs of the following statement: 

 

For any positive integer n, if n
2
 is a multiple of 3, then n is a multiple of 3. 

 

For each one, decide whether or not it is a proof. Try to “think out loud” so you can let me in 

on your decision process. If it is not a proof, point out which part(s) are problematic. If you 

can, say where, or in what ways, the purported proof has gone wrong. 

 

(a). Proof: Assume that n
2
 is an odd positive integer that is divisible by 3. That is n

2
 = 

(3n + 1)
2
 = 9n

2
 + 6n + 1 = 3n(n + 2) + 1. Therefore, n

2
 is divisible by 3. Assume that n

2
 is 

even and a multiple of 3. That is n
2
 = (3n)

2
 = 9n

2
 = 3n(3n). Therefore, n

2
 is a multiple of 3. If 

we factor n
2
 = 9n

2
, we get 3n(3n); which means that n is a multiple of 3.  

 

(b). Proof: Suppose to the contrary that n is not a multiple of 3. We will let 3k be a positive 

integer that is a multiple of 3, so that 3k + 1 and 3k + 2 are integers that are not multiples of 3. 

Now n
2
 = (3k + 1)

2
 = 9k

2
 + 6k + 1 = 3(3k

2
 + 2k) + 1. Since 3(3k

2
 + 2k) is a multiple of 3, 

3(3k
2
 + 2k) + 1 is not. Now we will do the other possibility, 3k + 2. So, n

2
 = (3k + 2)

2
 = 9k

2
 + 

12k + 4 = 3(3k
2
 + 4k + 1) + 1 is not a multiple of 3. Because n

2
 is not a multiple of 3, we have 

a contradiction.  

 

(c). Proof: Let n be an integer such that n
2
 = 3x where x is any integer. Then 3|n

2
. Since n

2
 = 

3x, nn = 3x. Thus 3|n. Therefore if n
2
 is a multiple of 3, then n is a multiple of 3.  

 

(d). Proof: Let n be a positive integer such that n
2
 is a multiple of 3. Then n = 3m where m  

Z
+
. So n

2
 = (3m)

2
 = 9m

2
 = 3(3m

2
). This breaks down into 3m times 3m which shows that m is 

a multiple of 3.  

 

PHASE 4. Final Questions 

1. When you read a proof is there anything different you do, say, than in reading a 

newspaper? 

2. Specifically, what do you do when you read a proof? 

3. Do you check every step? 

4. Do you read it more than once? How many times? 

5. Do you make small subproofs or expand steps? 

6. How do you tell when a proof is correct or incorrect? 

7. How do you know a proof proves this theorem instead of some other theorem? 

8.  Why do we have proofs?  
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AN ANALYSIS OF TRANSITION-TO-PROOF COURSE STUDENTS’  

PROOF CONSTRUCTIONS WITH A VIEW TOWARDS COURSE REDESIGN 

 

                          Ahmed Benkhalti              John Selden              Annie Selden 

                          New Mexico State        New Mexico State     New Mexico State 

 

The purpose of the study was to gain knowledge about undergraduate transition-to-

proof course students’ proving difficulties. We analyzed the final examination papers of 

students in one such course. Our perspective included the sometimes automated links 

between situations and (mental, as well as physical) actions. We have tentatively 

identified process, rather than content, categories of difficulties such as nonstandard 

language/notation, insufficient warrants, and extraneous statements. The ultimate goal 

is to use an understanding of some of these categories as pedagogical content 

knowledge with which to redesign an existing transition-to-proof course.  

Key words: Transition-to-proof, Proof construction, Pedagogical content knowledge, Actions, 

Proof framework 

     This paper presents part of an analysis of transition-to-proof course students’ final 

examinations in an effort to categorize their proving difficulties and develop pedagogical content 

knowledge contributing to course redesign. Our goal is to go beyond content errors to difficulties 

of process and cognition and to consider links between situations and actions. 

     While some studies of students’ proving difficulties have been made before, they have not 

been so closely aimed at course design. Also, several studies have been conducted with students 

who were mathematically more advanced. For example, Selden and Selden (1987) examined 

errors and misconceptions in undergraduate abstract algebra students’ proof attempts. The 

difficulties reported there have little in common with those observed in this study. In addition, 

Weber’s (2001) study, contrasting undergraduate abstract algebra students with doctoral students 

in algebra, showed that the latter had strategic (content) knowledge to use in making algebra 

proofs that the undergraduates did not have. Our study, in contrast, gives insight into the proving 

difficulties of relative beginners, that is, undergraduate students at the end of a transition-to-

proof course. We note that Moore (1994) observed a traditionally taught transition-to-proof 

course and reported seven student proving difficulties, some of which do overlap with our 

categories, but in general, our categories are more fine-grained. In addition, Baker and Campbell 

(2004) reported three observations of somewhat less sophisticated transition-to-proof course 

students.   

     Selden and Selden (1995) did observe process difficulties in unpacking the logic of informal 

mathematical statements. They reported that informal statements that departed from the simplest 

natural language rendering of predicate and propositional calculus were difficult for students to 

unpack and hence difficult to prove. This information was used in designing our current course.  

 

Conduct of the Study 

     We analyzed all 16 take-home and all 16 in-class final examination papers from one 

transition-to-proof course at a mid-sized U.S. Ph.D.-granting university. This inquiry-based 

course was taught entirely from notes with students constructing original proofs and receiving 
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critiques in class. In order to coordinate with later courses, the notes included some theorems 

about sets, functions, real analysis, and abstract algebra. To maximize student proof presentation, 

logic was taught in context as the need arose, mainly through the discussion of students’ logical 

errors. The items on the examinations consisted entirely of requests for original proofs of 

theorems new to the students, but based on the course notes, which were available during the 

examination. 

     The papers were analyzed through several iterations, looking for categories of students’ 

proving difficulties until the researchers came to an agreement about categories emerging from 

the data. The categories were chosen at a level of abstraction above specific mathematical topics 

so they would reflect process difficulties. For example, some were about students not unpacking 

a conclusion, as opposed to holding a misconception about groups.  

     We adopted the perspective that a proof construction consists of a sequence of mental or 

physical actions, some of which do not appear in the final proof. Such actions are driven by 

understandings of situations in the developing proof construction (Selden, McKee, & Selden, 

2010). With repetition, a situation-action link may be automated (Bargh, 2014), yielding 

behavioral knowledge (Selden & Selden, 2009, p. 343) and thus reducing the call on working 

memory. One important action is the construction of a proof framework, somewhat similar to 

that described in Selden and Selden (1995). Writing a proof framework consists not only of 

writing the hypothesis at the beginning of a proof and the conclusion at its end, but also of doing 

the same for any subproof, and in particular, for the unpacked conclusion. We have included in 

our categories beneficial actions that some students did not take, such as writing a full proof 

framework, as well as detrimental actions that they did take, such as including definitions in 

proofs. (See 3. Beneficial actions … .) 

 

Categories 

In our initial analysis, we allowed categories within categories and hope that their hierarchy 

will help identify the most important needed interventions. We have thus far tentatively 

identified the following categories: extraneous statements, inadequate proof framework, 

unfinished proof, assumption of the negation of a previously established fact, incorrect 

deduction, nonstandard language/notation, failure to unpack the hypothesis or conclusion, 

insufficient warrant, assumption of all or part of the conclusion, assertion of an untrue “result”, 

wrong or incorrectly used definitions, difficulties with proof by contradiction, computational 

errors, misuse of logic, failure to use cases when appropriate, inappropriately mimicking a prior 

proof, and omitting beneficial actions and taking detrimental ones. Below we illustrate three of 

these categories: 

 

1. Nonstandard language/notation 

      In an attempt to prove that the split domain function h, defined by h(x) = f(x) if x ≥ a and 

h(x) = g(x) if x < a, is continuous at a, given that both f and g are continuous at a and f(a) = g(a), 

one student (4A.3) wrote:   “|f(x)-f(a)|< ε/2 – |g(x)-g(a)|< ε/2”.   This action, subtracting a 

statement such as  “|g(x)-g(a)|< ε/2”,  from another statement, violates normal mathematical 

syntax. Subtraction is an arithmetic operation used between numbers or variable representing 

numbers, not a logical operation used between statements. How to prevent students from taking 

such nonsensical actions is an interesting pedagogical question. 
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2. Unfinished proof 

     In an attempt to prove that f(G) is a group given that S and T are semigroups,  f:S→T is a 

homomorphism, and G is a subgroup of S, Student 9B.4 did not warrant or show that f(G) is a 

semigroup, that is, that f(G) is nonempty and closed under the operation, but did attempt to show 

the existence of an identity and inverses. (See Appendix.) Student 9B.4 appears not to have 

known the definition of group, a difficulty noted by Moore (1994), but in fact had it available. 

3. Beneficial actions not taken and detrimental actions taken 

     In an attempt to prove that a semigroup S is commutative, given that for all s ϵ S we have ss = 

e, where e is an identity of S, Student 5A.4 did not write a full proof framework. In particular, 

Student 5A.4 did not use the unpacked conclusion, namely that ab = ba for all a, b ϵ S, to 

structure the proof, that is, Student 5A.4 did not introduce an arbitrary a, b ϵ S into the proof. 

This was a beneficial action that Student 5A.4 did not take take. (See Appendix.) We think that 

had Student 5A.4 written the full proof framework and “explored” the equation (ab)(ab) = e and 

its consequences, he or she might have been able to construct a correct proof. We also think 

student, like 5A.4, would benefit from explicit instruction in this sort of “exploration”.   

Discussion 

    Focusing on abstraction above the level of specific mathematical topics and on automated 

actions driven by (inner) interpretations of situations suggests that deductive reasoning is not 

mainly an interaction of logic and content familiarity, but also depends on several kinds of 

behavioral and procedural knowledge. In addition to adding a line to the emerging proof or a 

sketch to scratch work, such behavioral knowledge can yield “meta-actions” (meant to influence 

one’s own thinking) and actions influenced by (cognitive) feelings or unconscious priming 

(Bargh, 2014). For example Student 5A.4 (Example 3 above) needs to learn when to write a 

proof framework and not to write things like Lines 3, 4, 5, and 6 (see Appendix). In addition, 

Student 5A.4 needs to learn when to “explore”, that is, create and manipulate objects like abab = 

e without knowing this will be useful—actions requiring a feeling of self-efficacy (Selden & 

Selden, to appear). 

Discussion Questions 

1. How could students be taught to autonomously take better actions than 5A.4 (Example 3 

above)? 

2. Student 9B.4 (Example 2 above) appears not to know the definition of a group, but he/she 

had access to it. What should 9B.4 be taught about using definitions? 
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Appendix 

 

 Below we give two student-constructed “proofs” together with sample correct proofs. We 

note that student proving difficulties seem often not to be isolated, but occur in combinations. 

 

Theorem. Let S be a semigroup with an identity element e. If, for all s in S, ss = e, then S is 

commutative.  

Student “Proof” 5A.4 

Proof: Let S be a semigroup with an identiy 

element, e. Let s ϵ S such that ss = e. 

Because e is an identity element, es = se = s. 

Now, s = se = s(ss). 

Since S is a semigroup, (ss)s = es = s. 

Thus es = se. 

Therefore, S is commutative. QED.  

 

 

Sample Correct Proof 

Proof: Let S be a semigroup with identity e. 

Suppose for all s ϵ S, ss = e. 

Let a, b be elements in S. 

Now abab = e, so (abab)b = eb = b. 

But (abab)b = aba(bb) = (aba)e = aba. 

Thus aba = b, so, (aba)a = ba, and (aba)a = 

ab(aa) = abe = ab. 

Thus ba = ab. 

Therefore, S is commutative.  QED 
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SCRATCHWORK: 

7.1: A semigroup is called commutative or 

Abelian if, for each a and b ϵ S, ab = ba.         

7.5: An element e of a semigroup S is called an 

identity element of S if, for all s ϵ S, es =  

se = s.  

 

Comment: Student 5A.4’s Line 2 probably meant “Suppose, for all s ϵ S, ss = e.” Line 3 violates 

the mathematical norm of not including in a proof definitions that can easily be found outside the 

proof. Also Lines 4, 5, and 6 could not contribute to the proof because they do not involve two 

variables (necessary to show commutativity). While Lines 3, 4, 5, and 6 are true, we conjecture 

they should not have been included for psychological reasons because they might have wrongly 

suggested to Student 5A.4 that something useful had been done. 

Theorem. Let S and T be semigroups and f:S→T be a homomorphism. If G is a subset of S 

and G is a group with identity e, then f(G) is a group. 

Student “Proof” 9B.4 

Proof: Let S and T be semigroups and f:S→T 

be a homomorphism. Suppose G  S and G is 

a group with identity e. Since G is a group and 

it has identity e, then for each element g in G 

there is an element g’ in G such that gg' = g'g 

= e. Since f is a homomorphism, then for each 

element x ϵ S and y ϵ S, f(xy)=f(x)f(y). Since  

G  S, then f(gg')=f(g)f(g'). So f(gg') = f(g'g) =                     

f(e). So f(G) has a an element f(e) since f is a 

function. Therefore, f(G) is a group.  QED.  

Sample Correct Proof 

Proof: Let S and T be semigroups and f:S→T 

be a homomorphism. Let G be a subset of S 

and G be a group with identity e.  

     Part 1.Note that G is a subsemigroup of S 

so, by Theorem 20.4, f(G) is a semigroup. 

      Part 2. Let y ϵ f(G). Then there is x ϵ G so 

that f(x) = y. Now f(e) ϵ  f(G) and f(e)y = 

f(e) f(x) = f(ex) = f(x) = y. Similarly, y f(e) = y. 

Thus f(e) is an identity for  f(G). 

      Part 3. Let q in f(G). Then there is p ϵ G so 

that f(p) = q. Now because G is a group, there 

is p' ϵ G so that pp' = p'p = e. Thus  

q f(p') = f(p) f(p') = f(pp') = f(e), and   

f(p')q = f(p') f(p) = f(p' p) = f(e). Thus, each  

q ϵ f(G) has an inverse, f(p'), in f(G). 

    Therefore, is a f(G) group.  QED 

 

Comment: After writing the beginning and end of the proof (which could be considered the start 

of a proof framework), Student 9B.4 should have continued constructing the framework by 

unpacking and using the meaning of f(G) is a group. This has three parts and is about f(G), not G. 

Including the three parts could have further “structured” the proof. Instead, Student 9B.4 wrote 

into the proof the definition of G being a group and f being a homomorphism. These were not 

useful because the conclusion is about f(G), not G. We conjecture that those two actions served 

only to wrongly suggest to Student 9B.4 that progress on a proof had been made. 
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STUDENTS’ UNDERSTANDING OF EXPONENTIAL FUNCTIONS IN THE 
CONTEXT OF FINANCIAL MATHEMATICS 

Natalie E. Selinski 
San Diego State University 

Exponential functions are one of the most critical mathematical topics used by students in 
financial mathematics. This presentation explores university finance students’ notion of 
exponential function from two sets of data. First, I use data collected through surveys to 
examine students’ understanding of exponential function in general and, more specifically, to 
identify the extent to which students conflate exponential functions with polynomials. I then 
draw on data collected in an inquiry-based instructional sequence aimed at improving 
financial mathematics students’ understanding of exponential functions. Results include 
delineation of what ways of understanding exponential functions are critical to studying 
financial mathematics and insights into how best to guide students in developing these 
understandings within the context of their field of study. 

Key words: Exponential Functions, Realistic Mathematics Education, Financial Mathematics 

Exponential functions are one of the most critical mathematical topics used by students in 
financial mathematics, but they are also one of the most challenging topics. There exists a 
wide but scattered body of literature addressing this challenge. Some document the power 
and limitation of various conceptions and misconceptions of exponential functions (cf. 
Confrey, 1990; Strom, 2012). Radley (2004) questions the language of exponential functions, 
suggesting that calling a function with an independent variable in the exponent an 
exponential function while calling a function with an independent variable in the base a 
power function (as opposed to a base function) clouds students’ understanding of a base and 
power. Weber (2002) suggests students’ limited knowledge about exponential and 
logarithmic functions stems from weak reasoning about the process of exponentiation.  

Other literature provides ideas for alternative instruction approaches. Confrey and Smith 
(1995) develop an approach to exponential functions using a combination of covariation of 
functions and an isomorphism between multiplication as repeated addition and 
exponentiation as repeated multiplication. Webb, van der Kooij, and Geist’s (2011) use 
Realistic Mathematics Education design principles to create an instructional sequence aimed 
at developing student understanding of logarithms, including a task for approaching 
exponential growth and exponential functions by contrasting linear and exponential growth.  

In this report I build from and extend both these bodies of literature, first by identifying 
the student conceptions of exponential functions that business students bring to their first 
semester studies in financial mathematics, then by analyzing the ways in which an 
instructional sequence similar to that developed by Webb et al. could be used to deepen 
students’ understanding of exponential function as needed in their financial mathematics 
studies.  

Methodology: Selection of Participants and Method of Data Collection and Analysis 
Data for this study were collected from students in a remedial mathematics bridging 

course that ran parallel to the students typical first semester studies in financial mathematics 
and business law at an applied science university in Germany. All students in the required 
financial mathematics course had been recommended to attend the bridging course following 
overall poor performance on a mathematics entrance exam at the beginning of the semester. 
Nevertheless, participation in the bridging course was voluntary. As such, only 16 out of 40 
first semester students attended the bridging course on one or more occasions. 
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Prior to any discussion of exponents or exponential functions in the bridging course, a 
survey was administered to establish a baseline of students’ understandings of exponents, 
exponential functions, logarithms, and logarithmic functions. For the purpose of this report, 
only those questions regarding exponents and exponential functions will be discussed. The 
following figure gives the relevant survey questions: 

 

Figure 1. Survey questions regarding exponents and exponential functions. 
 

The survey was administered in middle of the semester, after the required financial 
mathematics course had covered cost-, revenue-, and profit-functions as well as interest 
calculations. On the day the surveys were completed in the bridging course, 12 students were 
in attendance. All students voluntarily participated in the surveys, which took approximately 
10-15 minutes. 

In the classes following the survey, two related inquiry-based tasks were used to explore 
exponential functions in the context of financial mathematics. The introductory parts of these 
tasks are presented in Figures 2 and 3.  

 

Figure 2. Introduction to first task: Borrowed Money 1 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Introduction to second task: Borrowed Money 2 

1. What is an exponent? Use examples, graphs, formulas, words, definitions, etc. 
to describe your understanding of exponents. 

2. What is an exponential function? Again, use examples, graphs, formulas, 
words, definitions, etc. to describe your understanding of exponential 
functions. 

3. How are exponents and exponential functions used in financial mathematics? 

You need 100€ more to buy the latest iPhone, so you borrow it from one of your 
siblings. Your sister is willing to lend you the money. She would charge you 5.50€ 
interest for every month you haven’t paid her back. How much would you owe your 
sister after 1 month? 2 months? 3? 4? 5? 12? Write a formula for how much you 
would owe your sister after t months and draw the graph. Your brother would charge 
you 5% interest for every month you haven’t paid him back. How much would you 
owe your brother after 1 month? 2 months? 3? 4? 5? 12? Write a formula for how 
much you would owe your brother after t months and draw the graph. 

You still need 100€ to buy the latest iPhone. Unfortunately, when you borrowed 
money in the past, you rarely paid it back. So there are very few people who will lend 
you money.  

1. Your brother will lend you the money with a nominal interest rate of 100% 
compounded yearly. How much do you owe your brother after 1 year? 2 
years? 3 years? ½ year? Write a formula for this situation.  

2. Your cousin will also lend you the money, but you must pay it back in two 
years. You think this will not be a problem, since in two years you plan to have 
a good job in finance and should be able to pay him back. Your cousin hasn’t 
decided on a nominal interest rate yet, but will compound the interest yearly. 
How much will you owe your cousin if the nominal interest rate is 5%? 10%? 
50%? 100%? 150%? 200%? Write a formula for this situation. 
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Particular care in the design of the tasks was given to differentiating between exponential 
functions and polynomials. Data from these tasks included classroom video-recordings, 
detailed observational notes taken immediately after class by the instructor, and copies of all 
written work by students and instructor. 

As the semester progressed, attendance in the bridging course decreased and became 
more sporadic. As such, only two students participated in all three consecutive classes in 
which exponential functions were discussed and hence only these two students are used as the 
case study analysis. Case study data will be analyzed using a coding developed out of the 
survey and classroom data, vetted by other researchers, in the spirit of grounded theory. The 
framework for students’ mathematical noticing as developed by Lobato, Hohensee, and 
Rhodehamel (2013) will be used to guide the analysis 

Preliminary Results 
In the survey students identified any function with an exponent as an exponential 

function. Figure 4 show the responses of two students that represent typical responses from 
10 out of 12 students to the second survey question: What is an exponential function? 

 

            
Figure 4.  Students describe an exponential function as “a function that 

contains exponents” [translation], meaning both functions like a quadratic 
function (left) or the e function (right) 

 
In perceiving both polynomials and functions with a known basis and unknown exponent as 
exponential functions, 8 out of 12 students incorrectly identified applications of exponential 
functions in financial mathematics, as in the student response to the third survey question 
(How are exponents and exponential functions used in financial mathematics?) in Figure 5. 
 

 
Figure 5. Student response translates to “to create cost-, revenue-, and profit-functions / in 

interest-/retirement calculations” 
 
Here the student interprets the generalized formula for yearly compounded interest 
𝐾! = 𝐾! ∙ (1+ 𝑖)! as an example of exponential function. However, this formula does not 
yield an exponential function when the initial principle and time of the investment are 
parameters and the interest rate is the exponential function. To what extent do students 
conflate or leave the potential to conflate polynomials and exponential functions? How would 
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this conflation or incorrect understanding of exponential function impact students’ studies in 
financial mathematics? 

To begin unpacking these questions, the instructor developed and guided students through 
the two tasks introduced in Figures 2 and 3, Borrowed Money 1 and 2. In the report, I will 
present examples from the two students in the case study and their changing understanding of 
exponential function as evidenced by their work on the tasks Borrowed Money 1 and 2. 
Examples of this changing understanding of exponential functions, first as a distinction 
between linear and exponential functions and later as a distinction between polynomials and 
exponential functions, are shown in Figures 6 and 7, which come from whole class 
summation of the Borrowed Money tasks. 

 

Figure 6. Class summation of the sister’s situation versus the brother’s situation in 
Borrowed Money 1. Translation: “Linear – Sister: 𝐾! = 100€+ 𝑛 ∙ 5,50€,𝑛 = 
number of months, constant slope” and “Exponential – Brother: 𝐾! = 100€ ∙
1+ 0.05 !,𝑛 =number of months, slope is not regular, increases always more” 

 
 

 

 

 

 

 
 
 
 
 

Figure 7. Portion of the class summation of the brother’s situation versus the 
cousin’s situation in Borrowed Money 2. Translation: “Brother: independent variable 

(always changes), n = years” and “Cousin: i = interest rate” 
 

Analysis of class discussion that produced these figures suggests that students are beginning 
to see a distinction in these various situations, both in the experientially-real interpretation of 
the situations and the mathematical behavior. I claim these distinctions can be leveraged in 
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the progress of the instructional sequences to give students reason to draw a distinction 
between polynomials and exponential functions, both in the general mathematical sense and 
in the context of financial mathematics. 

Questions for Discussion 
Existing literature (and for many, personal instructional experience) suggest multiple 

understandings of exponents and exponential functions beyond what is seen in the student 
surveys and explored in the presented tasks. What interpretations and ideas regarding 
exponential functions are necessary to students studying applied fields, particularly financial 
mathematics? What further tasks or techniques could be used to address students’ conflation 
of exponential functions and polynomials? 

As was apparent in the methodology, attendance in these voluntary remedial bridging 
courses is not consistent enough to develop any lectures or tasks that build off of each other 
from one class to the next. The only way to ensure more consistent attendance is to use these 
tasks in the required financial mathematics coursework. To what extent is it possible to 
incorporate these tasks in a required financial mathematics course? What changes would need 
to be made to the tasks to push these beyond the remedial level? What changes would occur 
to the hypothetical learning trajectory when incorporating these tasks in the required financial 
mathematics course? 
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Abstract 
This report will present preliminary findings from a research study designed to investigate 
calculus instructors’ perceptions of approximation as a central concept and possible unifying 
theme of the first-year calculus. The study will also examine the role approximation plays in 
participants’ self-reported instructional practices.  A survey was administered through Qualtrics 
to a stratified random sample of 3930 mathematicians at higher education institutions 
throughout the United States with a desired N = 300. Quantitative and qualitative methods were 
used to analyze the data gathered. Findings from this research will contribute to what is known 
about the perceptions and teaching practices of calculus instructors regarding the role of 
approximation in first-year calculus courses. Research-based findings related to the role of the 
approximation concept in the first-year calculus could have implications for first-year calculus 
curricula.  
 
Keywords: Calculus, Approximation, Central Concept, Unifying Thread, Curriculum, 
Perceptions, Higher Education 
 

Significance of the Research Issue 
This research originated from findings of a previous study conducted by Sofronas, 

DeFranco, Vinsonhaler, Gorgievski, Schroeder, and Hamlin (2011) on calculus experts’ 
perceptions of what it means to understand the first-year calculus. In that study, approximation 
was identified as a central concept of the first-year calculus by a third of the 24 calculus experts 
who participated. This finding raises important questions: Do calculus instructors in the higher 
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education community perceive approximation to be a central idea of the first-year calculus? If so, 
do calculus instructors in higher education identify approximation as a unifying thread of the 
first-year calculus? What role does approximation assume in the instructional practices of 
mathematicians teaching first-year calculus courses in higher education? More research is 
needed to gain foundational insights into the current views and instructional practices – related to 
approximation concepts – of mathematicians teaching first-year calculus courses in higher 
education. 
 

Background Literature 
Approximation ideas are often relevant to studies that explore students’ understanding of 

first-year calculus concepts such as function, continuity, limit, derivative, integral, infinite series 
and more (Asiala et al., 1997; Oehrtman, 2008, 2009; Yang & Gordon, 2008). For example, an 
exploratory study conducted by Martin (2013) examined differences in the ways in which 
calculus students and faculty (or graduate student) experts conceptualized Taylor series 
convergence.  In that study, approximation concepts were relevant to task-based interview 
questions such as those that asked participants from both groups to share their thinking about the 
purpose of studying Taylor series, approximating functions using Taylor series, and methods for 
improving those approximations. 

Oehrtman (2008, 2009) investigated calculus students’ understanding of limit concepts and 
found that students most commonly reason about limits in terms of approximations. Moreover, 
he noted that the approximation metaphor for limits most closely resembled the correct 
mathematical structure underlying the limit. Oehrtman’s (2008, 2009) research showed that 
students were able to use approximation ideas to facilitate the development of a conceptual 
structure of understanding that would ultimately provide students with the proper foundation for 
a more formal understanding of limits, if desired. 

Gordon (2012) suggested that exposing students in the first-year calculus to ideas from 
numerical analysis can lead to “…different perspectives and deeper insight into topics that they 
do see in freshman calculus” (p. 437). According to Gordon (2011), students benefit from 
examining the errors associated with left- and right-hand Riemann sums to approximate a 
definite integral whose value is known exactly. Using data analysis techniques to examine 
patterns in the errors, students derive the Trapezoid Rule, Midpoint Rule and Simpson’s Rule 
and also compare the effectiveness of those methods in approximating a definite integral. The 
power of the numerical methods for approximating an area under a curve becomes evident when 
students are then presented with examples such as “… 𝑒!!!!

! 𝑑𝑥  that cannot be evaluated in 
closed form by any of the standard integration techniques usually developed in introductory 
calculus” (Gordon, 2011, p. 149). Nonetheless, Gordon (2012) notes that many calculus 
instructors shy away from introducing numerical methods in the first-year calculus either 
because they are not acquainted or not comfortable with them.  

There has been some literature support for approximation as a unifying thread of the 
elementary calculus sequence (Gordon, 2011; Gordon, 2012; Hathaway, 2008; Knisley, 1997; 
Roberts, 1998; Sofronas et al., 2011; Yang & Gordon, 2008). Hilbert, Schwartz, Seltzer, Maceli, 
& Robinson (2010) defined unifying threads as themes that “…are woven throughout the course, 
and serve to bind it together into a unified whole” (p. xiii). As cited in Sofronas et al. (2011), 
“fragmented learning is a major problem in undergraduate mathematics courses (Baroody et al., 
2007; Berry & Nyman, 2003; Galbraith & Haines, 2000; Hiebert & Lefevre, 1987; Kannemeyer, 
2005). Students form part of the big picture of calculus when they have opportunities to make 
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connections between concepts and can identify the elements of conceptual knowledge that serve 
as the underlying principles of related procedures (Berry & Nyman, 2003)” (p. 146). Framing 
calculus curricula around unifying themes, or threads, is one means for promoting a connected 
understanding of the discipline. Dray and Manogue (2010), for example, argued that differentials 
can be used in first-year calculus courses to provide a unifying theme that may allow students to 
build a coherent conception of the calculus. 

Roberts (1998) reported on a reform project involving a working group of faculty from 26 
liberal arts colleges, which sought to develop a curricular core for a one-year single variable 
calculus course. While the fundamental theorem easily surfaced as a connecting construct of the 
first-semester calculus, it was more challenging for the working group to identify a unifying 
theme for the second-semester calculus. Ultimately, they agreed to “…build the course around 
‘precision and approximation,’ to investigate methodologies that produce exact solutions and 
when [those] approaches fail, to find ways to obtain approximate solutions with upper bounds on 
errors” (Roberts, 1998, p. 38). The working group believed, particularly in the case of the 
second-semester calculus, that approximation was a theme that provided cohesion to the 
collection of calculus ideas and techniques commonly found in Calculus II courses while – at the 
same time – “…emphasizing the importance of making approximations” (Roberts, 1998, p. 38). 

Likewise, Hathaway (2008) described an approach that used approximation as a unifying 
theme in the exploration of problems fundamental to the elementary calculus. As they engaged in 
problem solving, students were encouraged to organize their thinking around the acronym CAL: 
Capitulate, Approximate, and Limit (take). Students must first capitulate, or surrender, to the 
idea that calculus is needed to solve a given problem. In other words, it “…cannot be solved 
using existing simple algebraic techniques” (p. 543). Students then find a good approximate 
solution. Finally, students take a limit of that approximation in an effort to make their 
approximate solution exact. 

At present, no study has comprehensively examined the instructional practices and 
perceptions related to approximation concepts among mathematicians teaching first-year 
calculus courses. We hope that the preliminary findings of this study will invigorate discussion 
about approximation as a possible unifying thread in the first-year calculus, which could have 
implications for the teaching and learning of first-year calculus courses.  

 
Methodology 

Sample 
A stratified random sampling method was used to identify the sample for this study. The 

National Center for Educational Statistics database (http://nces.ed.gov/collegenavigator/) was 
used to randomly select five higher education institutions - four 4-year and one 2-year institution 
- from each state in the U.S., as well as Washington D.C., Puerto Rico, and the Virgin Islands. 
The contact information (i.e., name, institution, and email address) of all mathematicians from 
those randomly selected institutions was obtained by visiting the institutional websites. A total of 
259 institutions were randomly selected through the sampling design. Of those, 77 were 
excluded from the sample for the following reasons: (a) calculus courses were not offered at the 
institution; (b) there was no mathematics department at the institution (special-focus institution); 
or (c) mathematics faculty contact information was not publically available on the institutional 
website. From the remaining 182 institutions in the sample, a database of 3,930 mathematicians 
was compiled and all were recruited to participate in an online survey developed for the purpose 
of this study. Of the 3,930 mathematicians recruited, only those who had taught a first-year 
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calculus course were eligible to participate in the study. A total of N = 279 mathematicians 
participated in the study.  
 
Survey Instrument 

For the purpose of this study, a survey instrument was developed to examine the 
perceptions and self-reported instructional practices - as they relate to the topic of approximation 
- of mathematicians who have taught first-year calculus courses in higher education. A review of 
the literature was conducted to establish item stems for the survey. Content validity was 
established through consultations with 6 experts in the field. Items stems were added, omitted 
and refined based upon the feedback of those experts. The survey includes a series of 
demographic questions, 20 Likert-scale item stems (see Figure 1), an open text box following 
each Likert-scale item stem to allow participants the option of explaining their rating on the item 
stem, and two open-response questions. Qualtrics – a secure, internet-based survey technology 
provider - was used as the platform to create and distribute the survey.  
 

Figure 1. A sample of the Likert-scale item stems (1 = Strongly Disagree, 5 = Strongly 
Agree) included in the survey instrument. 

 
• In my own teaching of the first-year calculus, I use approximation as a 

unifying thread to connect many of the key ideas in the calculus 
curriculum. 

• In my own teaching of the first-year calculus, I stress the importance of 
knowing how good an approximation is. 

• In my own teaching of the first-year calculus, I discuss methods for 
calculating or estimating the error in an approximation. 

• In my own teaching of the first-year calculus, I discuss the notion of 
acceptable levels of error in an approximation. 

• In my own teaching of the first-year calculus, I show how the slope of 
the tangent line can be approximated by slopes of secant lines.  

 
Procedure 

Data was collected via Qualtrics for a period of 6 months. Quantitative data was exported 
to SPSS and analyzed using descriptive statistics and t-tests / analysis of variance procedures for 
statistically comparing the means of the demographic groups of interest. Qualitative data was 
coded using a posteriori categorical content analysis techniques. Members of the research team 
and trained research assistants isolated dominating themes and defined ranges of themes, 
indicators for the occurrence of a theme and rules applied to the process of coding (Kortendick & 
Fischer, 1996).  

Conclusions and Implications 
Preliminary findings of this study will be presented at the RUME-17 conference and will shed 
light on approximation ideas first-year calculus instructors report emphasizing in their teaching. 
Differences between demographic groups will be highlighted. Initial findings will also report 
themes and patterns in calculus instructors’ perceptions of approximation both as a central 
concept and a unifying theme of the first-year calculus curriculum. The alignment between self-
reported instructional practices and perceptions of approximation will also be discussed.  
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GEOMETRIC REASONING ON THE COMPLEX PLANE 

 Hortensia Soto-Johnson and Jonathan Troup 

University of Northern Colorado  

Using Bakker and Hoffman’s (2005) framework on diagrammatic reasoning, we 
analyzed a video-taped interview to explore two undergraduates’ ability to reason 
geometrically about tasks related to complex variables. Our findings indicate that 
in order to provide a geometric interpretation, our participants needed to first 
perform algebraic computations that reduced the current task to a task they knew 
how to interpret geometrically. These computations appeared to provide them 
with the pieces required to construct a diagram. Once these pieces were in place 
the participants used dynamic gesture to enact their geometric interpretations 
with the aid of their diagram. It appeared that their dynamic gestures assisted 
with embodying geometric interpretations and as such one particular task was 
influential throughout the interview. Furthermore, the participants integrated less 
dynamic gesture as they progressed with similar tasks. 

 
Key words: Algebraic reasoning, Complex variables, Diagrammatic reasoning, Geometric 

reasoning, Gestures 

Introduction and Literature Review 
Inspired by Presmeg’s (2006) list of potential research questions related to visualization and 

gesture, we explored undergraduates’ geometric reasoning of algebraic equations related to 
complex variables. Our first research question was: What is the nature of undergraduates’ 
algebraic and geometric reasoning of complex-valued equations and the interplay between the 
two representations? The second research question was: What is the nature of students’ 
integration of diagrams and gesture as part of their geometric reasoning? Our findings indicate 
that in order to provide a geometric interpretation, our participants needed to perform algebraic 
computations to reduce the current task to a task they knew how to interpret geometrically. These 
computations appeared to provide them with the pieces required to construct a diagram. Once 
these pieces were in place the participants used dynamic gesture to enact their geometric 
interpretations with the aid of their diagram. It appeared that their dynamic gestures assisted with 
embodying geometric interpretations and as such the participants integrated less dynamic gesture 
as they progressed with similar tasks. 

In the past decade, empirical studies centered on students’ algebraic and geometric 
interpretations of complex numbers and functions have begun to emerge (Conner, Rasmussen, 
Zandieh, & Smith, 2007; Danenhower, 2000, 2006; Nemirovsky, Rasmussen, Sweeney, & 
Wawro, 2012; Panaoura Elia, Gagatsis, & Giatlilis, 2006). Most of these studies illustrate that 
students are able to translate between algebraic and geometric representations, but they tend not 
to utilize the two approaches in tandem. For example, Danenhower (2006) examined 

undergraduates’ ability to convert instantiations of the fraction 
a+ ib

c+ id
 to either Cartesian (x + iy) 

or exponential form (reiθ). Although the undergraduates worked flexibly with the Cartesian form, 
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this was not the case with the exponential form due to the trigonometry involved with the tasks. 
Furthermore, the undergraduates did not attend to geometric interpretations of the complex 
number or recognize which form would be more appropriate, both of which could have 
alleviated much of the computational effort. 

In a similar study, Panaoura et al. (2006) explored high school students’ ability to navigate 
between geometric and algebraic representations of complex-valued equations and inequalities. 
The students tended to be more successful in their responses when given a geometric figure, but 
not as successful with similar problem-solving tasks. This may indicate “a lack of flexibility in 
using the geometric approach effectively” (p.700), which could further suggest that students are 
compartmentalizing symbolic/algebraic, geometric, and verbal representations. In a more recent 
study, Nemirovsky et al. (2012) provided results that may foster a unified view of algebraic and 
geometric representations of complex number arithmetic using perceptuo-motor activities. The 
authors conducted a teaching experiment with preservice secondary teachers, where the students 
discovered geometric interpretations for adding and multiplying complex numbers. Unlike 
Danenhower’s (2006) and Panaoura’s studies, the authors found that their students noticed when 
their algebraic computations and embodied reasoning disagreed. This research suggests that 
embodied reasoning of a mathematical procedure with physical models prompted the participants 
to modify their views of the represented mathematical concepts.  

In addition to embodied reasoning and external representations such as Nemirovsky’s 
embodied complex plane, diagrams and gesture can also be utilized as external representations to 
help students connect algebraic and geometric approaches. Bakker and Hoffman (2005) defined 
a diagram as “a complex sign, which includes icons, indices, and symbols.” (p. 339) and 
represents relationships between mathematical objects. The three steps of diagrammatic 
reasoning are diagrammatization, experimentation, and observation with reflection. In the 
diagrammatization stage one constructs a diagram or diagrams deemed important or necessary, 
using an appropriate representational system. Châtelet’s (2000) and de Freitas and Sinclair 
(2012) both note that diagrams and gestures are intimately connected. Diagrams can represent a 
gesture, and new gestures can be produced as a result of consideration of the diagram. It is thus 
more natural to view diagrams and gestures in tandem rather than separately, and could therefore 
further aid students in learning how to connect different representations. In our research, the 
complex plane served as the primary representational system. The experimentation phase 
involves recognizing operations that can be done on the diagram. The allowable actions on the 
diagram are determined by the rules of the system in which one is working. The third step entails 
observing and reflecting on the results obtained through the diagram(s) and the actions 
performed on the diagram. This last step could result in abandoning the diagram or creating a 
new diagram. 

Theoretical Perspective 
We adopted embodied cognition as our theoretical lens to allow us to explore the connections 

participants formed between algebraic and geometric representations of complex numbers. As 
Nemirovsky et al. (2012) demonstrated, this lens allows gesture to serve as a bridge between 
these two representations. This bridge is natural and intuitive, as Goldin-Meadow (2003) notes 
that speech and gesture form a single cohesive system of communication and thought, and Sfard 
(1991) suggests that speech could be more suited to the expression of algebraic ideas and gesture 
can more easily demonstrate geometric concepts. The perspective of embodied cognition thus 
facilitates research settings designed to explore participants’ connections between the visual and 
the verbal, between gesture and speech, or between geometry and algebra. Embodied cognition 
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at its core suggests that an organism’s personal experience within the physical environment is the 
primary means by which the organism acquires knowledge. This means that thought is 
essentially formed by perceived experience with the physical environment. Since embodied 
cognition relates all thought back to some aspect of the surrounding environment, it is natural to 
include gesture as a data source within this lens, as it seems to be an expression of thought 
(Goldin-Meadow, 2003) that actually takes place within the physical environment, perhaps 
produced as a way of reducing cognitive load (Alibali & Nathan, 2012). 

