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Foreword

As part of its on-going activities to foster research in undergraduate mathematics education and the
dissemination of such research, the Special Interest Group of the Mathematical Association of America on
Research in Undergraduate Mathematics Education (SIGMAA on RUME) held its eighteenth annual Con-
ference on Research in Undergraduate Mathematics Education in Pittsburgh, Pennsylvania from February
19 - 21, 2015. The conference is a forum for researchers in collegiate mathematics education to share results
of research addressing issues pertinent to the learning and teaching of undergraduate mathematics. The
conference is organized around the following themes: results of current research, contemporary theoretical
perspectives and research paradigms, and innovative methodologies and analytic approaches as they per-
tain to the study of undergraduate mathematics education. The program included plenary addresses by Dr.
Charles Henderson, Dr. Nicole McNeil, and Dr. Matthew Inglis and the presentation of over 160 contributed,
preliminary, and theoretical research reports and posters.

The Proceedings of the 18th Annual Conference on Research in Undergraduate Mathematics Education
are our record of the presentations given and it is our hope that they will serve both as a resource for future
research, as our field continues to expand in its areas of interest, methodological approaches, theoretical
frameworks, and analytical paradigms, and as a resource for faculty in mathematics departments, who wish
to use research to inform mathematics instruction in the university classroom. RUME Conference Papers,
includes conference papers that underwent a rigorous review by two or more reviewers. These papers represent
current work in the field of undergraduate mathematics education and are elaborations of selected RUME
Conference Reports.

The proceedings begin with the winner of the best paper award and the papers receiving honorable
mention. These awards are bestowed upon papers that make a substantial contribution to the field in terms
of raising new questions or providing significant or unique insights into existing research programs. RUME
Conference Reports, includes the Poster Abstracts and the Contributed, Preliminary and Theoretical Re-
search Reports that were presented at the conference and that underwent a rigorous review by at least
three reviewers prior to the conference. Contributed Research Reports discuss completed research studies
on undergraduate mathematics education and address findings from these studies, contemporary theoret-
ical perspectives, and research paradigms. Preliminary Research Reports discuss ongoing and exploratory
research studies of undergraduate mathematics education. Theoretical Research Reports describe new theo-
retical perspectives and frameworks for research on undergraduate mathematics education. Poster Reports
were quite varied and described curriculum, research and theoretical contributions.

The conference was hosted by West Virginia Univerisity. Their faculty and student provided many hours
of volunteer work that made the conference possible and pleasurable, we greatly thank the faculty, students
and institution for their support.

Last but not least, we wish to acknowledge the conference program committee and reviewers for their
substantial contributions to RUME and our institutions, for their support.

Sincerely,
Tim Fukawa-Connelly, RUME Conference Chairperson
Nicole Engelke Infante, RUME Conference Local Organizer
Karen Keene, RUME Program Chair
Michelle Zandieh, RUME Coordinator

iiiiii
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Guiding Reinvention of Conventional Tools of Mathematical Logic: Students’ Reasoning 
About Mathematical Disjunctions 

Paul Christian Dawkins John Paul Cook 
Northern Illinois University University of Science and Arts of Oklahoma 

Motivated by the observation that formal logic answers questions students have not yet asked, we 
conducted an exploratory teaching experiment with undergraduate students intended to guide 
their reinvention of truth-functional definitions for basic logical connectives. We intend to bridge 
the gap between reasoning and logic by inviting students to ask and answer questions that 
motivate logic as an objective science. We present categories of student strategies for assessing 
truth-values for mathematical disjunctions. Students’ reasoning heavily reflected content-specific 
and pragmatic factors in ways inconsistent with the norms and conventions of mathematical, 
formalized logic. Despite this, all student groups reinvented the standard truth-functional 
definition for non-quantified disjunctions once they began reasoning about logic by attending to 
logical connectives and by comparing their interpretations across various disjunctions. Students 
struggled to develop generalizable tools for assessing quantified disjunctions because they 
explored sets of examples in context-dependent ways.  

Key words: truth-functional logic, guided reinvention, disjunctions, reasoning about logic, 
quantification 

In Toulmin’s (1958) critique of formal, mathematical logic as a model for everyday 
argumentation, he points out that philosophers use at least four implicit models for the meaning 
of logic. The main conflict arises because logic ostensibly relates to ideas or language suggesting 
some connection to 1) psychology or 2) sociology (a descriptive function). In contrast, scholars 
view logic as an objective field not beholden to how people actually reason. So, other implicit 
models treat logic as 3) a technology for argumentation or 4) an objective science within 
mathematics (a prescriptive function). Despite this ambiguity, psychologists persistently 
investigate “deductive reasoning” as judged against formal logical structures (Stenning, 2002), 
which conflates the prescriptive and descriptive models. Psychologists do so in accordance with 
the classical philosophical view that “logical laws constitute the very fabric of thought” 
(Stenning & van Lambalgen, 2008, p. 9). However, throughout the 20th Century philosophers 
have largely abandoned early, formalized systems of logic as descriptions of everyday reasoning 
and language (Stenning, 2002), as have more and more psychologists (Evans & Feeny, 2004). 
Nevertheless, many other psychologists persistently try to apply tenets from mathematical, 
formal logic to human reasoning (Stenning & van Lambalgen, 2004b).  

This debate reveals researchers’ tendency to assume sophisticated, abstract, and technical 
models of language and argumentation are inherently correct or “rational,” despite the frequency 
with which untrained adults speak and argue in alternative ways (e.g. Stanovich, 1999). We do 
not so assume that mathematical logic is in any way natural or inherent to “right thinking” 
(especially preconscious, untrained reasoning), but we do acknowledge that for students to be 
apprenticed into proof-oriented mathematical practice, they must learn to consciously conform 
their reasoning to the prescriptions of mathematical logic (Dawkins, 2014). Mathematical topics 
should afford the mathematical model of logic much more naturally than everyday topics 
(Dubinsky & Yiparaki, 1999). However, students’ untrained mathematical reasoning frequently 
violates the norms and conventions of mathematical logic (e.g. Epp, 2003) regarding both 
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linguistic interpretation and argumentation. So, we propose that proof-oriented instruction may 
need to surface and address the differences between mathematical and everyday discourse to 
help students consciously conform their language to mathematical norms and conventions. We 
thus proffer the notion of reasoning about logic, which we use to refer to students’ conscious 
understandings (psychological) of the problems addressed by and solutions embedded in formal 
systems of mathematical logic (objective science).  

Logic and Reasoning 
As Toulmin’s (1958) analysis suggests, there exists a gulf between formalized, mathematical 

logic and (even expert) mathematical reasoning (Rav, 2007). Though one may use the language 
of formal logic to describe the outputs of student reasoning, such models’ fidelity to the causes 
or mechanisms of that reasoning can be highly tenuous (e.g. Dawkins, 2012). Logic as a formal 
system tends to entail assumptions of abstraction (Dawkins, 2014) such that the interpretation of 
a sentence remains constant regardless of the particular mathematical (semantic) content being 
discussed. However, some have thereby claimed that for students to reason logically, they should 
similarly abstract the form of an argument being analyzed (e.g. Stylianides, Stylianides, & 
Phillipou, 2004). It seems likely that such characterizations of students’ reasoning processes or 
desired reasoning processes conflate the descriptive and prescriptive meanings of logic. When 
researchers compare the outputs of student reasoning to logical prescriptions or use the language 
of logic to describe student reasoning, they must be careful to clarify what is being modeled and 
where any logical “structure” is understood to reside. Many psychologists search for structure 
embedded in students’ reasoning process (whether students are aware of it or not), and try to 
control for or at least explain the role of semantic content in such reasoning (Evans & Feeny, 
2004). In contrast, we concur with Stenning (2002) who argued that “logic teaching has to be 
aimed at teaching how to [help students] find form in content” (p. 190), meaning logical 
structure emerges within students’ conscious reasoning about mathematical content. Such 
structure is not embedded in language or the world, but rather in the interpretive processes by 
which we reason about them. Traditional methods of teaching logic appear likely to fall short of 
helping students impose logical structure within semantic reasoning, precisely because logic is 
generally taught as an independent subject. Teaching pre-abstracted logical tools independent of 
the mathematics it is intended to formalize runs the risk of isolating such learning from students’ 
mathematical reasoning. As Stenning (2002) suggested, “formal teaching can be effective as long 
as it concentrates on the relation between formalisms and what it formalizes” (p. 187).  
Gaps between everyday reasoning and logical prescriptions 

It remains an attractive hypothesis to many, though, that there is a unique “deductive” 
domain of reasoning that is formalized by logic, but has natural psychological correlates in 
untrained reasoning. The preface to a recent introduction to proof textbook claimed, “The whole 
of mathematics... is merely a refinement of everyday thinking. Proving theorems [is] not a 
different way of thinking—it is merely a refinement of clear thinking” (Katz & Starbird, 2013, p. 
2). Also, the psychologist Rips (1994) discussed “intuitions about deductive correctness by 
people with no formal training in logic” (p. 34). Research tasks that ask participants to assess the 
conclusions of arguments “logically” or “based only on the hypotheses” are assumed to tap into 
such intuitions. Such views of proof-oriented mathematics or deductive reasoning assume that 
people have an untrained awareness of the hypothetical truth of a claim (logical entailment) as 
distinguished from the empirical or absolute truth of a claim (personal belief). Along these lines, 
Rips (1994) postulated that the mental processes underlying such deductive reasoning reflect 
domain-independent rules of inference, approximate to formal systems of logic. In addition to 
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imposing such abstract logical models based on analogies with computer programs, researchers 
expect subjects, based on brief task instructions, to accept the hypotheses of arguments without 
question (even if experientially false) and avoid unstated inferences common to everyday 
dialogue (such as Grice’s, 1975, implicature that “some apples are red” implies “not all apples 
are red”). Any subject behavior incompatible with the researchers’ logical competence model is 
then deemed irrational (e.g. Stanovich, 1999). In this way, researchers have applied highly 
sophisticated tools of meta-reasoning to the outputs or processes of students’ untrained and pre-
conscious reasoning (Evans, 2007) when the students are provided with sentences and arguments 
that are relatively alien to everyday discourse.  

We argue rather that logic, in the sense of a formal field of study, answers questions that 
many students are unlikely to have fully comprehended or asked. To attribute meaning to a 
sentence frame (“… or…” or “if…, then…”) independent of semantic content in order to 
generalize across all everyday use and experience is a highly esoteric task, were it even possible. 
To investigate truth using only limited epistemic resources (hypotheses and axioms) rather than 
all relevant knowledge is a highly technical practice, though mathematically indispensible. Is it 
reasonable to assume that everyday discourse will lead adults to consider whether an argument is 
formally acceptable by abstracting the form of the argument across all possible subjects of the 
argument (i.e. in all possible interpretations)? Is there evidence that untrained students can assess 
the form of an argument distinct from the subject of the argument? On the contrary, there is 
strong evidence that people commonly reason about sentences of the same logical form in very 
different ways when the semantic content changes (e.g. Barnard, 1995; Dubinsky & Yiparaki, 
2000; Evans, 2005). As a result, some psychologists have argued that reasoning is in many ways 
determined by the semantic content the sentences being analyzed because people form mental 
representations of that content (e.g. Johnson-Laird & Byrne, 2002), which minimizes logic’s 
relevance to reasoning altogether.  
Logic learning for proof-oriented mathematics 

So, there is evidence to reject the assumption that the norms and conventions of formalized, 
mathematical logic are implicitly embedded in untrained adults’ reasoning processes. 
Mathematical logic, though, serves as the normative model of mathematical language and 
argumentation to which students in proof-oriented courses must conform their reasoning 
(Dawkins, 2014). Thus, proof-oriented instruction requires a means of helping students learn and 
abide by these norms and conventions, possibly by understanding their purpose and value. For 
this reason, we find Stenning and van Lambalgen’s (2004a) approach to the relation between 
reasoning and logic quite helpful. They argued that researchers must distinguish two phases of 
student reasoning about “logical” tasks: reasoning toward an interpretation and reasoning from 
an interpretation. Students must first (intentionally or preconsciously) decide how to interpret 
given claims, what conventions of communication to adopt, and a representation system in which 
to approach the relevant semantic content. Once these choices are made, some system of logic 
should model their reasoning within that representation system. Since reasoning toward an 
interpretation is largely preconscious, helping students problematize their interpretive processes 
may help them consciously control those processes in some manner approximating logical 
structure. 

In the context of proof-oriented mathematics education, one may expect greater accord 
between semantic reasoning and formalized, mathematical logic. First, mathematical language 
lacks some of the main pragmatic complexities that introduce variation into everyday 
interpretations of conditional statements (Johnson-Laird & Byrne, 2002). Also, inasmuch as the 
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semantic content of a sentence strongly determines the emergent pattern of people’s reasoning 
about it, mathematical content could implicitly imbue reasoning with structure more compatible 
with formal logical norms. After comparing students’ interpretations of everyday and 
mathematical claims of the same logical form, Dubinsky and Yiparaki (2000) suggested:  

“As teachers, instead of trying to make everyday life analogies between ordinary English 
statements and mathematical statements, perhaps we should remain in the mathematical 
contexts and concentrate our efforts directly on helping students understand mathematical 
statements in their natural mathematical habitats” (p. 1).  

Historical analyses suggest that mathematicians usually upheld formal logical conventions before 
such conventions were codified, as attempts to formalize mathematicians’ proofs written prior to 
the emergence of modern formal logic rarely find significant logical gaps (MacKenzie, 2001). 
However, any links between students’ reasoning about mathematical sentences and mathematical 
logic competence models requires empirical investigation.  

In summary, mathematics educators with goals of modeling student reasoning or eliciting 
particular forms of reasoning must be careful in imposing formal logical structures onto the 
processes or outputs of student reasoning. If students are bringing their everyday linguistic tools 
to bear on mathematical sentences, there is evidence that their reasoning will be incompatible 
with mathematical logic (e.g. Epp, 2003) and generally not systematized (Johnson-Laird & 
Byrne, 2002; Stenning, 2002). So, we set forth in this study to understand the interpretive tools 
students bring to bear in assessing the truth of mathematical disjunctions, and how they reflect on 
and systematize those tools in a manner that approximates logical structure within their 
mathematical reasoning.  

Study and Methods 
To better understand the possible connections between students’ emergent reasoning patterns 

and the norms of formal logic, we conducted an exploratory teaching experiment (Steffe & 
Thompson, 2000) using guided reinvention (Gravemeijer, 1994) heuristics to see whether and 
how students come to reason about logic. By reason about logic, we refer to students 1) 
consciously attending to the meaning of logical connectives and 2) systematizing their 
interpretation of statements of the same logical form so as to develop generalizable heuristics for 
assessing the truth-values of mathematical statements. Our goals were for students to reinvent 1) 
notions approximating truth function for disjunctions and conditionals and 2) means of 
evaluating truth functions for quantified statements containing predicates (propositions whose 
truth-values vary over the set of examples). The classical tools for achieving these two goals are 
truth tables and Venn diagrams as portrayed in Figure 1. According to this view, disjunctions 
entail three truth-values: [A], [B], and [A] or [B] (which is a function of the first two). In 
quantified disjunctions, [A] represents a predicate P(x) whose truth-value may vary such that the 
space of examples (imagined as points in a region) can be partitioned according to P(x)’s truth-
value. Conventionally, the quantified disjunction is true only if every element of the set satisfies 
at least one of the predicates.  

For our teaching experiment, we recruited pairs of undergraduate Calculus 3 students from a 
mid-sized university in the Midwestern United States. We chose this population because we 
desired participants who were mathematically proficient, but had taken no proof-oriented 
mathematics courses. The data in this paper reflects two such pairs’ reasoning about disjunctions. 
One pair had both taken a university philosophy course in logic (Drew and Ron) while a second 
had no such formal training in logic (Eric and Ovid). Each pair attended 5-6 one-hour teaching  
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Disjunction (“[A] or [B]”) Truth Table 

 

[A]  
truth-value 

[B]  
truth-value 

[A] or [B] 
truth-value 

T T T 
T F T 
F T T 
F F F 

 

Figure 1: Classical tools for assessing the truth-values of disjunctions. 
sessions outside of their normal class time. To prompt participants to reinvent truth-functions, we 
provided them with lists of mathematical disjunctions (Table 1) that they should determine as 
true or false. We only provided mathematical disjunctions because we wanted students to learn 
to structure their semantic reasoning, such that it might influence their later proof-oriented 
activity. On the three days spent on disjunctions, we directed them to 1) find patterns regarding 
why the statements were true or false, 2) write a “how-to guide” for determining whether 
disjunctions were true or false, and 3) develop a method for writing the negation of a disjunction, 
respectively. We privileged reasoning about logic by pushing students to abstract their strategies. 
The teaching experiment paradigm (especially using guided reinvention heuristics) allowed us to 
observe 1) whether and when students reasoned about logic, 2) whether students’ reasoning 
showed any immediate or emergent patterns (that would constitute a pre-existing logic of 
disjunctions), and 3) observe any patterns of student reasoning that constituted barriers to 
adopting the normative mathematical interpretations of disjunctions. The interviewer (the first 
author) attempted to minimize any leading toward normative interpretations until the participants 
appeared to recognize or impose some structure upon their own reasoning about the provided 
statements (though mathematical information was readily provided upon request). He regularly 
asked students to articulate or elaborate upon their reasoning, restated their arguments back to 
them, and asked interview partners to respond to one another’s claims.  

The second author observed all interviews as an outside observer (Steffe & Thompson, 
2000). Between each teaching session, the researchers discussed students’ responses, formed 
hypotheses about student learning, viewed video of the teaching session, and designed activities 
for the next session intended to test and extend hypotheses about student learning. The 
hypotheses about patterns of students’ reasoning about logic that emerged during the teaching 
experiment then formed the initial categories for the process of grounded theory-type (Strauss & 
Corbin, 1998) open and axial coding of the data. In retrospective analysis, we endeavored to 
code every major student action relevant to assessing and negating the given statements. Codes 
related to 1) truth-value assessment strategies (e.g. one condition false makes the disjunction 
false), 2) paraphrases of provided statements (e.g. introducing “either…or” language), 3) modes 
of reasoning about logic (e.g. attending to the meaning of or), 4) clarification of semantic 
information (e.g. identifying warrants such as “all squares are rectangles”), and 5) negating 
actions (e.g. negating [A or B] with [not A or not B]). We report here on persistent trends in 
students’ interpretive behavior and emergent relationships between their strategies, 
interpretations, and particular disjunctions we provided.  

 
 

Examples 
satisfying 
P(x) but 
not Q(x) 

Examples 
satisfying 
Q(x) but 

not P

Examples 
satisfying 
both P(x) 
and Q(x) 

Examples satisfying neither P(x) nor Q(x) 

Venn Diagram 
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Day 1 Disjunctions Day 2 Disjunctions: How-to Guide 
A1. Given an integer number x, x is even or x is odd. 
A2. The integer 15 is even or 15 is odd.   
A3. Given any two real numbers x and y, ! < ! or 

! < !.  
A4. Given any two real numbers x and y, ! ≤ ! or 

! ≤ !.  
A5. Given any real number y, y has a reciprocal !! 

such that ! ∗ !! = 1 or y=0.  

A6. The real number ! has a reciprocal !! such that 

! ∗ !
! = 1 or ! = 0.  

A7. The real number 0 has a reciprocal !! such that 

0 ∗ !! = 1 or 0=0.  
A8. Given any real number x, x is even or x is odd.  
A9. Given any even number z, z is divisible by 2 or z 

is divisible by 3.  
A10. Given any even number z, z is divisible by 4 or z 

is divisible by 3.  
A11. Given any even number z, z is divisible by 2 or z 

is divisible by 4.  
A12. Given any even number z, z is divisible by 4 or 

z+2 is divisible by 4.  

 B1. Given an integer x, x is an even number or x+1 
is an even number.  

 B2. 10 is an even number or 20 is an even number. 
 B3. 13 is an even number or 6 is an even number.  
 B4. 5 is an even number or 7 is an even number. 
 B5. 8 is an even number or 37 is an even number.  
 B6. Given any triangle, it is equilateral or it is not 

acute. 
 B7. Given any triangle, it is acute, or it is not 

equilateral. 
 B8. Given any triangle, the sum of the measures of 

the interior angles is 185.7° or the sum of the 
measure of the interior angles is 180°.  

 B9. Given any quadrilateral, it is a square or it is not 
a rectangle.  

 B10. Given any quadrilateral, it is not a square or it is 
a rectangle.  

 B11. Given any rectangle, the interior angles are all 
right angles or the interior angles are all obtuse.  

 B12. Given any two integer numbers x and y with 
x<y, there is an integer between x and y or 
x+1=y.  

 B13. Given any two real numbers x and y with x<y, 
there is a real number between x and y or x+1=y. 

 B14. Given any two natural numbers x and y with 
x<y, there is a natural number between x and y 
or x+1=y. 

Table 1: Sample disjunctions from the first two instructional sessions.  

Patterns of Student Assessment of Disjunctions 
The disjunctions we provided fell into two forms: disjunctions of two statements with fixed 

truth-values (e.g. A2 or A7) and disjunctions of two predicates quantified over some set (e.g. A1, 
A5, or B9). Students generally exhibited different patterns of disjunction assessment regarding 
quantified and non-quantified statements. The following sections each describe a major pattern 
of disjunction assessment from prior literature or that emerged during the study.  
Part False-All False Decision Heuristic  

At times, students declared a non-quantified disjunction false because it contained a false 
component statement, which we shall refer to as the False-False Heuristic. For instance, several 
students initially rejected A2 because 15 is not even or A7 because 0 has no reciprocal. The 
frequency of this heuristic decreased over the course of the interviews, but some students 
struggled to avoid this interpretation when they considered the statement mathematically absurd 
(such as “0 has a reciprocal” or “! = 0” in A6 and A7 respectively). Once students in the study 
began to specifically attend to the “or” connective, these students mostly abandoned the strategy.  
Part True-All True Decision Heuristic  

 Especially after students began to attend to the “or” connective, they declared non-quantified 
disjunctions true whenever they contained at least one true component statement, which we shall 
refer to as the True-True Heuristic. For instance, on the second day students all affirmed B5 
because 8 is an even number. They also usually affirmed quantified disjunctions when all cases 
satisfied a single predicate, as in the case of A9.  
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During the first session with Eric and Ovid, the students used the False-False Heuristic until 
they reached A9. Initially they also declared it false because there were even numbers not 
divisible by 3. However, Eric then said, “It does say or, it doesn’t say and. So if it’s not divisible 
by 3 it is divisible by 2.” This was the first time the pair attended directly to the connective or 
and its role in the sentence, which was the first observed pattern of reasoning about logic. The 
pair later reconsidered A2 (which they had declared false by the False-False Heuristic). Ovid 
noted, “If we’re doing the or similar to down there [pointing to A9], we would have to go to true 
because, even though we know it’s odd… it’s either even or it’s odd. That’s what I’m getting out 
of it, it’s one or the other.” Though this is not tantamount to defining the connective or, Ovid’s 
comparison of their interpretations of the two statements represents a conscious effort to 
systematize their interpretations of the disjunctions. Such statement comparison was the second 
pattern of reasoning about logic that emerged during the study. Eric also helped clarify the 
meaning of or by comparing it to the meaning of and. In each case, these comparisons directed 
the students’ attention to their own interpretations of the language of the statements.  

The next day, while discussing B10, Ovid stated more directly that, “Cause or for me 
means… either it could be one or the other or both.” This articulation reflects the students’ 
awareness of the repeated structure that each statement is made of two components, whose truth-
values determine the truth-value of the statement overall. In this way, students distinguished the 
statement’s three truth-values and related them via a truth-function. By this second day, their 
interpretation of or closely approximated the normative definition of the logical connective.  
Fails Both Decision Heuristic 

Students reliably declared non-quantified disjunctions false when both components were 
false and declared quantified disjunctions false when they found one example that failed both 
predicates, which we call the Fails Both Heuristic. However, students did not readily see how to 
segue this heuristic into a general strategy for finding counterexamples or negating disjunctions. 
We hypothesize they did not make this abstraction because they did not clearly relate the 
falsehood of one predicate with the truth of its negation, meaning that students did not 
spontaneously connect the observation that “it is a rectangle” is false to the claim that “it is not a 
rectangle” is true. Study participants interpreted properties as descriptions of individual cases in 
ways that did not lead them to link properties to alternative properties. This is not to say they 
would not have affirmed the negation claim “it is not a rectangle” if asked. Rather, study 
participants did not formulate their identification of a counterexample or search for a 
counterexample in terms of the properties that would be true of it (i.e. trying to falsify B9 by 
finding a non-square that is a rectangle). So, while study participants readily recognized 
sufficient conditions for a disjunction being false, they failed to abstract this approach in a 
manner approximating the standard logical negation (not[A] and not[B]).  
Minimal Disjunction 

On occasion, students rejected a disjunction because it contained extraneous conditions that 
were not realized, which we call the Minimal Disjunction interpretation. For example, Eric 
rejected A4 and called it false in comparison to A3 (which they declared true under the 
assumption that ! ≠ !). He preferred A3 because (under his assumption) it covered all possible 
cases rendering the equality conditions unnecessary. So, for these students A4 was not false 
because it made a false claim but was false because it included extraneous claims. Such 
pragmatic reasoning may explain why students rejected A2: they implicitly compared it to the 
more natural claim that “15 is odd.” In this case, students used the false option to express “I 
wouldn’t say this,” inconsistent with the mathematical interpretations of truth and falsehood. In 
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later studies, other students have more explicitly articulated that they do not interpret A5 in the 
same way as A6 or A7 because A5 requires the or to cover various cases, but the statements 
about 0 and ! each contain a needless condition. This is another instance in which students 
appear to call upon implicit, pragmatic rules of everyday language (Grice, 1975) to critique the 
provided statements as unnatural rather than untrue.  
Semantic Affirmation 

Students enacted Semantic Affirmation of a disjunction whenever they attended only to the 
statement as a whole rather than to the component statements/predicates. For instance, students 
generally accepted claims such as A1 or A3 as true prima facie. Students showed no evidence of 
attending to particular numbers or the two predicates independently, and gave affirmation 
quickly. For example, when prompted to group the statements according to the reasons they were 
true, Eric contrasted statements like the first (A1) against others because the former were “rules” 
that they were taught in school. Eric struggled to generalize this category more precisely, but his 
sense that numbers being even or odd is a mathematical “rule” supports the view that he affirmed 
the statement as a single unit rather than as the coordination of two independent predicates.  
Semantic Substitution 

Semantic Substitution refers to instances when study participants affirmed statements like B6 
and B9 because they used the warrant “equilateral triangles are acute” to paraphrase the 
statement with the tautology “Given any triangle, it is acute or it is not acute.” Within the 
standard interpretation, this is an error because the class of acute triangles is larger than the class 
of equilateral triangles. However, study participants generally reasoned about particular cases 
rather than classes. Thus, if they imagined an equilateral triangle, it could also be called acute, 
which likely supported the linguistic substitution. We also hypothesize that students were 
attracted to the strategy because the paraphrases were much easier to assess.  
Exclusive or 

Prior to the study, we expected students to express non-conventional interpretations by 
employing the Exclusive or (the two component propositions cannot both be true) meaning that 
many professors take as paradigmatic of the divergence of everyday and mathematical language 
(Epp, 2003). However, only Eric adopted this interpretation, and did so for two of the given 
disjunctions. Furthermore, in the second case it was not his initial interpretation of the statement, 
but rather he adopted it 9 minutes into the pair’s discussion of B10. In subsequent experiments, a 
few students more aggressively adopted an Exclusive or interpretation, which we take to imply 
that the findings from the two pairs in this paper should not be overgeneralized. Ironically, it is 
often the most astute study participants who have adopted the exclusive or interpretation, despite 
the mathematical community’s adoption of an inclusive or convention. An explanation for this is 
that such students show greater awareness of their own interpretive processes and attend to the 
exclusive or interpretation in its everyday instantiations.  

As with many cases in formalized logic, when there are two possible interpretations available 
for a single linguistic pattern, one interpretation is assigned to an alternative linguistic form. In 
the case of or, the exclusive interpretation is assigned to the either… or… linguistic form. 
Students in our study occasionally introduced either… or… language, generally when it was 
appropriate because no cases satisfied both conditions. However, no study participants seemed 
aware of this paraphrase or its correspondence to the alternative meaning of or.  
Case-based Sentential Testing 

Regarding quantified disjunctions, students frequently selected example cases and assessed 
whether they satisfied either proposition in the disjunction, usually passing from left to right, 
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which we call Case-based Sentential Testing. For instance, Ron and Drew evaluated B1 by 
substituting various values for x (in contrast to their semantic affirmation of A1). Drew used 
their sequential test to describe how a statement could be false for a given case saying, “Well, 
you can say an or statement [disjunction] is false when both the original statement and then the 
backup statement are both, didn’t back up each other so both the statements are false, cause or 
[second predicate] did not back up the first statement which was already false.” Drew thus 
alternated between using the connective or to refer to the disjunction itself and to the latter 
predicate as the “backup” to the first condition. This mode of assessment entailed an asymmetry 
between the predicates because it was statement-centered.  

The benefit of Case-based Sentential Testing was that, by serially selecting examples, it 
reduced quantified disjunctions to a sequence of non-quantified ones, affording the True-True 
Heuristic or the Fails Both Heuristic. This is not to say that students were aware of this 
relationship. In many cases, students did not perceive statement A2 as a “case of” statement A1 
or statements A6 and A7 as instantiations of statement A5 (as the logician Copi’s principle of 
Universal Instantiation would suggest, Durand-Guerrier, 2008, p. 383). Students often brought 
different interpretive strategies to bear on quantified and non-quantified statements until students 
reflected on their interpretations and began to systematize them.  

The sentential testing strategy did not provide study participants with a means of structuring 
the set of examples, and they employed very different strategies for testing examples depending 
upon the context. For statements like A9 and B1, students proceeded through the integers or even 
numbers and were quickly convinced whether the statement was true or false. For B12-14, Ovid 
let x=3 and then considering various values of y. In geometric contexts, though, students relied 
almost exclusively on familiar categories (obtuse, right, isosceles, trapezoid, parallelogram) such 
that a sequential test of examples did not guarantee they had considered all relevant cases. This 
contextual method of producing examples provided no viable abstraction similar to the Venn 
diagram, in which examples are partitioned by the predicates in the disjunction.  
Categorical Partitioning 

Unlike the case-based reasoning that students displayed on the majority of quantified 
disjunctions, students occasionally reasoned about properties without representative examples 
based on some implicit partitioning of possibilities such as even/odd or </>/=. Students using 
such Categorical Partitioning rejected statements like A3 because they left out one of the three 
possible order relations between two numbers and affirmed A4 along similar lines. This category 
of strategies does not include Semantic Affirmation where students treated the statement as 
obviously true based on prior knowledge or comparable Case-Based Sentential Testing when 
students chose to substitute particular values for the variables in the statement. We separate this 
strategy because students were able to implicitly use some warrant such as the trichotomy of 
order relations to reason about properties themselves rather than shifting their focus to cases that 
had those properties. This strategy was relatively uncommon in the data, but represents an 
alternative to their more frequent case-based approaches. Participants did not use this strategy in 
contexts where there was no clear partition by familiar categories, such as A9-12 or B6-11.  
“If Not, Then” Reasoning 

Some students adapted the case-based sentential approach by anticipating that cases 
satisfying one proposition were automatically “covered.” They thus began to focus only on those 
cases not described by a chosen predicate. For instance, Ron evaluated B7 by focusing only on 
triangles that were not acute. He inferred that this entailed obtuse triangles and noted that an 
obtuse triangle cannot be equilateral. Thus the cases excluded by the first condition must be 
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captured by the second (notice this line of reasoning applies to right triangles, which he ignored). 
We call Ron’s heuristic “If Not, Then” Reasoning because his approach might be paraphrased, 
“If a triangle is not acute, then it will not be equilateral.” When Drew wanted to consider 
equilateral triangles, Ron contested based on the criteria in their case-based sentential approach: 
“We not talking (sic) about that though. If it’s acute, that’s it. We don’t have to worry about the 
not equilateral.” What distinguishes this approach from case-based sentential testing is how it 
allowed Ron to ignore some cases (“we not talking about that”) according to the propositions in 
the statement. In this way, such reasoning began to structure the examples according to the 
propositions in the statement, and in this way is more case-centered. It allowed Ron to focus on 
salient cases rather than employing a random or exhaustive case search.  

“If not, then” reasoning also helped some study participants identify counterexamples 
because it focused their attention on half of the conditions for negating a disjunction ([not A] and 
[not B]). For instance, regarding B9 Eric said, “yeah like the or statement is like, ‘If it’s not a 
square, it can’t be a rectangle either,’ but it could be a rectangle if it’s not a square.” Eric only 
focused on non-squares and used a deontic paraphrase (Cheng, Holyoak, Nisbett, & Oliver, 
1986) of the second condition (“can’t be” instead of “is not”). This focused his attention on the 
possibility that a non-square could be a rectangle, helping him identify a counterexample to the 
disjunction. Though some students applied this heuristic several times, they continued to 
vacillate to other strategies and none of the participants abstracted it into a working definition for 
the or connectives quantified over a set. They also did not segue this strategy into a general 
method for finding counterexamples or negating disjunctions.  

Reasoning toward an interpretation and reasoning about logic 
The mere categorization of student strategies does not adequately capture a striking aspect of 

students’ reasoning processes during the teaching experiment: how their interpretations 
vacillated even as students considered a single mathematical disjunction. The following episode 
from the second meeting with Eric and Ovid demonstrates this trend. The students were 
attempting to assign truth-values to B9 and B10.  
E (1)1: [Considering B9] If it’s a square, it’s not a rectangle. Well, squares are rectangles, but… 
O (2): “Is not a rectangle,” that could mean it’s a parallelogram or anything like that too, right so 

I would say it’s true.  
E (3): There’s a square. There’s not a rectangle. It could be the rectangle. I don’t think a 

rectangle is considered a square. A square is, they’re all even sides. They’re all equal sides… 
But a square is a rectangle.  

O (4): With equal sides. 
E (5): But it’s a specific rectangle, yeah… So I’d say it’s false.  
O (6): Umm, but for a quadrilateral it doesn’t mean they all have to be right angles. You could 

have a parallelogram that is also not a rectangle.  
I (7): So [Eric], what was your reasoning for saying it was false?  
E (8): Well it could be a square, or it could be a rectangle that isn’t a square. So. 
I (9): So you have a rectangle that isn’t a square  
E (10): So it can be a square or it can be a rectangle or it can be anything else.  
I (11): So that makes it false because  
E (12): It’s saying, “If it’s not a square it can’t be a rectangle.” But it could really be anything.  
I (13): What do you think [Ovid], do you see his line of reasoning? 

                                                        
1 Each turn taken by a dialogue participant is numbered for reference.  
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E (14): A quadrilateral could be a parallelogram and it’s not a square and it’s not a rectangle. But 
it could be a rectangle that isn’t a square.  

O (15): Yeah cause “not a rectangle” that’s just a parallelogram then, or a square. So I would say 
that it’s true.  

E (16): Or it could be angled [holding forearms up as parallel diagonal lines] or it could be 90 
degrees [rotating arms to vertical orientation], it could be anything. It could be a rectangle if 
it’s not a square. So, like, if it’s not a square, it could still be a rectangle. This is saying, “it’s 
either a square or it’s not a rectangle.” It could be a square, it could be a rectangle, it could 
be, like, an angled quadrilateral. So it’s giving you, yeah like the or statement is like, “If it’s 
not a square, it can’t be a rectangle either,” but it could be a rectangle if it’s not a square.  

O (17): So it’s either a square or a parallelogram, which is not a rectangle. So the only, so 
actually the only way that this is false if the “any quadrilateral” is a rectangle.  

E (18): Yeah. 
O (19): So, based on that I would say false then. Cause it’s “not a rectangle,” and you’re given a 

rectangle, then that doesn’t satisfy either.  
E (20): Right…  
O (21): [Now considering B10] Okay, so then I would say that’s false too.  
E (22): Yeah. Cause it’s basically like a third thing it could be that doesn’t satisfy those two.  
I (23): So explain the “third thing.”  
E (24): Like a parallelogram that is at angles isn’t considered a rectangle, is it? 
I (25): No. It is not a rectangle.  
E (26): Right. Cause a rectangle is 90 degrees all around. It would be like, is a square, or it’s a 

rectangle, or is a parallelogram.  
I (27): So you are kind of forming three groups, there’s that stuff that’s like squares, rectangles, 

and… other stuff like parallelograms.  
E (28): If they included all possible quadrilaterals, but this is pretty much saying there is only 

two types of quadrilaterals, when there could be a third… I think there’s an instance where 
neither of those would be satisfied, but it would still be a quadrilateral.  
This episode exemplifies several notable trends in the students’ reasoning processes. Even by 

this task on the second day, students’ reasoning was still highly focused on the mathematical 
subject matter rather than on abstracting to some generalized syntax (p’s and q’s or truth tables). 
This was a consequence and intention of our task design, but it highlights how unnatural classical 
logical abstraction is for students, even when an expert would estimate it valuable for solving the 
tasks provided. Study participants spent much more time and displayed more diverse strategies 
when reasoning about the geometric items as compared to many others. This was not because 
they were not aware of the relevant warrants such as “all squares are rectangles,” though the 
students had to elaborate how such claims interacted with the given disjunctions. In other cases, 
students had difficulty with geometric items because they lacked a clear means of enumerating 
the examples for their Case-Based Sentential Testing.  

In this episode, however, Eric quickly divided all quadrilaterals into three relevant cases: 
squares, rectangles, and all others. Ovid seemed to need to find some representative for the third 
category, which is why he paraphrased “not a rectangle” with “is a parallelogram” in turns 2 and 
15, but did not challenge the three-case partition. Ovid took some time to understand Eric’s 
argument that one of the three cases was not covered by the given conditions, so Eric had to state 
and restate his thinking. To do so, he alternated between an If Not… Then… Paraphrase (turns 
12 and 16) and an Either… Or… Paraphrase (turn 16). In this way, participants in the study often 
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alternated between the various strategies either for the purpose of convincing themselves or their 
partner of the verity or falsity of a given statement. Sometimes their grasp on a single 
interpretation was tenuous enough that their partner’s alternative explanation shifted their 
interpretation and they would abandon the previous. As Dubinsky and Yiparaki (2000) noted, “It 
was as though the statement was a window from which they were looking out. The students 
described what they saw looking out the window, but they did not see the window itself” (p. 23). 
The goal of the guided reinvention experiment was to make students more aware of the window 
of interpretation, but often students shifted or maintained various interpretive stances without 
being able to control or compare the various viewpoints. Such shifting of viewpoints helped the 
students reach equilibrium in their understanding of each statement, but was not always 
sufficient for systematizing their linguistic interpretation. It is these varying patterns of 
interpretation that we equate with Stenning and van Lambalgen’s (2004a) notion of reasoning 
toward an interpretation before reasoning from an interpretation. Eric came to a stable 
understanding of B9 and its relationship with the set of quadrilaterals. Eric then reasoned from 
that interpretation regarding B10 in a way that was less productive.  

B10 is true because each of the two conditions cover two of the three categories in Eric’s 
partition of cases (squares, rectangles, and everything else). Instead of seeing this new referential 
structure, Eric anticipated that B10 would maintain the same one-to-one relationship between 
conditions and categories (turn 28) and that B10 would have a counterexample (Figure 2). Eric 
was so convinced of this that he spent about 10 minutes trying to identify which of his three 
cases would serve as a counterexample, often shifting his interpretation of the disjunction to suit 
his desired outcome that it be false. Eric’s anticipation represents a form of reasoning about 
logic because Eric recognized a referential relationship in a disjunction and abstracted that 
relationship beyond the particular conditions in the statement. Unfortunately, the structure that 
Eric abstracted was not generalizable because conditions such as “is a rectangle” and “is not a 
square” can entail multiple categories in his partition of the set of quadrilaterals. As we stated 
before, study participants did not generate a structure for reasoning about quantified disjunctions 
that approximated the Venn diagram, but this is not to say that they did not attempt to abstract 
certain structures such as Eric’s Two Out of Three pattern he observed in B9.  

 
Figure 2: Eric’s abstraction of the referential structure of B9. 

When asked to explain why there were only three relevant categories, Eric and Ovid were 
unable to justify this choice. They instead began citing other categories of quadrilaterals such as 
trapezoids and rhombi. The space of quadrilaterals was for them already partitioned by familiar 
categories rather than by the novel partition induced by the conditions in the statement (as shown 
in Figure 1). Only after the interviewer prompted the students to classify each of the cases 

“is a square” “is not a rectangle” “is not a square” “is a rectangle” 

“only two types of quadrilaterals” 

Statement B9 Statement B10 
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according to the two conditions in the statement and group those with the same truth pattern did 
the students recognize why there were only three relevant cases (since there are, for instance, no 
non-rectangle squares). They were soon able to abstract the identification of rhombi and 
parallelograms into non-square non-rectangles, but this connection had not occurred to them 
prior to interviewer prompting. Thereafter, Eric and Ovid became relatively fluent with the four 
possible types of examples (TT, TF, FT, and FF), but they consistently represented each 
possibility by an exemplar rather than reasoning about the abstract truth-value pattern alone.   

Conclusions and Implications 
Consistent with prior literature, students did not begin the experiment with fixed, content-

independent meanings for or, as revealed by the diverse behaviors they exhibited in interpreting 
mathematical disjunctions. Table 2 organizes these behaviors into five categories: non-quantified 
strategies, pragmatic strategies, property-based strategies, case-based strategies, and instances of 
reasoning about logic. While the non-quantified strategies show a clearer progression from non-
normative to normative modes of interpretation, the progression is less clear for the various 
strategies students used for quantified disjunctions. This reflects the fact that study participants 
were able to reinvent the standard truth-functional definition for or when the two propositions 
had fixed truth-values (as in the non-quantified case or statements like A9), but did not reinvent 
any strategy for assessing non-quantified disjunctions that approximated the Venn diagram 
without explicit guidance. That is to say, the standard truth function emerged rather naturally 
from students’ own strategies once they began to attend to and reflect on those strategies. While 
students used several recurrent strategies for quantified disjunctions that we as researchers could 
identify, students struggled to reflect on and generalize them. Furthermore, we hypothesize that 
the case-based nature of most of their strategies inhibited their development of a Venn diagram 
type strategy for assessing disjunctions: namely that the union of the sets entailed by the two 
conditions is the universal set. As such, we expect that instructional activities that help students 
connect properties with sets rather than single cases might better facilitate the emergence of more 
conventional and generalizable modes of interpretation for quantified disjunctions.  
Non-quantified 
strategies 

Pragmatic strategies Property-based 
strategies 

Case-based 
strategies 

Reasoning about 
logic 

False-False Heuristic Semantic affirmation Semantic 
substitution 

Case-based 
sentential testing 

Comparing 
connectives 

True-True Heuristic Minimal disjunction Categorical Partition “If not… then…” 
reasoning 

Comparing 
interpretations 

Fails Both Heuristic Deontic paraphrase   Abstracting 
referential structure 

Exclusive or    Defining or 
Table 2: Categories of student interpretive behaviors regarding mathematical disjunctions.  
The pragmatic strategies especially demonstrate how students initially framed some 

statements in ways incompatible with the standard logical form of quantified disjunctions 
(∀! ∈ !,!(!) ∨ !(!)). Researchers have tended to assume that all of these statements are of the 
same logical form, independent of any reader’s interpretation, but we concur with Stenning’s 
(2002) caution against such assumptions because, “Talking of… finding form in content could be 
misleading if it gave the impression that there is a unique form waiting to be found. The skill can 
as well be thought of as imposing form on content which more adequately captures its active 
nature and the range of outcomes” (p. 195). The goal of our teaching experiment was to help 
students identify generalizable interpretations they could apply to all of the given disjunctions, 
which would entail them framing each statement in a uniform way. Students certainly began to 
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recognize each statement as being composed of two components that have independent truth-
values and that the overall truth-value depended upon the component truth-values. However, 
their methods of identifying and testing cases largely depended upon the semantic context. Their 
use of property-based strategies relied on the availability of an exhaustive partition of familiar 
categories such as <, >, and = or some problematic paraphrase to a tautology.  

We highlight instances of students reasoning about logic by which we mean conscious 
recognition the problems that formal logic solves as well as students’ solutions posed for these 
problems. In our study, this generally entailed systematizing their interpretations and strategies 
for assessing mathematical disjunctions. We identified at least four types of reasoning about 
logic in these teaching experiment, as listed in Table 2. Initially, the or connective remained 
ostensibly invisible to study participants. Once students attended to the or, they used several 
strategies to find appropriate meanings for it. They compared it to the connective and as well as 
comparing their interpretation of or across provided disjunctions. Eric’s anticipated solution to 
B10 also represented reasoning about referential structure, though it did not prove generalizable. 
In several such cases, students spontaneously adopted some generalized language for defining or 
or discussing conditions for declaring disjunctions true or false.  