Research Methodology 
As part of an undergraduate complex variables course, students completed GeoGebra labs to 

discover the geometric interpretations of the four arithmetic operations and conjugation of 
complex numbers. After completing these labs, four students participated in video-recorded 
interviews in pairs of two, where they provided geometric interpretations and made connections 
to the algebraic representations of 19 facts borrowed from Needham’s text, Visual Complex 
Analysis (1997, p.7). The participants shared ideas with one another, questioned one another, and 
convinced one another of their interpretations; the interviewer probed as needed. Our analysis 
entailed watching the video to determine which tasks provided the most relevant content related 
to our research questions. Using Elan, we transcribed each video and documented interactions 
with the diagram, including gestures. After this, we parsed the responses further in order to 
categorize the participants’ reasoning based on their diagrammatic stage, (diagrammatization, 
exploration, observation, or abandonment of the diagram) and the type of representation 
(algebraic or geometric). This analysis allowed us to capture both aspects of our research 
purpose: relationships between algebraic and geometric reasoning, and the integration of 
diagrams and gesture into their geometric reasoning. Framed by this dual purpose, the results 
presented in this paper are based on Kelly and Abby’s responses to four tasks: (a) Give a 

geometric explanation as to why is true. (b) Give a geometric explanation for the 

statement: If  is defined by , why does it follow that  ? (c) Give a 

geometric explanation as to why is true, and (d) Give a geometric explanation as to 

why .  In our results we provide details for tasks (a) and (c) but will present 

results of all four tasks. Task (b) was influential throughout the interview, possibly due to the 
amount of time devoted to it. In our results section the verbiage in bold represents utterances 
accompanied with gestures, which are described in parenthesis. 

Results  
In task (a), the girls correctly justify the task algebraically in an attempt to inform the 

geometric setting, but cannot completely justify the geometric aspect of the task. This was 
surprising because the participants repeatedly explained complex number multiplication as a 
rotation and dilation. Consider the following exchange, which occurred shortly after Abby drew 

z  and an appropriate corresponding zon the diagram: 
Abby: They have the same real number because the only thing that changes is the imaginary 
part. 
Kelly: Well, when you multiply the imaginary part goes away. Because it's the middle terms 
(holds her left hand with fingers up as though holding a ball and then brings her fingers down 
and together).  
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Abby: Mhm. And then it'll take you to the negative. Where the i squared…But I mean, 
because when you multiply them together it's a rotation (makes a rotation gesture again by 
moving her right index finger counterclockwise in an upper semicircle) dilation. 
This conversation and their gestures seem to confirm that Abby and Kelly understand 

intuitively that zacts on z  and how it does so, algebraically and geometrically. In the first 
exchange, the participants focus on the algebraic aspects, with Abby referencing the consistent 

real part and changing the imaginary part between z  and z . Abby’s description speaks to some 

understanding of the algebraic relationship between z  and z , while Kelly’s contribution 
suggests that she has a natural understanding of how complex multiplication works, at least in 
the algebraic setting. The final line in the above segment suggests that Abby recognizes the kinds 
of actions necessary to multiply two complex numbers geometrically, calling the two 
transformations collectively a “rotation dilation.” Abby also produces a “rotation” gesture as 
shown in figure 1 as she utters this phrase. At this point in the task, Abby attempts to work out 
the algebraic details: 

Abby: But it's a times a and a's the same for both of them. So that's why a squared is. And b 
squared. But one's negative and one's positive (gestures left for negative and right for 
positive). Because one is the conjugate of the other  
Kelly: Don't know 
Abby: I've got to do algebra  

                               
Fig. 1. Abby’s rotation. 

Initially Abby seems to make progress, uttering about little a’s and b’s, which most likely 
refers to the real and imaginary parts of z . Her gesturing seems to communicate that the real 
parts are different, although her speech suggests she believes it is the imaginary parts that differ. 
In this exchange and the next, Abby and Kelly effectively ignore their diagram. Because of their 
inability to make progress with geometry, Abby and Kelly both begin to reason algebraically. 
Kelly provides an algebraic proof and then attempts geometric reasoning. While neither Kelly 
nor Abby could reason geometrically before their algebraic digression, looking at the diagram 

seems to allow Kelly to recognize that the product of z  and z  can be thought of as z  acting on z . 
Abby also correctly explains how the magnitude should change, but neither seems to understand 
how the angles should be modified. Abby appears to utilize the diagram to ensure she 
understands Kelly’s statements. While initially, Kelly agrees with Abby’s belief that the vectors 

z  and z  form right angles, as soon as Kelly gestures toward the diagram, she realizes that the 

angle between z  and zwill not always be 90°. Furthermore, Kelly articulates that the coefficient 
of i alone is what controls the measurement of this angle. 
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Finally, the interviewer prompts Kelly and Abby to describe in detail what exactly occurs 

when z  is multiplied by z . In their explanation, Kelly and Abby once again demonstrate that 
while they know that multiplication of two complex numbers should produce a “rotation dilation,” 
neither appears to know exactly how to enact this operation in a particular context. Kelly again 
provides an appropriate explanation of how the magnitude changes and Abby fails to explain 
how multiplication rotates vectors. In the end, neither Abby nor Kelly articulates that the angles 
should be added together.  

Abby and Kelly begin task (c) by noting that the given formula is algebraically correct, based 
on the rules of exponents. It was during this task that the pervasive influence of task (b) occurs 
for the first of many times. Contrasting it with task (b), Kelly realizes that task (c) concerns two 
arbitrary vectors.  

Kelly: Yeah, doesn't matter now because we're not trying to get to anything. 
Abby: Oh, yeah, that makes sense, sort of actually I don't have to do it, beginning. Well I was 
thinking we were going to have to actually do the act of multiplying the two like we did in the 
last problem. But that's not the case.  
As they continue, Kelly revoices Abby’s declaration that vector division is basically 

multiplication with fractions, and Abby pronounces that they will “have to draw it”. In building 
their diagram, they marked �and � as the reference angles instead of the angles between the 
vectors and the positive real axis. After prompting, Kelly corrects the diagram, which allows her 
to reason through the task. Kelly makes good progress in determining the vector representation 
of the reciprocal of the denominator, paying particularly close attention to the angle of the 
reciprocal. While Kelly carefully locates the appropriate angle, she and Abby both appear to be 
lost regarding the appropriate magnitude for this new vector. This confusion may be partially due 

to task (b), which required finding the location of 
1

z
 given an arbitrary vector �, and at this 

particular moment, finding a reciprocal is exactly what they are trying to do. Near the end of this 
exchange, Abby and Kelly discuss whether the vectors “have to go back to one” as in task (b). 
Kelly eventually realizes how to geometrically calculate the magnitude of their inverse vector. In 
particular, she realizes that a vector times its reciprocal will always be one – which they had 
explored in task (b).  

After convincing Abby that the reciprocal is correct, both participants move on to 

“multiplying the two vectors” Reij and 
1

reiq
.  As Abby clarifies that they do have the correct 

angle for the “fraction” vector, she introduces another misconception regarding angles. 
Abby: But it's not going to, it's going to go to negative one, because those are going to go to 
negative one. 
Kelly: No, because this would be a negative x (taps near end of vector in 2nd quadrant), and a 
negative x (taps near end of vector in 3rd quadrant). 
Abby: Oh, I see what you're saying 
Kelly: Like, on the graph it'll go to negative one, but numerically, it'll be a positive. 
Kelly doesn’t appear concerned by this potential problem, as she is confident that 

algebraically the product will result in positive one since the product of two negatives is a 
positive. As can be seen in the previous exchange, Kelly taps each of the vectors in turn as she 
speaks the word “negative” twice. As vectors themselves do not have a sign value, this pointing 
could suggest Kelly is attending in particular to the negative real parts of the indicated vectors. 
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Furthermore, prior to this exchange, she makes a “collapsing” gesture while explaining 
geometrically why she believes the product should result in negative 1 (see Figure 2).  

 
Fig 2. Collapsing the product to -1. 

Although Abby asked a geometric question and Kelly answered algebraically, Abby appears 
content with the explanation. The mismatch in answers between algebraic and geometric 
representations no longer seems to be a point of concern for either participant at this point. The 
interviewer, however, notices this discrepancy and asks for an explanation. In response, Kelly 
references task (b) again to justify her calculation of the appropriate reciprocal vector, this time 
providing explanations for finding both the new angle and the new magnitude. She then 
describes how to multiply the reciprocal vector by the vector in the “numerator” of the fraction, 
and finishes by describing multiplication in general as a rotation and a dilation. Abby agrees and 
gives an entirely algebraic explanation. 

Discussion 
Algebra seemed essential in helping our participants through the construction stage of 

diagrammatic reasoning as outlined by Bakker and Hoffman (2005), particularly for tasks (a), (c), 
and (d). For task (d) in particular the algebra seemed to elucidate which pieces were needed for 
the diagram and additionally initiated the change in forms. This may indicate that our 
participants, unlike Panaoura’s et al., (2006) or Danenhower’s (2006), did not have algebraic and 
geometric representations fully compartmentalized. Furthermore, our data suggest that once our 
participants understood the entities needed for their diagram, they were able to enact these pieces 
appropriately by treating some pieces as operators and others as operands. These enactments 
appeared to assist our participants to embody the geometric interpretations. For example, the 
embodiment of a “rotation dilation” did not come to fruition until they had opportunities to enact 
these transformations on their diagram using their fingers to represent the vectors and 
outstretched arms or shrinking movements to represent the dilation. By the end of the interview, 
illustrating the product of two complex numbers and the reciprocal of a complex number using 
diagrammatic reasoning and gesture became natural. We also noted that as we progressed further 
in the interview, dynamic gesture during the observation stage began to diminish, which could 
indicate that our participants were communicating mathematics they had embodied. Future 
studies may want to investigate if such gestures re-emerge as students tackle related but novel 
tasks. In teaching, it appears that requiring students to explicitly provide geometric 
interpretations resulted in a better understanding of the algebraic equations, their components, 
and the processes that allow one to justify the equations algebraically. Instructors could 
capitalize on this knowledge to create intentional teaching strategies, where they could not only 
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model such reasoning but also highlight students’ gestures, just as they might highlight students’ 
work or verbal responses. 
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 CURRENT AND FUTURE FACULTY MEMBERS’ MATHEMATICAL KNOWLEDGE 
FOR TEACHING CALCULUS 

           Natasha Speer   Shahram Shawn Firouzian 
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Findings from research into “mathematical knowledge for teaching” have informed the design of 
preparation and professional development programs for K-12 teachers. At the college level there 
has been limited research into mathematical knowledge for teaching. We lack findings that 
demonstrate that expert teachers of college mathematics know and make use of knowledge 
beyond  solely mathematical content.. The goal of this study is to examine the knowledge of 
student thinking possessed by mathematicians who teach calculus. Data come from interviews on 
student thinking about core calculus concepts.. Interviewees were research mathematicians who 
have been recognized for their teaching excellence and mathematics graduate students.. Findings 
demonstrate that the mathematicians were more able to identify known student difficulties as 
well as to describe common strategies students use to successfully solve the problems. 
Implications for research and professional development for novice college mathematics 
instructors are discussed.  
 
Key words: teacher knowledge, knowledge of student thinking, mathematical knowledge for 
teaching, graduate students 
 

Problem Statement 
Concerns about enrollment and retention rates as well as the depth and breadth of 

calculus students’ understanding sparked much activity over the past several decades (see, e.g., 
Bressoud, 2004, 2010; Lutzer, Rodi, Kirkman, & Maxwell, 2007; Lutzer & Maxwell, 2002). To 
meet this country’s needs for scientists and engineers, we must find ways to increase the quality 
of students’ understanding and the number of students who succeed in calculus.  

There is now broader recognition at K-12 levels that in addition to knowledge of content, 
effective teaching relies on knowledge of (a) how students think and (b) mathematics that is 
“specialized” for the work of teaching (e.g., making sense of students’ written or spoken work). 
Researchers have demonstrated that teachers with stronger knowledge of these sorts help 
students learn more mathematics content. These findings have prompted the K-12 education 
community to include these kinds of knowledge in professional development for teachers.  

There is some evidence that these elements of “mathematical knowledge for teaching” 
also play roles in the teaching practices of college mathematics instructors, especially those 
practices needed for inquiry-oriented approaches to instruction (Speer & Wagner, 2009; Wagner, 
Speer, & Rossa, 2007). What the community lacks, however, is strong evidence that effective 
teachers of college mathematics possess this knowledge and use it in their instructional practices. 
Armed with information about the knowledge used by such instructors, professional 
development for novice college mathematics instructors (e.g., graduate students) could be 
designed to focus specifically on the development of such knowledge. This in turn could create 
better learning opportunities for students and lead to better achievement and retention.  

The current study is focused on two research questions: What knowledge of student 
thinking and specialized content knowledge do experienced teachers of calculus possess? And, 
how does this compare to knowledge of novice teachers of calculus? 
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Research on Mathematical Knowledge for Teaching 

Theoretical perspective 
This project lies at the intersection of research on teachers’ knowledge and on teachers’ practices 
and was conducted using a cognitive approach. This approach has been used productively to 
examine teachers’ knowledge and its roles in teaching practices (Borko & Putnam, 1996; 
Calderhead, 1991, 1996; Escudero & Sanchez, 2007; Schoenfeld, 2000; Sherin, 2002). In such 
an approach, knowledge is seen as a key factor influencing teachers’ goals and the ways they 
work to accomplish those goals as they plan for, reflect on, and enact instruction.  
 

Knowledge for teaching 
 No one questions the essential role that content knowledge plays in teachers’ practices. 
However, such knowledge in itself is not strongly linked to student achievement (Ball, 
Lubienski, & Mewborn, 2001; Wilson, Floden, & Ferrini-Mundy, 2002). Research findings 
suggest that other types of knowledge play substantial roles in teachers’ practices and learning 
opportunities they create for students.  

Pedagogical content knowledge (PCK) refers to (among other content-specific things) 
knowledge of topics which typically cause students difficulty, the nature of those difficulties, and 
particularly useful examples for teaching (Shulman, 1986). Teachers’ knowledge of the different 
strategies their students would use to approach problems is positively correlated with students’ 
achievements (see, e.g., Fennema et al., 1996). For this project, analyses concentrate on 
knowledge of students’ ideas (KSI), a subset of PCK used in the research noted above. 

Specialized content knowledge (SCK) is a form of knowledge, not necessarily developed 
in ordinary mathematics courses, that enables teachers to engage in teaching tasks (Ball & Bass, 
2000; Hill et al., 2005, 2004). SCK is used to follow students’ thinking, evaluate validity of 
student-generated strategies, and make sense of student-generated solution paths (Hill, Ball, & 
Schilling, 2008). Teachers’ SCK has been shown to be positively related to student achievement 
gains in elementary mathematics (e.g., Hill et al., 2005). 

 
Research Design 

Data come from task-based individual interviews with research mathematicians who have been 
recognized for their excellence in teaching (e.g., nominated for or won a teaching award) and  
graduate students in mathematics with less than two years of calculus teaching experience.   

Tasks were taken from or modeled after tasks used in research on student thinking about 
limit, function (as it appears in calculus), derivative, and integral. Interviews consisted of three 
parts per task for each interviewee: Solve the task and describe the solution; Describe how 
students would solve the task, including difficulties/mistakes they might make and 
correct/incorrect ways of thinking they might display. 

Data analysis was guided by research on student thinking but also relied on methods from 
Grounded Theory (Strauss & Corbin, 1990). Findings from research on student thinking were 
used to characterize the extent to which participants were knowledgeable of student thinking. 
Methods from Grounded Theory were then used to identify themes and to detect differences 
between findings from mathematicians and novice instructors. 

Here we present findings from one task. Borrowed from Carlson (1998), this question 
taps into students’ abilities to interpret graphical information about two functions (see Figure 1).  
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The given graph represents speed vs. time for two cars. (Assume the cars start 
from the same position and are travelling in the same direction.) 
 

 
 

Question: State the relationship between the position of car A and car B at t = 1 
hour. Provide an explanation for your answer. 

 

Figure 1. Interview Task related to students’ difficulties with function graphs 
 

Findings 
All participants generated correct solutions to the task. All participants were also able to describe 
at least some correct ways of thinking that students might use. For example, one participant said 
students might get the solution by thinking “speed is greater always … or if the velocity is 
greater always … the displacement at the end is going to be greater.” All participants were also 
able to describe some incorrect ways students might think about the task. These ways included 
ones documented in research on student thinking using this task. For example, participants noted 
that students might interpret the graph as if the dependent variable was distance instead of speed 
and conclude that the two cars have traveled the same distance at t = 1. In describing this kind of 
thinking, one participant stated, “A lot of students probably would say … the two graphs are 
intersecting at time equals to 1 so they are equal…and forget about what it is that is equal.”  

There were differences in the extent to which the two populations (research 
mathematicians and graduate students) were able to generate possible student ways of thinking 
about the task. The mathematicians were generally able to describe more distinct ways than the 
graduate students. The mathematicians appeared to possess more knowledge of student thinking 
(PCK) from their experiences working with students. They also appeared more able to 
hypothesize other possible ways of thinking based on their knowledge of mathematics (e.g., 
using their SCK to create hypothetical ways one might approach the tasks even if they had not 
actually seen such an approach). Graduate students, in contrast, had a narrower set of ways of 
thinking from which to work and were less successful in generating a variety of potential 
approaches, sometimes focusing just on small variations to one approach they knew. For 
example, one graduate student said, “they might not, [they] can’t read … the graph they don’t 
know what does this graph represent [they] just don’t know how to read this graph I think..” He 
tried, with limited success, to construct possible students’ mistakes based on an inability to read 
the graph but was not able to describe other kinds of difficulties students might have. 
 

Conclusions 
The graduate students had some knowledge of students’ difficulties and students’ strategies to 
solve the above mentioned problem. However, when  asked to construct possible students’ 
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responses, graduate students had more difficulty than the mathematicians. All participants had 
the necessary subject matter knowledge to solve the task, however the mathematicians had a 
robust knowledge of students’ ideas, their difficulties with certain concepts, and were able to 
generate new ways students might think by using their content knowledge and specialized 
content knowledge.  
 

Implications for Research and Practice 
By comparing the knowledge of experienced college mathematics instructors to that of novices 
(and to what is known from research on student thinking for particular topics), we can identify 
areas where novice instructors might profit from professional development. The experienced 
instructors said they had learned about student thinking from their interactions with students and 
from examining students’ written work. Armed with findings about what novices do and do not 
know, professional development can be designed to help graduate students learn as much as 
possible from their interactions with students and student work so they can begin their faculty 
careers equipped with as much knowledge of student thinking as possible. This in turn may 
enable them to more quickly develop into accomplished teachers.  

It also appears that the experienced instructors were well versed in the practices of 
anticipating or interpreting student ways of thinking by drawing on their knowledge of the 
mathematics content and their knowledge of student thinking. Further analysis may shed light on 
how experts do this particular kind of teaching-related work and may contribute to theories of 
how teacher generate new knowledge for teaching while engaged in the work of teaching.  

 
Discussion Questions 

1. In addition to examining samples of student work, are their other activities we could do in the 
interviews that would reasonably simulate the authentic work of teaching and generate data on 
mathematical knowledge for teaching? 
2. What reasonably compact approaches might be best for presenting both the breadth and depth 
of an individual participant’s knowledge? What approaches might be best for describing these 
things for the two populations? 
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TECHNOLOGY AND ALGEBRA IN SECONDARY MATHEMATICS TEACHER 

PREPARATION PROGRAMS 

Eryn M. Stehr and Lynette D. Guzman 

Michigan State University 

Most recently, the Conference Board of the Mathematical Sciences has advocated for 

incorporating technology in secondary mathematics classrooms. Colleges and universities 

across the United States are incorporating technology to varying degrees into their mathematics 

teacher preparation programs. This study examines preservice secondary mathematics teachers’ 

opportunities to expand their knowledge of algebra through the use of technology and to learn 

how to incorporate technology when teaching algebra in mathematics classrooms. We explore 

the research question: What opportunities do secondary mathematics teacher preparation 

programs provide for PSTs to encounter technologies in learning algebra and learning to teach 

algebra? We examine data collected from a pilot study of three Midwestern teacher education 

programs conducted by the Preparing to Teach Algebra (PTA) project investigating algebra. 

Our data suggest that not all secondary mathematics teacher preparation programs integrate 

experiences with technology across mathematics courses, and that mathematics courses may 

provide few experiences with technology to PSTs beyond strictly computational. 

Key words: Algebra and Algebraic Thinking, Technology, Preservice Teacher Education, High 

School Education  

 

This study explores opportunities provided by secondary mathematics teacher preparation 

programs for preservice teachers (PSTs) to expand their knowledge of algebra through the use of 

technology and to learn how to incorporate technology when they teach algebra. We explore the 

following research question: What opportunities do secondary mathematics teacher preparation 

programs provide for PSTs to encounter technologies in learning algebra and learning to teach 

algebra? These opportunities might include using or learning about a variety of algebra-

appropriate technologies, as well as thinking critically about technology use. In this study, we 

define technology narrowly as electronic tools and software. This study will not focus on 

physical tools such as manipulatives, chalkboards, or dry erase boards, although we acknowledge 

that these tools are also important technologies that can be useful for teaching and learning 

mathematics. 

Context 

Technology use in K-12 education has become practically universal in the past few decades. 

Many scholars suggest that use of technological tools in the classroom could contribute to 

reducing inequities in education. For example, Pomerantz (1997) argued: "....Calculators serve as 

an equalizer in mathematics education" (p. 5). Technology use, however, has led to a so-called 

digital divide (Reich, Murnane, & Willett, 2012). Attewell and Gates (2001) described the digital 

divide as two-fold: a division of access and of use. Federal funding has mitigated issues of 

access; however, there is a growing recognition of disparity in technology use in schools 

(Attewell & Gates, 2001). Thus, a focus shifts from supplying schools with technology to the 

highly effective ways in which technology can be (but is not usually) used. 
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Both secondary mathematics content standards and teacher preparation standards have 

emphasized the importance of developing PSTs’ abilities to choose and use educational 

technologies. Standards developed for teacher preparation program accreditation agencies, such 

as National Council for Accreditation of Teacher Education (NCATE: NCTM, 2012) and 

Interstate Teacher Assessment and Support Consortium (InTASC: CCSSO, 1995), recommended 

that PSTs develop the abilities to critically evaluate and strategically use technology. In addition, 

the Conference Board of the Mathematical Sciences (CBMS) emphasized the importance of 

PSTs’ preparation to use technology in Mathematics Education of Teachers II (CBMS, 2012).  

Algebra plays a prominent role in mathematics education reform efforts because it is valued 

as an important subject in mathematics. In terms of equity issues related to mathematics 

education, algebra has long been seen as a gatekeeper for post-secondary opportunities (e.g., 

Moses, Kamii, Swap, & Howard, 1989).  Particularly in the United States, preparing future 

secondary mathematics teachers to teach algebra has gained importance as more states include 

algebra as a high school graduation requirement (Teuscher, Dingman, Nevels, & Reys, 2008). 

Consideration of state education websites verifies that at least 38 states currently include 

mathematics courses with algebra as a necessary high school graduation requirement. Algebra is 

also being offered earlier in some states. In 1990, only 16% of all eighth-graders were enrolled in 

algebra, and this increased to 31% by 2007 (Loveless, 2008). The emphasis of algebra in 

mathematics education, along with increasing use of technology in the classroom, highlights the 

need to support future mathematics teachers in learning algebra with technology and learning to 

teach algebra with technology. 

To use technology effectively to support the teaching of algebra, CBMS (2012) argued that 

experience with technology “should be integrated across the entire spectrum of undergraduate 

mathematics” (pp. 56-57) and PSTs should have opportunities to see teaching with technology 

modeled in their own mathematics coursework (CBMS, 2012). PSTs need to become familiar 

with a variety of technological tools used in a variety of ways, including computational tools, 

problem-solving tools, and tools for exploring mathematical ideas (CBMS, 2012; NCATE, 2012; 

InTASC, 1995).  

Method 

This study is part of a larger mixed-methods study, Preparing to Teach Algebra (PTA), that 

explores opportunities provided by secondary mathematics teacher preparation programs to learn 

algebra and to learn to teach algebra. The PTA project consists of a national survey of secondary 

mathematics teacher preparation programs and case studies of five universities. The current 

study is a qualitative analysis of opportunities provided to PSTs to encounter technology in 

learning algebra and learning to teach algebra based on data gathered during the pilot study of 

the PTA project.  

In the pilot study, the PTA project chose three secondary mathematics teacher preparation 

programs for convenience. University A is a medium-size university with Carnegie classification 

of RU/H (Research University with high research activity). Universities B and C are large 

universities, both with Carnegie classification RU/VH (Research University with very high 

research activity). The programs at Universities A and C are four-year programs, and the 

program at University B is a five-year program. 

We compiled data by conducting one focus group and five instructor interviews at each site 

and collected corresponding instructional materials from each instructor we interviewed. Of the 

five instructor interviews at each site, we included three mathematics courses and two 

mathematics education courses. We selected courses based on potential for algebra content, 
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availability and course type. Among other questions, we asked instructors which types of 

technologies they used in a particular course; we also analyzed their course materials. Three or 

four students who had completed, or had almost completed, their student teaching requirement 

participated in each focus group. We asked PSTs about their required or shared experiences.  

They confirmed a list of program requirements and identified required courses that incorporated 

technology in learning algebra or learning to teach algebra. 

Because this study uses pilot data from a larger study, one limitation is that instructor 

interviews were restricted to five courses at each site that were not representative of the entire 

teacher preparation program. Additionally, we chose courses based on their likelihood to contain 

algebraic content and not for a focus on technology. As a result, we may have missed some 

courses that focus on technology in secondary mathematics. To balance this limitation, we used 

information from each focus group and course descriptions obtained from each school website to 

create an outline sketch of technology use for each program.  

In our sketch of technology use, we first identified examples of technology use in algebra 

from instructor interviews, focus group interviews, or from the instructional materials. We 

analyzed each example according to five characteristics of experiences: activity type, types of 

technology use, algebraic topics, type of technology, and whether PSTs have the opportunity to 

think critically about choice and use of technology. 

Results 

Due to space limitations, we give a brief overview of what we have learned in this proposal 

and more detailed results will be provided in the presentation. Across all universities, we found a 

total of 28 examples of algebraic topics using technology, with 8 found in mathematics content 

courses and 20 found in mathematics education courses. This count excludes numerous examples 

in a Differential Equations course at University C, which involved a computer lab component. A 

descriptive list of algebraic topics and in which courses examples were found (M for 

Mathematics Courses and ME for Mathematics Education Courses) are shown in Table 1. 

Table 1. Algebra topics using technology identified per university and by mathematics or 

mathematics education courses. 

Algebraic Topics University A University B University C 

Generalizing Patterns  ME  

Maximum Area Problem  ME  

Ratios and Proportion  ME ME 

Modeling with Equations   ME 

Functions and Multiple Representations ME ME M 

Linear Functions (e.g., families, slopes)  ME ME 

Systems of Linear Equations M, ME   

Parametric Equations  ME  

Logarithmic Functions ME   

Matrices M   

Topics from Calculus M M  

Topics from Differential Equations   M 

Modular Arithmetic M   

Extensions on Rational Numbers M   
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University A requires twelve mathematics courses and four mathematics education courses. 

The Mathematics Department offers the mathematics education courses. Teaching Mathematics 

with Technology is one of the required mathematics education courses. One instructor said, “We 

think [technology is] crucial.” The number of mathematics courses that include technology use in 

their course descriptions (six of twelve) and the one mathematics education course focused on 

teaching with technology supports this statement of belief. Overall, student and instructor 

responses indicated technology was used in mathematics courses primarily as a computational 

tool, while mathematics education courses supported a greater variety of types of uses of 

technology, including some critical evaluation of technology for algebra teaching. One example 

of technology use for algebra comes from an activity in the Technology in Secondary 

Mathematics course in which PSTs “investigate graphing utilities and think about what are the 

features of graphing utilities that would … make one more desirable than another.” In this 

assignment, neither instructors nor PSTs necessarily used technology, but students thought 

critically about uses and types of graphing utilities. A second example came from the Structure 

of Algebra course instructor, saying “when we talk about cryptography I'll bring in 

Mathematica... if you want to do RSA cryptography in any sort of realistic way, you want to 

use... you know, RSA relies on a number that's a product of large primes.  …So you're doing … 

arithmetic mod some huge number.”  

University B requires eight mathematics courses and four mathematics education courses. 

The College of Education offers the mathematics education courses. PSTs in the focus group 

marked some use of computer software in Calculus III, geometry courses, and statistics courses, 

as well as multiple technologies in the four mathematics education courses. One student in the 

focus group stated, “…tools for me is by far the biggest weakness… even when we did use them 

it was pretty rare.” Instructors of Linear Algebra, Analysis, and the Capstone course stated that 

they did not use technology in class, except rarely to check a calculation. The Linear Algebra 

instructor explained, “I don't think it is a good idea to use calculator or computer software… you 

want them to do it by hand.” The mathematics education courses used multiple instructional and 

mathematical technologies to support algebra topics. Specific mathematical technologies 

included GeoGebra, spreadsheets, graphing calculators, and the occasional use of Geometer’s 

Sketchpad. One instructor explained that he chose to use technology because “…[the PSTs] see 

things mathematically they didn't see before and it helps them see the value of engaging in those 

sorts of tasks with their students….” Overall, student and instructor responses indicated that few 

mathematics courses used technology, while mathematics education courses integrated a variety 

of technologies to support PSTs teaching and learning of mathematics as well as PSTs critical 

evaluation of technologies. One example of technology use in algebra was in the 2nd Secondary 

Methods course, the instructor introduced students to the “Ships in the Fog” task (based on the 

crash of the Stockholm and Andrea Daria) through a newsreel video of the wreck, solving the 

problem three ways (the worksheet calls for graphing calculator use), discussing the task on the 

Wiki, and then reading the “Ships in the Fog” case.  The technological tools would be the video 

clip, graphing calculator, and Wiki site. The video clip connects the task to the real world 

situation, the role of the graphing calculator (computation only or also exploration?) is not clear, 

and the Wiki site provides a venue for reporting their own solutions and discussion other solution 

strategies. 

University C requires twelve mathematics courses and two mathematics education courses. 

The College of Education offers the mathematics education courses. An Educational Technology 

course is a required course in the program but does not focus on mathematics. The mathematics 
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department at University C does not allow graphing calculators on exams. PSTs indicated four 

mathematics courses in which they used computer software or clickers and did not indicate 

technology use in mathematics education courses. PSTs stated that they did not learn to use 

certain technologies despite needing them later in field instruction. For example, one PST wrote 

along the list of courses, “no graphing or non-graphing calculator allowed.” The Abstract 

Algebra and Differential Equations instructors indicated rare use of technology in lectures; 

however, the Differential Equations course included a computer lab component using MatLab. 

Although the mathematics education course instructors did not emphasize technology in their 

instruction, one assignment did require students to revise a previously written lesson plan to 

“include technologies that enhance the teaching and learning of mathematics,” and to discuss 

their rationale for inclusion. Overall, student and instructor responses indicated several 

mathematics courses used technology, while mathematics education courses supported critical 

evaluation through choice and justification of technology for mathematics teaching, although the 

courses themselves did not integrate technology use. One example of technology use in algebra 

was one activity in Differential Equations called “The Swaying Building.” This activity had the 

goal: “Determine a model of the swaying of a skyscraper; estimating parameters.” In this 

activity, PSTs build a mathematical model and use representations to investigate mathematical 

ideas, by comparing tabular and graphical representations (in Figure 5 below) of “measurements 

of displacement as a function of time of the building reacting to two different shocks.”   

Discussion 

Contrary to CBMS (2012) recommendations, our data suggest that not all secondary 

mathematics teacher preparation programs integrate experiences with technology across 

mathematics courses. We found that mathematics education courses integrate technology into 

instruction and learning more commonly than mathematics courses. Even in mathematics courses 

that use technology, our data suggest that PSTs have fewer opportunities to see and use a variety 

of technological tools and that PSTs are more likely to see or use technologies only as 

computational tools. With respect to specific experiences using technology in learning and 

learning to teach algebraic topics, according to our data, mathematics education courses provide 

the bulk of these experiences.  

We heard concerns from both mathematics and mathematics education instructors that 

technology would impede PSTs’ learning. Some mathematics education instructors argued, to 

the contrary, that use of technology enabled PSTs to increase their understanding of algebra 

topics in ways that were not possible otherwise. One explanation of this difference in instructors’ 

viewpoints might lie in whether instructors used technology only as a practical expedient. 

Further research should be done to investigate ways technology can be used more effectively 

in algebra to support future teachers’ understanding of algebra as well as their abilities to use 

technology more effectively in their own classrooms.  

 

Endnote 

 This study comes from the Preparing to Teach Algebra project, a collaborative project 

between groups at Michigan State (PI: Sharon Senk) and Purdue (co-PIs: Yukiko Maeda and Jill 

Newton) Universities. This research is supported by the National Science Foundation grant 

DRL-1109256. 
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PERCEPTIONS IN ABSTRACT ALGEBRA: IDENTIFYING MAJOR CONCEPTS AND 
CONCEPT CONNECTIONS WITHIN ABSTRACT ALGEBRA 

Ashley L. Suominen 
University of Georgia 

	  
Abstract algebra is recognized as a highly problematic course for most undergraduate students. 
Despite these difficulties, most mathematicians and mathematics educators affirm its importance 
to undergraduate mathematical learning. The goal of this research was to establish a list of the 
important concepts in abstract algebra as perceived by graduate students in mathematics and 
understand how they believe these concepts are related. Through an interview study, the 
students’ perceptions of abstract algebra were analyzed through the development of concept 
maps. Participants’ concept images and concept definitions are highlighted in this article to 
understand their concept perceptions. The results revealed graduate students had great difficulty 
articulating what they learned and their concept definitions. Consequently, they had differing 
views of major concepts and relationships within the course. Their concept images regarding 
perceived concept importance seemed to be equated to the amount of time their class spent 
discussing that concept. 
 
Key words: Abstract algebra, Concept maps, Connections, Concept image, Concept definition  

Introduction 
It is widely acknowledged that abstract algebra is an essential part of undergraduate 

mathematical learning (e.g., Gallian, 1990; Hazzan, 1999; Selden and Selden, 1987), and yet it is 
also known for its high level of difficulty at the collegiate level. Many undergraduate and 
graduate students, including prospective teachers, struggle to grasp even the most fundamental 
concepts of this course (Dubinsky et al, 1994). For most of these students, abstract algebra is the 
first time they experience mathematical abstraction and formal proof. It is often the first course 
in which teachers expect students to “go beyond learning ‘imitative behavior patterns’ for 
mimicking the solution of a large number of variations on a small number of themes (problems)” 
(Dubinsky et al., 1994, p. 268) by requiring proofs to explain abstract theories and ideas. In 
particular, students are expected to mentally construct new objects based on a list of properties 
and then operate on these objects. However, simply being exposed to these abstract concepts 
does not imply the development of mathematical meaning. Von Glasersfeld (1991) affirmed this 
predicament: “Reflecting upon experiences is clearly not the same as having an experience” (p. 
2). Students must take an active role in the learning process by building on their past 
mathematical knowledge to make sense of abstract concepts.  

In his dissertation, Cook (2012) asserted the difficulty students experience in abstract algebra 
is due to the lack of established connections between undergraduate mathematics and school 
mathematics. He affirmed that prospective teachers “do not build upon their elementary 
understandings of algebra, leaving them unable to communicate traces of any deep and unifying 
ideas that govern the subject” (p. xvi). These conjectures imply that undergraduate professors 
must be able to not only convey an abstract idea to students but also provide students the 
opportunity to build mathematical meaning upon these abstractions. Fennema and Franke (1992) 
supported this theory: “If teachers do not know how to translate those abstractions into a form 
that enables learners to relate the mathematics to what they already know, they will not learn 
with understanding” (p. 153). Thus, we can only expect undergraduate students to really access 
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the benefits of this course through complete comprehension by connecting abstract theory to past 
knowledge and ideas to aid in the construction of mathematical meaning. The purpose of this 
research was two-fold: 1) formulate a list of important concepts for the collegiate course abstract 
algebra, and 2) recognize students’ perceived relationships or connections existing within these 
concepts. More specifically, three graduate students in mathematics were interviewed to discuss 
their perceived list of important concepts in abstract algebra as well as relationships between 
topics within the course.   

Literature Review 
Despite an increasing amount of research on teaching and learning collegiate mathematics, 

few studies concentrate solely on abstract algebra. The existing abstract algebra research 
concentrates on student learning (e.g. Asiala, Brown, Kleiman, & Mathews, 1998; Brown, 
DeVries, Dubinsky, & Thomas, 1997; Leron, Hazzan, & Zazkis, 1995) and teaching methods 
(e.g. Asiala, Dubinsky, Mathews, Morics, & Oktaç, 1997; Freedman, 1983; Pedersen, 1972). The 
former research primarily utilized the APOS (Action-Process-Object-Schema) theoretical 
framework to analyze student constructions of course topics. For example, Brown, DeVries, 
Dubinsky, and Thomas (1997) used APOS theory to examine how abstract algebra students 
understood binary operations, groups, and subgroups. In this study the researchers implemented 
an ACE teaching cycle (Activities, Class discussion, and Exercises) with computer activities 
using the language ISETL in order to aid in students’ construction of aforementioned topics. 
They concluded that their pedagogical approach seemed reasonably effective. Similarly, the 
impact of pedagogical practices influenced by a constructivist perspective was investigated. For 
instance, Freedman (1983) introduced a unique lecture-based method that progressively required 
undergraduate abstract algebra students to take an active part in their learning through teaching. 
In this three-stage teaching method students initially learn through traditional lecture, then in the 
second stage students are required to complete a project as well as do a little of the teaching, and 
finally students are solely responsibly to design objectives and prepare all lectures. Through this 
active participation in the teaching process, students were able to gain a strong understanding of 
the topics.  

Much of the current abstract algebra research affirms students’ difficulties in learning 
fundamental concepts in group theory (e.g. Asiala, Dubinsky, Mathews, Morics, and Oktac, 
1997; Larsen, 2004, 2009; Leron, Hazzan, and Zazkis, 1995) with little attention to rings or 
fields (Cook, 2012). Likewise, students’ difficulties in proof writing have also been highlighted 
in the context of group theory (e.g. Hart, 1994; Selden and Selden, 1987; Weber, 2001). To date, 
there has been very little research on what concepts are deemed important in abstract algebra and 
why. Moreover, students’ perceptions of concept importance and concept connections have not 
thoroughly been studied. 

Theoretical Perspective 
At the basis of this exploratory research study is the belief that students construct their own 

understanding of mathematics. A constructivist theoretical framework was thus utilized in 
suggesting that students construct their own reality of the mathematics they are learning (von 
Glasersfeld, 1989). More specifically, students develop concepts through a series of mental 
processes that largely depend on past experiences. The development of understanding of a 
concept often includes two components: concept image and concept definition. Tall and Vinner 
(1981) defined concept image as “the total cognitive structure that is associated with the concept, 
which includes all the mental pictures and associated properties and processes.” For instance, 
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students learning abstract algebra may construct mental pictures of specific algebraic structures 
in attempting to understand them. These pictures may include a list of properties, memories of 
class activities, or relations to past related concepts. The commonly accepted words used to 
describe these concept images are called a concept definition. Students, in particular, can define 
concepts either from rote memorization or through personal reconstruction of their concept 
images. Even though their personally constructed concept images seem sensible to the student, 
their understandings of the concepts may differ from the formally accepted definition. Thus, the 
concept images and concept definitions constructed by undergraduate and graduate students 
learning abstract algebra may or may not correspond to those taught in the course or found in the 
textbook. 

Methodology 
This research employed a semi-structured interview protocol with both open-ended questions 

and construction tasks (Patton, 2002; Taylor & Bogdan, 1984; Zazkis & Hazzan, 1999). Each 
interview was audio recorded and ran approximately 45-60 minutes in length in a private room to 
ensure confidentiality. After the interviews were complete the audio was transcribed within a 
week of the interview. Participants were chosen based on recently (within a year or less) being 
enrolled in the master’s level abstract algebra course and being accepted into at least the master’s 
level mathematics graduate program. While undergraduate students typically take abstract 
algebra, graduate students were chosen to provide an additional level of expertise. Three students 
(pseudonyms: Andrew, April, and Heather) participated in this research study. Each student had 
taken three lecture-based abstract algebra courses—an introductory course as an undergraduate 
and a yearlong sequence of two courses as a graduate student.  

Since the purpose of this research study is to gain insight into graduate students’ perspectives 
of abstract algebra, one of the central foci of the interview was the creation of concept maps. 
These maps allowed the participants and researcher to visually understand described 
relationships between concepts. Novak and Cañas (2008) and Trochim (1989) largely 
contributed to the overall research design of this activity. First, each participant was given index 
cards (or post-it notes) and asked to write any important or key concepts of abstract algebra on a 
card (one per card). When he or she was finished with this task, the participant was asked to 
explain each concept. Next, participants were asked to visually represent any conceptual 
relationships between these topics by placing their concept cards on a sheet of poster board and 
drawing lines or arrows between concepts that have some type of relationship. After each 
participant completed a concept map, he or she was asked to explain why each line was drawn.  

Grounded theory was utilized when analyzing the data. Thus, the data was first collected, 
coded, grouped by concepts, categorized, and then the theoretical results were formulated 
(Charmaz, 2000). The transcribed interview responses were analyzed thematically (Charmaz, 
2000; Patton, 2002; Taylor & Bogdan, 1984) focusing on the students’ constructed knowledge of 
abstract algebra. The perceived significant concepts and connections among topics in the course 
were explicitly emphasized.  

Results 
As to be expected, each of the mathematics graduate students had a differing concept image 

and concept definition of major abstract algebra concepts. When asked to identify these 
concepts, April and Heather equated the time spent in class to the importance of the concept. 
April stated, “I think that fields are very important because we spent a lot of time discussing the 
different properties of fields and the different types of fields… So I felt it was really important.” 
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Likewise, Heather repeatedly defined concept importance by how long the professor discussed it 
in class. Andrew, on the other hand, relied on his perceived usefulness of a certain concept to 
determine major concepts. When asked to describe ring theory Andrew stated:  

It’s like you encounter rings first from like the first time you encounter math to be like the 
real numbers. We actually use them in our real life and everything, so in a way like this 
concept of rings kind of formalizes our understanding of what everything actually means. 

However, despite the varying concept images associated with concept importance, there were 
five identified concepts that were mentioned by all three students: groups, rings, fields, Galois 
theory, and isometries with geometric applications. A complete summary of the perceived 
important concepts of each student is found in Figure 1. 

          Heather 

 
  Andrew          April 

Figure 1: Identified important concepts 
In general the mathematics graduate students had difficulty articulating their concept images 

about content learned in their abstract algebra courses. Despite all of the students acknowledging 
the intuitive nature of rings, none of them were able to articulate the complete formal definition 
of a ring. April’s definition most closely aligned with the formal definition in classifying a ring 
as a set with two operations following seven axioms, but she did not articulate what those axioms 
were. Heather’s concept image of a ring was similar to April’s in that she viewed the algebraic 
structure in terms of axioms. However, Heather did not fully define a ring due to declared 
confusion between what those axioms were and how many existed for rings. On the other hand, 
Andrew’s concept image of a ring was slightly different. His concept definition of a ring 
included the operations and properties, but also included the notion of a map. He stated, “It is 
something like you have a map, you have commutativity over addition, associativity over 
addition, and you have additive identity, you have multiplicative identity.” When asked to 
describe a group or a field, the students seemed to have less robust concept images of these 
concepts than a ring. In fact, only April provided concept definitions for a group and field that 
closely aligned with the formal definitions. The other two graduate students had difficulty doing 
so. Heather responded, “Gosh. I think I am confused” and “The funny thing is I just totally, I just 
don’t remember what a field was.” In fact, this student repeatedly asked me during the interview 
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to define group and field for her since she could not remember despite earning As in all of her 
courses. Andrew’s concept image of a group related heavily on his definition of a ring, “From 
rings we can get groups. Kind of like subsets of rings are groups because we just have one 
operation.” However, he also acknowledged, “A field is something I just can’t get used to it.” All 
participants provided a personal reconstruction concept definition of isometries and geometric 
applications, whereas no participant could accurately define Galois theory.  

The concept images and concept definitions of perceived relationships between identified 
important concepts, as seen in the created concept maps, were quite diverse despite the fact that 
the participants took the same course (Figure 2). Andrew described his concept image of the 
connections between concepts as a “hierarchical structural” flow chart. When asked to describe 
the arrows drawn between concepts, he admitted to not fully grasping how concepts in abstract 
algebra were built upon each other, but he knew they were all somehow related. His description 
of a subset relationship between groups and rings aligned with this concept image as he stated, 
“Because rings are the more generated thing with two operations, addition and multiplication, so 
a group is kind of like throwing one of the operations out.” Likewise, Heather’s concept image of 
the connection between groups and rings also included a subset relationship, but she seemed 
unclear about how the subset relationship worked. She questioned whether a group is a subset of 
rings or rings a subset of groups. On the other hand, April’s description of concept connections 
linked major concepts (rings, fields, groups, mappings, etc.) to the similarities and applications 
of her constructed concept definitions. Heather described her map as a web of concepts with 
lines denoting concept connections as well as set notation denoting subset relationships. 

  
  Andrew’s Map           Heather’s Map 

 
April’s Map 

Figure 2: Graduate students’ concept maps  
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Despite the students’ differing concept images regarding the perceived concept connections, 
two of the graduate students constructed concept images of these connections by the order the 
concepts were discussed in class. This emphasis on classroom activities parallels how the 
students defined concepts importance. April explained when asked to elaborate on her concept 
maps, “The reason I have a bidirectional arrow between fields and rings was because we 
discussed fields after rings.” Likewise, Heather described her arrow between ring and 
homomorphism, “So that’s why I put it together. I just remember using that word ring 
homomorphism over and over again, so that’s why I thought they were connected.” Contrary to 
these results, one student portrayed concept connections in this way: “The main concept of 
connections is not only based on definitions, but the ways we applied our knowledge of each 
concept, so for instance, in rings, once we covered the definition of what makes a set a ring, we 
talked about applications of rings.” Thus, these graduate students constructed varying 
perceptions of concept connections for various reasons. 

Implications for Future Research 
This exploratory research study resonates with past assumptions that students are not 

developing accurate concept images and concept definitions of abstract algebra concepts. 
Professors, especially, should find this research useful since many mathematics professors may 
not know what the students are actually learning or not learning in their classes. Abstract algebra 
has historically been a course where there exists a mismatch between what the professor assumes 
students are learning and what knowledge students are actually attaining. Hence, providing 
professors a snapshot of what students identified as key concepts (or about which they indicated 
confusion) would be immensely beneficial.  

In future work, I hope to utilize the methodology and results of this study to investigate 
connections between school algebra and the abstract algebra course. These connections are often 
missing from classroom instruction, which leads to underdeveloped abstract mathematical 
thinking. In fact, the participants of this study seemed to be searching for these connections. 
Heather affirmed:  

Making connections with other courses or ideas, I feel like that it is really hard to 
do it but it is important and it’s helpful. I really wished I knew this before I taught 
so that I can make better connections in my own teaching. … Because then I 
would have been able to provide more let’s say examples or even provide more 
opportunities for them to think about things to make connections between the 
mathematical ideas.  

This student wanted to establish concept connections, especially between abstract algebra and 
school algebra. Likewise, all three students discussed applications (or lack thereof) from abstract 
algebra. Andrew claimed abstract algebra was not useful due to his inability to apply the 
theorems and definitions to real-life. Therefore, in order for students to truly construct new 
algebraic knowledge, there must be connections to past knowledge to successfully internalize 
and interiorize new ideas. Future research will examine these connections between course 
concepts and school algebra in order to provide educators a reference to enhance student learning 
of abstract algebra.  
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MATHEMATICAL THINKING IN ENGINEERING AND MATHEMATICS STUDENTS 
Jenna Tague 

The Ohio State University 
 

Key words: Advanced Mathematical Thinking, Cognition, Post-Secondary Education 
 

The past decades have brought a multitude of calls for improving the mathematical 
education of Science, Technology, Engineering, and Mathematics (STEM) students as well as 
increasing the number of STEM graduates (Ferrini-Mundy & Güçler, 2009).  However, there is a 
need to examine what mathematics and mathematical thinking is needed for these STEM 
disciplines.  Recent work has shown that the mathematical skills needed are highly specialized 
(Author) and further work has shown that there are mismatches between users of mathematics 
and teachers of mathematics in regard to expectations for students’ knowledge (Ferguson, 2012). 

There is currently no consensus on how to address the lack of cohesion between the 
teachers and users of mathematics or how specialized mathematical skills identified above might 
be supported in coursework (Wankat, 2008).  Devoting attention only to developing new courses 
accommodating specialized mathematical needs, however, can leave students with gaps in 
schema development related to discipline needs.  Curriculum and instruction design efforts are 
less likely to be effective in the absence of an understanding of how different STEM audiences 
think mathematically. This study examined the mathematical thinking of two purposefully 
selected students (one from mathematics and one from engineering) enrolled at a large 
Midwestern university as a starting place in addressing this gap.  Each student was interviewed 
and given two open-ended questions and one typical “word problem.”  Interviews were each 
approximately 90 minutes long and students were encouraged to explain their reasoning and 
thinking processes. 
 Interviews were analyzed through the socio cultural lens of zone theory (Valsiner, 1997) 
in order to investigate the resources the students drew upon while thinking mathematically.  
Additionally, a mathematical modeling cycle (Blum & Leiβ, 2007) allowed for cataloguing the 
particular phases involved in the participants’ mathematization processes.  Initial findings 
indicate that the mathematics student was comfortable creating parameters and estimating values 
whereas the engineering student primary focus was on accuracy.  The engineering student also 
validated not just the numerical estimates he made, but also the solution methods he was 
considering.  Differences and similarities between the mathematical thinking of the two students 
will be discussed as well as possible instructional implications. 
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A substantial amount of students’ time in mathematics courses at the undergraduate level 

is spent working homework problems.  Many textbooks are designed to encourage students to 
look for similar problems while working homework problems (Lithner, 2004).  This approach 
requires very little engagement with the mathematics content. 

The context of this study is a differential equations course for engineering students whose 
goal is to introduce differential equations content through paradigmatic engineering examples 
and mathematical modeling. To encourage further engagement with the material and to provide 
asynchronous instructional scaffolding outside the classroom, we sought technology that was 
dynamic and provided exemplars of mathematical modeling in differential equations. 
 We chose to create these exemplars using a Livescribe smartpen as an instructional 
medium.  A smartpen is a ballpoint pen with an internal infrared camera and audio recording 
device.  The user writes on “digital paper”, which is covered in small dots that locate the pen on 
the page.  The audio is synchronized with written text to create a flash video called a pencast, 
which can then be shared or embedded into the course website.   
 Over the past two years, we have iteratively designed ways to assess how students use 
pencasts and what effect pencasts have on students’ knowledge of differential equations.  These 
methods include quantitative and qualitative surveys.  Quantitative survey results have shown 
that students find the pencasts helpful, and self-assessed that they were better able to solve 
homework problems on their own after watching related pencasts (Roble, Tague, Czocher, & 
Baker, 2013).  Qualitative results indicate that students appreciated the explanation that was 
provided.  Usage survey reports indicated that students used the pencasts to study for test and 
quizzes which is similar to other reports on pencast usage.  However, our students also reported 
that they used the pencast when solving other similar problems and when they were stuck on 
homework problems.  When comparing pencasts to static solutions, one student remarked it was, 
“easier to see how problems are solved [via pencast] than the book because the explanation isn't 
in between each of the steps, it's explained through talking.” 
 In this poster, we will share our full survey results from across semesters, provide 
demonstrations of how to use a smartpen and show the final flash video product. Additionally, 
we will share how we chose the smartpen as an instructional medium, and adapted it to our 
purposes in a differential equations course for engineering students. 
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THE CONSTRUCTION OF A VIDEO CODING PROTOCOL TO ANALYZE
INTERACTIVE INSTRUCTION IN CALCULUS AND CONNECTIONS WITH

CONCEPTUAL GAINS

Matthew Thomas
University of Central Arkansas

Instruments called concept  inventories  are being used to investigate students'  conceptual
knowledge of topics in STEM fields, including calculus. One interactive instructional style called
Interactive-Engagement  has  been  shown  to  improve  students'  gains  on  such  instruments  in
physics. In this paper, we discuss the development of a video coding protocol which was used to
analyze the level of Interactive-Engagement in calculus classes and investigate the correlation
with gains on the Calculus Concept Inventory.

Key words: Calculus, instruction, interactive teaching, conceptual learning

Conceptual understanding has been a recent area of interest in undergraduate mathematics
and in other STEM fields. This interest has manifested in the construction of instruments called
concept inventories to measure students’ conceptual understanding. Previous studies have found
correlations  between  interactive  instructional  techniques,  particularly  one  called  Interactive-
Engagement  (IE),  and  gains  on  concept  inventories.  In  this  study,  we  investigate  possible
connections between conceptual gains on one such instrument, the Calculus Concept Inventory,
and  Interactive-Engaged  instruction.  To measure  IE,  we  constructed  a  coding  protocol  that
quantitatively measures the level of IE in a classroom. This study serves two purposes: (1) to
develop a coding protocol to quantify IE instruction, and (2) to connect the results of the coding
protocol with scores on the CCI.

Background
Conceptual Knowledge

Historically, there has been a division between the teaching of computational and conceptual
material (Rittle-Johnson, Siegler, & Alibali, 2001). These “sharply contrasting orientations” (A.
G. Thompson, Philipp, T. Thompson, & Boyd, 1994, p. 1) can be seen in the recent “math wars,”
where  proponents  of  traditional  mathematics  typically  emphasize  procedural  fluency  and
proponents  of  reform-based  (or  standards-based)  mathematics  emphasize  conceptual
understanding (Schoenfeld, 2004).

Rittle-Johnson et al.  (2001) define  procedural knowledge as “the ability to execute action
sequences to solve problems” (p. 346). In contrast, conceptual knowledge is defined as “implicit
or explicit understanding of the principles that govern a domain and of the interrelations between
units  of  knowledge  in  a  domain”  (p.  346).  For  example,  conceptual  knowledge  might  be
indicated  by  a  student's  understanding  of  the  relationships  between  algebraic  and  graphical
representations  of functions.  One way that  conceptual  knowledge can be demonstrated is  by
applying known principles or techniques in new situations. For example, recognition of the same
topic, such as optimization, in a different subject area or context gives credence to the claim that
conceptual understanding has been obtained (Hughes Hallett, 2006, p. 4).
Concept Inventories

Conceptual understanding may be measured through instruments called concept inventories.
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Concept inventories are tests designed to measure the most basic knowledge in a field (Epstein,
2007). Typically, the tests are given in a multiple choice format, and involve no computation.
When  given  as  a  pretest  and  posttest,  the  instruments  measure  the  change  in  conceptual
knowledge  students  undergo  during  a  course.  Many  studies  of  conceptual  understanding  in
physics  education  use  concept  inventories  (e.g.  Hake,  1998;  Halloun,  1985;  Malone,  2008;
Rhoads  &  Roedel,  1999),  and  other  disciplines  are  using  them  with  increasing  frequency
(Libarkin, 2008).

The first concept inventory was the Force Concept Inventory (FCI), written by  Hestenes,
Wells,  and  Swackhamer  (1992) to  measure  students'  conceptual  knowledge  in  introductory
mechanics courses.  Drawing upon the FCI, Epstein wrote a 22-question concept inventory for
introductory calculus in 2007 (Epstein, 2007, 2013).
Interactively-Engaged Instruction

Interactively-Engaged (IE) instruction has been linked to gains in conceptual understanding
as measured by concept inventories. IE was defined by Hake (1998) as a collection of methods
designed, at least in part, to promote conceptual understanding through “heads-on (always) and
hands-on  (usually)”  (p.  1)  activities  which  lend  themselves  to  immediate  feedback  through
discussion with peers and/or instructors.  In this study we operationalize the concept of an IE
classroom  in  a  way  that  allows  IE  to  be  quantitatively  measured  and  explore  potential
correlations between Interactive-Engagement and gains on the CCI. 

Previous studies that consider correlations between concept inventory scores and interactive
instruction  have relied  on instructor  and/or  student  self-reporting to  quantify levels  of  IE in
classrooms.  We eliminated  the  need  for  self-reporting  by  developing  a  protocol  and  coding
videos ourselves. Our protocol also allows for the examination of IE as a continuum rather than a
dichotomous  variable,  as  has  been  done  before.  For  example,  a  study  by  Prather,  et  al.
(2009) relied on instructor self-reporting of interactivity levels, where questions were designed to
determine how frequently “interactive learning strategies” (p. 322) were implemented, and how
often students made predictions or were asked questions during class. Rhea's (n.d.) study relied
on student and instructor reporting of interactivity levels.

Methods
All students taking introductory calculus in the fall semester of 2010 at a large southwestern

university took the CCI as a pretest and posttest. Instructors teaching introductory calculus again
in the spring semester of 2011 were invited to participate in the study. Of the ten instructors who
taught introductory calculus in both Fall 2010 and Spring 2011, five agreed to be videotaped in
the classroom three times during the semester. The student scores and instructor videos were
collected during different semesters for logistical reasons, however instructors indicated that they
were  using  the  same  instructional  style  both  semesters.  This  difference  in  timing  of  data
collection should be considered when interpreting the results of the study.
Coding Process

We developed a set of interaction types including descriptions of what would constitute each
type  of  interaction.  We then used three  videos  to  refine  the  descriptions  of  the interactions,
develop key examples, and add categories of interactions that were not previously anticipated.

The final coding protocol was applied to the 12 videos not used for the development of the
coding protocol. It is important that the results of a video coding protocol are not dependent upon
the individuals coding, so that the coding protocol can be used by other researchers to reach
similar results. Two researchers independently coded one video from each instructor and created
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a master code to resolve any disagreements. The independent codes of the two researchers were
over 80% reliable for each interaction type in each of 3 videos. The remaining 9 videos were
coded by one of the researchers.
CCI Analysis

Traditionally, concept inventory scores are analyzed using a measure called the normalized
gain, which is the fraction of gain achieved out of the total that could be obtained, defined as:

〈 g 〉=
Posttest Score−Pretest Score

Maximum Possible Score−Pretest Score
. (1)

This score is typically defined at the classroom level, though the effect of computing these scores
at the student level has been addressed as well (Bao, 2006; Coletta & Phillips, 2005). Bao found 
that the differences could largely be attributed to differences between classes where all students 
gained uniformly and those where the rank order of students changed. This change in rank order 
might occur in situations where an instructional style is particularly effective for a subset of the 
population, like students with initially lower ability. We considered the effect of using both 
student-level and instructor-level normalized gain scores.

Results
Final Coding Protocol

Videos  were  coded by classifying  each interaction.  Only interactions  around non-routine
problems were considered admissible.  For the purposes of  this  study, we considered routine
problems to be those that were completely procedural; they required no interpretation and were
algorithmic in nature, such as finding the derivatives of a list of functions. In the classrooms
observed, wholly procedural problems were uncommon. Most problems included a real-world
context or were building towards a discussion of underlying concepts. For example, all related
rates problems observed were considered non-routine because they included an interpretation,
such as determining how to model the problem or how to interpret a solution in real-world terms.
A problem involving a conical sand pile might include a conversation about the shape of a sand
pile, or the interpretation of the sign of the rate of change of the radius with respect to time.

The scope of an interaction  was determined by the framing of  the question or  comment
which initiates the interaction. For example, an instructor might ask “what is the value of  x in
this problem?”. In this case, the question marks the beginning of the interaction, and the end of
the interaction occurs when the value of  x is determined. If the instructor instead asked “how
would we set this problem up?”, the interaction would be considered to conclude when the setup
for the problem has been addressed. Though not frequent, this allows for a single interaction to
include multiple exchanges and/or multiple students.

All interactions were categorized as either public or private. Private and public interactions
may contribute to student gains in different ways, and the literature does not currently distinguish
between these types of interactions in an IE classroom. By dividing interactions in this way, we
can investigate whether public or private interactions encourage greater gains. Then, both private
and public interactions were categorized by the initiator of the interaction. The initiator of an
interaction is the person who introduces the content of a conversation. In public conversations,
this was very clear, as the instructor typically initiates interactions unless a student specifically
asks a question or proposes an idea.  The only category of interactions  that was not initiator
dependent was called Developing Concepts. These episodes consisted of a sustained discussion
on the  conceptual  content  on a  topic.  For  example,  an instructor  might  develop the  idea of
L'Hopital's  rule  by  appealing  to  notions  of  derivatives  and  rate  of  change  to  motivate  the
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statement of the rule, or a student might ask whether L'Hopital's rule has anything to do with
rates of change.
Public Interactions

In order to be coded as a public interaction, an interaction must be visible and audible to the
majority of the class, the content of the interaction must be calculus-based, and must access
students’  knowledge,  not  students’  perception  of  their  knowledge.  Accessing  students'
perceptions occurred frequently when an instructor asked “does that make sense?”. An answer to
this question does not provide the instructor with any information about students' understanding,
only whether they think they understand. Similarly, choral response questions, where the answer
was clear from the instructor’s question,  almost  never provided substantial  information to an
instructor and were inadmissible. These questions typically only assessed student perception of
understanding, and never provided opportunities for discussion to continue. If a choral response
question did lead to a substantial conversation, this conversation was eligible to be counted as an
interaction.

Public interactions typically took place when a student asked a question or made a suggestion
during  class  by  raising  their  hand.  If  the  student  made  a  suggestion  that  extended  the
conversation beyond the scope of the current conversation, this was considered a new, student-
initiated interaction, as opposed to a continuation of the occurring interaction. Student-initiated
interactions  can  include  incomplete  attempts,  such  as  an  incompletely  formed  question  or
suggestion. For student-initiated interactions, a student attempting to contribute to the discussion
was the key factor in identifying the student as the initiator.

Public interactions were further divided by the initiator, and then by type of interaction. The
student-initiated interactions consisted of developing strategies, sensemaking, and checking for
correctness (see Table 1 for descriptions and examples). These types of interactions were derived
from the descriptions of IE classrooms given by Hake (1998) and Epstein (2007).

Table 1: Public Student-Initiated Interaction Categories
Category 
Name

Description Examples

Developing 
strategies

A student suggests or asks a question about 
how to solve a problem. This may be a 
suggestion or question specific to the problem
at hand or about a class of problems.

Suggesting a new step in a 
problem, or asking whether a 
different solution path would be 
successful.

Sensemaking A student makes a comment or raises a 
question about interpreting content in the 
course.

Interpreting answers, units, 
magnitudes, or signs of answers 
in the work being discussed.

Checking for 
correctness

A student makes a comment which corrects or
asks about the correctness of a solution or step
in a solution process.

A student asks why a particular 
step in a process was justified, 
or points out a mistake.

Instructor-initiated  interactions  were  those  in  which  the  instructor  specifically  asked  a
question or began an interaction where the instructor determined the topic of the conversation.
These interactions were divided into the categories: promotes sensemaking, promotes checks /
connections to previous material / extensions beyond current material, encourages revisions from
students,  check  procedures  for  sense-making,  and  presentation  of  problems  worked  on  by
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students (see Table 2 for descriptions and examples).
Table 2: Public Instructor-Initiated Interaction Categories
Category Name Description Examples

Promotes 
sensemaking

Making a suggestion about 
how to think about a 
problem or type of problem.

Drawing attention to notation, such as noting 
where a parameter is being used in a new 
way.

Promotes checks / 
connections to 
previous material /
extensions beyond 
current material

The instructor extends the 
discussion outside of the 
immediate context.

Connecting the immediate material to 
material that has already been covered or will
be covered in the future, referencing a prior 
problem or prior comment made by a student.

Encourages 
revisions from 
students

Explicitly suggesting a 
revision from the students 
in the class.

A revision of work the instructor has written 
himself/herself, or a suggestion to improve 
upon or work presented by a student.

Check procedures 
for sense-making

Checking whether the steps 
of a specific solution 
process make sense.

Asking why a particular step was done as 
opposed to a different step, or asking what 
justifies a particular step of a solution.

Presentation of 
problems worked 
on by students

Instructor provides direct 
and immediate feedback to 
students immediately after 
work is completed.

Instructor presents the solution to a problem 
on the board after students had worked on the
problem either individually or in groups, and 
had completed work on the problem.

Private Interactions and Work Times
Private interactions occurred whenever students were working with each other or discussed

content with an instructor when the majority of the class could not hear or see the exchange.
When private work time occurred, the number of interactions was counted and the total amount
of  time  students  spent  actively  working  was  recorded.  This  time  was  counted  separately
depending on whether the private work was groupwork or individual work because groupwork
allows  students  to  provide  each  other  with  immediate  feedback  and  individual  work  time
provides  students  opportunities  to  engage  with  content.  The  amount  of  time  devoted  to
groupwork  varied  greatly  among  the  five  instructors,  and  has  the  potential  to  be  another
characteristic of an IE classroom. The amount of time in private work was only considered if the
private work lasted at least two minutes. Shorter interactions did not allow students to engage
with each other sufficiently, or the questions beginning the private work were not of sufficient
difficulty to encourage in-depth, conceptual conversations.

In addition  to  time  being provided for  groupwork,  many of  the private  work times  also
included instructor-student  interactions  as  the  instructor  circulated  the  room.  The number  of
these  interactions  was  recorded,  then  further  categorized  by  who  initiated  the  interaction.
Instructor-initiated interactions were those in which the instructor asked a specific question of a
student,  instead of a question that  invited  conversation but did not  initiate  discussion of the
content.
Miscellaneous (Uncategorized) Interaction Count

A final category was created to capture the interactions which did not fall into any of the
other predefined categories. These included interactions where the topic was precalculus material
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or may not have qualified as any other particular type of interaction.
Results of Coding

The  counts  of  each  type  of  interaction  are  given  in  Table  3 along  with  the  associated
normalized  gain  scores.  Among  these  five  instructors,  the  coding  protocol  distinguished
instructional  activities  in  meaningful  ways,  both  by  indicating  which  instructors  were  more
interactive and by quantifying differences between interactive instructors.

Table 3: Counts of Types of Interactions by Instructor
Instructor A B C D E

Developing concepts 3 1 0 0 0

Student work-
time, including

private
interactions

Groupwork time (seconds) 1872 1249 0 865 0

Individual work time (seconds) 0 504 0 2939 0

Total work time (seconds) 1872 1753 0 3804 0

Instructor initiated private interaction 11 18 0 0 0

Student-initiated private interactions 16 14 0 38 0

Instructor-
initiated public

interactions

Promotes checks 6 7 6 5 2

Encourages revisions from students 4 8 0 5 6

Promotes sense making 9 5 1 3 3

Feedback on questions answered by
students

22 9 14 2 18

Problem presented which students have
worked on

1 0 4 8 1

Student-initiated
public

interactions

Student initiated developing strategies 4 2 1 4 4

Student initiated sensemaking 2 0 3 8 10

Student initiated check correct 4 2 4 4 10

Misc. (Uncategorized) interaction count 52 85 40 51 58

Normalized gain 0.239 0.271 0.190 0.246 0.259

CCI Gains
There were 26 sections of the course, with a maximum capacity of 35 in each section. Most

classes were near capacity, and on average 18.5 students per section participated in the study,
with a range of 10 to 26 participating students. The classrooms of the 5 instructors who agreed to
participate represented a spectrum of normalized gain scores on the CCI ranging from 0.19  to
0.27, near the national average. The mean normalized gain for the entire participant group at the
large, southwestern university where our study was conducted was 0.25, meaning that 25% of the
previously unknown concepts was learned during the course. Normalized gain scores for the
entire 26 sections ranged from 0.14 to 0.36.
Correlations Between Counts and Gains

The total  number  of  classroom interactions  (including those considered  “Miscellaneous”)
was significantly related to student gains, as demonstrated in Figure 1 and reported as Model 1 in
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Table 4. Among the specific categories, “Encourages Revisions from Students” was significantly
related to student gains, shown in Figure 2 and reported as Model 2 in Table 4.

Figure 1: Normalized gains versus all 
interactions

 

Figure 2: Normalized gains versus number 
of revisions encouraged

Table 4: Regression Results for Exploratory Analysis
Variable B SE(B) β t (df = 3) Sig(p) R2

Model 1: All Interactions

Constant 0.084 0.039 2.181 0.117 0.849

Interactions 0.002 0.0003 0.922 4.108 0.026

Model 2: Number of Revisions Encouraged

Constant 0.194 0.004 46.49 < 0.001 0.983

Interactions 0.010 0.001 0.992 13.22 < 0.001

Note: B indicates the unstandardized regression coefficient. β indicates the standardized 
regression coefficient.

Student-Level Analysis of Student Scores
While the previous results were conducted at the classroom level, one can use a statistical

technique called Hierarchical Linear Modeling, also known as multi-level modeling, to analyze
scores at the student level (Gelman & Hill, 2007). Using this technique, we can analyze student-
level  gain  scores  and  the  results  of  the  video  coding  protocol  at  the  instructor-level.  We
calculated  normalized  gain  scores  for  students  using  the  same  formula  as  was  used  for
classrooms, and constructed a model called a null model which partitions the variance between
the  student-level  and instructor-level.  We found that  over  99.9% of  the  variance  lies  at  the
student-level, suggesting that, at the university where the study was conducted, nearly all the
variation  in  student-level  normalized  gain  scores  can  be  attributed  to  differences  between
students rather than differences between instructors. This suggests that university-level factors,
such as department culture, or choice of textbook, may be affecting student gains, and future
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studies including video analysis of classrooms from multiple universities may provide further
insight as to whether this protocol can help understand the relationship between IE instruction
and gains in conceptual knowledge. The discrepancy between the instructor-level analysis and
the  student-level  analysis  suggests  that  this  relationship  is  perhaps  more  complicated  than
previously thought, and warrants further investigation.

Conclusions
The video coding protocol developed in this study provides a means for analyzing additional

classrooms to further investigate the connections between IE instruction and gains in conceptual
learning  as  measured  on  a  concept  inventory.  When  analyzed  at  the  classroom-level,  as  is
traditionally done, our data indicated that despite the small sample size, this coding protocol may
describe IE behaviors which are tied to gains on the CCI. While the analysis of the Hierarchical
Linear Model suggests that care needs to be taken in interpreting the results at the classroom
level, the qualitative differences between classrooms demonstrated by the use of the protocol
suggest that this tool can be useful in further investigations of IE instruction.
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Classroom teaching in multiple sections of Calculus I at a large comprehensive 

research university was observed and coded using the Teaching Dimensions 

Observation Protocol (TDOP). Multiple teaching styles were identified ranging 

from low engagement to moderate engagement to high engagement sometimes 

including student group work. Student performance on two course-wide uniform 

exams and on the Calculus Concept Inventory was analyzed for any correlations 

with teaching methods. Significant correlations were found with high engagement 

teaching styles on both the first exam and the final exam. However, no significant 

correlations were found on the Calculus Concepts Inventory, indicating that 

students may not have exerted much effort on this assessment. 

Key words: [Calculus instruction, classroom observations, student performance, calculus 

concepts inventory, teaching dimensions observation protocol] 

Introduction and Literature Review 

The United States is not producing enough graduates in Science, Technology, 

Engineering and Mathematics (STEM) (Bressoud, 2011) and the need is particularly great in 

the mathematically intensive majors. However, college freshmen entering one of the STEM 

majors face a significant hurdle in Calculus I. Currently, the Mathematical Association of 

America is investigating the teaching of college calculus courses nationwide to “measure the 

impact of the various characteristics of calculus classes that are believed to influence student 

success” (Bressoud et al., 2013, p. 2). In order to measure the impact of those characteristics, 

they must first be defined and described. As Speer, Smith and Horvath note, “research on 

collegiate teachers’ actual classroom teaching practice is virtually non-existent” (2010, p. 99). 

According to Bressoud (2012), “the mathematical community does not have research 

evidence for instructional strategies that work.” This study seeks to contribute to a growing 

body of research on actual classroom practice, as well as determine possible correlations 

between actual classroom practices and student achievement in Calculus I. 

While much research has found alternatives to lecture such as “inquiry-oriented” or 

“constructive process” pedagogies to be successful (Ganter, 1999; Rasmussen, Kwon, Allen, 

Marrongelle & Burtch, 2006), others have found lecture to be effective (Hora & Ferrare, 

2013; Saroyan & Snell, 1997) or preferable to students (Ferrini-Mundy & Güçler, 2009; 

Murray, 1983). This suggests that there is a need for a detailed description of in-class 

instruction to capture the relations among instructors, students and classroom environments. 

Porter (2002) notes that careful analysis of teaching can help identify methods that contribute 

to student achievement. 

A growing trend in the assessment of student understanding is the use of Concept 

Inventories, dating back to the work in physics of Halloun and Hestenes (1985) in developing 

the Force Concept Inventory (FCI). The FCI is intended to serve as a reproducible and 

objective measure of how a course improves comprehension of principles (Epstein, 2007); 

higher gains are seen after interactive engagement pedagogies in which students receive 

immediate feedback in class on their understanding of a topic. Similarly, the Calculus 

Concept Inventory (CCI) (Epstein, 2012) measures conceptual understanding of the 

principles of calculus through the use of multiple choice questions requiring little to no 
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calculation. Typically the CCI is given as a pre-test and post-test in one semester, and 

sections of the course are compared by comparing their normalized gain, which is the ratio of 

actual gain in the class average score (post-test mean less pre-test mean) divided by 

maximum possible gain (maximum possible score less pre-test mean).  

Research Questions 

The research questions addressed by this study are: 

1. What instructional practices including teaching methods, pedagogical moves, 

instructor/student interactions, cognitive engagement and instructional technology 

are being used in Calculus I at a large research university? 

2. (a) Which of these practices correlate to increased student conceptual 

understanding as measured by normalized gain on the Calculus Concepts 

Inventory? (b) Which of these practices correlate to higher average student 

performance on a uniform final exam? 

Research Methodology 

In this section we describe the setting of the study, the participants and method of 

selection, the sampling techniques, the instruments used, and the data collection and analysis. 

Setting and Participants. At the large, comprehensive research university during the 

semester when this study took place, Calculus I was taught in small sections with from 36 to 

43 students per section. These sections met for either four 50-minute meetings or three 75-

minute meetings per week; class start times ranged from 8:00 AM until 2:30 PM. Section 

enrollments were unrestricted, and students self-enrolled into their preferred section. Study 

participants consisted of 10 volunteers from among the section instructors, each teaching 1 or 

2 sections of Calculus I. Two instructors were tenured professors with substantial teaching 

experience; the remaining instructors had held the Ph.D. for four years or less or were 

advanced doctoral students within a year or two of earning the Ph.D. Two instructors were 

teaching their own section of Calculus I for the first time; all others had prior experience as 

an independent instructor in Calculus I. Four instructors were in their first year of teaching at 

the study institution. Study participants accounted for over 90% of the sections of Calculus I 

taught during the semester in question, and the 454 students enrolled in these sections 

accounted for over 90% of the students enrolled in Calculus I during that semester. 

The students enrolled in sections taught by participating instructors were asked to 

volunteer for the study. From among the volunteers, study participants were students who 

completed the various assessment instruments used. There were 350 student participants who 

completed both the uniform Exam 1 and common Final Exam, accounting for over 70% of 

students enrolled in Calculus I that semester. Due to spotty attendance in class on the days 

when the CCI test was administered, scores on the CCI pre- and post-test are available for 

208 students, representing from 45% to 94% of students from each section participating, 

except for one section with only 34% of students volunteering. 

Data Collection. All instructors teaching Calculus I collaborated on writing the uniform 

Exam 1 and Final Exam. Questions were fairly standard and emphasized calculations but 

some conceptual questions and some real-world applications were included. Grading was 

done uniformly, with one instructor grading one problem on all papers. Scores for student 

study participants were reported to the researchers. The Calculus Concepts Inventory was 

administered in class early in the semester and late in the semester by all instructors. This is a 

multiple choice instrument requiring little calculation which tests conceptual understanding 

of calculus concepts (Epstein, 2012). Instructors scored their own sections and reported 

results to the researchers. 
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Classroom observations were conducted using the Teaching Dimensions Observation 

Protocol (TDOP) created by M. Hora and J. Ferrare (Hora and Ferrare, 2010).  This 

instrument codes which of multiple behaviors by teachers or students are observed during 

each 2-minute interval of an observation.  It has been used previously to classify instructional 

behaviors in college-level instruction in Calculus (Code, Kohler, Piccolo, and MacLean, 

2012) and across disciplines (Hora and Ferrare, 2013). Instructors participating in the study 

had access to the instrument and were aware that the broad categories being observed were 

Teaching Methods, Pedagogical Moves, Instructor-Student Interaction, Cognitive 

Engagement, and Instructional Technology (see Appendix for table listing specific codes).  

Each section in the study was observed 3 times except for one section which was only 

observed twice. Before each observation, the observer contacted each instructor to ascertain 

that the observed class period would be what the instructor would call “typical.” 

Other observation instruments were considered and rejected for this study. Among these 

were the Teacher Behavior Inventory (TBI) (Murray, 1983), which gathers subjective 

accounts from students assessing instructor behaviors, and the Reformed Teaching 

Observation Protocol (RTOP) (Sawada et al, 2002), which aims to evaluate the extent to 

which instruction meets the goals of being inquiry-oriented or student-centered, and thus does 

not provide a descriptive account of teaching behaviors (Hora and Ferrare, 2013).   

Before using the observation instrument, the researchers observed videotaped instruction 

and coded together, in order to train themselves in using the instrument live and to increase 

observational reliability. All coding was done in person during this study so no video 

recordings were used, and all observations were performed by one researcher only. 

Data Analysis. For each of the 11 sections in the study, observational data from the 

TDOP were converted into a sequence of 0’s and 1’s, where a 1 was recorded if that 

particular behavior was observed in a two-minute interval and a 0 if not. These data were 

entered into an Excel spreadsheet. Each section was observed 2-3 times, so the total number 

of observed 2-minute intervals ranged from 50 to 114 per section (some sections met for 75 

minutes). We then determined the proportion of observed 2-minute intervals in which each 

particular TDOP code was observed. This gave us a range of proportions for each TDOP 

code indicating its relative frequency of use among study participants. Many codes varied 

little across sections, but those codes that had high variability across sections were noted. 

For the initial phase of analysis, student performance was averaged in each section, 

producing four data points summarizing student performance: the exam 1 average, the final 

exam average, the sum of the exam averages, and the CCI net gain. CCI net gain is computed 

as the ratio of the actual section mean gain (post-test mean less the pre-test mean) to the 

maximum possible mean gain (maximum score minus the pre-test mean). Pearson correlation 

coefficients were computed between each of the four student performance indicators and 

TDOP proportions across sections. TDOP categories showing a significant correlation with 

student performance were analyzed further, individually or in combination. The significant 

TDOP codes were used to characterize the observed instructional profiles into three 

categories: low engagement, moderate engagement, and high engagement. 

For the final phase, a spreadsheet was created containing the four scores available for 

each individual student and a number from 1 to 3 indicating the classification of their section 

instructor’s observed instructional profile as low, moderate or high engagement. Additional 

analysis was performed including ANOVA and ANCOVA to determine if any correlation 

was present between the instructional profile and student performance. 