We propose this construct as a viable way to define and elicit “logical structure” within 
students’ own mathematical activity (as opposed to in language or meaning itself). While this 
does not preclude research trying to describe the implicit logic of students’ preconscious and 
untrained reasoning, we think it constitutes a necessary direction for mathematics education 
research on proof-oriented mathematics instruction. This is because students must be trained to 
consciously impose normative logical structure in their reasoning about mathematical content. 
Such structure does not a priori reside in students’ thinking or in mathematical language, as our 
data demonstrate. Rather, this structure is comprised of a useful set of conventions of linguistic 
interpretation that solve a set of problems that students may need to recognize as problematic 
before they will adopt them as useful and later intuitive. Certainly for mathematicians, these 
conventions codify “what the statements say,” but students may need to look at the language 
more consciously before it will “speak to them” in the same way.  
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How do mathematics majors translate informal arguments into formal proofs?  

Dov Zazkis Keith Weber Juan Pablo Mejía-Ramos 
Arizona State University Rutgers University Rutgers University 

In this paper we examine a commonly suggested proof construction strategy from the 
mathematics education literature—that students first produce an informal argument and then 
work to construct a formal proof based on that informal argument. The work of students who 
produce such informal arguments when solving proof construction tasks was analyzed to 
distill three activities that contribute to students’ successful translation of informal 
arguments into formal proofs. These activities are elaborating, syntactifying, and 
rewarranting. We analyze how engaging in these activities relates to students success in 
proof construction tasks. Additionally, we discuss how each individual activity contributes to 
the translation of an informal argument into a formal proof. 

Key words: [proof; argumentation; Toulmin scheme; formalization] 

Proving is central to mathematical practice. Consequently, a primary goal of advanced 
mathematics courses at the university level is to have mathematics majors become proficient 
at writing proofs. Unfortunately, research has demonstrated that this goal is rarely met. 
Numerous studies have documented that mathematics majors perform poorly when presented 
with proof construction tasks (e.g., Alcock & Weber, 2010; Hart, 1994; Iannone & Inglis, 
2010; Moore, 1994; Weber, 2001; Weber & Alcock, 2004). Researchers have documented 
many causes for mathematics majors’ difficulties in writing proofs, including a poor 
conceptual understanding (Hart, 1994; Moore, 1994), a lack of proving strategies (Weber, 
2001), and not knowing where to begin when given a proving task (Moore, 1994). However, 
research on how mathematics majors can or should successfully write proofs has been 
comparatively sparse. In this paper, we examine one suggestion from the literature—that 
students can first produce informal arguments for why a statement is true and then base their 
proofs on these informal arguments (e.g., Garuti, Boero, & Lemut, 1998; Raman, 2003; 
Weber & Alcock, 2004). 

Theoretical perspective 

Basing proofs on informal arguments 
Boero (1999) observed that a proof—the product of one’s mathematical reasoning—must 

satisfy certain formal constraints, but the reasoning used to generate this proof need not. In 
particular, when proving a statement, one can first construct an informal argument that 
convinces oneself that the statement is true and then use this informal argument as a basis to 
construct a proof (e.g., Garuti, Boero, & Lemut, 1998; Raman, 2003; Weber & Alcock, 
2004). There is a difference between the informal arguments and proofs that one may 
generate. An informal argument may be viewed as a form of personal persuasion (Douek, 
2009) where one convinces oneself that a mathematical assertion is true. A proof is a form of 
validation where one convinces oneself that the assertion is a necessary logical consequence 
of things one knows to be true (Douek, 2009; Duval, 2007).  

To distinguish between an informal argument and a proof in an advanced mathematical 
context, we follow Stylianides (2007) who proposed assessing whether an argument is a 
proof along three criteria: (i) the facts that are taken as the starting points of the proof, (ii) the 
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representation system that is used, and (iii) the validity of the methods of inference used in 
the proof.  

(i)! In a proof, each assertion must be an acceptable assumption (e.g., an axiom, a 
definition), a statement accepted by one’s mathematical community as true within this 
context (often because it had been proved previously), or inferred from previous 
assertions. In contrast, in an informal argument, assertions merely need to be statements 
that the individual believes are true. 
(ii)!Mathematical proofs are written in a unique representation system using a 
combination of natural language, algebraic notation, and logical symbols (cf., Weber & 
Alcock, 2009). Each term in the proof has a precise meaning. Informal arguments may 
express mathematical concepts in other ways, such as using graphs and diagrams. They 
may also express ideas less precisely. For instance, in an informal argument, one might 
say, “f(x) will eventually overtake g(x)” rather than “there exists a real number c such that 
if a>c, f(a)>g(a)”. 
(iii)! In a proof, new statements need to be deduced from previous statement via a valid 
warrant—that is, a method of deduction that is accepted as valid by the mathematical 
community in that context. In an argument, new statements may be inferred from 
previous ones by a personal warrant—a method of inference that the individual believes 
is likely (or perhaps guaranteed) to yield true statements. As opposed to a proof, an 
informal argument may, for instance, involve generalizing from a particular example, 
making a perceptual inference about a function from its graph, or making an abductive 
inference.1 

Benefits of informal arguments in proving 
In the past two decades, a number of researchers have advocated that students base their 

proofs on informal arguments. This is a driving force behind the research program of the 
Italian school, whose proponents endorse proofs having a cognitive unity where, under 
particular circumstances, there is a continuum between a student’s production of a conjecture 
and how the student proves it (e.g., Bartolini Bussi, et al., 2007; Garuti, Boero, & Lemut, 
1998; Pedemonte, 2007). Raman (2003) contended that it is desirable for students to base 
their proofs off a key idea, where a key idea connects students’ informal private ways of 
knowing why a statement is true with the formal proof that students produce for public 
consumption.  

Support for these recommendations typically comes from the analysis of episodes of 
students successfully basing proofs off of informal arguments (e.g., Alcock & Weber, 2010; 
Douek, 2007; Garuti, Boero, & Lemut, 1998). In these episodes, students often gain insights 
by studying informal representations of mathematical concepts (e.g., graphs, diagrams, 
prototypical examples) and/or using non-deductive methods of inference (e.g., generalizing 
from a specific example). These insights appeared to be easier to discern via non-deductive 
reasoning than if one worked exclusively at a formal level. For instance, it is often easier to 
see that a function is increasing or strictly positive by studying its graph than working with its 
formula. 

                                                   
1"To"avoid"misinterpretation,"we"deliberately"avoid"making"both"psychological"or"normative"judgments"
on"whether"personal"warrants"or"valid"warrants"provide"complete"conviction."For"instance,"philosophers"
argue"that"some"perceptual"inferences"can"and"should"provide"complete"conviction"under"some"
circumstances"even"though"most"mathematicians"would"not"consider"these"to"be"valid"(e.g.,"Azzouni,"
2013)."Likewise,"a"string"of"valid"inferences"might"not"provide"complete"conviction."For"an"extended"
discussion"of"these"issues,"see"Weber,"Inglis,"and"MejiaJRamos"(2014)."
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Researchers have touted a number of benefits for having students base proofs on informal 
arguments, including improved success on proof writing tasks (Douek, 2007), greater 
learning opportunities (Weber, 2005), a better understanding of the proving enterprise in 
mathematics (Raman, 2003), a better appreciation of proof as a problem solving tool 
(Schoenfeld, 1991), and greater conviction in the propositions that are proven (Weber & 
Alcock, 2009). 

Limitations to basing proofs on informal arguments 
Duval (2007) cautioned that there is often a large gap between arguments and proofs; 

bridging this gap can be a difficult and cognitively complex task. To highlight this difficulty, 
Samkoff, Weber, and Lai (2012) asked eight research mathematicians at prestigious 
universities to prove the following claim: “Prove that f(x)=sin(x) is not injective on any 
interval of length greater than π”. All eight mathematicians drew a graph of the sine function 
and used this graph to convince themselves that the statement was true, yet producing a proof 
of this statement was deceptively difficult. Participants spent an average of 18 minutes 
completing the proof and only four of the proofs were fully valid. If translating an intuitive 
argument into a proof in calculus is challenging for research mathematicians, we can expect 
that this activity may be daunting for undergraduates. While the research literature contains 
numerous examples of students successfully basing proofs of informal arguments, there are 
also instances where students were unable to make this translation (e.g., Alcock & Weber, 
2010; Pedemonte, 2001, 2002). Reflecting on her own teaching with diagrams, a common 
representation on which to base an informal argument, Alcock (2010) wrote:  

Diagrams can provide insight, but it is not always easy for students to make detailed links 
between what is in the diagram and what is in a formal proof. This means that the step 
between seeing that a result must be true and proving it can seem insurmountable. 
(p. 232). 
Based on these findings, it seems overly optimistic to hope that most students can base 

their proofs off of informal arguments without greater instructional support. One goal of this 
paper is to describe the activities that successful mathematics majors engage in to write 
proofs based on informal arguments. Distilling the specific activities that students participate 
in to write proofs in this way may be a fruitful starting point for researchers hoping to design 
instruction that improves students' ability to produce proofs based on informal arguments.  

Research on bridging the gap between argumentation and proof 
In recent years, researchers concerned about the gap between informal arguments and 

proofs have begun to look at how this distance can be traversed.  Much of the research can be 
divided into two categories: analyzing the types of arguments that are easier to translate into 
proofs and designing classroom environments that help bridge this gap. 

In the first category, Pedemonte and her colleagues have conceptualized the distance 
between the informal arguments that students construct and the formal proofs that could 
result from those arguments (Pedemonte, 2007, 2008; Pedemonte & Reid, 2011). For 
instance, Pedemonte observed if the structural distance is too great—that is, if the methods of 
inference used in the informal argument are significantly different from the deductive 
inferences required in the corresponding formal proof—students will have trouble producing 
this proof (e.g., Pedemonte, 2007). Similarly, if the content distance is too great—that is, if 
the mathematical ideas in an informal argument and its corresponding proof differ—students 
will face similar difficulties in writing a proof (Pedemonte, 2001). This analysis has yielded 
useful insights into why students have difficulty basing their proofs off of informal arguments 
as well as what types of informal arguments are likely to serve as a good basis for a proof. 
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The second category of studies conceptualizes the role of the instructor in helping 
students build proofs of informal arguments, and includes creating instructional environments 
that encourage this behavior (e.g., Bartolini Bussi et al., 2007) and teacher moves that may 
facilitate students with this transition (e.g., Stylianides, 2007). 

In this paper, we will explore how mathematics majors can and do bridge the gap between 
informal arguments in mathematical proofs. To investigate this broad issue, we will address 
the following questions: 

(i)! What activities do mathematics majors engage in when they successfully write a proof 
based on an informal argument? 

(ii)!To what extent can these activities account for their success? 
The answer to these questions can inform instruction by highlighting what skills and 

practices students may need to learn to write proofs based on informal arguments. 

Methods 

Corpus of data used in this study 
The data from this paper came from a large-scale study in which 73 mathematics majors 

were observed constructing 14 proofs. For the sake of brevity, we only report the details of 
the study germane to this paper. We recruited 73 mathematics majors from a large public 
university in the United States who had recently completed a second linear algebra course. 
Most of these participants were seniors. Participants met individually with an interviewer for 
two sessions that lasted approximately 90 minutes each. In one session, the participants 
worked on linear algebra proving tasks; in the other, they worked on proving tasks in 
calculus. In each session, participants were presented with a proving task that could be 
approached either syntactically or semantically (in the sense of Weber & Alcock, 2004). 
Participants were asked to “think aloud” as they completed this task and were told to write up 
a proof as if they were submitting it for credit on a course exam. Participants were given up 
to 15 minutes to complete each task. At any point during their work, the participants had 
access to a computer with a graphing calculator application that enabled participants to make 
basic calculations and view the graph of any function that they wished. This process was 
repeated until the participant had completed all seven linear algebra or calculus tasks. 

This corpus yielded a total of 1022 proof attempts across the 73 participants. However, in 
this paper, we focus on the 37 proof attempts where participants provided an informal 
argument for why the statement was true. We used the following coding scheme to determine 
when an informal argument occurred. We flagged for each time a participant represented a 
concept or a situation. We coded the representation as syntactic if it involved stating the 
formal definition of a concept or expressing a situation algebraically. We coded the 
representation as semantic if the participant represented the concept in some other way, such 
as using a diagram, graph, or prototypical example. We flagged for each time a participant 
drew an inference (i.e., produced a new piece of information that they believed to be true). 
Whenever possible, we attributed each inference that a participant drew to a specific 
representation. If the participant drew an inference from a syntactic representation, we coded 
this as a syntactic inference. If the participant drew an inference from a semantic 
representation, we coded this as a semantic inference. (e.g., if a participant showed f(x) was 
increasing by using algebraic manipulation to show f '(x)>0, that would  be a syntactic 
inference. If the participant inferred this from looking at the graph of f(x), that would be a 
semantic inference). We operationalized the notion of informal argument as any multistep 
argument concluding with the statement to be proven that contained at least one semantic 
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inference. There were 37 such arguments in our dataset. There was a high level of inter-rater 
reliability (greater than .7) for each step in the coding process across the large dataset. 

Analysis 
Each final proof that the participants produced was coded as being valid or invalid. Two 

research assistants, who are not authors of this paper, coded each proof as valid or invalid. 
There was 96% agreement on their coding across the data set. Among the 37 proof attempts 
considered in this study, 14 were coded as valid and 23 were coded as invalid.   

Following Pedemonte (2007), for each of the 37 proof attempts, we used the basic 
Toulmin (2003) scheme to analyze each inference that the participant drew in his or her 
informal argument and final proof. According to the basic Toulmin scheme, each inference 
(or mini-argument) contains three parts, the claim (C) being advanced, the data (D) used to 
support the claim, and the warrant (W) that necessitates how the claim follows from the data. 
In many cases, a warrant was not explicitly stated by the participant. In these cases, if 
possible, we would infer the warrant that the participant was using. (e.g., if the participant 
said, “a and b are negative so ab is positive”, we could infer the warrant that connected the 
data, “a and b are negative”, to the claim, “ab is positive”, is the deductive warrant that “the 
product of two negative numbers is a positive number”). Comparing Toulmin schemes 
allowed us to notice differences between the participant’s initial informal argument and their 
final proof. 

For the 14 successful proof attempts, we used an open coding scheme in the style of 
Strauss and Corbin (1990) to categorize the ways that the mathematics majors attempted to 
transform their informal argument into a proof. This process yielded three categories of 
activity: syntactifying, rewarranting, and elaborating.2 Once these categories were created and 
defined, we went through each of the 37 proof attempts, seeking out any evidence that 
participants attempted to engage in these activities.  

4. Results 

General observations 
The 37 informal arguments analyzed for this report were produced by 22 participants. 

Twelve participants produced an informal argument on a single task and collectively 
produced two valid proofs on their 12 attempts. Ten participants produced informal 
arguments on multiple tasks in this study (collectively 25 across the ten participants) and 
produced proofs on 12 of these attempts. It is interesting to note that those who produced 
multiple informal arguments had a much larger success rate on writing formal proofs than 
those who produced only a single informal argument (48% vs. 17%). An informal argument 
was produced for nine of the fourteen tasks. The specific tasks for which students produced 
informal arguments are available in Table 1. This table details the number of informal 
arguments produced for each task and the number of these informal arguments that were 
accompanied by correct proofs. 

 
 
 

 
                                                   
2"Two"other"categories"of"activities,"termed"rearranging"and"consolidation,"emerged"in"the"coding"process."
These"activities"involved"reordering"inferences"and"removing"duplicate"inferences"from"arguments,"
respectively."They"are"not"discussed"here"because"they"occurred"infrequently"and"had"little"bearing"on"
student"success"with"proofs."
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Task C1 C2 C3 C4 C5 C6 C7 L1 L2 L3 L4 L5 L6 L7 
# of informal 
arguments  

7 4 8 1 4 8 0 0 0 0 2 0 1 2 

# of correct 
proofs 

2 1 2 1 1 5 0 0 0 0 2 0 1 0 

 
Table 1: Informal arguments by task 

Categories of activity 

Elaborating 
We regarded elaborating as occurring if participants attempted to add more detail to the 

proofs that were being constructed. This occurred in two different ways: Participants would 
justify statements that they took for granted (D) in their informal arguments by adding 
supporting data and warrants (D0 and W0), or make explicit warrants that were initially 
implicit (Wi) in their informal arguments. We illustrate this in Figure 1. 
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Figure 1. Elaborating 

 
The following example illustrates the first type of elaboration: justifying claims initially 

taken for granted. It occurred during a participants work on problem C6 (Prove that 
sin3(x)dx = 0

−a

a
∫  for any real number a)  

Student A: It [sin3(x)] must be an odd function. […] Right it'll be symmetrical across the 
identity line, which would mean that the integral from negative a to zero should 
be the negation of zero to a. And so it would be zero. 

In this excerpt the participant has an informal argument that sin3(x)dx = 0
−a

a
∫ . Notice 

that within this argument the assertion that sin3(x) is odd is treated as a known fact (data). 
Immediately following this informal explanation the participant begins to elaborate this 
statement by providing a justification for this assertion. 

Student A:  I'm trying to think how to show that sin of x cubed is odd. So basically I'd have 
to show that f of negative x has to equal negative f of x. Is that right... yes. So sin 
cubed of negative x... sine by definition is an odd function [writes sin(-x)=-
sin(x)]. Uh Yeah. So sin cubed negative is equal to sin negative x times sin 
negative x which is equal to sin of x times sine of x times sin of x. Which is sin 
of x cubed. Quantity cubed. [writes: 
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sin3(-x)=sin(-x)sin(-x)sin(-x)=(-sin(x))(-sin(x))(-sin(x)) =-sin3(x)] So it's odd. 

In the above excerpt the participant uses sin(x) being odd (D) to justify that sin3(x) is odd 
(C) given a simple algebraic manipulation (W). In doing so he provides additional 
information regarding why the statement sin3(x) is odd is true. Student A shifts the starting 
point for the proof from sin3(x) is odd to sin(x) is odd, which he believed to be more 
mathematically appropriate.  

A student may also elaborate by replacing an implicit warrant in their informal argument 
with an explicit one in their formal proof. The following excerpt is taken from student B’s 
work on problem C1 (Suppose f(0)= f '(0))=1. Suppose f '(x)>0 for all positive x. Prove that 
f(2)>2). 

Student B:  If the second derivative is greater than zero then f prime of x is increasing. So we 

know that f prime of zero equals one[draws: ]. So the derivative at zero 
equals one and the derivative is always increasing then the slope is greater than 
one after zero. Which means f of 1 is greater than one and f of 2 is greater than 
two. Well it makes sense. 

In the above student B produced an informal argument that relied on a graph. Notice that 
he, among other things, argues that f '(x) being increasing and f '(0)=1 (D) implies that            
f '(x)>1 for x>0 (C). The implicit warrant here is the definition of increasing. Later when he 
writes a formal proof this warrant is no longer implicit: 

Student B:  [saying what he writes] If f double prime of x greater than zero, then f prime x is 
increasing for all positive x. Thus for any x sub 1 comma x sub two in the 
interval zero to infinity such that x sub 2 is greater than x sub 1 f prime of x sub 
2 is greater than f prime of x sub 1. f prime of zero equals one. Thus f prime of x 
sub 2 is greater than f prime of x sub 1 is greater than one. The derivative at any 
point greater than zero is greater than 1… 

Notice that in his proof he uses the formal definition of increasing (x2>x1 ⇔ f(x2)>f(x1)). 
Since this was an implicit warrant in the informal argument and is now used explicitly as a 
sub-step in the proof, elaboration has occurred. Notice, however, that the underlying 
reasoning has not changed. So even though the proof involves taking smaller steps than the 
informal argument the path the reasoning follows is similar. 

Syntactifying 
A participant was coded as engaging in syntactifying when he or she attempted to take a 

statement in the informal argument that was given in what he or she perceived to be non-
rigorous terms and translate it into what he or she considered to be a more appropriate 
representation system for proofs. Such actions included removing references to a diagram 
used in the informal argument and replacing them with more conventional mathematical 
terminology, or introducing algebraic or logical notation. In terms of Toulmin’s scheme, we 
can regard syntactifying as translating the data (D), claim (C) and/or warrant (W) of an 
informal argument into corresponding data (D'), claim (C') and/or warrant (W') in another 
representation system, without intending to change the original meaning of D, C or W. We 
illustrate this with Figure 2. 
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Figure 2. Syntactifying 

 
The following informal argument occurred in student C’s work on problem C3 (Prove the 

derivative of an even function is odd.) 
Student C:  Okay, Like okay, since it's symmetric about the y-axis, so it's like a mirror and 

then all the tangent lines, all the derivatives would be like some values [pointing 
at the left side of the graph of an even function] and then this would just, since 
it's a mirror would be the negative of them [pointing at the right side of the 
graph]. So it would be odd. 

In the above excerpt student C draws a semantic inference to justify the result. She argues 
that since even functions are symmetric about the y-axis (D) the y-axis acts like a mirror (C). 
This mirror property is then used as data to justify that − f '(a) = f '(−a)  for all a, which is in 
turn used to conclude that the function would be odd. The warrants used are implicit and 
perceived from the graph of x2, which is used as an example of a generic even function. In the 
continuation of the script while constructing a formal proof she engages in syntactifying 
when she shifts away from discussing tangents in terms of the graph. 

Student C:  How do I put that into words? [...] This is what we want f prime of negative x 
equals negative f prime of x. [writes f '(-x)=-f '(x)]. Okay, so if we take the 
derivative at negative [pointing at a tangent of the graph of an even function left 
of the origin], this would be the negative of f of x’s derivative [pointing at a 
tangent of the graph right of the origin], which makes sense. So how do we get 
from f of negative x equals f of x [writes f(-x)=f(x)]? Use the definition? Okay 
lets try that. So, let’s see, f prime of x equals. So by the definition of derivative, 
its like, as this approaches this point [drawing a sequence of points of the graph 
approaching a point in that graph] then the tan line of that [drawing the 
corresponding secant lines]. This is the limit at a. Either way, f of x minus f of a. 

over x minus a.  [writes f '(a) = lim
x→a

f (x)− f (a)
x − a

 ] So, on once side [pointing at 

the graph with one hand and the algebraic expression with the other] it would be 
positive, and one side it would be negative. And that’s what we want. 

Notice that Student C first syntactifies both the end point and the starting point of the 
informal argument. She begins with the end point, stating that she is trying to show that          
f '(-x)=-f '(x). This syntactifies her claim that the derivatives on one side are the negation of 
the other. She then syntactifies the initial data when she writes that f(-x)=f(x). This analytic 
definition of even function replaces the graphical definition she used in her informal 
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argument. Although the chain rule can be used to warrant going directly from the data to the 
claim, which would ignore her previous informal argument regarding mirror tangents, she 
instead begins to build a proof based on her informal argument. Student C uses her graph to 
express the slope of a tangent at a point algebraically as the limit of the slopes of secants. As 
such, she syntactifies the claim that tangents to the graph at points reflected over the y-axis 
would have slopes that had the same magnitude but different signs. By syntactifying these 
statements of her informal argument she moved from working with semantic (graphical) 
representations to syntactic (analytic) representations; and in doing so she shifted to a more 
appropriate representation system for presenting proofs. 

Rewarranting 
Many informal arguments employ warrants that are not permissible in a proof. Such 

warrants include perceptual reasoning and generalizing from examples. A participant was 
engaged in rewarranting if the participant tried to find a new, more appropriate reason for a 
claim than the one used in their informal argument. In terms of Toulmin’s scheme, we can 
regard rewarranting as replacing a personal warrant (W) from the informal argument (i.e., a 
warrant that the participant believes is likely to yield or guaranteed to yield truth) with a valid 
warrant (W ⊕ ) (i.e., a warrant that the participant believes is considered valid by the 
mathematical community). This is illustrated in Figure 3. Essentially, the participant attempts 
to write a sub-proof that shows the claim is a valid deductive consequence of the data3. 
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Figure 3. Rewarranting 

 
Student D’s work on problem C3 (Prove the derivative of an even function is odd) 

illustrates this activity. 
Student D:  f is even. So let me just draw what an even function might look like. So across 

the origin. [Draws an arbitrary function with reflectional symmetry about the x-
axis]. […] So basically, if I look at a slope on this function [draws a tangent on 
the negative side of the previously drawn function], then I look on the other side 
[draws a mirror tangent on the positive side], it's the same slope but negative. So 
that's going to show that f prime is odd.  

In the above excerpt student D draws an arbitrary even function and produces an informal 
argument similar to the one student C produced in the syntactifying section. In this argument 
he uses the arbitrary even graph to argue that corresponding tangents of even functions have 
slopes that are negatives of each other. This inference regarding tangents and their slopes is 
then used as data to support the claim that the derivative of an even function is odd. The 

                                                   
3"Syntactifying a warrant differs from rewarranting since syntactifying does not change the underlying meaning 
of the warrant. For instance, replacing the semantic warrant “because the function y=f(x) lies above the line y=x 
in the Cartesian plane” with the syntactic warrant “because f(x)>x” is an example of syntactifying. Here the 
underlying meaning and usage has not changed, only the representation system used to communicate it. There 
may be cases where it is difficult to disambiguate syntactifying of a warrant and rewarranting. However, we did 
not encounter such cases in our data. The research team agreed regarding which translation activity occurred 
within particular excerpts."
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implicit warrant used to support this claim is that slopes correspond to derivatives. In 
summary, the informal argument in the above excerpt uses a sequence of semantic inferences 
to link the data that f(x) is even to the claim that f '(x) is odd. Immediately following his 
informal argument student D begins to construct a plan for turning his informal argument into 
a proof: 

Student D:  So if I look at the definition of derivative as a slope and then I find the derivative 
on the negative side using the fact that it's even I should get the negative of the 
derivative, showing that f prime is odd.  

In the above excerpt, student D expressed a plan for turning his informal argument 
regarding corresponding tangents into a formal proof. Student D explicitly makes this 
connection when he says “if I look at the definition of derivative as a slope.”  

Also, notice that he has constructed a plan for linking the newly syntactified data to the 
claim that the function is odd. This plan involves using substitution of the analytic definition 
of even to show that f '(-x)=-f '(x). The plan involves linking the data that f(x) is even to the 
claim f '(x) is odd using a warrant that is different from the link used in his informal 
argument. If he had stopped at this point he would have been coded as attempting to 
rewarrant, since he has not yet implemented his plan. The subsequent excerpt details his 
execution of the plan. 

Student D:  So I'll say that f prime of negative x equals f of negative x minus f of negative x 

plus h over h equals the limit of this [writes: f '(−x) = lim
h→0

f (−x)− f (−x + h)
h

] 

and it exists. And now because f is even I'm going to replace f of negative x with 
f of x. and I'm going to replace f of negative x plus h with f of x minus h [writes: 

= lim
h→0

f (x)− f (x − h)
h

]. But now because I have x minus h this is the same thing 

as the definition of derivative, of the negative of the derivative [writes: 

= − lim
h→0

f (x)− f (x + (−h))
−h

#

$%
&

'(
]. So I can just replace h with negative h. So the 

limit as h approaches zero is the same thing as the limit as negative h approaches 

zero [writes: = − lim
(−h)→0

f (x)− f (x + (−h))
−h

#

$%
&

'(
]. And that by definition is negative 

f prime of x [writes: = − f '(x) ]. And that means that it’s odd.  

In the above excerpt student D algebraically manipulates the limit definition of derivative 
to show that f '(-x)=-f '(x). This changes the nature of the warrant that links the data that       
f(-x)=f(x) to the claim that f '(-x)=-f '(x). The warrant in the original informal argument was 
semantic and based on the link between slope and derivative. It linked a graphical 
observation regarding mirror slopes (D) to the claim that f '(x) is odd (C). This warrant is 
replaced here by a string of algebraic manipulations. The new warrant is not simply a 
translation of the previous warrant into a new representation system that leaves the meaning 
of the warrant unchanged; it is a different route to linking the data and claim, one which is 
conducive to the analytic representation being used. 

As illustrated above student D does not view these arguments as wholly separate. He 
views the submitted analytic proof detailed in the above excerpt as a translation of the 
informal argument. In moving from a graphical (semantic) representation to an analytic 
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(syntactic) representation the warrants used need to shift in order to reflect the representation. 
This process of warrant replacement is what we term rewarranting. 

In general, we noticed that rewarranting usually occurred after the data and claim had 
been syntactified. This is likely because statements represented syntactically invite valid 
deductive reasoning. 

How all three activities contribute to translation 
Students who attempted to participate in all three activities had a much greater rate of 

success with producing correct proofs (this is discussed in detail in the prevalence of 
activities section below). Thus, it is useful to illustrate how all three activities work in tandem 
to contribute to the translation of an informal argument into a proof. Below is student D’s 
work on problem C6 (Prove that sin3(x)dx = 0

−a

a
∫  for any real number a)  

Student D:  Yeah, ok, so we are just going to use the fact that sin x is an even function [he 
means odd]. So if you look at this integral [shades the part of the sin3(x) graph 
left of the origin] and you look at that [shades the part of the sin3(x) graph right 
of the origin] they are the same area because sin is the same function. It's just 
negative. Yeah okay. 

In the above excerpt Student D has an informal argument that sin3(x)dx = 0
−a

a
∫ , which 

relies on intuitions regarding the symmetry of the graph of sin3(x), which he sketched as he 
read the problem statement. Although he incorrectly identified the function as even instead of 
odd, he is still relying on the notion of odd symmetry when he says “they are the same area 
because sin is the same function. It's just negative.” This is an indication that he recognizes 
the role symmetry plays in the problem, but has mislabeled the type of symmetry. In the 
continuation of the excerpt he corrects this mistake and uses the three activities to translate 
his informal argument into a proof. 

Student D:  Lets just attempt to do the proof right now. We know sin is an even function, so 
sin of x equals... I'm sorry, sin is an odd function. Yeah, when I said even I 
meant odd. I'm just trying to confuse you.[…] It's an odd function, so negative 
sin of x equals sin of negative x [writes -sin(x)=sin(-x)]. Cube both sides and you 
get negative sin cubed equals sin cubed of negative x [writes -sin3(x)=sin3(-x)].  

At this stage he has corrected his earlier mistake regarding labeling sin3(x) as even instead 
of odd. He has also elaborated in a similar way to what Student A did in the elaborating 
section. That is, he is no longer treating sin3(x) being odd as initial data but instead uses sin(x) 
being odd as initial data and cubing both sides as a warrant to justify that sin3(x) is odd. 
Notice also that he is no longer referring to the symmetry in terms of the graph. He has 
instead expressed the oddness property in terms of algebraic notation and has therefore 
syntactified. In the continuation of the excerpt he begins to rewarrant the argument. 

Student D:  And then I'm going to use this fact [points at previously shaded graph]. So the 
integral from negative a to a of sin cubed of x dx equals the integral from 
negative a to zero of sin cubed of x dx plus the integral from zero to a of sin 

cubed of x dx [writes sin3(x)dx =
−a

a
∫ sin3(x)dx + sin3(x)dx

0

a
∫−a

0
∫ ]. And then 

for the one on the left I'm going to… flip it.  

At this stage student D has used the “areas cancel” intuition from his informal argument 
to create a strategy for connecting the data that sin3(x) is odd to the claim that 
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sin3(x)dx =
−a

a
∫ 0 . In other words he has concluded from his informal argument that the right 

side and left side will cancel and has broken up the integral into the two pieces which he 
intends to show cancel each other. This can be thought of as syntactifying his implied both 
sides cancel inference. He also begins to consider rewarranting strategies when he states 
“And then for the one on the left I'm going to flip it.” At this stage he has attempted to 
rewarrant by verbalizing an algebraic strategy but has not yet rewarranted.  

Notice that when working with the graph the fact that the sides cancel can be inferred via 
a visual warrant. However, in an algebraic context there is no simple one step procedure that 
affirms this cancelation. So justifying the cancelation in this algebraic context requires a 
different warrant to the one used in the informal argument. In the continuation of the excerpt 
Student D works to generate this alternate justification. 

Student D:  I'm going to do a change of variables because I want to get sin cubed of negative 
x. So that it will cancel out with this one. So I'll say u equals negative x [writes: 
u=-x]. d u equals negative d x [writes du=-dx]. So then I'll get integral from 
negative-negative a to negative zero sin cubed of negative x. I mean negative u. 

replace dx with negative du.[writes = sin3(−u)(−du)+ sin3(x)dx
0

a
∫−(−a)

−0
∫ ]  

Okay. And re-write it once more. So Integral from a to zero of sin cubed of 
negative u. I'm just making this more complicated than it needs to be. Negative 
sin cubed of u... negative du plus the same thing [writes 

= −sin3(u)(−du)+ "∫a

0
∫ ]. Yeah. And then when you flip a and b [we presume 

by a and b, student D was referring to the upper and lower bounds of integration] 
on the left side it just makes the whole thing negative [writes 

= − sin3(u)(du)+ sin3(x)dx
0

a
∫0

a
∫ ].[…] And remember x is a dummy variable. 

So they're the same thing. Yeah okay. [Writes “=0” and hands back paper.] 

 
In the above excerpt student D rewarrants the cancelation inference from his informal 

argument by replacing it with a series of algebraic steps. Specifically u substitution and the 
oddness of sin3(x) were used to manipulate the left integral into one equivalent to the 
negation of the right integral. Student D then uses “x is a dummy variable” to warrant the fact 
that the two integrals actually cancel in spite of them having two different variables. 

As illustrated by the above excerpts, each of the three translation activities played an 
important role in facilitating Student D's production of a correct final proof based on his 
informal argument. This occurred in spite of their being an error in his initial informal 
argument. It is likely that the process of translating the informal argument brought this error 
to the surface. So it may be the case that the translation activities, under certain 
circumstances, may function as mechanisms for error detection as well as mechanisms for 
translation of informal arguments. 
 

Prevalence of these activities in successful proofs 
In Table 2, we present the frequency with which a participant attempted to engage in 

these activities as a function of whether they were able to successfully produce a proof. As 
Table 2 illustrates, participants who successfully produced proofs were significantly more 
likely to engage in elaborating, syntactifying, and rewarranting, with the most pronounced 
difference occurring for rewarranting. Those who were successful in writing a proof usually 
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engaged in all three activities, while those who were not successful rarely engaged in all 
three.  
  Total        All three 
  Number Elaborating  Syntactifying Rewarranting activities 
Successful 14  11 (79%) 12 (85%) 12 (85%) 11 (79%) 
Unsuccessful 23  12 (52%) 15 (65%) 9 (39%)  4 (17%) 

 
Table 2: Relating the three activities to successful proving. 

 
Slicing the data another way, there were 15 instances in which a participant engaged in all 

three activities, and they succeeded in writing a proof 11 times (73% of the time). Here it is 
interesting to note that in three of the four instances in which engaging in all three activities 
did not yield a proof, the participant produced other informal explanations in this study. 
Collectively, these three participants produced six other informal explanations. In all six of 
these cases, they were successful in producing proofs. Among the 22 instances in which a 
participant did not engage in all three activities, the participants only succeeded in writing a 
proof three times (14% of the time); in two of those successful instances, the proof that was 
produced did not appear to be based on the informal argument.  

It is important to note that Table 2 examined whether a participant attempted to engage in 
the activity, not if they engaged in the activity successfully. Consequently, we believe a key 
factor in determining success in proof writing for these participants was their willingness to 
try to elaborate, syntactify, and rewarrant. 

Discussion 
The data in this paper contributes to the literature on bridging the gap between informal 

arguments and proofs. We highlighted three activities—elaborating, syntactifying, and 
rewarranting—that are used by students attempting to write a proof based on an informal 
argument. We used examples of student work to illustrate how each of the three activities 
contributed to the creation of a valid proof based on an informal argument. Elaboration adds 
additional details to an argument in part by justifying why assumed facts are true. This 
coincides with part (i) of Stylianides’ (2007) framework, when elaboration shifts what initial 
data is used as a starting point for a proof. Syntactifying is used to translate data, claims 
and/or warrants stated in terms of informal representations and the participants natural 
language to the representation system of proof. If successful, this results in an argument that 
uses the appropriate representation system (part (ii) of Stylianides framework). Finally, 
rewarranting which corresponds to part (iii) of Stylianides framework, is used to replace 
personal warrants with valid ones.  

We observed that there was a relative scarcity of informal arguments produced across this 
large data set (37 instances across 1022 proof attempts). We also noted that participants who 
produced multiple informal arguments were more likely to successfully produce proofs. From 
this observation, we conjecture that one reason that students have trouble bridging the gap 
between informal arguments and proofs is that they lack the experience of producing 
informal arguments. In this respect, we support research into the design of instructional 
environments that encourages students to do so (e.g., Bartolini Bussi et al., 2007). 

We also observed that participants who engaged in syntactifying, rewarranting, and 
elaborating once their informal arguments were produced enjoyed far greater success in 
proof-writing than those who did not. Consequently we hypothesize that some of students’ 
difficulties with bridging the gap between informal arguments and proofs is that students do 
not appreciate the importance of and are not able to successfully engage in elaborating, 
syntactifying, and rewarranting. Designing instruction where these activities are specifically 
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targeted has the potential to improve mathematics majors’ abilities to write proofs and would 
be a useful direction for future research. 
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Though commonly used in math and physics, the concept of frames of reference is not described 
cognitively in any literature. The lack of a careful description of the mental actions involved in 
thinking within a frame of reference inhibits our ability to account for issues related to frames of 
reference in students’ reasoning. In this paper we offer a theoretical model of mental actions 
involved in conceptualizing a frame of reference.  Additionally, we posit mental actions that are 
necessary for a student to reason with multiple frames of reference. This theoretical model 
provides an additional lens through which researchers can examine students’ quantitative 
reasoning. 
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Consider the following problems that students encounter routinely in high school:  
x Bobby is 3 years older than Lucy. When Bobby is x years old, how old will Lucy be? 
x A particular engine can propel a boat at a maximum of 32 miles per hour. The boat 

travels 30 miles upstream from Port Adele to Port Chimney and then back, at maximum 
speed. The captain dropped a branch in the water before starting, estimating the 
downstream current as 6 mph. Considering just travel time, how long will the round-trip 
take? 

x Yolanda and Sydney ran in the same marathon. Sydney ran 5/3 times as fast as Yolanda. 
If Sydney finished the 26.2-mile race in 4 hours, what was Yolanda’s average speed? 

Students often struggle to manage the dual perspectives required in each task (Bowden et al., 
1992; Panse, Ramadas, & Kumar, 1994; Monaghan & Clement, 1999); for instance, the first 
scenario provides a comparison of Bobby and Lucy’s age relative to Lucy’s age, then switches to 
describing Bobby’s age from Bobby’s perspective, and finally asks for Lucy’s age relative to 
Bobby’s. A student must similarly tease apart the ways in which the framing of information 
about quantities in a scenario switches between two frames in the other two examples. In our 
own work investigating teachers’ meanings on similar tasks, we identified a need to isolate the 
type of reasoning involved in answering the above tasks within quantitative reasoning. 

Our search of the literature provided just a few references, all in physics education, that deal 
with tasks of this nature (Bowden et al., 1992; Panse et al., 1994; Monaghan & Clement, 1999). 
In line with the physics terminology, we choose to describe the extra layer of complexity in the 
above problems as issues of “frames of reference”. In this report, we introduce what we mean by 
a conceptualized frame of reference and reasoning with frames of reference, and explain why 
this is an area that deserves attention by the math education community. 

A definition of the noun phrase “frame of reference” would suggest that a frame of reference 
is an object external to the person reasoning with it. Such a perspective does not align with our 
goal of describing what it might mean for an individual to conceptualize a frame of reference. 
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Therefore, we articulate the mental activity involved in conceptualizing and reasoning with 
frames of reference. While the products of the mental activity we describe align with the 
classical definition for frame of reference as a coordinate system or a system of measures, our 
emphasis is on the mental actions a student must employ to conceptualize a frame of reference. 
In particular, we use the phrase “frame of reference” to refer to a set of mental actions through 
which an individual might organize processes and products of quantitative reasoning (Thompson, 
2011). As such, conceptualizing frames of reference and quantitative reasoning are interrelated, 
with frames of reference providing an additional lens with which to look at quantitative 
reasoning.  

Conceptualizing a Frame of Reference 
An individual can think of a measure as merely reflecting the size of an object relative to a 

unit or he can think of a measure within a system of potential measures and comparisons of 
measures. An individual conceives of measures as existing within a frame of reference if the act 
of measuring entails: 1) committing to a unit so that all measures are multiplicative comparisons 
to it, 2) committing to a reference point that gives meaning to a zero measure and all non-zero 
measures, and 3) committing to a directionality of measure comparison additively, 
multiplicatively, or both.  

Committing to a Unit 
 As an example, a student can think about the measure “4.5 feet” in different ways. If the 
student focuses only on the value “4.5” and sees the unit as of secondary (or perhaps no) 
importance, there is no meaningful connection between the unit and the value for this student. In 
contrast, if the student sees a multiplicative relationship between the unit and the value, this 
provides a meaning for the measure. In this second case, “4.5 feet” is a length that is 4.5 times as 
long as the length of an object that is taken as a standard foot. A student who sees this 
relationship and the importance of unit in establishing meaning for each measure has taken the 
first crucial step towards conceptualizing a frame of reference. 

Committing to a Reference Point 
As a demonstration, consider the phrases “distance Ben walked” and “distance Ben walked 

from his house today”. Both phrases describe quantities. The first phrase is vague and leaves a 
reader wondering if the quantity described is Ben’s distance walked today, Ben’s distance 
walked in his room, or the distance Ben walked since his birth. As such, the ambiguity in the 
phrase “distance Ben walked” creates ambiguity in the meaning of a measure. Saying the 
measure of “distance Ben walked” is m units fails to provide usable information for an individual 
trying to reason about the situation. Moreover, the vagueness of “distance Ben walked” would 
make it possible for an individual to inadvertently change his meaning for “distance Ben walked” 
while reasoning within a complex situation. He might define formulas or expressions to model 
the situation without understanding that his inconsistent meanings for the quantity make his 
model incoherent. Another possibility is that two individuals can read a situation and internally 
ascribe different meanings to the quantity “distance Ben walked” (by assigning different 
reference points) without realizing that they have done so. They might then discuss a problem 
and never realize that they are talking past one another because they are operating and speaking 
within two different frames of reference. 

The specificity of “the distance Ben walked from his house today” makes it a more useful 
description of a quantity. In particular, we can confidently say that if the measure of the quantity 
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“distance Ben walked from his house today” is zero, then Ben hasn’t left his house today. 
Similarly, if the measure of that quantity is b units, b > 0, then Ben walked b units outside of his 
house. The commitment to a reference point attributes a meaning to every measure of the 
quantity and avoids the problems associated with ambiguity described above. 

Committing to a Directionality of Measure Comparison 
Consider a student designing a study to investigate the relationship between people’s weight 

and Vitamin C consumption. The student plans to weigh each participant at the start and at the 
end of a two-month period, during which the participants will consume various amounts of 
Vitamin C daily. The student plans to examine the changes in the participants’ weights. This 
student could imagine these comparisons in two different ways. If the student is oriented to think 
always of positive changes, then the student would make the following kinds of statements: 
“Josh is 6 pounds heavier at the end of the study” and “Wanda is 6 pounds lighter at the end of 
the study”. In this case, the student has not thought of the comparison of measures within a frame 
of reference. Rather, the student adjusted his description so that a comparison always results in a 
positive number. Such adjustments constantly alter the directionality of comparison in order to 
think of the larger measure relative to the smaller. Should the student be asked what a 
participant’s change of 1.5 pounds means, he could not say definitively whether the participant 
gained or lost weight.  

Alternatively, suppose that the student commits to a comparison of “pounds heavier at the 
end than at the beginning”. The additive comparison that the student has in mind is the post-
weight minus the pre-weight. Here, the student would make statements like: “Josh is 6 pounds 
heavier” and “Wanda is –6 pounds heavier.” In these statements, the student made use of the 
same direction in comparing the measures. Unlike the other case, the student now definitely 
interprets a change of 1.5 pounds as the individual weighed 1.5 pounds more at the end of the 
experiment than at the beginning. 

We note that this commitment to the directionality is crucial when making multiple 
comparisons. For instance, most students can mentally shift between “heavier than” and “lighter 
than” when comparing two people’s weights. However, the activity of comparing three or more 
people’s weights proves much more difficult without committing to a directionality within a 
frame of reference. 

An analogous commitment to a directionality when comparing measures holds for 
multiplicative comparisons. A student thinking within a frame of reference will be able to say “x 
is 3 times as large as y” and “y is one-third as large as x.” A student who avoids committing to a 
directionality of comparison will only be able to make the first statement, possibly because of a 
discomfort with non-integers. 

As a final note, we emphasize that we are not suggesting people should commit to a single 
reference point or a single directionality of comparison for their entire engagement in a task. In 
fact, it is often the case that while solving problems, an individual must conceptualize more than 
one frame of reference. The commitments we refer to only occur within the act of 
conceptualizing one frame of reference; a student can choose to work with a different frame of 
reference for the same quantity within one context, but while working within one frame, he 
works consistently with the choices of reference point and directionality of comparison he made 
in order to conceptualize that frame of reference. The conceptualization of multiple frames of 
reference then requires further mental actions to bring information from multiple frames 
together, an activity we call reasoning with multiple frames of reference. 
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Reasoning with Multiple Frames of Reference 
We identify two types of reasoning that a student might employ when engaging in a task that 

necessitates conceiving of multiple frames of reference. The first type is that a student 
coordinates multiple frames of reference when he finds the relationship between one or more 
quantities’ measures in two frames, such that he can determine a measure given in one frame 
from a measure given in the other. A student who has coordinated two frames of reference could, 
given an event’s representation in one frame, represent that event in another frame in order to 
compare similar quantities. The second type of reasoning is that of a student combining multiple 
frames of reference when he considers two different quantities simultaneously within their 
respective frames of reference. Below we discuss the mental actions that are associated with each 
type of reasoning.  