Research Results 

Teaching Practices. Initial findings from the TDOP regarding Teaching Methods 

indicate that all instructors employ lecturing with visuals, seen in 90% of the two-minute 
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intervals coded.  The instructional technique of having students work at their desks, either in 

small groups (SGW) or by themselves (DW), was observed 11% of the time but it was used 

by only four instructors, ranging from 16% to 32% of the time in those sections. Several 

codes in both the Instructor-Student Interaction category and the Cognitive Engagement 

category varied significantly. Overall, approximately 60% of time intervals coded contained 

questions asked of the students by the instructors, with students responding in more than 50% 

of the time intervals coded. However, some instructors used display questions (DQ), asking 

students to display content knowledge, as often as 85% of the time, others as little as 11% of 

the time. Among Instructional Technology, the most predominant tool was the chalk board or 

white board, used 77% of the time. The use of power point slides and a digital tablet varied 

significantly, ranging from no use to use more than 30% of the time. Other instructional 

technologies were observed well less than 10% of the time. 

The codes SGW and DW, along with ART and some types of questioning, showed a 

positive correlation with at least one of the student performance measures. Based on this 

preliminary analysis, we combined some TDOP categories in order to create aggregate codes 

to compare to the student performance measures. These aggregate codes are described in the 

following Figure. We determined the proportion of instructional time each of these aggregate 

codes appeared, and we used these proportions to create an instructional profile for each 

section in the study. 

 

TMTH Coded as 1 when any teaching method is coded  

SWK Coded as 1 when either SGW or DW is coded (students working) 

SVB Coded as 1 when TMTH = 1, SWK = 0, and any of SNQ, SCQ, SR, 

ART, RMF, PS, CR or CN is coded (students verbalizing) 

SENG Coded as 1 when TMTH = 1 and either SWK = 1 or SVB = 1 

(students engaged)  

LNWV Coded as 1 when TMTH = 1 and SENG = 0 (lecture, no student work 

or verbalization) 

Figure 1: Aggregate TDOP Codes 

 

The resulting instructional profiles indicate a range of instructor behaviors. Code SWK 

ranged from 0% to 32%; code SVB ranged from 19% to 81% of the time; and SENG ranged 

from 22% to 88%.  As a result, LNWV ranged from 12% to 78%. Note that SWK + SVB = 

SENG and SENG + LNWV = 100%.  The data suggested sorting instructor profiles into three 

groups. It is notable that one instructor in this section taught two sections, and the two 

sections were assigned to different instructional profiles. 

 

Profile Name SENG range of values Sections observed 

Low Engagement 22% - 40% 4 

Moderate Engagement 50% - 70% 3 

High Engagement 80% - 88% 4 

 

Figure 2 illustrates the range of instructional profiles seen in the spring observations. The 

teaching profile bars are arranged from left to right by increasing average score on the final 

exam and illustrate a statistically significant correlation with the high engagement 

instructional profile, as discussed in the next paragraph. 

Statistical Results for Section Averages. Using our data from the 11 course sections in 

the study, we calculated Pearson’s correlation coefficients between our aggregate TDOP 

codes SWK, SVB, and SENG and average student scores in each section on four measures: 

Exam 1, the Final Exam, the Sum of Exam 1 and the Final Exam, and the section’s net gain 
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on the CCI.  Results indicated that the Exam 1 average was correlated significantly (p < .05) 

with code SENG. The Final Exam average and the Exam Average Sum were both correlated 

significantly (p < .05) with code SWK and correlated highly significantly (p < .01) with the 

combined code SENG.  

During this study the course wide net gain on the CCI from the pre-test to the post-test 

across all sections was only 10.15%, with 5 sections having gains from 3.4-9.6%, 5 sections 

having gains from 12-15%, and one section having a gain of 20.3%. The section CCI net gain 

was correlated significantly (p < .02) with the code SWK but not correlated with either 

SENG or SVB. 

 

 
 

 

 

     Statistical Results for Individual Student Performance. The student data consisted of 

scores on each of four assessment measures along with a variable which sorted student scores 

into three groups according to the instructional profile assigned to their instructor, with 1 

indicating the low engagement profile, 2 indicating moderate engagement, and 3 indicating 

high engagement. The assessment measures considered were the CCI Pre-test, administered 

in week 1; the score on Exam 1, administered in week 5, the CCI Post-test, administered 

during week 15; and the uniform Final Exam, administered during week 16 of the semester. 

We used SPSS software to search for any significant correlations of student performance on 

the various assessments with the instructional profiles assigned.  

We found no significant difference [F(2,305)=1.88, n.s.] among students across the three 

groups in the analysis of the CCI pre-test.  

When comparing the scores on common Exam 1, analysis of variance revealed a 

significant difference in performance [F(2,347) = 12.84, p < .01] among students. 

Examination of paired comparisons (Tukey and Scheffe) showed that, while the moderate 

and low engagement groups did not significantly differ from each other, the high engagement 

group scored significantly better on the first exam than either of the other two conditions.  

When comparing the scores on the common Final Exam, analysis of variance again 

revealed a significant difference across the three groups [F(2, 347) = 7.46, p < .01]. Paired 

comparison between the three groups revealed that, while the difference between the high and 
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low engagement groups was still significant, the difference between the moderate 

engagement group and either the low engagement group or the high engagement group was 

not statistically significant. The results for the final exam are interesting in that they suggest 

that the moderate engagement group “gained ground” on the high engagement group between 

the first common exam and the final exam, with a higher estimated marginal mean for the 

moderate engagement group as compared to the high engagement and low engagement 

groups in an ANCOVA analysis with the final exam as our dependent variable and the first 

exam as covariate.  

We also found no significant difference [F(2,215)=.08, n.s.] among students across the 

three groups in the analysis of the CCI Post-test.   

Discussion 

Regarding our first research question, we found that the teaching methods observed relied 

primarily on lecture methods, seen from 68% to 100% of the time. Within lecture methods, 

though, the use of questioning and other engagement techniques varied significantly. Our 

data seem to indicate a possible definition of high engagement instruction, but further 

research is needed. It is interesting to note that all instructional profile groupings included 

instructors of varying experience levels and both Americans and internationals. However, all 

high engagement instructional profiles occurred in classes whose start times were between 

8:00-10:30 AM.  

Regarding our second research question, the correlation of section-wide net gain on the 

CCI with code SWK agrees with some prior results reported in the literature (Epstein, 2012) 

but seems suspect. The number of students participating in both CCI pre-test and post-test 

(n=208) is small and may contain the better students in each section, since many of those 

absent on the days when the CCI was administered may have been weaker students. The lack 

of correlation between CCI pre-test and post-test scores and any TDOP variables or other 

assessments bears further investigation but may indicate a lack of effort by participants on the 

CCI, which did not count towards their course grade. The high correlation of exam scores 

with the level of engagement in the instructional profile is very interesting and also deserves 

further study. This result may imply that there would be a benefit derived from providing 

training to new Calculus I instructors in questioning techniques and the use of group work.   

Further research is desirable to investigate if there is any correlation between teaching 

methods and persistence in the calculus sequence or student performance in later courses. 

More observational data might provide richer descriptions of teaching styles in use in 

Calculus I and further evidence to support the correlations we found. Interviews with 

instructors might shed light on their decisions with regard to engagement levels and could be 

relevant to instructional training programs. 
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Appendix: TDOP Codes 

This table contains all of the codes used in the TDOP. 

 
 Teaching Methods  Pedagogical Moves 

L Lecture, no visuals MOV Moves into audience 

LPV Lecture, pre-made visuals HUM Humor 

LHV Lecture, handwritten visuals RDS Reads verbatim from notes or text 

LDEM Lecture with demonstration IL Illustration from real world 

LINT Interactive lecture ORG Organization 

SGW Small group work EMP Emphasis 

DW Desk work A Assessment 

CD Class discussion AT Administrative task 
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MM Multimedia  Instructional Technology 

SP Student presentation PO Posters used 

 Instructor/Student Interaction B Books used 

RQ Instructor rhetorical question N Lecture notes actively used 

DQ Instructor display question P Pointer used 

CQ Instructor comprehension quest. CB Chalk board or white board used 

SNQ Student novel question OP Overhead or transparencies used 

SCQ Student comprehension quest. PP Powerpoint or digital slides used 

SR Student response CL Clickers used 

 Cognitive Engagement D Demonstration equipment used 

ART Articulation by students DT Digital tablet or document camera used 

RMF Reciting or memorizing facts M Movie, documentary, other video clip 

PS Problem solving SI Simulation 

CR Students create their own ideas WEB Website or other online resource 

CN Connections to real world OB Object used as part of instruction 
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SLOPE AND DERIVATIVE:   
CALCULUS STUDENTS’ UNDERSTANDING OF RATES OF CHANGE  

Jen Tyne 
University of Maine 

 
Abstract: Studies have shown that students have difficulty with the concepts of slope and 
derivative, especially in the case of real-life contexts.  I used a written survey to collect data 
from 75 differential calculus students.  Students answered questions about linear and 
nonlinear relationships and interpretations of slope and derivative.  My analysis focused on 
students’ understanding of slope as a constant rate of change and derivative as an 
instantaneous rate of change, and what these meant in the context of the problems.  
Preliminary results indicate that students have more success with slope questions than 
derivative questions (McNemar’s test, p<0.03), and that while students correctly use the 
slope of a linear relationship to make predictions, they do not demonstrate an understanding 
of the derivative as an instantaneous rate of change and an estimate of the marginal change.   
Plans for a modified survey and interviews are in place for fall 2013.   
 

Keywords:  Calculus, Derivative, Rate of Change, Slope, Student Understanding 
 

Introduction and Research Questions 
Robust understanding of derivatives and instantaneous rates of change in calculus requires an 

understanding of slopes and average rates of change from precalculus (Hackworth, 1994).  It is 
important for the mathematics community to be alert to students’ understanding of slope coming 
into calculus, and to design instruction that expands on that knowledge in teaching the derivative. 
Students may not have the robust understanding of slope and rates of change that instructors 
assume, which has consequences for their learning of calculus.  Furthermore, calculus students 
must understand not only instantaneous rates of change, but also continuously changing rates. 
This covariational reasoning is essential for interpreting dynamic situations surrounding 
functions (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002).  

My study investigates the interpretation and use of slope and derivative in real life contexts.  
Such applications require students to translate from the context to the abstract level of calculus 
and then back to the context, a process that requires conceptual knowledge (White & 
Mitchelmore, 1996).  Mathematics educators have emphasized the utility of these sorts of 
problems, noting that “Not only do real-world situations provide meaningful opportunities for 
students to develop their understanding of mathematics, they also provide opportunities for 
students to communicate their understanding of mathematics” (Stump, 2001, p. 88).  My focus is 
on linear and non-linear, one-variable relationships, concepts that should be familiar to first-year 
calculus students.  

The study builds on research about student understanding of slope and rate of change 
(Stump, 2001; Orton 1984; Barr, 1981; Barr 1980); student understanding of rates of change 
involving and not involving time (Stump, 2001); student understanding of derivatives (Ferrini-
Mundy & Graham, 1994; Bezuidenhout, 1998; Zandieh, 2000); student understanding of the rate 
of change of linear and non-linear functions (Orton, 1983); and how students’ knowledge of rates 
of change affect their conceptual knowledge of the derivative (Hackworth, 1994).  Findings from 
these studies indicate that students have difficulty understanding slope as a constant rate of 
change and derivative as an instantaneous rate of change.  However, there has not been much 

17th Annual Conference on Research in Undergraduate Mathematics Education 1097



research on students’ verbal interpretation of the derivative as a rate of change, students’ verbal 
interpretation of slope as a constant rate of change, or students’ understanding of the differences 
in making predictions involving constant and instantaneous rates of change.  Since the calculus 
concepts encountered outside the math classroom have real life contexts, it is important that 
students are able to interpret these situations and rates of change correctly.   The specific 
research questions are: 
• Is there a relationship between calculus students’ understanding of slope and their 

understanding of derivative?  Specifically, do students’ abilities to interpret the slope as a 
constant rate of change make them more likely to be able to interpret the derivative as an 
instantaneous rate of change?  

• Do students correctly use the slope and derivative to make valid predictions from models? 
 

Methodology 
I collected written solutions to questions from 75 students enrolled in a first semester 

calculus course at a research-focused university.  Students had completed approximately 80% of 
the one-semester course.  My research approach, an analysis of student understanding gained 
from direct students responses, is consistent with a cognitive theoretical perspective and is well 
established in the math education community (Byrnes, 2000; Siegler, 2003).  This cognitive 
approach grew out of the need to move away from a product-driven method (looking for just the 
right answer) to the process-driven approach of cognitive scientists (Schoenfeld, 1987).  

While the full survey covered multiple concepts surrounding linear and non-linear one-
variable functions (interpreting function values, interpreting slope and derivative values, slope 
and derivative units, and predicting change and function values), this paper focuses on a subset 
of the questions, namely predicting change and function values for linear and nonlinear 
relationships given information about the slope and derivative (see Figure 1).   

Figure 1.   A subset of the questions on the calculus survey instrument. 
 
I created questions that were not mechanical in nature and therefore did not assess procedural 

knowledge; rather, I designed tasks about students’ interpretation of slope and derivative to 
uncover their conceptual knowledge about these topics.  The questions about linear relationships 
are posed to gain understanding of students’ knowledge predictions based on linear change. 
These questions were adapted from a general education textbook written to emphasize 

The function P(t) is the population of a country, in millions of people, where t is the number of years 
after 2000. 

a. P(t) = 2t + 30 
i. What does the model P(t) predict the change in population will be from the 

start of 2020 to the start of 2021?   Explain how you got your answer. 
ii. A classmate of yours says that the population of the country in the year 2030 

would be 90 million.   Has your classmate made a valid prediction?   Explain 
why or why not. 

b.  Now, assuming P(t) is a nonlinear function and .  
i. What does the model P(t) predict the change in population will be from the 

start of 2020 to the start of 2021?  Explain how you got your answer. 
ii. A classmate of yours says that the population of the country in the year 2030 

would be 90 million, given that P(20)=70 and .  Has your 
classmate made a valid prediction?   Explain why or why not. 

1098 17th Annual Conference on Research in Undergraduate Mathematics Education



conceptual over procedural learning (Franzosa & Tyne, 2010).  To answer these questions, 
students must understand linear change as a constant rate of change.  The questions about 
nonlinear relationships are more complex, and were influenced by Calculus, 6th edition 
(Hughes-Hallet et al., 2013).  To answer these questions, students must understand the derivative 
as an instantaneous rate of change that can be used to predict marginal change, and that the 
derivative cannot be used to make predictions at other input values.  Data analysis methods are 
presented in conjunction with the results below. 

 
Preliminary Results 

To determine whether students’ answers were correct on the two problems that ask to predict 
the change in population from 2020 to 2021 (parts (i) in Figure 1), I coded answers as ‘correct’ 
and ‘incorrect’.  The correct response is ‘2 million’ or ‘2 million people’; anything else  (e.g. 72 
million, 70 million, or leaving it blank) was considered an incorrect response.  I didn’t look at the 
explanations for the purposes of coding.  I recorded the combinations of right/wrong in the 
following 2x2 contingency table (Table 1).   

Table 1.  Predicted Change in Population from 2020 to 2021 
                        Nonlinear (2 million people) 

Li
ne

ar
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le
)   Right  Wrong Total 

Right 64% 22% 86% 
Wrong 7% 7% 14% 
Total 71% 29% N=58 

 
To test the null hypothesis that the probability of getting the linear problem correct is the 

same as the probability of getting the nonlinear problem correct, I performed McNemar’s test 
(α=0.05), concluding that there was a significant difference in the probabilities (p=0.0291).  
McNemar’s test analyzes the right/wrong and wrong/right cells (in particular, the students who 
answer correctly for the linear question then incorrectly for the non-linear question, as well as the 
students who answered incorrectly on linear and then correctly on non-linear).   If the null 
hypothesis were true, we would expect these percentages to be similar.   My results are not 
entirely surprising, since one would expect students to be able to interpret slope with more 
success than interpreting the derivative.  Only 7% of the students were more successful 
interpreting the derivative than the slope (that is, they answered the linear problem incorrectly 
and the nonlinear problem correctly). 

A limitation of this task is that written answers give limited insight into what students truly 
understand.  In some cases, students wrote “2 [million people] because the derivative is 2.” 
Further, as we see later, the majority used the instantaneous rate of change incorrectly to predict 
the population in 2030.  Other researchers have found that depending on the crafting of the 
question, students sometimes give correct answers for wrong reasons, which makes it difficult to 
detect misconceptions (Bezuidenhout, 1998).  Slightly modified questions and interviews, slated 
for fall 2013, will investigate student understanding of the instantaneous rate of change as an 
estimate of the marginal change. 

Questions ii (Figure 1) were coded as follows: a response was recorded as ‘correct’ for part 
a-ii if the student answered ‘yes’ and ‘incorrect’ if the student answered ‘no’.   Part b-ii was 
coded ‘correct’ if the student answered ‘no’ and coded ‘incorrect’ if the student answered ‘yes’. 
To answer a-ii correctly, students needed to predict the 2030 populations by using the linear 
function (plugging in t = 30).    For the nonlinear problem (problem b-ii), students needed to 
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understand the prediction was not valid because the instantaneous rate of change at 2020 
couldn’t be used to predict the change in population from 2020 to 2030.  Results are summarized 
in Table 2. 

Table 2.  Prediction by Classmate for Population Estimate in 2030 
Nonlinear (invalid prediction) 
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   Right  Wrong Total 

Right 28% 64% 92% 
Wrong 0% 9% 9% 
Total 28% 73% N=69 

 
I performed the McNemar’s test on the 2x2 contingency table to test the null hypothesis that 

the probability of getting the linear problem correct is the same as the probability of getting the 
nonlinear problem correct, and concluded that there was a significant difference in the results (p 
< 0.001).  Therefore, the distribution of correct responses is different for the two questions, 
which may highlight some of students’ misconceptions about instantaneous change.  No students 
answered the linear problem incorrectly and the nonlinear problem correctly.  Further, 64% of 
the students answered the linear problem correctly and then went on to answer the nonlinear 
problem incorrectly, often stating that the derivative can be used incorrectly to predict change at 
different input values (in other words, they assumed that the derivative could be used as a 
constant rate of change).  

An additional indication that students have difficulty interpreting derivatives is that there 
were more students who left the nonlinear problem blank than students who left the linear 
problem blank. I intend to use interviews to delve into this issue more.  More research is 
necessary as to the actual student thinking surrounding the non-linear problem; considering the 
number of students who correctly answered the change in population part but went on to get the 
2030 prediction incorrect, it seems that many might not understand the difference between using 
a derivative for a marginal change, and using a derivative to predict change far in the future.  

In summary, my preliminary findings support others’ claims that students must have a clear 
understanding of a constant rate of change in order to understand instantaneous rates of change 
(Hackworth, 1994).  In particular, it was unlikely for students to answer a derivative question 
correctly (Figure 1, part b) after answering a constant rate of change question incorrectly (Figure 
1, part a).  While we know that students must understand rates of change to succeed in calculus 
(Hackworth, 1994), this research adds to the body that shows that rates of change are not well-
understood by first-year students, many who have fundamental misconceptions (Bezuidenhout, 
1998).  

Plans for research in fall 2013 include re-administering the survey to calculus students with 
slightly modified questions, and interviewing students about their understanding of rates of 
change, marginal change, predictions, and interpretations.  

 
Discussion Questions for Audience 

• What other kinds of questions could be effective in uncovering students’ understanding of 
slope as constant rate of change and derivative as instantaneous rate of change? 

• How might the interviews be structured to get at student difficulties in using derivatives and 
slopes to make predictions? 

• Based on the study’s research question, in what ways could the research design be improved 
for future iterations?  
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AN ORIGIN OF PRESCRIPTIONS FOR OUR MATHEMATICAL REASONING 

Yusuke Uegatani 

Research Fellow of the Japan Society for the Promotion of Science (Hiroshima University) 

To build a supplementary theory from which we can derive a practical way of fostering 

inquiring minds in mathematics, this paper proposes a theoretical perspective that is 

compatible with existing ideas in mathematics education (radical constructivism, social 

constructivism, APOS theory, David Tall’s framework, the framework of embodied cognition, 

new materialist ontologies). We focus on the fact that descriptive and prescriptive statements 

can be treated simultaneously, and consider both descriptive and exemplary models in our 

minds. This indicates that descriptive statements in mathematics come from our descriptions 

of models, and prescriptive statements come from the exemplarity of exemplary models. As a 

practical suggestion from the proposed perspective, we point out that careful communication 

is needed so that inquiring minds do not recognize the refutation of their arguments as a 

denial of their way of mathematical thinking. 

Key words: Prescriptive perspective, Mathematical reasoning, Theoretical discussion 

Introduction 

Inquiring minds in mathematics seem to come from the belief that mathematical truth is, 

in some sense, absolute. Goldin (2003) pointed out the importance to mathematics education 

of commitment to the integrity of mathematical knowledge. This commitment is of particular 

importance in undergraduate mathematics education. Consider the belief that the 

discoverability of new mathematical results is open to everyone, because they do not depend 

on historical contingency, temporary human discourse, or, especially, on authorities. 

Undergraduate students will not be willing to continue studying mathematics without this 

discoverability belief. It is useful to identify both the origin of the discoverability belief and 

why it influences students. However, existing research perspectives on mathematical 

knowledge (radical constructivism, e.g., von Glasersfeld, 1995; social constructivism, e.g., 

Ernest, 1998) and mathematical cognition (APOS theory, e.g., Dubinsky & McDonald, 2002; 

three worlds of mathematics, e.g., Tall, 2008) do not explain how the discoverability belief, 

or its counterpart in each theory, arises. 

One approach to identifying the origin of the discoverability belief is to discuss the 

ontological aspects of mathematical entities. For example, theoretical frameworks based on 

the broader interpretation of embodiment (e.g., Lakoff & Núñez, 2000; de Freitas and 

Sinclair, 2013) can describe how mathematical concepts arise from the physical world. 

However, they do not have a particular interest in why the consistency of the physical world 

makes mathematical results consistent. 

The above existing research provides explanations for broader educational phenomena. 

Their scant attention to the discoverability belief is thus unimportant. On the other hand, a 

supplementary theory from which we can derive practical suggestions for fostering inquiring 

minds in mathematics is useful. Thus, this paper attempts to build a model to explain the 

origin of the discoverability belief that supplements existing perspectives. 

Duality of Prescription and Description 

Ernest (1998) pointed out the limitations of prescriptive accounts of mathematics: 

Absolutist philosophies of mathematics such as logicism, formalism, and intuitionism 

attempt to provide prescriptive accounts of the nature of mathematics. Such accounts 

are programmatic, legislating how mathematics should be understood, rather than 

providing accurately descriptive accounts of the nature of mathematics. Thus they are 
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failing to account for mathematics as it is, in the hope of fulfilling their vision of how 

it should be. (pp. 50-51, italics in the original) 

Thus, Ernest’s (1998) social constructivism takes a descriptive stance. It provides no account 

of which way of doing mathematics is correct, but rather describes how people do 

mathematics. Other existing research perspectives for mathematics education also take 

descriptive stances. They provide no account of which method of understanding mathematics 

is correct, but merely explain how students do mathematics. However, the preceding 

discussion is based on the following implicit assumption: we must exclusively choose 

prescriptive or descriptive philosophies. Both the prescriptive statement “X should be Y” and 

the descriptive statement “X is Y” can be simultaneously correct. 

For example, consider a group  ,G . Suppose that G  is a set, and that * is a binary 

operation on G . The group axioms are as follows: (i) For all ba,  in G , ba *  is also in G . (ii) 

For all ba,  and c  in G ,    cbacba ****  . (iii) There exists an element e  in G  such that, 

for every element a  in G , the equation aaeea  **  holds. (iv) For each a  in G , there 

exists an element b  in G  such that eabba  ** , where e  is the element defined in axiom 

(iii). From these axioms, we can derive the statement that the element e  postulated in (iii) is 

unique, and we will say that e  postulated in (iii) should be unique if someone argues that 

there are many elements postulated in (iii). In this case, both statements (involving “is” and 

“should be”) appear correct. This is explained by distinguishing between in and out of the 

axiomatic system. The statement that the element e  postulated in (iii) is unique is a 

description of components in the system. The statement that the element e  postulated in (iii) 

should be unique (or, more strictly, the statement that we should argue that e  postulated in 

(iii) is unique) is a prescription for us who are out of the system. It is important that the 

element e  (or the entity in the system) is not itself bound by the rules of logic, but that all 

thinking subjects who are out of the system and agree on the group axioms have an obligation 

to obey some logical inference rules. 

In general, a descriptive statement in an axiomatic system and the corresponding 

prescriptive statement out of the system can be simultaneously correct, because we can 

always distinguish between in and out of the given system. It is, therefore, an unjustifiable 

assumption that we cannot simultaneously consider both prescription and description. If we 

have the ability to self-reflect, and to distinguish between the outside of an axiomatic system 

and the overall framework that contains the inside and the outside of the system, then 

prescriptive statements and descriptive statements are dual properties of the overall 

framework (Figure 1). In addition, it is also important that humans out of the system are 

prescribed, and the entities in the system are described. 

Origins of Prescription 

If our reasoning always followed the rules of formal logic, the discoverability belief 

would be justified by the independence between these rules and human minds. In general, it 

is difficult to describe the actual practices of mathematics by formal logic (e.g., Fallis, 2003). 

Thus, we argue that the schemata of descriptions actually prescribe human reasoning. 

The schema of descriptions is, for example, the format of implication statements 

“ QP  .” We do not assume that it pre-existed the modus ponens. Rather, we argue that 

modus ponens pre-existed the schema QP  , and that the schema was invented to describe 

a situation where one may infer Q  after knowing that P  is true. Given the propositions P  

and QP  , we usually deduce proposition Q  for any propositions P  and Q . This does not 

imply the validity of modus ponens, but implies that there can be a situation where one may 

infer Q  after knowing that P  is true. Similarly, the rule of conjecture elimination (inferring 
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P  from QP  ) pre-existed the schema QP  , and the rule of universal instantiation 

(inferring  aA  for any element a  from  xAx ) pre-existed the schema  xAx . In general, 

an inference rule pre-existed its related schema. Thus, what one should infer depends on how 

one describes a given situation, and not on formal logic. 

From this perspective, it is necessary to identify what determines a valid description of 

the situation. Next, we shift to the question of how descriptive statements arise. 

Origin of Description 

In mathematics, some descriptive statements are contained within the axioms of the 

system under consideration, but even in advanced mathematics, we do not always think in 

completely formalized systems. We propose that, instead, descriptive statements originate 

from models in our minds. In the present paper, the term model has a dual meaning. In this 

regard, Mason’s (1989) idea is highly suggestive. According to Mason (1989), mathematical 

abstraction is described as “a delicate shift of attention from seeing an expression as an 

expression of generality, to seeing the expression as an object or property” (p. 2, italics in the 

original). Using the idea of “a shift of attention,” we will show the dual meaning of “model.” 

One meaning is “something that a copy can be based on because it is an … example of its 

type” (“Model,” n.d.-a). We call this an exemplary model. For example, the set of all integers, 

together with the operation  , is an exemplary model of a group in our minds, because it is a 

typical example of a group. With this in our minds, we can easily understand any example of 

a group by analogy. We can also show that the set of all integers with the operation   is an 

exemplary model satisfying the group axioms. Similarly, because the experience of typicality 

can depend on subjective experiences, any example of a group can be an exemplary model. 

As it has not only the essential features of a group, but also non-essential ones, it has more 

information than a group as an abstract object without any non-essential features of a group. 

In general, an exemplary model satisfies a certain set of axioms, and carries more information 

than an abstract object without any properties which the axioms do not imply. A set of 

axioms do not have to be commonly accepted. Arbitrary logical expressions may be axioms. 

If a set of axioms is consistent, there exists at least one exemplary model for them. 

Another meaning of the term “model” is “something that represents another thing … as a 

simple description that can be used in calculations” (“Model,” n.d.-b). We call this a 

descriptive model. For example, a line in mathematics may be regarded as a descriptive 

model of a physical line, such as that made by a pencil, in our minds. A line in mathematics is 

defined by focusing attention on only some of the features of a physical line. It is a result of 

neglecting uninteresting features that. While a physical line does have width, we usually 

require in mathematics that a line have no width. In general, a descriptive model is created by 

focusing attention on only some of the features of other descriptive models or physical 

objects. Such a temporal creation is then refined with certain provisos (e.g., “it has no width”). 

The provisos prevent us from focusing attention on uninteresting features of the source 

descriptive models or objects. 

Most relevant here is the relativity between exemplarity and descriptiveness. That is, 

when we focus attention on some essential features of an exemplary model, the abstract 

object constrained by the logical expressions of those features is a descriptive model of the 

exemplary model. When we create a new object by adding some extra features to an abstract 

object that is a descriptive model, the new object is an exemplary model of the descriptive 

model. In other words, any model in our minds can always be both exemplary and descriptive. 

Any model other than a physical object is an exemplary model of more abstract models or 

objects, and it is simultaneously a descriptive model of more concrete models or objects. The 

relativity between exemplarity and descriptiveness allows us to dispense with the distinction 
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between the terms “model” and “object.” In this sense, both terms may be used 

interchangeably, because every model can become an object of thought, and vice versa. 

By using the term “model,” one of the predominant origins of descriptive statements in 

mathematics can be explained as descriptions of models in our minds. We will provide two 

examples: the fundamental theorem of cyclic groups, and the construction of an equilateral 

triangle. Let us explain their possible models, for example, in the author’s mind. 

The fundamental theorem of cyclic groups: The theorem states that every subgroup of a 

cyclic group is cyclic. Let g  be a cyclic group generated by g . Following the definition of 

a cyclic group, g  simply consists of  ,,,,,, 212 ggegg  ; there is no other element in g . 

If a subgroup of g  has n  different elements, they can be represented by nkkk
ggg ,,, 21  . 

From the group axioms, the subgroup contains  nkk
g

,,,kGCD 21  , and  nkk
g

,,,kGCD 21   generates all 

elements in the subgroup. Thus, the theorem seems to be true. 

This way of creating descriptions of models in our minds implies various prescriptions. 

For example, when someone says that g  might not contain e , the author should argue that 

g  always contains e  because g  is an example of a group. As another example, when 

someone points out that the order of a subgroup of g  is not always finite, the author should 

recognize that an example of a subgroup of g  in his mind is too specific. 

The construction of an equilateral triangle on a given line segment: Let AB  be the given 

line segment. Draw a semicircle with center A  and radius AB . Again, draw a semicircle with 

center B  and radius BA  on the same side as the first semicircle. Let C  be the point of 

intersection of the semicircles. Then, the triangle ABC  is equilateral. This is because the 

semicircles centered at A  and B  have radii of equal length, and all three segments AB , BC , 

and CA  are the length of their radii. Thus, the construction seems to be valid. 

There are also various prescriptions in this case. For example, when someone says that 

the three edges AB , BC , and CA  are not always equal, the author should argue that they are 

always equal, for the following reason. The point C  is regarded as our exemplary model of 

the points on the semicircles A  and B ; the pairs CA , AB  and AB , BC  are regarded as our 

exemplary models of equivalent radii, and the lengths of AB , BC , and CA  are regarded as 

our exemplary models of the transitivity rule. As another example, if someone points out that 

the author’s consideration depends on the belief that the two semicircles always intersect with 

each other, he should recognize that his consideration depends on a visual representation. 

Generally speaking, descriptive statements of some mathematical objects are created by 

accessing their models in human minds, and then describing these models. Given an 

axiomatic system (that is, a descriptive model), one creates an exemplary model of the given 

descriptive model in mind. Creating a descriptive statement in the system is creating a 

descriptive model of the exemplary model. There are two types of creation. One creates a 

description of a common property among all the exemplary models of the given descriptive 

model. The other creates a description of a property satisfied by only a particular exemplary 

model of the given descriptive model. If one mistakenly argues something based on the latter 

type, and someone points this out, then one should recognize the mistake (for example, that 

an example of a subgroup of g  is too specific, or the consideration of an equilateral triangle 

depends on a visual representation). Descriptive statements in mathematics, therefore, can 

come from descriptions of models in our minds, and prescriptive statements can come from 

the exemplarity of the exemplary models. From this perspective, the reason proofs and 

refutations (Lakatos, 1976) occur in mathematics might be because humans (including 

mathematicians) sometimes create a description of a property satisfied by only a particular 

exemplary model of the given descriptive model. 
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Conclusion 

For the purpose of building a supplementary theory from which we can derive practical 

suggestions for fostering inquiring minds in mathematics, this paper proposed a theoretical 

perspective to explain the origin of the discoverability belief. The main results are as follows: 

(i) We can simultaneously treat descriptive statements and prescriptive statements. (ii) We 

can distinguish between descriptive and exemplary models. (iii) Descriptive statements in 

mathematics can come from the descriptions of models in our minds, and prescriptive 

statements can come from the exemplarity of exemplary models. 

We now argue that the discoverability belief arises from prescriptiveness in mathematics, 

and that three implications can be derived from our proposed perspective and existing 

theoretical perspectives. First, even taking any standpoint criticized by Goldin (2003) (such 

as radical constructivism (e.g., von Glasersfeld, 1995), social constructivism (e.g., Ernest, 

1998), or the perspective of embodied cognition (e.g., Lakoff & Núñez, 2000)), one can treat 

prescriptiveness in mathematics, because individual thinking creates its own prescription. 

Second, the roles of action and process in mathematics become more important. These roles 

have been emphasized in APOS theory (e.g., Dubinsky & McDonald, 2002) and in Tall’s 

framework (e.g., Tall, 2008). From the proposed perspective, descriptive statements can be 

created through a shift of attention from the particularity to the essential features of a 

mathematical object, and the roles of action and process may be interpreted as the effect of 

defocusing from nonessential features. We tend to have an interest in some invariant 

properties of all the elements under consideration. Third, the proposed perspective is also 

compatible with the new materialist ontologies of de Freitas and Sinclair (2013), though we 

may need to reconsider what kinds of situations can transfer consistency from physical reality 

to mathematics. This is because an individual and subjective shift of attention does not 

always warrant the transference of consistency. In summary, each of the existing perspectives 

is compatible with the proposed one. 

As a practical suggestion from the proposed perspective, we point out that students might 

lose the discoverability belief if they recognize the refutation of their argument as a denial of 

their way of mathematical thinking. What the refutation actually denies might not be their 

attitude toward creating an exemplary model of the given descriptive model, but only the 

particular exemplary model contingently created at that time. If creating an exemplary model 

and describing it is an essential process of mathematics, a chain of reasoning means a chain 

of creating exemplary models or descriptive models of the already-created models. Then, 

many chains of reasoning are not deductive. If a student seems to mistakenly make a non-

deductive chain of reasoning, the teacher should carefully communicate with the student, and 

try to recognize which chain would make such a conclusion. Otherwise, proofs and 

refutations do not work well as a social construction of mathematical knowledge in 

classrooms, and intersubjectivity cannot be established. In particular, it seems to be important 

for the teacher to pay attention not only to the student’s conclusion but also to their attitude 

toward developing new findings in order to foster inquiring minds in mathematics. 

There are at least two limitations of the proposed perspective. First, it is still not clear 

whether it is completely compatible with each existing research perspective. Second, the 

above practical suggestion is still based on assumptions whose validity is not always 

warranted (for example, whether reasoning always means creating models). The suggestion 

describes only a possible situation in classrooms. Further development of our theoretical 

framework in this regard provides an avenue for future research. 
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EXPLORING DIFFERENCES IN TEACHING PRACTICE WHEN TWO 
MATHEMATICS INSTRUCTORS ENACT THE SAME LESSON 

Joseph F. Wagner                               Karen Allen Keene 
                                 Xavier University                    North Carolina State University 

Investigating teacher practice at all educational levels has become an important research arena. 
We analyze teacher practice by comparing two implementations of the same fragment of a 
student-centered curriculum by two mathematics professors.  We highlight differences in their 
practices and the consequent classroom results by analyzing their participation in class 
discussions, and we show how Schoenfeld’s (2011) resources, goals, and orientations framework 
may be used to explain these differences. Using classroom and interview data, we identify 
resources that each instructor believed he lacked, we highlight prominent mathematical and 
social goals that each instructor held, and we infer orientations toward teaching and learning 
mathematics that guided each instructor’s practices. All of these in combination suggest 
explanations for the observed differences in the implementations and class outcomes. We believe 
that this analysis provides an important technique to understand and improve teaching and 
learning at the undergraduate level in mathematics.  

Key words: Teaching Practice, Teacher Beliefs, Teacher Goals, Student-Centered Instruction 
 

Science, technology, engineering, and mathematics (STEM) disciplines have been 
increasingly identified as a priority for educational improvement and innovation in the United 
States.  The Department of Commerce (2012) listed mathematics and science education as one of 
six alarms that require our utmost attention in the 21st century.  One way to improve STEM 
education is to improve mathematics teaching practice at the university level.  To do this, 
researchers need to develop a variety of perspectives from which to analyze what takes place in 
college classrooms. 

Our work has focused on the following two research questions:  
 How do university professors practice the art and science of teaching when engaging 

in a new (for them) innovative student-centered differential equations curriculum?   
 What factors, particularly, their personal resources, goals and orientations, influence 

their instruction in the classroom?   
There is considerable research on teaching practice at the elementary and secondary level. 

Ball and Forzani (2009) indicated that study of “the work of teaching” is a particularly important 
area.  We believe that it is also important to study university teaching practice, especially as 
more innovative curricula are introduced to the college level. In this presentation, we report on 
the results of our investigation of two university mathematicians’ implementation of an 
innovative, student-centered curriculum. Because of the magnitude of the available data, we have 
chosen to focus on only the first day of the implementation. We provide a detailed analytical 
snapshot of the mathematicians’ practices, and we use Schoenfeld’s (2011) resources, goals, and 
orientations framework to offer an explanation for the differences we observed. 

Literature Review and Theoretical Framework 
During the past few years, researchers have begun to respond to Speer, Smith, and Horvath’s 

(2010) call for more empirical research in the practice of mathematics teaching at the university 
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level.  Some have examined mathematics professors’ practice using lecture methods (see 
Trenholm, Alcock, & Robinson, 2012), and of increasing interest are studies of mathematicians 
changing their teaching practices from lectures to a more student-centered approach.  Wagner, 
Speer, and Rossa (2007) reported on one instructor’s knowledge as he implemented an inquiry 
oriented DE course. They identified forms of knowledge apart from mathematical content 
knowledge that are essential to reform-oriented teaching, and highlighted how knowledge 
acquired through more traditional instructional practices may fail to support research-based 
forms of student-centered teaching. Speer and Wagner (2009) expanded the study of the same 
mathematician’s teaching by connecting pedagogical content knowledge and mathematical 
knowledge through the construct of analytic scaffolding.  Finally, Wagner (2007) presented 
preliminary work at RUME about two mathematicians and their differences. Our work has 
refined and developed this earlier preliminary analysis.       

Lee et al. (2009) suggested the construct of mathematical content move to discuss one 
mathematician’s practice while first implementing a student-centered differential equations 
curriculum.  They identified the instructor’s mathematical agenda which may have influenced his 
practice and offered five specific moves that the teacher made.  Johnson et al. (2013) discussed 
their case studies of three mathematicians. They found that three themes emerged from 
interviews and reflections with these mathematicians: curriculum coverage; goals for student 
learning; and the role of the teacher.  Our current work distinguishes itself, however, by 
contrasting the practices of two teachers implementing identical curriculum materials. 

Schoenfeld’s (2011) model of goal-oriented decision making suggests that important aspects 
of teachers’ practices can be understood as a function of their resources, goals, and orientations 
(such as beliefs or preferences).  Teachers’ orientations frame their perceptions, influence their 
goals and the prioritization of those goals, and activate relevant resources, particularly their 
knowledge. Decisions consistent with the goals are made, consciously or unconsciously, about 
which teaching directions they will focus on and which resources, such as their knowledge and 
skills, are most needed.  Our immediate goal is not to explain each decision of a given teacher, 
but to identify salient aspects of their knowledge, goals, and orientations that may explain 
equally salient characteristics of the teacher’s practice as witnessed throughout a classroom 
episode. 