Coordinating Multiple Frames of Reference 
A student coordinates multiple frames of reference by carrying out three sets of mental 

actions. She must first recognize the need to transform the measures of quantities measured in 
different frames of reference into measures measured in the same frame of reference. Second, a 
student must coordinate known measures of quantities in different frames in order to answer her 
question. Third, she must use those known measures to coordinate the frames. 

We illustrate these mental actions in the context of the task presented in Figure 1. 
 

Two children, Alice and Bob, walk together from school to home. Alice starts measuring the 
distance they have traveled by counting the sidewalk squares they have crossed since passing the 
tree. Bob starts counting the sidewalk squares they have crossed since passing the stop sign and 
noticed that there were 3 squares between the tree and the sign. Let u be the number of sidewalk 
squares Alice has counted. Write an expression that gives Bob’s count of sidewalk squares. 

 
Figure 1. The Alice and Bob task. 

Before beginning to coordinate multiple frames of reference, the student must first recognize 
that Alice and Bob each conceived of a comparable quantity within separate frames of reference. 
The student’s recognition of this fact coincides with her envisioning what a distance of zero 
squares means to both Alice and Bob. The student must recognize that for Alice, “zero squares” 
means that the children are at the tree; likewise the student understands that “zero squares” to 
Bob means that the children are at the stop sign.  

While the student could answer the prompt with a statement such as “Let v represent the 
number of squares that Bob has counted”, she may feel the need to make use of the given 
definition for u. However, in attempting to use u, she imagines shifting from Alice’s 
measurements (and frame of reference) to Bob’s measurements (and frame of reference). The 
student anticipates that for the shift to work, she needs to find a commonality between the two 
frames of reference. The stem of the task in Figure 1 provides the student with a useful point of 
commonality between the frames. The student knows that Alice and Bob walk along the same 
path, counting the same sidewalk squares, with Alice starting to count at a tree and, three squares 
later, Bob starts counting at the stop sign. The stop sign serves as a point of commonality 
between the two frames of reference. The student knows that for Alice the stop sign is 3 squares 
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from the tree. Likewise, she knows that Bob views the stop sign as 0 squares from itself.  Thus, a 
measure of 3 squares for Alice, 3Alice, is the same point along the path as 0 squares for Bob, 0Bob. 
In establishing the link 3Alice ≡ 0Bob, the student has coordinated known measures of comparable 
quantities from two different frames of reference. To fully coordinate the two frames of 
reference, the student must establish the relationship between the measure of a quantity in one 
frame of reference and the measure of the comparable quantity in other frame of reference. The 
student imagines that if Alice and Bob are at the stop sign and move forward one square, then 
both of Alice’s and Bob’s counts will increase by one; thus 4Alice ≡ 1Bob. She anticipates that as 
they keep moving forward any amount, both Alice and Bob will increase their counts (e.g. they 
move forward another 0.5 squares, 4.5Alice ≡ 1.5Bob).  Likewise, she imagines that if Alice and 
Bob moved backward one square, their counts would increase by -1; thus 2Alice ≡ –1Bob. In 
examining these connections based from the point of commonality, the student anticipates that 
Bob’s count will always be 3 squares less than Alice’s count. This supports the student in 
expressing Bob’s count as u – 3 using Alice’s frame of reference.  

Coordinating multiple frames of reference is cognitively demanding. It requires that a student 
conceive each frame as a valid frame, be aware of the need to coordinate quantities’ measures 
within them, and carry out the mental process of finding a relation between the frames while 
keeping all relative quantities and information in mind. 

Combining Multiple Frames of Reference 
A student combines frames of reference when she considers multiple quantities that exist 

within separate frames of reference simultaneously. Combining frames of reference is a separate 
act from coordinating frames of reference. When combining frames of reference, the student 
does not have a goal of expressing measures of one or more quantities in terms of different 
frames. Rather, the student’s goal is simply to hold quantities from multiple frames of reference 
in mind concurrently. In the above section, the student would have combined Alice’s frame of 
reference with Bob’s frame of reference had she stated “Alice and Bob’s home is both u squares 
from the tree and u – 3 squares from the stop sign”. As a further example, coordinate systems 
allow us (mathematicians, teachers, and students) to represent the measures of different 
quantities simultaneously when those measures stem from potentially different frames of 
reference. Figure 2 shows two examples of this; a coordinate system combining Alice’s and 
Bob’s frames of reference as well as a coordinate system for air temperature in Fahrenheit and 
Celsius. Students’ acts of joining two or more number lines that represent measures of (one or 
more) quantities in different frames of reference, and anticipating that ordered pairs (or n-tuples) 
give information about the measures in relation to each other, is the heart of combining multiple 
frames of reference.   
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Figure 2. Examples of coordinate systems as combining multiple frames of reference. 

Coordinating and Combining Multiple Frames of Reference 
We note that when the student imagines a point (an ordered pair) along either line in Figure 2 

as representing the measures of quantities in different frames of reference, she has combined the 
frames. If, however, she sees the line not just as representing a set of coordinated measures of 
quantities, but as a transformational relation between values of the quantities, she sees the graph 
as representing a functional relationship between the quantities. 

Placing Our Theoretical Perspective amongst Others 
Our interest in frames of reference and reasoning with frames of reference came about in an 

unexpected way. While analyzing teachers’ responses to two items intended to target 
proportional thinking and rate of change, we found that teachers’ responses to both items 
revealed struggles with coordinating quantities measured in what we came to realize were 
different frames of reference. Bowden et al. (1992) looked at the different approaches students 
used to analyze problems that involved an object moving inside another moving object (such as 
vector addition or proportional reasoning) and concluded that few students focused on 
“distinguishing frames of reference” (p.263-264). Bowden et al. noted that they attempted to 
characterize students’ meanings based on their entire transcripts; however, Bowden et al. did not 
explain what they meant by “frames of reference”. Rather, they used “frame of reference” as the 
possession of some object, e.g. “the frame of reference of the boat,” Likewise they did not 
explain what they meant by “students’ meanings.” Monaghan and Clement (1999) wrote that 
computer simulations helped students develop mental imagery and ability to switch between 
frames of reference (e.g., as in a scenario involving a moving car and a plane flying overhead). 
However, they did not define or explain what they meant by frames of reference other than using 
pointers as Bowden et al. did. In further work they continued to use the construct of frames of 
reference without explicating what they meant by it (Monaghan & Clement 2000). Panse et al. 
(1994) investigated and identified “alternative [unproductive] conceptions” that students had 
about frames of reference, such as the idea that a frame of reference was a concrete object with 
boundaries or that a frame of reference is defined by the existence of a concrete object. While 
they did valuable work in describing alternative conceptions that hindered students’ ability to 
reason about physical situations, they did not describe their normative conception of frames of 
reference. In all literature focusing on the idea of frames of reference or student thinking thereof, 
the authors presume that they and their readers share a common understanding of what “frames 
of reference” entails. 
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Expanding the Theory of Quantitative Reasoning 
The few times an author (usually of a textbook) did explicitly describe what he or she meant 

by a frame of reference, the description focused on a frame of reference as an object or objects. 
Typical definitions range from “a coordinate system with a clock” (Young and Freedman 2011) 
to “a rigid system of 3 orthogonal rods welded together” (Carroll 2004) to “a set of observers at 
rest relative to each other” (de Hosson et al. 2010), with no further discussion about how students 
must conceptualize a frame of reference in order to reason with them. Such definitions support a 
student in focusing on the object of a frame of reference itself. In contrast, a key moment in 
developing our theory was when we began framing the question as “How does a student think 
about measures within a frame of reference?” As we said earlier in this manuscript, we defined a 
fully conceptualized frame of reference by stating that “An individual conceives of measures as 
existing within a frame of reference if the act of measuring entails [three commitments].” In 
other words, the mental actions, behaviors, and skills that we traditionally associate with 
someone “understanding frames of reference” (whatever that means) have nothing to do with 
how one thinks about frames of reference and everything to do with how one thinks about 
quantities. 

In 1993 in his first article about quantitative reasoning, Thompson defined a quantity by 
saying that a “person constitutes a quantity by conceiving of a quality of an object in such a way 
that he or she understands the possibility of measuring it” (Thompson, 1993). He also added in 
an unpublished 1990 paper that this includes implicitly or explicitly thinking of appropriate units 
(Thompson, 1990). We find this to be a useful definition that provides a place to start thinking 
and talking about quantities, especially with younger children. However, curricula that seek to 
emphasize quantitative reasoning have highlighted further aspects of quantities, such as 
measuring a quantity in relation to a reference point (Carlson et al., 2013). 

Therefore, we define the idea of a framed quantity, which refers to when a person thinks of a 
quantity with commitments to unit, reference point, and directionality of comparison. As an 
example, consider a person who thinks about measuring how far Yolie has traveled as she walks 
her dog, understanding that appropriate units would be linear units such as feet, meters, and 
miles. This person is thinking about a quantity. In contrast, a person thinking about measuring 
Yolie’s displacement to the east from her front door in meters is conceiving of a framed quantity. 
Not only does this person’s mental construction have all the aspects of a conceptualized quantity, 
but it also shows a commitment to a unit (meters), reference point (front door) and directionality 
of comparison (displacement to the east yields positive measures). In other words, the quantity is 
so well defined that any measure value contains all the necessary information to understand its 
meaning. If x = Yolie’s displacement to the east from her front door (meters), then x = 3 means 
that Yolie is 3 meters to the east of her front door and x = -5 means that Yolie is -5 meters to the 
east of her front door (which could be interpreted as being 5 meters west of her front door if 
wanted, but also provides the same specific meaning without this reframing). No extra qualifiers 
are needed to make sense of the value, and there is a clear directionality of comparison: the value 
always says how much further in the eastern direction Yolie is than her front door. 

In Thompson’s 2011 paper he identified a number of dispositions that would aid students’ 
construction of algebraic thinking from quantitative thinking, including a disposition to represent 
calculations in open form, propagate information, think with abstract units, and reason with 
magnitudes. To this list we can now add that a disposition to think about measures within a 
frame of reference, and specifically with a direction of comparison, aids students in algebraic 
thinking. In constructing formulas students are often perplexed as to how to choose between a – 
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b and b – a, or a/b and b/a. This confusion can now be explained by thinking about how students 
do or do not commit to a directionality of comparison. Let us think about a student that is 
comparing the heights of husbands and wives in a study of couples. If the student sometimes 
frames the results of the comparison as “the husband is 6 inches taller than the wife” and other 
times “the husband is 2 inches shorter than the wife” then he is internally switching between two 
quantitative operations, which have corresponding formulas of h – w and w – h, where h 
represents the husband’s height and w represents the wife’s height, both in inches. Naturally such 
a student would have difficulty in developing a formula to compare heights. In contrast, another 
student may commit to a directionality of comparison by deciding the value of his measure will 
always describe ‘how much taller the husband is than the wife’. Since such a commitment entails 
always using the same quantitative operation, such a student will have far less obstacles to 
describing his process in symbolic form as h – w. 
 

Applications of the Frame of Reference Construct  
  

In our description of a conceptualized frame of reference and reasoning with multiple frames 
of reference, we deliberately used simplified tasks to illustrate the mental actions a person would 
have to take. However, we feel that the power of these constructs lie in their explanatory power 
in far more complex tasks. Below we illustrate two such tasks in detail, as well as sample 
responses from high school math teachers. 
 

The task in Figure 3 presents two functions with non-equivalent rules (i.e., f(x) = 15x-50/3 
and g(x) = 15x-65/3) to represent the same quantity (i.e., the distance between the two men). The 
fact that these two different functions can both represent the same quantity as a function of time 
creates difficulties for students (and teachers) trying to understand the scenario.  
 

 

Figure 3. Robin Banks Task. Adapted from Foerster, (2006). © 2014 Arizona Board of Regents. 
Used with permission. 

A person who can both conceptualize and coordinate frames of references, however, can see that 
this seeming paradox is resolved when one acknowledges that all measurements are taken from 
some reference point. Willie’s distance from the café is 65x miles where x is Willie’s travel time 
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in hours, and Robin’s distance from the café is 50x miles where x is Robin’s travel time in hours. 
However, the x’s in these expressions have different meanings because they are measured from 
different reference points: the moment when Willie left the café and the moment when Robin left 
the café. To make a comparison of these two distances requires coordinating the two frames and 
re-expressing either measure in the other’s frame. The distance between the men as described by 
f(x) is the result of re-expressing Robin’s distance from the café using Willie’s “stopwatch”, or 
frame, because at every point in time Robin has driven 1/6 hours more than Willie. Likewise, the 
distance between the men as described by g(x) stems from re-expressing Willie’s time using 
Robin’s “stopwatch”, or frame, because at every point in time Willie has driven 1/6 hours less 
than Robin.  
 

A 

 

B 

 

Figure 4. Sample responses to Robin Banks task 
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Figure 4 displays two sample responses to the Robin Banks task given by high school math 
teachers. In Figure 4A parts i) and ii) the respondent did not think about the quantities with 
respect to a reference point, and so had no way to answer part iii) meaningfully. In contrast, in 
Figure 4B we see in parts i) and ii) that the respondent conceptualized the quantities with respect 
to specific reference points, and was also able to correctly coordinate the two frames in part iii). 

Our frames of reference construct is also useful for examining individuals’ struggles with 
situations devoid of motion. As an example, consider the task in Figure 5 that asks the reader to 
compare consecutive changes in the interval [1, 2].   
 

 
Figure 5. Comparing Changes Task. © 2014 Arizona Board of Regents. Used with permission. 

A 

 

B 

 

Figure 6. Different Visualizations of the Comparing Changes Task 

This task proves challenging for people who do not think about changes within a frame of 
reference – specifically, people who do not maintain a directionality of comparison. Consider 
two hypothetical students: Dean who chooses option d) and Cathy who chooses option c). 
Assume both students understand the directionality of changes well enough to visualize changes 
as in Figure 6A.  

Dean says that the changes are negative and decreasing because he has inadvertently 
switched the direction of his comparison between deciding “the changes are negative” and “the 
changes are decreasing.” To determine that the changes are negative, he is engaging in a 
quantitative operation that we can formulize as [final y-value] – [initial y-value] and obtains a 
negative value for each. However, in deciding that the changes are decreasing, he is really only 
considering the magnitude of those changes, essentially switching his mental image to that 
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shown in Figure 6B and engaging in a quantitative operation that we can formulize as [initial y-
value] – [final y-value]. In comparison, Cathy says the changes are negative and increasing 
because she has maintained her directionality of comparison. For both her “changes are 
negative” and “changes are increasing” decisions, she engages in a quantitative operation that 
can be formulized as [final y-value] – [initial y-value]. We gain insight into individuals’ 
difficulties with this task by noticing a lack of commitment to directionality of comparisons. 
 

 

Figure 7. Sample response to Comparing Changes task 

Figure 7 displays a sample response to the Comparing Changes task given by a high school 
math teacher. Note that the teacher’s justification for his comment “changes are negative” refers 
to a directionality: “value is reducing.” However, his comment “changes are decreasing” uses the 
language “changes in value are becoming more and more slight”, which we see as a strong 
indication that the teacher suddenly switched to looking at magnitudes. 

Discussion 
The above are two examples where the constructs of a conceptualized frame of reference and 

reasoning with multiple frames of reference have explanatory power and potential for improving 
instruction. As we developed our descriptions of these constructs, we started to see applications 
in a variety of other domains. Below we give brief descriptions of some of these domains and 
where we see potential for future research and teaching. 

Personal experiences in teaching pre-calculus and calculus had shown us that students 
frequently conflate the value of a quantity and a change in that quantity, which leads to 
difficulties in understanding the ideas of change, slope, constant rate of change, and rate 
(derivative) functions. This confusion may be explained by a lack of attention to reference point 
for each measure; if a student does not commit to a reference point when measuring a quantity, 
there is little meaningful difference between the measure of the total quantity and a change in 
that quantity over a given interval. On the other hand, developing the idea that the total quantity 
is really a change from (a reference point of) zero provides parallel ideas with which to 
distinguish the two. Highlighting reference point commitment in teaching and discussion may 
help to alleviate this confusion. 

Students frequently categorize all motion within a false dichotomy of “real motion” vs. 
“imagined motion”, where an object is only “really moving” if it is moving with respect to the 
surface of the Earth, and the measure of its speed or velocity is only “real” if measured with 
respect to the surface of the Earth (Panse et al. 1994). This hinders their ability to deal with 
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relative motion tasks and has been a focus of study in physics education (Monaghan and Clement 
1999). For example, students cannot accept that a bike moving 15mph towards a sign is also 
moving 5mph with respect to a walker and moving backwards with respect to a car. While 
Monaghan and Clement worked on developing their students’ visual imagery, we believe that 
teaching students about conceptualizing all quantities as measured with specific reference points, 
and comparing quantities with specific directionalities of comparison, may prove beneficial. 

This common student struggle with “real” versus “imagined” motion stems from a lack of 
understanding of the fundamental physics principle of relativity (Bandyopadhyay 2009) that 
states that there can be no way of verifying that any reference frame (or object) is at absolute 
rest, and therefore the entire notion of absolute rest should be abandoned. We believe 
emphasizing that a reference point is mandatory for any measure to be meaningful can provide a 
backdrop for students to also accept that what we talk about as motion measure in the real world 
always comes with its implicit assumption of a reference point (the surface of the Earth), and that 
if all reference points are arbitrary then the surface of the Earth is as well. 

One of the most common struggles students have in physics is in understanding the concepts 
of velocity and acceleration. For example, researchers have found it extremely difficult to change 
the student perception that a positive acceleration means an object must be speeding up (when in 
fact it may be going from -5mph to -2mph, meaning it is slowing down but increasing in 
velocity). We have found in personal conversations that even professors who are known for their 
work in physics education have been teaching students that an object going from -10mph to -
20mph means that “the velocity is increasing in the negative direction” probably to deal with 
these types of misunderstandings. But not only are such descriptions physically and 
mathematically inaccurate, they result in descriptions that are incompatible with observations 
about change and rate of change that can be derived from calculus. We believe that teaching 
students about a commitment to directionality of comparison is far more consistent and fruitful 
way to approach these concerns. 

Panse et al. wrote a detailed description of seven alternative conceptions that students have 
about reference frames (Panse et al. 1994). Alternative conceptions 1, 2, 3, 4, and 6 are the 
consequences of seeing a reference frame as a physical object, while alternative conceptions 5 
and 7 are the consequences of not fully understanding the principle of relativity. As we 
developed our constructs we identified an eighth alternative conception: the idea that a frame of 
reference is useful primarily (or only) for an observer that remains at the origin of the frame’s 
coordinate system. We see the potential to reduce the number of students that develop all eight 
alternative conceptions in discussing frames of reference with students only in terms of three 
commitments on the part of the observer. 

We are grateful to an audience member at our presentation of this paper at the RUME 18 
conference, who offered the idea of electric potential as another concept we can reconceive 
through our constructs for frames of reference. It is true that students struggle with the idea of 
electric potential, and our minds immediately went to the struggles that physics and engineering 
students have with Kirchoff’s second laws for circuits. Briefly stated, Kirchoff’s second law 
states that the sum of the changes in electric potential around any loop in a closed circuit must be 
zero. Students often struggle with how to apply the rule because they feel a need to know where 
in the circuit the potential is “really zero” so that they can start their calculations there, not 
understanding that (like absolute rest) there is no such thing as absolute zero electric potential. 
These student difficulties may be alleviated by the same measures that help students to 
understand the principle of relativity in motion. 
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We believe that research on frames of reference and student thinking about frames of 
reference is warranted by the difficulties that students have with “typical” frames of reference 
problems. We think that the framework conceptualized frame of reference that we proposed 
offers new insight on student difficulties and contributes to a foundation for further research.  
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A Perspective for University Students’ Proof Construction 

 
 John Selden                              Annie Selden  

                       New Mexico State University             New Mexico State University 
 
This theoretical paper suggests a perspective for understanding university students’ proof 
construction. It is based on the ideas of conceptual and procedural knowledge, explicit and 
implicit learning, cognitive feelings and beliefs, behavioral schemas, automaticity, working 
memory, consciousness, and System 1 and System 2 cognition. In particular, we discuss proving 
actions, such as the construction of proof frameworks that could be automated, thereby reducing 
the burden on working memory and enabling university students to devote more resources to the 
truly hard parts of proofs. 

Key words: proof construction, behavioral schemas, automaticity, consciousness, System 1 and 
System 2 cognition  

Introduction 
 

In this theoretical paper we suggest a perspective for understanding university mathematics 
students’ proof constructions and for improving and facilitating their abilities and skills for 
constructing proofs We are interested in how various types of knowledge (e.g., implicit, explicit, 
procedural, conceptual) are used during proof construction, in how such knowledge can be 
constructed, and in how one can control and direct one’s own thinking. If that were better 
understood, then it might be possible to better facilitate university students’ learning through 
doing, that is, through proof construction experiences. Although one can learn some things from 
lectures, this is almost certainly not the most effective, or efficient, way to learn proof 
construction, which is a kind of activity. Indeed, inquiry-based transition-to-proof courses seem 
to be more effective than lecture-based courses (e.g., Smith, 2006). In this paper, we are referring 
just to inquiry into proof construction, not into theorem or definition generation, although these 
are also interesting areas of study. These ideas emerged from an ongoing sequence of design 
experiment courses meant to teach proof construction in a medium-sized US PhD-granting 
university. 

The Courses  
There were two kinds of design experiment courses. One kind was for mid-level 

undergraduate mathematics students and was similar (in purpose) to transition-to-proof courses 
found in many U.S. university mathematics departments (Moore, 1994). In the U.S., such 
courses are often prerequisite for 3rd and 4th year university mathematics courses in abstract 
algebra and real analysis. The other, somewhat unusual, kind of course was for beginning 
mathematics graduate students who felt that they still needed help with writing proofs. The 
undergraduate course had from about 15 to about 30 students and the graduate course had 
between 4 and 10 students. Both kinds of course were taught from notes and devoted entirely to 
students attempting to construct proofs and to receiving feedback and advice on their work. In 
order to include the kinds of proofs found in typical subsequent courses and to provide students 
with as many different kinds of proving experiences as possible, both courses included a little 
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sets, functions, real analysis, and algebra. The graduate course also included some topology. 
More information on the graduate course can be found in Selden, McKee, and Selden (2010, p. 
207). 

Introductory Psychological Considerations 
Much has been written in the psychological, neuropsychological, and neuroscience literature 

about ideas of conceptual and procedural knowledge, explicit and implicit learning, automaticity, 
working memory, consciousness, beliefs and feelings such as self-efficacy, and System 1 (S1) 
and System 2 (S2) cognition (e.g., Bargh & Chartrand, 2000; Bargh & Morsella, 2008; Bor, 
2012; Cleeremans, 1993; Hassin, Bargh, Engell, & McCulloch, 2009; Stanovich, 2009; 
Stanovich & West, 2000).  

In trying to relate these ideas to proof construction, we have discussed procedural 
knowledge, situation-action links, and behavioral schemas (Selden, McKee, & Selden, 2010; 
Selden & Selden, 2011). However, more remains to be done in order to weave these ideas into a 
coherent perspective.  

In doing this, two key ideas are working memory and the roles that S1 and S2 cognition can 
play in proof construction. Working memory includes the central executive, the phonological 
loop, the visuospatial sketchpad, and an episodic buffer (Baddeley, 2000) and makes cognition 
possible. It is related to learning and attention and has a limited capacity which varies across 
individuals. When working memory capacity is exceeded, errors and oversights are likely to 
occur. The idea behind S1 and S2 cognition is that there are two kinds of cognition that operate 
in parallel. S1 cognition is fast, unconscious, automatic, effortless, evolutionarily ancient, and 
places little burden on working memory. In contrast, S2 cognition is slow, conscious, effortful, 
evolutionarily recent, and puts considerable call on working memory (Stanovich & West, 2000). 
Also, System 2 cognition is thought to monitor System 1 cognition and to sometimes take over 
cognition when System 1 appears to be going astray. Of the several kinds of consciousness, we 
are referring to phenomenal consciousness—approximately, awareness of experience.  

In both proving and learning to prove, it appears to be important for both teachers and 
students to understand the various kinds of progress to be made and the kinds of tasks to be 
performed. We have divided these into two parts, one more directly related to producing a proof 
text, and the other more related to the psychological influences on cognition and the mind when 
producing that text. We turn now to the first of the two parts of the proposed perspective. 

Part 1: Producing the Proof Text 

The Genre of Proofs 
Just as there are distinctive features of poems and news articles that constitute those specific 

genres, there are a number of distinctive features that seem to commonly occur in published 
proofs. These features tend to reduce unnecessary distractions to validation (reading/reflecting to 
judge correctness) and thus increase the probability that any errors will be found, thereby 
improving the reliability of the corresponding theorems. Proofs are not reports of the proving 
process, contain little redundancy, and contain minimal explanations of inferences. They contain 
only very short overviews or advance organizers and do not quote entire statements of previous 
theorems or definitions that are available outside of the proof. Symbols are generally introduced 
in one-to-one correspondence with mathematical objects. For example, one does not say, as 
students sometimes do, “Let x ϵ R. Now let y = x.” Finally, proofs are “logically concrete” in the 
sense that, where possible, they avoid quantifiers, especially universal quantifiers, and their 
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validity is often seen to be independent of time, place, and author. Details can be found in Selden 
and Selden (2013). 

Structure in Proofs 
A proof can be divided into a formal-rhetorical part and a problem-centered part. The formal-

rhetorical part is the part of a proof that depends only on unpacking and using the logical 
structure of the statement of the theorem, associated definitions, and earlier results. In general, 
this part does not depend on a deep understanding of, or intuition about, the concepts involved or 
on genuine problem solving in the sense of Schoenfeld (1985, p. 74). Instead it depends on a 
kind of “technical skill”. We call the remaining part of a proof the problem-centered part. It is 
the part that does depend on genuine problem solving, intuition, heuristics, and a deeper 
understanding of the concepts involved (Selden & Selden, 2011). 

Perhaps the most common feature of writing the formal-rhetorical part of a proof or subproof 
is what to do when the theorem statement starts with a universal quantifier, such as, “For all x ϵ X 
…”. One normally starts its proof with “Let x ϵ X”, meaning that the variable x in the statement 
will be regarded in the proof as “fixed, but arbitrary”, that is, as a single unspecified constant. 
This facilitates constructing proofs about infinite sets and changes most logic required from 
predicate to propositional calculus, which we think is closer to common sense reasoning. 

We have noticed informally that a considerable number of our beginning transition-to-proof 
course students tend not to carry out the above action (of considering x as fixed, but arbitrary). 
Also, we have reported on an interview with a returning graduate student, Mary, who said that 
because of her real analysis teacher’s instructions, she (successfully) carried out the action of 
considering a fixed, but arbitrary ɛ>0 in her proofs and even appended a reason why it was 
needed. That is, she would write, at the end of her proofs, “Because ɛ was arbitrary, the theorem 
has been proved for all ɛ.” She reported to us that she did not feel that doing so was appropriate 
for about half a semester (Selden, McKee, & Selden, 2010, p. 209). Mary’s difficulty suggests 
that some ideas in beginning proof construction may be adopted only slowly by some students 
even when they carry out the associated actions and provide appropriate warrants. 

Proof Frameworks 
A major feature that can help one write the formal-rhetorical part of a proof is what we have 

called a proof framework,1 of which there are several kinds, and in most cases, both a first-level 
and a second-level framework. For example, given a theorem of the form “For all real numbers 
x, if P(x) then Q(x)”, a first-level proof framework would be “Let x be a real number. Suppose 
P(x). … Therefore Q(x),” with the remainder of the proof ultimately replacing the ellipsis. A 
second-level framework can often be obtained by “unpacking” the meaning of Q(x) and putting 
the second-level framework between the lines already written for the first-level framework. 
Thus, the proof would “grow” from both ends toward the middle, instead of being written from 
the top down. In case there are subproofs, these can be handled in a similar way. A more detailed 
explanation with examples can be found in Selden, Benkhalti, and Selden (2014). A proof need 
not show evidence of a proof framework to be correct. However, we have noticed that use of 
proof frameworks tends to help novice university mathematics students write correct, well-
organized, and easy-to-read proofs (McKee, Savic, Selden, & Selden, 2010). 

                                                 
1 We first introduced the idea of proof framework in Selden and Selden (1995), but have expanded considerably on 
this idea since then. 
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Operable Interpretations 
Another feature that can help one write the formal-rhetorical part of a proof is converting 

definitions and previously proved results into operable interpretations. These interpretations are 
similar to Bills and Tall’s (1998) idea of operable definitions. For example, in the courses 
described above, given a function f: X oY and A � Y, we define f -1(A) = { x � X | f(x) � A}. An 
operable interpretation would say, “If you have b � f -1(A), then you can write f(b) � A and vice 
versa.” One might think that this sort of translation into an operable form would be unnecessary 
or easy, especially because each symbol in { x � X | f(x) � A} can be translated into a word in a 
one-to-one way. However, we have found that for some students this is not easy, even when the 
definition can be consulted. We have also noted instances in which students have had available 
both a definition and an operable interpretation, but still did not act appropriately. Thus, actually 
implementing an operable interpretation is separate from knowing that one can implement it.  

One can also have operable interpretations for situations in a partly completed proof. For 
example, when a conclusion is negatively phrased (e.g., a set is empty or a number is irrational), 
one might early in the proving process attempt a proof by contradiction. Also when the 
conclusion asserts the equivalence of two statements, or that two sets are equal, often the proof 
should be divided into two parts, in which there are two implications to prove. Finally, if in a 
partly completed proof, one has arrived at a statement of the form p or q, the proof can be 
divided into two cases, one assuming p and the other assuming q. 

We suggest that students, or small groups of students, can and should develop some operable 
interpretations independently of a teacher. However, if or when this should be done in a 
particular course is a design problem. 

Part 2: Psychological Features of Proof Construction 
 

In this second, psychological part of the perspective, we view proof construction as a 
sequence of actions which can be physical (e.g., writing a line of the proof or drawing a sketch) 
or mental (e.g., changing one’s focus from the hypothesis to the conclusion or trying to recall a 
relevant theorem). The sequence of all of the actions that eventually lead to a proof is usually 
considerably longer than the final proof text itself. This fine-grained action approach appears to 
facilitate noticing which actions should be taken to write various parts of a proof correctly, which 
beneficial student proving actions to encourage, and which detrimental student proving actions to 
discourage.  

Situations and Actions 
What matters from the point of view of a student, who is learning to construct proofs, is the 

perceived situation. By a perceived, or inner, situation in proving, we mean a portion of a partly 
completed proof construction, perhaps including an interpretation drawn from long-term memory 
that can suggest a further action. The interpretation is likely to depend on recognition of the 
situation, which is easier than recall, perhaps because fewer brain areas are involved (Cabeza, et 
al., 1997). An inner situation is unobservable. However, a teacher can often infer an inner 
situation from the corresponding outer situation, that is, from the, usually written, portion of a 
partly completed proof. 

Here we are using the term, action, broadly, as a response to a situation. We include not only 
physical actions (e.g., writing a line of a proof), but also mental actions. The latter can include 
trying to recall something or bringing up a feeling, such as a feeling of caution or of self-efficacy 
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(Selden & Selden, 2014). We also include “meta-actions” meant to alter one’s own thinking, 
such as focusing on another part of a developing proof construction. 

Examples of Inner Situations 
Norton and D’Ambrosio (2008) have described what amounts to an illustration of the 

distinction between an inner situation and an outer situation for two middle school students, Will 
and Hillary, who viewed the same external situation involving a fraction such as 2/3. Hillary had 
(in her knowledge base) a partitive fractional scheme, as well as a part-whole fractional scheme, 
while Will had only the second scheme. This caused Will and Hillary to “see” the external 
situation differently, that is, to have differing inner situations, and hence, to act differently. In 
particular, Hillary was able to solve a problem that Will could not. Will could only solve the 
problem after he had developed a partitive fractional scheme, and then presumably experienced a 
richer inner situation.  
 In the above illustration, Will’s internal view of the external situation could not be 
enriched by a concept of fraction that was not yet available in his knowledge base. But that is not 
the only way for two persons to have significantly differing inner situations for the same external 
situation. Selden, Selden, Hauk and Mason (2000) reported on mid-level undergraduates in a 
first course on differential equations attempting to solve moderately non-routine beginning 
calculus problems. Many students did not solve the problems, even though the solutions called 
on familiar calculus facts, as ascertained by a subsequent routine test. For example, one problem 
asked: Does x21 + x19 - x -1 + 2 = 0 have any roots between –1 and 0? Why or why not? This 
problem could not be solved by simple algebraic techniques, but could be solved by noticing that 
f(-1) > 0 and f ׳(x) > 0 on [-1,0). Selden, Selden, Hauk, and Mason (2000) were able to show that 
a number of the students could not solve moderately non-routine problems for which they had 
adequate information in their knowledge bases. Apparently, the students were unable to bring 
this information to mind, that is, bring it into consciousness, because their knowledge bases 
lacked certain links between “kinds” of problems and information that might be useful in solving 
them. Thus, the students were unable to enrich their views of the external situations to create 
inner situations, including connections to resources such as a function is increasing where its 
derivative is positive, that might have stimulated the enactment of appropriate problem-solving 
behaviors. 

Situation-Action Links, Automaticity, and Behavioral Schemas 
If, during several proof constructions in the past, similar situations have corresponded to 

similar reasoning leading to similar actions, then, just as in classical associative learning 
(Machamer, 2009), a link may be learned between them, so that another similar situation evokes 
the corresponding action in future proof constructions without the need for the earlier 
intermediate reasoning. Using such situation-action links strengthens them, and after sufficient 
practice/experience, they can become overlearned, and thus, automated. We call automated 
situation-action links behavioral schemas.  

Features of Automaticity 
In general, it is known that a person executing an automated action tends to: (1) be unaware 

of any needed mental process; (2) be unaware of intentionally initiating the action; (3) executes 
the action while putting little load on working memory; and (4) finds it difficult to stop or alter 
the action (Bargh, 1994). However, not necessarily all four occur in every situation. Morsella 
(2009) has pointed out 
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Regarding skill learning and automaticity, it is known that the neural correlates of novel 
actions are distinct from those of actions that are overlearned, such as driving or tying one’s 
shoes. Regions [of the brain] primarily responsible for the control of movements during the 
early stages of skill acquisition are different from the regions that are activated by overlearned 
actions. In essence, when an action becomes automatized, there is a ‘gradual shift from 
cortical to subcortical involvement …’ (p. 13). 

Because cognition often involves inner speech, which in turn is connected with the physical 
control of speech production, the above information on the brain regions involved in physical 
skill acquisition is at least a hint that forming behavioral schemas not only converts S2 cognition 
into S1 cognition, but also suggests that different parts of the brain are involved in access and 
retrieval.  

In particular, there may be a shift from cortical to subcortical involvement. Neural activity 
associated with doing mathematics is generally located in the frontal and parietal lobes (Norton, 
2015). Also, more resources (in both the frontal and parietal lobes) have to work in concert when 
a person is doing tasks with higher cognitive demand because those tasks require greater use of 
working memory and executive function (Sauseng, Klimensch, Schabus, & Doppelmayr, 2005). 
Thus, it is important to conserve those resources for working on high cognitive demand tasks 
such as the truly hard parts of problems or proofs. 

Behavioral Schemas as a Kind of Knowledge 
We view behavioral schemas as belonging to a person’s knowledge base. They can be 

considered as partly conceptual knowledge (recognizing and interpreting the situation) and partly 
procedural knowledge (the action), and as related to Mason and Spence’s (1999) idea of 
“knowing-to-act in the moment”. We suggest that, in using a situation-action link or a behavioral 
schema, almost always both the situation and the action (or its result) will be at least partly 
conscious. 

Here is an example of one such possible behavioral schema that can conserve resources. One 
might be starting to prove a statement having a conclusion of the form p or q. This would be the 
situation at the beginning of the proof construction. If one had encountered this situation a 
number of times before, one might readily take an appropriate action, namely, in the written 
proof assume not p and prove q or vice versa. While this action can be warranted by logic (if not 
p then q, is equivalent to, p or q), there would no longer be a need to bring the warrant to mind. 

It is our contention that large parts of proof construction skill can be automated, that is, that 
one can facilitate mid-level university students in turning parts of S2 cognition into S1 cognition, 
and that doing so would make more resources, such as working memory, available for such high 
cognitive demand tasks as the truly hard problems that need to be solved to complete many 
proofs. 

The idea that much of the deductive reasoning that occurs during proof construction could 
become automated may be counterintuitive because many psychologists (e.g., Schechter, 2012), 
and (given the terminology) probably many mathematicians, assume that deductive reasoning is 
largely S2. 

The Genesis and Enactment of Behavioral Schemas 
The action produced by the enactment of a behavioral schema might be simple. It might also 

be compound, such as a procedure consisting of several smaller actions, each produced by the 
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enactment of its own behavioral schema that was “triggered” by the action of the preceding 
schema in the procedure. Multi-digit subtraction of natural numbers is an example of such a 
compound behavioral schema. When viewed in a large grain-size (mainly compound actions), 
behavioral schemas might also be regarded as habits of mind (Margolis, 1993). Habits of mind 
are similar to physical habits, and people are similarly often unaware of, or do not remember, 
them (as habits).  

It appears that consciousness plays an essential role in triggering the enactment of behavioral 
schemas for doing mathematics. This is reminiscent of the role consciousness plays in reflection. 
It is hard to see how reflection, treated as selectively re-presenting past experiences, could be 
possible without first having had the experiences and without each experience triggering the 
next. We have developed the following six-point theoretical sketch of the genesis and enactment 
of behavioral schemas (Selden, McKee, & Selden, 2010, pp. 205-206).  

1) Within very broad contextual considerations, behavioral schemas are immediately 
available. They do not normally have to be remembered, that is, searched for and brought 
to mind before their application. This distinguishes them from most conceptual 
knowledge and episodic and declarative memory, which generally do have to be recalled 
or brought to mind before their application. 

2) Simple behavioral schemas operate outside of consciousness. One is not aware of doing 
anything immediately prior to the resulting action – one just does it. Thus, the enactment 
of a simple behavioral schema that leads to an error is not under conscious control, and 
we should not expect that merely understanding the origin of the error, or being shown a 
counterexample, would prevent future reoccurrences. Compound behavioral schemas are 
also largely not under conscious control.  

3) Behavioral schemas tend to produce immediate action, which may lead to subsequent 
action. One becomes conscious of the action resulting from a behavioral schema as it 
occurs or immediately after it occurs.  

4) Behavioral schemas were once actions arising from situations through warrants that no 
longer need to be brought to mind. So one might reasonably ask, can several behavioral 
schemas be “chained together” and act outside of consciousness, as if they were one 
schema? For most persons, this seems not to be possible. If it were so, one would expect 
that a person familiar with solving linear equations could start with 3x + 5 = 14, and 
without bringing anything else to mind, immediately say x = 3. We expect that very few 
(or no) people can do this, that is, consciousness of the results of enacting the individual 
schemas is required 

5) An action due to a behavioral schema depends on conscious input, at least in large part. 
In general, a stimulus need not become conscious to influence a person’s actions, but 
such influence is normally not precise enough for doing mathematics. For example, in 
many psychological experiments a stimulus-response connection is considered 
established when its occurrence departs from chance over multiple trials. 

6) Behavioral schemas are acquired (learned) through (possibly tacit) practice. That is, to 
acquire a beneficial schema a person should actually carry out the appropriate action 
correctly a number of times – not just understand its appropriateness. Changing a 
detrimental behavioral schema requires similar, perhaps longer, practice. 
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Implicit Learning of Behavioral Schemas 
It appears that the process of learning a behavioral schema can be implicit, although the 

situation and the action are in part conscious. That is, a person can acquire a behavioral schema 
without being aware that it is happening. Indeed, such unintentional, or implicit, learning 
happens frequently and has been studied by psychologists and neuroscientists (e.g., Cleeremans, 
1993; Cleeremans & Jiménez, 2001). In the case of proof construction, we suggest that with the 
experience of proving a considerable number of theorems in which similar situations occur, an 
individual might implicitly acquire a number of relevant beneficial behavioral schemas. As a 
result he or she might simply not have to think quite so deeply as before about certain portions of 
the proving process, and might, as a consequence of having more working memory available, 
take fewer “wrong turns”. 

Something similar has been described in the psychology literature regarding the automated 
actions of everyday life. For example, an experienced driver can reliably stop at a traffic light 
while carrying on a conversation. But not all implicitly learned automated actions are positive. 
For example, a person can develop stereotypical behavior without being aware of the acquisition 
process and can even be unaware of its triggering situations (Chen & Bargh, 1997). This 
suggests that we should consider the possibility of mathematics students implicitly developing 
similarly unintended negative situation-action links, and the corresponding detrimental 
behavioral schemas, during mathematics learning, and in particular, during proof construction. 

Detrimental Behavioral Schemas 
We begin with a simple and perhaps familiar algebraic error. Many teachers can recall 

having a student write �(a2 + b2) = a + b, giving a counterexample to the student, and then 
having the student make the same error somewhat later. Rather than being a misconception (i.e., 
believing something that is false), this may well be the result of an implicitly learned detrimental 
behavioral schema. If so, the student would not have been thinking very deeply about this 
calculation when writing it. Furthermore, having previously understood the counterexample 
would also have little effect in the moment. It seems that to weaken/remove this particular 
detrimental schema, the triggering situation of the form �(a2 + b2) should occur a number of 
times when the student can be prevented from automatically writing “= a + b” in response. 
However, this might require working with the student individually on a number of examples 
mixed with nonexamples. 

For an example of an apparently implicitly learned detrimental behavioral schema for 
proving, we turn to Sofia, a first-year graduate student in one of the above mentioned graduate 
courses. Sofia was a diligent student, but as the course progressed what we came to call an 
“unreflective guess” schema emerged (Selden, McKee, & Selden, 2010, pp. 211-212). After 
completing just the formal-rhetorical part of a proof (essentially a proof framework) and 
realizing there was more to do, Sofia often offered a suggestion that we could not see as being 
remotely helpful. At first we thought she might be panicking, but on reviewing the videos there 
was no evidence of that. A first unreflective guess tended to lead to another, and another, and 
after a while, the proof would not be completed. 

In tutoring sessions, instead of trying to comprehend, and work with, Sofia’s unreflective 
guesses, we tried to prevent them. At what appeared to be the appropriate time, we offered an 
alternative suggestion, such as looking up a definition or reviewing the notes. Such positive 
suggestions eventually stopped her unreflective guesses, and Sofia was observed to have 
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considerably improved in her proving ability by the end of the course (Selden, McKee, & Selden, 
2010, p. 212).  

Feelings and Proof Construction 
The word “feeling” is used in a variety of ways in the literature so we will first indicate how we 
will use it. Often feelings and emotions are used more or less interchangeably--both appear to be 
conscious reports of unconscious mental states, and each can, but need not, engender the other. 
However, we will follow Damasio (2003) in separating feelings from emotions because emotions 
are expressed by observable physical characteristics, such as temperature, facial expression, 
blood pressure, pulse rate, perspiration, and so forth, while feelings are not. Indeed, Damasio has 
described a brain operation during which the patient was awake and could report on her state of 
mind. She experienced both feelings and emotions, but clearly at different times (Damasio, 2003, 
pp. 67-70). 

Feelings such as a feeling of knowing can play a considerable role in proof construction 
(Selden, McKee, & Selden, 2010). For example, one might experience a feeling of knowing that 
one has seen a theorem useful for constructing a proof, but not be able to bring it to mind at the 
moment. Such feelings of knowing can guide cognitive actions because they can influence 
whether one continues a search or aborts it (Clore, 1992, p. 151). We call such feelings that can 
influence cognition cognitive feelings. When we speak of feelings here, we mean non-emotional 
cognitive feelings. 

For the nature of feelings, we will follow Mangan (2001), who has drawn somewhat on 
William James (1890). Feelings seem to be summative in nature and to pervade one’s whole 
field of consciousness at any particular moment. For example, to illustrate what it might mean 
for a feeling to pervade one’s whole field of consciousness, consider a hypothetical student 
taking a test with several other students in a room with a window. If, at a particular time, the 
student looks at his test, then towards the other students, and finally out of the window, at each 
of the three moments he or she perceives information from only that moment. But if the student 
feels confident (i.e., has a feeling of knowing) that he or she will do well on the test during one 
of these moments, then he or she will also feel confident during the other two. This suggests that 
feelings are especially available to be focused on and can directly influence action.  

Additional (nonemotional cognitive) feelings, different from a feeling of knowing, are a 
feeling of familiarity and a feeling of rightness. Mangan (2001) has distinguished these. Of the 
former, he wrote that the “intensity with which we feel familiarity indicates how often a content 
now in consciousness has been encountered before”, and this feeling is different from a feeling 
of rightness. It is rightness, not familiarity, that is “the feeling-of-knowing in implicit cognition”. 
Rightness is “the core feeling of positive evaluation, of coherence, of meaningfulness, of 
knowledge”. In regard to a feeling of rightness, Mangan has written that “people are often unable 
to identify the precise phenomenological basis for their judgments, even though they can make 
these judgments with consistency and, often, with conviction. To explain this capacity, people 
talk about ‘gut feelings’, ‘just knowing’, hunches, [and] intuitions”. Often such quick judgments 
(i.e., the results of S1 cognition) can be correct, but they sometimes need to be checked, that is, 
S2 cognition needs to “kick in” and override such incorrect quick judgments.  

Finally, we conjecture that feelings may eventually be found to play a larger role in proof 
construction than indicated above, because they provide a direct link between the conscious mind 
and the structures and possible actions of the unconscious mind. 
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Self-Efficacy 
In order to prove harder theorems, ones with a substantial problem-centered part, students 

need to persist in their efforts, and such persistence is facilitated by a sense of self-efficacy. 
According to Bandura (1995), self-efficacy is “a person’s belief in his or her ability to succeed in 
a particular situation” (Bandura, 1995). Of developing a sense of self-efficacy, Bandura (1994) 
stated that “The most effective way of developing a strong sense of self-efficacy is through 
mastery experiences,” that performing a task successfully strengthens one’s sense of self-
efficacy. Also, according to Bandura, “Seeing people similar to oneself succeed by sustained 
effort raises observers’ beliefs that they too possess the capabilities to master comparable 
activities to succeed.”  

According to Bandura (1994), individuals with a strong sense of self-efficacy: (1) view 
challenging problems as tasks to be mastered; (2) develop deeper interest in the activities in 
which they participate; (3) form a stronger sense of commitment to their interests and activities; 
and (4) recover quickly from setbacks and disappointments. In contrast, people with a weak 
sense of self-efficacy: (1) avoid challenging tasks; (2) believe that difficult tasks and situations 
are beyond their capabilities; (3) focus on personal failings and negative outcomes; and (4) 
quickly lose confidence in personal abilities.  

Bandura’s ideas “ring true” with our past experiences as mathematicians teaching courses by 
the classical Moore Method (Mahavier, 1999). Classical Moore Method advanced undergraduate 
or graduate courses are taught from a brief set of notes2 consisting of definitions, a few requests 
for examples, statements of major results, and those lesser results needed to prove the major 
ones. Exercises of the sort found in most textbooks are largely omitted. In class meetings, the 
professor invites individual students to present their original proofs and then only very briefly 
comments on errors.3 Once students are able to successfully prove their first few theorems, they 
often progress very rapidly in their proving ability, even without any apparent explicit teaching, 
and persist even when subsequent proofs are more complex or require creating new 
mathematical objects or lemmas.  

Why should this be? We conjectured then, and also conjecture now, that students obtained a 
sense of self-efficacy from having proved their first few theorems successfully, and that this 
sense of self-efficacy grew over time and helped them persist in explorations, re-examinations, 
and validations when these were needed in proving subsequent difficult theorems.  

Seeing Similarities, Searching, and Exploring 
How does one recognize situations as similar? Different people see situations as similar 

depending both upon their past experiences and upon what they choose to, or happen to, focus 
on. While similarities can sometimes be extracted implicitly (Markman & Gentner, 2005), 
teachers may occasionally need to direct students’ attention to relevant proving similarities. On 
the other hand, such direction should probably be as little as possible because the ability to 
autonomously see similarities can, and should, be learned. 

For example, it would be good to have general suggestions for helping students “see”, 
without being told, that the situations of a set being empty (i.e., having no elements), of a number 
being irrational (i.e., not rational), and of the primes being infinite (i.e., not finite) are similar. 

                                                 
2 A brief set of notes for the first semester of an undergraduate abstract algebra course taught by the classical Moore 
Method is provided in the Appendix of Selden and Selden (1978). 
3 We emphasize that this description of classical Moore Method courses, which we have sometimes taught in the 
past, differs significantly from our teaching of the two design experiment courses described earlier in this paper. 
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That is, while the three situations—empty, irrational, and infinite—may not seem similar on the 
surface, they can be rephrased to expose the existence of a negative definition. And, unless 
students rephrase these situations, it seems unlikely that they would see this similarity and link 
these situations (when they occur as conclusions to theorems to prove) to the action of beginning 
a proof by contradiction.  

In addition to automating small portions of the proving process, such as writing proof 
frameworks, we would also like to enhance students’ searching skills, that is, their tendency to 
look for helpful previously proved results. We would also like to enhance students’ tendency to 
“explore” various possibilities when they don’t know what to do next. In a previous paper 
(Selden & Selden, 2014, p. 250), we discussed the kind of exploring entailed in proving the 
rather difficult (for students) Theorem: If S is a commutative semigroup with no proper ideals, 
then S is a group. Well before such a theorem appears in a set of course notes like ours, one 
might provide students with advice, or better yet, experiences showing the value of exploring 
what is not obviously useful. For example, one could discuss the usefulness of starting with abba 
= e, for arbitrary a, b � S, when attempting to show commutativity of a semigroup with identity 
e, having s2 = e, for all s � S (as discussed in Selden, Benkhalti, and Selden, 2014). 

Using this Perspective to Analyze Students’ Proof Attempts 
 

We hope the following analysis that highlights actions in proofs and proving will provide 
insights into what might be emphasized when teaching particular groups of students.4 

 In examining students’ proof attempts, we are not just looking for mistakes or 
misconceptions, but rather we are looking for possible detrimental actions, possible beneficial 
actions, and for potential beneficial actions not taken. Below we give two examples of how we 
have analyzed students’ (incorrect) proof attempts (Selden, Benkhalti, & Selden, 2014). 

Example 1. The student had attempted to prove the following on an examination. Theorem: 
Let S be a semigroup with identity e. If, for all s in S, ss = e, then S is commutative. Here we are 
examining, and analyzing, the student’s written work using our theoretical perspective of actions. 
The lines are numbered for convenient reference. The student’s accompanying scratch work 
consisted of the definitions of identity and commutative. The proof went as follows: 

1. Let S be a semigroup with an identity element, e.  
2. Let s� S such that ss = e. 
3. Because e is an identity element, es = se = s.  
4. Now, s = se = s(ss).  
5. Since S is a semigroup, (ss)s = es = s.  
6. Thus es = se.  
7. Therefore, S is commutative. QED. 
Analysis. Line 2 only hypothesizes a single s and should have been, “Suppose for all s� S, ss 

= e.” With this change, Lines 1, 2, and 7 are the correct first-level framework.5 There is no 
second-level framework between Lines 2 and 7. This was a beneficial action not taken and 
should have been: “Let a�S and b�S. … Then ab = ba.” inserted between Lines 2 and 7. 

                                                 
4 We are not suggesting that this kind of proof analysis be used as a way of grading, or marking, students’ work. 
Rather we are suggesting that this kind of proof analysis might be helpful for teachers and course designers.  
5 Proof frameworks are not the only way to start a proof, but these students had participated in a course in which 
they had been encouraged to, and had often found it useful to, begin their proofs by writing a proof framework. 
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Line 3 violates the genre of proof by including a definition easily available outside of the 
proof. Lines 3, 4, 5, and 6 are not wrong, but do not move the proof forward. Writing these lines 
may have been detrimental actions that subconsciously primed the student’s feeling that 
something useful had been accomplished, and thus, may have brought the proving process to a 
premature close. 

Example 2. Next we consider another student’s proof attempt of the following theorem on an 
examination. Theorem. Let S and T be semigroups and f:S→T be a homomorphism. If G is a 
subset of S and G is a group with identity e, then f(G) is a group. Here, again, we are examining, 
and analyzing, the student’s written work using our theoretical perspective of actions. The lines 
of the student’s proof attempt are numbered for convenient reference. 

1. Let S and T be semigroups and f:S→T be a homomorphism.  
2. Suppose G � S and G is a group with identity e.  
3. Since G is a group and it has identity e, then for each element g in G there is an element 

g' in G such that gg' = g'g = e.  
4. Since f is a homomorphism, then for each element x ϵ S and y ϵ S, f(xy)=f(x)f(y).  
5. Since G � S, then f(gg')=f(g)f(g'). So f(gg') = f(g'g) = f(e).  
6. So f(G) has an element f(e) since f is a function.  
7. Therefore, f(G) is a group. QED. 
Analysis. The student has written the first-level framework, namely Lines 1, 2, and 7, 

correctly, assuming that Line 7 was written immediately after writing the first two lines. To 
complete the proof framework, the student should have unpacked the last line and written the 
second-level framework. That is, the student should have considered f(G) and noted that there are 
three parts to prove, namely, that f(G) is a subsemigroup, that there is an identity in f(G), and that 
each element in f(G) has an inverse in f(G). This unpacking of the conclusion is a beneficial 
action not taken. 

Instead, in Line 3, the student wrote into the proof the definition of G being a group, and in 
Line 4, stated what it means for f to be a homomorphism. These actions are not wrong, but they 
do not move the proof forward and are detrimental because they can give the student a feeling 
that something useful has been done. Perhaps, in Lines 5 and 6, the student was trying to show 
the existence of an identity and inverses in f(G) and was unsuccessful, but one cannot know this. 
If the second-level proof framework had been written, the proof would have been reduced to 
three easier parts, each of which also has a proof framework, and this might have been helpful to 
the student. 

Teaching and Research Considerations 
 

The above considerations can lead to many possible teaching interventions. This then brings 
up the question of priorities. Which proving actions, of the kinds discussed above, are most 
useful for mid-level university mathematics students to automate, when they are learning how to 
construct proofs? Since such students are often asked to prove relatively easy theorems—ones 
that follow directly from definitions and theorems recently provided—it would seem that noting 
the kinds of structures that occur most often might be a place to start. Indeed, since every proof 
can be constructed using a proof framework, we consider constructing proof frameworks as a 
reasonable place to start. Furthermore, some students do not write the second-level proof 
framework, perhaps because they have difficulty unpacking the meaning of the conclusion. So it 
would also be good to work on that. 
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Also, helping students interpret formal mathematical definitions so that these become 
operable might be another place to start. This would be helpful because one often needs to 
convert a definition into an operable interpretation in order to use it to construct a second-level 
proof framework. However, eventually students should learn to make such interpretations 
themselves.  

Finally, we believe this particular perspective on proving, using situation-action links and 
behavioral schemas, together with information from psychology and neuroscience, is mostly new 
to the field and is likely to lead to additional insights. 
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Research on equity in mathematics education has been one of the primary foci among K-12 
researchers. However, in research on undergraduate mathematics education, equity research 
has yet to establish and maintain the presence and consistency that aligns with issues of inequity 
related to fairness, access and opportunity. In K-12 research, the focus has shifted from 
individual context to socio-cultural context and now to understanding the social and political 
aspects of power and identity in mathematics education research. In RUME, the use of theories 
related to socio-cultural contexts has been increasing but there has not been a major shift in the 
focus of the research toward addressing issues of equity. In this paper, Gutiérrez’ (2009) four 
dimensions of equity: access, achievement, power and identity are used as a conceptual 
framework to interpret insights from K-12 equity research and apply them to existing studies in 
RUME. The report ends with open questions and directions for equity research at the 
postsecondary level.   
 
Keywords: equity, socio-political perspective, identity, power 
 

People of color, women, individuals with disabilities, and people who live in their 
intersections, continue to be underrepresented in postsecondary mathematics. For example, as of 
2012, African American/Black, Hispanic/Latin@1 and Native Alaskan and American Indian 
combined comprised 20% of Bachelor’s, 18% of Master’s and 8% of Doctorate degrees in 
mathematics (NSF Science and Engineering Indicators, 2014). At the faculty level, the latest 
Conference Board of the Mathematical Sciences (CBMS) survey of mathematics departments in 
the United States shows people from the same group comprised only 6% of the total mathematics 
faculty (Blair, Kirkman and Maxwell, 2013). The report captures the ongoing dearth of faculty of 
color in mathematics (Walker, 2014). The reality of the underrepresentation is situated in the 
broader context of increasing the number of science, technology, engineering and mathematics 
(STEM) graduates (Harper, 2010; Executive Office of the President, PCAST, 2012), and the 
increasing awareness about racial injustice in today’s America (e.g., #BlackLivesMatter 
movement on social media). The broader societal context drives much of our work around 
equity.  

In the Research in Undergraduate Mathematics Education (RUME) community, studies that 
specifically focus on the learning experiences and opportunities of historically marginalized 
groups of students have also been underrepresented. A review of the conference proceedings 
from the past four years shows that these type of studies comprised 5-10% of the total 
presentations. From our broader literature search, we also found a limited number of 
mathematics education studies at the postsecondary level that specifically focuses on issues 
relevant to marginalized groups. As Gutiérrez (2013) noted, a decade ago, Lubienski and Bowen 
(2000) found a similar representation of equity related articles in K-12 mathematics education 
journals, though more recently there has been an increase in representation at national 

                                                
1 Gutiérrez (2013) uses “@” to indicate both an “a” and “o” ending (Latina and Latino) to be 
more gender inclusive.  
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conferences. The undergraduate mathematics education community has yet to fully initiate and 
maintain the presence and consistency of equity studies observed in the broader mathematics 
education community. Altogether, these contexts present a need to rethink theoretical 
perspectives and research-based practices related to equity in undergraduate mathematics 
education. 

Gutiérrez (2002) defines equity research as research that explicitly focuses on efforts to 
understand and mitigate systematic differences in opportunities and experiences in education for 
different groups of students, particularly on ways that these differences privilege some groups of 
students over others. Embedded in this definition is the effort to depart from the fixation on 
differences in achievements between groups of students, but instead to focus on ways that 
different students experience education and educational opportunities differently. This definition 
also fosters consideration of issues of privilege and power that might have contributed to 
systematic differences in students’ experiences. 

One common response to these systematic differences is what many argue to be an equal and 
fair approach to education: treat all students the same way regardless of their background. This 
colorblind approach to equality fails to take into consideration students’ identities and the 
important ways they influence students’ experience in education (Martin, 2003). This approach 
also privileges the identities and practices of the dominant group of students while continuing to 
perpetuate systematic marginalization of other groups (Bonilla-Silva, 2003). The ideas embedded 
in Gutiérrez’s (2002) definition of equity differentiate the goal of striving for equity from the 
notion of equality in education.   

This paper aims to stimulate a discussion about a need for more equity-focused research at 
the postsecondary level by considering insights gleaned from equity research at the K-12 level. 
In addition to the aforementioned issues of underrepresentation, in the next section we use the 
historical and theoretical development of equity research at the K-12 level to further motivate the 
need to advance equity research at the postsecondary level. We then use a conceptual framework 
from Gutiérrez (2009) to help us organize and interpret existing research at the K-12 level. 
Specifically, we consider the four dimensions of equity: access, achievement, identity and power 
in discussing existing equity related research in RUME, and ways that we can use the findings 
from the K-12 level to advance our work at the postsecondary level.  
 

Development of Equity Research Framework at the K-12 Level  
In this section, we offer a brief overview of existing frameworks for equity research, 

highlighting cognitive, socio-cultural, and socio-political perspectives. In particular, we examine 
the origins of these frames and discuss their relationship to educational research. We aim to put 
these lenses on equity in education in conversation with lenses on learning commonly used in 
RUME research.  

Variations in the approaches to understanding student learning have generated frameworks 
upon which new knowledge in the field of mathematics education has developed, including 
knowledge around issues of equity. In general, perspectives have come from an array of 
disciplines but can be structured into broad categories that help to summarize the literature on 
equity scholarship in mathematics education. These parent domains, the cognitive, social-
cultural, and socio-political, while not mutually exclusive or exhaustive, help to establish an 
obtuse view of the trajectory of equity research in the field of mathematics education. Moreover, 
in the last three decades, the field has witnessed an increase of critical theory at the intersection 
of these domains as a means to highlight issues of identity and power (Skovsmose & Greer, 
2012). 
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Historically, theories and research on teaching and learning have engaged cognition and 
cognitive development as a means to better develop education research into a science. In the 
early development of the field of mathematics education, for example, empirical studies were 
used to understand cognitive development patterns among school children (Kilpatrick, 1992). 
Resultantly, early research in the field tended to take on psychological approaches to research in 
which teaching was situated as a treatment and learning as an effect. In this particular frame, 
equity research was not central in the then-developing field of mathematics education. Moreover, 
at the time the field primarily functioned under the belief that student learning was based in large 
on individual cognition, void of effects outside of focused teaching and learning contexts.  

Studies linking cognition with other non-cognitive factors did not emerge until what 
Kilpatrick (1992) identified as a period in mathematics education during the 1950s where more 
interdisciplinary work began. Saxe and de Kirby’s (2014) discussions of methodological 
approaches to studies examining, for example, cognition and culture, followed the traditional 
dichotomous and intrinsic relation approaches. Early research in the field tended toward a 
dichotomous lens in which culture is viewed as having an effect on student cognition, or an 
intrinsic relation lens in which culture and cognition are viewed as mutually situated in daily 
activities (Saxe & de Kirby, 2014). Elsewhere, linkages made between social and cultural 
contexts led to the development of research on social interactions in learning contexts (Vygotsky, 
1978) and identity development (Erikson, 1950; Lave & Wenger, 1991), among others. 

Saxe and de Kirby’s (2014) framework and review is useful for better understanding the 
trajectory of early mathematics education research from cognitive, individually-focused contexts 
to more sociological, culturally-centered aspects of learning and the issues that have come as a 
result of working to intersect these domains. Specifically, the authors and others (e.g., Nasir, 
2005) identify portions of this trajectory and note that researchers generally situate discipline-
specific contexts separately, which seemingly imply a one-way directional influence versus an 
integrated more nuanced structured relation between culture and cognition (Nasir, 2005). 

 In some intermediary views on teaching and learning, student knowledge was framed as 
structuring of cognition in sociocultural contexts (Cobb & Yackel, 1996; Nasir, 2005), which 
provided nuanced frames to better understand equity issues in education contexts. Specifically, 
these and similar references situated earlier contexts on teaching and learning in both individual 
and social contexts. As a result, research on identity and identity development in the field 
sprouted, as we see through seminal studies on developing identities in learning contexts (e.g., 
Lave & Wenger, 1991). Further development on views about teaching and learning were 
prompted in part by two theoretical contributions: on one end, the research developing to help 
situate student learning and equity contexts in cognitive, social, and cultural contexts and, on the 
other end, a much more apparent issue with the political aspects and politics of research in the 
field. 

Apple (1992) argued that knowledge is highly political. The author argued that the way that 
society treated certain kinds of knowledge to be more legitimate than others spoke to the 
distribution of power in society. Apple’s work raises the question: whose knowledge do we 
leverage in education and in creating curricular reforms based on that knowledge, and who truly 
benefits from these reforms? Connectedly, in mathematics education, Martin (2000, 2013) has 
contended with the ideas of existing narratives that support the marginalization of groups of 
people. One such narrative is the idea that knowledge production is “neutral and impartial, 
unconnected to power relations” (p. 323). This is in direct line with the research on the politics of 
education research (Apple, 1992).  
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Gutiérrez (2013), along with Martin (2000, 2013), brings these challenges to the field of 
mathematics education, and pushes the field to take the “sociopolitical turn.” The sociopolitical 
perspective considers knowledge, power and identity to be interrelated and “arising from (and 
constituted within) social discourses” (Gutiérrez, 2013, p. 40). Adopting such a perspective 
involves “uncovering the taken-for-granted rules and ways to operating that privilege some 
individuals and exclude others” (ibid, p. 40). As the field witnesses the development of theories 
related more broadly to the social-cognitive and socio-cultural domains, researchers have argued 
for a need to examine the sociopolitical domain (Gutiérrez, 2013). 

Situating the current state of RUME in the development of the K-12 research suggests some 
productive research directions for equity research at the postsecondary level. One direction is for 
the RUME community to consider other theoretical frameworks that prioritize non-cognitive 
factors and socio-cultural context in learning. In recent years, we have begun to see the uptake of 
socio-cultural perspective and the situative perspective on learning, as reflected in the work 
presented in the RUME community (e.g., Katz, Post, Savic & Cook, 2015). This suggests that 
parts of the RUME community are equipped with theories to consider issues of equity more 
directly in their work. Perhaps in the near future, we as a community can begin exploring 
questions about the role of identity and identity development in mathematics education at the 
postsecondary level.  

RUME research continues to focus heavily on students’ and teachers’ individual cognition 
and practices. While one direction in research is to consider theoretical frameworks that 
prioritize non-cognitive factors, another direction is to consider the social and political contexts 
in which cognition occurs with individual cognition studies. As Gutiérrez (2013) and Apple 
(1992) suggest, we need to begin to explore questions about the kind of the knowledge and 
practices we privilege in teaching and learning in postsecondary mathematics. At the K-12 level, 
some researchers have responded to this question by trying to leverage and build on cultural 
aspects of the students’ communities in designing curriculum (Civil, 2006). At the postsecondary 
level, we are constrained by the more abstract nature of mathematics and the fact that it becomes 
increasingly reliant on previous formal mathematical knowledge. Recognizing those constraints, 
what other non-dominant knowledge can we leverage in instruction? What is the role of students’ 
more informal knowledge in learning formal mathematics? We discuss some ways that some 
researchers have answered this question in a later section. Thus, in addition to considering the 
social and political contexts in which cognition occurs, we need to explore the extent to which 
the nature of mathematics at the postsecondary level is similar and/or different from the 
mathematics at the K-12 level, and the corresponding implications for equity research in the 
teaching and learning of postsecondary mathematics.   

In the next several sections, we discuss more specific progress and findings in equity 
research at the K-12 level, and attempt to put them in conversation with some studies at the 
postsecondary level. In order to frame this discussion, we introduce Gutiérrez’ (2009) framework 
for equity as a lens through which we interpret lessons from existing research at the K-12 level, 
and we also use this framework to discuss ways that these lessons can inform our work at the 
postsecondary level. Finally, we elaborate on the subtleties and meaning of the constructs from 
Gutiérrez (2009) in the context of existing studies at the postsecondary level.  
 

Four Dimensions of Equity 
Gutiérrez (2009) introduces four dimensions of equity: access, achievement, identity and 

power to problematize standard conceptions of equity research and practices in K-12 
mathematics education (See Figure 1). She places the four dimensions on two axes of equity: the 
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access and achievement axis, and the power and identity axis. Access, as a precursor to 
achievement, refers to learning resources related to students’ opportunity to learn and participate 
in mathematics, e.g., good instructors, rigorous curriculum, and classroom structures that invite 
participation. Achievement focuses on student learning outcomes. This ranges from students’ 
learning outcomes on a particular topic to students’ ability to productively use mathematics to 
participate in society.  

 
Figure 1. The two axes of equity. Diagram adapted from Gutiérrez (2009). 

 
On the other axis lies identity and power. To consider identity is to recognize students’ 

relationship with the broader world. This consideration involves understanding students’ pasts, 
the contribution of their culture and heritage, and also the ways that they are “racialized (Martin, 
2007), gendered and classed (Walkerdine, 1988)” in different social contexts (as cited in 
Gutiérrez, 2009). Power accounts for the role of learning in “social transformation” at different 
levels (Gutiérrez, 2009, p. 6). To consider power is to explore the degree that learning challenges 
or disrupts existing power distribution and dynamics in society, which are often based 
on race, gender and social class. This can be achieved by helping students use mathematics to 
critique social issues, examining who speaks and makes decisions during class time, and 
considering what counts as productive mathematical knowledge. The purpose of conceptualizing 
equity in this way is to highlight the relationships and tensions among these dimensions, which 
allows us as a community to acknowledge and combat longstanding inequities.  
 

Problems and Progress in K-12 Equity Research 
We organize problems and progress in K-12 equity research using Gutiérrez’ (2009) four 

dimensions of equity. We first discuss critiques ofthe fixation with closing achievement gaps at 
the K-12 level as it pertains to issues of access and achievement. Then we consider the 
recommendation for considering socio-political nature of mathematics education, specifically as 
it pertains to issues of power and identity. We bring these lessons into post-secondary contexts 
by using the four dimensions of equity to reinterpret existing studies in RUME.    
Achievement Gap Studies and the Access and Achievement Axis 

Issues surrounding equity in K-12 rarely move beyond the static goal of closing the 
achievement gap, and often fail to account for issues related to access into mathematics. At the 
elementary and secondary levels, the question of educational equity has been most often centered 
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on closing what many have framed as the mathematics achievement gap (Gutiérrez, 2013). In 
general, researchers have referred to the mathematics achievement gap as the difference in 
achievement outcomes between two or more groups of students. However, race has been a 
dominant focus in discussing the achievement gap, with researchers oft noting the differences 
between White, and often Asian students’ mathematics outcomes and those of other racial-ethnic 
groups, most often other students of color (Martin, 2000, 2013).  

Some researchers have cautioned against this way of framing equity as it supports deficit 
thinking and negative narratives about marginalized groups, and relies on one-time cross sections 
of data on achievement (Gutiérrez and Dixon-Roman, 2011; Martin, 2013). Gutiérrez (2008) 
points out that this fixation with “gap-gazing” also fails to acknowledge differences in access to 
learning opportunities experienced by members of marginalized groups. The nature and scale of 
these differences in learning opportunities vary widely: from the level of expertise of the 
students’ mathematics teachers, to students’ access to rigorous curricula and instruction, to 
classroom participation structure, to students’ opportunities to take higher-level mathematics 
courses (Gutiérrez, 2009). Elsewhere, researchers have discussed the detrimental effects on 
pedagogy and practice in light of these largely racialized references (Martin, 2000, 2013).  
Access and Achievement in the Postsecondary Context 

Uri Treisman’s work with the Emerging Scholars Program (Fullilove & Treisman, 1990; 
Treisman, 1992; Treisman, 1985) serves as a productive context to discuss the tension between 
access and achievement in the postsecondary mathematics context. The study is one of the 
earliest studies around equity specifically in undergraduate mathematics. The Emerging Scholars 
program was a response to an achievement gap in calculus between Chinese students and the 
African American students at UC Berkeley. On the one hand, the study challenges many 
preconceptions about African American students, and it problematizes the way in which 
institutions can fail to acknowledge differences in access to learning opportunities experienced 
by marginalized groups of students. On the other hand, this work suffers from a 
common  criticism of achievement gap studies, in that the study positioned the African American 
students’ practices in a deficit way while it privileged the practices of the Chinese students.  

Treisman (1992) documented and challenged commonly held assumptions among faculty 
members about reasons for low performance of African American students in calculus at UC 
Berkeley. Through interviews with students and their families, the study dispelled the commonly 
held faculty explanations for low performance: lack of motivation, preparation, family support, 
and economic resources. Having ruled out those factors, Uri Treisman set out to understand 
differences in study practices of minority students, comparing those of the Chinese and the 
African American students. The rationale for this choice was that both were minority groups, but 
the Chinese students were performing well in calculus whereas the African American students 
were not.  

While the study started with an aim to investigate an achievement gap, the analysis revealed 
differences in opportunities to participate in doing mathematics between the two groups. That is, 
instead of focusing solely on performance, the study looked at achievement gap as differences in 
opportunities to learn (Flores, 2007). Fullilove and Treisman (1990) found that the Chinese 
students had access to different resources as a result of studying in groups, learning from 
upperclassmen, and critiquing one another’s work. They found that the African American 
students on the other hand were studying in isolation. In order to mitigate this difference in 
learning opportunities, Treisman created recitation sections that incorporated opportunities for 
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students to work together on challenging problems. When the access to opportunities for learning 
was leveled, differences in achievement between the groups seemingly disappeared.   

Closing the achievement gap between the African American students and students from 
dominant groups came at some cost. While learning from the practices of the Chinese students 
was productive, it positioned the African American students as deficient. Like many achievement 
gap studies, it suffered from the criticism that it was focusing on how to make the African 
American students be more like the Chinese students (Gutiérrez, 2013), thereby setting a 
particular racial hierarchy. This perpetuation of the narrative of Asians as good with mathematics 
has also been shown to have implications in the way that African American students see 
themselves as doers of mathematics. Shah (2013) found that high school students would attribute 
their African American classmate’s success in mathematics to having “some Asian in them” (p. 
1). It perpetuates the narrative that success in mathematics is not for Black students.  

The African American students in Treisman’s study were high achieving (Treisman, 1992). 
They were admitted to UC Berkeley with comparable academic background and test scores to 
other students who were admitted, but their strengths in mathematical practices were 
underexplored in the study. This contrasts with Walker’s (2014) work with Black 
mathematicians and McGee and Martin’s (2011) work with successful Black mathematics and 
engineering students. Their work emphasizes the practices and identities of the Black students 
and mathematicians, and the nature of their success, independent from any comparison to other 
racial groups.   

Walker (2014) reconceptualized mathematical achievement using practices within and 
outside of school that involve the mathematicians’ kinships and networks. By exploring the lived 
experiences of Black mathematicians, she uncovered more than just the personal achievement of 
the individual mathematicians, but also how achievement was a product of support of community 
from the person’s home, neighborhood and schools, and personal network. McGee and Martin 
(2011) explored practices of successful Black mathematics and engineering students in managing 
stereotypes threat (Steele, 1997) in their field of study. The authors were able to document ways 
that stereotype management developed for many of these students. Being critical about 
perceptions and attributions of Black behavior, mastering cultural code-switching and always 
attempting to be “on top of things” were some of the ways through which students in the study 
developed ways to challenge stereotypes against them. Walker (2014) and McGee and Martin 
(2011) were able to explore the ways that the person’s racial and academic identity influence 
their trajectories to and through mathematics. Along with Treisman’s work, this work challenges 
existing narratives about Black/African American people and mathematics. Their work also 
highlights and brings us to issues of identity and power in mathematics education. 
Sociopolitical Turn and the Identity and Power Axis  

Research done from the sociopolitical perspective pays careful attention to ways that 
identities influence participation in mathematics  (Gutiérrez, 2013). Challenging the status quo 
with respect to what counts as acceptable knowledge and practices in mathematics is one of the 
ways that the sociopolitical perspective strive to “transform mathematics education in ways that 
privilege more socially just practices” (p. 40). As we mentioned earlier, the sociopolitical 
perspective treat knowledge, identity and power as interrelated and as a product of social 
discourse. This stands in contrast with the treatment of identity as static cultural marker, as it is 
sometimes conceived in existing equity studies.    

In addition to race, equity studies have also consistently focused on the effect of other 
demographic factors and differences in fairness, access, and opportunity. These factors 
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encompass socioeconomic status, gender, language status, and they have been studied both 
singularly and in tandem. For example, Reardon (2013) argued that socioeconomic status plays a 
more significant role in differential outcomes than race. However, Gutiérrez (2013) noted that 
research that focused on achievement gaps often treated identity as “a fixed, overarching 
metanarrative, owned by the individual” that simply serve as “a classification system”(p. 45).  

The sociopolitical perspective instead views identity as “dynamic” and “multivocal” 
(Gutiérrez, 2013, p. 46). Identity is dynamic in that it is not owned but rather performed 
depending on the context the person is in. Identity is multivocal in the way that it is negotiated 
by the person and the environment. Gutiérrez (2013) summarized, “The self, therefore, is a 
collection of interconnected identities constituted in practices such that any given practice 
positions an individual through and in race, class, ethnicity, sexuality, gender, religion, language, 
and so forth” (emphasis added, p. 46). Others have argued that one cannot examine issues of 
access and opportunity without first contending with the impact of the intersection of these 
identities, i.e., issues of intersectionality (Collins, 2000; Crenshaw, 1991). 

We know that particularly in mathematics education, gender plays a prominent role in 
conversations about to equity and achievement. Yet, researchers still tend to adopt a static view 
of gender in equity research (Alexander, 2013; Oakes, 1990). Collins (2000) focused on ways 
that gender, sexuality, race, class and nationality serve as mutually constructing systems of 
oppression. This is to say, that a person does not experience oppression solely as a result of the 
color of their skin, but rather that gender, sexual orientation, social class and disability status all 
contribute to a person’s lived experience. Such treatment of intersectionality is largely absent in 
equity research. In addition to lack of consideration of intersectionality and dynamic treatment of 
identity, other factors, such as language status, sexual orientation and disability status have been 
deemphasized in the literature. Thus, a consideration of the political contexts of undergraduate 
mathematics education research associated with social, cultural, and cognitive issues is not only 
warranted, but also further underlined by its absence in the literature (Gutiérrez, 2013; Martin, 
2013). 
Identity and Power in Postsecondary Context 

In this section we consider two studies: Saundra Laursen’s work around Inquiry-Based 
Learning (IBL) and Keith Weber’s work around mathematicians’ proof practices. We use them 
to discuss ways that issues of power and identity have been discussed in the context of 
postsecondary mathematics, albeit without necessarily using those particular terms. In this way, 
we also suggest ways in which this work might be productively reinterpreted through an equity 
lens.  

Laursen, Hassi, Kogan and Weston (2014) documented ways in which access to different 
learning opportunities can mitigate differences in achievement and attitudes among students. IBL 
approaches to teaching undergraduate mathematics focus on ways to provide students 
opportunities to engage with problem solving and problem posing, develop and test conjectures 
and solution paths in collaboration with peers, as well as collaboratively justify and critique 
arguments. This approach stands in contrast to more traditional lecture-based instructional 
approaches. In addition to supporting previous research that showed the effectiveness of IBL for 
positively impacting previously low-achieving students in sizeable and persistent ways (Kogan 
& Laursen, 2013), the study also documented ways in which IBL had the potential to support 
women in developing positive self perceptions as capable doers of mathematics.  

Laursen et al. (2014) drew on data from over 100 courses offered across 4 campuses to 
compare students’ interest and confidence before and after taking IBL and non-IBL courses, as 
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well as their self-reported learning gains. The authors identified two important differences by 
gender. First, women’s self-reported learning gains in non-IBL sections were lower than those of 
men, while this gender gap was not present in IBL sections. However, comparable performance 
in the subsequent coursework between these men and women suggest that the differences in 
learning gains were perceived rather than actual differences. Second, interest and confidence in 
doing mathematics decreased more for women in non-IBL sections compared to men, whereas 
they increased for women in IBL sections. Taken together, the authors argued that IBL 
instruction “leveled the playing field by offering learning experiences of equal benefit to men 
and women” (Laursen et al., 2014, p. 412).   

One might critique this study for some of the reasons discussed earlier in that the study 
focused on eliminating gaps (differences) between men and women. The study also (treated 
gender as a static marker, with little consideration of other aspects of students’ identities. On the 
other hand, the study focused on challenging the participation structure in mathematics through 
IBL. The simple triangulation with students’ performance in the subsequent class problematized 
the narrative that female students are less confident and less capable as compared to male 
students. Not only did it show that the performances of the male and female students were 
comparable, but it also attributed the lower confidence to the influence of traditional 
participation structure on female students’ self-perception. While the study still challenged 
existing narratives about female students and considered the implications of power 
redistributions in the classroom through IBL, consideration of the intersectionality of the 
students’ identities were deemphasized. For example, how would controlling for race in addition 
to gender in these IBL classes influence the results? How many of the students were of a 
different race, and how many were international students? We explore this issue of 
intersectionality and power through Keith Weber’s work around mathematical proof practices.  

To further discuss issues of power in undergraduate mathematics education, we discuss two 
particular pieces of work: Weber, Inglis and Mejia-Ramos (2014), and Weber and Alcock 
(2004). Together, the authors of these pieces challenged common misperceptions of 
students’  “unproductive” proof practices. For example, in Weber and Alcock (2004), the authors 
argued against work that uses Tall and Vinner’s (1981) notion of concept image and concept 
definition—a common theoretical framework in the RUME community—that positioned 
students’ prior knowledge as a hindrance in learning formal mathematics. They instead 
documented and illustrated ways that students’ intuition and prior knowledge can play an 
important role in producing correct proofs. Similarly, Weber et al. (2014) challenged the 
perception that expert mathematicians simply do not do what novice mathematics students do in 
gaining conviction about proofs. For example, the study found that some mathematicians in the 
study used examples to gain conviction about a mathematical proof, a practice that is often 
associated with novice mathematics students. Returning to the political nature of knowledge and 
practice, these works nicely illustrate ways that studies about individual cognition and practice 
can challenge ways that we as a community have been privileging certain practices over others.  

However, similar to many studies around individual knowledge and practices, these studies 
de-emphasized issues related to participants’ identities. One particular finding in Weber et al. 
(2014) can assist in illustrating this point. In the paper, the authors reported on a study in which 
they interviewed highly successful mathematicians and their practice in reading proofs. They had 
one mathematician who refused to believe a theorem simply because it was written by another 
mathematician, while most mathematicians in the study stressed that they did not check 
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published proofs for correctness. When asked why this mathematician still read proofs in 
journals, the mathematician responded, 

“I would like to find out whether their asserted result is true, or whether I should believe 
that it’s true. And that might help me, if it’s something I’d like to use, then knowing it’s 
true frees me up to use it. If I don’t follow their proof then I would be psychologically 
disabled from using it. Even if somebody that I respect immensely believes that it’s true” 
(p. 44). 

This lone mathematician happened to be a female mathematician. Was it a coincidence that it 
was a female mathematician that spoke differently? We are not claiming that her refusal to use a 
proof that she did not follow was solely a function of her gender. At the same time, to assume 
that her gender had nothing to do with that statement might be shortsighted.  

Herzig (2004) summarized existing research on attrition and persistence of doctoral students 
and identified particular obstacles for women and students of color. Herzig (2004) reported that 
according to the 2003 Committee on the Participation of Women of the Mathematical 
Association of America in, female graduate students experience sexist behaviors from their 
faculty, which include professors who openly express the opinion that women are not as “smart, 
dedicated, or talented as men” (p.192). The underrepresentation of female faculty also 
contributed to the isolation of women in mathematics. For example, Blair, Kirkman and Maxwell 
(2013) reported females comprised only 29% of full-time faculty.  

Those two facts alone provide warrant to further explore the mathematician’s comment about 
verifying the proof. To what extent was the necessity to verify another mathematician’s proof a 
result of positioning of this mathematician as a woman in mathematics? More broadly, what 
additional pressures do female mathematicians experience in their practice, and how might these 
pressures influence their proof practices? We believe that considering these questions, and more 
broadly, issues of identity and its relationship to power can provide important nuances and 
insights into Weber and colleagues’ work.     
Summary 

Lessons from K-12 equity research have the potential to transform the research that is being 
done at the postsecondary level. Moving away from achievement gap research, and towards 
research that focuses on uncovering privilege and challenging the status quo in mathematics 
education is one important lesson that can be applied to postsecondary mathematics education. 
Careful consideration of power and identity are necessary for understanding equity issues in the 
postsecondary context. At the same time, we hope that our discussion also illustrates the 
interconnectedness and the tensions among the four dimensions of equity (Gutiérrez, 2009). For 
example, as we illustrated, a discussion about Black students’ access and achievement in 
Fullilove & Treisman (1990) and Treisman’s (1985) study could not be separated from a 
discussion about the intersections of students’ identities. By challenging existing narratives about 
Black students through an investigation of these students’ lived experiences, these authors 
disturbed and challenged the power distribution in mathematics education. In particular, it 
challenged the narrative of who can be successful in mathematics, and how such success can be 
achieved. Thus, as part of the summary, we offer a revision to Figure 1 that we adapted from 
Gutiérrez (2009) to reflect the interconnectedness of these four dimensions in Figure 2. 
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Figure 2. The Interconnectedness of the Four Dimensions of Equity 

   
Discussion and Implications 

While we argue in this report that there is a paucity of equity-focused studies in RUME, we 
hope that we have been successful in illustrating ways that lessons from equity research at the K-
12 level can help conceptualize and advance equity research at the postsecondary level. 
Conceptualizations of equity for research should lead to focused conversations and generate 
shifts in pedagogical practices. Thus, we close with potential research foci and open questions 
that resulted from our discussion. 

The first question is about studies of individual cognition and practices. How can we be more 
mindful of equity issues while studying individual student cognition or practices? One helpful 
thing to do is to provide a better representation of research participants by documenting and 
reporting on participants’ backgrounds. As we discussed with the example of Keith Weber’s 
work, cognitive researchers wield a lot of power. As researchers and practitioners of 
mathematics at the postsecondary level, we decide what type of practices and thinking we deem 
to be valuable, which is relevant to issues of equity. Thus, being mindful of the claims we make 
about what type of knowledge or practices we value is a very important consideration. At the 
same time, this presents a challenge to existing theoretical frameworks around cognition and 
student thinking and sense making. To what extent do existing frameworks privilege a particular 
type of thinking while marginalizing others? This is an open question that we present to the 
community.  

The second question deals with issues of intersectionality of identity. As we discussed 
earlier, consideration of intersectionality in K-12 equity research is still minimal. While we can 
agree that a person’s identity matters in the way that they participate in mathematics, empirically 
we have yet to think of ways to consider the intersections of a person’s identities and to see how 
that intersection influences the way that the person participates in mathematics at the 
postsecondary level. For example, we can begin exploring the lived experiences of female 
mathematicians of color. Of the 29% female faculty members we mentioned earlier, 60% of 
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them were White (Blair, Kirkman and Maxwell, 2013). What might be some of the factors that 
contribute to the underrepresentation of women of color in mathematics? Returning to study by 
Weber et al., perhaps we can explore the extent to which the proof practices of an Eastern 
European female mathematician similar or different from that of an Asian female mathematician. 
The purpose of asking these questions is not to essentialize a particular group of individuals, i.e., 
claiming that a particular group of people behave or think a certain way. Instead these questions 
aim to explore the intersection of people’s identities and ways that mathematics as an institution 
privileges parts of people's’ identities but not others, which brings us to the last open question.    

The third question deals with institutional factors that might have contributed to the 
marginalization of underrepresented groups. Postsecondary mathematics is an institution, and 
from the data we presented about the ethnic breakdown of faculty members in mathematics, it is 
a white institutional space (Martin, 2013, p. 323). Part of the work for equity at the 
postsecondary level is to explore, as suggested by the sociocultural perspective, some of the 
taken-for-granted rules of this institution that might have privileged certain groups while 
marginalizing others. For example, a researcher found that instructors of [teaching] methods 
courses in mathematics departments reported equity as one of the lowest areas of need of 
support, whereas instructors of methods courses in college/school of education reported it as one 
of the highest areas of need (Sean Lee, personal communication, February 11, 2015). Do these 
differences point to issues about how equity is understood and valued in different institutional 
contexts?  

We are excited by the prospect of using this theoretical report to generate conversations in 
the RUME community about equity research and equity-focused lenses on learning.  It is our 
belief that these conversations have the potential to advance the ways in which our community 
understands and values issues of equity, while offering new tools and insights for 
conceptualizing the current work of those in our community.  
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Pedagogical reforms in undergraduate STEM courses are garnering increasing attention in 
the literature and from national organizations in disciplines such as mathematics, physics, and 
chemistry.  While there is significant evidence to support the effectiveness of classroom-based 
pedagogical reforms, the way in which these reforms are taken up by those not involved in their 
development varies widely.  This comparative case study seeks to better understand the ways in 
which student-centered instructional reforms in undergraduate mathematics are implemented.  
Data is taken from videotaped instruction of three participating instructors at three different 
institutions as they work to implement a student-centered instructional unit focused on 
supporting students’ understanding of span and linear independence in undergraduate linear 
algebra.  This analysis examines the way in which these instructors structured class time when 
implementing the unit, and the nature of opportunities for students to explain their thinking in the 
context of whole class discussions. 
 
Key words: instructional change, classroom research, discourse analysis 
 

Background, Literature, and Research Questions 
The number of students in the United States entering and completing undergraduate and 

graduate science, technology, engineering, and mathematics (STEM) programs is declining, and 
this decline has been connected to the nature and quality of instruction in undergraduate STEM 
courses (Fairweather, 2008; Seymour & Hewitt, 1997). Because of the social and economic 
implications posed by a reduction in STEM graduates, funding for research aimed at improving 
instruction in undergraduate STEM courses has increased (National Science Foundation, 1996; 
National Research Council, 1999, 2011). While there is significant evidence to support the 
effectiveness of classroom-based pedagogical reforms, these reforms have failed to spread, and 
the research on how to improve instruction at scale in undergraduate STEM is limited 
(Fairweather, 2008; Henderson, Beach & Finkelstein, 2011).  