Several other researchers have recently attempted to use Schoenfeld’s framework to analyze 
the practice of university teachers (e.g., Hannah, Stewart, & Thomas, 2011; Patterson, Thomas, 
& Taylor, 2013; Törner, Rolka, Rösken, & Sriraman, 2010), however, we are aware of only one 
other attempt to use this framework to compare the practices of two instructors using the same 
lesson materials. Pinto (2013) compared the lessons of two TAs who individually interpreted and 
implemented the same lesson plan very differently.  Speer, Smith, and Horvath (2010) cited an 
explicit need for comparison studies of teacher practice at the university level, and we believe 
our data provide an ideal opportunity to contribute to this research need. 

Methods 
Data for the current study are taken from a much larger collection gathered as Prof. X and 

Prof. Y each taught a semester course in Differential Equations, two years apart, at a private, 
liberal arts university in the Midwest. The students in the class were primarily majors in 
Mathematics or one of the physical sciences.  Both instructors had doctorates in Mathematics 
and each had been teaching for over 15 years at the university level.  Both used the same set of 
curricular materials for an Inquiry-Oriented Differential Equations (IO-DE) course developed by 
Rasmussen (2006). 
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Almost all of their classes were videotaped with two cameras, one following the instructor 
and another focused on a selected small group of students.  Audiotaped interviews were 
conducted with each instructor by the first author several times prior to the semester and after 
almost every class.  For the present study, complete transcripts were made of the whole-class 
discussions for each instructor’s first day of class, and significant portions of the interviews 
carried out near the first day of class were also transcribed. 

The instructors’ contributions to the whole-class conversations were coded using a coding 
scheme inspired by Wells and Arauz (2006) to determine the role that each turn of talk played in 
the conversation.  The codes, designed to capture the nature of each comment and each question, 
will be described in the presentation.  The two authors coded the transcripts independently using 
18 possible codes, with 72% and 73% agreement for Prof. X’s class and Prof. Y’s class 
respectively.  Disagreements were resolved by mutual discussion. 

Both interview and classroom transcripts were searched for statements that offered implicit 
or explicit insight into important aspects of each instructor’s knowledge, goals, and orientations.  
Particular attention was given to recurring themes or ideas as a form of triangulation of the 
evidence supporting our claims.  We present our results with numerous and substantial excerpts 
from the transcripts.   

Analysis 
The first part of our analysis summarizes some key aspects of what took place during the 

whole-class discussions in each instructor’s class.  The second part (limited for this proposal) is 
an example of the analysis of each instructor’s resources, goals, and orientations that we believe 
contributed to the differences in the two classes.  Our complete analyses are considerably more 
comprehensive. 

An overview of the two classes 
From a broad perspective, the two classes looked a great deal alike, with both instructors 

demonstrating clear attempts to use the IO-DE materials with fidelity to the developers’ intent.  
Both classes used identical problems provided by the curriculum for the first day of class.  
Despite the overall similarities, however, the instructors participated in the class discussions very 
differently, and the two classes played out with different outcomes.  Our coding of each question 
and comment made by each instructor during whole-class discussions is summarized in Table 1.  
(Details on the coding categories will be provided during the presentation.)  We also analyzed 
the rate and breadth of participation in the conversations by the instructors and the students.  The 
times spent in the two classes on whole-class discussions were nearly identical for both 
instructors, so quantitative comparisons were made easily. 

In short, we found that Prof. Y’s class was marked by widespread student participation in 
whole-discussions, with a significant majority of the students making at least one contribution, 
and with no students tending to dominate the conversation.  Prof Y’s questioning style was 
highly open-ended and non-directive, intentionally inviting students to offer their ideas, without 
giving feedback concerning the correctness or incorrectness of those ideas.  He rarely asked 
mathematically pointed questions, and he rarely focused on something a student said except to 
invite very general feedback from other students. The content of the conversation was 
consequently wide and varied, and little to no discernible direction was evident, resulting in an 
absence of any agreed-upon conclusion to the first (and only) problem discussed, even at the 
conclusion of the class.   
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Prof. X’s class was also animated by student participation, but proportionally fewer students 
contributed to the whole-class discussions, and most of the contributions were made by the five 
most vocal students.  Prof. X’s questioning style included open-ended questions inviting students 
to share their ideas, but it was also marked by a large number of questions that were 
mathematically pointed.  Prof. X often took a student’s comment and constructed a more specific 
follow-up mathematical question from it, thereby focusing and directing the conversation.  He 
used evaluative feedback, occasionally shared his own ideas, and sometimes gave answers to 
questions that students did not answer themselves.  By the end of the class, Prof. X had indicated 
that the class appeared to have agreed on the answers to the first two problems of the curricular 
sequence, and a third problem was discussed.  When no consensus concerning the third problem 
was evident, Prof. X announced and briefly explained the correct answer just as the class ended. 
 
 Prof. Y Prof. X  Prof. Y Prof. X 

Questions   Comments   
Thinking 32 19 Direction 12 10 

Opening 24 10 Observation 16 13 
Neutral 0 1 Revoice 7 8 

Narrowing 8 8 Summarize 4 1 
Math/Service 2 26 Evaluate 0 7 
Clarify 12 4 Opinion/Thinking 0 2 
Progress/Assess 13 8 Tell 0 2 
Justify 0 6 Joke 0 12 
Corrective 1 1 Other 5 6 
Other 6 2    

Table 1: Coding counts for instructors’ questions and comments 

Explaining the differences 
To explain the differences we observed in the instructors’ practices and the subsequent class 

outcomes, we turn to an analysis of each instructor’s resources, goals, and orientations, as 
gleaned from the instructors’ own words transcribed from interviews and class discussions.  In 
our complete analysis, we offer evidence of significant differences in what the two instructors 
perceived to be lacking in their own knowledge resources that affected their behavior on the first 
day of class.  In addition, we consider evidence of their contrasting goals (both social and 
mathematical) and orientations (particularly beliefs).  Our objective is to use these analytical 
lenses to construct a compelling explanation for how each instructor’s constellation of resources, 
goals, and orientations functioned together to result in some of their key classroom practices and, 
hence, the different outcomes of the classes and different opportunities for student learning. 

Due to limitations of space, we provide here only a condensed example of how one notable 
difference in the two class outcomes can be explained in this manner.  The coding tallies in Table 
1 for “Evaluate,” “Opinion/Thinking,” and “Tell” show that not once during his entire class did 
Prof. Y make any comment that evaluated the mathematical correctness of a student’s 
contribution, offer his own opinion about the answer to a mathematical question or describe his 
own thinking about the mathematical ideas being discussed, or tell the students the correct 
answer to a question or problem that had not been answered correctly by them.  Prof. X, on the 
other hand, made seven evaluative responses to students, twice described his own way of 
thinking about how a problem could be solved, and twice told the students answers to a 
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mathematical question that they had not answered on their own.  We examine these three codes 
together because they all relate to how each instructor exercised his own mathematical authority 
in the classroom. 

Prof. Y indicated throughout his interviews that he believed that if students are to learn 
mathematics with real understanding, then it is important for them to construct their knowledge 
on their own.  In fact, it was primarily for this reason that he wanted to use the IO-DE curriculum 
materials, since he believed that the student-centered activities could promote this kind of 
understanding.  When discussing his goals for the first class, he was clear on his desire to focus 
on social goals, primarily by immediately getting norms in place that encouraged students to 
share their ideas aloud and with each other, and to respond and critique each other’s ideas, 
appropriately.  When asked about his mathematical content goals for the class, he had a difficult 
time naming any: 

 
I was kind of passing things around without having too clear of a goal … But really what 
I wanted to do was discuss it.  And exactly what comes up is not maybe that important. 

 
At the same time, Prof. Y had strong beliefs about his role in the class discussions—

particularly that he should not exercise his mathematical authority in any way, lest the students 
become dependent on him rather than on their own good reasoning. 

 
I didn’t want to, you know, start telling them in any way, not in any way.  […]  I didn’t 
really want to represent the truth. 

 
Prof. X also exhibited a conviction that students needed to construct their own mathematical 

understanding, so he, too, had goals to establish certain social norms on the first day.  However, 
he also showed evidence of having articulated for himself some clear mathematical goals for the 
class.  For example, when asked if he had planned on a particularly insightful idea arising from 
his students, he replied “I hoped that it would.  It was certainly in the notes that I wrote for 
myself.”  Like Prof. Y, Prof. X was also concerned about not exercising mathematical authority: 

 
What I don’t want to do is to, I don’t want to lay down the truth at some point, because 
then they’ll say, “We’ll stumble around to wherever we get, but then we’ll always depend 
on him to lay down the truth before we move on.” 

 
Unlike Prof. Y, however, Prof. X greatly tempered that restriction because of his clear and 

strong belief that learning mathematics with understanding takes time and struggle, and that it 
would not be reasonable for him to expect students to understand a lot in the classroom: 

 
I don’t know that it’s important to me that everybody, or even a significant proportion of 
people, get it at the moment.  I think it’s their responsibility to get it in a variety of ways.  
It comes from my own personal experience with mathematics.  

 
As a result, Prof. X, with his clear mathematical goals for the class in mind, was more 

inclined to direct the mathematical ideas forward, even if it meant exercising greater authority.  
Students did indeed need to construct their own understandings, but he believed that most of this 
would have to take place outside of class.  Prof. Y, on the other hand, with his primarily social 
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goals at the fore, was much less concerned about how far along in the curriculum he got (at least 
on the first day), and more concerned that students share and develop their own ideas without 
any exercise of authority on his part.  

Conclusion and Implications for Research 
Our research shows that Schoenfeld’s framework for understanding why teachers do what 

they do offers a good way to explain the differences in two enactments of one day of a student-
centered differential equations curriculum.  In this proposal, we illustrated how differences in the 
instructors’ goals and orientations effectively explain one divergence in their classroom practice.  
Because one of the instructor’s primary goals was social, to create an environment where 
students’ constructed mathematics by participation, and the other one’s belief was that most 
students’ do not learn mathematics for mastery the first time they see it, the instructors exercised 
their mathematical authority in different ways, and the learning opportunities and outcomes of 
the two classes were significantly different.  

Research has shown that instructor practice is important to study in order to understand and 
improve student learning (Ball & Franzani, 2009).   However, it is not clear that what is known 
to be the case at the K-12 level carries over to the university level.  For example, despite the 
growing influence of student-centered activities, we have no clear answers to a question faced by 
these instructors: How much understanding of conceptually challenging university-level 
mathematics can we expect students to understand and develop with the time frame of an inquiry 
activity?  Further, although we know that teachers’ beliefs and attitudes significantly affect the 
enactment of a curriculum at the K-12 level (e.g. Collopy, 2003; Stipek, Givvin, Salmon, & 
MacGyvers, 2001; Arbaugh, Lannin, Jones, & Park-Rogers, 2006), even the term curriculum is 
used less often at a university level, where content is primarily the teacher’s focus.  We believe 
that as researchers are still only beginning to study teacher practice at the university level, issues 
such as these must be given greater attention. 
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Current research on algebraic and quantitative reasoning shows that many students 

experience mathematics as the manipulation of meaningless symbols (Smith & Thompson, 

2007). In order to develop meaning in symbolic contexts, students must first conceive of 

relationships between the underlying quantities present in a particular context. Our project 

focuses on a quantitative reasoning approach to multivariable calculus, in particular the 

concepts of function, rate, area and volume by using physical surfaces. In this poster, we 

provide examples of identifying, measuring, and recording of essential quantities on physical 

surfaces.  

 

Key words: [multivariable calculus, quantitative reasoning, rate of change, multiple 

representations, physical model] 
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Current research on algebraic and quantitative reasoning shows that many students 

experience mathematics as the manipulation of meaningless symbols (Smith & Thompson, 

2007). In order to develop meaning in symbolic contexts, students must first conceive of 

relationships between the underlying quantities present in a particular context. Our project 

focuses on a quantitative reasoning approach to multivariable calculus, in particular the 

concepts of function, rate, area and volume by using physical surfaces. In this poster, we 

provide examples of identifying, measuring, and recording of essential quantities on physical 

surfaces.  

Multivariable calculus introduces significant complexity in quantitative reasoning, 

stemming from the need to think about interactions among many quantities and representing 

the variation in those quantities using variables.  In response to this added complexity, Weber  

(2012) found some students, coined as novice shape thinkers, failed to reason quantitatively 

about graphs of multivariable functions, instead arguing primarily in terms of the 

topographical features of the surface. 

There is mounting evidence that students have difficulties with the three-dimensional 

visualization and the geometric thinking necessary for success in the sciences (e.g. NAP, 

2006).  Many students have difficulty reasoning spatially about two dimensional images 

which are supposed to represent three dimensional objects (Price & Lee, 2010).  This 

difficulty includes 2D representations on paper or a computer screen (Dede et al. 1999), 

which can be technically challenging for students (Hubona et al. 1999).  

The project presented in the poster utilizes six different models, or surfaces, which 

represent multivariable functions.  Each surface, a part of which is shown in Figure 1, has a 

transparent top onto which students can draw with dry-erase markers.  Mats depicting 

coordinate systems or the surface’s contour lines, like those shown in Figure 2, can be placed 

underneath the surface, helping students transfer drawings between the surface and 

underlying mat.  The surfaces and accompanying tools, like the inclinometer shown in Figure 

1, help students measure change (e.g. gradient, partial derivatives, directional derivatives) and 

accumulation (e.g. line integrals, surface integrals).  Accompanying the surfaces are activities 

designed to encourage student exploration of the key ideas in multivariable calculus.  

Preliminary data suggests these models help develop students’ abilities to reason 

quantitatively and spatially while moving between multiple representations of multivariable 

functions.  The project’s manipulatives are designed to encourage student exploration 

between the different representations of multivariable functions and to connect quantitative 

features to algebraic representations.  In addition, students are able to measure rates of change 

on the surface and connect their understanding of a single-variable derivative to the various 

derivatives introduced in multivariable calculus      

During our poster presentation we will share samples of the physical manipulatives 

(surfaces, mats, and measurement tools) and activities designed to help students identify 

important mathematical concepts introduced in multivariable calculus.  Participants will be 

invited to draw on the surfaces, try the activities, and explore concepts with the surfaces.  In 

addition to informing conference attendees of our project, we would like to solicit feedback 

from the community on our project and ways in which we could incorporate these models 

into the mathematics and science curriculum. 

1120 17th Annual Conference on Research in Undergraduate Mathematics Education



References 

Dede C., Salzman M., Loftin R., Sprague D. (1999). Multisensory immersion as a modeling 

environment for learning complex scientific concepts. In: Roberts N, Fuerzig W (eds) 

Computer modeling and simulation in science engineering. Springer, New York, pp 282–

319. 

Hubona G., Wheeler P., Shirah G., Brandt M. (1999). The relative contributions of stereo, 

lighting, and background scenes in promoting 3D depth visualization. ACM Transactions 

on Computer-Human Interaction, v6, p214–242. 

NAP - Committee on Support for Thinking Spatially. (2006). Learning to think spatially. 

Washington, DC: National Academies Press. 

Price, Aaron & Lee, Hee-Sun (2010) The Effect of Two-Dimensional and Stereoscopic 

Presentation on Middle School Students' Performance of Spatial Cognition Tasks. 

Journal of Science Education and Technology, v19 n1 p90-103. 

Smith, J., & Thompson, P. (2007). Quantitative reasoning and the development of algebraic 

reasoning. In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the early grades (pp. 

95-132). New York: Erlbaum. 

Weber, E. (2012), "Students' Ways of Thinking about Two-Variable Functions and Rate of 

Change in Space" (Doctoral Thesis). Retrieved from http://pat-

thompson.net/PDFversions/Theses/2012Weber.pdf on March 28, 2012. 

 

17th Annual Conference on Research in Undergraduate Mathematics Education 1121



 

Figure 1:  Measuring rate of change on the surface along a curve. (The picture depicts part of 

the new transparent surface models.) 

 

Figure 2:  Model surface (original, non-transparent model) and contour grid. 
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The goals of the recently funded DIOIMLA research project are to produce: (a) student 
materials composed of challenging and coherent task sequences that facilitate an inquiry-
oriented approach to the teaching and learning of linear algebra; (b) instructional support 
materials for implementing the student materials; and (c) a prototype assessment instrument to 
measure student understanding of key linear algebra concepts. Our poster will provide more 
detailed information about the DIOIMLA research project. Each of the three aspects of the 
project will be described in more detail and examples of each will be shared. The poster will also 
include an overview of the current status of the research project and a summary of the timeline 
for planned future work.	  

 
Keywords: Linear algebra; curriculum design; inquiry oriented instructional materials; 
assessment 
 

Linear algebra is widely viewed as pivotal yet difficult for university students, and hence 
innovative instructional materials are essential. The goals of the recently funded DIOIMLA 
research project are to produce: (a) student materials composed of challenging and coherent task 
sequences that facilitate an inquiry-oriented approach to the teaching and learning of linear 
algebra; (b) instructional support materials for implementing the student materials; and (c) a 
prototype assessment instrument to measure student understanding of key linear algebra 
concepts. The project makes a needed contribution to the field by developing instructional 
materials that allow for active student engagement in the guided reinvention of key mathematical 
ideas. It also develops instructional support materials that convey the instructional designers’ 
intention without being overly prescriptive and that provide information about how students 
think and learn within the task sequences. The production of a prototype assessment instrument 
is of value because it furthers what is known about student thinking in linear algebra and 
provides a measure of comparison across pedagogical approaches. The study partners 
mathematics education researchers and mathematicians to incorporate research on teaching and 
learning into effective pedagogical approaches at the undergraduate level.  
 

Prior Work and Theoretical Framing 
The DIOIMLA research program builds from a previously NSF-funded project focused on 
student learning of basic ideas in linear algebra as students transitioned from intuitive to more 
formal ways of reasoning. Through conducting interviews and watching classroom video data, 
we analyzed and reported extensively on student thinking about particular mathematical ideas 
(e.g., Larson, Zandieh, & Rasmussen, 2008; Larson & Zandieh, 2013; Wawro, Larson, Zandieh, 
& Rasmussen, 2012; Wawro, Rasmussen, Zandieh, & Larson, 2013; Wawro, Rasmussen, 
Zandieh, Larson, & Sweeney, 2012; Wawro, Sweeney, & Rabin, 2011; Zandieh, Ellis, & 
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Rasmussen, 2012). This design research consisted of a cyclical process of ongoing analysis of 
student reasoning and simultaneous task design and conjecture modification regarding the 
possible paths that students’ learning might take (Gravemeijer, 1994; Cobb, 2000). This prior 
work in linear algebra provides a strong foundation for all three goals of the DIOIMLA project. 

Our theoretical framework for designing instructional materials draws on heuristics of 
Realistic Mathematics Education (summarized by Cobb, 2011). First, a task sequence should be 
based on experientially real starting points. Second, the task sequence should be designed to 
support students in making progress toward a set of associated mathematical learning goals. 
Third, classroom activity should be structured so as to support students in developing models-of 
their mathematical activity that can then be used as models-for subsequent mathematical activity. 
Finally, with instructor guidance, students’ activity evolves toward the reinvention of formal 
notions and ways of reasoning about the mathematics initially investigated.  
 

Purpose of the Poster 
Our poster will provide more detailed information about the DIOIMLA research project. 

Each of the three aspects of the project –inquiry-oriented linear algebra student materials, 
accompanying instructor support materials, and a prototype assessment instrument – will be 
described in more detail and examples of each will be shared. The poster will also include an 
overview of the current status of the research project and a summary of the timeline for planned 
future work. The project team welcomes feedback from interested parties in the RUME 
community regarding any of the DIOIMLA research project.  
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STUDENTS’ USE OF PARAMETERS AND VARIABLES TO REASON ABOUT THE 
BEHAVIOR OF MULTIVARIABLE FUNCTIONS 
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The purpose of this paper is to characterize students’ ways of thinking about parameters and 
variables to reason about the behavior of multivariable functions. I focus on two single variable 
calculus students, Lisa and Carl, as they participated in a sequence of semi-structured 
exploratory teaching interviews intended to gain insight into 1) their approaches to reasoning 
about the behavior of single variable functions, and 2) what role those approaches played in 
their initial thinking about the behavior of functions of two, three and four variables. The 
interviews suggest that the students’ ability to move flexibly between thinking about a function’s 
variables as parameters allowed them to generalize their reasoning patterns about functions of n 
variables and extend that to functions of n+1 variables. I argue that their ability to parameterize 
functions allowed them to reason about functions for which they could not initially visualize 
representations.   
 
Keywords: Function, Representations, Graph, Quantitative reasoning, Way of thinking, Way of 
understanding. 
 

Introduction  
 Physicists, chemists, engineers and biologists conceive of and use functions in unique ways, 
yet at the center of each of their uses is the notion that a function represents a relationship 
between quantities. In these disciplines, it is uncommon to have a function of one, or even two 
variables. For instance, physicists studying thermodynamics have so many variables that they 
must parameterize a number of a function’s variables to reason about it. Engineers study 
complicated systems that are built on the assumption that hundreds of variables might be 
relevant. Similarly, students in these disciplines are required to reason about these complicated 
systems of relationships almost at the beginning of their programs. Yet much of what we 
understand about how students reason about functions focuses on simple systems of one variable. 
While students’ reasoning about these systems is fascinating and provides novel insight into how 
to support their learning, it is not clear how their reasoning patterns extend to functions of more 
than one variable, and particularly to functions that cannot be easily represented by using a 
graph. Without understanding how students might come to develop the ways of reasoning we 
intend about multivariable functions, it is difficult to imagine instruction around these ideas 
changing. This particular study focused on students’ reasoning about the behavior of 
multivariable functions and in what ways that reasoning depended on the behavior of single 
variable functions.  
 The purpose of this paper, and consistent with the study’s aim, is to characterize students’ 
ways of thinking about parameters and variables to reason about the behavior of multivariable 
functions. I focus on two first semester students, Lisa and Carl, as they participated in a sequence 
of semi-structured interviews intended to gain insight into 1) their approaches to reasoning about 
the behavior of single variable functions, and 2) what role those approaches played in their initial 
thinking about the behavior of functions of two, three and four variables. The interviews suggest 
that the students’ ability to move flexibly between thinking about a function’s variables as 
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parameters allowed them to generalize their reasoning patterns about functions of n variables and 
extend that to functions of n+1 variables. I argue that their ability to parameterize functions 
allowed them to reason about functions for which they could not initially visualize 
representations. Lastly, I consider the instructional implications of this work with a particular 
focus on functions that cannot be represented visually.   

 
Theoretical Framework 

Given the foci of the research questions on students’ mathematical knowledge, I focus on 
Harel’s (Harel, 2008a, 2008b, 2008c) characterization of mathematical knowledge as comprised 
of an understanding of mathematical content and mathematical practices, where the reflexivity 
between the two drives the development of each. This distinction comes from Harel (2008a, 
2008b, 2008c), who proposed the DNR based instruction framework as a way to think about the 
learning and teaching of mathematics. The duality principle states that mathematical knowledge 
consists of both students’ understanding of particular content in mathematics and the 
characteristics of their ways of thinking that influence their practice of doing mathematics. To 
clarify this distinction, Harel (2008a) articulated the notion of a mental act, which includes 
activities like interpreting, conjecturing, explaining, searching, and problem solving (p. 3). These 
mental acts are at the core of Harel’s fundamental distinction between ways of understanding and 
ways of thinking. He proposed that a way of understanding is “a particular cognitive product of a 
mental act carried out by an individual” (p. 4) (Figure 1). He described a way of thinking as “a 
cognitive characteristic of a person’s ways of understanding associated with a particular mental 
act” (Harel, 2008a). Harel’s analogy was that ways of understanding correspond to subject 
matter knowledge and ways of thinking correspond to conceptual tools.  

 
Figure 1. The mental act, way of understanding and way of thinking (Harel, 2008a) 

A foundation of Harel’s model of mathematical knowledge, illustrated in the duality 
principle, is that ways of thinking and ways of understanding are reflexive in nature. That is, 
“students develop ways of thinking only through the construction of ways of understanding, and 
the ways of understanding they produce are determined by the ways of thinking they possess” 
(Harel, 2008a). Ways of thinking, applied in one moment to a novel situation, can be thought of 
as a way of understanding. At the same time, repeated instances of ways of understanding might 
formulate patterns that develop into ways of thinking. This feedback between ways of thinking 
and ways of understanding is the core of the duality principle. Thus, this paper represents the 
development of students’ mathematical knowledge in terms of ways of thinking, ways of 
understanding and reflexivity between the two.  
 

Background Literature 
Though the process by which students learn about two variable functions has not been fully 

explored, some researchers have characterized the representations students construct as they 
reason about tasks involving functions of two variables. For example, Yerushalmy (1997)argued 
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that it is important to understand what is being generalized as students move from one to two 
variable functions. She studied six seventh grade algebra students in the context of describing, 
solving and generalizing about functions. She identified three key parts of the students’ 
understanding of two variable functions: Identification of quantities and variation, generalizing 
graphical representation of a function in three dimensions, and manipulation of the algebraic 
conventions for defining a function. Yerushalmy found it essential that the students constructed 
the quantities under consideration, identified invariant relationships between the quantities, and 
imagined representing the invariant relationship using a function in both the one and two variable 
case.  

As another example, Trigeruos & Martinez-Planell (2010, 2012) proposed and then refined a 
genetic decomposition of the understandings a student needs to conceive of two-variable 
functions and their graphs. They characterized students’ notions of subsets of three-dimensional 
space and constructed an instrument and interview protocol to characterize what nine students 
knew about functions after taking a multivariable calculus course. Subsequently, Martinez-
Planell and Trigueros (2012) proposed a genetic decomposition to postulate about constructions 
they students might make as they think about two variable functions. This genetic composition 
focused in depth on students’ notion of planes in two and three dimensions as a basis for 
supporting students’ notions of function in higher dimensions.  

Both of these studies identified important understandings students need to think about graphs 
and representations of two-variable functions. Indeed, much of their data suggests that those 
representations were dependent on the ways in which the students conceived and then 
generalized their notion of single-variable functions behavior. There are two natural ways in 
which their foundational work might be extended. First, their results and conclusions suggest that 
generalization played a significant role in the students’ conceptions of function behavior in three 
or more dimensions but because of their research questions generalization was not the central 
focus of their work. Second, they did not distinguish between ways of thinking and ways of 
understanding, the first of which appeared to be more powerful for students’ ability to make 
generalizations than the second. This study focused explicitly on the role of ways of thinking and 
ways of understanding in the students’ generalizations about function behavior from two to 
higher dimensions.   

 
Method 

 The results described in this paper emerged from work with two single variable calculus 
students, Lisa and Carl, as they participated in a sequence of semi-structured exploratory 
interviews. These the purpose of these interviews was to gain insight into 1) their approaches to 
reasoning about the behavior of single variable functions, and 2) what role those approaches 
played in their initial thinking about the behavior of functions of two, three and four variables. 
Lisa and Carl were part of a larger group of six interviewees who volunteered to participate in 
the study, and I focus on them because of the stark difference in their approaches to reasoning 
about function behavior and how those ways of reasoning affected the generalizations they made 
about function behavior in higher dimensions.  
 It is important to distinguish between the interviews I completed and normal models of a 
teaching experiment in mathematics education. Typical teaching experiments continually 
generate and revise hypotheses about students’ mathematical knowledge and use teaching as a 
means to both test and revise that model of their knowledge. The interviews I conducted for this 
study also included the generating and testing of hypotheses, but my intention was not to 
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advance a particular way of reasoning for the students. Instead, I was concerned with 
characterizing the students’ understanding of function behavior and describing how that affected 
their perception of function behavior in higher dimensions. Thus, while there were natural points 
at which I could have intervened instructionally, I did not do so.  
 During and after the interviews with six students, I used constant comparative analysis to 
identify emergent themes in the students’ responses. The focus of the analysis was to identify 
students’ ways of thinking and ways of understanding function behavior in two dimensions, and 
to understand in what ways those ways of thinking and ways of understanding affected their 
approaches to reasoning about function behavior in higher dimensions. Thus, the first coding 
scheme that emerged consisted of both ways of thinking and ways of understanding single 
variable functions. The second set of codes focused on students’ ways of thinking and 
understanding of functions in higher dimensions. A comparison of the two coding schemes 
provided insight into the students’ use of a way of thinking or way of understanding to reason 
about the behavior of functions. This comparison became the basis for identifying how ways of 
thinking and ways of understanding allowed students to generalize their notions of function 
behavior beyond two and three dimensions.  

 
Results and Discussion 

 The predominant way of thinking that emerged from analyses of the interviews was the 
students conceiving of a function as an invariant relationship between variables. This way of 
thinking allowed the students to move flexibly between thinking about a variable as a parameter, 
and then a parameter as a variable when necessary. Their ability to hold variables constants (as 
parameters), allowed them to reason about the behavior of functions of many variables by 
making the function structurally similar to well known one-variable functions. However, the 
students’ ability to see parameterization as necessary did not arise until they realized they could 
not described a multivariable function in the same way they could a one variable function. For 
instance, consider Lisa and Carl’s responses to a task in which they were asked to describe the 
behavior of the function f, defined as f (x1, x2 ) = x1e

x2 . 
 

Carl: Well first of all this is really different for me. Hmm. I see two things. I see 
two functions I know, a linear one with just the first part, and then I see an 
exponential function with the second part. The difficulty I have initially is 
thinking about how to describe behavior because it cannot be both 
exponential and linear.  

Lisa:  The first thing I noticed here is that I know each piece of the function and 
can picture a graph and description at the same time. But I do not know 
how to coordinate the two pieces. For instance, I cannot say the rate of 
change is proportional to the amount of change like I can with 
exponential, because it is only true for half of the function.    

 
This response is indicative of others given in interview one, in which both Carl and Lisa tried 

to describe the function in the way they would a one-variable function. Often they desired to use 
a single statement like “The rate of change of the function is 2”, or “The rate of change is 
increasing at an increasing rate”, which they found impossible for functions of two or more 
variables. During the remainder of interviews one and two, they began to focus less on 
describing function behavior with a single statement and more on describing pieces of the 
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function. Their approach to describing a function in pieces drove their use of parameterization. 
As an example, consider their description the behavior of the following function f, defined as 
f (x1, x2, x3) = x1x2

2 cos(x1x3) .  
 
Carl: Well, wow. So many things going on, I am almost forced to pick out 

things I know. So what I just treat everything but x-one as if is a number, 
or a given. Then the function becomes something that I know or can think 
about, a linear term and a cosine function that I can figure out. I could also 
do this for x-two, x-three, and get three separate types of functions. I don’t 
really feel the need to combine all of those functions, as that just creates 
more of a mess as we have seen.  

Lisa:  Starting off, I see a bunch of things I recognize. If I was able to cover-up a 
few of the pieces of the function, almost like make them a given and focus 
on the rest, I could find three different functions in here. As I saw earlier 
though, I can’t really put all three of those functions together, but I could 
give you descriptions of the behavior from them individually.    

 
Lisa and Carl’s ability to conceive of any variable as a parameter allowed them to 

reason about complicated functions of almost any number of variables. This was 
particularly useful for functions that could not be represented in two or three space. 
Indeed, Lisa and Carl both noted their previous dependence on graphical 
representations.   

 
Carl: In the last interview we talked about functions of let’s say 99 or 100, or n 

variables. Obviously we cannot picture these in our head; there is just no 
way to do it. So however many variables we have, I can give 1 less 
description, [e.g. 100 variables, 99] of the function’s behavior. It makes 
me think how useless a graph can be sometimes! 

Lisa:  I think the most useful thing I have come up with in all of the interviews is 
that a graph is only possible for very few functions. To graph a function of 
100 variables, you would have to hold constant 98 of the other variables! 
You would get so many graphs and have to coordinate them that it doesn't 
make sense any longer. I think my initial focus on describing a function in 
one statement just doesn’t apply for these situations.  

 
The most important way of thinking that emerged from analyses of the interviews was the 

students conceiving of a function as an invariant relationship between variables. Knowing that 
the function was an invariant relationship allowed them to conceive of variables as parameters 
without changing the properties of that function. For example, in a three variable function some 
students might conceive of treating one variable as a constant as creating an entirely new two-
variable function. Instead, by keeping in mind the invariance of the relationship between 
variables, they could conceive of parameterizing any number of variables while still thinking 
about the same function. This way of thinking and the associated use of parameterization also 
allowed the students to generalize their understanding of function behavior to functions of any 
number of variables. 
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A common feature across STEM disciplines is the study of change. Mathematically, we 
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 A common feature across STEM disciplines is the study of change, whether studying how 
changing a design parameter affects the operation of a prototype, or how pressure changes when 
we adiabatically compress a gas. Indeed, the nature of scientific measurement is to control some 
physical quantities while measuring others. Mathematically, we express the concept of changing 
one parameter while fixing others by using partial derivatives. However, how we use partial 
derivatives and how we talk about partial derivatives vary dramatically across STEM disciplines. 
The purpose of this poster is to share our preliminary results from student and expert problem-
solving interviews about partial derivatives. 

We have found that many students—even those with a strong mathematics background—find 
partial derivatives particularly difficult.  Further, in pilot interviews, we have found that experts 
employ a wide variety of reasoning strategies about partial derivatives, including the use of 
difference quotients constructed from numerical data, graphical reasoning about the slope at a 
single point, graphical reasoning about the shape of the graph, and symbolic computation.  Even 
the experts we interviewed tended to get caught up in a single reasoning strategy, and did not 
necessarily transition spontaneously to other strategies. 

The project we share in the poster involves two major strands of research activity, which 
focus on studying how STEM workers, from novice to expert, understand and use partial 
derivatives. The first strand of research activity is a survey across STEM disciplines of 
representations of partial derivatives used by experts, which informs our research and curriculum 
development efforts. We have used this research to identify normative practices that are common 
across many STEM disciplines, as well as those which are discipline specific. Based on these 
data, we are in the preliminary stages of developing learning trajectories intended to facilitate the 
evolution of students into professional users of partial derivatives in their own particular field. 
The second strand of research activity has involved a study of student understanding of partial 
derivatives across STEM courses, including physics, engineering and mathematics.  
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The purpose of this paper is to argue that attention to students’ ways of thinking should 
complement a focus on students’ understanding of specific mathematical content, and that 
attention to these issues can be leveraged to model the development of mathematical knowledge 
over time using learning trajectories. To illustrate the importance of ways of thinking, we draw 
on Harel’s (2008a, 2008b) description of mathematical knowledge as comprised of ways of 
thinking and ways of understanding. We use data to illustrate the explanatory and descriptive 
power that attention to the duality of ways of understanding and ways of thinking provides, and 
we propose suggestions for constructing learning trajectories in mathematics education 
research.  
 
Keywords: Ways of thinking, Ways of understanding, Duality, Mathematical knowledge, 
Learning trajectories 

Introduction 
Learning trajectories (Simon & Tzur, 2004), which model how students’ learning might 

develop over time, are becoming increasingly prevalent in mathematics education research. To 
date, much of the current research on learning trajectories focuses on the learning of particular 
mathematical topics such as fractions (Simon & Tzur, 2004), measurement (Gravemeijer, 
Bowers, & Stephan, 2003), multivariable functions (Weber, 2012), and trigonometry (Moore, 
2012). While these are certainly valuable mechanisms that shed light on students’ learning, we 
are not alone in observing that there is an aspect of learning (beyond student’s knowledge of 
content) to which such learning trajectories do not currently attend. Empson (2011) stated: 

Most, if not all, current characterizations of learning trajectories do not address the 
practices that engender the development of concepts – although it’s worth thinking 
about alternative ways to characterize curriculum standards and learning trajectories that 
draw teachers’ attention to specific aspects of students’ mathematical practices as well as 
the content that might be the aim of that practice (p. 573) 
We agree with Empson’s assessment and believe that there might be value in considering 

mathematical practice in learning trajectories, in addition to mathematical content. The purpose 
of this paper is to argue that attention to students’ ways of thinking should complement a focus 
on students’ understanding of specific mathematical content, and that attention to these issues 
can be leveraged to model the development of mathematical knowledge over time using learning 
trajectories (Simon & Tzur, 2004). We draw on Harel’s (2008a, 2008b, 2008c) duality principle, 
which characterizes mathematical knowledge as comprised of ways of thinking and ways of 
understanding (defined momentarily) to propose a means by which learning trajectories can 
attend to both ways of thinking and ways of understanding.  

Our theoretical contribution is to suggest that learning trajectories could incorporate and 
attend to mathematical practices as well as mathematical content. While Harel’s duality principle 
and learning trajectories are both well-established in the mathematics education literature, we 
have found that combining these two existing theories provides meaningful language and 
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perspectives to frame our ideas. We are not aware of other researchers who have made the same 
argument with any one existing framework, and we contend that our particular perspective 
provides a novel theoretical view. 

 
Part 1:  DNR Framework and Mathematical Knowledge 

Harel (2008a, 2008b, 2008c) proposed the DNR based instruction framework as a way to 
think about the practice and teaching of mathematics. The constituent parts of the framework are 
the duality (D), necessity (N) and repeated reasoning (R) principles, which together comprise 
effective and meaningful mathematics instruction; in this paper we focus on the duality principle.  

The duality principle states that mathematical knowledge consists of both students’ 
understanding of particular content in mathematics and their thinking about the practice of doing 
mathematics. To clarify this distinction, Harel (2008a) introduced the notion of a mental act, 
which includes activities like interpreting, conjecturing, explaining, searching, and problem 
solving (p. 3). These mental acts are at the core of Harel’s fundamental distinction between ways 
of understanding and ways of thinking. He proposed that a way of understanding is “a particular 
cognitive product of a mental act carried out by an individual” (p. 4) (Figure 1). He described a 
way of thinking as ‘a cognitive characteristic of a person’s ways of understanding associated with 
a particular mental act” (Harel, 2008a). Harel’s analogy was that ways of understanding 
correspond to subject matter knowledge and ways of thinking correspond to conceptual tools.  

As examples of the distinction in Harel’s duality principle, we consider the mental acts of 
proof and problem solving. A particular proof of a given statement is a way of understanding that 
comes out of the mental act of proving, whereas a proof scheme is a way of thinking that 
characterizes the mental act of proving. In problem solving, a solution to a particular problem 
represents a way of understanding, but a general problem solving strategy, applicable across a 
variety of problems, suggests a way of thinking. Figure 1 shows a diagram of these terms’ 
interaction. 

 
Figure 1: The mental act, way of understanding and way of thinking (Harel, 2008a).  

 
Another key assumption of Harel’s model of mathematical knowledge is that thinking and 

understanding affect each other. That is, “students develop ways of thinking only through the 
construction of ways of understanding, and the ways of understanding they produce are 
determined by the ways of thinking they possess” (Harel, 2008a). Thus, ways of thinking, 
applied in one moment to a novel situation, become a way of understanding. At the same time, 
the ways of thinking students develop occur from patterns observed in ways of understanding. 
This feedback between ways of thinking and ways of understanding is the core of Harel’s duality 
principle. Based on this duality principle, we have found it useful to think about the development 
of mathematical knowledge at two levels: understanding and thinking. As a result, we argue that 
any representation of learning that focuses on the development of mathematical knowledge over 
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time should take into account both aspects of that development. In order to frame our argument, 
we briefly discuss core elements of learning trajectories.   

Part 2: A Brief Introduction to Learning Trajectories 
When we describe learning trajectories, we mean representations (either predictive or 

descriptive) of the development of students’ mathematical knowledge over time, most often in 
the context of specific tasks. Simon and Tzur (2004) first identified a hypothetical learning 
trajectory (HLT) as a model of how students’ learning might occur over a period of time, with 
particular attention paid to students’ mathematical activity and the role of tasks in engendering 
that activity. They proposed four principles for the hypothetical learning trajectory construct 
(Simon & Tzur, 2004, p. 93): 1) Generation of an HLT is based on understanding of the current 
knowledge of the students involved; 2) An HLT is a vehicle for planning learning of particular 
mathematical concepts; 3) Mathematical tasks provide tools for promoting learning of particular 
mathematical concepts and are, therefore, a key part of the instructional process; and, 4) Because 
of the hypothetical and inherently uncertain nature of this process, the teacher is regularly 
involved in modifying every aspect of the HLT. Consistent with Simon’s model, most learning 
trajectories in mathematics education research elucidate how students might engage with and 
reflect on tasks, and, as a result, develop the mathematical understandings that we intend (Weber, 
2012; Weber, Tallman, Byerley, & Thompson, 2012). Because it is impossible to account for all 
variation in an individual, HLTs are by their nature (and definition) hypothetical. These learning 
trajectories model the development of mathematical knowledge over periods of time ranging 
from a single lesson to entire grade levels.  