Classroom-based research has identified student-centered instructional methods that are 
related to greater conceptual learning gains in mathematics (Hiebert & Grouws, 2007). Such 
student-centered instruction is marked by two primary characteristics: (1) students have 
opportunities to engage in cognitively demanding tasks, and (2) students have opportunities to 
engage in mathematical argumentation with their peers (Hiebert & Grouws, 2007). The cognitive 
demand of a task distinguishes whether it is one in which students are asked to recall or 
reproduce terms/procedures (low cognitive demand), or one in which students are asked to 
develop, generalize, or justify a solution method (high cognitive demand) (Stein & Lane, 1996). 
Students’ engagement in mathematical argumentation entails justifying and explaining their 
thinking and evaluating arguments developed by their peers. While Hiebert and Grouws’s (2007) 
findings are drawn from a synthesis of K–12 mathematics literature, theirs are consistent with 
findings from a variety of undergraduate STEM courses including differential equations, physics, 
and chemistry (e.g., Deslauriers, Schelew, & Wieman, 2011; Kwon, Rasmussen, & Allen, 2005; 
Lewis & Lewis, 2005).  
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Classroom-based research on effective instructional methods is compelling, but there is 
evidence that a variety of both individual instructor and institutional factors can substantially 
influence the ways in which pedagogical reforms are taken up by those not involved in their 
development (Henderson et al., 2011). For instance, in the K–12 mathematics education 
literature, instructors’ knowledge of both content and how students think about that content, as 
well their beliefs about instruction and students’ capabilities, have been related to the likelihood 
that they will pose cognitively demanding tasks to their students, and to the likelihood that they 
will enact those tasks in a way that maintains the cognitive demand (Charalambous, 2010; 
Garrison, 2013; Son, 2008). Investigative studies have also identified challenges postsecondary 
mathematics instructors encounter when working to adopt more student-centered instructional 
methods; a central theme in this research is the need for instructors to develop an understanding 
of student thinking to plan for and lead discussions that effectively build on students’ solution 
strategies (Johnson & Larsen, 2012; Speer & Wagner, 2009; Wagner, Speer, & Rossa, 2007). In 
addition to these individual level factors, institutional factors have been related to the success or 
failure of instructional change strategies. In a review of the literature on instructional change 
strategies in undergraduate STEM education, Henderson and colleagues (2011) find that top-
down policies and designing and disseminating curricular materials are strategies that have 
proven unsuccessful in generating instructional change in STEM; effective change strategies 
consider teachers’ conceptions of instruction and align with existing institutional contexts. 
Factors that have served as impediments to instructional change include student attitudes, faculty 
perceptions of departmental expectations regarding coverage, time demands on instructors, and 
departmental culture (Henderson & Dancy, 2007; Enderle, Southerland & Grooms, 2013). 
 Given the need for instructional change in undergraduate STEM, it is necessary to better 
understand the ways in which individual instructors engage in efforts to change instruction. More 
specifically, a better understanding of the ways in which student-centered instructional materials 
are interpreted and implemented has the potential to inform the design of the materials and 
instructional supports needed to generate instructional change strategies. Our research questions 
are: (1) What challenges do instructors report facing when working to change instruction by 
using student-centered instructional materials, and how do these challenges shift when 
instructors use the same materials in subsequent semesters? (2) In what ways do instructors 
structure class time and opportunities for students to explain their thinking when implementing 
student-centered instructional materials, and how do these structures and opportunities shift 
when instructors use these materials in subsequent semesters?  
 

Data Sources and Methods of Analysis 
This analysis involves conducting a comparative case study (Yin, 2003) of data that was 

collected during Fall 2013 and Fall 2014 from three participating instructors at three 
undergraduate institutions that implemented one unit of student-centered instructional materials 
in the context of an intact introductory linear algebra course. Participating instructors were 
recruited on a volunteer basis, but deliberately selected to represent a variety of institutional 
contexts (see Table 1 below). More specifically, instructors were selected to represent both 
public and private institutions of varying size and geographic location in the U.S.—one in the 
Midwest, one in the Northwest, and one in the Northeast. The instructional unit is intended to 
span approximately 4–5 one-hour class sessions. Student prerequisites for the course as well as 
instructor background and training vary by institution. 

The participating instructors are “best case” implementers in many regards: All have an 
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expressed interest in mathematics education, and all have some background knowledge of and 
interest in teaching with this set of linear algebra instructional materials (through conference 
presentations attended or interactions with colleagues familiar with the materials). However, the 
participating instructors also differ along a number of key dimensions that are likely to be 
important in shaping the way they interpret the materials and the way in which they actually 
implement the instructional materials in their classrooms. This case selection is appropriate both 
theoretically and pragmatically, as the study aims to explore the challenges encountered by 
individuals aiming to achieve instructional change.  Indeed, it has been documented elsewhere 
that undergraduate STEM instructors commonly see a need for instructional change but do not 
attempt to implement significant changes to their teaching for a variety of reasons (Henderson & 
Dancy, 2007). This study aims to generate theory about what instructional change looks like by 
examining the work of those seeking to implement it. 
 
Instructor Academic 

Specialty 
Institution 
Type 

# of Tenure-earning 
math faculty in 
department 

Duration of 
employment in 
department 

A PhD 
mathematics 

Private 4-year 
college 

10-15 5 years 

B PhD 
mathematics 
education 

Public 4-year 
college 

Less than 5 1 year 

C MA mathematics 
education 

Public PhD-
granting 
university 

More than 40 15 years 

Table 1: Profiles of instructor characteristics and institutional context 
 

Data for this analysis is taken from video recordings of classroom instruction of 
implementation of the instructional materials in 2013 and 2014, as well as a series of audio-
recorded interviews conducted with instructors before, during, and after they had completed 
implementation of the instructional unit in 2013 and 2014.  In order to identify challenges 
instructors reported in implementing the instructional materials, as well as shifts in challenges 
from the first year to the second year of implementation, field notes from the interviews were 
summarized to identify themes in the challenges noted by instructors.   

In order to understand how instructors structured class time and built on student thinking 
when implementing the instructional materials in 2013, we conducted a two-phase analysis.  In 
the first phase of this implementation analysis, we generated content logs for each class session.  
These were generated in a table format, with columns for timestamp, description of classroom 
events (in which teacher contributions were distinguished from student contributions), discourse 
structure (small group work, whole class discussion, or lecture), notation and language 
introduced, and other notes.  In order to generate a broad characterization of instructors’ use of 
time, we coded instructors’ use of time into three broad categories: small group work, whole 
class discussion, and lecture.  Segments of the class when the whole class was focused on the 
instructor providing information to students were coded as lecture; segments of the class when 
the whole class was focused on a single conversation in which multiple students contributed 
ideas to the conversation (e.g. by explaining or justifying their solution strategy) were coded as 
whole class discussion.  We then used these content logs to generate initial categories for how 
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instructors structured opportunities for students to share their thinking, as well as to summarize 
their overall use of time. 

Instructors indicated in 2014 interviews that they felt much more able to dig into and build on 
students’ thinking.  In order to explore this issue, we decided to closely examine the whole class 
discussions facilitated by instructors following students’ work on task 1 only in 2014.  This 
would allow us to examine more carefully the ways in which instructors structured opportunities 
for students to share their ideas and approaches in whole class discussion, and the ways in which 
instructors built on those ideas – and then to examine how these compared to 2013 
implementation.   

By looking across these two years of implementation, we identified two broad categories for 
ways in which instructors structured opportunities for students to share their thinking, and two 
broad categories for ways in which instructors built on student thinking.  Finally, we compare 
shifts in use of these structures from 2013 to 2014 in the context of whole class discussions 
following students’ work on task 1.   
 

Instructor Support Materials 
The instructional support materials used in this study were developed across a series of four 

classroom teaching experiments in linear algebra, and are described elsewhere (Wawro, 
Rasmussen, Zandieh, Sweeney, & Larson, 2012). Following the model described by Lockwood, 
Johnson, and Larsen (2013), the instructor support materials aim to support instructors in 
implementing student-centered teaching. These materials include a sequence of student-centered, 
cognitively demanding tasks that build toward understanding of key mathematical concepts, a 
rationale for the instructional sequence, information regarding common student strategies, and 
suggestions for implementation (e.g., guiding questions for whole-class discussions after 
students have worked on the tasks). The rationale for the design of the instructor support 
materials is firmly rooted in the literature (Ball & Cohen, 1996; Collopy, 2003; Davis & Krajcik, 
2005) and has been shown to be useful for instructors (Lockwood et al., 2013). 

The specific instructional unit that is the focus of this analysis is organized around the goal of 
supporting students in developing a conceptual understanding of span and linear independence of 
sets of vectors in Rn.  The instructional sequence is organized around a sequence of four primary 
tasks that are designed to support students in developing intuition that coordinates geometric and 
symbolic representations of linear combinations of vectors and properties of sets of vectors.  In 
the first task, students are given two “modes” of transportation whose motion corresponds to the 
vectors  (whose movement results in a displacement of 3 miles East and 1 mile North of its 

starting location each hour) and  (whose movement results in a displacement of 1 miles East 
and 2 mile North of its starting location each hour), and asked to find if they can reach Old Man 
Gauss, who lives 107 miles East and 64 miles North of their home.  Task 2 asks if there is 
anywhere Old Man Gauss can hide (which leads to the defining of span as the set of all possible 
linear combinations of a set of vectors).  Task 3 shifts to R3 and asks whether “non-trivial” 
journeys can be taken that start and end at home (which leads to the defining of linear 
dependence and independence).  Task 4 asks students to generate linearly dependent and 
independent sets of specified numbers of vectors in R2 and R3 or explain why it is not possible to 
do so, and to develop at least 2 generalizations they think are true based on this work. 
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Findings 
 In this section, we first offer a brief overview in of shifts in the challenges instructors 
reported in implementing the materials from year 1 to year 2.  We then summarize the ways in 
which instructors made use of class time in year 1 implementation of the instructor materials. We 
then provide examples to illustrate each of our categories for how instructors structured 
opportunities for students to share their thinking and the ways in which instructors built on 
student thinking.  Finally, we compare instructors use of these structures in whole class 
discussion following students’ work on task 1 in 2013 to 2014.  Our discussion considers 
implications for these findings, particularly with regard to shifting challenges faced by 
instructors and its implications for the implementation of student-centered instructional 
materials.  
 
Shifts in challenges reported by instructors from 2013 to 2014   

One of the most striking trends that emerged from our examination of data from 
interviews with instructors was the shift in demands experienced by instructors from the first to 
the second year of implementation.  During the first year of implementation, instructors’ talk 
about planning and use of the instructional materials tended to focus on issues of timing within 
class sessions, pacing of material across class sessions, aligning materials with the course 
textbook (both for mathematical coherence and for issues of assigning homework), and ways of 
grouping students and getting them to talk in class.  This is in contrast with the second year of 
implementation, when instructors’ talk in interviews focused much more heavily on students’ 
mathematical thinking. This shift in instructors’ talk about their instruction was reflected in their 
implementation of the materials themselves in a way that is consistent with one instructor’s 
description of this shift: 
 

Last year, I introduced the tasks, but it was more like here you go.  Let’s see what 
happens with this.  I was more willing this year to let discussions go… I knew where 
everything was going.  I could see the forest instead of focusing on the individual trees.  
Last year I was very uncomfortable doing that, I think I cut in too soon or imposed my 
own strategy too soon. 

 
While this comment does not highlight the challenges instructors experienced in their 

work outside of class time to plan for use of the materials, it highlights the way in which this 
instructors’ in-class experience implementing the materials shifted as well as the way in which 
the knowledge instructors gained in the first year of implementation impacted the instructional 
choices they made in subsequent implementation.  

 
Implementation: Use of class time in 2013 

In 2013, all three instructors allocated a similar amount of class time to the instructional 
sequence; those with 50 minute classes used 6-7 days of instruction whereas the instructor with 
90 minute classes used about 4 days of instruction.  However, as shown in Figure 1,  instructors 
differed in their allocation of time among small group work, whole class discussion, and lecture. 
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Figure 1: Net use of time by instructors 

 In order to better illustrate how instructors structured time on a day-to-day basis, we 
created a diagram to show the trajectory of time use for each instructor as shown in Figure 2.  
The discourse patterns in Instructor A’s class were the most consistently structured: following an 
initial lecture on the first day that gave an overview of the course, there was always a chunk of 
time for small group work, followed by time for discussion of student approaches, followed by a 
short lecture.  This stands in stark contrast with the discourse structure in instructor B’s class, 
where there were frequent shifts between small group work and whole class discussion.  The 
discourse structure in instructor C’s class, on the other hand, was marked by longer periods of 
whole class discussion, and less frequent use of small group work.  

 

 
Figure 2: Trajectory of Time Use 

 
While these differences in use of time are interesting, they offer little insight into the 

nature of the opportunities students had to share and explain their thinking, and how students’ 
ideas were leveraged to advance the mathematical agenda of the class as a whole – thus we turn 
our focus to this issue in the following section by drawing on video data of classroom instruction 
from both 2013 and 2014.  Importantly, we note that all instructors across both years did use 
cognitively demanding tasks by virtue of using the central tasks designated in the instructional 
materials, and that all instructors across both years tended to maintain the cognitive demand of 
the task by requiring students to develop their own approaches and methods to solving.  Given 
the prevalence of use of tasks of low cognitive demand in mathematics instruction and the 
tendency of instructors in K-12 settings to lower the cognitive demand of mathematics tasks, we 
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find this promising for future efforts toward achieving instructional change in the context of 
undergraduate mathematics instruction. 
 
Structures for Student Sharing & Building on Student Thinking in 2013 and 2014 

In our implementation analysis, we identified four ways in which instructors elicited and 
built on student contributions in whole class discussion following students’ work in groups on a 
problem-solving task.  For the purposes of this paper, we name these four structures as follows: 
(1) getting students to talk, (2) getting students to explain, (3) using student ideas to explain or 
formalize, and (4) using student ideas as the basis for a new mathematical question or task. 

Structures 1 and 2 focus on the student contributions elicited, and are defined in terms of 
the things students actually said (rather than what the instructor may have been hoping students 
would say). We delineated these two structures because we noted some substantial differences 
across classes in the ways in which students were able to make contributions to whole class 
discussions. More specifically, in some instances students contributed explanations of what their 
group did in trying to solve the problem posed – and these explanations typically consisted of at 
least a couple of full sentences characterizing their approach.  We characterize these as instances 
as structure 2: getting students to explain.  In contrast, we observed instances in which students’ 
contributions to whole class discussions were limited to sentence fragments that did not entail a 
complete thought (sentence), claim, or justification. We characterize whole class discussions in 
which student contributions are of this nature as instances of structure 1: getting students to 
talk.  Subsequently, we will illustrate each of these structures with examples. 

Structures 1 and 2 are relatively content neutral, whereas structures 3 and 4 are more 
complex in that they rely on the nature of student contributions made, as well as what the 
instructor did with those contributions mathematically.  Further, structure 3 and 4 typically 
coincide with structure 2 as they depend on student explanations as a basis for what the instructor 
does next mathematically. More specifically, structures 3 and 4 characterize the way in which the 
instructor uses the content of student contributions to further the mathematical agenda of the 
class. What delineates structure 3 from structure 4, largely, is who assumes mathematical 
authority for advancing the mathematics beyond students approaches to the task presented.  In 
structure 3, “using student ideas to explain or formalize,” the instructor assumes mathematical 
authority by explaining mathematical connections (e.g. between groups’ approaches) or 
formalizing language or notation, but by doing so in a way that the instructor explicitly relates to 
ideas brought forth by students. In structure 4, “using student ideas as the basis for a new 
mathematical question or task,” the instructor pushes mathematical authority onto students by 
asking them to engage in an idea set forth by students in the context of a new question or 
task.  Based on our data, it appears that it is difficult for instructors to implement structure 4 
smoothly their first time implementing the materials.  Further, we suspect that structure 4 is 
intertwined with a particular set of goals for how instructors aim to engage their students in the 
development of the mathematics.  

In the sections below, we offer examples to illustrate each of the four structures and then 
discuss shifts we saw in the use of these structures from year 1 to year 2 across instructors in the 
context of whole class discussions following small group work on task 1 of the instructional 
sequence. 
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Structure 1: Getting Students to Talk 
The example we share of an instructor “Getting students to talk” takes place in the context of an 
instructor working to facilitate a whole class discussion after the completion of the first task in 
the provided instructional materials. Students had worked on the task for about 20 minutes 
during the first day of class. Because there was not time for a whole class discussion on this first 
day, the instructor told us in a debriefing interview that she took pictures of examples of the 
work of several groups and put them into a powerpoint in order to have a whole class discussion 
around the variety of approaches used by different groups in the class.  The instructor began the 
whole class discussion around student approaches to the previous day’s task as follows: 
 
I: I wanna look at how things were written and how they were solved, okay, so that I get a 

feel for what everybody can do in terms of solving systems. So, there was the first group. 
They wrote their equation as vectors, right, and set it equal. Then what did they do? 

S:   A system of equations. 
I:   Yeah, they got to a system of equations. Okay, and they solved it by- what does it look 

like? How'd they solve that? 
S:   Elimination. 
I:   What are they doing here? Right there. …Okay. Um, so if you look at how they're 

solving it, through the three x's. Why?  
S: Elimination. 
I: Elimination. How many people know how to do elimination? Yeah? One, two, three, 

everybody? Okay. So elimination involves doing what? 
S:   Crossing stuff out. 
I:   Crossing stuff out, but how? 
S:   Inverse. 
I:   Not an inverse. Well, maybe an inverse, so to get from here to here what did they do? 
S: Multiply. [choral response] 
I:    Yeah, they multiplied the bottom one by...? 
S:   Three... 
 
The discussion continued in this manner for 8 minutes, with students offering brief contributions 
(typically one word or phrase) about the approaches to representing and solving depicted in the 
powerpoint slides. The instructor then shifted into a powerpoint presentation focused on 
interpreting the situation from a vector equation perspective and a systems of equations 
perspective, raising the question of whether the solution is unique. The nature of student 
contributions (contributing at the level of a word or phrase) across this class period is consistent 
with the excerpt shown above.  
 
Structure 2: Getting Students to Explain 
In contrast to structure 1, wherein students talk in whole class discussions but do not provide an 
explanation of their thinking, structure 2 captures instances in which students do provide 
explanations of their thinking in whole class discussion.  Our example of structure two takes 
place immediately following students work in small groups on task 1.   
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I:    Okay so let’s reconvene here. That is beautiful, I like that [gesturing to group’s work]. 
All right so Laura why don’t you kind of hold up your board and kind of explain to 
everybody the method that your group used. 

S:   So, something times the 3,1 plus something times the 1,2 vector equals 107, 64. So I just 
distributed the a and the b and then added them. So it makes a vector 3a plus b comma a 
plus 2 b, equals 107, 64.  And then it equaled 3a plus b equals 107. And a plus 2b equals 
64.  And then I just did a little algebra.  Multiplied by negative 2 to cancel the 2b right 
there. Then I just solved for a and b.  And it equaled 30 and 17.   

I:    Okay so you have what we call a vector equation and then you used that to produce a 
system of equations a system of linear equations and you used some kind of substitution 
method to figure out what a was and what b was. Okay and can you guys, Mike can you 
explain reorient your white board and explain what’s going on there in your diagram? 

S: The first time we just went and rode the hover board the first time, rode it for 30 hours 
and then it ran out of gas or battery power so then we jumped on the magic carpet and 
rode it for 17 hours, then we went back home and we wanted to go again so then we rode 
the hover board then the magic carpet but then we had to recharge it a few times and it 
starts to suck so then we went halfway which would be 15 hours on our hover board then 
we rode the magic carpet for its duration of 17 hours then we switched again to stretch 
our legs for the last 15 hours. 

I: Now you don’t have to show us on the board because I think it’s kind of small but can 
you tell me the vector equation that represents the stutter step method, the staircase 
method? 

S: Yes it’s uh 15 times the vector 3, 1 plus 17 times the vector 1, 2 plus fifteen times 3,1. 
 
In this structure, students contributed explanations of their groups’ approaches to the problem to 
the whole class discussion. This stands in contrast to structure 1, when students contributed in 
ways that didn’t provide explanations of their thinking.  We also note that in this instance, 
Laura’s group’s strategy highlights their work to solve a system of equations as an approach to 
task 1, whereas Mike’s explanation is consistent with a vector equation interpretation and 
highlights the interpretation of the scalars weighting the vectors.  
 We conjecture that students were able to contribute in much more substantive way than in 
structure 1, at least in part, because they were being asked to explain what their own group did 
rather than speculate what another group did just based on the inscriptions other groups had 
created in a previous class period.  We also think the specificity about who was being asked to 
share may have contributed to students’ offering of more substantive explanations of their 
thinking in the discussion.   
 
Structure 3: Using Student Ideas to Explain or Formalize 
Our third structure, “Using student ideas to explain or formalize” captures instances in which 
instructors use student ideas, approaches, or explanations as a basis for formalizing mathematical 
terminology or notation, or for offering a mathematical explanation.  This structure typically 
took place following structure two in which students explain their thinking, though we can 
imagine instances in which student work might be publicly displayed and the instructor might 
narrate aspects of students’ written work or explanations to achieve this goal (though such a non-
verbal structure likely entails a greater likelihood that the instructor might misinterpret students’ 
thinking).  
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Our example of structure three takes place after students have worked in groups on task 
1, and after a couple of groups’ approaches have been explained by students.  In the excerpt 
below, the instructor asks another group to explain their approach.  The instructor then explains 
how this approach relates to the approaches described by previous groups, and uses this to 
highlight an important relationship between vectors equations and systems of equations. 
 
I:  How about group number 3, can, um. So, this group did the systems approach as well. 

Um they had a different, um, similar but different approach for how they came up with 
the equation. So you can you share that with us? 

S:  So what we figured out was that you’ve got a vector equation here and it’s going to be 
some scalar multiple of the first vector, plus some scalar multiple of the second vector is 
going to be equal to the vector on the end. And from there we just distributed these in and 
basically everything that is on the top has got to equal it in some way and everything on 
the bottom has got to equal in some way so system of linear equations. I’ll share you that 
part, so that’s how we got it. 

I:  Ok, and so, let’s… let me write that up here. Essentially what they did, and I’m going to 
call, just to be consistent with our notation so far in the class, I call it x1 and x2. So 
essentially, they took an approach that maybe goes one step further back from what these 
two groups did. Right, so this, I’d like to point out that this agrees exactly with the 
approach that these two groups did and even the group that did the, um, approximation 
and guess and check approach, ultimately. So, what they did was use how we define 
scalar multiplication or how we have been using scalar multiplication rather, and moved 
x1 into the vector. Multiplied by the scalar. Multiplied x2 in, and then said everything, 
and this is where what Calvin was saying comes into play. Everything in the horizontal 
competent must add up to 107 and everything in the vertical component must add up to 
64. Ok so this is, essentially their first step was to us the column vector equation. Which 
then of course leads right into the system of linear equations. So there’s a point that I 
want to make here. And the point is that systems of linear equations will enable us to 
solve vector equations pretty handily.  

 
As the instructor spoke, he made reference to, and adjusted an inscription he had made on the 
board.  Prior to this exchange, the instructor had written on the board the vector equation 

!as a way of recording the approach of the group who used the “guess 
and check” method. The instructor had used this to introduce the language of linear combinations 
by circling the left hand side of this equation and drawn an arrow below that pointed to the words 
“linear combination of   and .”  During the last turn of talk in the exchange shown above, 
the instructor erased the coefficients 30 and 17 in the vector equation that had been written and 
replaced them with x1 and x2 so that the vector equation now read “ .”  
This shift in denoting the scalars of the vector equation helped the instructor link the approaches 
he had denoted with the vector equation to systems of equations approaches used by other 
groups.  
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Structure 4: Using student ideas as the basis for a new mathematical question or task 
Our final structure, “Using student ideas as the basis for a new mathematical question or 

task” was the least frequently observed, and appeared to be the most challenging to implement 
productively -- but when it was implemented productively, it seemed to be particularly powerful. 
We observed this structure play out in two ways: one was when an instructor highlighted an 
approach of a particular group and sent all students back to their groups to re-solve the task using 
the approach of that group (and relate it to their own approach). For example, one instructor 
asked all groups to illustrate their solution using a tip-to-tail graphically interpretation (as one 
group had done) of a vector equations when most groups had used a systems of equations 
approach to a particular problem.   

The other way in which we saw this structure play out was when an instructor used 
different (sometimes conflicting) responses or interpretations to a question to generate a point of 
discussion. In this case, an instructor first spent time asking students to explain their group’s 
approach, established that there were two primary approaches (vector equation with tip-to-tail 
graphical interpretation in which the solution appeared as weights on the vectors), and system of 
equations in which the solution appeared as a point of intersection, and asked students to return 
to their groups and decide if their group thought the solution was unique.  A polling of the class 
revealed that half the groups thought the solution was unique and half thought it was not. This 
created an opportunity to hear how various groups were interpreting what it meant for a solution 
to be unique, and to then clarify the intended meaning of a unique solution, thereby generating 
consensus about the uniqueness of the solution. 
 
Shifts in implementation from 2013 to 2014: 

In both 2013 and 2014, we observed all instructors making explicit efforts to build on 
students’ ideas and approaches; this was done in a variety of ways.  Overall, instructors’ elicited 
and built on student explanations more in 2014, as depicted below in Table 2.  This table 
indicates how many student groups there were in each class (note considerable variation in class 
size), how many of those groups’ approaches were publicly represented (e.g. displayed on white 
boards around the room, on a powerpoint, document camera, etc.).  We note that all instructors 
prioritized public display of students’ work, and that there were not explanations provided by 
more than 4 student groups in any instance.  The only instructor who exhibited a decrease in the 
number of student explanations in whole class discussion following task 1 in year 2 was 
instructor A, and one or more student explanations were part of whole class discussion in both 
years.  We subsequently discuss shifts observed with regard to the way each instructor facilitated 
whole class discussion following students’ work on task 1. 
 The most notable shifts were observed in instructor C, who in 2013 struggled to elicit 
student explanations and in 2014 not only elicited student explanations (structure 2), but 
effectively used them to move forward the mathematical agenda of the class (structures 3 and 4).  
We note that the examples provided for structures 1 and 4 both come from instructor C.  We also 
note that instructor C collaborated closely with a colleague at the same institution who was 
teaching with the same set of instructional materials, and speculate this is likely related to these 
significant shifts. 
 Instructors B and C both exhibited an increase in structure 3 from 2013 to 2014.  In 
particular, both instructors were observed explicitly using student approaches to introduce and 
formalize mathematical language and notation in 2014.  Instructor B did use student ideas as the 
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basis for new mathematical tasks in 2013, but these emergent tasks were less centrally related to 
the mathematical goals of the unit than those observed in 2014. 
 

Instructor Approx # 
of student 
groups 

# of student 
approaches 
represented 
publicly 

# of student 
approaches 
explained by 
students in 
WCD 

Discussion 
structures 
observed 

C- 2013 14 14 0 1 
C- 2014 10 10 4 2,3,4 
B-2013 2 2 2 2,4 
B-2014 5 5 4 2,3,4 
A-2013 8 8 4 2,3 
A-2014 8 8 1 2,3 

Table 2: Student approaches to task 1 explained in whole class discussion 
 
 Instructor A’s implementation in 2013 was similar to that of instructors B and C in 2014 
in eliciting of multiple student explanations and using these explanations to introduce and 
formalize mathematical language and notation.  Importantly, instructor A had used a version of 
the materials at least once prior to the 2013 implementation, so instructor A’s implementation in 
2013 was contextually similar to that of instructors B and C in 2014.  It is interesting to note that 
in 2014, instructor A elicited fewer student explanations, but similarly used student approaches 
to ‘narrate’ a particular mathematical storyline in both 2013 and 2014. 
 Overall, we highlight the increase in structures 2 and 3 as indicators that document 
important shifts in implementation of the materials – namely shifts that indicate in increase in 
student explanations as well as an increase in instructor formalization and explanation that built 
on those explanations.  We conjecture that instructors’ familiarity with student approaches and 
the mathematical storyline of the unit played an important role in supporting these shifts. 
 

Discussion & Next Steps 
This work set out to better understand the challenges experienced by instructors working 

to implement instructional change through the use of research-based, student-centered 
instructional materials.  Based on instructor reports, the logistical challenges instructors 
experience (e.g. paciing, alignment with other curricular resources, homework selection, 
grouping students and getting them to talk) shift significantly from their first time implementing 
their materials to the second time implementing the materials.  Concurrently, the classroom 
implementation of these materials was seen to shift in that instructors’ eliciting and building on 
student thinking increased from the first time implementing the materials to the second time.   

We conjecture that these two shifts are important to consider as part of the broader 
conversation about instructional change, and that these two shifts are related in important ways.  
We conjecture that the first time through the materials, instructors learn a lot about the kinds of 
strategies students use, how long the tasks take their students, what is challenging for their 
students – and this learning has the potential to help instructors develop a vision of how these 
elements might fit together to form a coherent mathematical narrative, as well as how to structure 
class time in ways that orchestrates the creation of this narrative together with students.  The 
second time through the materials, instructors are positioned with this knowledge AND they 
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have more cognitive resources available to devote to thinking about student strategies than they 
did when they were having to worry about issues of pacing, alignment, HW selection, getting 
students to talk, and figuring out and anticipating the kinds of things students might say and do 
and how to make use of those instructionally. 

This work has the potential to inform the work of those working to support instructional 
change in undergraduate STEM fields as well as K-12 STEM fields.  Specifically, it documents 
the shifting nature of challenges experienced by highly expert instructors working to teach in a 
new way.  This has the potential to inform and contextualize the work of those who work with 
pre-service and in-service teachers, particularly those who support and/or examine the 
implementation of curricular innovations.  Additionally, this work points to the potential value of 
identifying structures through which instructors can make incremental changes to their 
instructional practice.  It is important to acknowledge the difficulties inherent to implementing 
student-centered instructional materials the first time through.  We argue there is a significant 
amount of instructor learning that takes place in this context (and it deals with both the ‘fitting’ 
of new materials into their current practice or conceptions of practice, ‘fitting’ new materials into 
any current structures, and learning of the in-the-moment kinds of ideas and strategies students 
will bring and what to do with them. 

In order to advance efforts to scale up student-centered instructional innovations, it is 
important for us to understand the variety of ways in which such innovations might be 
implemented, and challenges in implementation.  This work contributes to the literature that 
documents the nature of challenges experienced by instructors working to implement innovative 
instruction, and also offers insight into how those challenges shift over time.  Importantly, we 
relate these challenges and shifts to the ways in which instructors make use of instructional time 
in this context and identify instructors’ ways of of structuring whole class discussions that allow 
students to contribute in meaningful ways.   

Further work is needed to understand the institutional factors and pedagogical reasoning 
that informs decisions about how to structure the sharing of student explanations.  More broadly, 
there is a need to articulate learning trajectories for instructors of undergraduate mathematics 
who want to engage in instructional change; such trajectories have the potential to inform the 
development of instructional supports and help instructors enact incremental changes as they 
learn to fit new instructional methods to their current institutional setting and instructional 
practice. 
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Best practices for the inverted (flipped) classroom 
 

Spencer Bagley 
University of Northern Colorado 

 
The inverted, or flipped, classroom model is attracting the attention of many researchers, 
practitioners, and administrators in undergraduate mathematics programs as a way to 
navigate the tension between coverage and engagement, and to respond to the problem of 
increased class sizes and decreased budgets. The literature contains many reports on 
successful implementations, which vary widely in content delivery and student engagement. 
However, a core set of commonalities shared by these successful implementations forms the 
nucleus of a list of best practices for flipping a class. I discuss the theoretical underpinnings of the 
inverted model and the best practices suggested by the literature, and examine as a case study an 
inverted calculus class that did not follow these emerging best practices. 
 
Key words: inverted class, flipped class, calculus, hybrid model, classroom research 
 

Inverted (or flipped) classrooms are a revision of the traditional lecture-based classroom 
model. There are many different approaches to teaching an inverted class, but the common feature 
is that some lecture content is delivered outside of class time, often via internet videos. The class 
time thus freed up is typically spent in problem-solving activities with instructor assistance. 

Viewed through the lens of sociocultural learning theories, the inverted model is a 
theoretically-grounded way to increase student understanding. Content delivery, which is less 
conceptually demanding and thus requires less expert help, is moved (wholly or partially) outside 
of the classroom; more demanding problem-solving tasks, wherein students can benefit more from 
expert assistance, replace content delivery during class time. Thus the utility of class time, where 
the more-knowledgeable other is physically present, is maximized (Vygotsky, 1978; Talbert, 
2014). 

In particular, many instructors use the inverted model to provide students with more 
opportunities for active engagement. Numerous studies have shown that student success increases 
when students are actively engaged (Freeman et al., 2014), and the inverted model frees up class 
time for active learning by moving content delivery outside of class. 

Researchers have studied inverted classrooms in a variety of disciplines in undergraduate 
education, including physics (Deslauriers, Schelew, & Wieman, 2011), economics (Lage et al., 
2000), computer science (Gannod, 2007; Gannod et al., 2008), mathematics (Talbert, 2014), and 
biology (Moravec, Williams, Aguilar-Roca, & O’Dowd, 2010). Many investigators have seen 
remarkable improvement in learning outcomes over traditional classrooms, as well as favorable 
reactions from their students. Examining these reports yields a list of important common features of 
successful inverted classes. 

 
Success Reports in the Literature 

First, I present a brief look at four representative reports on successful inverted 
classrooms in different disciplines, and point out important commonalities in their implementation. 
Deslauriers et al. (2011) compared student learning gains over one week of two large-enrollment 
introductory undergraduate physics classes, one taught by an 
experienced, highly-rated professor in traditional lectures, and the other taught using an 
inverted method by an instructor who was inexperienced but trained in physics education and 
pedagogy. The inverted class utilized pre-class readings paired with a brief online quiz. In 
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class, the instructor emphasized deliberate practice “thinking scientifically,” with a mix of 

clicker questions with student-student discussion, small-group tasks with a written response, 

and demonstrations. Both classes covered a common unit on electromagnetic waves and 

completed a common end-of-unit test jointly developed by the instructors involved. The 

mean score on the end-of-unit test in the experimental inverted section was 74 ± 1%, more 

than two standard deviations higher than the mean score of 41 ± 1% in the control section. To

assess students’ reception of the inverted method, the experimenters asked students to 

complete an online survey after the unit. 90% of students in the experimental section 

indicated that they enjoyed the inverted technique, and 77% felt they would have learned 

more if the whole course had been taught in this style.

Lage et al. (2000) studied students’ perceptions of an introductory economics course 

taught using an inverted model. Lectures were available via videotape and PowerPoint with 

sound, and students were assigned to complete worksheets while watching the relevant 

lecture. These worksheets were collected and graded for completeness. Class time was spent 

in small groups, conducting economic experiments or labs; for example, an auction for a can 

of cola enabled students to plot a price-demand curve. On an end-of-term survey, students 

had favorable reactions to the course, generally agreeing with survey questions such as “I 

prefer this classroom format to a traditional lecture.” The instructors also noted that students 

were more motivated, asked more questions, and enjoyed the group-work components of the 

course.

To free up class time for active learning exercises in an introductory biology class, 

Moravec et al. (2010) shifted some content into “learn before lecture” (LBL) activities. They 

moved four to five slides from PowerPoint lectures used the year before into either narrated 

PowerPoint videos or PDF worksheets, made available two days before class. Students were 

assigned to submit electronic copies of either their completed worksheet or the notes they 

took on PDF versions of the PowerPoint slides; each LBL activity was completed by over 

90% of their students. The instructors then used in-class time freed up by shifting content into

LBL activities to engage students in active-learning exercises. For instance, students 

answered clicker questions on transport through nuclear pores, or interacted with physical 

models demonstrating the transcription of mRNAs by ribosomes. On the final exam, students 

performed 21% better on the questions assessing content delivered through LBL activities, 

compared to <3% improvement on all other questions (typical of year-to-year variability in 

difficulty of exam questions). Additionally, students reported that the LBL activities were 

helpful in learning the course material and preparing for lectures, as well as reviewing 

material later in the term.

Talbert (2014) used inverted classroom design principles to structure a series of in-class 

workshops in linear algebra. He created highly-structured pre-class assignments called 

“guided practice,” which included learning objectives, a collection of resources, a set of 

exercises, and requirements for submitting responses. An example in-class workshop asked 

students to work in pairs or threes to explain whether given numbers and vectors are 

eigenvalues and eigenvectors of a particular matrix, and then to explore the results of 

repeatedly applying a stochastic matrix to different initial vectors. Students enjoyed these 

workshops, and every student rated themselves as either “satisfied” or “very satisfied” with 

their learning in the workshops.

The results of these four studies, and others in the literature, are consistent. Most students 

report that they enjoy the inverted model and find it useful for their learning. The trend of 

performance data in those studies that report it is that students perform as well or better in 

inverted classrooms than in traditional classrooms. Despite the differences in content area, 

delivery mechanism, and use of class time, these reports also share commonalities in their 
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implementation: pre-lecture activities were tailored to the particular class, often personally 

created by the instructors or researchers; time formerly occupied by lecture was replaced with

active-learning exercises with the substantial involvement of the instructor; and students were

held accountable for completing pre-lecture activities.

A Less Successful Example.

I now turn to a case study of an inverted calculus class that did not share these important 

commonalities. I examined this class as part of a broader study comparing student success in 

four calculus classes taught at the same university in the Fall 2012 semester using different 

pedagogical strategies. The other three classes were a traditional lecture-based class, a class 

based on “student-centered” lectures with time in class to work on problems similar to ones 

modeled on the board by the instructor, and a student-centered lecture-based class using 

Geometer’s Sketchpad applets developed by the instructor to help students develop 

conceptual understanding. I refer to these three classes as the Lecture class, the Lecture with 

Discussion (LD) class, and the Lecture with Discussion and Technology (LDT) class, 

respectively.

After surveying the literature on the inverted model, I hypothesized that students in the 

inverted class would be more successful than those in the other classes, and in particular 

those in the Lecture class; however, this was not the case. For the purposes of this study, I 

operationalize “success” in three ways: persistence in STEM major tracks, expert-like 

attitudes and beliefs about mathematics, and performance on the common final exam. In each

of these three measures, students in the inverted class were less successful than those in other 

classes.

To measure persistence in STEM major tracks, I examined the enrollment records of each

section of Calculus I and II for the four semesters immediately following the Fall 2012 

semester. I restricted my analysis to STEM-intending students, i.e., those who were declared 

in a STEM major track in Fall 2012. I classified STEM-intending students as persisters if 

they enrolled in Calculus II by Spring 2014 and remained declared in a STEM major 

throughout this period; otherwise, I classified them as switchers. The percentage of switchers 

in a given class is thus a measurement of the rate of non-persistence in STEM major tracks. 

Students from the inverted class switched out of STEM majors at a rate of 22.8%, 

significantly higher than the overall switching rate of 17.5%. 

Students in each of the four classes completed start-of-term and end-of-term surveys 

examining demographics, preparation, and beliefs and attitudes about mathematics. Despite a 

lack of significant differences between the four classes at the beginning of the term, students 

in the inverted class scored significantly lower than those in the other classes on end-of-term 

measures of confidence in their mathematical abilities, enjoyment of mathematics, and 

interest in taking more mathematics classes.

To assess performance, I collected scores on the common final exam. ANOVA revealed 

significant differences between the classes: students in the inverted class scored on average 

approximately 7 points lower than students in the Lecture and LDT classes. When using 

ANCOVA to control for student preparation (as measured by the Calculus Concept Readiness

test; Carlson, Madison, & West, 2010), these differences remained, though were no longer 

statistically significant. Additionally, in each of the three other classes, students who took a 

calculus course in high school scored significantly higher on the final exam than other 

students. However, in the inverted class, there was no significant difference between students 

with different levels of prior calculus experience.

The surprising difference between the quantitative results in my study and those reported 

in the literature drove me to seek explanations in qualitative data. I conducted focus group 
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interviews from students in each of the four classes, asking students in each class to rate their 

satisfaction with the way their class was conducted. I also observed several class sessions in 

order to understand a typical day in each class. I found that the inverted class in my study 

departed in significant ways from those in the literature. I also identified three categories of 

student dissatisfaction with this implementation of the inverted model; remarkably, the things

that students were concerned about were precisely the ways in which this inverted class 

departed from the reports in the literature.

To understand the concerns raised by students in the focus group interview, it is important

to first draw a picture of a typical day in the inverted classroom in my study. The professor in 

the inverted class summarized his approach to the inverted model in general terms on his 

syllabus: "In the inverted model, students begin their learning at home via a variety of 

resources, then complete their learning in class by training on exercises." To complement this 

general description with a detailed account of the daily activity of this class, I examined the 

syllabus and course website, spoke with the three teaching assistants (TAs) assigned to the 

course, and asked students in the focus group to describe a typical day in class.

Several days before each class session, the professor posted links on his website to videos

and other resources discussing the material that would be covered in class. The videos came 

from a variety of sources, including Hippocampus, Khan Academy, PatrickJMT, and MIT's 

OpenCourseWare collection. Additionally, the professor commonly provided some text-based

resources from Wikipedia and online textbooks such as Strang (1991). 

Students were expected to prepare for class by watching videos or reading text materials. 

Students were free to choose which resources to use; in general, in order to accommodate a 

wide variety of student learning styles, more resources were provided for a given day's lesson

than any individual student would use. There was no mechanism to check whether or not 

students had watched videos or read materials before class.

As students entered the classroom, they signed in on an attendance sheet, and received a 

worksheet described in the syllabus as "a sequence of increasingly challenging exercises." 

There were usually between 10 and 20 exercises on a worksheet. The entirety of the 100-

minute class time was spent working on the problems on the worksheet. Most students chose 

to work in self-assigned groups of four to six, while a few generally preferred to work by 

themselves.

Except for the first day and exam days, the professor did not attend class. Instead, three 

TAs were assigned to attend class and answer student questions. The TAs were not 

empowered to stop class to hold a brief mini-lecture, even if a substantial number of students 

all had the same question. Thus, the atmosphere of the classroom was more like a tutoring lab

than a classroom with one central authority. 

Near the end of each class session, the TAs would announce which of the problems on the

worksheet would be collected. Students would recreate their work on that problem and turn it 

in before leaving. Their work was graded and returned in a later class session.

The five students in the focus group interview were uniformly and vociferously 

dissatisfied with the implementation of the inverted model. Their comments clustered into 

three intertwining categories: problems with the pre-class videos, problems with the in-class 

activities, and a feeling of disconnect from the professor. (All student names in the following 

are pseudonyms.)

Problems with pre-class videos

Early in the focus group interview, a student named Sarah said, "I feel like that's the 

biggest problem in this class, is the videos are not applicable to the work." Paige agreed: "The

way this professor puts his problems doesn't correspond with the way we're taught on the 
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videos [from] Hippocampus, or Wikipedia [articles] he puts on there, just like random stuff. It

just isn't cohesive." The feeling that the pre-class videos did not prepare students for the in-

class worksheets had adverse effects on students' confidence:

Melissa: I watched the videos and I understand it going in, I feel very confident, and 

then I get that paper [the in-class worksheet] and I'm like, well, I give up already.

Int: So you feel like you understand things after watching the videos, but then...

Melissa: It just doesn't relate to the worksheets, yep.

Paige: We're getting a good understanding of calculus watching the videos, but just 

not the way he wants it done. That's where it gets confusing.

Students in this class often gave up on in-class activities because they did not feel adequately 

prepared. This theme was expressed by several other students throughout the interview.

Because of the problems with the pre-class videos, the students felt that they were not 

useful. When I asked students what they did to prepare for tests, none of the students reported

watching the videos again. This is in contrast to the findings reported by Moravec et al. 

(2010), whose students re-used the learn-before-lecture activities to review for tests (see also 

Lage et al., 2000). Some of the students in the inverted calculus class gave up on the videos 

entirely, preferring to rely on previous knowledge of calculus:

Bob: To be honest, I haven't watched very many of the videos. … I've watched videos 

maybe two to three times out of the whole semester. I mean, most of what I remember

is from high school.

Paige: Yeah, what's keeping me going in this class is math classes in high school I 

took.

This corroborates the quantitative finding that in the inverted class, unlike in the other 

classes, students who took calculus in high school did not perform better than other students. 

It seems that these students were less likely to watch the videos and instead relied on their old

knowledge. Recall also that there was no specific mechanism holding students accountable 

for watching the videos.

Bob had prior experience with inverted classroom design, having taken an inverted 

statistics class in high school. In his high school class, "it was nice because the teacher 

devoted a lot of time, because he created the videos himself." By contrast, the instructor of 

the calculus class did not make the videos himself. Bob continued, "If he were to make the 

time in terms of creating the videos himself and shaping the videos towards his class, I think 

it would be more beneficial than just pulling random [internet videos.]" When I asked the 

students what other resources they would have liked to have in their class, Bob replied, “I 

wish he had videos that he made himself, or that had more direct correlation to the class we 

were taking, ... covering all the concepts on the worksheets that he put.”

It does not appear that the students felt it was required to have all the videos made by the 

professor. Paige observed that "at the beginning of the year, the videos corresponded well, 

because it was just a lot of simple stuff." Variation in presentation seems to be less of an issue

for foundational early material in a course.

The general thread of students' comments about the pre-class videos is that because the 

pre-class videos were not made by the professor, they were not applicable to the in-class 

work the professor required. Students felt that the videos did not adequately prepare them to 

complete the in-class worksheets. This was a source of frustration, because the videos failed 

in their express purpose. Students commonly directed this frustration toward the professor, 

who they seemed to regard as having abrogated his responsibility to prepare them for the 

work in the class.

Brousseau's (1997; see also Herbst & Kilpatrick, 1999) construct of the didactical 

contract is a useful way to understand the students' frustration. The didactical contract is the 
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usually-unspoken set of expectations and obligations to which the instructor and the students 

in a given class believe they are held. The didactical contract in a typical classroom might 

include the following: the instructor's responsibility to the students is to teach them the 

material, and the students' responsibility to the instructor is to attend classes and do the work 

assigned by the instructor. Students can expect that if they complete the assigned work, they 

will be well-prepared for the assessments that will follow. In this inverted class, students felt 

that they were ill-prepared for the worksheets despite having watched the assigned videos; 

they thus felt that the instructor had breached the didactical contract by failing to create or 

select adequate videos.

Problems with in-class activities

In addition to the failure of the in-class worksheets and videos to articulate well, students 

identified several other concerns with the in-class activities. One concern was the lack of 

structure in class time:

Sarah: An hour and forty minutes straight of doing word problems is kind of a lot, at 

least for me. I don't know, I can't just...

Paige: I get a headache. 

Bob: I get distracted all the time.