We now can reformulate our argument, given the introduction of specific terminology. In this 
paper, we seek to leverage Harel’s work (Harel, 2008a, 2008b, 2008c; Harel & Koichu, 2010), 
particularly his characterization of duality in terms of ways of thinking and ways of 
understanding, as we propose recommendations for constructing and evaluating learning 
trajectories. Ultimately we suggest modifications for the development of learning trajectories that 
attend to and incorporate duality.  

 
Part 3: Importance of Attending to Duality: Examples from Data 

In this section, we demonstrate how Harel’s distinction between ways of thinking and ways 
of understanding can expand on typical descriptions of content knowledge. Though we present 
one example due to space limitations, our claims are based on multiple examples in a variety of 
content areas. The point of this example is provide some motivation and rationale for our belief 
that learning trajectories might attend to both ways of thinking and ways of understanding. In the 
following discussion, it is important to keep in mind the distinction between mental acts and 
ways of thinking. As Harel (2008c) points out (p. 3), mental acts include activities like proving, 
explaining, generalizing, and justifying. Ways of understanding are products of such mental acts, 
while ways of thinking are cognitive characteristics of them (p. 4). The example presented here 
focuses on the mental act of problem solving, and we highlight how duality (attention to both 
ways of thinking and ways of understanding) might offer some novel insight about a student’s 
reasoning and activity.  

The example presented below draws on Lockwood’s (2013, in press) work with post-
secondary students who solved advanced counting problems in videotaped, semi-structured 
interviews. This example shows how a student’s way of thinking can span multiple ways of 
understanding particular problems, and how considering duality can provide novel insights about 
a student’s learning. The point in presenting the example here is to emphasize a problem-solving 
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approach (solving smaller, similar problems) as a way of thinking, and to show how that way of 
thinking affected both the student’s ways of understanding particular problems and the 
researcher’s interpretation of the students’ combinatorial thinking. This data demonstrates a 
distinction Harel (2008a) himself made between instances of solving a problem and broader 
problem-solving approaches. Indeed, he identifies “looking for a simpler problem” (p. 6) as an 
example of a way of thinking about the mental act of problem solving. 

The way of thinking of solving smaller, similar problems is demonstrated across two 
problems for a particular student, Anderson. While we cannot provide mathematical detail due to 
space, we briefly describe his use of smaller cases on each problem, arguing that his use of the 
same strategy across multiple problems suggests a way of thinking for him. Additionally, in his 
work on these problems, Anderson displayed a way of thinking that would feed into his 
understanding of a particular problem, and we discuss this interaction below.    

The Passwords problem states, A password consists of eight upper case-letters. How many 
such 8-letter passwords contain at least three Es? In this episode, Anderson was trying to decide 
which of two different expressions was correct, and he went to a smaller case (a 4-letter word 
containing three Es) to decide which made sense. He found a numerical discrepancy even in the 
smaller case, and he was able to reason about the smaller case to determine the correct answer to 
the problem. Anderson’s use of the smaller, similar problem was a vital part of him successfully 
evaluating the alternative solution and determining an accurate answer. After this episode, the 
interviewer asked Anderson to reflect on his use of the smaller case. In his reflection, it seems 
that he had anticipated how working with the smaller problem would facilitate his manipulation 
of the passwords, suggesting to us that the strategy might represent a way of thinking for him. 

Later in the interview, Anderson solved the Groups of Students problem: In how many ways 
can you split a class of 20 into four groups of five? In this problem, Anderson first tried to reduce 
the problem to splitting eight students into four groups of two, but this quickly became unwieldy 
for him to handle. Recognizing this difficulty, he then reduced the number of groups and the total 
number of students to make the problem more tractable. He divided a class of four into two 
groups, and through systematic listing found that there were three ways to do this. He then 
attempted to determine how a class of six could be split into two groups and found that there 
were 10 such possibilities. Anderson continued in this way, he made an initial guess at what the 
general formula might be: “the number of students choose the size of the groups, divided by the 
number of groups.” We note that this formula is incorrect, but given his work it is a reasonable 
first attempt. Recognizing that he wanted to test out this guess at a formula, Anderson proceeded 
to solve another smaller problem, this time splitting six students into three groups of two. He 
wrote out solutions and similarly developed a pattern, continuing to reason about the problem. 
We ultimately ran out of time for Anderson to come up with a correct solution on his own, but 
his work with the smaller problems proved fruitful for him, and he was able to make sense of the 
correct answer when it was presented to him.  

In our analysis of Anderson’s work, we infer that Anderson’s ways of understanding in the 
two problems fed back into a particular way of thinking (solving smaller, similar problems). We 
contend that the use of multiple smaller problems and the emergence of patterns supplemented 
and expanded his previous way of thinking about the Passwords problem. Specifically, we argue 
that as a result of his work on the Groups of Students problem, Anderson might have learned that 
he had to be strategic in his choice about how to reduce the problem – simply reducing any 
parameters might not be helpful. This is seen in his first unsuccessful attempt at breaking a group 
of eight into four groups of two, and this is an insight that might not have arisen had he only 
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solved the Passwords problem. We would thus argue that Anderson’s way of thinking (the 
strategy of solving smaller problems) is more robust because of the ways of understanding with 
which he engaged on the two problems.  

From the perspective of examining the content that Anderson learned, Lockwood (2013, in 
press) has made the case for combinatorial implications of this work. However, we emphasize 
that beyond the content, these two episodes together reveal an important aspect of Anderson’s 
learning – his use of a particular problem-solving approach – that can be described in terms of a 
way of thinking. Even more, Anderson’s work on both of these problems provides evidence of 
the duality principle at play in his problem solving, suggesting that his ways of thinking and 
ways of understandings reflexively interacted as he solved counting problems.  

While this is just one brief example, it is meant to show that if researchers seek to articulate 
aspects of students’ learning via learning trajectories, there could be value in targeting both ways 
of understanding ways of thinking such as those that Anderson displayed. By emphasizing this 
duality, we suggest that the interaction between ways of understanding and ways of thinking 
actually shed light on Anderson’s combinatorial conceptions, and these provide explanatory 
aspects of his work that would otherwise not come up. By observing his way of thinking, ways 
of understanding, and how they interact across multiple problems, we have a more complete 
picture of how he may think about and learn counting problems.  

 
Part 4: Incorporation of Duality in Designing Learning Trajectories 

The purpose of this section is to provide specific recommendations for ways in which 
attention to the duality principle could shape how researchers think about and use learning 
trajectories. We suggest that researchers might recognize the potential that explicit attention to 
the duality of ways of thinking and ways of understanding might shape the understandings we 
might expect students to develop. To frame our recommendations, and to identify in what ways 
we see the focus on duality contributing to the current notion of a learning trajectory, we again 
consider Simon & Tzur’s (2004) elements of a hypothetical learning trajectory. Under each 
element, we consider what a focus on duality contributes, and how researchers might practically 
focus on duality in the construction and revision of learning trajectories.  

 
Table 1. Incorporating Duality into Learning Trajectories 

Principle Considerations Duality Introduces Recommendations for Researchers 

Generation of an HLT is based 
on understanding of the current 
knowledge of the students 
involved 

Understanding the current knowledge 
of students involved might entail a 
model of the students’ ways of 
thinking and their ways of 
understanding that is grounded in the 
literature base and develops from 
interactions with the students.  

Consider that difficulties or insights 
students appear to have could be 
related to their ways of thinking as 
well as their understanding of 
particular content. Ask questions 
across a variety of problems and 
domains to understand if their 
difficulties are content specific or 
involve ways of thinking.  
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An HLT is a vehicle for 
planning learning of particular 
mathematical concepts 

An HLT is a vehicle for anticipating 
the development of mathematical 
knowledge, comprised of both ways of 
thinking and ways of understanding. 
The development of this knowledge 
can be represented as a feedback loop 
between ways of thinking and ways of 
understanding.   

Explicitly articulate mental acts (such 
a problem solving, justifying, proving, 
explaining, etc.) and anticipate 
potential products of (ways of 
understanding) and characterizations 
of (ways of thinking) mental acts that 
might arise for students. 

Mathematical tasks provide 
tools for promoting learning of 
particular mathematical 
concepts and are, therefore, a 
key part of the instructional 
process 

Mathematical tasks provide a means 
to engender learning of mathematical 
concepts, and in doing so, provide a 
means to affect the development of 
ways of thinking. In turn, 
mathematical tasks that focus on 
engendering ways of thinking spur the 
development of particular subject 
matter knowledge.   

Create tasks that help gain insight into 
students’ ways of thinking by creating 
opportunities in tasks for students to 
reflect on their approaches and 
solutions across problems and 
situations. Be aware that certain 
mathematical domains may more or 
less effectively facilitate particular 
ways of thinking (e.g. solving smaller 
simpler problems)  

Because of the hypothetical and 
inherently uncertain nature of 
this process, the teacher-
researcher is regularly involved 
in modifying every aspect of 
the HLT 

The teacher-researcher should 
consider modifications to the learning 
trajectory with both ways of thinking 
and ways of understanding in mind, 
developing and refining activities 
intended to engender those ways of 
thinking and ways of understanding.   

Document the development of 
students’ content knowledge in 
conjunction with their ways of 
thinking, explicitly attending to how 
these two aspects of students’ 
mathematical knowledge interact.  
 

 
We want to emphasize three things about the recommendations above. First, our 

recommendations should not be considered as a call to do a new “type” of learning trajectories. 
Instead, we have provided suggestions for what incorporating duality into learning trajectories 
might entail. Second, our recommendations should not be considered an exhaustive list. We 
include these points as a means to drive discussion about some major issues to consider with the 
inclusion of ways of thinking in learning trajectories. Third, content plays a significant role in 
how ways of thinking develop, and certain domains may be more appropriate than others for 
fostering specific ways of thinking. For instance, combinatorics is a particularly powerful context 
for thinking of solving smaller, similar problems, as the need for such work with smaller cases 
can easily be motivated in a setting that typically deals with very large and unwieldy numbers. 
While this way of thinking may be effectively developed in a domain like combinatorics, it could 
be further refined and developed in other mathematical areas, each of which might elicit different 
aspects of the way of thinking. 

Conclusion 
In this paper, we have suggested that there might be an additional aspect of mathematical 

learning that could be incorporated into learning trajectories. In particular, Harel’s duality 
principle gives us language for articulating what we have noticed in our own work – that 
mathematical knowledge might include both mathematical content and mathematical practices.  
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WHAT IS A PROOF? A LINGUISTIC ANSWER TO AN EDUCATIONAL 
QUESTION 

Keith Weber 
Rutgers University 

Proof is a central concept in mathematics education, yet mathematics educators have failed 
to reach a consensus on how proof should be conceptualized. I advocate defining proof as a 
clustered concept, in the sense of Lakoff (1987). I contend that this offers a better account of 
mathematicians’ practice with respect to proof than previous accounts that attempted to 
define a proof as an argument possessing an essential property, such as being convincing or 
deductive. I also argue that it leads to useful pedagogical consequences. 

Key words: Cluster model; linguistics; proof 

It is widely accepted that having students successfully engage in the activity of proving is 
a central goal of mathematics education (NCTM, 2000; Harel & Sowder, 1998). Yet 
mathematics educators cannot agree on a shared definition of proof (Balecheff, 2002; Reid & 
Knipping, 2010). This is recognized as problematic: without a shared definition, it is difficult 
for mathematics educators to meaningfully build upon each another’s research and it is 
impossible to judge if pedagogical goals related to proof are achieved (e.g., Balacheff, 2002; 
Weber, 2009).  Until now, most mathematics educators have sought to define proof as an 
argument possessing one or more desirable properties (e.g., being deductive or being 
convincing) without a consensus on which property or properties are the essence of proof. 
The main thesis of this paper is that viewing proof as a clustered model in the sense of Lakoff 
(1987) offers a better account of how proof is practiced by mathematicians. 

Previous attempts to characterize proof  
Through most of the 20th century, the philosophy of mathematics was dominated by the study 
of logic and the foundations of mathematics. Proof was defined as a formal object: a proof 
was situated in a formal language with explicit rules for well-formed formulae and logical 
inference; a sequence of well-formed formulae was a proof if each formula was a premise or 
the result of applying a rule of inference to previous formulae. While this characterization has 
the virtue of being an objective method for identifying a proof, it had the drawback of bearing 
little relevance to mathematical practice. It is rare for a mathematician to produce a proof that 
satisfies these criteria. 
More recently, philosophers and mathematics educators have sought to characterize the 
proofs that mathematicians actually produce. In this line of research, it is typical for a 
researcher to propose a property (or occasionally multiple properties) that arguments must 
satisfy to be a proof.  Inevitably, another researcher will challenge this definition by 
producing a counterexample that either satisfies these properties but is not a proof or is a 
proof but fails to satisfy these properties. For instance, Hanna (1995) argued that computer-
assisted proofs (e.g., Appel and Haken’s proof of the four-color theorem) challenge the 
notion that a proof is open to public inspection. Similarly, Larvor (2012) dismissed the notion 
that proofs being non-ampliative (i.e., not supplying conclusions that exceed the premises or 
being deductive) as he claimed that some authoritative arguments are non-ampliative but not 
proofs. Harel and Sowder (1998) defined a mathematical proof as an argument that convinces 
a mathematician, but others have argued there are convincing arguments that do not 
constitute proofs (e.g., Tall, 1989). (For instance, Eccheveria (1996) said the mathematical 
community is convinced that the unproven Goldbach’s Conjecture is true based on empirical 
evidence). 
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I believe that the reason that mathematics educators have collectively failed at the problem of 
defining proof is due to a faulty assumption of what a solution to this problem must look like. 
The search is for a set of properties that will distinguish whether an argument is a proof. It is 
natural to attempt to define proof this way. This is, after all, how mathematical categories are 
defined (Alcock & Simpson, 2002). However, I claim that a search for this type of definition 
is doomed for failure.  
Aberdein (2009) coined the term, “proof*”, as “species of alleged ‘proof’ where there is no 
consensus that the method provides proof, or there is a broad consensus that it doesn’t, but a 
vocal minority or an historical precedent point the other way”. As examples of proof*, 
Aberdein included “picture proofs*, probabilistic proofs*, computer-assisted proofs*, [and] 
textbook proofs* which are didactically useful but would not satisfy an expert practitioner”. 
This presents a paradox for creating a definition that lists properties that distinguish proofs 
from non-proofs. Take picture proofs*, for instance. Such a definition would either permit 
some convincing picture proofs* to count as proofs or it would say no picture proofs* were 
proofs. If the former occurred, one could rebut the definition by citing the large number of 
mathematicians who said these picture proofs* were not real proofs. If the latter occurred, 
one could rebut the definition by citing the large number of mathematicians (or at least the 
vocal minority) who disagree. Similar arguments could be made for all types of proofs*. Of 
course, the proponent of the definition could resort to saying that the mathematicians who 
disagree with his or her perspective are mistaken (e.g., computer-assisted proofs* are proofs 
but probabilistic proofs* and picture proofs* are not and any mathematician who disagrees is 
in error). However, aside from making the dubious argument that a considerable number of 
mathematicians do not really understand their craft, this would challenge the claim that his or 
her definition was descriptive of mathematical practice. 

Lakoff’s clustered concepts 
Lakoff (1987) noted that “according to classical theory, categories are uniform in the 
following respect: they are defined by a collection of properties that the category members 
share” (p. 17). As noted above, this assumption underlies the ways in which most 
philosophers and mathematics educators seek to define proof. However, Lakoff’s thesis is 
that most real-world categories cannot be characterized this way. In particular, he argued that 
some categories might be better thought of as cluster models, which he defined as occurring 
when “a number of cognitive models combine to form a complex cluster that is 
psychologically more basic than the models taken individually” (p. 74). 
As an illustrative example, Lakoff considered the category of mother. To Lakoff, there are 
several types of mothers, including the birth mother, the genetic mother, the nurturance 
mother (i.e., the adult female caretaker of the child), and the marital mother (i.e., the wife of 
the father). In the prototypical case, these concepts will converge-- that is, the birth mother 
will also be the genetic mother, the nurturance mother, and so on. And indeed, when one 
hears that the woman is the mother of a child, the default assumption is that she assumes all 
of these roles.  
Lakoff raised two other points that will be relevant to this paper. First, there is a natural 
desire to pick out the “real” definition of mother, or the true “essence” of mother. However, 
this does not seem possible. Different dictionaries list different conceptions of mother as their 
primary definition. Further, sentences such as, “I was adopted so I don’t know who my real 
mother is” and “I am uncaring so I doubt I could be a real mother to my child” both are 
intrinsically meaningful yet define real mother in different ways. Second, in cases where 
there is divergence in the clustered concept of mother (e.g., a genetic but not adoptive 
mother), compound words exist to qualify the use of mother. Calling one a birth mother 
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typically indicates that she in not the nurturance mother; calling one an adoptive mother or a 
stepmother indicates that she is not the birth mother.  

Proof as a clustered concept 
The main thesis in this paper is that proof can be productively characterized as a cluster 
model. Exactly what cognitive models compose this cluster can be the subject of interesting 
debate. What I present is a first attempt at categorizing proofs: 

• A proof is an argument that is deductive and non-ampliative argument: Each 
statement in a proof should be a premise or a necessary logical consequence of 
previous statements. 

• A proof is an argument that would convince a contemporary mathematician who knew 
the subject (adapted from Davis & Hersh, 1981)  

• A proof is an argument in a natural language and symbolic representation system 
where there are socially sanctioned rules of inference. It’s noteworthy that some 
researchers view a proof as an argument that can be translated into a formal proof 
(e.g., Azzouni, 2004; Mac Lane, 1986). If so, the distance between the language of 
formal proofs and the proofs that are actually produced should not be too great. 

• A proof is an argument that convinces a particular community at a particular time 
(adapted from Balacheff, 1987). This definition emphasizes the social role of proof 
and situates proof as dependent on time and culture. 

• A proof is an argument that is a blueprint that knowledgeable mathematicians can 
use, in principle, to write a complete proof with no logical gaps.  

My claim is that an argument that satisfies all these properties would be judged by (nearly) all 
knowledgeable mathematicians as constituting a proof and an argument that satisfied none of 
these conditions would be rejected by (nearly) all mathematicians as a non-proof. Arguments 
that satisfied some, but not all of these conditions, such as Aberdein’s (2009) proofs*, would 
be regarded as controversial. Further, it would be desirable, if possible, to improve these 
arguments so they satisfied the properties that they lacked. 
The usual stratagem of rejecting a conception of proof-- citing a counterexample where the 
conception did not reflect reality-- would not apply here. In this characterization, there is no 
guarantee that every proof satisfies every property. However, this conception of proof does 
make some concrete predictions about proof that can be tested. First, arguments satisfying all 
the criteria above would be considered more “proof-like” or representative of proof than 
those that would not. A proof in knot theory that relied on diagrams or kinesthetic motion 
(see Larvor, 2012 or Rav, 1999) might be accepted as a proof, but the mathematical 
community at large would consider these proofs unusual in this respect. Second, if a 
mathematician was told a proof of a particular theorem existed, his or her default assumption 
would be that the argument satisfied each of the constraints, even though he or she would be 
aware that this might not necessarily be so. Third, there should be compound words that 
qualify proof-like arguments that satisfy some, but not all, of these criteria. Indeed, Aberdein 
(2009) provided a list including picture proofs* (convincing deductive arguments in a non-
symbolic/natural language representation system) and probabilistic proofs* (arguments that 
are arguably convincing but not deductive). Fourth, if mathematicians were asked what the 
true essence of a proof was, they should not all list one of the criteria above. Rather, their 
responses should be heterogeneous (i.e., the essence of proof varies by mathematician) or 
many should say the question is unanswerable. That Aberdein (2009) alleged that his proofs* 
have both their adherents and detractors is evidence toward this point. 
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Benefits of this conception of proof 

Previous attempts to define proof 
Previous attempts to define proof in mathematics education have usually latched on to one or 
two of the properties above and treated it as the sole criterion on which to judge proofs. Harel 
and Sowder (1998) defined mathematical proof in terms of arguments that convince 
mathematicians, Hoyles and Kucheman (2002) treated proofs as arguments that are 
deductive, Weber and Alcock (2009) defined proof as arguments within a representation 
system, and Balacheff (1987) defined a proof as time- and community-dependent. Stylianides 
(2007) desired arguments to be both deductive and in an age-appropriate representation 
system to constitute a proof. Each definition essentially says the true essence of proof lies in 
one or two of the attributes described above, treating the other listed criteria as either 
tangential or a consequence of a proof’s essence. For instance, Hanna (1991) referred to the 
formality of proof, or placing the argument in a representation system, as merely a “hygiene 
factor” and Harel and Sowder (1998) believed the fact that mathematical proofs are deductive 
is a necessary consequence of these proofs convincing mathematicians. As noted earlier, such 
characterizations cannot account for mathematicians’ practice with respect to proofs* and 
thus seem not to categorize mathematical practice. 

More appropriate pedagogical suggestions 
At a broad level, the components of the clustered model of proof are correlated with one 
another. For instance, in general, as an argument becomes more deductive, it tends to become 
more convincing, easier to translate into a formal proof, and more likely to be sanctioned by 
one’s peers. Hence, encouraging students to make their arguments more deductive would 
usually make their arguments more proof-like in other respects as well. However, this is not 
the case if we take some of these criteria to extremes. 
For a first example, suppose we strive to present students with arguments that are as 
convincing as possible in geometry. In many cases, an exploration on a dynamic geometry 
package would be extremely convincing, both for mathematicians and for students (de 
Villiers, 2004). For a student, such explorations would probably be more convincing than a 
complicated deductive argument because the student may worry that he or she has 
overlooked an error in the argument. If we view the mode of reasoning (deductive vs. 
perceptual) and the representation system in which an argument is couched as irrelevant, it is 
difficult to argue why demonstrations on dynamic geometry software packages are not 
proofs. 
A similar claim relates to how formal an argument is. Increasing the formality of an argument 
usually makes the argument more deductive and more acceptable to the mathematical 
community. However, it is generally accepted that there is a point where an argument is 
“formal enough” and making it more rigorous would be detrimental. An argument with large 
logical gaps might be judged as not convincing and not accepted by mathematicians. 
However, filling in all the gaps would make the proof impossibly long and unwieldy. The 
result would be a proof that masks its main ideas. As understanding these ideas is important 
for determining the validity of the proof, increasing the rigor of the proof would lessen its 
persuasive power. 
If we want students and teachers to present proofs that satisfy all or most of the criteria 
above, it would be best not to focus on a single criterion. Not only would the other criteria be 
ignored, a singular focus on one criterion might actually lessen the possibilities of the other 
criteria being achieved. 
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EXPLORING STUDENTS’ WAYS OF THINKING ABOUT SAMPLING 
DISTRIBUTIONS 

 
Aaron Weinberg 
Ithaca College 

 
The concept of a sampling distribution plays a central role in the process of making statistical 
inferences. However, students typically struggle to understand and reason about sampling 
distributions. This study seeks to characterize the ways undergraduate students think about 
sampling distributions in scenarios involving repeated sampling and making statistical 
inferences. Eight students in an introductory statistics class worked on problems involving 
sampling distributions during a semi-structured interview. A framework was developed based on 
their responses to describe the ways they discussed and coordinated various aspects of the 
population and sampling distributions by focusing on the processes of sampling and repeated 
sampling; these descriptions suggest that explicitly coordinating particular aspects of these 
processes may correspond to the robustness of students’ conceptions of sampling distributions. 

 
Key words: Statistics, Sampling Distributions, Sampling Variability, Conceptual Operations 

 
Introduction 

Statistical inference is the process by which conclusions about a population are drawn based 
upon evidence obtained from a sample of the population. Developing students’ ability to make 
and understand statistical inferences is a key focus for most college-level introductory statistics 
courses. Yet, research suggests there are substantial gaps in students’ informal and formal 
understanding of statistical inference (e.g., Zieffler et al., 2008).  

In particular, students have difficulty understanding the concept of a sampling distribution, 
which describes the relative frequency of statistics we would expect to see when collecting all 
possible samples of a given size from a population. Sampling distributions connect probability 
models with statistical inference, enabling us to compare results from an observed sample with a 
theoretical distribution. Research has documented students’ difficulties with the concept of 
sampling distributions (e.g., Chance, delMas & Garfield, 2004), and many educators may 
underestimate the complexity involved in building a coherent understanding of the concept. 

The goal of this research project is to construct a framework that facilitates a fine-grained 
description of students’ thinking about sampling distributions and to use the framework to 
describe some of the ways students in introductory statistics courses think about sampling 
distributions when solving problems involving inference and repeated sampling. 
 

Background 
Much of the research on students’ understanding of sampling distributions has taken the form 

of instructional interventions using computer simulation methods (CSMs). Although many 
studies have argued that CSMs aid student understanding of sampling distributions, Mills (2002) 
noted that most of these studies did not report empirical data. In addition, most of the empirical 
studies have documented students’ misconceptions and difficulties rather than providing 
descriptions of the ways students might come to understand the underlying concepts.  

Saldanha and Thompson (e.g.; Saldanha & Thompson, 2002a; 2002b; 2006; 2007) have 
investigated students’ conceptions of sampling distributions and understanding of sampling 
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variability, focusing on students’ imagery of a process of repeatedly sampling from a population. 
In several of their earlier studies, they found that the more successful students “had developed a 
multi-tiered scheme of conceptual operations centered around the images of repeatedly sampling 
from a population, recording a statistic, and tracking the accumulation of statistics as they 
distribute themselves along a range of possibilities” (Saldanha & Thompson, 2002b p. 261). 
Based on these studies, Saldanha and Thompson (2002b, p. 261) identified three levels of the 
sampling process:  

• Level 1: Randomly select items to accumulate a sample of a given size from a 
population. Record a sample statistic of interest. 

• Level 2: Repeat Level 1 process a large number of times and accumulate a 
collection of statistics. 

• Level 3: Partition the collection in Level 2 to determine what proportion of 
statistics lie beyond (below) a given threshold value. 

They found that successful students were able to clearly distinguish between these levels. In 
contrast, less-successful students often confounded the number of samples with the sample size 
and struggled to coordinate ideas across the various levels of the sampling process. 

In subsequent studies, Saldanha and Thompson (2006; 2007) described the way students in a 
teaching experiment developed an understanding of the concept of a sampling distribution. The 
way the students engaged in the instructional intervention appeared to follow a three-phase 
trajectory: 

• Phase 1: Students focus their attention on an individual sample as they select 
and aggregate items from the population. They use this sample to estimate a 
value for the parameter. 

• Phase 2: Through the process of repeated sampling, students focus their 
attention on a collection of statistics and use the resulting distribution to 
estimate the parameter. 

• Phase 3: Students repeat the repeated-sampling process to focus on comparing 
collections of values. They describe the similarities of the distributions and 
use this to discuss the “unusualness” of a particular sample statistic. 

In addition to Saldanha and Thompson’s framework, several researchers have suggested that 
students need to understand and coordinate numerous ideas about samples and the sampling (and 
resampling) process in order to understand sampling distributions (e.g., Bakkar & Gravemier, 
2004; Chance, et al., 2004; Pfannkuch & Reading, 2006, Saldanha & Thompson, 2002b). 
Students must be able to understand and make comparisons between different samples and 
sampling distributions. They need to attend to the role played by sample size and understand the 
relationship between samples and the populations from which they are drawn. Students must be 
able to reason about distributions of data and to make use of proportional reasoning; reasoning 
about distributions requires the coordination of two or more attributes of a distribution, where the 
attributes are measures of center, spread, and shape. Students need to recognize what sampling 
variability represents and the role variability plays in the outcomes of a distribution. In addition, 
students need to be able to reason proportionally about the outcomes represented in the 
distribution in order to connect the sampling distribution to ideas of inference. 

Taken together, these previous results suggest that a framework for describing the details of 
students’ conceptions of sampling distributions should take into account the statistical processes 
(i.e. sampling and resampling) and objects (e.g., centers of distributions) that students attend to 
and coordinate as they engage in situations involving repeated sampling. 
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Methods 

Eight undergraduate students participated in the study; they were all enrolled in a one-
semester introductory statistics course with a target audience of mathematics majors and minors. 
The course was based on the CATALST curriculum (Garfield, delMas & Zieffler, 2012), which 
engages students in simulation and randomization methods to construct empirical sampling 
distributions from null and bootstrap models. Each student participated in two semi-structured 
interviews, one near the mid-point of the semester and the other near the end of the semester. In 
the interview, students were asked to describe what a sampling distribution is and then to work 
on four problems, which are outlined in Table 1.  

Problem 1: You have a population of men with a mean height of 69 inches. In 
Study 1 you take a 5-person sample each day at a post office and record 
the mean height; in Study 2 the post office takes 50-person samples. In 
which study will you record more days over 71 inches? 

Problem 2: Researchers collect many samples of 50 tires and compute the mean 
tread life of each; their results are displayed in a histogram [included in 
the question]. If you collect a new sample of 50 tires and find that it has a 
mean tread life of 6 years; is that evidence that the new tires last longer 
than the old ones? 

Problem 3: Researchers sent out 2600 identical resumes; half had “white 
sounding” names and the others had “black sounding” names. They 
received 121 positive responses for the white-sounding names and 87 for 
the black-sounding names. Then they ran 500 simulations under the 
assumption that 208 out of every 2600 names should receive a response 
and the results are displayed in a histogram [included in the question]. 
Should the researchers be concerned? 

Problem 4: Given a histogram of a population of test scores and histograms of 
four potential sampling distributions, which histogram(s) could represent 
sampling distributions with sample sizes of 4 and 50? 

Table 1. Outline of interview questions 
The students were asked to think aloud as much as possible while working on the problems. 

After working on each problem, the interviewer asked questions designed to challenge the 
student’s reasoning and conclusions. The interviews were video-recorded and transcribed. 

Analysis of the data was conducted using grounded theory (Strauss & Corbin, 1990). The 
students’ utterances were read and categorized according to the mathematical and statistical 
processes and objects of their attention, the types of conclusions they drew, and their reasoning 
for drawing these conclusions. Then the utterances were re-coded axially, resulting in the 
categories described in the results. 

 
Results and Analysis 

All of the students were able to provide correct solutions to at least two of the four problems 
and were able to justify their reasoning using correct descriptions of the sampling distributions 
involved. All of the students were able to discuss the process of repeated sampling and the idea 
of partitioning a collection of sample statistics, suggesting that their reasoning was at Level 3 of 
Saldanha and Thompson’s (2002b) framework. In addition, all of the students were able to 
provide a correct solution to—and explain their reasoning on—problems 1 and 4 (which 
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involved comparing sampling distributions) on at least one of their interviews; this suggests that 
they had reached Phase 3 of Saldanha and Thompson’s (2007) hypothetical learning trajectory. 

Although they appeared to be at similar levels according to these frameworks, the students 
still attended to different aspects of sampling and resampling as they described and interpreted 
sampling distributions. The different collections of concepts they coordinated, in turn, led to 
more or less robust and sophisticated ways of justifying their arguments. For example, consider 
the two students’ arguments for why the small post office (in Problem 1) would record more 
days with a mean over 71 inches: 

Student 1: I think that the one with the larger sample size will see more consistent 
data in that their means will probably be relatively closer to each other 
every single day, whereas I think the impacts of the smaller sample size 
will shift that mean to extremes more often. So you'll see a larger—I guess 
a larger distribution in the statistics that you receive. 

 
Student 2: So, the small post office is a pretty small sample, so you can have, like, 

a pretty wide variety with just five people, but if you have 50 people, a lot 
of them... because 69 inches is the average, so you're saying a lot of 
people are 69 or close to 69, otherwise you wouldn't get that as the 
average. So if you have a group of 50, there's going to be a fair amount of 
them with around 69 inches, but if you only have 5 then you could have a 
really tall guy and you might have one or two near the average but you 
could also have some short guys, and it's just more likely that your 
average will be further from the 69 inches. 

 
In his justification, Student 1was able to explicitly describe a process of repeated sampling 

and the relationship between the statistic (i.e. the sample mean) and the spread of the sampling 
distribution; he also alluded to a process of sampling by describing the role played by the size of 
the sample. Student 1’s reasoning is summarized in Figure 1.  

 
Figure 1. Student 1's reasoning 

Student 2 was able to explicitly describe a process of sampling particular individuals (in a 
group of a specific size) from a population by attending to the center, spread, and—implicitly—
the shape of the population (i.e. unimodal and symmetric); he also implicitly alluded to a process 
of repeated sampling (i.e. “more likely”), comparing the distance of the sample averages from 
the center of the population. Student 2’s reasoning is summarized in Figure 2.  
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 5 

 
Figure 2. Student 2's reasoning 

 
Student 1 had difficulty addressing the interviewer’s subsequent questions (which were 

designed to probe his reasoning). For example, the interviewer asked Student 1 to discuss the 
effects of the composition of individual samples, noting that both large and small samples should 
have roughly the same proportion of “tall” people; the interviewer asked Student 1 to explain 
why this reasoning wouldn’t imply that the two studies would have the same number of days 
with averages over 71 inches. Student 1 was unable to address this question effectively, replying: 

Student 1: Over 71 inches is now considered tall, okay. Umm, I mean... that 
makes sense. It would make sense if you would get one tall person, then 
you would see one in five people as 20% of your statistic as tall, that 
doesn't extrapolate to the likelihood of getting a tall person to walk 
through your door. That's just saying that 20% of the people you surveyed 
that day were tall. I think the odds of getting a tall person is the same. 

In contrast, Student 2 was able to address the interviewer’s subsequent questions by focusing 
on the sampling process and the way that was coordinated with the (implied) repeated sampling. 
For example, the interviewer suggested that a large sample would be more likely to include tall 
individuals and asked Student 2 to discuss why this wouldn’t imply that the study with large 
samples would have more days with averages over 71 inches. Student 2 replied: 

Student 2: It is more likely that you will get a really tall or really short person, but 
you also have 49 other people that—a lot of them will be close to the 
average and then... you'll probably have a really tall guy and a really short 
guy that kind of average each other out. 

 
These examples suggest that we can describe students’ thinking about sampling distributions 

by identifying the aspects of (1) the population distribution, and (2) the sampling distribution that 
they explicitly and implicitly focus on, whether they leverage (3) the concept of the sample (and 
sample statistic) in their reasoning, and the way they coordinate these aspects by explicitly or 
implicitly describing (4) the sampling process and (5) the repeated sampling process. These 
myriad options can be visualized in Figure 3. 
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 6 

 
Figure 3. Sampling distribution framework for coordination of aspects 

 
Each box in the diagram represents an aspect of a statistical object (e.g., the center of a 

population distribution) that can be attended to; the curved arrows represent the potential to 
coordinate the aspects. The “sampling process” and “repeated sampling process” arrows 
represent two processes students can leverage as mechanisms for coordinating the various 
aspects; the “sample size” and “sampling variability” are aspects of the two processes that can be 
attended to that influence the way the various aspects can be coordinated. In an individual 
student’s reasoning, these aspects and processes may be attended to explicitly (represented by 
solid arrows) or implicitly (represented by dashed arrows).  

 
Discussion 

The framework presented here offers a way to document and categorize the various aspects 
of population and sampling distributions that students attend to as they work in scenarios 
involving repeated sampling and the resulting sampling distributions; in addition, it offers a way 
to identify which of these aspects students coordinate, the statistical processes they focus on as 
they coordinate the aspects, and the ways the ideas of sample size and sampling variability 
influence their thinking. 

As shown in the examples from Student 1 and Student 2, students may explicitly and 
implicitly attend to and coordinate any combination of these aspects and processes. Although the 
results are not conclusive, the differences in the two students’ abilities to address the 
interviewer’s probing questions suggests that students who attend to and coordinate more aspects 
and processes have constructed a more detailed and robust understanding of sampling 
distributions. This was seen in the responses by the other six students in the study. 

These results suggest that the framework may be a useful tool for building on Saldanha and 
Thompson’s frameworks to characterize in more detail the ways students think about repeated 
sampling and sampling distributions. In order to evaluate the framework further, it will be useful 
to conduct additional interviews in which the probing questions are designed to highlight the 
aspects and processes that appear to be either absent or only implicit to determine the degree to 
which explicitly coordinating all of the components of the framework is essential for 
understanding and working with sampling distributions. 
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WHAT IS SIMPLIFYING?: USING WORD CLOUDS AS A RESEARCH TOOL 

 

Benjamin Wescoatt 

Valdosta State University 

 

This paper describes the utilization of word clouds within a research methodology.  To explore 

student notions of the concept of “simplify” in a trigonometry course, students responded to the 

prompt “In your own words, what does it mean to simplify?”  The researcher created a word 

cloud derived from the student responses to explore and identify themes.  These themes formed 

an initial framework for an in-depth analysis of the responses.  During the textual analysis, the 

word cloud was consulted to confirm findings.  Using the word cloud in preliminary and 

confirmatory roles adhered to the framework put forth by McNaught and Lam (2010).  From the 

analysis, students appeared to view the act of simplifying as a process of taking an expression to 

its most basic state in order to reduce the perceived size (physical or cognitive) of the 

expression.  Moreover, word clouds played a valuable role, providing visual representations of 

data.  

 

Keywords: Word clouds, Simplify, Trigonometry, Data visualization 

As part of a larger study, a need manifested to understand the meaning that students applied 

to the notion of simplify.  A recently developed research tool provided a “quick and dirty” 

starting point from which to proceed.  This paper outlines the utilization of Wordle.net to 

generate word clouds.  While the results of the final analysis will be shared, this paper will also 

focus on outlining the methodology and appropriateness of word clouds as a tool for research in 

undergraduate mathematics education. 

Word Clouds 

A new method of data analysis, deriving from Web 2.0 internet sites such as blogs and social 

media sites, is the tag cloud, also referred to as a content cloud or a word cloud.  In their original 

setting, word clouds were “visual presentations of a set of words, typically a set of ‘tags’ selected 

by some rationale, in which attributes of the text such as size, weight, or color are used to 

represent features of the associated terms” (Rivadeneira, Gruen, Muller & Millen, 2007, p. 995).  

Generally, word cloud formation depends on the frequency in which words are used in textual 

passages.  The more frequently a word is used, the larger the word appears in the cloud picture, 

relative in size to the least frequently used word in the cloud.   

Tags are human-generated keywords used to categorize information found on websites; they 

provide a summary of the content for users of the site, serving as tables of content.  As an 

example, blogs use word clouds to summarize the content of posts, with the words in the cloud 

being keywords generated by the blogger.  Tags for popular or frequently visited content on a 

website may appear with a bolder color or a larger font size in the word cloud.  Additionally, 

within the word cloud, the individual tags can be hyperlinked to resources and content of the site 

labeled with the particular tag (Rivadeneira et al., 2007; Bateman, Gutwin, & Nacenta, 2008).  

Rivadeneira et al. (2007) proposed a scheme for user tasks that word clouds support.  Users 

can engage in searching for a specific concept on the site.  However, a specific concept does not 

need to be known a priori; thus, word clouds allow users to engage in browsing for general 

content.  While gisting, or impression forming, users are able to form a general impression of the 

content of the site, observing prevalent concepts while at the same time noting underlying 

themes.  Finally, word clouds can provide users the ability for matching, or recognizing, sets of 
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data.  Thus, word clouds may provide identifying features unique to the content of the site; users 

may be able to narrow down what the underlying concept of the site is through exploration of the 

associated word cloud.  

While word clouds originated with web-based applications, the categories of Rivadeneira et 

al. have broad appeal as the tasks associated with the categories are not necessarily bound to 

websites.  For example, researchers may generate clouds to search for the presence of a specific 

idea or theme in textual data.  On the other hand, if limited knowledge exists of a phenomenon 

and the research is of an exploratory type, researchers may browse the clouds and observe 

emerging themes.  Clouds can also be used to form a quick impression or get the gist of the data.  

Finally, clouds may be used to distinguish and recognize the underlying phenomenon being 

observed.  Anything that can be analyzed through a content analysis can be visualized with a 

word cloud (Cidell, 2010).  Used as a research technique, word clouds can quickly show what 

the phenomenon being studied is about, leading to researchers forming generally impressions 

(Gottron, 2009).  Additionally, word clouds can quickly reveal differences among ideas in 

selections of written or spoken texts through a visual inspection and comparison of the pictures, 

illustrating any emerging themes (McNaught & Lam, 2010; Williams, Parkes & Davies, 2013). 

Research with Word Clouds 

Despite the inherent potential, word clouds have been used sparingly in research thus far.  

Cidell (2010) proposed word clouds as a method for exploratory analysis in geographic 

information systems.  The method consisted of generating word clouds using public meeting 

transcripts and eco-friendly building articles.  For each data source, the word clouds were then 

visually mapped to represent the geographic location from which the transcripts or articles 

originated.  Then, the clouds were analyzed for within and across themes; a location was 

explored for what mattered most to that region based upon prominence of words in the cloud and 

then certain words were explored across regions to compare the prominence.  Results from the 

meeting transcripts were triangulated with comments made at the meetings; in this way, the word 

clouds served a confirmatory role, supporting the content analysis of the meeting transcripts.  

Cidell concluded that using the word clouds illuminated the differences in regional attitudes and 

commented that the word clouds suggested many avenues for future research into the issues 

being researched.  Overall, Cidell maintained that the method of word clouds “offers the 

potential of combining content analysis, visualisation and qualitative GIS” (p. 522). 

Williams, Parkes, and Davis (2013) used word clouds to gain an initial overview of aspects 

from an induction program in management education.  Students responded to prompts exploring 

their views about what they enjoyed the least and most and about what they found useful in the 

induction program.  The raw data were used to generate an initial word cloud.  Finding the 

resultant cloud uninformative, the survey responses were classified as negative and positive.  

Then two word clouds were created from the responses in each category.  Creating these 

thematic clouds allowed the data to be presented in a meaningful way, within their original 

context.  Finally, common phrases were categorized into general themes, and word clouds were 

generated from these themes.  The researchers concluded that the word clouds were powerful 

tools for preliminary research, allowing the data to be quickly analyzed. 

Finally, McNaught and Lam (2010) discussed two studies in which word clouds served 

different roles.  The first study explored human factors affecting the comments of participants in 

focus-group meetings.  Before an in-depth analysis of the transcripts of the meetings, the 

transcripts (with minimal corrections) were used to create clouds.  Cursory observations of the 

clouds led the researchers to note important differences among the meetings, providing a 
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preliminary understanding of what occurred in the meetings and directing attention to issues that 

needed follow-up studies.  In the second study, the researchers used comments from five 

participant blogs about the usage of eBooks to form five separate word clouds.  Before inputting 

the text, researchers made minor modifications to the text to maintain a sense of context; this 

step was taken as the themes within the blogs were important to the researchers.  For example, 

spaces after the word “not” were removed to retain a negative connotation of an idea.  The word 

clouds were then compared in order to confirm previous analysis of students' perceptions of 

eBooks.  

Word clouds do have their inherent limitations.  Bateman et al. (2009) found that larger font 

size or larger font weight for words exerted the strongest influence on individuals exploring word 

clouds.  Thus, larger or bolder words, indicating high prevalence in the text, could distract an 

observer from underlying themes, thus biasing the analysis.  Additionally, Cidell (2010) pointed 

out that the sizes of words were relative to the frequencies of the other words in the text; the 

implication was that when comparing word clouds, similarly sized words do not imply that the 

word was mentioned the same number of times in the different passages.  To circumvent this 

limitation and allow for better cloud comparison, researchers have suggested techniques such as 

parallel tag clouds (Collins, Viegas, & Wattenberg, 2009),  seam carving (Wu, Provan, Wei, Liu, 

& Ma, 2011), and word storms (Castella & Sutton, 2013). 

Also related to the usage of frequencies in forming the cloud image, McNaught and Lam 

(2010) suggested that word clouds should only be used to analyze the actual spoken (transcribed) 

or written word of participants.  Using word clouds for field notes or researcher summaries 

would be less powerful as it would reveal information about the researcher and not necessarily 

the participants.  Another drawback highlighted by McNaught and Lam was that word clouds 

remove the words out of their contexts.  Thus, words being prominently displayed in a picture 

implied nothing about the importance of the word to the phenomena being investigated.  Instead, 

prominence of a word merely suggested a further textual analysis into how the word was actually 

used in conjunction with ideas.  In this way, the word cloud served a preliminary role, fostering 

the development of an initial thematic framework through which to conduct further analysis. 

Methodological Framework 
Therefore, due to the limitations of word clouds, McNaught and Lam (ibid) suggested that 

the role word clouds serve in research should be limited to a complimentary research tool.  

Specifically, they believed that word clouds are best used as: 

 A tool for preliminary analysis, quickly highlighting main differences and possible 

points of interest, thus providing a direction for detailed analyses in following stages; 

and 

 A validation tool to further confirm findings and interpretations of findings.  The 

word clouds thus provide an additional support for other analytic tools.  (p. 631) 

The utilization of word clouds in this current study followed the McNaught and Lam framework. 

Conceptual Framework 
 The premise for the investigation into students’ conceptions of simplification was that the 

meaning of simplification held by a student was constructed on an individual level that 

developed within an influential classroom culture, a community of learners.  That is, when 

comparing two mathematical expression, identifying which expression was “simpler” was not 

straightforward and a somewhat subjective task.  For example, in comparing the two equivalent 

expressions       and          , one student may state that       is simpler as it has a 

visually smaller physical size.  On the other hand, a student uncomfortable with function  
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Figure 1. Initial word cloud of students’ explanations of the meaning of “simplify.” 

arguments and double-angled trigonometric functions may be troubled by       and thus 

consider           to be the simpler expression.  However, while meanings were individual, 

common conceptual facets existed across individuals due to the shared classroom culture. 

Methodology 
This study was conducted at a large, Midwestern research university within a college 

trigonometry course.  In preparation for the first class period in the unit on verifying 

trigonometric identities, students responded to the prompt, “In your own words, what does it 

mean to simplify?”  Of the 33 participants in the study, 24 participants completed the prompt.  

The participant responses to this question were analyzed in order to determine a consensus on the 

trigonometry classroom community’s definition of what “simplify” meant. 

 The written responses were transcribed to a text document.  Minimal grammatical and 

spelling corrections occurred; because the text was going to be used in an analysis that depended 

upon frequency, having a word spelled correctly was desired.  This text in turn was copied and 

pasted to Wordle.net, and a word cloud (Figure 1) was generated.  Wordle.net is an open-access 

website devoted to the quick formation of word clouds (dubbed “wordles”).  At Wordle.net, the 

more frequently a word was used, the larger and bolder it appeared in the cloud. 

After a brief scanning of the cloud, looking for prominence of words and similar ideas, a new 

text document was created from the original text document with the following changes.  First, 

some students used the word “simplify” as a signal phrase in their responses, e.g., “To simplify, 

….”  Thus, the word had little relevance for the explanations of what it meant and was edited out 

of the text document.  Next, as “break” had some prominence, the similar phrases “breaking” and 

“be broken” were altered to “break” in order to capture the same idea.  For the same reason, the 

word “reducing” was edited to “reduce.”  Finally, while enacting these changes, the observation 

was made that Wordle.net filtered the word “down” out of the cloud, treating it as a common 

stop word.  However, students used “down” as a descriptive adverb in a significant way.  Thus, a 

tilde was used to form the phrases “break~down” and “reduce~down,” forcing Wordle.net to 

treat the phrases as a word and use them in the cloud formation.  The new text document was fed 

to Wordle.net, and a new cloud (Figure 2) was generated. 

 A cursory analysis of the word cloud revealed several potential themes.  First, the 

participants spoke of simplify in comparative states of existences, using words such as “lowest,” 

“simplest,” and “smallest.”  Size played a role in this existence, by virtue of the root word 

“small,” “short,” and “length.”  Actions such as “break down,” “reduce,” and “reduce down” 

were apparent in the cloud, suggesting a process.  Along with these words, other prominent 

notions, such as “basic,” “possible,” and “complex” needed to be explored to identify the context 

in which they were used and to determine their relationships to the prominent words “form,”  
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Figure 2. Final word cloud of students’ explanations of the meaning of “simplify.” 

“equation,” and “terms.”  These observations suggested lines of inquiry for an in-depth textual 

analysis through the lens of this initial framework.   

Findings 
Having the notion of “to bring down or diminish to a smaller number, amount, quantity, 

extent, etc., or to a single thing; to bring down to a simpler form,” (“Reduce”, 2013), the word 

“reduce” is very prominent in the cloud.  Thus, an analysis of the participant responses was 

undertaken to explore how students were using this idea as it related to simplifying.  Students 

described “to simplify” as “to reduce” in eight distinct comments out of 24 total responses.  Of 

these eight, one student directly equated simplifying with reducing, while another student 

explained simplifying as reducing the complexity.  The other six comments were all related by 

the idea that simplifying was the act of reducing to some base state of existence with a notion of 

finality associated to it.  For example, one student stated that to simplify meant: 

 Reduce problem to the lowest, simplest form possible. 

Thus, simplifying entailed changing the state of the expression to something that could no longer 

be changed; the primitive existence of the expression was reached. 

The concept of reducing related to another prominent cloud feature, that of “break down.”  

Although to break down may elicit several interpretations, students used it in the sense of 

decomposing something to simpler components.  A directional quality of the act of simplifying 

was emphasized through pairing the word “break” with “down”; in the same manner of reducing, 

breaking down lead to a low-level, base state of existence for the expression.  Once this simplest 

or basic form was reached, nothing further could be done.  For example, students described what 

simplifying meant in the following way: 

 Breaking an equation down to the most basic form possible. 

 To put in the simplest terms possible; an expression is unable to be broken down 

further once simplified. 

Thus, for these students, simplifying was akin to the atomism of Leucippus and Democritus; a 

point would be reached where the expression could not be further broken down and simplified. 

 While not specifically always using the phrases “reduce” or “break down” to describe the act, 

several comments described reaching a most primitive state, making the “form” of the expression 

more basic, simpler, or smaller.  Examples of these comments were: 

 To get to the most basic form. 

 Change it to the simplest form. 
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In total, eight comments referred to the form of the expression dictating when the expression was 

simplified.  Moreover, when writing of a “simplest” form, some students might have been 

thinking of the complexity in terms of the physical size of the expression, as suggested by the 

student who wrote: 

 To take a lengthy or complex equation and use mathematical operations to put the 

equation in its least complex form. 

In this comment, the student linked the length of the “equation” with a progression of the 

expression to its simplest form.  (Note: We interpreted the meaning as “expression.”)  

 Students also referred to simplifying as bringing the expression to its lowest or simplest 

“terms” (5 comments).  One student explained simplifying in the following way: 

 Reducing to the lowest terms necessary. 

Colloquially, terms generally mean the components of something, so “lowest terms” might be 

taken to imply reaching a state that can be broken down no further.  Also, some students might 

have believed simplest and lowest to be synonymous, as suggested by the following comment: 

 To break something down into its lowest/simplest terms. 

Furthermore, bringing an expression to lowest terms, to make it simpler, was connected to the 

physical size of the expression.  As a student explained: 

 To make more simple by cancelling terms out. 

Cancelling terms out reduced the matter composing the expression, thus making the expression 

smaller in size. 

 The size of the expression was an underlying theme across many of the responses.  In many 

instances, the size described the final state of the expression.  However, as previously discussed, 

the notion of “making small” was embedded in the phrases “break down” and “reduce,” as each 

phrase described simplifying as an action of taking the expression to a more basic state.  The size 

of the expression may not necessarily refer to the physical size, but to a cognitive load.  The 

more complex an expression was, the larger that expression was.  Thus, simplifying shrank the 

cognitive load of the expression for that student.  While the cognitive size might be related to 

factors based upon the actual components used and not depend on the size, e.g., a student may 

perceive      as being cognitively smaller than      due to familiarity with the sine function, 

students definitely linked complexity of an expression to the physical size. 

Conclusions 

To summarize, participants within the classroom community viewed the act of simplifying as 

a process of taking an expression to its most basic state in order to reduce the perceived size 

(physical or cognitive) of the expression.  As some students wrote, simplifying meant: 

 To reduce the #'s that you are working down to the lowest possible digits to make the 

math easier. 

 To take a complex thing and make it easier. 

This result was not groundbreaking or unexpected and aligned with a broader accepted meaning 

of simplify.   However, establishing what students meant when using the word “simplify” was 

important for the study since simplifying acts played an important role in the larger issue being 

investigated, verifying trigonometric identities.  For future study, a related issue is the role that 

context plays in students’ perception of simplification.  Will a form considered simple by an 

algebra student also be considered simple by a calculus student?  Moreover, will the task 

involved and the needed representations for the task influence the perception?  

 Word clouds proved to be a valuable research tool in exploring the student notions.  Since a 

community definition of “simplify” was desired, pre-existing frameworks to guide the 
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exploration were shunned to bracket preconceived notions.  Word clouds provided a quick entry 

point, allowing the development of an initial framework from the participant data through which 

to conduct the deeper analysis.  Moreover, once the cloud was generated, it could be used as a 

touchstone during the in-depth analysis.  In this way, it served to help verify the results of the 

textual analysis. 

 Another benefit of the word cloud was the quantitative visualization of the qualitative data.  

That is, word clouds have the ability to visually display qualitative data in a meaningful way.  

Themes evolving from the data may be readily apparent not only to the researcher but to the 

audience as well.  Being able to visualize qualitative data has been an area of recent concern 

(e.g., Slone, 2009).  Furthermore, the themes appear in a quantized way, depending on 

frequencies.  Thus, word clouds should be considered as a viable option for the presentation of 

data in mixed methods research in addition to their utilization as a research tool.   
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STUDENT CONCEPTIONS OF TRIGONOMETRIC IDENTITIES  

THROUGH APOS THEORY 

 

Benjamin Wescoatt 

Valdosta State University 

 

This preliminary study attempts to describe an initial genetic decomposition of a trigonometric 

identity for college students.  Scant research exists into the concepts found in trigonometry.  

Thus, little is known about how students actually understand a trigonometric identity.  Following 

the guidelines of APOS theory, an initial genetic decomposition for a trigonometric identity was 

proposed.  According to this decomposition, students with action conceptions can verify 

identities explicitly using step-by-step manipulations while students holding a process conception 

are able to visualize steps to demonstrate that the identity is true.  Having an object conception 

means students recognize the truth of the equality without verification and are able to then use 

the identity to verify other identities.  After observing students in task-based interviews, needed 

modifications to the genetic decomposition became apparent.  For example, students’ 

conceptions of the function argument appeared to influence the verification process. 

 

Key words: Trigonometric identity, APOS theory, Function, Equal sign 

 

A trigonometric identity is an object encountered by many high school and college students.  

The identity itself is a tautological statement claiming that two expressions composed of certain 

combinations of trigonometric functions actually describe the same underlying mathematical 

object despite appearing to be different.  While the notion of the trigonometric identity is rich in 

mathematical concepts, to date, research into students’ notions of the trigonometric identity is 

scarce.  Moreover, how students’ understandings of the identity develop is virtually non-existent. 

APOS Theory 
 Rooted in the theories of Piaget, APOS theory attempts to describe how students may come 

to understand certain mathematical objects.  Underpinning APOS is the hypothesis that   

an individual’s mathematical knowledge is her or his tendency to respond to perceived 

mathematical problem situations and their solutions by reflecting on them in a social context 

and constructing or reconstructing mathematical actions, processes and objects and 

organizing these in schemas to use in dealing with the situations.  (Dubinsky, 2000, p. 11) 

According to Dubinsky and McDonald (2001), an action is a learner-perceived external 

transformation of an object.  Actions usually occur in a step-by-step fashion with reliance on 

memorized procedures.  Once the learner has repeated an action, reflection on the action may 

interiorize the action into a process.  A process does not need to be physically performed; the 

learner may envision the process and the result.  Thus, a process does not have a reliance on 

external stimuli but is under the control of the learner.  Once the learner understands that a 

process represents a totality, the learner is said to have encapsulated the process into an object.  

The learner constructs the mathematical concept’s schema by collecting into a coherent 

framework all of the other actions, processes, objects, and schemas associated with that concept. 

The schema is composed of a genetic decomposition in addition to the linked concepts.  The 

genetic decomposition of a mathematical concept is a proposed model of cognition, or “a 

structured set of mental constructs which might describe how the concept can develop in the 

mind of an individual” (Asiala et al., 1996, p. 13).  Thus, the genetic decomposition attempts a 
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reasonable explanation for how a learner might come to understand the concept and is based 

upon observable phenomena.  In order to develop the decomposition, a researcher begins with a 

learning theory and previous observations and constructs a hypothesis.  This hypothesis serves as 

the initial lens through which to interpret data.  Analysis of the data refines the hypothesis, and 

the decomposition evolves to better explain the observed phenomena. 

Problem Statement 

 As little is known about trigonometric concepts, this study aims to fill the void in the 

literature related to identities.  Specifically, this study will propose to describe college students’ 

conceptions of trigonometric identities through the following questions. 

1. What is the genetic decomposition of a trigonometric identity? 

2. In what other ways do students encapsulate trigonometric identities into objects? 

The last question is for the purpose of exploring the appropriateness of using APOS theory with 

trigonometric identities; as suggested by Tall, APOS theory should not be taken as a global 

theory of learning (Tall, 1999). 

Related Literature 
 Breidenbach, Dubinsky, Hawks, and Nichols (1992) explored students’ conceptions of 

function through APOS theory.  From an analysis of student survey responses, they revised their 

initial genetic decomposition.  Students with action conceptions of function needed an explicit 

formula or recipe to follow.  The recipe would then be followed in a step-by-step fashion.  The 

emphasis in an action conception was on the external recipe.  Students could not rely on any 

relationships existing in their mind.  On the other hand, students with a process conception of 

function generally viewed the function in an internal way.  That is, the function did not need to 

be given explicitly for the student to think about the transformations of the function.  This aspect 

of the process conception is especially cogent for trigonometry as students traditionally 

encounter the trigonometric functions sans the explicit formula (Weber (2005) demonstrated how 

students could successfully experience trigonometric functions in a prescriptive sense). 

 A schema for the trigonometric identity would extend beyond function.  Thus, a learner’s 

schema for function would be treated as an object as part of the identity schema.  Clark, et al. 

(1997) described how the function schema became thematized to processes and objects within 

the schema of the chain rule.  After their analysis of students’ conceptions of chain rule through 

their initial genetic decomposition, they introduced the Piagetian Triad (Piaget & Garcia, 1989) 

in order to better explain the development of the chain rule schema. 

 Trigonometric identities represent a special equality.  Research into conceptions of the equal 

sign generally describes students’ conceptions of the equal sign in terms of operational versus 

relational (Kieran, 1981).  In terms of a hierarchy, the operational meaning develops first before 

the relational meaning manifests in students’ understanding (McNeil & Alibali, 2005).  

However, studies have found that students of all ages, even within the college ranks, may hold a 

weak notion of the equal sign, viewing it operationally rather than relationally (Kieran, 1981; 

Weinberg, 2010).    

Genetic Decomposition 

 The manipulations of identities are taken to be the verifications of the identity, where being 

verified is taken to be relative to the learner.  As part of the identity schema, students should hold 

a process or object conception of function.  With an action conception of a trigonometric 

identity, students verify the identity by explicitly writing out steps.  However, with a process 

conception of trigonometric identity, students visualize several steps of the process and “see” or 

“feel” the path to take.  With both the action and process conceptions, students cannot use the 
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identity to verify another identity prior to verification.  Students with an object conception of the 

trigonometric identity accept the identity as being true without having to verify it.  If needed, 

they are able to de-encapsulate the identity into its string of equalities.  The schema for a 

trigonometric identity consists of all identities being used to build knowledge in various settings. 

Methodology 
 The data for this study was collected from a college trigonometry course at a large research 

university as part of a larger study on verifying trigonometric identities.  Thirty-three students 

participated, responding to prompts involving verifying identities and solving verification 

problems.  Of these thirty-three students, eight agreed to participate in individual task-based 

interviews.  Each interviewee solved verification problems while speaking aloud his or her 

thought processes.  The audio from the interviews was captured and transcribed. 

 While reading each interview, general themes relating to the initial decomposition were 

noted and compared to the previously-read interview transcript.  These themes were triangulated 

within and across interviews in order to test the explanatory power of the initial decomposition.  

This analysis process is currently ongoing and will cycle until a satisfactory evolved genetic 

decomposition is formed. 

Initial Findings 
 Although analysis is ongoing, some findings are emerging, indicating needed modifications 

to the genetic decomposition.  First, the role of the function argument was not accounted for in 

the decomposition.  Some students indicated a preference for working with only the variable x 

while others showed fluidity in working with complex arguments.  For example, while solving a 

problem, Katie accidently wrote x instead of y and explained, “I always have x in my head, so 

I’m bad about writing x.  … I would rather just write x just cuz it’s natural for me to write x.”  

On one problem, students spoke of seeing an “x” in their head even though the function 

argument was     .  Function arguments that were not x presented barriers for students, as 

Cooper described, “Whenever I don’t see x, I kind of ignore the identities for a moment until I 

look at it and go, oh, it’s the same thing.  It’s the same thing as saying cosine two x or cosine two 

y.”  Because students expressed differing comfort levels with the function argument and because 

it presented barriers to students, the function argument should be included in the genetic 

decomposition.  This makes sense as the truth of an identity depends on the truth of the equality 

for all argument inputs.  As Amber stated, “You’re not actually verifying that tangent y plus 

cotangent y over cosecant y times secant y, um, is equal to one because of y.  You’re not thinking 

it’s because of that variable.”  

 The data appeared to support encapsulation.  When asked whether an equation was an 

identity, Cooper stated that he believed it was not, but rather, it was a definition.  For Cooper, 

identities represented equations that had been verified while definitions were identities that had 

been encapsulated to an intimate level of familiarity.  He was able to immediately recall 

definitions to mind but paused with identities.  This pause may have been due to a need to verify, 

in his mind, that the identity was true.  As he stated in describing the hesitation, “Yeah, to kind 

of get an idea, and try to make sure you got it right.  Kind of roll through the process some.”  On 

the other hand, definitions required no work.  In describing the Pythagorean identity, a definition 

for him, he claimed, “It doesn’t really require you to change it up any at all.  It’s just kind of 

defining what one is.”  Thus, Cooper appeared to have encapsulated some identities as objects. 

 The difference between action and process conceptions as being external versus internal was 

supported by a metaphor some students used to describe their work, an “unraveling.”  Unraveling 

started a process in which correct steps to take become readily apparent to the student, guiding 
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decisions.  As Alan described, “Once I got a pretty good starting point, that’s when I just went 

and, as I was doing it, it kind of unraveled itself a bit.”  Students reported of searching for paths 

to take consisting of multiple equivalent expressions, while other students appeared to take each 

step individually before proceeding to the next step. 

Conclusions and Audience Questions 
 The initial genetic decomposition needs to evolve to better account for the observed 

phenomena.  While the full analysis is not finished, APOS theory appears to be able to explain 

much of the process of verifying trigonometric identities.  One noted shortcoming is that the data 

comes from algebraic verification attempts.  Whether or not APOS theory is adequate to describe 

geometric verifications would need to be explored. 

1. Tall, Thomas, Davis, Gray, and Simpson (2000) explored what the object of the 

encapsulation was across several theories.  Would it be more appropriate to view a 

trigonometric identity through another lens, such as a procept? 

2. Equality should play a role.  How could the categories of operational and relational be 

integrated into the genetic decomposition? 
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Developing Pre-Service Secondary Math Teachers Capacity with Error Analysis 
Related to Middle-Grades Mathematics 

 
As part of a National Science Foundation Noyce Scholarship Grant, one university 
substantially revised its preservice secondary (grades 7-12) math teacher preparation 
program.  As one component of this program, preservice teachers take three credit hours 
of middle level number and operation and geometry, with a focus on mathematical 
knowledge for teaching.  As a research component, we investigated the impact of this 
course on preservice teachers capacity to identify, analyze, and respond to student 
errors.  This paper provides additional background and results from the first two 
offerings of the course, as well as ideas for further study. 
 
Key words: Error Analysis, Mathematical Knowledge for Teaching, Number and 
Operation, Geometry, Preservice Secondary Teachers 
 

Background and Perspectives 
The supply of qualified, competent mathematics majors entering secondary teaching 

professions is not keeping pace with demand (Liu et al., 2008; National Research 
Council, 2002). According to Ingersoll and Perda (2009), the problem is more than a 
number game. Part of the problem resides in the fact that teachers are not happy with the 
profession once they are out in the fields, causing the number of teaching leaving the 
profession to be greater than the number of teachers entering the profession. This is 
especially the case in low-income areas where they are 77% more likely to be taught by 
out of field teachers compared to students from high socioeconomic backgrounds 
(Ingersoll, 2003). Attrition is a compounding factor as recent research reveals 20-30% of 
teachers have left the profession within the first five years (Darling-Hammond, 2001).  

Specifically, this preliminary report discusses how the Rocky Mountain Noyce 
Scholars Program, a five-year National Science Foundation scholarship grant for 
undergraduate pre-service secondary mathematics teachers, aims to target undergraduate 
education as part of the solution. The idea is that if we recruit teachers who are strong in 
their content area and also dedicated to serving students in high needs school districts that 
the attrition rates may decrease. If we also help prepare and support our teachers well 
(both in the areas of mathematics and pedagogy), they will hopefully be both successful 
and interested in remaining in the teaching profession.  

Adhering to these ideals, the Rocky Mountain Noyce Scholars Program has been a 
catalyst for revision of the undergraduate secondary mathematics teacher preparation 
program. We discuss one component of this revision in detail in conjunction with 
preliminary results from the first two years of the program.  In our presentation, we will 
seek advice from our audience members on future research steps and data collection to 
strengthen the preliminary results and contribute to national knowledge related to best 
practices in preparing teachers.   
 

Program, Participants, and Context 
In the author’s state, there is no separate middle level math certification for teachers.  

As such, secondary teacher preparation programs are designed to prepare teachers for 
state level certification for grades 7-12.  Most of these (certainly all that the author is 
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aware of) focus primarily on the high school grades, implicitly assuming that this 
prepares teachers to teach middle level mathematics.   

However, it is by now widely accepted in the mathematics education community that 
there is specialize mathematical knowledge for teaching (Ball, Thames & Phelps, 2008; 
Shulman, 1986).  Before the revision, our program focused on preparing the teachers 
through a traditional mathematics major, with no attention to any specialized 
mathematical preparation.  

Also, recommendations from the Conference Board of the Mathematical Sciences 
Mathematical Education of Teachers II document note that  

 
Because the middle grades are ‘in the middle’, it is critical that middle grades 

teachers be aware of the mathematics that students will study before and after the 
middle grades. 

 
Additionally, the document notes that middle-grade teachers’  
 

perspective on what it means to know mathematics may be based on their own 
success in learning facts and procedures rather than on understanding the 
underlying concepts upon which the procedures are based. 

 
To address these recommendations and observations, our revision added seven credit 

hours to the mathematics major aimed specifically at the mathematical knowledge needed 
for teaching mathematics.  One component of this revision is three credit hours of content 
in number and operation and geometry.  This course focuses on mathematical knowledge 
for teaching at the middle-school level, specifically on the mathematics needed for 
teaching in grades 4-8.  The formal catalog description states: 

 
Advanced study of number and operation, including why the various 

procedures from arithmetic work and connections to algebraic reasoning. 
Focuses on using rigorous mathematical reasoning and multiple representations 
to explain concepts. 

 
We aim to exposure the preservice teachers to common student misconceptions, 

elementary and middle level concepts related to number and operation as well as 
geometry, and in general the associated specialized knowledge for teaching these topics.  
The primary texts for the course were those by Beckmann (2008) and Ma (1999). 

While we collected a variety of data for assessment, evaluation, and research 
purposes, the primary research question associated with this preliminary report is the 
following:  Describe how a specialized course in number and operation impacts pre-
service teacher ability to identify, analyze, and mathematically respond to common 
student errors.   

 
Data Collection and Data Analysis 

Data was collected during the first and last week of the course, during two 
consecutive offerings of the course.  Specifically, the pre-service teachers were given an 
instrument consisting of four items to analyze and respond to.  Each item dealt with a 
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common student misperception at the upper elementary level (grades 4-8), and began by 
showing several examples of student work that were incorrect.  The pre-service teachers 
were then given several example problems and asked to solve them in the same way that 
the student did.   After that, they were asked to respond to the following prompts, based 
heavily on those from Ashlock (2009): 

(a) Describe the procedure that this student seems to be using. 
(b) What does this student seem to understand about (e.g., multiplying fractions)? 
(c) What does this student not yet seem to understand about (e.g., multiplying 

fractions)? 
(d) Has this student learned another concept or procedure that s/he is confusing with 

this one? 
(e) Describe in detail multiple ways that you could help this student or other students 

with a similar misconception? 
 

Preliminary Results 
A qualitative and quantitative analysis of pre-service teacher responses shows several 

outcomes: 
(a) a higher percentage of pre-service teachers identified the error at the end of the 

course than at the beginning, 
(b) pre-service teacher were able to provide a much more in-depth analysis of what 

the student may and may not yet understand, 
(c) pre-service teachers were able to both provide more potential ways to help the 

students, as well as to describe these ways in considerably more depth, and 
(d) at the beginning of the course, pre-service teacher responses were predominantly 

procedural and algorithmically oriented, whereas at the end of the course, they were 
much more conceptually oriented. 

 
Discussion 

We will seek input from the audience on how to best research the various impacts of 
this course on students.  A large part of the desire to give this talk is to solicit audience 
input on how to more methodically pursue our investigation.  The author is a 
mathematician who is in the process of learning how to conduct mathematics education 
research.  Feedback and input from this group would be particularly welcome.  Some 
questions that arise for discussion include: 

1. How can we better analyze impacts of this course on preservice secondary 
teachers? 

2. Is such a course necessary for preservice secondary math teachers (certified 7-12), 
or are these skills and knowledge developed with sufficient depth in other ways?   

3. Does this increase in skill related to error analysis transfer to other domains (e.g., 
to error analysis of, say, algebra)? If so, how could this be measured? 

4. How might we isolate the components of this course that are central to the 
increase in pre-service teacher gains in error analysis? 
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CHARACTERIZING MATHEMATICAL COMPLEXITY OF TASKS  
IN CALCULUS I 

Nina White Vilma Mesa Cameron Blum 
University of Michigan University of Michigan University of Michigan 

We present findings from a revised framework created to analyze tasks that calculus teachers 
assign their students. In the presentation we will highlight the features of the analytical 
framework and the steps taken to ensure high inter-coder reliability. The framework has been 
used to analyze all tasks (N=2,996) present in homework, quizzes, and exams from six faculty 
teaching Calculus I in two two-year colleges. We highlight some insights we have gained in 
creating this framework and possible uses by other researchers and other contexts. 

Key words: Task analysis, Graded work, Ungraded work, Cognitive demand, Representations 
of functions, Calculus, Two-year colleges, 

 The complexity of mathematical tasks is frequently used to determine the quality of 
instruction. Indeed, instruction that reduces the complexity of the mathematical tasks is 
known to be detrimental for students’ performance in standardized tests in middle school 
mathematics (Silver, Smith, & Nelson, 1995; Silver & Stein, 1996). Several frameworks that 
determine this complexity have been proposed. We document the development of one 
framework that allows us to assess this complexity for exams, quizzes, homework, and 
generally for any type of graded and ungraded work that teachers assign in Calculus I 
courses. We discuss the challenges and successes in creating this framework as well as its 
anticipated uses. 

Theoretical Framework  
 This work rests on four dimensions that have been used to establish the complexity of 
mathematical tasks assigned to students. First is the type of knowledge that the task elicits 
(factual, procedural, conceptual, or metacognitive) together with the type of cognitive 
processes that could be hypothetically involved. The cognitive demand of a problem is a 
major determinant of task complexity in the literature (Anderson et al., 2001; Silver, Mesa, 
Morris, Star, & Benken, 2009). The second dimension, derived from the literature in 
mathematics education refers to the types of representations that are called for in the task, 
with agreement that translations across representations (e.g., graph to symbolic or verbal) are 
more demanding that transformations within a representation (Janvier, 1987; Kaput, 1992). 
The third dimension refers to argumentation in mathematics. As justification is a central part 
of mathematics, problems that require students to provide justification of their claims can be 
seen as mathematically more complex. The fourth dimension refers to opportunities to model 
with mathematics. The ability to “mathematize” a situation is one of the major skills we hope 
students in Calculus I to learn. 
 We attend to these dimensions in the task analysis because if the learning goals of 
Calculus I instruction include novel reasoning, fluent translation between representations, and 
skills in modeling and justification, then the tasks given to students should display those 
characteristics, so students can indeed practice them and become proficient in their use. 

Method 
 Methodological work on this project builds directly on a framework developed by 
Tallman and colleagues (Tallman, Carlson, Bressoud, & Pearson, 2012) who analyzed 3,735 
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tasks present in exams from 150 institutions participating in the national study of Calculus I 
(Bressoud, Carlson, Mesa, & Rasmussen, 2013). 
 The data used to refine this framework consisted of 2,996 Calculus I tasks coming 
from the complete set of quizzes, exams, homework (both graded and ungraded) from six 
instructors at two southern community colleges. These tasks were collected as part of the case 
studies conducted by the project on the Characteristics of Successful Programs in College 
Calculus (CSPCC). 
 
Table 1: Definition of Codes in each Dimension.  

Item Orientationa 
Procedure Direct prompt to use a specific method or procedure. 
Recognize & 
use Procedure 

Recognize and apply procedure. This covers cases where procedure is not given, but 
where the ultimate task is procedural. Students must recognize what procedure to 
apply. 

Understand Make interpretations, make comparisons or make inferences that require an 
understanding of a mathematics concept. 

Apply 
Understanding 

Use understanding to solve a problem when the method to be used is not directly 
proposed.  

Item Representation, Prompt 
Numeric Information crucial to solving problem conveyed in discrete form. 
Symbolic Information crucial to solving problem conveyed in symbols. 
Graphical Information crucial to solving problem conveyed graphically. 
Verbal Crucial information, other than basic instructions, conveyed in words. 
Definition Mathematical definition or theorem is provided for students to use in an axiomatic 

way, that is to apply or build off of 
Theorem Theorem-like statement is provided for students to consider validity of 

Item Representation, Response 
Numeric Students create or present novel information in a table or discrete form. 
Symbolic Students carry out symbolic manipulations or present/create novel information in 

symbols. 
Graphical Students create/present novel information in graphical form 
Verbal Students create/present novel information in words. 
Proof The task asks students to create a (fairly formal) proof. 
Example The task asks students produce an example or counterexample. 

Extra Features 
Modeling The task requires students to define relationships between quantities. The task may 

also prompt students to define or use a mathematical model to describe information 
about a physical or contextual situation. 

Justification The problem expects justification, in the form of computations or deductive logic, to 
describe why a claim is correct. 

Note: a. The codes in the Orientation category are mutually exclusive, but the rest are not. 
We don’t include codes that showed up in less than 1% of the coded tasks. 
 
 The first and third author worked in tandem to refine the definitions from Tallman’s 
original framework to fit our goals and allow for reliable coding. Table 1 shows the four 
dimensions of the framework, with the codes used and a short definition for each. The coders 
worked through “coding sessions” in which they compared and discussed jointly-coded 
subsets of the data (as well as non-corpus data early in the process). Agreement in each 
dimension was computed using Cohen’s Kappa. This was followed by discussion between 
coders guided by the agreement statistics, allowing us to refine the definitions and calibrate 
the coding process. Eventually, the third author coded all the tasks and the first author 
performed random checking of an additional 10% of the tasks. In the dataset as a whole, the 
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two coders reached a Cohen’s Kappa of 0.7 in all but three categories; such a Kappa is 
considered to be very strong agreement (Landis & Koch, 1977). See Table 2 for agreement 
on the final dataset. The difficulty in reaching agreement in Item Orientation is not 
surprising; judging the potential cognitive demand of a problem in the absence of student 
work or student thinking is notoriously difficult. The agreement in this dimension early in the 
process was much worse (as low as 0.14), and reaching this eventual agreement was a large 
part of the calibration effort. 
 
Table 2: Cohen’s Kappa for each dimension between the first and the third author on a 
randomly selected set of tasks (n=557) coded by the first author. 

dim Orientation Format 
Representation Prompt 

G V S N Th D multa 
Kappa .47 .75 .83 .76 .90 .76 .81 .57 .54 

dim J AM 
Representation Response 

G V S N Pf multa noneb 
Kappa .65 .80 .77 .70 .80 .74 .85 .70 .76 

Notes: a. “mult” refers to whether coders detected multiple representations.  b. some 
questions do not require a written response and hence have no representation in their 
response. 

Findings 
 The major accomplishment at this point is the calibration of the coding system; a full 
analysis of the coding has not been completed. Preliminary evidence confirms the results 
from Tallman and his colleagues, that tasks are predominantly procedural and symbolic (even 
though the tasks in this study come from institutions identified by CSPCC as being 
“successful”).  However, there are certainly nuances to this breakdown that can be seen 
between types of tasks (e.g. homework vs. exams) and between institutions and instructors. 

Discussion 
 As mentioned above, we have observed interesting differences (not yet tested 
statistically) regarding the different types of assignments. For example, graded homework 
tends to have relatively larger proportion of complex problems than ungraded homework. 
(Here we use “complex” to mean higher cognitive demand, more diverse representations, and 
more opportunities to justify and model.) This is not surprising, as ungraded homework tends 
to focus on procedural skill-building. More surprisingly, at one of the institutions, problems 
on exams tend to be more complex and difficult than those on homework. Perhaps in this 
case the instructor is not giving sufficient opportunities before the exam for students to use 
higher order cognitive functions. However, at another site we see an opposite phenomenon; 
we see more cognitively demanding problems on the homework than on exams. This is 
perhaps because it is seen as more fair to give harder problems outside of the timed exam 
setting.  
  We have also started to observe interesting variations by specific instructors (data not 
shown here, but to be included in the longer paper of this work). For example, at an 
institution where some faculty were present for a large calculus reform effort in the early 90s 
and some were not, those around for the original reform continue to use a much greater 
variety of representations in the tasks they assign. More broadly, what is starting to be clear 
from the data is that teachers have signatures regarding the graded and ungraded work they 
give their students. The notion of signature is borrowed from Stigler and Hiebert (1999) who 
in The Teaching Gap talked about the different teaching signatures present by country. In a 
setting like the two-year college it is not surprising that these signatures exists, given the 
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greater autonomy of teachers relative to K-12 counterparts. Our current work on this project 
seeks to quantify that signature. 
 This framework will be used to code the rest of the task corpus of the CSPCC study 
and we anticipate interesting statistical differences between instructors, institution type, and 
task type (e.g. homework vs. exam). 