One of the affordances of the inverted model identified by Talbert (2014) is that students 

who have difficulty managing their time outside of class are at a disadvantage in the 

traditional classroom, since "higher-level cognitive tasks often require extensive periods of 

time for work and reflection; these segments of time are often mismanaged or are simply 

unavailable to many students." He argues that the inverted model, in which high-level tasks 

are done in class "where the instructor is present to guide students in efficient and effective 

work," removes this disadvantage (p. 362). In this Inverted class, students were presented 

with 100-minute blocks of time designated for working on problems; however, these blocks 

were not further structured by the instructor or TAs. Thus, while students in the Inverted class

at least had time set aside for working on problems, the difficulties of managing that time 

effectively were still present.

Another concern was that the problems on the worksheet became too difficult too rapidly, 

jumping, as Sarah said, from “zero to a hundred”:

Ben: I feel like he has too many problems that go way too deep into the concept. I 

mean, he'll start out basic, like let's just say it was 2 + 2 = 4. And then by the end it'll 

be, if all you're trying to do is learn addition, he'll have 2 times this times this plus 

this, just so you can get the concept of adding. He'll have sine squared, squared, to the

third, or something like that. 

Bob: I mean maybe that's the level of calculus for college that we need to be at, and 

that's completely understandable, but let's work to it rather than just going from, hey, 

simple sine is cos, and then jumping to what's sine cos sine to the fifth or something. 

This concern is likely related to the lack of structure in class time (and to the absence of 

the instructor): with stronger scaffolding from the instructor or TAs, and thus more structure 

provided to class time, exercises increasing in difficulty would be less problematic. This was 

borne out in the next line of transcript:

Melissa: And then when we get to those problems, we all need help, because all of us 

don't understand that level, but there's only three TAs. So we'll sit there and they'll 

[say,] "I'm gonna start the problem, but then I gotta walk away and start it for 

somebody else."

Giving TAs the authority to conduct mini-lectures, and thus impose more structure on 

class time, would likely have ameliorated this concern. If the TAs saw or expected that many 
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students would have the same question about the same problem, allowing them to explain the 

question to the entire class at once would have been more efficient and likely more effective.

The lack of structure of class time in this inverted class is a large departure from the 

inverted models reported in the literature, which are much more structured by the 

involvement of the professor. For instance, Lage et al. (2000) engaged their students in 

highly-structured economic experiments, while Moravec et al. (2010) used clicker questions 

and class demonstrations to structure their class time. It is likely that these highly-structured 

activities contributed to students reporting that the inverted approaches were more enjoyable 

than traditional lecture formats (Lage et al., 2000). A large block of unstructured problem-

working time, as found in this inverted class, is likely less interesting and less motivating for 

students.

Disconnect from the professor

The third category of concern was that the instructor did not come to class sessions. This 

theme arose first when I asked a follow-up question about the pre-class videos:

Int: So the videos that you see, are they made by your instructor, or just chosen by 

him from other sources?

Bob: No, he chooses all of them.

Paige: He never makes them.

Bob: He just references them out to different online sources.

Paige: We've only seen him once.

Sarah: Twice.

Bob: Yeah, we've seen him on the first day, we've seen him on the test [days]. Three 

times he's showed up. I mean, I know he's busy, but -

Sarah: Yeah, it's kind of ridiculous, to be honest. I mean, the TAs are there to help us, 

but it would be nice to talk to a professor. Like during class, if he was there.

Melissa also complained that there were questions about the professor’s expectations that 

the TAs were unable to answer: 

Since he's not there, when we ask the TAs what does he want with this problem, they 

say ‘I don't know,’ because no one knows what he's thinking. And so we're like, is this

type of problem -- how should we set this up, or do this? And they're just like, ‘I don't 

know what to tell you.’

None of the students in the focus group attended their professor’s office hours, because 

they felt disconnected from the professor. Sarah said that she wouldn’t go to office hours 

because “I don’t know my professor’s name.” Later in the interview, Paige added, "I feel like 

it would be weird if we went to them, because we don't know him." Melissa agreed, and said 

she felt “it would be really awkward.”

The students in the focus group interview felt like the instructor’s absence negatively 

impacted their understanding of calculus and decreased their confidence moving forward in 

future mathematics classes:

Sarah: I could have done so much better in a different class.

Paige: I have friends in another [calculus class] and they have a professor who teaches

them and like...

Ben: They say they're really good, too.

Paige: Yeah, really good professors, really understand, and then there's me, and I'm 

like, I get it to an extent, but then I feel behind. I'm nervous for Calc 2.

Paige later said that the instructor’s absence also decreased her enjoyment of 

mathematics: 
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Math is my favorite subject. Since I was in elementary school, I was like, I love math!

But now like this semester, I sit there sometimes and I'm like, why don't I get this? 

Because math is my class where I get this, it's easy to me, but when we don't have a 

professor, it's -- I kinda sit there and [say], oh no. It's kind of discouraging, I guess.

Near the end of the focus group interview protocol, I asked several questions about the 

instructor’s attitude toward students. The students’ responses were generally negative:

Ben: I feel like we're kind of a nuisance to him. Just because of the fact that he only 

comes for tests, and when he does, he's really short.

Bob: I don't know. He didn't leave a very good impression the first day, like he was -- 

It almost seemed like he was being rude to people.

Sarah: I grew up around professors, and a lot of the time you know they're here for the

research aspect. So I feel - I don't know if he does research, but I feel like that's quite 

possible, that he doesn't actually care about teaching.That he's not here for the 

students.

These views parallel those reported by Seymour (1997, 2006), who conducted exit 

interviews with students completing STEM degrees as well as those who had changed their 

major. Both categories of students Seymour interviewed reported taking classes from 

unavailable, disinterested faculty with an implicit or explicit dislike for teaching. 

Again, Brousseau's (1997) construct of the didactical contract is a useful way to discuss 

students' frustration with their absent instructor. Since the instructor did not create the videos 

or attend class sessions, the perception of the students was that he did not do anything. In 

reality, however, he spent considerable time, energy, and effort to create the in-class 

worksheets. From the students’ perspective, he did not hold up his end of the didactical 

contract. Several students in the focus group pointed out that they felt underprepared for 

Calculus II, or that they enjoyed mathematics less after having taken this class than they had 

before, and laid the blame for these feelings at the professor's feet. Most had attended class 

and watched videos as assigned, but did not feel adequately prepared since the professor was 

not involved.

The TAs, who assumed the instructor's role as authority figures in the classroom, were not

given enough authority or enough training to fill that role effectively. Further, there are some 

questions that TAs are unable to answer, no matter how proficient in mathematics or how 

well-trained they are. In particular, TAs cannot answer questions about the instructor’s 

expectations, as Melissa pointed out. For these questions, answers must come from the 

instructor; his absence, and the accompanying unanswerable questions, was thus a source of 

frustration for both the TAs and the students.

The absence of the professor led to a feeling of disconnect. Students did not attend the 

professor's office hours, because they felt that they did not know him well enough; "it would 

be really awkward," one student said. They doubted that he cared about their learning, viewed

him as disinterested and unavailable, and felt that he saw them as "a nuisance." This led to a 

profusion of negative feelings about the instructor and the class in general. 

The instructor's absence from the class, another large departure from studies in the 

literature, is a plausible explanation for the lack of positive quantitative results reported 

earlier. One of the main objectives of the inverted model is to get students in the same room 

as the more-knowledgeable other (Vygotsky, 1978) when working on the tasks with the 

greatest cognitive demand, so that assistance can be provided when it is most needed 

(Gannod, Burge, & Helmick, 2008). To achieve the full benefit of the inverted model, the 

instructor must be present and actively involved. Indeed, as Talbert (2014) writes, "open lines

of communication between the instructor and the students are critical to the success of the 
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inverted classroom" (p. 365). The failure of this iteration of the inverted model is an example 

of what can happen when the lines of communication are closed off.

Possible Best Practices.

The reports of successful inverted classes in the literature share several commonalities: 

the pre-lecture activities were tailored to the particular class, often personally created by the 

teachers or researchers; students were held accountable for completing the pre-lecture 

activities; and time formerly occupied by lecture was replaced with active-learning exercises 

led by the instructor of the class. The concerns reported by students in the inverted calculus 

class I studied implicate the failure of the class to replicate these important commonalities. I 

thus propose these features as the beginning of a list of best practices that should be adopted 

for an inverted class to be successful. Here, I discuss why each of these features is plausibly 

necessary for success. 

The first feature is that pre-lecture activities are closely tailored to the class. The students 

in the inverted calculus class read the articulation failure between the pre-class videos and the

in-class worksheets as a breach in the didactical contract: the videos were meant to prepare 

the students for the in-class work, but they did not, so they failed in their purpose. This 

caused some students to disengage entirely from watching the videos. While instructors in the

literature typically create pre-lecture activities themselves, this does not seem strictly 

necessary, particularly for early foundational material. Perhaps this is because for this 

material, variations in presentation are less impactful; a lesson on the power rule, for 

instance, likely looks much the same no matter who delivers it. Ongoing work in this research

program is surveying teachers who use the inverted model to determine, among other things, 

the balance they strike between creating videos and using pre-existing resources. Future work

could attempt to find criteria for when pre-lecture activities can be borrowed from other 

sources and when it must be developed in-house.

The second feature is accountability for completing pre-lecture activities. This can take 

many forms, from handing in a filled-in worksheet, to completing a clicker quiz at the 

beginning of class, to using a content management system to ensure that students clicked the 

link to a video. It may even be as simple as making it clear to students that pre-lecture 

activities won’t be reviewed in class. Accountability measures can be effective in motivating 

students to complete activities; Moravec et al. (2010) reported that each of their “learn-

before-lecture” activities was completed by over 90% of their students. Without 

accountability, however, there is no guarantee that students will complete the activities; it is 

no surprise that students often do not do things they are not accountable for.

The third common feature is the use of active-learning activities in class, led by the 

instructor. One key motivation for the inverted model was to allow students the opportunity 

to engage with challenging material with the instructor physically present to provide 

scaffolding and support. The inverted model thus contrasts with traditional models, which 

assign students to complete challenging tasks at home without the instructor’s help. Without 

engaging, well-structured activities, or without the instructor present, this affordance of the 

inverted model is lost.
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Proof is a complex mathematical activity with which students struggle as they transition from K-
14 to abstract mathematics.  This transition may be eased by developing mathematical practices 
during more accessible mathematical activities, such as conjecturing.  Recent studies in both 
proof and conjecturing suggest that instantiation practices, practices surrounding the generation 
and selection of examples during mathematical inquiry, are key to success in both activities.  In 
our own study, most participants utilized GeoGebra, a dynamic geometry software, to facilitate 
their investigations; however, although this software (in theory) makes sophisticated 
instantiation practices possible, it did not appear to advance participants’ instantiation 
practices.  In this paper, we detail the participants’ use of the GeoGebra and raise implications, 
questions, and cautions for teaching and research. 
 
Key words: conjecturing, dynamic geometry software, instantiation practices, technology 
 

Background 
Providing students with what it takes to be successful in mathematics is one of the 

primary focuses of mathematics education research and a very complicated challenge to address.  
This is partly because becoming successful in mathematics entails more than simply memorizing 
facts or practicing procedures.  It involves the acquisition of many cultural practices, many of 
which are subtle and not fully understood, overtly addressed, or intentionally encouraged.  The 
Conference Board of the Mathematical Sciences in the Mathematical Education of Teachers II 
explained (2012): 
  

“A primary goal of a mathematics major program is the development of mathematical 
reasoning skills. This may seem like a truism to higher education mathematics faculty, to 
whom reasoning is second nature. But precisely because it is second nature, it is often not 
made explicit in undergraduate mathematics courses. A mathematician may use 
reasoning by continuity to come to a conjecture, or delay the numerical evaluation of a 
calculation in order to see its structure and create a general formula, but what college 
students see is often the end result of this thinking, with no idea about how it was 
conceived.” (p.55-56) 

 
Successfully traversing the entire timeline of mathematical experience (from kindergarten to 
professional mathematician) requires students to become proficient in inconsistent and 
incompatible “mathematical” cultures.  As Lockhart (2002) observed, K-12 mathematics (and 
even early undergraduate college classes) values the acquisition of facts and rules, the mastery of 
procedural proficiency and algorithm application--usually provided through direct instruction 
and practiced by rote.  Upper-division and graduate level coursework (and professional 
mathematical activity) on the other hand value the ability to understand and generate new 
mathematical ideas, connect mathematical concepts, and advance the theoretical knowledge of 
the field. 
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This gap creates a well-known challenge to the undergraduate student.  Somewhere in the 
midst of the undergraduate experience, usually in an introductory linear algebra or analysis 
course or an introduction to proofs course, students experience this sudden cultural shift.  They 
are rapidly introduced to classes requiring an understanding of axiomatics, deductive logic, 
argumentation, and precise (and specialized) language, all of which center around the 
mathematical practice proof. 

We assert that this gap could be bridged through the study of mathematical practices, by 
which we mean the values and actions utilized by members of the professional mathematical 
community as they engage in authentic mathematical work.  For example, the heavy attention 
that the mathematical education community has paid to those practices surrounding the 
mathematical activity of proof has helped us better understand proof.  We have learned that proof 
is a highly complex cultural activity; mastering it requires the acquisition of many different 
cultural practices and skills (Alcock, 2010, Harel & Sowder, 1998).  To begin, students must 
come to understand the need for, value of, and purposes of proof.  They must also: a) develop 
discipline-specific language; b) acquire specialized linguistic skills; c) become proficient at 
deductive logic; d) understand conditional, equivalent, and nonequivalent statements; e) become 
aware of the roles and uses of cultural artifacts such as definitions, axioms, and theorems; f) 
become proficient at deriving meaning from written statements; and g) understand and become 
proficient at acceptable proof structures (e.g. direct proof, proof by contradiction, and proof by 
induction).  In addition, when asked to ascertain the truthfulness of mathematical statements, 
they must engage in mathematical inquiry by generating examples that test the statement’s limits 
and validity. 

Closely related to proof, our own research focuses on understanding mathematical 
practices surrounding the mathematical activity of conjecturing (Belnap & Parrott, 2013, 2014, 
2015).  This includes all actions, strategies, and efforts contributing to the development and 
formulation of new (to the participant) mathematical ideas (i.e. formal mathematical 
conjectures).  Our findings suggest that conjecturing is a form of mathematical inquiry that is 
highly accessible (even to novices) and draws upon many of the same mathematical practices 
that proof does--potentially serving as an accessible avenue for providing early mathematical 
enculturation experiences (Belnap & Parrott, 2013, 2014). 
 

Conjecturing and Geometric Inquiry 
In this paper, we present some interesting cases that we encountered during our broader 

qualitative research study--the full methodological and analytical details of this study are 
provided in (Belnap & Parrott, 2013, 2015).  The goal of this research was to understand what 
conjecturing entailed by engaging a diverse set of participants (individually) in a conjecturing 
task and contrasting their conjecturing practices.  We purposively selected a diverse set of eight 
participants at various levels of mathematical maturity.  Three were expert (i.e. research) 
mathematicians with different specialties, three were apprentice mathematicians (i.e. graduate 
students), and two were novice mathematicians (i.e. undergraduates at the aforementioned 
cultural transition point).  We selected student participants to provide a diverse range of 
mathematical abilities, as judged by their instructors. 

Each participant individually took part in an overt-conjecturing task, defined as one in 
which conjecturing is the sole purpose of the task, unshrouded by other goals or purposes 
(Belnap & Parrott 2014). As detailed in Belnap & Parrott (2013), we gave each participant a 
copy of the task (shown in figure 1) and a variety of resources (including both traditional 
construction tools and a computer with GeoGebra); then provided ample time to investigate the 

18th Annual Conference on Research in Undergraduate Mathematics Education 10018th Annual Conference on Research in Undergraduate Mathematics Education 100



definitions and generate conjectures.  Following the task, we gave participants a short break 
(during which we discussed our observations in preparation for the interview).  After the break, 
we then conducted an interview to clarify each participant’s approach and activities.  We video 
recorded the participants, their work, and computer use during both task and interview; for 
triangulation of data, we also kept observation notes and collected participants’ written work. 
 
Figure 1: Conjecturing task completed by each participant. 

 
 

Using grounded theory techniques (Strauss & Corbin, 1998), we systematically analyzed 
the data (Belnap & Parrott, 2013, 2015).  Starting with the least experienced novice and working 
up to the experts, we alternated between data collection and analysis, using initial findings to 
inform subsequent data collection.  During the process, we annotated both observed and reported 
behaviors, clustered them by commonality, and defined these emerging themes which became 
categories.  Each category described a critical aspect along which participants’ conjecturing 
practices differed.  These categories included: a) their overall process and problem-solving 
approach to the task, b) the objects that they created during and for their investigation, c) the 
nature of their observations (i.e. what they noticed, attended to, and looked for), d) the qualities 
of their written conjectures, and e) what was required for an idea to qualify as a conjecture for 
the participant.  Using these categories as guides, we revisited the data.  For each participant and 
category, we gathered detail and synthesized it into a vignette or a synopsis, describing the 
participant’s practices in regard to that category. 

Since this general analysis, we have begun examining each category in greater detail.  
Looking across participants, we have compared and contrasted the vignettes for each category, 
providing descriptions of ways in which participants’ practices compared and differed.  For 
example, a cross-comparison of category b (objects created for investigation) compared with 
related work and theory published by Lockwood et al. (2013, 2014) resulted in an understanding 
of differences in the strategic purposes and use of participants’ examples during conjecturing 
(Belnap & Parrott 2015). 
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As detailed in Belnap & Parrott (2015), we found that more expert participants 
approached the selection and generation of examples in strategic ways.  They were careful and 
intentional in these instantiation practices, using examples in systematic ways to generate, 
discover, and validate conjectures.  Intermediate participants likewise created and chose their 
examples purposively, but without the organization and analysis characteristic of expert 
approaches.  As an extreme and contrasting case, our most novice participant did not even 
consider multiple examples when generating conjectures, instead generalizing from a single 
example. 

Building off of work completed by Lockwood et al. (2013, 2014) concerning the usage of 
examples in proof development, we identified specific instantiation strategies employed by our 
participants during the conjecturing process (Belnap and Parrott 2015).  These strategies largely 
mirror those identified by Lockwood et al. (2013, 2014), with adaptations and omissions deemed 
necessary to accurately reflect the conjecturing context.  Table 1 describes each of these 
strategies. 

Almost all participants chose to utilize the software GeoGebra (a dynamic geometry 
environment or DGE) as part of their investigative process; even the one that didn’t, opted to do 
so during the interview.  Furthermore, most of the participants only generated examples within 
the DGE.  Because of this, we became curious regarding these questions: What role did the DGE 
play in participants’ investigations? What benefits did participants derive from its use? 

We have not completed a thorough study or analysis of these questions.  As we revisited 
our data with these questions in mind, we uncovered some unusual cases regarding the way 

 
Table 1: Instantiation Strategies Used in Conjecturing 

Strategies (and Subtypes) Description 

Multi-Stage Example Exploration Exploration based on a systematic change in the 
selection of examples used. 

     Changing in Complexity Progressing from simple examples to more complex or 
complicated ones (or visa versa) 

     Changing in Extremity Progressing from simple, typical cases to more 
extreme or special cases (or visa versa) 

     Changing in Generality Progressing from special cases to more general cases 
(or visa versa) 

     Exhaustive Progressing in a sequence that would ultimately (i.e. 
potentially in the limit sense) exhaust all possibilities 

Property Analysis An exploration of the properties of examples and how 
these properties are related to the conjecture 

Systematic Variation Taking a known case and systematically changing it 
by making small adjustments 
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participants chose to utilize (or not utilize) the software available to them.  In this paper, we 
present these cases, suggesting a boundary between what technology may and may not induce in 
individuals’ mathematical activity. 
 

Technology - Dynamic Geometry Environments (DGE) 
All of the participants in our study except one chose to utilize GeoGebra (a DGE) as a 

central tool for facilitating their exploration of the task’s definitions. DGEs are software 
environments (e.g. GeoGebra, Geometer’s Sketchpad, Cabri) that allow the creation of 
primitives (such as points, lines, and circles) and dependency relationships among them (such as 
the midpoint of a given line segment).  These environments update in real-time based on changes 
in the primitives (Laborde et al., 2006), allowing the user to manipulate objects and immediately 
observe the consequences of those changes.   

Within a DGE, users are able to construct objects that retain their properties even when 
manipulated.  For example, if we created a triangle’s medians by constructing each side’s 
midpoint and attaching a line to each midpoint and the vertex opposite it, then these lines will 
remain medians, even if the vertices are moved onscreen.  This type of construction is called a 
robust construction (Laborde et al., 2006).  On the other hand, if a user were to simply make 
three lines, choosing their placement by appearance (i.e. so they looked like medians), but 
without building the midpoints or vertices into their construction, this lines would not remain 
medians when the vertices were moved.  Such a construction is known as a soft construction 
(Laborde et al., 2006), since it does not resist manipulation. 

The investigative power of DGEs lies in robust constructions.  These constructions 
enable the user to discover invariants, meaning observable properties of the figure.  Similar to 
constructions, invariants can be classified as either soft or robust.  Soft invariants are those that 
are affected by manipulation; robust invariants are resistant to manipulation. (Laborde et al., 
2006).  For example, if we construct a triangle’s medians and manipulate it, we will always see 
the lines intersecting at the same point; their intersection is a robust invariant (because a 
triangle’s medians are always concurrent).  On the other hand, when carefully dragging the 
triangle’s vertices we may notice that sometimes a median is perpendicular to the side that it 
bisects; this property would be a soft invariant (because it only happens when the triangle is 
isosceles). 

A feature of DGEs that is critical to investigations, is the ability to drag objects and 
observe the results in real-time.  The research literature reports three main types of dragging 
(Laborde et al., 2006).  The first is wandering dragging, which is randomly dragging to discover 
a soft invariant.  The second is guided dragging, which is done with the intent of obtaining a 
particular shape.  Finally, we have lieu muet dragging, which is done to maintain a specific 
property (Laborde et al., 2006).   

Baccaglini-Frank and Mariotti (2011) describe a strategic combination of these actions 
that is used in conjecturing activities called maintaining dragging.  This consists of three parts.  
The user begins by wandering dragging to induce a soft invariant.  Then he proceeds with lieu 
muet dragging in order to identify or conjecture conditions associated with the invariant, and 
finally will verify the conjecture through a dragging test. 

Strategic use of DGEs in constructing and manipulating examples can reveal important 
mathematical properties.  For example, a conjecturer’s hypothetical investigation of our task’s 
perpendicular bisector quadrilateral (PBQ) definition might proceed as follows.  He begins by 
constructing a fully manipulable quadrilateral (parent object) and off of its sides constructs its 
PBQ.  He then engages in wandering dragging by manipulating one of the parent’s vertices.  
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During these manipulations, he induces a soft invariant, where the PBQ degenerates to a point--
many common special cases of the parent quadrilateral yield this, including all squares, 
rectangles, and isosceles trapezoids.  Wanting to find-out what causes this degeneracy, he 
carefully moves this vertex in order to maintain the invariant (lieu met dragging).  He notices 
that the definition degenerates whenever this vertex is on the circle that passes through the other 
three vertices (i.e. as long as the quadrilateral is concylic). To check, he constructs a robust but 
fully manipulable concyclic quadrilateral along with its PBQ. For this construction, the 
degeneracy is a robust invariant, supporting his conjecture.  In this way, strategic construction 
and manipulation of examples using the DGE can reveal important geometric properties and lead 
to strong mathematical conjectures. 
 

Results 
Almost all participants utilized the software during their conjecturing work with intent 

and purpose.  They reported choosing to use the DGE because it facilitated the construction of 
accurate representations and afforded the examination (through manipulation) of a large number 
of examples in a short time.  In fact, a commonly reported benefit of DGE use was the ability to 
examine both numerous and diverse examples, which enabled some advanced instantiation 
strategies, such as those discussed in Belnap and Parrott (2013). 

 
Dr. Sam - a case of strategic software usage.   

As a starting point and basis for comparison, consider one of our experts Dr. Sam. During 
his investigation, Dr. Sam engaged in various instantiation strategies, strategies afforded by DGE 
usage. Dr. Sam considered numerous, diverse examples through the manipulation of dynamic 
models.1  At the same time, he was strategic and intentional in his instantiation practices, 
utilizing and switching between various types of multi-stage example explorations (namely 
increasing in extremity, increasing in complexity, and decreasing in generality) and engaging in 
property analysis (Belnap and Parrott 2015). 

 Dr. Sam conducted his initial investigations through strategic wandering dragging. He 
systematically moved the parent quadrilateral through the soft construction of several common 
types of conventionally-defined quadrilaterals (e.g. rhombi, parallelograms, and isosceles 
trapezoids), observing the consequences for the derived quadrilateral.  He also sought out more 
extreme and diverse cases, including extreme changes in the shape and proportions of the parent 
quadrilaterals as well as situations when the parent quadrilateral was concave or not even a 
quadrilateral (due to intersecting sides).  He explained, ``I tend to look at extreme cases. … You 
know, I think that's sort of a feature of, of mathematicians, to say, `Ooh, how can this go wrong?’ 
… Yeah… I think of the convex quadrilaterals as being ugly ones... They're not nice 
quadrilaterals.  I said, `Well let's see what happens when, when we look at one of those.' ’’ 
(Interview transcript)  In this way, Dr. Sam systematically used examples that increased in 
complexity. 
During his explorations, he also periodically decreased the generality of his selected examples. 
When (during his wandering dragging) he encountered an interesting soft invariant, he would  

                                                
1 In each of Dr. Sam’s models, the derived quadrilateral was created to be dependent on a general (parent) 

quadrilateral, allowing him to manipulate the parent quadrilateral and immediately see the effects on the derived 
quadrilateral.  During most of his explorations, he used a model in which the parent quadrilateral was a general 
quadrilateral, whose vertices could all be freely moved. 
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Figure 2: Degenerate Perpendicular Bisector Quadrilaterals (PBQs) induced during Dr. Sam’s 
investigation 
 

 
Note: Snapshots arranged chronologically in rows from left to right (Video recordings). In the 
top three and first on the second row, the parent quadrilateral’s vertices are fully manipulable. In 
the last two, the parent quadrilateral is a robust parallelogram. 
 
stop to construct the specific case to make manipulation easier and ensure there were no errors in 
his observations. 

During periods of his investigation, Dr. Sam utilized examples that increased in 
extremity, that is sequences of examples that sought out the boundary between situations in 
which the construction yielded the defined quadrilateral and those where it did not (i.e. 
degenerate conditions) . For example, using wandering dragging, he hunted down situations that 
cause the PBQ to be degenerate. He explained, ``Then there were some… I think in the last case-
-looking at examples where the um, quadrilateral doesn't exist--and there--it seems like there are 
tons of them, and one of them was a certain kind of trapezoid, so I was trying to tweak my 
picture, to make it so.” (Interview)  His initial efforts utilized a PBQ with a parent quadrilateral 
whose vertices were fully manipulable. He manipulated these vertices, pausing near various 
degenerate cases, including when the parent is close to being a rectangle, isosceles trapezoid, and 
non-polygon.  Later efforts involved the manipulation of PBQs constructed off of special parent 
quadrilaterals.  In one of these, he used a robust isosceles trapezoid (with a 60 degree angle) as 
the parent quadrilateral, making the degeneracy a robust invariant.  In another, he used a robust 
parallelogram as the parent quadrilateral, using which he encountered the degeneracy as a soft 
invariant—induced when the parent quadrilateral looked like a square or non-square rectangle.  
Figure 2 shows snapshots of these invariants. 
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Dr. Sam used the software to generate mathematical ideas and discover properties of the 
defined quadrilaterals.  Through the systematic exploration described, he made several 
conjectures concerning when the PBQ is degenerate.  He used the DGE to provide accurate 
representations and measurements that allowed him to generate a number of conjectures (shown 
in Table 2), some of which are visually evident and others that were not. 

Dr. Sam was systematic and strategic in the examples he created and selected for his 
investigation.  Drawing upon the DGE’s ability to create accurate and manipulable 
representations, he systematically examined a large number of diverse examples.  This 
empowered him to use strategy in his example usage; he considered sequences of conventionally 
defined shapes, looked for extreme and unusual cases, and examined examples that increased in 
specificity (decreasing in generality).  Furthermore, the DGE’s precision and measurement 
features facilitated an analysis of the objects’ measurable properties.  
 
Table 2: Dr. Sam’s conjectures 

Quadrilateral Type Conjectures 

ABQ 1 Conjectures: - If ABCD isn’t convex, the vertices A’B’C’D’ must be 
reordered, else quad isn’t well defined �A’B’C’D’ 

- derived quad need not be inside �ABCD 
- If ABCD is a parallelogram, so is �A’B’C’D’ 
- If ABCD is a rhombus, A’B’C’D’ doesn’t exist (angle bisector 

for opp angles are identical) 
- If ABCD is a parallelogram, then �A’B’C’D’ is a rectangle 
- If ABCD is a rectangle, then A’B’C’D’ is a square 

MPQ 1 Conjectures: Given �ABCD 
- �A’B’C’D’ is always a parallelogram (even if �ABCD isn’t 

convex) 
- Area of �A’B’C’D’ is ½ Area of �ABCD 
- �A’B’C’D’ is a square [iff] �ABCD is a square 
- �A’B’C’D’ is a rectangle [iff] �ABCD is a rectangle 

PBQ 1 Conjectures: - �A’BC’D’ is undefined in many circumstances: 
- If � ABCD isn’t convex 
- If �ABCD is a 60-60-120-120 trapezoid 
- there are other cases where A’=B’=C’=D’ 
- If �ABCD is a rectangle 

- �A’B’C’D’ is a parallelogram [iff] �ABCD is 
- �A’B’C’D’ gets large as �ABCD approaches a line 
- �A’B’C’D’ gets smaller as �ABCD approaches a rectangle 
- congruent when �ABCD is a 45-135 parallelogram 

- in that case the set theoretic intersection is a square 
- �A’B’C’D’ is a rhombus [if] �ABCD is a rhombus 
- Side length of �A’B’C’D’ is side length of �ABCD x tan a 

[diagram shows a to be the angle at A] 
Note: 1ABQ, MPQ, and PBQ stand for Angle Bisector Quadrilateral, Midpoint Quadrilateral, and 
Perpendicular Bisector Quadrilateral, respectively. 
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Apprentice Noah - a contrasting case of software use 

Apprentice Noah’s exploration was also facilitated by his use of the DGE. In preparation 
for his investigation, Apprentice Noah synthesized each definition by creating a dynamic model 
of each quadrilateral (ABQ, then MPQ, and finally PBQ), constructing each derived quadrilateral 
in the DGE off of a general parent quadrilateral. 

Once he had generated these initial representations, he explored each definition in turn 
(MPQ, then ABQ, then PBQ) using wandering dragging with the parent quadrilateral’s vertices.  
As with Dr. Sam, there was purpose to Apprentice Noah’s dragging; he wanted to consider 
multiple and diverse examples and did so via his manipulations—he also included both concave 
and convex examples. 

In addition, Apprentice Noah made a special construction during his investigations to 
investigate what happens when the parent quadrilateral is a square (Vignette).  The previous time 
his geometry class met, they discussed circumscribed and inscribed triangles; remembering this, 
Apprentice Noah focused a portion of his investigation on determining if the MPQ could be 
circumscribed.  He did this by constructing various circles and then dragging vertices until he 
generated this soft invariant.  He noticed, at this point, that the parent quadrilateral was a square 
and posed this conjecture.  He verified this by constructing a robust square along with its MPQ. 

This finding influenced his subsequent investigations.  Not only did Apprentice Noah use 
wandering dragging with a general parent quadrilateral to investigate the ABQ and PBQ 
definitions, but he considered the special case where the parent quadrilateral was a square.  In 
each case he took the time to construct these derived quadrilaterals off of a robustly constructed 
square, each of which induced a degenerate case of the definitions. 

By observation alone, it appeared that Apprentice Noah was using sophisticated strategies 
in his investigations.  Like Dr. Sam, he made diverse and even extreme shapes and even 
narrowed his investigation to some special cases.  Speaking with Apprentice Noah revealed, 
however, that his investigation was not directed by sophisticated or advanced problem-solving 
strategies; he explained: 

``...kind of my approach, that I've taken every time I've done this, so far, this semester 
was: I'll make the thing and then I'll start moving it around, because maybe I'm hoping 
that if I did something accidentally, that I wouldn't think to do like deliberately, I would 
come up with a conjecture I wouldn't have otherwise come up with, so--and then after a 
while of doing that, just randomly moving and trying to make something happen, 
eventually I have to stop and start thinking, `Okay now. How can I move this to make it 
do something specific?'’’ (Interview) 
 

This is not to say that Apprentice Noah had no strategies or intent in his work.  He did try to 
cause things to happen in his manipulations (Interview), but his efforts lacked the sophistication, 
analysis, and intent that Dr. Sam’s did.   

This was further revealed by his response to the invariants that he did induce.  When he 
came upon special cases, he did not deeply investigate the extent and conditions under which 
they occurred; instead of pushing the extents and boundaries, he simply noted the case and 
moved on.  For example, Apprentice Noah induced a degenerate case of both the ABQ and PBQ 
definitions when he considered and constructed the special case where the parent quadrilateral is 
a square.  Even though he could have performed further manipulations (like Dr. Sam), he made 
no efforts to explore the conditions that induce these degenerate cases; he simply observed it for 
squares and left it at that (Vignette)--a fact that can also be seen in his list of conjectures (see 
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table 3).  It is also of note that the degenerate cases he discovered were circumstantially obtained, 
not the byproducts of strategic investigation or manipulation of those cases. 
 
Table 3: Apprentice Noah’s Conjectures 

Quadrilateral Type Conjectures 

MPQ Conjectures: 1. !′!′ = !′!′ and !′!′ = !′!′ for all midpoint quadrilaterals. 
2. A circle inscribed in a square will circumscribe the midpoint 

quadrilateral of that square. 
3. !′!′ and B’D’ always intersect at their midpoints 
4. < !!!!!! =!< !′!′!′!and < !′!′!′ =!< !′!′!′ 

ABQ Conjectures: 1. There will always be at least 2 vertices of A’B’C’D’ inside of 
ABCD. If there are only 2, they will be either !′ and !′ or !′ and 
!′(one each from opposite ends) 

2. !’!’!’!’ will be a reflection of !"#$!(ie, if !"#$ is 
counterclockwise,!!’!’!’!’ will be clockwise) (assuming convex 
or nonconvex whichever is the one where all segments of interior 
points are on the interior) 

3. If !"#$ is a square then !’,!’,!’, and!!’! will be concurrent. 
4. At most 2 vertices can be on ABCD either vertices !′ and !′ or !′ 

and !′ (special case of #1) 

PBQ Conjectures: 1. !’!’!’!’!will have the opposite orientation of!!"#$!(clockwise 
vs. counterclockwise) 

2. The vertices!!’,!’,!’,!’ can be inside or outside ABCD 
3. The points !’,!’,!’,!’ will be concurrent at the center of !"#$!if 

!"#$ is a square 
 
 
Novice Scott - a contrasting case of software use 

Novice Scott’s approach to the task (detailed in Belnap & Parrott, 2013; 2015) did not 
use the software.  Using a pencil, ruler, and protractor, he carefully constructed a single 
prototype for each derived quadrilateral.  Once created, he used each as an external source of 
information, treating it as a literal object by taking physical measurements of its angles and side 
lengths.  Throughout his conjecturing process, he exhibited prototypical thinking, making all 
conjectures a generalization from these three prototypes; he did not consider the diversity of 
examples inherent in the definitions. As a result of his conjecturing process, he produced a small 
set of conjectures (in table 4), which primarily concerned superficial features of the 
quadrilaterals.  

Novice Scott’s work connected to the technology during the interview.  When asked what 
would have improved his ability to perform the task, Novice Scott claimed that he would have 
had more success with the task, if he understood the software because he could create more than 
one drawing and be sure of its accuracy.  To observe the technology’s impact, we briefly 
instructed Novice Scott on the value, use, and dynamic capabilities of the software, then assisted 
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Table 4: Novice Scott’s conjectures (written work) 
Quadrilateral Type Conjectures 

ABQ Conjectures ABCD -> A’B’C’D’ 
- Original shape held 
- = - - ( -

) 
- rotated to the left 

PBQ Conjectures  
- shape flipped & changed order 
- inverted shape 

-   
- - - (

- ) 

MPQ Conjectures ( - ) 
- original shape held 
- stayed in same order 
- rotated to the right 

 
him in constructing a dynamic PBQ.  Concerned that the shape did not look at all like the one he 
drew, we helped him reorganize the vertices so that it appeared similar to his carefully 
constructed prototype.   

To support his own investigative interests, we helped him construct the measures of the 
angles and side lengths (Vignette).  Almost immediately, Novice Scott observed and added a 
stronger conjecture about PBQs, ``A + A’ = 180 [degrees]; for all angles’’ (Written work).  This 
ability was a result of the precision afforded by the software, which allowed him both to see the 
numerical relationships and verify that it worked for each pair of angles. 

While the software enabled him to more easily see these numeric relationships, it did not 
change his treatment of the objects.  He treated the dynamic model as if it were a single, static, 
physical model.  He used it as a virtual prototype, only manipulating it and considering multiple 
examples when pressed and encouraged to do so (video transcript and written work).  Even with 
encouragement, he only made minimal manipulations, twice dragging a single vertex from one 
position on the screen to another nearby, essentially creating two additional static examples. 
 

Discussion and Implications 
Technology is an important and powerful tool for modern mathematical investigations.  It 

provides many affordances and in some cases provides easy access to advanced investigative 
strategies.  The cases we have shared suggest the need for care, planning, and thoughtful 
reflection both when studying technology and using it to facilitate student learning. 

First, from a methodological standpoint, these cases suggest that studies aimed at 
understanding individuals’ investigative strategies and approaches cannot rely solely on 
observation.  From a purely observational standpoint, Apprentice Noah’s work with the software 
had strong similarities to Dr. Sam’s, from which one might infer that Apprentice Noah was using 
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the same advanced strategies that Dr. Sam was in his investigation.  Apprentice Noah’s interview 
revealed, however, that while he was trying to examine diverse cases, his investigation was 
guided more by a hope at a chance encounter--an understanding of his process that was only 
revealed via discussion of his approaches during the interview. 

Second, from a pedagogical standpoint, it is clear that technology can facilitate the use of 
advanced instantiation strategies in mathematical investigations; however, technological tools 
(by themselves) may prove insufficient to elicit them.  Although software usage made certain 
relationships clearer for Novice Scott, it did not change the way he selected his examples or 
treated them, nor did it change his propensity to generalize from insufficient examples; however, 
combining it with intervention did motivate some change (at least at the moment).  Furthermore, 
software usage helped Apprentice Noah encounter a degenerate case, yet he did not engage any 
efforts or strategies in investigating the phenomenon, even though the software usage made such 
an investigation easily accessible.  For clarity, we are not saying that Noah could not have 
employed more advanced strategies, but that the accessibility of both the strategies and 
opportunity that the software provided did not on its own elicit them; he did not have the 
propensity to investigate the situation, even though he found it interesting enough to conjecture it 
(something he was picky about).   

It is plausible that a different task could have elicited more advanced strategies.  For 
instance, if we had given an embedded-conjecturing task, that is one where conjecturing was 
embedded in or subordinate to some overarching problem or goal (Belnap & Parrott, 2014), such 
as, “Determine when the ABQ is undefined or does not result in a quadrilateral.” we would have 
expected different results from all participants--maybe even spontaneous use of the maintaining 
dragging strategy from some.  

This is our own conjecture: Advanced instantiation strategies are not a direct byproduct 
of the use of technological tools, that is, not spontaneously generated by use of software tools.  
This could partially explain the difficulties novices experience when doing overt-conjecturing 
tasks (Belnap & Parrott, 2014).  It appears that outside intervention or motivation is necessary to 
advance individuals’ instantiation strategies.   

Perhaps instructors can provide such intervention, as we did during our interview with 
Novice Scott.  They can question students’ certainty about their observations, challenging their 
propensity to generalize from too few examples.  They can press students to generate and 
consider diverse and extreme examples in their investigations.  In these and other ways, they 
may foster the development of values, perspectives, and habits that would enable students to 
explore mathematical situations. 

Embedded-conjecturing tasks may also play a key role in the development of students’ 
instantiation strategies.  Perhaps embedded-conjecturing tasks could be designed which elicit 
specific strategies, strategies whose value, purpose, and role could be discussed overtly in the 
classroom. 

There are certainly many questions to be answered. How can instructors facilitate student 
development of more advanced instantiation strategies? What role do tasks play in the 
development of mathematical practices?  What types of experiences will elicit and facilitate the 
development, not only of advanced instantiation strategies, but the propensity to use them in 
undirected mathematical investigations?   How does one internalize strategies to the point where 
they can draw upon them without external structure, pressure, or push?  These are just a few of 
the questions that need to be addressed in order for us to best engage technology in the 
development of mathematical practices. 
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An analysis of proof-based final exams 

Mindy Capaldi 
Valparaiso University 

 

Abstract: Evaluating final exams can give insight into what aspects of a course instructors 
value the most. This study examines whether final exams in proof-based courses accurately 
reflect instructors’ perceptions of their exams. It also categorizes the questions on the exams 
in terms of type, format, and cognition level. The level of cognition was further distinguished 
by imitative reasoning and creative reasoning. Results indicate that instructors of proof-
based classes are relatively aware of the content of their exams. The largest discrepancy 
between instructor perception and reality concerned the number of application problems. 
Analysis also showed that about a fifth of the questions and over half of the points are proof-
related. The exams were almost entirely short or broad answer and required high cognition 
levels when proofs were assumed to require creativity. 

Key words: [Proof, Exams, Assessment, Creative Reasoning, Imitative Reasoning] 

Introduction 
 Final exams are prevalent and significant tools of assessment in college mathematics, 
including in proof-based courses. Such courses are notoriously difficult for students to master 
and for instructors to teach effectively. Studying the final exams of proof-based courses could 
at least reveal what instructors expect students to know and be able to do by the end of the 
semester. Exam design may influence students’ beliefs about mathematics and what 
reasoning is essential in the subject (Bergqvist, 2007). Insights into proof-based final exams 
might be useful to new instructors of such classes as they grapple with designing a course that 
could be critical to the students’ mathematics career. Experienced instructors could also 
benefit by comparing their exams to the results of this research and considering whether they 
personally have a misalignment between perception and reality.  
 This study was largely motivated by Tallman and Carlson’s characterization of 
introductory calculus final exams (2012). Prior to that study, there was little previous 
research concerning calculus I exams in the United States, although Lithner had examined 
reasoning in calculus textbook exercises and found that most exercises required only 
superficial reasoning (Tallman & Carlson, 2012; Lithner, 2004). More recently, White and 
Mesa extended the classification of cognitive orientation for calculus I tasks by considering 
multiple types of coursework (White & Mesa, 2014).  
 A literature search related to proof-based exams did not uncover any relevant results. In 
terms of general mathematics exam research, some progress has been made. Marso and Pigge 
found that K-12 tests contained mostly multiple-choice, matching, and short answer questions 
and were at simply the knowledge cognition level (1991). Senk et. al. showed that high 
school mathematics test questions required low level reasoning and were not open-ended or 
connected to applications (1997). Bergqvist researched university exams in Swedish 
mathematics courses and found that 70% of the tasks were solvable, and 15 out of 16 exams 
were passable, by using only imitative reasoning. Imitative reasoning includes repeating 
memorized information or applying algorithms to solve problems (2007). Tallman and 
Carlson found conclusions similar to the previous research (2012). Their results indicated that 
calculus I exams included nominal cognitive demand and were largely computational. There 
was also a striking difference between instructors’ perceptions and reality concerning how 
often students were asked to explain their thinking and the number of computational 
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questions. Instructors believed they were asking for more explanation, and fewer 
computation, than they actually were (Tallman & Carlson, 2012). 
 An emphasis on computation and imitative reasoning seems prevalent throughout 
mathematics final exams from the K-12 level through calculus. One of the goals of this study 
was to examine whether those emphases persist through proof-based courses. Drawing upon 
the methodology of the calculus study, each proof-based exam item was coded within three 
categories: item representation, item format, and item orientation. Tallman and Carlson had 
to change previous frameworks to suit the characterizations needed for that study of calculus 
exams (2012). Similarly, a slightly altered framework was developed to better fit proof-based 
course exams. Instructors of the proof-based courses were surveyed to gauge how their 
expectations aligned with reality.  

Research Questions 
The four main research questions were: 

1. What levels of cognition are required on proof-based final exams? 
2. How do instructor’s perceptions of their exams differ, if at all, from the actual exams? 
3. What proportions of the test are creative versus imitative reasoning? 
4. How do proof-based courses compare to calculus I? 