 
Questions 

 The following questions will be presented to the audience for feedback: 
1. In addition to coding the CSPCC task corpus, what other uses might this framework 

have? 
2. How could such a framework be adapted to post-secondary mathematical contexts 

outside of Calculus I? 
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ASSESSMENT IN UNDERGRADUATE INQUIRY-BASED LEARNING 
MATHEMATICS COURSES 

Preliminary Research Report 
Tim Whittemore  Vilma Mesa 

University of Michigan University of Michigan 

We report initial findings of a study that seeks to investigate the methods instructors’ 
use to assess their students’ learning and how these assessments affect the instruction 
in their classrooms.  Using data collected from 23 instructors using inquiry-based 
learning methods, we seek to discuss the instructors’ goals for the students, the ways 
they measure the students’ progress towards these goals, the feedback they give 
students, and how these assessments affected their instruction.  Our analysis of the 
data uses open coding of the transcripts and of the documents (e.g., syllabi, exams, 
homework assignments) that the instructors gave to the students.  Instructors cite 
using informal assessments and focusing on presentations when asked about 
“knowing” that students are learning.  They cite formal assessments and examinations 
when asked about “measuring” that students are learning.  We seek input on the 
analysis of the materials as current results may depend on the coding system used. 
Keywords: Inquiry-based learning, Assessment, Instruction, Feedback 

With this study we seek to fill a gap in the knowledge that exists about how instructors 
assess their students’ learning in post-secondary mathematics courses.  In particular, we look 
at the assessment methods reported by instructors teaching a range of inquiry-based learning 
[IBL] mathematics courses.  Instructors, students, parents, administrators, and politicians 
often question what a student is learning in a class and question how instruction is helping this 
process.  Assessment methods, defined as “the development of an awareness, through 
diagnosis, of [students’] progress” (Noss, Goldstein, & Hoyles, 1989, p. 109), are used to 
answer these questions.  These methods can be used on a daily basis or at the end of the 
semester (Webb, 1995).  The method of assessment defines “in measurable terms what 
instructors should teach and students should learn” (Stull, Varnum, Ducette, Schiller, & 
Bernaki, 2011, p. 30).  Assessment methods can be used for many purposes.  Diagnostic 
assessment can be used to identify knowledge students have mastered before learning activity.  
Summative assessment can be thought of as assessment of learning and formative can be 
thought of as assessment for learning.  A fourth purpose, assessment as learning, is also 
possible (Torrance, 2007). In this purpose, assessment is on-going and the results help to 
shape the instructor’s actions and the students learning opportunities (Torrance, 2007).  The 
process of reshaping instruction, however, may be postponed to a subsequent semester (Davis 
& McGowen, 2007).  Though much research about assessment in mathematics has been 
conducted in K-12 settings, less has been done in post-secondary mathematics, though there is 
a “plurality of assessment in university mathematics” (Iannone & Simpson, 2011, p. 186).  In 
these settings, mathematical assessment provides a “comprehensive accounting of an 
individual’s or group’s functioning within mathematics or in the application of mathematics” 
(Webb, 1995, pp. 662-663).  Part of the ongoing analysis will be to see how the assessment 
methods used by these instructors align with the material and applications emphasized in the 
classes. 

The Supporting Assessment in Undergraduate Mathematics [SAUM] project examined the 
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“tensions and tethers” that postsecondary mathematics instructors faced and how these limited 
the types of assessments that instructors were inclined or able to adopt (Madison, 2006).  
Madison notes that “…many instructional programs are tied to traditional in-course testing 
and have no plans to change, placing significant limits on assessment” (Madison, 2006, p. 4).  
This use of “traditional in-course testing” also includes methods such as extensive homework 
and final exams.  Though the SAUM project focused on undergraduate mathematics, and 
some of the cases examined oral presentations and communication, IBL courses were not a 
primary focus of the study.  Little research on student assessment has been conducted in IBL 
courses (Kogan & Laursen, 2012; Laursen & Hassi, 2010). 

In IBL courses, there is an emphasis on students taking responsibility for their learning 
and presenting their work to their classmates (Maaβ & Artigue, 2013; Yoshinobu & Jones, 
2012).  The teaching methods used in IBL courses descends in part from the teaching style of 
R. L. Moore at the University of Texas.  Moore believed students should build their own 
understanding and work through a pre-established sequence of problems and theorems.  
Focusing on and requiring students to present their work has shifted the teaching of these 
courses away from the lecture-based format often found in post-secondary mathematics 
settings (Coppin, Mahavier, May, & Parker, 2009).  This shift in teaching may lead to a shift 
in the methods used to assess students.  Recognizing this potential shift and an initial 
awareness of instructors’ comments on teaching led us to ask three questions: how do 
instructors assess their students when teaching an IBL course?; how do the instructors’ goals 
align with the assessment methods they report using?; and how do instructors’ methods of 
assessment differ with regard to instructors’ familiarity with IBL methods and the type of 
course they teach (e.g., lower division, upper division, courses for future teachers)?  

Methods 
Participants in this study were recruited from the 2011 and 2012 R.L. Moore Legacy 

Conferences.  The courses these instructors taught were categorized as lower division (e.g., 
Calculus, Introduction to Proof), upper division (e.g., Real Analysis, Abstract Algebra), or 
courses for future teachers (e.g., Math for Elementary Teachers, Problem Solving for 
Prospective Secondary Teacher).  In addition to these categories, we asked instructors to rate 
their familiarity with inquiry-based learning, as beginner, novice, advanced, or expert.  We 
selected a sample of 23 instructors to interview.  These instructors taught a range of courses 
and reported having a range of levels of familiarity.  With this sample, we are able to account 
for the experiences of most instructors in IBL courses.  

There are two primary sources of data collected for this study: interviews with instructors 
and documents they submitted (e.g., course syllabi, homework assignments, exams). The 
semi-structured interview protocol used in the interviews covered many areas. The analysis 
reported here focuses on five questions: “What are your goals for the students?” “What skills 
do you expect your students to develop?” “How do you know students are learning?”  “How 
do you measure that students are learning?” and “What type of feedback do you give 
students?”  The first two questions are used to identify the objectives of the instructor.  The 
third and fourth questions address how progress towards these objectives is assessed.  The last 
question examines the response that is given to the student after the assessment is conducted. 

With the documents, we explore the quality of the tasks assigned (White, Blum, & Mesa, 
2013), as well as the alignment between the instructors’ goals and the methods of assessing 
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students learning. The transcripts of the interviews have been analyzed using an open-coding 
process (Corbin & Strauss, 2008) to identify themes common to instructors’ responses.  
Frequencies of the occurrence each code were calculated, both with respect to the level of 
instructors’ familiarity with IBL methods and to the type of course.  This allowed us to 
identify commonalities in the instructors’ objectives, the methods used to assess students’ 
progress toward these objectives, and the feedback given to the students after these 
assessments were completed. 

Findings 
We report findings from the interview analysis.  Themes that we identified are presented 

in Table 1.  These themes and sub-themes were identified when coding the instructors’ 
responses to the five questions listed above. 

Table 1. Themes and Examples about Assessing Students 

Category Examples 

Duration Timed, untimed, revisions, schedule 

Formality Formal, semi-formal, informal 

Location In-class, take-home, on-going 

Participant Individual, group, transition 

Process Designing, conducting, grading, responding 

Method Homework, exams, presentations, discussions 

Reason Formation, summative, instructional 

Objectives Communication, content mastery, disposition 

When asked about their objectives for the course, instructors gave formative and 
summative targets such as wanting students to be able to communicate effectively, wanting 
students to take responsibility for their learning, and wanting students to cover the necessary 
content.  Though covering the necessary material for a particular class was an underlying goal 
for many instructors (39%), most instructors (65%) also named process skills (e.g., problem 
solving, reasoning, multiple representations) as more fundamental goals for their students.  
One instructor recognized that content knowledge was a goal, but stated that it was “usually 
secondary to those… process goals” (Albert Austin1, line 232). Many instructors (78%) cited 
participation in discussions and clear presentations as evidence they used to know that 
students are learning.  Similarly, responses to the question about skills that students might 
develop focused on multiple methods of problem solving and building a positive attitude 
about mathematics.  Speaking about a course for future teachers, one instructor said, “these 
people are going to be teachers and they need to understand other ways of approaching 
things” (Chelsea Biff, lines 248-250).  Taken as a whole, instructors reported expecting their 
students to learn to communicate well, to solve problems, to adopt a positive attitude about 
mathematics, and take responsibility for their progress. 

                                                 
1 Pseudonyms. 
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When asked about how they know their students are learning, the majority of instructors 
(83%) listed methods used in formative assessment (e.g., monitoring communications, 
presentations, questions, and discussions).  When asked about how they measure that students 
are learning, instructors cited summative methods (e.g., homework, quizzes, tests, exams), 
with 87% reporting using some of these methods.  Though many instructors (43%) spoke 
about how they distribute scores, points, and grades, one instructor spoke about feeling 
unconfident, saying he was “not quite sure [he felt] entirely ready to judge their learning 
process by just seeing what they do on the board” (Adam Bloom, lines 563-564).  

When asked about what type of feedback they give to students after these assessments, 
instructors spoke about the “extensive comments” and the different forms the feedback might 
take.  The time required to give thorough responses was frequently mentioned (.  One 
instructor said she does not “always feel like [they] have time to give as much feedback as I 
might otherwise want to” (Alicia Biff, lines 758-59).  Another instructor also spoke about the 
time that goes into this teaching method, saying “every assessment took tons and tons of 
hours…to grade…that was a big part about this method of teaching…you have to give back 
feedback with another question” (Addison Austin, lines 784-787). 

Instructors in the sample identified improving communication skills as a goal for their 
students.  Despite this goal, the techniques they reported using to assess their students are 
much more summative and resemble the final examinations that are conducted in lecture-
based courses. 

We have identified differences with respect to the instructors’ familiarity with IBL 
teaching methods and with respect to the type of course they are teaching.  Instructors with 
more familiarity seem less likely to return to “traditional” assessment methods such as 
thoroughly grading homework assignments and conducting final exams.  Instructors in 
courses for future teachers cited the need to be comfortable with many different solution 
methods as students in their classrooms may not all use the same method.  In addition, the 
majority of these instructors (75%) put a strong emphasis on students developing a positive 
disposition towards mathematics. 

Discussion 
The goals and skills that instructors set for students to reach and develop are similar to the 

attitudinal benefits that Laursen and Hassi (2010) have documented for IBL courses.  Many 
instructors, however, described the measurement of learning as “like a traditional class” 
(Allison Bloom, line 623).  It aligns more closely with the summative assessment methods 
used in lecture-based courses and methods students may have experienced in other courses.  It 
is interesting that these instructors reported having non-traditional goals for their students but 
reported using more traditional assessment methods. This is consistent with Wiliam’s (2007) 
work that found that, when asked about knowing that students are learning, teachers often list 
informal methods such as classroom questions, group work, and discussions, but, when they 
are asked about measuring this learning, they list more formal methods, such as tests, 
homework assignments, and graded projects. This lack of alignment between teaching and 
assessing may confuse students who have adapted to a style of teaching quite different than 
previously attended lecture-based courses. 

Questions for the audience 
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1. The NCTM standards provide an accessible framework of assessment in K-12 
mathematics. Are there standards more specific for post-secondary students that address the 
same issues?   

2. Do the themes presented in Table 1 make sense?  Are they comprehensive?  
Redundant? 
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COMPARING CALCULUS STUDENTS’ REPRESENTATION USE ACROSS 
INTERVIEW AND IN CLASS GROUP-WORK SETTINGS 

Dov Zazkis 
Rutgers University 

The distinction between analytic (notation-based) and visual (diagram-based) 
representations within students’ mathematical problem-solving has been part of the cognitive 
phycology and mathematics education literature for more than 40 years. However, in spite of 
this long history there are many unanswered questions regarding how and why particular 
students choose particular representations, and what influences their social surroundings 
have on their individual representation use. This study coordinates analyses of calculus 
students’ analytic and visual reasoning across both one-on-one interview and group-work 
settings. This analysis helps clarify differences between individual representation use and 
representation use in group settings.  

Key words: [calculus, commognitive perspective, functions, visual/analytic reasoning] 

The distinction between analytic and visual reasoning can be traced at least as far back as 
the work of Krutetskii (1976). He established a distinction between analytic thinkers, who 
prefer to reason in verbal and logical ways, visual thinkers, who prefer the use of visual and 
spatial reasoning, and harmonic thinkers, who regularly employ both types of reasoning. The 
use of these and similar distinctions has a long history. Compatible distinctions include: 
graphical thinking/analytic thinking (Vinner, 1989), visualizers/nonvisualizers (Presmeg, 
1986, 1992), depictive/descriptive (Schnotz, 2002) and semantic/syntactic (Weber & Alcock, 
2004).  

The research based on these distinctions between representations can be partitioned 
broadly into two categories, one focused on individual cognition and the other focused on 
representations in multi-person contexts. A long line of individual centered research has 
examined the prevalence of visual vs. analytic reasoning in various groups. This includes foci 
such as mathematical giftedness (Presmeg, 1986), differences in sex (George, 1999), 
teachers’ explanations (Gray, 1999) and cultural differences (Presmeg & Bergsten, 1995). 
Several authors have also modeled student thinking as a process facilitated by transitions 
between analytic and visual reasoning (Duval, 1999; Stylianou, 2001; R. Zazkis, Dubinsky, 
& Dautermann, 1996; Zazkis, 2013).  

The social centered research on representations has a shorter history than cognitive 
explorations of this phenomenon. However, a number of important results have been 
established. This includes that the meaning of representations shifts over time, that children 
are able to generate, compare, refine and choose amongst competing representations and that 
novices may under certain circumstances display more sophisticated representation use than 
experts (Cobb, 2002; diSessa, & Sherin, 2000; Meira, 1998; Roth 2009; Roth & McGinn, 
1998). 

Both the social and cognitive research on representation use have remained largely 
disjoint. This is particularly evident in reviews of representation use which often focus on one 
body of work while ignoring the other (e.g., Bishop, 1989; Hana & Sidoli, 2007; Presmeg, 
2006; Roth & McGinn, 1998).  

This study aims to bridge these two bodies of work by attempting to tie this study to both 
of these bodies of work and use both to inform the phenomena observed here. Such bridging 
is not new (e.g. Cobb & Yackel, 1996), however, it has not been a major theme in literature 
on representation use.  
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The Study.  
This study followed a group of three students enrolled in a technologically enriched 

calculus class in a large southwestern university in the United States. These students were 
given the gender preserving pseudonyms, Ann, Brad and Carson. These students were video 
recorded during both in class group-work and through a series of three one-on-one problem-
solving interviews. The entirety of the interviews and selected days from the in class group-
work were then transcribed and coded using the analytic/visual distinction. Physical 
reasoning was also addressed within the coding (Zazkis, 2013). However, this is not a theme 
here. Episodes dealing with compatible mathematical subject matter from both settings were 
then compared. This as well as comparisons of overall representation use patterns facilitate 
the analysis discussed here.  

Results 
Comparing the three students’ uses of visual, analytic and physical reasoning across 

interview and group work yielded some interesting parallels. This includes similarities in 
which modes of reasoning emerged, how often they emerged and problem dependent 
representation behavior. Cognitive models of representation usage predict such parallels in 
student reasoning behavior across settings. However, how individual representation use is 
affected by ones social surroundings is not well understood. Those studying this phenomena 
from cognitive perspectives have theorized about social influences on individual 
representation use, but spent little time examining this phenomena. Those examining the 
phenomena from social perspectives have largely avoided examining individual 
representation use within multi-person settings and have instead focused on the role 
representations play in mediating conversations.  

In the following I present two tasks. The first was given during in class group work and 
the other during one-on-one interviews. The comparison of transcripts from the two tasks 
helps provide incites into how individual representation use is affected by social interactions.  
 
Periodic Function Tasks  

In this short paper I will compare student work on two tasks, both of which deal with sine 
and cosine functions. The first task, known as the tangent intuition task, was used to 
introduce the concept of graphing derivative. Students worked on this task in small groups in 
class. Students were given a series of functions represented with both analytic and visual 
representations and asked to produce the derivative of these functions in both representations. 
One of these functions was sine. The second task was given during one-on-one interviews 
with students. Students were given three periodic functions along an unlabeled axis (Figure 
1). They were asked to determine the derivative relationship among these functions. 
Transcripts from both of these will be discussed and compared in the next section. 

 

 
Figure 1: Periodic function task diagram 

 

1192 17th Annual Conference on Research in Undergraduate Mathematics Education



Comparing Two Episodes 
 The following episode occurred during group-work on the periodic function task 
(Figure 1): 
 

Excerpt 1a: 
[00:35:40] Carson: Well I would first label the black one as my f of x and 
then I can see that the blue one is f prime and then the red one is f double 
prime. 
[00:36:14]Researcher: So could you tell me a little bit about how you just 
did that.  
[00:36:18]Carson: So if you’re looking at the black one you can see that 
this is your, right there and there are your critical points and then later 
this is your point of inflection and then for f prime you can see that there 
and there and there turn out to be your roots and then the max I mean the 
critical point turns out to be there which is the critical point, which is the 
point of inflection from your f of x. And then so if you want to look at the 
red, the red from prime to double prime you see that the blue one here 
your point of here’s your critical point and then here is your other critical 
point and this is your point of inflection. So then from blue to red you 
have your zeros which is here which is you know from your stationary 
point. And then later here is your second stationary point or critical point. 
And this is your point of inflection, the blue one so this is your next, then 
that turns out to be your critical point. Of the second derivative. Yeah. 

 
Carson begins by introducing a solution and expressing it in terms of analytic notation to 

identify derivative relationships. This solution provided little detail other than Carson’s final 
outcome. The interviewer’s prompt for further explanation, “So could you tell me a little bit 
about how you just did that,” does not add new content to the conversation. The interviewer’s 
prompt asks Carson to elaborate on his reasoning. This elaboration remains in a visual mode 
as opposed to the analytic notation he used to label the functions in his initial stating of his 
solution. Carson reasons that the maxima and minima of the black function correspond to 
zeros of the blue function and that the points where the function changes concavity 
correspond to the maxima and minima of the red function. So although Carson identifies 
derivative relationships using analytic notation when reasoning about these relationships he 
uses language that refers to visual representations.  

Also notice, that he has not identified the function as a known graphical object at this 
point, and has only worked with the functions as generic sketches of periodic functions. In 
the continuation of the transcript this behavior shifts after an interviewer question:  
 

Excerpt 1b:  
[00:37:54]Researcher: Alright, are there any other ways you could have 
approached the task and come to the same conclusion?  
 [00:38:06]Carson: Is there any other way that I could have approached… 
I mean well this looks like a sine cosine graph so I would write myself the 
equation f of x equals I’m going to say sine. And there is also a cosine in 
here so I guess you can write f of x equals cosine and then and then 
there’s another one which is which looks like x is negative sine [writes 
f(x)=-sin(x)]. 
[00:38:50]Researcher: Wait, are all these F’s the same F?  
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[00:38:55]Carson: No, but this line and this line and this line, This 
[points a f(x)=-sin(x)] would be your black one, and this [writes 
f’(x)=cos(x)] would be your blue one and this [f”(x)=sin(x)] would be 
your red one. And so there relationship with each other is, the derivative 
of sine is cosine and the derivative of cosine is negative sine. And so since 
this red one right here looks the most like sine I would give this label f of 
x to sine. And then later… 

 
Notice that in the above episode Carson only transitions to analytic reasoning after being 

prompted to do so by the interviewer when he says “are there any other ways you could have 
approached the task?” Such uses of analytic reasoning did not occur within Carson’s work 
without similar prompts from interlocutors. This points to an attribute of Carson’s personal 
representation use that is tied to interactions with others. 

Another compatible episode is explored below. The episode occurred during in-class 
group work on the day that graphing derivative was first introduced in class.  

Excerpt 2: 
[00:15:31]Carson: slope is zero here. Zero here and zero here [moving 
along sin and pointing at the maxima and minima] zero here. This is 
decreasing, increasing, decreasing, [running pen along function saying 
increasing when slope is positive and decreasing when negative] No wait. 
Decreasing increasing.... Yea so that's why I thought [sketches a drawing 
that looks like 1/6*cos(x)]. 
[00:16:34]Brad: Isn't this just negative cosine [pointing at Carson’s 
graph] 
[00:16:44]Carson: No, or is that [inaudible]. Yeah it actually is. 
[00:16:51]Brad: The derivative of cosine, which is sine.  
[00:16:56]Researcher: But they gave you sine.  
[00:17:01]Brad: The derivative of sine is negative cosine [writes sin(x)-
>-cos(x)].  
[00:17:10]Carson: Yeah I think it's negative cosine... Well it's positive 
[pointing to Brad’s notation] . 
[00:17:26]Researcher: Negative cosine goes through negative one. 
[00:17:32]Carson: Cosine is negative sine and ... is that right? 
[00:17:35]Brad: Is cosine negative sine and sine positive cosine?[writes -
cos(x)->sin(x) and changes the – in his previous notation to a +] 
[00:17:43]Carson: Yeah, Alright tangent is one over cosine squared 
[writes tan(x)->1/cos2(x)] 

 
Notice that here too the interaction shifts to discussion of periodic functions in terms of 

known analytic referents. Brads question in the above transcript “Isn't this just negative 
cosine”, and the interviewer question in the previous transcript, “are there any other ways you 
could have approached the task?” point to similar roles. In both cases an interaction that 
begins with Carson reasoning in the visual mode about slope shifts to an analytic reasoning. 
So the prompt for a new formulation in the interview and the addition of a new formulation in 
the group-work both catalyzed similar shifts in representation usage. In both of the above 
episodes the shift to using analytic reasoning carried through to the subsequent similar task.   
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Discussion  
Heinze, Star and Verschaffel (2009) in their commentary in a recent ZDM special issue 

on flexible and adaptive use of strategies and representations in mathematics education noted 
that there are many unanswered questions in literature on representation use. This includes 
which individual and non-individual centered factors influence representation use, the types 
of instruction that yield flexible an adaptive representation use and the creation of models that 
predict representation use. Although, it is clear that social surroundings influence individual 
representation use the mechanisms that facilitate this influence are poorly understood. 

In this paper I have described one such mechanism, prompts for alternate representations. 
This is an important element to include in future models of representation use. In the two 
episodes discussed above such prompts caused shifts in individual representation use. These 
two episodes occurred in different settings but manifested in similar ways. Carson’s 
prolonged use of analytic reasoning did not occur without such prompts. These episodes 
reveal that Carson is quite adept at analytic reasoning, but does not often use such reasoning 
without the prompting of others. So preference and use of one representation in lieu of 
another is not strictly tied to a student’s ability to reason with that representation. 

Additionally, other study participants did not demonstrate similar shifts in representation 
use in response to compatible prompts for alternate methods. So these prompts do not 
influence all students in the same way. Instead this data helps illustrate that individual 
representation use and how it changes in response to interlocutors differs among students. 
However, there is, at least with in the data here, a fair amount of consistency interns of how 
students approach tasks and how these approaches shift in response to particular prompts.  
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PROOF SCRIPTS AS A LENS FOR EXPLORING PROOF COMPREHENSION 

Rina Zazkis  Dov Zazkis 
Simon Fraser University  Rutgers University 

We examine perspective secondary teachers’ conceptions of what constitutes comprehension 
of a given proof and their ideas of how students’ comprehension can be evaluated. These are 
explored using a relatively novel approach, scripted dialogues. The analysis utilizes and 
refines Mejia-Ramos, Fuller, Weber, Rhoads and Samkoff’s (2012) proof comprehension 
framework. We suggest that this refinement is applicable to other studies on proof 
comprehension.  

Key words: Proof; Proof comprehension; Proof scripts; Pythagorean theorem 

PROOF COMPREHENSION 
When undergraduate mathematics courses involve proofs, a request to prove a theorem or 

a related statement is a common assessment method used in examinations. However, this 
method often focuses on students’ rote learning and memorization rather than their grasp of a 
theorem (Conradie & Frith, 2000). To address the issue Conradie and Frith (2000) introduced 
a ‘comprehension test’, a method in which a proof of some result is presented to students and 
they are asked to answer questions related to particular claims within the presented proof. 
They exemplified the method using two different proofs and noted possible modifications 
and extensions of the method. One such modification was related to filling gaps in the 
presented proofs. It was further suggested that comprehension tests provide “a far more 
precise evaluation of a student’s understanding at all levels” (ibid, p. 231), as well as 
improved feedback about student learning.  

Yang and Lin (2008) claimed that despite the centrality of understanding in mathematics 
education, reading comprehension is underemphasized in proof instruction. In their study of 
proof in a geometry setting, they designed a hierarchical four-level model of proof 
comprehension. The first surface level attends to student understanding of particular 
statements and symbols used in the proof, without focusing on how particular statements 
relate to each other. The recognizing the elements level attends to the logical status of the 
statements that appear in the proof, either explicitly or implicitly. The next level, chaining the 
elements, focuses on connections among different statements. At the final level four, 
encapsulation, students reflect on the proof as a whole in terms of main ideas and methods 
and may consider its application in other contexts. However, because their investigation took 
place in a school geometry setting the focus of these researchers was on the first three levels. 

Mejia-Ramos, Fuller, Weber, Rhoads and Samkoff (2012) created an assessment model 
of proof comprehension. This model extended and refined Yang and Lin’s (2008) model and 
provided detail with regard to how students’ comprehension might be evaluated. This model 
helped delineate the types of items that may appear on comprehension tests, such as those 
discussed by Conradie and Frith (2000). Due to its focus on undergraduate proof, the Mejia-
Ramos et. al. (2012) framework further delineated Yang and Lin’s (2008) level four, 
encapsulation. The Mejia-Ramos et. al. framework separates holistic comprehension, which 
includes main ideas and proof methods, and local comprehension, which includes a logically 
derived series of steps. The first three of their categories correspond to local comprehension 
(1. Meaning of terms and statements; 2. Logical status of statements and proof framework; 
and 3. Justification of claims). The last four correspond to holistic comprehension 
(4.Summarizing via high-level ideas; 5. Identifying modular structure; 6.Transferring the 
general ideas or methods to another context; and 7. Illustrating with examples).  
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While Mejia-Ramos et al. (2012) considered their adaptation and reinterpretation of 
levels relevant to proof comprehension in undergraduate mathematics, we find elements of 
their model relevant and useful in discussing comprehension of a relatively uncomplicated 
proof from school mathematics. We elaborate upon these elements in a next section.  

PROOF SCRIPTS 
The proof script method, which involves presenting a proof in a form of a scripted 

dialogue, was inspired by Lakatos’s evocative “Proofs and Refutations”. The roots of this 
method can be further traced to a Socratic dialogue, where communication among characters 
helps in uncovering and resolving flaws or inconsistencies in one’s thinking.  

Exploring conceptions of instructional interaction through scripts is featured in the studies 
of Zazkis, Sinclair and Liljedahl (2013), who introduced the construct of a ‘lesson play’, 
which is, an imagined interaction among a teacher and her students, presented in a form of a 
script. Zazkis et al. (2013) analyzed lesson plays composed by prospective teachers on a 
variety of topics related to elementary school mathematics. They argued that asking 
prospective teachers to think about their future teaching in terms of fictional interactions 
draws their attention to how their students' mathematical thinking can be developed. They 
described the affordances of this approach both in teacher education and in research. In 
teacher education it provided a valuable tool for engaging prospective teachers in considering 
particular students mistakes or difficulties. In research it provided a lens for exploring how 
prospective teachers envision addressing students’ difficulties, both mathematically and 
pedagogically. In particular, the prospective teachers’ personal understanding and 
conceptions of the mathematics involved became apparent in their attempts to guide students’ 
solutions.  

Similarly, the mathematical understandings of script-writers can become visible when 
they attend to particular proofs, rather than to instructional interaction in general. We use the 
term ‘proof scripts’ to refer to scripted dialogues that elaborate on mathematical proofs. 
Several studies engaged participants in producing such proof scripts. In Gholamazad (2006, 
2007) prospective elementary school teachers interpreted basic proofs in elementary number 
theory, such as, if a divides b, and b divides c, then a divides c. Prospective secondary school 
teachers in Koichu and Zazkis (2013) elaborated upon Fermat’s Little Theorem. The study of 
Zazkis (2013) used the script-writing method in considering a proof that derivative of an even 
function is odd. The method proved fruitful in identifying participants’ ideas with respect to 
the key elements in the given proofs and potential difficulties in understanding the proofs.  

This study uses proof scripts as a data collection method. However (unlike prior studies 
where the choice of the characters in proof scripts was left to script writers) it introduces a 
constraint: the characters are a teacher and a student, and the purpose of the dialogue is for 
the teacher-character to assess the student’s comprehension, predict possible pitfalls and help 
the student overcome them. The resulting proof scripts give insights into participants’ own 
conceptions of what ideas are central to the given proof as well as to their conceptions of 
proof assessment.  

THE STUDY 
Our study centers on comprehension of a particular proof of the Pythagorean theorem, 

presented in Figure 1. Participants were 24 prospective secondary school mathematics 
teachers in their final term of a teacher education program. The participants held degrees in 
mathematics or science and at the time of data collection were enrolled in a problem solving 
course, one of the goals of which was to deepen their knowledge of school mathematics. 
They were asked to respond in writing to the Task below.  
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Consider the following proof of the Pythagorean theorem 

 

Draw a square ABCD in which the 
length of the side is a+b.  
Connect points KLMN.  
The area of ABCD is (a+b)2 
However, this area can also be 
calculated as composed of the square 
KLMN and 4 triangles, that is,  
  4 × ½(ab) + c2 = (a+b)2 

  2ab + c2 = a2  + 2ab + b2    ==>  
  c2 = a2  + b2     
QED  

Imagine that you are working with a high school student and testing his/her 
understanding of different aspects of this proof.  
What would you ask? What would s/he answer if her understanding is incomplete? How 
would you guide this student towards enhanced understanding? Identify several issues in 
this proof that may not be completely understood by a student and consider how you 
could address such difficulties.  In your submission:   

(a) Write a paragraph on what you believe could be a “problematic point” (or several 
points) in the understanding of the theorem/statement or its proof for a learner.  

(b) Write a scripted dialogue between teacher and student that shows how the 
hypothetical problematic points you highlighted in part (a) could be worked out 
(THIS IS THE MAIN PART OF THE TASK). 

(c) Add a commentary to several lines in the dialogue that you created, explaining 
your choices of questions and answers.  

 

Figure 1: The Task 

In short, the participants were asked to consider the given proof of the Pythagorean 
theorem and write a script for a conversation between a teacher and a student, in which the 
teacher-character assesses the student’s understanding of the proof. The participants were 
further advised that the dialogue should expose their views of what could be problematic for 
a student, that some issues in the proof may not be completely understood, and that the role 
of the teacher-character was to uncover and address the student-characters’ difficulties.  

The script composed by participants can be seen as an imagined oral test of proof 
comprehension. The following research questions guided our analysis: (a) What are the 
participants’ ideas regarding what is important to understand in the given proof, (b) What do 
they perceive as potential difficulties for students, and (c) What are their conceptions of how 
proof comprehension can be evaluated. 

A-PRIORI TASK ANALYSIS 
Using the relevant elements from Mejia-Ramos and his Colleagues' framework (MRC) 

we constructed a proof comprehension test (Conradie & Frith, 2000). That is, we listed what 

c b

b

b

b

a

a

a

a

C

D A

B

K

L

M

N

1200 17th Annual Conference on Research in Undergraduate Mathematics Education



questions would be used if we were to complete the Task assigned to our participants 
ourselves. Given the page limit, we focus here on MRC type #3, justification of claims: 

• It is claimed that KLMN is a square, why?  
• It is assumed that the 4 triangles have the same area, why?  
• How is the equation –  4 × ½(ab) + c2 = (a+b)2  –derived?  
• How is the equation manipulated and simplified? 

DATA ANALYSIS 
Given the relative mathematical maturity of our participants, we were not interested in 

their personal responses to the questions in our comprehension test, but in their ways of 
assessing and ensuring students’ comprehension. Our tenet is that by questioning a student – 
or designing an imaginary dialogue with a student – participants expose their personal 
attention to the various elements of the proof and the importance of these elements in 
students’ proof comprehension. 

As noted in our ‘comprehension test’, the justification of claims aspect of local 
comprehension (MRC, #3) involves interpretation of the geometric figures in the diagram and 
of the algebraic formulas. However, algebraic manipulation was central to most of the proof 
scripts, while the geometry of the situation was either ignored or treated only partially. 

Attention to Algebra.  Most scripts (18 out of 24) included an explanation of how the 
binomial (a+b)2  is expanded.  In 11 of these the explanation attended to a potential student’s 
difficulty in manipulating (a+b)2 and erroneously equating it to a2 + b2 ,which is problematic 
in the last steps of the proof. These scripts introduced the student’s error and then corrected it 
in various ways. For example, participant #16 (P-16)  in his script addresses the student-
character’s error with an invitation to consider a numerical example. This results in 
immediate correction, likely in reference to a previously learned rule.  

[P-16.1] Teacher:  Hmm, well is (a + b)2  = a2 + b2 ? Why don’t you try this with a = 3 and b = 4.  
[P-16.2] Student:  Okay. (3 + 4)2 = 49. And 32+ 42 = 25. Whoa, that’s not right. Oh! I should 

have foiled!  
[P-16.3] Teacher:  Correct. 
 
Of note is that the student’s claim “I should have foiled” [P-16-2] is an example of 

verbification of a commonly used acronym FOIL  (first-outside-inside-last). This is a 
mnemonic device used to help in remembering rules for multiplying binomials.  
In P-10 the correct formula suggested by the teacher is confirmed by a numerical example.  

[P-10.1] Teacher: Well let’s expand and see if we can simplify the equation.  (a+b)2 is equal to 
a2 + 2ab + b2. 

[P-10.2] Student: Why would that be, shouldn’t it equal a2 + b2? 
[P-10.3] Teacher: Let’s examine that idea by substituting in numbers for a and b.  Have a = 2 

and b = 3.  If (a+b)2 is equal to a2 + b2 then (2+3)2 would equal 22 + 32  or 4 + 
9 = 16.  Is this correct? 

[P-10.4] Student: Well if we use the BEDMAS rule and do the brackets first 2+3 = 5 and 5 
squared is 25, so that isn’t right. 

[P-10.5] Teacher: Remember that (a+b)2 means (a+b)(a+b), it is the area of square ABCD (with 
lengths a+b).  Remember to use the foil method when you see this type of 
expression to ensure that you are multiplying all the variables together.  Try 
substituting 2 and 3 into  a2 + 2ab + b2 and see if you get the correct answer. 

[P-10.6] Student: Okay so 22 + 2(2)(3) + 32 = 4 + 12 + 9 = 25.  I see now. 
 
In summary, the majority of proof-scripts attended to algebraic manipulations within the 

proof. Inappropriate expansion of binomials, as an example of overgeneralized linearity, was 
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identified by the script-writers as the main problematic point for student-characters. Correct 
expansion was achieved by either recalling the formula, considering numerical examples or 
by geometric demonstration.  

Attention to Geometry.  Of the 24 proof scripts created by the participants, 14 paid no 
attention to justifying the geometric shapes and relations in the given proof. One possible 
explanation for the partial treatment of geometric aspects within participants’ proof scripts 
can be found within the commentary of participant #12 (P-12) that accompanied her script. 
We agree with the view expressed in the following excerpt: 

Most students can describe a square as having four equal sides but they often 
forget about the 90 degree angles. Without this fact the rest of the proof would be 
difficult if not impossible. However, the most problematic point about this proof 
is the assumption that KLMN is a square. Many students will skim over this line 
of the proof and assume it to be true because it says that KLMN is a square.  

In fact, not only students “will skim over this line”, as suggested by P-12, but teachers 
participating in our study did so as well. In our data, only two participants provided complete 
mathematical justifications for KLMN being a square in their scripts. In eight other cases the 
square was acknowledged, but the provided justification included attention only to the equal 
sides. This is exemplified in the excerpt from participant #20 (P-20): 

 
[P-20.1] Teacher:  Let’s label it KLMN. Do we know for sure if it is a square?  
[P-20.2] Student:  We have to check if each side is the same length. 
[P-20.3] Teacher:  Right, how is each length in KLMN related to a and b? 
[P-20.4] Student:  The three sides create a triangle. 
[P-20.5] Teacher:  Great. And the side we don’t know is called? 
[P-20.6] Student:  The hypotenuse. 
[P-20.7] Teacher: Good.  
[P-20.8] Student:  And since each side of KLMN is the hypotenuse of a triangle with sides a and 

b, then KLMN is a square. 
[P-20.9] Teacher:  Yup, so KLMN is a square. As I said at the start, we want to derive the 

Pythagorean theorem using the area of ABCD. What is the area of a square or 
rectangle in general? 

 
Here, “each side is the same length” [P-20.2] is suggested by a student as a sufficient 

property for a square and is approved by the teacher [P-20.3]. The side-angle-side 
congruency property is implied; though the angle of 90 degrees is never mentioned, the right 
angle triangle is implied when referring to a hypotenuse [P-20.8].   

Prospective teachers participating in this study undoubtedly knew the definition of a 
square and could prove the “squareness” of KLMN without any difficulty. (In-class 
discussion that followed administration of the Task confirmed this claim). However, in the 
majority of the scripts we found either no attention to the need for proving this property or 
erroneous and incomplete justifications. This demonstrates the participants’ views on what is 
important in the proof and what is essential for the student to understand. We wonder 
whether the geometric issues in the proof would have been treated differently if mentioned as 
separate claims in the proof, rather than presented as ‘obvious’.   

We note that in elaboration on assessment type #3 in MRC, justification of claims, the 
authors note that some warrants in a proof may be implicit, under the assumption that it may 
be obvious to the reader. However, they make this comment with respect to statements of the 
form  “Since A, then B”. In such statements a claim (B) has data to support it (A). With 
respect to the particular proof discussed here, the claim that KLMN is a square is not only 
implicit, it is ‘concealed’. That is, it does not have either data or a warrant to support it. 
Instead it appears in the same way data would, as a fact that helps support and argument 
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rather than a claim that may need to be justified. We suggest that attention to such concealed 
elements—claims that appear as data with no further justification—should explicitly feature 
in a proof assessment framework.  

Conclusion 
We explored how prospective secondary teachers of mathematics envision assessing 

proof comprehension of a given proof of the Pythagorean theorem. Proof-scripts composed 
by prospective teachers serve as a mirror of their mathematical and pedagogical attention. 
Extensive elaboration on algebraic manipulations that appear in the proof-scripts can be 
explained as attention to an explicit claim in the proof and also as attention to a familiar 
student error. Participants demonstrated a variety of strategies in addressing this error in their 
scripts, from simple reminders to visual and numerical demonstrations. This points to 
knowledge of a range of pedagogical approaches as well as knowledge of common student 
errors. 

In this report we focused on comprehension type #3 of the MRC framework, justification 
of claims. The scripts revealed that participants had difficulty distinguishing between data 
used to support claims and claims themselves. While the participants, when prompted, had no 
problem proving that KLMN was a square considering both its sides and its angles, the 
majority did not attend to this claim within their proof scripts. They instead treated this claim 
as if it was data used within an argument and did not realized that it may call for (non-trivial) 
justification. Several factors may have contributed to such lack of attention: reliance on the 
visual diagram and undoubted acceptance of ‘concealed’ claims in the proof. We suspect that 
had the presented proof included an explicit statement, such as “connecting in sequence 
points K, L, M and N with line segments results in a square KLMN”, the script-writers could 
have attended to the shape of KLMN with more diligence. Such a statement explicitly paints 
squareness as a claim rather than data. The same can be said about the congruence of the four 
triangles. We believe that identifying claims that proof-writers could have taken for granted, 
and alerting their attention to such claims is an important component of pedagogy that was 
not activated in this group of prospective teachers. As such, our modification of the MRC 
framework attends explicitly to implicit claims in a proof.  

This study can be seen as contributing to two arenas: one methodological and the other 
theoretical. First, with respect to methodology, we expanded the use of script-writing, and 
specifically proof scripts, to teacher-student interactions that aim at assessing and modifying 
student comprehension of a particular proof. In accord with the claims of Zazkis et al. (2013), 
that lesson plays provide a lens for analyzing teachers’ ways of addressing students’ 
difficulties, we add that scripts composed around particular proofs zoom in on particular 
difficulties associated with these proofs. Further, the scripts highlight the participants’ 
choices of issues to be addressed in assessing student proof-comprehension. This provides a 
window into these prospective teachers’ images of proof assessment and, in particular, how 
these assessments can be implemented and what they focus on. 

With respect to theory, we suggest that comprehension type 3 of the MRC framework be 
partitioned into 3A: Justification of explicit claims, and 3B: Justification of implicit 
(concealed) claims. We believe that such expansion is applicable to a variety of different 
proofs and is not limited to proofs appearing in undergraduate mathematics courses or to 
proofs in geometry.  
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