Theoretical Framework 
 The primary framework for this study was an overview of the type of reasoning required 
on the exams, creative versus imitative. In addition to that framework were the exam 
characterizations of item orientation, item format, and item representation. Item orientation 
was based upon Bloom’s taxonomy of cognitive demand (Anderson,  
Krathwohl, & Bloom, 2001; Bloom & Krathwohl, 1956). The lower levels of that 
characterization fit into the category of imitative reasoning, while the higher are creative 
reasoning (see Table 1). Previous research demonstrated that a significant difficulty for 
students’ learning mathematics is the reliance on superficial reasoning (Lithner, 2008) 
 Creative Reasoning (CR). Creative mathematical thinking involves processes that are 
distinguished by flexibility and novelty. A solution that uses such thinking should contain 
reasoning that is new to the student, choices leading to a plausible solution which are 
supported by arguments, and is grounded in appropriate mathematical properties (Bergqvist, 
2007). Cognitive levels requiring CR were identified as “analyze,” “evaluate,” and “create.” 
The creativity level of orientation included such tasks as proving theorems or constructing an 
example. Instructors reported that none of the proofs on the exams had been seen previously 
by students, so they could not have simply regurgitated the proof. Therefore, the framework 
classified proof solutions as creative. Some tasks provided a correct or incorrect proof and 
required students to critique the proof; these were considered part of the evaluate level, but 
were still CR since the particular reasoning sequence required was novel to the student. 
 Imitative Reasoning (IR). Students use IR when they are basically reproducing task 
solutions. IR can be split into two subcategories: memorized and algorithmic reasoning. 
Reciting a definition uses memorized reasoning. Finding the derivative of a function would 
use algorithmic reasoning (Bergqvist, 2007). Proving theorems can incorporate both of these 
types of reasoning, as the prover must remember definitions and structures of proof. 
However, if the theorem is new to a student, then the framework will assume that some 
creativity is involved in the reasoning sequence. Item orientations “remember,” “recall and 
apply procedure,” “understand,” and “apply understanding” were considered IR. 
 Item Representation. Each exam item task and solution were coded into one or more of 
the eight categories listed in Table 3. Knowing the representations that appear on final exams 
gives a snapshot of the variety of tasks and solutions that students were familiar with during 

18th Annual Conference on Research in Undergraduate Mathematics Education 11318th Annual Conference on Research in Undergraduate Mathematics Education 113



the semester. If the exam included many applied problems, then we could conjecture that they 
solved numerous such problems in the course. Or if a large portion of solution items were 
coded as “explanation,” then we would expect that students often needed to demonstrate their 
understanding of a concept by explaining it.  
 The item representation characterization used in this study slightly deviated from that of 
Tallman and Carlson (2012). Items were coded as “definition/theorem” not only if students 
were required to provide a statement or interpretation, but also if they were asked to apply a 
definition or theorem. The latter condition was added for exam questions like, “Use the 
[blank] algorithm to…,” which necessitated an application of the algorithm but not a 
statement of it. Another change was the inclusion of a task statement category for 
“explanation.” In some questions an example or proof, perhaps incorrect, was provided by the 
instructor. This was viewed as being given the explanation, which students then described or 
critiqued. Such an item differed from the “proof” category for task statements, in which only 
the theorem statement or conjecture was given to the students. 
 Item Format. Formats of exam items included categories like True/False, short answer, or 
broad open-ended (see Table 5). Additionally, those three categories were split depending on 
whether explanation was required. Item format characterization was similar to Tallman and 
Carlson, except that “word problem” was excluded in this characterization (2012). Any 
problem that would have been a word problem was coded as applied for item representation. 
Removing word problems from the list of item formats allowed each question to be coded as 
only a single format. 
 Each item requiring students to prove a theorem was coded as broad open-ended with 
explanation, since proofs are often correct despite being structured or worded differently. 

Methodology 
 This study collected exams and surveys from 18 proof-based course instructors. The 
instructors were from a variety of institutions: two national universities, four regional 
universities, and 12 national liberal arts colleges.1 Of the 18 instructors, 44% were tenure-
track, 5.5% were visiting, 22.2% were associate, and 27.8% were full professors. About half 
of the classes were taught using a mostly lecture format, and half incorporated inquiry-based 
learning and/or flipped pedagogy. There was a total number 243 exam items, or questions, 
that were coded.  
 Each instructor submitted an exam and syllabus for their course. These were not 
anonymous, so that they could be matched with answers to the following questions. 

1. Were any of the questions on the exam previously seen by students (on 
homework, in class, …)? If so, please specify which ones. Did the students 
know that that particular problem would be on the exam? 

2. If the points distribution is not clear on your exam, could you briefly describe 
the breakdown of points? 

All instructors reported that their exam questions had not been previously seen in class. Of 
course, some questions were similar to tasks completed throughout the semester, but none 
were exactly the same.  
 Each instructor also completed an anonymous survey. First, they were asked for 
information about their position, institution, and teaching style. Then the survey led 
participants to rank the importance of certain skills and estimate the frequency that some 
types of questions were asked on their exams. The ranking was for the following list of 
student skills: 

x Know definitions or theorems;  

                                                 
1 See Tallman and Carlson for a description of these institution levels (2012; p218). 
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x Fluency in mathematics/symbols;  
x Demonstrate understanding through explanations or providing examples 
x Understand proof structure and logic 
x Ability to solve applied problems 

 The exams were analyzed by coding each question into an appropriate category for their 
item format, representation, and orientation. One item could fit into multiple representations 
or formats, but was only characterized in a single level of orientation. Under each of those 
three classifications, the frequency and weight of each category was calculated. Under item 
orientation, creative versus imitative reasoning was specifically considered. 
 Once the exam analysis was complete, instructor surveys were reviewed. The results of 
the survey were compared to the results of the exam analysis. 

Results 
 Item Representation. Coding for item representation showed that 21.4% of tasks and 
21.2% of solutions represented theorems and proofs, respectively. When asked “How 
frequently do you ask students to evaluate a statement or conjecture on an exam (for instance, 
‘prove or disprove’)?” with a scale from 1-6 (1 being not at all and 6 very often), 77.8% of 
instructors picked levels 4-6. Thus, in terms of number of theorems and proofs, instructor 
perceptions and exams do not seem to align.  
 Additionally, 44.4% of instructors ranked the “ability to solve applied problems” as the 
most important skill for students to master, but only four task items out of 243 were coded as 
applied. Two of those were from a Linear Algebra II with Applications course, and two were 
from a Foundations and Structures of Mathematics class. It is possible that responders 
defined applied differently than the description “The task presents a physical or contextual 
situation,” that was used in the study. Instructors were not given a definition of “applied” for 
the survey. Further results for item representation can be seen in Table 4. 
 Item Format. Every instructor picked a level from 4-6 (6 being very often) when asked 
how frequently students were required to explain their thinking. Coding results showed that 
there were no multiple-choice items, but the combination of true/false, short answer, and 
broad open-ended items which required explanation summed to 58.02% of the total formats. 
Thus, instructor beliefs more closely matched reality in this category. Approximately 6% of 
items were broad open-ended without explanation; most of those were questions that asked 
students to generate an example. About 38% of items and 30% of exam points were short 
answer without explanation, which were generally the purely computational solutions. This 
also corresponds to instructors’ beliefs, since 16 out of 18 instructors reported that less than 
half of the points on their exams were for purely computational solutions. Further results for 
item format can be seen in Table 6. 
 Item Orientation. Over half (57.8%) of exam points were coded at the creative level of 
item orientation. Only a small number were coded as analyzing or evaluating, so the total 
percentage of points that were given for CR was 62.3%. Every proof question, whether it 
asked students to evaluate or analyze a given proof or prove/disprove a given theorem, was in 
the CR levels of item orientation. Not every IR item was computational and not every CR 
item was proof-related, but those types of questions made up the majority of the two 
categories. All but one instructor perceived that more than 40% of their exam points went to 
proof-writing, with the most common answer being that 70-79% of the exam grade had that 
emphasis. So, while instructors beliefs concerning how frequently they ask proof-related 
questions did not align with their exams, their understanding of how much proofs were worth 
did correspond to reality. 
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Discussion 
 This study found some discrepancies between instructors’ perceptions of their proof-
based exams and the actual exams concerning frequency of proof-related questions and 
applied items. However, the gap between the characterization of the exams and instructor 
beliefs was not as large or widespread as what was found in the study on calculus I exams. 
Also, proof-based course exams require less imitative and more creative reasoning, in 
contrast to the calculus exams (Tallman & Carlson, 2012).  
 Possibilities for further research include distinguishing between different proof-based 
courses. Additional studies could also investigate whether the cognitive intentions of a 
question match what level of cognition students actually achieve. A similar problem was 
studied concerning national tests in Sweden, which found that students usually tried to solve 
tasks that were not similar to textbook exercises by using creative reasoning (Boesen, 
Lithner, & Palm, 2010). White and Mesa also considered other coursework in calculus 
classes, and the cognitive demand required for those tasks (2014). Including homework, 
quizzes, etc. in a study of proof-based course tasks could extend our understanding of what 
students are asked to do and how much creative reasoning they are using on their final exams. 
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Appendix 
Table 1. 
Adaptation of Cognitive Behavior (Table 1) from Tallman and Carlson (2012, p223). 
Item Orientation Description 
IR: Remember Students retrieve knowledge from memory of a 

definition or theorem. 
IR: Recall and Apply Procedure Students recognize what knowledge or procedures 

to use when directly prompted to do so (e.g., Find 
the converse, order, union, etc…) 

IR: Understand Students interpret, explain, justify, compare, or 
make inferences that require an understanding of a 
concept. 

IR: Apply Understanding Students recognize when to use (or apply) a 
concept without direct prompting or instructions, 
demonstrating an understanding of the concept. 

CR: Analyze Students determine relationships in the material 
by comparing, categorizing, deducing, etc… 

CR: Evaluate Students make judgments based on criteria and 
standards. Checking and critiquing are cognitive 
processes at this level. 

CR: Create Students generate, plan, and produce. Includes 
proving theorems or generating examples. 

Table 2.  
Coding results for item orientation. 

Item Orientation % of Items % of Points 
Remember 7.41 3.80 
Recall and Apply Procedure 27.57 23.13 
Understand 9.88 6.65 
Apply Understanding 4.53 3.53 
Analyze 1.23 1.16 
Evaluate 4.94 3.38 
Create 44.03 57.78 

Table 3. 
Adaptation of Item Representation (Table 2) from Tallman and Carlson (2012, p224). 
Item 
Representation 

Task Statement Solicited Solution 

Applied/Modeling The task presents a physical or 
contextual situation.  

Students define or use a model 
to describe the situation. 

Symbolic The task conveys information in the 
form of symbols. 

Students manipulate, interpret, 
or represent through symbols. 

Tabular The task provides information in the 
form of a table. 

Students organize data in a 
table. 

Graphical The task presents a graph or 
diagram. 

Students generate a graph or 
illustrate a concept graphically. 

Definition/theorem The task asks the student to state, 
interpret, or apply a definition or 
theorem. 

Students state, interpret, or 
apply a definition or theorem. 
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Proof The task presents a conjecture or 
proposition. 

Students demonstrate the truth 
of a conjecture or proposition 
by reasoning deductively. 

Example/ 
Counterexample 

The task presents a proposition or 
statement with the expectation that 
an example or counterexample be 
provided. 

Students produce an example 
or counterexample. 

Explanation An example or proof, perhaps 
incorrect, is given and the student is 
asked to evaluate or explain it. 

Students explain or evaluate a 
given example or proof. 

Table 4.  
Coding results for item representation. 
Item Representation % of Task 

Items 
% of Task 

Points 
% of Solution 

Items 
% of Solution 

Points 
Applied/Modeling 0.87 2.41 0.46 1.22 
Symbolic 38.74 76.69 34.48 50.90 
Tabular 0.22 0.59 1.15 1.36 
Graphical 0.00 0.00 1.15 2.47 
Definition/Theorem 33.33 60.13 34.71 58.52 
Proof 21.43 57.70 21.15 53.82 
Example/Counterex. 3.46 5.88 3.91 6.13 
Explanation  1.95 2.28 2.99 4.15 
Table 5. 
Adaptation of Item Format (Table 3) from Tallman and Carlson (2012, p224). 
Item Format Description 
Multiple Choice One question posed with one or more correct 

answers in a list of choices.  Student chooses 
from the list. 

Multiple Choice (Explain) Student chooses from a list and explains their 
choice. 

True/False A statement is presented and the student 
chooses whether it is true or false. 

True/False (Explain) A statement is presented and the student 
chooses whether it is true or false and 
explains their choice. 

Short Answer  One question presented, which has one 
correct answer that the student must write. 

Short Answer (Explain) One question presented, which has one 
correct answer that the student must write 
and explain/justify. 

Broad open-ended  One question presented, which has multiple 
correct answers. The student must write one 
of them. 

Broad open-ended (Explain)/ 
Proofs 

One question presented, which has multiple 
correct answers. The student must write one 
of them and explain/justify. 
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Table 6.  
Coding results for item format. 

Item Format % of Items % of Points 
Multiple Choice 0 0 
True/False 3.29 1.24 
True/False (Explain) 0.41 0.44 
Short Answer 38.27 29.41 
Short Answer (Explain) 11.11 8.65 
Broad open-ended 5.76 4.82 
Broad (Explain)/Proofs 41.15 55.70 
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Pre-service teachers’ conceptual understanding of numerals and arithmetic with 
numerals in base-ten and bases other than ten 

Iwan Elstak   Ben Wescoatt 
Valdosta State University Valdosta State University 

This preliminary study explores pre-service teachers’ learning and understanding of 
arithmetic as they are confronted with numbers represented in different bases in order to add 
to the body of literature about teacher knowledge. Students in an initial mathematics content 
course for elementary teachers were interviewed as they solved problems related to 
representing whole numbers and related to arithmetic operations on numbers represented in 
various bases.  Initial findings suggested that the areas of knowledge development during the 
course were still domain specific and the links, or concepts, in terms of semantic networks 
were still weakly connected. Students could hold contradictory views of concepts. 
Additionally, standard algorithms for operations in other bases were also not consolidated; 
they were not abstracted to the point that new structures had emerged as conceptualized.   

Key words: Numeration, Teacher training, Declarative knowledge, Abstraction in context 

Introduction 
This study aims to investigate how pre-service teacher students understand numerals of 

different bases and to explore the obstacles faced while learning about numeration. How do 
they use standard algorithms of addition, subtraction, multiplication and long division with 
conceptual understanding, meaning knowing the mathematical basis of each step in the 
algorithms? We use a qualitative methodology with multiple interviews and pre-and post- 
tests to investigate this question. 
Number Sense  

Number sense is “a person’s general understanding of number and operations along with 
the ability and inclination to use this understanding in flexible ways to make mathematical 
judgments and to develop useful strategies for handling numbers and operations” (McIntosh, 
Reys, & Reys, 1992, p. 3). The inclusion of number sense as a foundational idea of 
mathematics in the National Council of Teachers of Mathematics’ Principles and Standards 
for School Mathematics highlights the importance of the development of appropriate number 
sense in young learners. The NCTM suggests that students should not only understand 
numbers and number systems but how to represent numbers; that is, students should 
understand what numerals are (National Council of Teachers of Mathematics, 2000). The 
need to understand numbers and numerals is important as number and numeral properties are 
fundamental in understanding the arithmetic algorithms (McIntosh, Reys, & Reys, 1992).  
Mathematical Knowledge for Teaching 

Throughout the mathematics education literature, the suggestion is made that a teacher’s 
mathematical knowledge influences what his or her students learn. For example, Tanase 
(2011) suggested that a teacher’s knowledge of place value affected the students’ 
conceptions. Thus, a student’s success in learning basic arithmetic may depend on his or her 
teacher’s understanding of numeration. Hiebert and Wearne (1992) found that students with a 
solid conceptual understanding of place value generally had better understanding of 
arithmetic operations. In fact, these students utilized numeration concepts when solving 
problems new to them; when approaching the addition of two-digit numbers for the first time, 
they were able to generate their own algorithms using grouping schemes without prior 
instruction. 

While teaching for conceptual understanding is important, both pre-service and in-
services teachers have been shown to be lacking in this conceptual understanding. Teachers  
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Figure 1: The Mathematical Knowledge for Teaching from Hill & Ball, 2009. 
appear to have inadequate knowledge of the decimal system, being unable to adequately 
represent numbers or discuss place value (Stacey et al., 2001; Matthews & Ding, 2011).  
When representing numbers, their representations tend to lack structure that identifies the 
base of the numeral and the grouping concept necessary for the base (Matthews & Ding, 
2011). Additionally, teachers have difficulties in identifying why students make errors in 
place value; in fact, teachers’ errors are very similar to student errors (Stacey et al., 2001; 
Muir & Livy, 2012). Moreover, when teaching numeration concepts, teachers tend to rely on 
procedural rather than conceptual methods (Muir & Livy, 2012). 

The development of teachers’ number sense in a conceptual way is important in that 
numerous studies have suggested a relationship between teachers’ knowledge for teaching 
mathematics and students’ learning and understanding (e.g., Hill, Rowan, & Ball, 2005). 
Thus, students will be more likely to understand concepts in a conceptual rather than solely 
procedural way if their teachers have a deeper, conceptual understanding of the concept. In 
terms of modeling a teacher’s knowledge for the teaching of mathematics, a common model 
used is the Mathematical Knowledge for Teaching model developed by Ball, Hill, Thames, 
schilling, Bass, et al. (e.g., Hill & Ball, 2009). According to the model (Figure 1), teachers of 
mathematics should possess knowledge different from a common person. For example, 
understanding the digits in a numeral as representing the number of groups of a certain size, 
as determined by the base, falls in specialized content knowledge. As another example, 
realizing that young learners may not fully understand how to write a numeral (writing 
“1007” for “one hundred seven”) would be knowledge of content and students. 
The Current Study 

The aim of this current study is to explore and better understand the development of 
arithmetic concepts as pre-service teachers learn about the operations and are confronted with 
numerals of different bases. That is, the study will explore the mathematical knowledge for 
teaching as it applies to the development of number sense in pre-service teachers. A 
motivation for studying pre-service teachers as they experience numerals of different bases is 
explained by the following quote from Zazkis (1999): 

Considering non-conventional structures helps in gaining a better understanding and 
appreciation of those that were chosen as “conventional” and learned as a mother tongue.  
Working with non-conventional structures helps students in constructing richer and more 
abstract schemas, in which new knowledge will be assimilated. (p. 650) 

That is, as students may no longer rely on algorithms learned long ago to operate with 
numerals, they must resort to foundational knowledge. In so doing, the belief is that students 
will then situate their number sense in a broader, better-connected scheme. Thus, when 
students are face with problems novel to them, they should rely on conceptual understanding 
to navigate the problem as they do not have a learned algorithm on hand. Zazkis (1999) 
claimed that exploring numerals in bases other than ten would dis-equilibrate learners in the 
Piagetian sense, helping the learners appreciate the need to reconstruct, or recalibrate, their 
number sense schema. Our study will use the standard algorithms for the operations, but 
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situated in the novel context of new bases that will force the students to ground their 
reasoning on the mathematics of the numerals rather than on learned tricks and recipes. 

Related Literature 
Herman, Zilles, and Loui (2011) studied undergraduate students’ conceptions of 

numeration systems in a computer organization course taken by computer science, electrical 
engineering, and computer engineering students. They found that as students learned about 
binary, octal, and hexadecimal numeration systems, the students developed strong procedural 
skill but had weak conceptual knowledge about numeration in spite of both procedures and 
concepts being taught. In the course sequence, the binary system was first, followed by octal 
and then hexadecimal. Students had the most difficulty with the hexadecimal system. In order 
to perform tasks such as number comparisons in hexadecimal, students would typically begin 
by first converting from hexadecimal to binary; this conversion was followed by conversion 
to decimal if the comparison was still not understood. Moreover, students who were 
proficient in decimal and binary could have difficulty interpreting hexadecimal numerals. 
Thus, students needed to convert numerals into a “mother tongue” in order to truly 
understand a problem. Overall, students tended to rely on procedural tricks rather than 
conceptual reasoning. Moreover, the researchers suggested that students had difficulties 
similar to those encountered by young learners approaching whole numbers for the first 
times, indicating that despite additional training, the undergraduate students were unable to 
move away from pre-existing conceptions.   

Persistence of misconceptions was a finding of Bartolini Bussi (2011) in her exploration 
of teachers and pre-service teachers working tasks with manipulatives. Even though all of the 
participants had coursework covering the generalities of place value, when asked to perform 
arithmetic tasks with manipulatives, they were unable to connect the manipulatives to 
algorithms via conceptual understanding. For example, when pre-service teachers were using 
a spike abacus, they were willing to denote the value of a place through a particular color of a 
bead rather than through a position. In other words, external qualities of the manipulative not 
germane to the concept dictated utilization of the manipulative. 

As pre-service teachers learn about place value, they must ignore facets immaterial the 
concept and set aside pre-existing, procedural knowledge of the decimal system to understand 
the richer concepts involved in a numeration system with place value. McClain (2003) 
studied a teaching treatment focused on supporting the development of conceptual 
understanding of place value and multidigit addition and subtraction. By using activities 
focusing on the packaging of units of candy, the treatment focused on the grouping concept 
and avoided extraneous issues such as color that could become an impediment. Overall, the 
pre-service teachers were able to move beyond just accepting algorithms because they 
worked as symbol manipulation. Through the use of pictorial representations, the teachers 
were able to understand and explain the important concepts involving grouping in the 
addition and subtraction algorithms. This result shows the important role that manipulatives 
can play in helping students attach meaning to symbols. That is, the symbols in addition and 
subtraction algorithms no longer had vacuous referents; students could connect the symbols 
to concrete referents if needed. Overall, the study demonstrated the ability of pre-service 
teachers to develop a conceptual understanding of important place value concepts. 

Price (2011) explored pre-service teachers’ conceptual understanding of place value as 
they engaged with a special positional numeral system, Orpda.  Orpda was essentially a base-
five system. However, rather than using the digits 0 through 4 to write numerals, the symbols 
~, *, @, #, and ^ were used to represent no, one, two, three, or four objects. The Orpda 
system was developed to dissuade students from relying on the usual base ten system as 
numeration topics were studied. Price found that the students showed more understanding of 
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place value and the concepts of grouping and regrouping after engaging with the Orpda 
system.   

While Orpda was intended to avoid reliance on base ten, in an earlier study of in-service 
teachers and Orpda, the teachers needed to compare Orpda to the decimal system in order to 
understand how to write numerals in Orpda (Hopkins & Cady, 2007). During a workshop, 
after trying to represent a group of five objects with place value, for example, as @#, the 
workshop facilitators led the in-service teachers to consider the numerals in the decimal 
system. For example, to represent 5, one could write 2 + 3 but not 23.  Eventually, some 
teachers suggested *~, the correct representation; in order to convince those teachers 
skeptical about this representation, the facilitators compared it to the numeral 10 in base ten. 

Expanding on earlier results, Cady, Hopkins, and Price (2014) discussed further results of 
their study of pre-service teachers learning about place value through Orpda. As mentioned, 
Orpda was created to dissuade students from converting to the more familiar decimal system; 
instead, students needed to associate the signified quantity with the symbol; this association 
would mimic the learning trajectory experienced by elementary students. Similarly, the 
teachers needed to associate the name of the symbol with the symbol. The intent of Orpda 
was to force the pre-service teachers to experience a disequilibrium concerning place value, 
separating them from their knowledge of the familiar decimal system, and to force the 
teachers to reflect and reconceptualize their understanding of place value. The researchers 
noted that the pre-service teachers began to associate quantity with the symbol after several 
meetings. The students commented on the use of manipulatives to facilitate this development, 
again highlighting the important role that appropriate manipulatives play in developing 
conceptual understanding of place value. Through the use of Orpda, teachers developed a 
deeper appreciation of how their future students learn and gained a more robust conceptual 
foundation to assist them as they facilitate learning with these students. 

The literature highlights the important role that appropriate manipulatives and 
representations hold in facilitating the development of a more conceptually-based number 
sense. Furthermore, as students learn, they have a tendency to rely on prior knowledge of the 
decimal system. This tendency is problematic in that this knowledge is typically shallow and 
procedural and probably faulty. Thus, better understanding how number sense develops in 
pre-service teachers is important. 

Theoretical Framework 
Our general framework is the theory of complex declarative knowledge (Chi, 2005). 

There are two types of knowledge: procedural and declarative. Declarative knowledge refers 
to facts, descriptions, concepts, principles, ideas, schemas and theories. Procedural 
knowledge refers to knowledge of how to do things, associations between goals, situations, 
and actions to achieve them (or avoid them). Declarative knowledge is use-independent and 
descriptive. The theory of numbers and operations is such a system of knowledge.  

Declarative knowledge is described with three constructs: semantic networks, theories, 
and schemas (Markman, 1999). Semantic networks are conceptualized as nodes that connect 
concepts by links (relations). Knowledge is accessed by traversing links. Concepts (and 
nodes) can be linked through multiple links. Therefore declarative knowledge is grouped by 
domains. Domains are formal or informal areas of knowledge that are similar in meaning and 
cluster together. The structure of domain representations depends on dominant relations in 
the domain. Representations of domains are locally structured by their dominant relations. 
Formal mathematical theories have strong relations. The existence of semantic structures 
does not mean that domains have an overarching, single, coherent structure. Concepts are 
components of domains, but domains may not have higher order organization. Domains can 
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be represented as theories. Theories usually have a center-periphery structure, organized by 
core concepts or principles. 

Schemas are structures that codify the notion of intuition rooted in patterns of experience. 
They are activated as units, and they are bounded. Activating one part of a schema also 
activates other parts. Schemas are abstract, because they are rooted in recurring patterns of 
experience (Chi, 2005). Numeration in base-ten is a domain of declarative knowledge (with 
procedural components) that contains multiple schemas. The various domains of numeration 
in base-ten are not strongly connected in the mind of the student. New knowledge on 
numbers and numeration with a base other than ten is semantically related to numeration with 
base-ten, but the overarching theory is not organized by core principles for every student. 
Therefore, we expect multiple moments of confusion as a student tries to incorporate new 
knowledge of numeration next to the old, base-ten variety. The existing base-ten domain of 
knowledge has areas such as number words that are not available when moving to other 
numeration concepts. This also can lead to confusion. 

The second theory used in this study, one that augments what can be explained with 
declarative knowledge, is the theory of Abstraction in Context, based on activity theory and 
the notion of Freudenthal of vertically re-organizing existing mathematical (knowledge) 
structures to construct new knowledge (Dreyfus, 2012). It is called an activity theory because 
such new structures are created in real activity, with the following components. Recognizing 
is an action where the student identifies for herself a structure and then uses this to fulfill a 
goal, or understand a problem, and in the process, construct, put together, or assemble 
knowledge artifacts to produce a new structure. A refinement of the model is important to 
our paper, the idea that the abstraction (i.e., a new construction from the previous knowledge) 
is consolidated when it is used to create a new construction (Ozmantar & Monaghan, 2005). 
The understanding of numeration in other bases must be consolidated before it can be used 
together with algorithms for addition and subtraction, and in turn, the addition and 
subtraction structure must be recognized and understood before it can be used to build 
multiplication along the lines of the standard algorithms applied to alternative bases. 

The coordination of these two frameworks forms the basis for our analysis of students’ 
understanding of numeration and operations with new numerals. 

Methodology 
Our goal was to answer the following research questions. 
1. What are pre-service student teachers concepts of numeration in bases other than ten, 

and  
2. To what extent do these students understand standard (algorithmic) operations like 

addition, subtraction, multiplication and long division with numerals of bases other 
than ten in conceptual rather than procedural ways? 

Setting 
The data for this study were collected at a southern, mid-sized regional university. 

Participants in the study were recruited from two sections of an initial mathematics course 
taken by pre-service elementary and special education teachers. Students take the course prior 
to full admittance into their programs. The main topics covered in the course are sets, 
numeration, and whole number operations. The same instructor, one of the researchers, taught 
both sections of the course. Every participant was female, due in no small part to zero male 
students being enrolled in the course. This paper focuses on the data of four participants. The 
four students in the study were selected based on the content of their interviews in terms of 
revealing diverse patterns in the learning process. The pseudonyms for the participants are 
Anna, Beth, Cheryl, and Donna.  
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Instruments 
The first interview explored students’ understanding of numeration systems by requesting 

them to write numerals in specified bases for specified whole numbers. Example questions 
were: What is the numeral for eighteen in base eight? What is the numeral for eight times 
eight in base eight?  The second interviews focused on students’ reasoning in algorithms 
while they performed addition, subtraction, and multiplication on numerals in various bases. 
The third interviews focused on multiplication, long division, and number facts such even 
and odd and divisibility with numerals in various bases. An example question from the third 
interview was: If a numeral in base five is divisible by twenty-five, what are its last digits on 
the right? The interviews occurred during the class unit on numeration and operations. Thus, 
interview one occurred after students had finished the numerals subunit in class and while 
they were learning about addition and subtraction, interview two occurred while students 
covered multiplication, and interview three occurred after students finished the division 
subunit. In this way, the development of students’ learning and understanding could be 
observed and probed. Each interview lasted between sixty and ninety minutes. During each 
interview, students were prompted to speak aloud their reasoning. The audio of each 
interview was captured for each interview and transcribed. For select problems during 
interview three, the video of students performing an action was captured. During all 
interviews, students wrote solutions on paper; this work was kept for further analysis. 

A pre-test was administered to the participants before the first interview, with 13 
questions on numeration and algorithms for addition, subtraction, multiplication and long 
division. The same test was given as a post-test to participants after the third interview to 
gauge if their responses would reflect sophistication, less mechanical explanations of their 
actions, or some form of heightened awareness of place value, connections between 
multiplications and powers of ten and the appearance of zeros in the product, and a more 
reasoned explanation of the long division process (explained extensively in class and 
discussed during interview three). In addition to these diagnostics, the participants took in-
class exams that assessed their abilities with numeration concepts. 
Data Analysis       

The transcripts were analyzed with a focus on students’ constructions of numerals in 
various bases and the associated reasoning, cognitive devices used, and obstacles identified 
and solved for that purpose. We also looked for patterns of how students dealt with structural 
numeration issues such as their understanding of why zeros appeared in algorithms or when 
multiplying a numeral by the base numeral, how addition and subtraction algorithms were 
explained, and how multiplication and long division in alternative numerals were 
conceptualized and understood. 
Teaching Sequence 

Before discussing the data and results, we will present the sequence of teaching followed 
in each class. 

Unit 1. The basis of numeration in the decimal system; The digits 0,1,2,…, 9 to create 
numerals using the powers of ten: 1, 10, 100, 1000, etc; Systems with bases less than 10, such 
as base-five, and related digits: 0, 1, 2, 3, and 4; Numerals constructed with these bases and 
digits; The absence of number words for numerals in other bases such as in base-five.  

Unit 2. Conversions from base-ten to base-N (N<10) and vice versa; Use of the list of 
powers of N for the conversion, e.g. converting to base five uses 1, 5, 25, 125, 625 etc. 

Unit 3. Addition and subtraction and related algorithms in base-N. 
Unit 4. Multiplication and long division algorithms in base-N; even and odd in base-N; 

Divisibility by three and five in base-N. 
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Results and Discussion 
We begin by discussing students’ concepts of numerals before moving on to discussions 

of students’ reasoning with algorithms. 
Numerals and Conversions 

At the beginning of interview one, students were asked the question: What is a numeral? 
Anna: Well…a number is abstract and it’s just in your head. And …eh…numerals are 
signs and symbols that represent a number.  

 
Beth: The number is something in your head. It’s something abstract that you make up, I 
guess. A numeral is the actual written portion of it. So a numeral represents the number. 
So if I have the number four in my head, I would write four. And the four that I write 
down is the numeral. Um… a digit is the building blocks of um, a number, of the 
numeration system. It’s a place holder for a number. So, like if I have the number 1-0-4, 
the one is a digit, the zero is a digit, and the four is a digit. 

 
Cheryl: Both number and numeral represent a value. A number is in your head. A 
numeral is something like a sign. A digit is like a sign, like square root (sign).  
Q: What do you mean? 
C: It’s a sign, just like you have the square root of 144. Um… that answer would be 12. 
But it is not like a digit per se. OK. The digit is in place value, kind of like you have like 
the ten, the ones, and the hundreds. 

 
Donna: A digit is a number in a certain base…or a numeral that does not have to be re-
grouped to determine its value. 

The responses from the four students suggested that they understood in their own way that 
numbers and numerals are related in a semiotic way. That is, the numeral serves as a signifier 
of the number. Numbers are abstract concepts. Additionally, students understood that 
numbers and numerals have slightly different links to other notions such as digit, place value, 
and base.  

Notions students held concerning digit and numeral were explored next.  Students were 
asked about digits needed to write numerals in various bases.   

Q: What are the digits for base-five? 
A: For base-five there is: 0, 1, 2, 3, 4. 
Q: What about digit 6? 
A: Six exists, but it is not known as 6, it is known as 11. 
Q: If we have a base-five system, what is the numeral for the number five itself? 
A: That would be just a 1 and a 0. 
Q: Why a 1 and a 0? 
A: You have a copy of five and zero copies…zero units. 
 
D: It is ten (uses the word “ten”). …one-zero!...oooh! 
 
B: So base-five would be zero through five. So that’s zero, one, two, three, four. Um…is 
five included? Zero, um…in base-five, five is included. Um… no, I don’t know. Zero, 
one, two, three, four (whispers to self, writes numerals)…five is not included. I can’t 
remember (voice goes in high pitch, laughs)…um. 
Q: So you listed 0, 1, 2, 3, 4. Why did you pick those particular ones? 
B: Because I can’t go above five. And so between zero and five is 1, 2, 3, 4. And so, in 
order to represent five, I can use any of those numerals, and put them together to 
represent five. 
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Figure 2. Conversions from base-ten to base-seven. 
After more discussions about base digits, the following question is posed to Beth: 

Q: Okay, what about if we are in a base-five numeration system; what is the numeral for 
five? 
B: If you are in base five, um... This is where I can’t remember…Then I feel like five can 
be included in base five, but if not, then you could do like four plus one, that would be 
five. 

This episode suggested that Beth’s understanding of numerals at this point was still weak. 
She needed special prompts to make the connection with the concept of the numeral for five 
in base five.  Additionally, Beth did not recognize the role of place value in the numeral. She 
attempted to decompose the number five into an equivalent sum, but one that had no 
relationship to its base.  This decomposition phenomenon was also observed by Hopkins and 
Cady (2007) as in-service teachers struggled with representing five in Orpda.  In order to 
force Beth to commit to an answer, the interviewer asked her what should be written for five. 

Q: I agree, three plus two is five. But if we then wanted to represent five as a numeral. 
B: Then you would do one times five to the first plus zero times five to the zero. So you 
would write 1-0! Because you have one set of five and zero in the ones spot.  
Q: So I have a question. What did I say that made you think of what you wrote down? 
B: You said, “What would you actually write down to represent five?” 
Q: So that is different from the question, “What is the numeral for the number five?” 
B: Numeral for the number five (muttered). In base five or just in general? 
Q: Here, we are in base five. … My big question then is, the original question said, 
“What is the numeral?” I reworded it and said, “What would you write down?” 
B: I don’t know that there’s a difference, but I guess if you said, what would I write 
down?  I wrote down more than you asked for. So I guess I represented, I expanded it. 
And then wrote the actual numeral. So it’s the same question, but I think when you asked 
me to write down something, I’m going to show my work more and show where I got that 
numeral from. 

Beth seemed to be sensitive to the wording of the questions and was uncertain about digits for 
base five. Was 5 a digit or not? She tilted toward “no,” although this understanding should be 
classified as tenuous. Her sudden ability to write “five” in base five as 1 × 51 + 0 × 50, or as 
10five,  suggested disconnected areas of knowledge in her mind at this point in the learning 
trajectory. 

Most students displayed no problems using procedures for converting base-ten numerals 
to another base. For example, on a test, Beth converted 5555 into a base-seven numeral 
(Figure 2). What was significant was the use of the ordered list of powers of seven to find the 
numeral. The list had exponents including the order of the digits (from left to right). The new 
digits were calculated, with no errors. However, as will be argued, this part of the knowledge  
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Figure 3. Conversion from base-13 to base-ten. 
and understanding of numerals did not seem to be integrated with the knowledge of how to  
apply powers of a base with operations like recognizing squares of bases as units in the list of  
place values. For example students struggled with the representation of 64 in base eight, or 49 
in base seven.  

Likewise, conversions of numerals from non-base-ten systems back to base-ten were not 
problematic. As an example, Cheryl converted a base-13 numeral to base-ten (Figure 3). The 
calculations were done with no apparent flaws or confusions. This suggested that when 
procedures were involved, the students seemed to have no serious problems. 
Addition and Subtraction 

The interview data on addition suggested that students had no serious problems with 
adding in bases other than ten when using the standard algorithm. However the test results 
suggested that adding simple units in a non-standard format could still be problematic. For 
example, Anna went wrong in row three after several correct steps (Figure 4). 

Working the same problem, Cheryl started by adding 3 units to 2345. Her sum was 
recorded as 2405. Accepting this result as correct (it is not!), then the next numeral should 
have been 2435 (which is correct). The next numeral should be 2435 + 35 = 3015. The next 
numeral was 3035, which was the correct addition of 3 to 3005. Again, if we accept the 
numeral 3035 Cheryl has as correct, the next numeral she wrote, (3125), cannot be correct. 
Thus, while displaying fluency with the standard algorithms, students generally struggled 
with addition, even of small quantities, when the addition was presented in a different format, 
suggesting that students may have relied on procedural tricks to get correct answers. 

On a similar problem, Beth solved addition in base-nine, adding one unit to 338 to find 
339 (Figure 5). The error of using the digit 9 in a base-nine numeral was repeated again later 
in the same problem. Proper usage of digits appeared to be a recurring error for Beth; she 
appeared to not comprehend what a digit represented for a numeral. 
Multiplication 

During the third interview, Anna was tasked with the following multiplication problem: 
434five × 13five. The main issue that was probed in the interview was how to explain the 
zeros that appeared when using the standard algorithm for multiplication in base-five. For the 
sake of brevity we give one piece only. 

A: First I take the 3 and 4 because they are units, which is 12 in base-ten, and in base 
five, 22. So then you have the 2 …in units…and then the 2 goes into the tens. (She 
continues with the next digit.)…then you go to 3 times 3, well, that …since you are  
 

 
Figure 4. Addition in base-five. 
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Figure 5. Addition in base-nine. 

moving from the units…to the tens…or rather the fives, because you are in base five, 3 
times 3 in base five is 14. So…if you want to write it all out you would end up with no 
units, so that’s a zero! And then the 4 goes into five and the 1 goes into 25 (She referred 
to the columns of that value). 

Anna explained how the first zero in the standard multiplication, now in base five, occurred 
mathematically; however, her reasoning was based more on a procedure than a concept.  
Rather than acknowledging that the second digit of 3 represented three groups of five and 
reasoning about the implications for this, she relied on “moving” to the tens [sic] place as 
why a zero would appear. Thus, she relied on a procedural trick. She correctly stated that 3 
times 3 was 14five.  However, she missed the fact that she was really multiplying 3 times 30 in 
base five, which is 140five. At the end of the interview, Anna claimed to finally understand 
how the distributive property explained the occurrence of the zeros in multiplication. 
However, her claim should be taken within the context of her procedural reliance.  
Grouping 

One of the last tasks participants engage in was a task novel to them in that they had not 
first encountered it in the classroom.  The participant was given a certain number of pattern 
blocks (yellow hexagons, red trapezoids, blue rhombi, and white diamonds).  They were 
instructed that each block represented a unit and requested to organize the blocks in order to  
create a base-three numeral.  In general, participants struggled with this task.  For example, 
Beth was given sixteen blocks.  She began by counting the sixteen blocks. 

B: So I have sixteen, and to put that into base three, hmm, it’d be five-one.  So, I don’t 
know. … Can I make the shape of a five and a one out of my objects? 

As she did in her first interview, Beth struggled with representing numbers using digits 
appropriate to their bases; she was more than happy to use a 5 in base three. Moreover, she  
did not connect creating a numeral with the idea of grouping according to the size indicated 
by the base. After pausing, she set aside one shape, grouped five shapes, grouped another five 
shapes, and then another five shapes. Finally, she whispered to herself, “I need more objects,” 
in order to form two more groups of five objects, giving her as she said, “five groups of 
something and one group of something.”  While she was forming groups of the same size to 
match the number of groups indicated by the digit, the base of the numeral was not present; 
instead, the groups were comprised of “something.”  

Upon being prompted to consider the base of the numeral and the digits to use, and after 
stating that the allowable digits were 0, 1, and 2, Beth still accepted 51 as the numeral. This 
error persisted. She finally realized that 5 wasn’t a digit used in base-three and eventually 
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Figure 6. Beth forming the numeral 1215. 
wrote the numeral as 121five.  To then form the numeral with the objects, Beth grouped up 
five yellow hexagons, placed them to her left, and said, “One.” Then, she grouped four red 
trapezoids and then grouped four blue rhombi and said, “Two,” placing them in front of her, 
to the right of the hexagons.  Finally, she grouped three white diamonds and placed them on 
her right, to the right of the pile of blue shapes and the pile of red shapes. She explained her 
representation (Figure 6) in the following way: 

B:  So, my idea was that this is all one group, cuz it’s all the same. So that represents the 
one in the, um, three to the second column. And then the two is represented by two 
different colors, or shapes, or whatever. So, that’s the two, which is the three to the first 
column. And then this is one group of something in the units column. 

Thus, while the digits were represented, the base of the numeral was still absent. In fact, Beth 
relied on inherent features of the manipulatives, the color, to distinguish where pieces are 
placed rather than relying solely on group size and place value (Bartolini Bussi, 2011). When 
asked to comment on how the base of the numeral features in the representation, Beth 
explained it in terms of placement. 

B: Because it’s just one group of one thing. And it’s the farthest to the left.  So it would 
be my three to the second group. 
Q: So, if, but if I came to look at it, how would I know that that’s supposed to be three to 
the second? Without you there to explain it? 
B: I don’t know. 
Q: Is there a way that we can somehow group these?  So that we could get across the idea 
of the place value? 
B: Ummm. I mean, keep them lined up like that. 
Q: But how would I know that it’s not, like, base four or base five?  Or even base ten? 
B: I don’t know. 
Initially, Beth relied on first converting the base ten numeral to the base three; in a sense, 

she needed to understand the problem in her “mother tongue” before proceeding to answer 
the question. She couldn’t directly proceed to forming groups of three. However, she may not 
have understood that forming groups of three was necessary. That she did not connect the 
idea of “grouping” to numerals was a bit troubling as grouping is a fundamental concept of 
numeration. During the first interview, Beth explained her reasoning as she wrote ten as a 
base-five numeral. In her explanation, she mentioned “carrying” over a five. 

Q: If you could speak a little bit about what “carrying it all over” means. 
B: Um, I guess it means. So, we said I can’t have a five. So four plus one is five. So I’m 
taking the whole, the one, the whole entire ones place and moving it over to the tens 
place. And so I’m taking that five and moving it over. But there’s just one, it’s just one 
five, so that’s why I wrote one. 
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Figure 7. Donna creating the numeral 1210three. 

Q: Okay.  So I’m wondering. You’re, you’re talking about carrying it over. Bringing it 
over. Is there anything in your mind, mentally going on?  Like are you envisioning 
anything? 
B: Mmmm. Not really. Just writing it out. 
Q: But it’s not referring to anything in particular?  It’s not like you see five object in your 
mind? 
B: Um-mm. 

Thus for Beth, the idea of a group did not appear to have a concrete referent; it appeared to 
have a vacuous referent. This could be problematic for Beth as concrete manipulatives are 
typically used to introduce concepts of groups leading to the writing of numerals in 
contemporary elementary curricula. Perhaps the concept of “grouping” was just a 
procedure/phrase to use instead of saying “borrow” or “carry.”  She indicated this sentiment 
when she explained what “regrouping” meant to her: 

B: I guess it means when you’re taking away from another column and moving it to the 
next one, you’re taking what you already have and adding it to what you just got.  So 
that’s regrouping. 
In contrast to Beth’s performance on the grouping task, Donna fluently constructed the 

numerals to represent the number of objects given to her. Unlike Beth, Donna did not first 
write the base-three numeral and then construct the grouping. Rather, she formed her groups 
and then read off the numeral that her groupings represented. For example, given forty-eight 
objects, she created one group of twenty-seven objects, two groups of nine objects, and one 
group of three objects (Figure 7). She arranged them from left to right, group of twenty-
seven, groups of nine, and group of three. In explaining, she also clarified that there were 
zero units.  She then read off the numeral as 1210. Like Beth, Donna arranged the pieces in a 
positional manner, mimicking the placement of the digits in a written numeral. However, 
unlike Beth, Donna relied on the concepts of the numeration system to inform her 
representation, namely, the base of numeral; Donna’s representation actually showed 
groupings indicating the base. 
Pre-/Post-tests 

The tests showed no significant improvement in the way multiplication or long division 
was explained. Anna used the same language with the same unexplained steps. Beth 
described the procedure without any explanations. Cheryl executed the long division until she 
reached decimals, but left out all the reasoning. Donna did not answer that question in the 
post – test.  In both tests the same language, unexplained use of the algorithm, and 
unexplained outcome was shown. There was no explanation of what “bring down XYZ” 
means mathematically in the post test. This suggested that the study of arithmetic with other 
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bases was not yet matured enough in the mind of the students to achieve a “backward 
transfer” (Hohensee, 2011), some form of using the algorithm with more emphasis on 
concepts and reasoning than simple recipe-like steps. 
Devices and Recurring Errors 

In the interviews, Beth used the phrase “you can’t do (or have) Y in base X” (X is one of 
the base values from 2 to 13) 15 times in her three interviews. Anna used a similar phrase 
only twice in her three interviews. As an example, when asked why seven cannot be used in 
base seven, Beth would reply, “You cannot have a seven in base seven…” When Donna was 
asked the same question she replied, “Seven would not be in the digit place because once you 
get to seven you would have to re-group to show its value; so it would be 10. Because it is 
one copy of seven.” We analyzed this use of the phrase as a sign of incomplete understanding 
of place values. The student was aware of some mathematical reasoning, but her reflex, or her 
understanding took the form of the “voice” of the teacher, without stating the reasoning. The 
fact that Anna used it only twice in her interviews pointed to an intermediate understanding 
that was almost complete. 

We also noted that students struggled when they had to spontaneously convert a square of 
a base into a numeral. For example, Question 13 of the first interview asked, “What is the 
numeral for 8 times 8 in base eight?” Three of the four students hesitated to answer this 
question. Only one (Donna) had an immediate and correct answer: 1008. One student 
(Cheryl) had to calculate first that it was 64, and then counted in base-8 to find the numeral. 
Beth initially wrote the numeral 788. However, thinking to herself, she said, “But if you can’t 
have eight in base eight,” realizing her conundrum.  She hesitantly decided upon 100. 

B: If you just did one times eight to the squared, plus zero times eight to the first, plus 
zero times eight to the zero, that would give you, one, that doesn’t make sense though. 
Q: Is that the base eight representation for sixty-four? 
B: Umm … if I can’t have eight in base eight, then I would say yes. But if I can, then I 
would say no.  Because earlier we did the same thing, when you said I couldn’t have a 
five in base five, and we came up with one-zero-zero as well.  And so it doesn’t make 
sense to me that one-zero-zero could be the same thing for different bases.  But maybe it 
can be. 

Beth appeared to be in a very fragile state of learning, unconvinced about the role digits 
played in numerals and the role the base served, as indicated by her hesitation to accept what 
digits were used and the fact that 100 in different bases could represent different quantities. 

Findings and Conclusion 
Our findings and answers to the research questions can be stated thus 
1. Students in our study were able to create numerals with bases less than 10, with the 

knowledge they had developed in class.  
2. The knowledge developed was sufficient to do addition with the standard algorithm. 

But when given problems of addition not necessarily in the standard format (similarly 
for subtraction), errors occurred frequently pointing to non-consolidated 
understanding. 

3. Students are able to convert from one base to another and back using learned 
procedures. However when asked to write numerals of powers of the base, no clear 
understanding was shown.  

4. Long division was studied extensively, with ample reasoning, but it did not result in 
more sophisticated algorithms when doing long division after the conclusion of the 
course as shown in the post-test. The students omitted the reasoning altogether. 
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5. While being proficient with algorithms for operations, students displayed a lack of 
understanding of fundamental numeration concepts, such as digit and grouping. Thus, 
students appeared to rely on memorized procedure rather than conceptual reasoning. 

In terms of our theoretical framework, we explain our observations as follows. In the 
declarative knowledge framework, the areas of development during the course were still 
domain specific and the links, or concepts, in terms of semantic networks were still weakly 
connected. What was learned in conversions did not transfer or connect sufficiently with the 
domain of numerals and the domain of powers of the base. The standard algorithms for 
addition and multiplication in other bases were also not consolidated; they were not 
abstracted to the point that new structures had emerged as conceptualized in “abstraction in 
context” theory. It seemed that the activity connected with students’ study of problems in 
multiplication and long division were understood but not really at the level of consolidated 
knowledge. To understand long division, one needs to deeply understand multiplication and 
subtraction in multiple contexts. This process was clearly not deeply known by most students 
when doing long division. The post-test suggests that they dropped the reasoning to explain 
the outcome. 

Implications 
Zazkis (1999) had suggested that studying numeration in bases other than ten could help 

students better appreciate the decimal system. However, when students insist on interpreting 
the numerals in base-ten so as to use the memorized, procedural tricks, these good intentions 
could be undermined.  This study seems to implicitly validate treatments such as the Candy 
Factory (McClain, 2003) and Orpda (Cady, Hopkins, & Price, 2014) that disallow students 
from resorting to base-ten translation and force students to reflect on the fundamental 
concepts of numeration, such as the meaning of digit and the concrete meaning of the base. In 
order to develop a conceptual meaning of the role that the base has in a numeral, pre-service 
teachers should experience numeration with concrete manipulatives. Through manipulatives, 
students can better understand that “grouping” actually refers to something real and is not just 
a phrase to use instead of “carry” or “borrow” and at the same time, gain a better sense for 
what a numeral actually represents. 
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The calculus concept inventory: A psychometric analysis and framework for a new 
instrument1 
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Concept inventories have become increasingly common in STEM disciplines as a means of 
assessing student conceptual understanding on a given topic, and overall they have led to 
significant reform in the teaching and learning of content in their respective disciplines. In 
mathematics, the use of the Calculus Concept Inventory seems, anecdotally and based on a 
review of the literature, to be growing. Yet peer-reviewed literature on its development and 
psychometric properties is lacking. Using data from approximately 1800 students across four 
institutions, we analyzed its content validity, internal structure validity, and reliability. We 
conclude that the data is consistent with a unidimensional model and that the instrument lacks 
sufficiently strong reliability for its intended use. Based on these findings, we argue the need for 
creating and validating a criterion-referenced concept inventory on differential calculus and 
outline a potential  framework for such an instrument. 
 
Key words: Calculus, Conceptual Understanding, Concept Inventory, Instrument Evaluation 
 

The Committee on STEM Education has determined that a focus on improving STEM 
education during the first two years of undergraduate education is one of four priority areas of 
the Federal government (Federal Coordination in STEM Education Task Force, 2012). Since 
calculus is a key component of the first two years of a majority of undergraduate STEM majors, 
perhaps no course is as pervasive in STEM students’ careers as calculus and deep conceptual 
understanding of calculus content provides a foundation for a majority of these majors.  

As educators and educational researchers, we seek to develop calculus courses effective in 
building conceptual understanding in addition to procedural fluency, and continually investigate 
promising new pedagogical strategies. The Mathematical Association of America recommends 
that all math courses should build conceptual understanding by helping “all students progress in 
developing analytical, critical reasoning, problem-solving, and communication skills and 
acquiring mathematical habits of mind” (Barker et al., 2004, p. 13). 

In an effort to provide feedback in the process of transitioning courses toward conceptual 
understanding, a genre of psychometric instruments called concept inventories have been 
developed over the past 25 years. Concept inventories are designed to measure basic conceptual 
understanding in science and mathematics courses. For introductory calculus courses, Epstein 
(2007, 2013) developed the Calculus Concept Inventory (CCI), but this instrument lacks a 
thorough psychometric analysis, and several recent studies suggest the CCI does not measure 
students’ conceptual understanding (Bagley, 2014; Thomas & Lozano, 2013). 

This paper conducts a psychometric analysis of the CCI using a content validity analysis of 
the instrument to compare the instrument and its stated goals, and a structure and reliability 
analysis using responses of approximately 1800 students at four institutions. The results suggest 

 
 1 We are thankful to Guada Lozano and Chris Rasmussen for contributions that have supported this work. 
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the CCI does not exhibit many of the psychometric properties its developers originally 
suggested. Thus we conclude with ideas pointing towards potential modifications and new 
instruments. 

Literature Review 
Measuring Conceptual Understanding 

It is more challenging to measure conceptual knowledge than procedural knowledge. 
Students who have encountered problems and strategies for solving them can typically repeat 
known procedures without using the type of conceptual knowledge they need to solve novel 
problems and integrate different types of knowledge. The subject of introductory calculus is 
particularly well suited for exploring conceptual topics due to the presence of ideas such as limits 
and continuity, which can be treated either algebraically or graphically (Koirala, 1997), and 
conceptual understanding has been a key aspect of calculus reform (Hughes Hallett, 2006; 
Hughes Hallett, Robinson, & Lomen, 2005). The disconnect between high school and college 
mathematics classes, even high school calculus and college calculus, has been an active area of 
study, and differences in approach and style of thinking is often cited as a reason for the 
disconnect (Clark & Lovric, 2009; Long, Iatarola, & Conger, 2009; Mann, 1976; CUPM Panel, 
1987; St. Jarre, 2008). A focus on conceptual understanding at the college level provides both a 
challenge and an opportunity of learning for students, including those who have seen the material 
before. 

The difficulty in constructing useful conceptual questions illustrates why the construction of 
a high quality concept inventory is challenging. Research has shown, however, that the use of 
high quality conceptual questions can lead to greater student understanding. A project called the 
“Good Questions” project aims to “raise the visibility of key calculus concepts, promote a more 
active learning environment, support young instructors in their professional development in their 
early formative teaching experiences, and improve student learning” (Miller, Santana-Vega, & 
Terrell, 2006, p. 193). The project provides questions which have been used in college calculus 
classrooms to encourage active discussion of the content and lead to conceptual understanding 
by the students. An example of a “good question” is whether the statement “you were once 
exactly π feet tall” is true or false; students may claim the statement to be false despite holding a 
belief that height is a continuous function. These types of questions have been shown to improve 
student learning, though only when specifically used as a tool to encourage student discussion 
(Miller et al., 2006). The Good Questions project is based in part on Eric Mazur's Peer 
Instruction method (Mazur, 1997), developed for introductory physics classes (Terrell, 2003). 
Mazur's instructional ideas for interactive teaching were also extended by Pilzer (2001) to 
include other physics and mathematics settings, and have shown greater gains in conceptual 
knowledge among students compared with procedurally-focused lectures, with little to no change 
in procedural skill (Mazur, 1997). 
 
Concept Inventories 

One way to measure conceptual understanding in STEM education has been through multiple 
choice instruments called concept inventories. The first concept inventory to make a significant 
impact in the undergraduate education community was the Force Concept Inventory (FCI), 
written by Hestenes, Wells, and Swackhamer (1992). Identifying that students’ commonsense 
beliefs were incompatible with Newtonian mechanics, the test was used to analyze students’ 
thinking in introductory mechanics courses. Despite the fact that most physics professors 
considered the inventory questions “too trivial to be informative” (Hestenes et al., 1992, p. 2), 
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students did poorly on the test, and comparisons of high-school students with university students 
showed only modest gains in both groups. Of the 1,500 high-school students and over 500 
university students who took the test, high school students showed normalized gain scores 
between .2 and .23, indicating that they learned  20%-23% of the previously unknown concepts; 
college students showed gains of at most 32% (Hestenes et al., 1992, p. 6). Through a process of 
development and refinement, the test has become an accepted and widely used tool in the physics 
community, and has led to changes in the way introductory physics has been taught (Mazur, 
1997). 

Halloun and Hestenes (1985) define the knowledge required to successfully answer questions 
on the FCI as “common sense” ideas of mechanics, such as interacting forces. Frequently 
students think of interacting forces as a stronger force overpowering a weaker force, such as 
pushing a chair out of the way, instead of an interaction according to Newton's third law 
(Hestenes et al., 1992). The results of their studies suggest that a large proportion of the students 
who do well by traditional measures of procedural skill in introductory mechanics courses have 
common-sense beliefs which are in direct contradiction with Newtonian mechanics. 

The FCI paved the way for the broad application of analyzing student conceptual 
understanding of the basic ideas in a STEM subject area (Hake, 1998, 2007; Hestenes & Wells, 
1992; Hestenes et al., 1992); concept inventories have been written for biology, chemistry, and 
astronomy (see, e.g., Anderson, Fisher, & Norman, 2002; Mulford & Robinson, 2002; Bailey, 
2008; Marbach-Ad et al., 2009). More recently, a concept inventory has been written for 
introductory calculus (Epstein, 2007, 2013); though the descriptions of the validation and 
analysis have been less clear than in other concept inventories. The rigorous validation process 
used to develop a similar instrument, the Precalculus Concept Assessment (PCA) (Carlson, 
Oehrtman, & Engelke, 2010), provides a model for the extensive validation that we aim to 
complete in this project. The Calculus Concept Readiness instrument (Carlson, Madison, & 
West, 2010) is a successor to the PCA. 

The results of more quantitative studies, like those involving concept inventories, show 
positive results of interactive instruction on student learning, but they are not without 
controversy. In one series of articles, a debate ensued over the merits of the FCI, and how to 
interpret its results. A core component of the debate was how the results of the test should be 
used in practice (Heller & Huffman, 1995; Hestenes & Halloun, 1995; Hestenes et al., 1992; 
Huffman & Heller, 1995).  In addition to improving understanding of how students think about a 
topic, concept inventories like the FCI provide a tool for comparing instructional techniques. 
Hake (1998) used the Force Concept Inventory to show that students in classes exhibiting what 
he called “Interactive Engagement” outperformed students in “Traditional Lecture” classrooms. 
We seek to develop a concept inventory in calculus to perform similar measurements. We also 
believe it will help instructors identify students who may need remediation, and provide 
researchers with tools to study the relationship between conceptual knowledge in different 
STEM subject areas by combining different concept inventories. 

Calculus Concept Inventory 
Content Validity 

The main purpose of the CCI was to create an instrument that would measure student 
understanding of calculus concepts by calculating classroom normalized gains (i.e., change in the 
class average divided by the possible change in the class average).  The developers of the 
instrument described measuring above random chance at the pre-test setting and avoiding 
“confusing wording” as key goals (Epstein, 2013, p. 7).  However, a released sample CCI item 
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uses terminology and notation that is not part of the vocabulary of a first-time calculus student, 
including the word “derivative” and the notation “f’(x)” (Epstein, n.d.). Such vocabulary and 
notation will give students who are repeating calculus a performance advantage in the pretest, 
regardless of their conceptual understanding of the subject, and therefore they will show lower 
normalized gains; previous studies of the CCI have found this (Epstein, 2013). To address this, 
we compared the vocabulary and notation used in each of the items in the instrument with 
vocabulary and notation included in the Common Core State Standards for Mathematics 
(NGACBP & CCSSO, 2010). 

Nine of the 22 items on the CCI contained terminology or notation not included in any 
standards for prerequisite courses for calculus. These included notation such as f ’(x), f ’’(x), and 
dy/dx and the word “derivative”. Two additional items contained language that is closely related 
to some precalculus topics. For example, some students may have exposure to the ideas behind 
linear approximations or to the relationship between velocity and acceleration, but others likely 
have not. For these students the pre-test measure of conceptual knowledge will be weakened by 
all 11 items using difficult terminology, and students repeating calculus may outperform them in 
these items as well as the other nine in the pre-test. 

These issues confirm that the CCI fails to satisfy necessary conditions for measuring 
conceptual understanding for students entering their first calculus course. This makes the 
standard normalized gains between pre-test and post-test a poor approach to evaluating first 
semester calculus courses. However, these issues do not preclude the instrument from providing 
an accurate measure of conceptual understanding at the conclusion of the first semester of 
calculus. 

 
Internal Structure Validity 

The dimensionality of the CCI is unknown. The use of a total percent of correct answers to 
determine normalized gains implies that the instrument measures a single construct and that each 
of 22 items provides the same level of information about student mastery. However, Epstein 
(2013) states that the instrument has two primary components related to functions and 
derivatives, and a secondary area of inquiry related to limits, ratios, and the continuum. The 
creators have not described a mode of analysis of student performance that supports the three-
component structure. Therefore, determining whether a unidimensional approach to scoring 
provides useful information requires a comprehensive analysis of the internal structure of the 
instrument. 

Testing and pre-testing of approximately 2000 students at four universities was performed at 
the beginning and the end of a first semester calculus class. We cleaned the data by eliminating 
subjects with missing data, which yielded a sample size of 1792 students. We randomly selected 
either a pre-test or post-test for each, which yielded an even distribution of pre-tests and post 
tests. 

To determine the expected number of factors related to the instrument, we next used the 
eigenvalues of the inter-item correlation matrix. We followed this with a confirmatory factor 
analysis based on the predicted number of factors, with a bent toward a unidimensional model. 
The eigenvalue analysis compared the results from the actual data to results from randomly 
generated data with the same sample size and with a 20% probability of correct answers, the 
latter important since almost all of the items on the CCI provided five options for responses. 

The analysis of the eigenvalues from the factor analysis suggests the CCI has at most two 
components, rather than the three the creators described. Both the first and the second eigenvalue 
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are above the 95% confidence interval for the randomly generated data. However, the closeness 
of the second eigenvalue (1.24) to the 95% confidence interval of the eigenvalue generated by 
random data 1.1765 +/- 0.04 calls into question whether this second component is present (since 
a large first eigenvalue will pull up the second eigenvalue). 

 

 
FIGURE 1: SCREE PLOT FOR CALCULUS CONCEPT INVENTORY 

Table 1: Item CFA Estimates for CCI 
 Full CCI Abbreviated CCI 
Item  Estimate Standard 

Error 
Estimate Standard 

Error 
Question 1 1.000    
Question 2 5.776 1.313 1.000  
Question 3 5.537 1.264 0.961 0.065 
Question 4 5.649 1.288 0.978 0.065 
Question 5 4.574 1.058 0.802 0.062 
Question 6 3.243 0.769 0.560 0.053 
Question 7 3.497 0.825 0.604 0.055 
Question 8 5.055 1.158 0.877 0.062 
Question 9 4.792 1.103 0.830 0.062 
Question 10 4.693 1.084 0.803 0.062 
Question 11 0.816 0.349   
Question 12 2.380 0.610 0.414 0.056 
Question 13 4.228 0.985 0.735 0.060 
Question 14 3.386 0.803 0.587 0.055 
Question 15 3.735 0.880 0.650 0.058 
Question 16 2.928 0.704 0.504 0.052 
Question 17 5.619 1.282 0.975 0.065 
Question 18 1.535 0.412   
Question 19 3.322 0.790 0.570 0.055 
Question 20 3.575 0.849 0.617 0.058 
Question 21 3.857 0.917 0.661 0.064 
Question 22 3.885 0.913 0.678 0.059 

 
Since the scree plot and eigenvalue analysis suggests a unidimensional structure, and given 

the creators have at times conducted analyses as if it is unidimensional, we used a one-
dimensional confirmatory factor analysis model to determine model-data fit. The model revealed 
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231 degrees of freedom, p<0.001.  Item estimates are provided in Table 1. A Comparative Fit 
Index (CFI) of 0.936 and a Root Mean Square Error of Approximation (RMSEA) of 0.024 (Hu 
& Bentler, 1999) provided excellent fit indices. Therefore, we submit that the instrument has a 
unidimensional model. However, three of the items (1, 11, and 18) have significantly lower 
estimates that the remaining items. Removing these items maintains the unidimensionality of the 
instrument (CFI: 0.939 and RMSEA: 0.028) and leaves all estimates at approximately equal 
values. This renders percentage correct a more accurate estimate of an individual’s ability. There 
is no need to scale the values of certain items. 

 
Reliability 

There is no standard of internal consistency necessary for an instrument, like the CCI, that 
intends to compare the normalized gains of two different groups. The CCI barely satisfies 
standards for an instrument designed to measure differences in means between groups of at least 
25-50 individuals, with an internal consistency reliability alpha of 0.7 (Epstein, 2013). As 
Wallace and Bailey (2010) point out, using the normalized gain as a measurement parameter 
may not be appropriate.  They propose using the same types of gains using ability estimates 
obtained through item response theory models. The current study uses such models to determine 
the internal consistency reliability of the CCI. 

Using the results of the factor analysis, we used an appropriate unidimensional or 
multidimensional item response theory model. This allowed us to analyze the internal reliability 
of the instrument and to measure the test information and standard errors for the instrument. 

Since the instrument satisfies the unidimensionality assumption, we can use one, two, or 
three parameter models in our data analysis. Since we believe the different items have different 
discrimination, we only used the two and three parameter models. The three parameter model 
had poor model-data fit on several of the items loading heavily on the construct; the c parameters 
for the majority of the items were significantly below random chance. Therefore, we deemed a 
two parameter model the best fit for the data and the theoretical construct of the inventory.  In 
the analysis of the two parameter model, three items demonstrated a weak fit--Items 1, 11, and 
18. These three items also had low loadings in the factor analysis. By removing them from the 
analysis we could determine if the remaining items have an improved fit. The remaining 19 items 
had a good fit (-2LL of 37258, p<0.0001) with the two parameter model. The standard error for 
the ability estimate of individuals is extremely high; the lowest value is 0.4128 logits and the 
average error is 0.7307 logits (See Figure 2). These figures imply that if an individual has the 
mean conceptual understanding of calculus, as measured by the CCI, his or her measured score 
by the inventory has a 68% chance of being within 0.42 logits of the mean. This suggests the 
inventory can only differentiate between samples of means if there is a substantial difference 
between the samples, or the sample size approaches 100 students each. 

The results in Table 2 make it possible to transform the percent correct score into logit 
scores. 
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FIGURE 2: TEST INFORMATION FUNCTION AND STANDARD ERROR 

 
Table 2: Transformation of Scores to Logits 

Number 
Correct 

Ability 
Estimate 

Number 
Correct 

Ability 
Estimate 

Number 
Correct 

Ability 
Estimate 

0 -3.05 7 -0.13 14 1.47 
1 -2.52 8 0.10 15 1.77 
2 -1.75 9 0.31 16 2.13 
3 -1.28 10 0.53 17 2.60 
4 -0.93 11 0.74 18 3.36 
5 -0.63 12 0.97 19 4 
6 -0.37 13 1.21   

 
This study shows that the CCI does not conform to accepted standards for educational testing 

(American Educational Research Association, 2014; DeVellis, 2012). Therefore, given the 
centrality of calculus to STEM disciplines, we propose that a new assessment should be 
developed.  The remainder of this paper proposes a framework for such an instrument. 

Framework for a Differential Calculus Concept Inventory 
Hiebert and Grouws (2007) define conceptual understanding as “mental connections among 

mathematical facts, procedures, and ideas” (p. 380). Thompson, Philip, Thompson, and Boyd 
(1994) describe computational and conceptual approaches as “two sharply contrasting 
orientations towards mathematics teaching,” while Sfard, Nesher, Streefland, Cobb, and Mason 
(1998) define computational and conceptual knowledge by considering their roles in discourse. 
These two types of discourse promote different types of thinking: computational discourse 
occurs when conversation focuses on calculation-based processes, but not on specific instances 
of procedural manipulation of symbols. For example, presenting a solution to a given problem 
may not be considered computational discourse, but explaining how to do certain types of 
problems would be. Conceptual discourse is dialogue which focuses on the motivations for the 
calculations, and the reason for employing particular strategies. The sociomathematical norms of 
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the classroom heavily influence this dialogue, since the expectations of justification may include 
varying levels of conceptual analysis depending on a particular classroom. The preferences and 
orientations of the instructor as well as the students influence these norms (Thompson, Philip, 
Thompson & Boyd, 1994). 

In Zandieh’s (2000) framework for analyzing students’ understanding of the derivative, the 
derivative function results from covarying input values with the values of the rate of change. 
This framework builds upon Sfard’s (1991, 1992) account of the development of the function 
concept in terms of process-object pairs: Since the derivative of a function is a function defined 
as the limit of a ratio, understanding of the derivative requires understanding three layers of 
process-object pairs. The ratio process takes two objects (two differences) and acts by division to 
produce the difference quotient. The limiting process acts on the reified difference quotient, 
“passing through” infinitely many of the ratios approaching a particular value; the result is 
reified as the limit, and defines each value of the derivative function. The derivative function 
“passes through” infinitely many input values, producing output values at each point. Further, 
students can understand each of these process-object pairs in different contexts. In this 
framework, the number and quality of connections made between process-object pairs and 
contexts indicates the depth of a student’s understanding of derivative.  

We desire to extend this framework to include the conceptual understanding of most 
differential calculus concepts at the level of a first semester calculus student. In that regard, we 
need to extend the conceptual framework of Zandieh to include some concepts that are not 
directly tied to the derivative but are instrumental in success in calculus. These concepts include 
knowledge of other subjects that are assumed of students as they enter a first semester calculus 
course that are not directly related to the concepts of function, ratio, or limit. One example would 
be the concept that a ball has zero velocity at the top of its path when thrown. Another would 
include the ability to translate physical situations into mathematical language or diagrams, 
including the ability to draw a diagram of a ladder placed against a wall or the shadow of an 
individual in relation to a light source. By adding mathematical modeling as a concept in our 
framework for differential calculus, we no longer include the physical as a representation of the 
concepts as items that would fit within that dimension of Zandieh's framework are now included 
in a connection between the mathematical modeling and the corresponding concept. Instead, 
following the work of Roundy, Dray, Manogue, Wagner, and Weber (2015), we include a 
numerical/tabular representation to our framework. 

Therefore, the framework for a Differential Calculus Concept Inventory is based on an 
extension of Zandieh's (2000) framework of conceptual understanding of the derivative and 
focuses on four concepts in differential calculus: Ratio, Function, Limit, and Mathematical 
Modeling (see Table 2). The remainder of this section will survey a selection of the literature 
discussing student understanding and common misconceptions in relation to these four concepts. 
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Table 3: Differential Calculus Concept Inventory Framework 

 Representations 

Graphical Verbal Symbolic Numerical/ 
Tabular 

Pr
oc

es
s-

 O
bj

ec
t L

ay
er

 

Ratio     

Function     

Limit     

Mathematical 
Modeling 

    

 
Ratio. Carlson, Jacobs, Coe, Larsen, and Hsu (2002) define covariational reasoning as the 

coordination of two quantities related by a function, and reasoning about the ways they change 
together. They identify five levels of covariational reasoning: coordination, in which students 
realize that the two quantities are related; direction, in which students reason about how the 
direction of change of one variable relates to change in the other; quantitative coordination, in 
which students reason about how the amount of change of one variable relates to the other; 
average rate, in which students reason about how the output variable behaves on different small 
intervals in the input variable; and instantaneous rate, in which students reason about how 
continuous change in the input variable affects the output variable. This ability to coordinate 
continuous changes in the input variable and the output variable requires an understanding of the 
derivative as a rate of change. This concept of ratio also includes a conceptual understanding of 
rational expressions, including rational numbers and rational functions (Kalchman, Moss, & 
Case, 2001). 

Function. Sfard (1991, 1992) describes the development of the function concept proceeding 
from operational to structural, passing through three stages called (a) interiorization, in which, 
for instance, students compute tables of functional values by explicitly evaluating functional 
expressions at particular numbers, (b) condensation, in which students increase in the ability to 
reason about the process as a coherent whole, and (c) reification, in which the process becomes 
an object in its own right, able to be operated upon by other processes. Similarly, APOS (action, 
process, object, schema) theory (e.g., Breidenbach et al., 1992) posits that students pass from 
action views (carrying out calculations on specific numbers or interpreting the graph of a 
function as a curve in the plane) through process views (thinking of a function as receiving 
inputs, performing operations thereon, and returning outputs) to object views of function (able to 
be operated on by other processes). Sfard (1992) notes that many students develop a 
“semantically debased” pseudostructural conception (p. 75), or an object view they cannot 
unpack to get at the underlying process from which it arose. Students with such a view may 
regard an algebraic formula as a thing in itself divorced from any underlying meaning, or a graph 
as detached from its algebraic representation or the function it represents. Other student 
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difficulties, particularly with composition and inverting, reflect students’ inability to go beyond 
an action conception of function (Dubinsky & Harel, 1992; Even, 1993). 

Limit. Tall and Vinner (1981) describe several common components of students’ concept 
images for limit that may conflict with the formal definition and thus cause problems in the 
development of sophisticated conceptual understanding. Some students view limit as a dynamic 
process with “a definite feeling of motion” (p. 161), in which input values approach a particular 
value, causing output values to approach a particular result. This view may cause students to 
believe that the limit is a value that is never reached; students holding this misconception will be 
unable to understand the formal definition of continuity. Other students conflate limit and bound, 
believing that a limit is a value that a function can never exceed (Williams, 1991). Student 
understanding of limit also significantly influences their understanding of derivative. In 
Zandieh’s (2000) framework, limit is the second layer of process-object pairs: students must thus 
understand both the limiting process that acts on the difference quotient, “passing through” 
infinitely many ratios approaching a particular value, and the reified limit object that defines 
each value of the derivative function. 

Mathematical modeling. Part of the power of differential calculus for STEM majors is the 
ability to describe real world situations. Many students, however, have difficulty modeling 
functional relationships (Carlson et al., 2002). While knowledge areas described above such as 
covariational reasoning are necessary for modeling, this particular skill requires additional ability 
in “mathematising, which means, turning a non-mathematical matter into mathematics, or a 
mathematically underdeveloped matter into more distinct mathematics” (Freudenthal, 1993, p. 
72, italics in original). The ability to transform a real-world or non-mathematical context into a 
mathematical one provides challenges for students before calculus (Gerofsky, 1996), during 
calculus (Sofronas, DeFranco, Vinsonhaler, Gorgievski, Schroeder, & Hamelin, 2011) and in 
classes following calculus, such as differential equations (Rasmussen, 2000), where modeling 
problems have been used to assess differential equations students’ conceptual knowledge (Kwon, 
Rasmussen, & Allen, 2005). The use of contexts in mathematics provides a challenge for 
students who are learning mathematics for a variety of reasons, including the language used 
(Ärlebäck, Doerr, & O’Neil, 2013), though understanding of context is important for students to 
be able to develop meaningful representations of the quantities in the problem (Moore & 
Carlson, 2012). To successfully utilize the ideas in calculus, students need to be able to model 
real-world situations. Understanding topics such as covariational reasoning, limits, and functions 
provides challenges for students, as described above. An additional skill necessary for applying 
the ideas of calculus is to situate this knowledge with context. 

Conclusion 
This study assesses the degree to which the CCI conforms to standards for important 

psychometric properties such as content validity, internal structure validity, and reliability.  We 
further conclude that it does not conform to accepted standards for educational testing (American 
Educational Research Association, 2014; DeVellis, 2012). We thus propose that a new 
instrument should be developed that does meet these standards.   Calculus instructors could use 
such an instrument for formative and summative assessment and use the results to improve 
student learning in their first two years of undergraduate study, with significant impact across 
STEM fields. Researchers and evaluators could use the instrument to compare instructional 
techniques, with additional gains for student learning. 
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The use of examples in the learning and teaching of a transition-to-proof course 
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Abstract:  This study investigates the ways that undergraduate students use examples in their 
transition to proof course, and the influence that the instructor had on the students’ decisions to 
use examples. Data was collected from the instructor and a sample of students via observations 
and interviews to develop an model of effective example use in a transition-to-proof course. The 
results show that the students can often state the circumstances in which an example could 
provide insight during proof writing, but struggle during the implementation. 
 
Key words:  Examples, Transition-to-proof, Ground theory, Case study, Instruction 

 
Introduction and Background 

It is well documented that undergraduate students struggle when they start taking proof-
based mathematics courses (Bills & Tall, 1998; Sowder & Harel, 2003; Weber, 2005; Weber & 
Alcock, 2004}. Weber (2001) classified the difficulties of undergraduates learning to prove into 
three categories: an inadequate conception of what constitutes mathematical proof, 
misunderstanding or misusing a definition or example during proof construction, and a lack of 
strategic knowledge, defined as “heuristic guidelines that they can use to recall actions that are 
likely to be useful or to choose which action to apply among several alternatives” (p. 111). 
Heuristics are difficult to teach, but students typically do not learn them unless an attempt was 
made to teach them (Lester, 1994). As such, there is a need to study the instruction of strategic 
knowledge, and to analyze the effect, if any, the instruction had on the students' strategic 
knowledge. 

Using examples during proof writing and other related tasks is one type of strategic 
knowledge. A literature review shows that examples serve several purposes when provers form 
and prove conjectures and that using examples effectively is a difficult process (Alcock & Inglis, 
2008; Alcock & Weber, 2010; Iannone, Inglis, Mejia-Ramos, Simpson & Weber, 2011; 
Lockwood, Ellis & Knuth, 2013). These authors theorize that if undergraduate mathematics 
students are introduced and instructed in generating and using examples, then some students may 
show improvements in their proof constructions, although the evidence is far from conclusive. 

In mathematics there are many different types of examples, such as examples which 
demonstrate techniques, examples of types of problems with known solutions, examples of 
classes, examples of carrying out an algorithm, and examples satisfying a given definition 
(Watson & Mason, 2002). For the purposes of this study, the term example means a 
mathematical object which satisfies specific characteristics and illustrates a definition or concept 
(Moore, 1994).   In particular, sample proofs are not considered to be examples for this study. 

One reason to use examples in the study of mathematics is to extend conceptual 
knowledge of mathematical objects (Alcock, 2009; Alcock & Inglis, 2008; Watson & Mason, 
2005).  Examples may provide insight into the statement to be proved, and may generate the 
ideas for the proof, especially generic examples (Harel & Tall, 1991; Rowland, 2001). However, 
sometimes examples distract a prover from recognizing the central ideas. A prover must attempt 
to distinguish useful and useless examples from each other in the context of their own thinking.  

Whether a prover finds an example useful largely depends on how the proves manages 
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their knowledge.  Resource management is a common theme in the research about problem-
solving strategies (Carlson & Bloom, 2005; Polya, 1957; Schoenfeld, 1992).  Schoenfeld says 
resource management is “not just what you know; it’s how, when, and whether you use it” 
(1992, p. 60).  Viewing example use on proof-related tasks as a problem-solving strategy, any 
model of example use must include aspect of why to use examples, how to use examples, when 
to use examples, and assessing whether the example was a fruitful strategy for the task.   

In order to use examples effectively, a prover must know how to verify or generate 
examples and counterexamples.  Previous work on constructing examples establishes three 
strategies for constructing examples: trial and error, transformation, and analysis (Antonini, 
2006).  Trial and error is the process of starting with recalled examples and testing the conditions 
for an example. The transformations strategy consists of starting with an example that satisfies 
some of the desired characteristics and adjusting the example until it satisfies all of them. The 
analysis strategy starts by assuming an example exists and continues with an analysis of the 
required properties. This analysis allows the prover to deduce additional properties until the 
desired example was recalled, the prover develops a procedure that constructs an example, or a 
contradiction arises. Antonini (2006) observed that graduate students in mathematics typically 
use these strategies in succession beginning with the trial and error strategy, then the 
transformation strategy, and only moving onto the analysis strategy when the other strategies are 
ineffective.  Additionally, Iannone, et al. (2011) found that undergraduate students primarily 
construct examples using trial and error, and occasionally use transformation.  None of the 
students in their sample used analysis.  Both techniques resulted in accurate examples with 
approximately the same relative frequency.   

In this study, the following question will be addressed: 
• In what ways did the students use examples effectively and ineffectively on tasks during 

their transition-to-proof course?  What aspects served as barriers to using examples 
effectively? 

• How did the instructor model effective example use?  What did the instructor say about 
using examples effectively?  How did the instructor design and teach the course to 
achieve these goals? 

 
Method 

The primary methodology for this study is that of an instrumental nested case study 
(Creswell, 2013; Patton, 2002). The case for this study is a single section of a transition-to-proof 
course at a large university in the southwest of the United States.  All of the 27 students enrolled 
in the course were pursuing a major in pure mathematics, applied mathematics, mathematics for 
secondary teaching, or computer science with a minor in mathematics.  All students enrolled in 
the course consented to participate. 

The course met twice a week for 15 weeks and each session was 80 minutes long.  A 
typical day began with the students writing homework problems on the blackboard prior to class 
time.  After returning written homework and taking role, the instructor reviewed and corrected 
all of the student work on the board.  The corrections always involved significant interaction 
with the students, especially the student who contributed the result.  Although these were called 
student presentations, the students themselves did not have to stand and justify their work.  The 
students also received credit whether or not this work was accurate.  The review of the student 
work often took 30-40 minutes and the remainder of the class time was spent with instructor led 
lectures interspersed with many questions. 
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Data Collection.  Data was collected from several sources in order to triangulate the 
evidence.  One source of data collection is daily observations of the classroom that are 
documented via video recordings and field notes. The field notes were taken using a smart pen, 
which makes an audio recording linked to the written text. The purpose of this data is to observe 
the examples used by the instructor during lectures and the examples used during student 
presentations. 

The interviews with the instructor were conducted to triangulate and the use of examples 
during instruction. Three interviews with the instructor provided insight into the motivations for 
the choices made by the instructor during class, and the instructor’s expectations for the students.  
In addition, the sections of the book that were used during the class are analyzed for the example 
use contained therein.  

Four students were selected to participate in three interviews throughout the semester, 
with an attempt to maximally vary the students’ levels of academic success, mathematical 
preparation and degree specialization (Merriam, 2009).  These four students are addressed by 
pseudonyms to protect their identities.  Each interview consisted of three components:  1) a semi-
structured portion addressing proof strategies and goals for the course, 2) a task-based portion 
where students attempted several proof related tasks and 3) a reflection on the decisions made 
while working on the tasks.   

The tasks selected were aligned to the material from the course, and often selected from 
the textbook.  Although all of the tasks can be said to be related to proof writing, several of the 
tasks did not simply ask the students to write a proof.  The tasks asked the students to generate 
examples, evaluate the arguments of other, make a conjecture, determine whether a statement is 
true or false, finding a counterexample to a statement, and proving statements.   

Data Analysis.  The organization of this study is a grounded theory that uses a nested 
case study and a case comparison design (Patton, 2002).  To determine how students use 
examples, the interviews with students were transcribed and coded using an open coding scheme 
and the constant comparative method (Merriam, 2009).  A within case analysis of each student 
was completed, to form a detailed description of when and how each individual chooses to use 
examples.  A cross-case analysis compared the individual cases to find commonalities and 
differences, which permits explanations which describe the students in the class as a whole 
(Merriam, 2009).  From this analysis a theory of effective example use was developed. 

For the instruction, the field notes and video recordings of the lectures were coded for 
every instance of example usage with the constant comparative method (Merriam, 2009), and 
revisions were made to the theory of effective example use.  The interviews with the instructor 
clarified the motivations for decisions made during instruction, and provided triangulation and 
member checking (Patton, 2002).   

The final level of analysis compares the results of the two cases, to draw conclusions 
about the connections between the behavior of the students and the instruction provided.  These 
connections are drawn by comparing the examples usage by the students, instructor and 
contained within the text.  The comparison is supported by interview questions where the 
instructor speculates about student performance, and the students recall the course instruction. 
 

Results 
The framework for using examples effectively during a transition-to-proof course was 

developed by looking at the 82 instances that the students used examples or counterexamples 
during the task-based interviews, and at the hundreds of examples presented during the course 
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lecture.  The entire process of using an example was considered, and four phases emerged 
through the analysis: deciding to use an example (indicators), deciding the purpose of the 
example (purposes), finding or constructing the example (construction), and connecting the 
example to the larger task or proof (implications).  Figure 1 shows a graphic that depicts all four 
phases.  

The indicators of examples use are the aspects of a task or the solving process that inspire 
the prover to use an example as a strategy.  The students generally decided to use examples 
either from the language of the task, or as a consequence of identifying weaknesses in their 
understanding.  The students were frequently prompted into using examples the language of the 
task.  For instance, after reading the directions prove or disprove with a counterexamples Carl 
stated “I want to start with a counterexample because you only need one.”  Approximately half 
of the examples generated by students occurred on tasks that included the instruction “prove or 
disprove with a counterexample,” although this can be partially attributed to task selection. 

The students were also prompted to use examples when they encountered a definition or 
statement that they did not fully understand.  After Amy read a task that asked whether the 
composition of two decreasing functions is decreasing, she realized that she did not recall the 
definitions of increasing and decreasing functions.  She then proceeded to look up the definition 
in her textbook and while reading the definition produced the sketch seen in Figure 2.  Although 
this is not a fully concrete example, it helped Amy to understand the formal definition and to 
move forward through the task. 

The instructor wanted the students to use examples when the task says prove or disprove, 

Figure 1.  This shows a model for using examples effectively on the tasks asked in a 
transition-to-proof course.  A prover uses examples effectively if they have implementable 
knowledge in all four categories. 
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the task says there exists, the task asks the students to make a conjecture, they receive a new 
definition or they do not understand a new definition.  Additionally, the instructor modeled using 
examples in each of these situations for the students.  During an interview, the instructor 
summarized this by saying that she wants her students to consider examples “anytime they’re 
stuck and don’t know what else to do.  Anytime they don’t thoroughly understand the definition.  
Anytime they see a new definition whether they think they thoroughly understand it or not.”  The 
lectures expanded this aspect of the theory by including new definitions as an indicator of when 
to use examples. 

The students mentioned four different purposes of examples during the interviews: 
understanding a statement, determining the truth of a claim (which includes generating a 
counterexample), making a conjecture, and generating a proof.  All four of the students used 
examples to make the determination that a statement is true or false, and this was the most 
commonly stated purpose of examples.  The students also recognized the value of using 
examples to understand a statement.  Amy argued that “seeing the definition as … more concrete 
and less abstract is a lot more helpful.”  Amy and Raul used examples for this purpose frequently 
through their interviews. 

The instructor used examples for another purpose during the course, namely to reveal 
logical inconsistencies and underlying assumptions.  This occurred primarily while correcting the 
students’ work on the blackboard.  For instance, one student presentation included the equation 
!+"=#+$%=#%+$%, and concluded that !=#% and "=$%.  The instructor helped the students to 
recognize the error in this conclusion with the counterexample#1+4=2+3.  Additionally, the 
instructor frequently introduced examples that revealed underlying assumptions.  For instance, 
after introducing that for!#,"�ℝ, !"=0 implies that !=0 or "=0, the instructor warned the 
students that this statement does not hold in all worlds, namely in clock arithmetic or in matrix 
multiplication.  Both of these purposes involve the use of counterexamples, but are different 
from using counterexamples to establish that a claim is false.   

The next phase is accurately constructing the desired example or counterexample.  On 
many of the tasks, the students struggled with generating examples and counterexamples, and 
often misidentified the results of their efforts.  One instance of this occurred on a task from the 
first interview (see Figure 3), when Raul arbitrarily picked the values &=5,#%=10,##=6 and $=4, 

Figure 2.  Amy drew this sketch of increasing and decreasing functions after she recognized a 
gap in her knowledge of these concepts. 
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and determined that these values formed a counterexample because &=5 does not divide 
%−$=10−4=6.  Although Raul did compute %−#=10−6=4 and #−$=6−4=2 in an effort to address 
the hypotheses, he did not realize that a counterexample to the statement had to satisfy the 
hypotheses but not the conclusion.  However, most of the inaccurate example constructions 
occurred during the first interview, which suggests that the students improved in this aspect 
throughout the course. 

The students either took their example from an authoritarian source (the question, the 
textbook, their lecture notes), or constructed their examples using trial and error or 
transformation.  None of the students attempted to use an analysis construction technique, which 
is consistent with the results of Iannone, et al. (2011).  The students used trial and error almost 
exclusively during the first interview, and progressed to using transformation with greater 
frequency during the final interview.  It is unclear if this progression is due to increased 
experience, the instruction received, or the change in mathematics content. 

The instructor seldom discussed the trial and error approach of construction during the 
class.  She did demonstrate how to verify various types of examples, and instead relied on 
correcting the students’ attempts to teach the technique.  Towards the end of the semester, she 
did demonstrate the transformation technique a few times.  During a mid-semester interview, the 
instructor said “I would like to move them toward more directed examples where they are 
intentionally trying to go certain places, but I doubt that most of them are ready for that.  Right 
now I’m happy if they try random examples to see what’s going on, as long as they don’t stop 
there.”  From this statement, it appears that the instructor had fairly accurate expectations of her 
students’ abilities with regards to example construction. 

The final phase of using examples effectively is determining the implications from the 
example.  The implications involve attempting to fulfill the previously established purpose of the 
example, or deciding that the example fulfills another purpose.  For instance, Carl originally tried 
to find a counterexample to the statement that the product of a fine function and another function 
is fine, see Figure 4.  He proceeded to construct the example!sin('!)·!2, and observed that the 
product function is zero whenever one of the factors has a zero.  Although his purpose had been 
to determine truth, Carl realized that this example provided the insight for him to generate a 
proof, and thus fulfilled another purpose.   

 After constructing an examples the most common behaviors exhibited by the students 
was to construct another example, decide the truth of the claim and to do nothing.  With less 

Provide either a proof or a counterexample for the following statement.  For 
integers a, b, c, and d, if a divides b-c and a divides c-d, then a divides b-d. 

Figure 3. This is a task from the first round of interviews.  Some students struggled when 
generating and identifying examples and counterexamples on this task. 

A real valued function is called fine if it has a zero at each integer. 
Prove or disprove: The product of a fine function and another function is fine. 

Figure 4. This is a task from the third round of interviews.  Carl changed his purpose from 
determining truth to generating a proof. 
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frequency, the students connected the example to the formal proof (meaning they referenced the 
example while writing their proof) and made a conjecture.  This phase seemed to provide the 
greatest struggle for the students.  The students often did not understand what they could learn 
from their constructions.  For instance in the first interview, Amy produced two examples and a 
counterexample to a statement, and then proceeded to write a proof of the statement that she 
believed to be valid, see the interview excerpt in Figure 5.  At the end of the interview, I asked 
her whether she had proven or disproven the statement, and she argued that she had done both.  
However, after I asked how to disprove a statement, Amy immediately responded by saying a 
single counterexample was sufficient.  She then paused for a moment, and realized that she could 
have finished working on the problem much earlier. 

The instructor wanted to students to reflect on every example construction or proof 
attempt that they worked on, and to determine what they could learn from each attempt.  She 
expressed this sentiment during a mid-semester interview when she said “I want them moving 
from example to proof.  I don’t want them stuck in the example mode, where they can’t write a 
proof, but I don’t want them stuck in the theoretical mode, where they’re writing down words 
they don’t know… I’d like them to be bouncing back and forth.”  However, she never modeled 
more than two iterations of this reflecting process during class time, due to time restraints in the 
classroom.  Both she and the students reported that more repetitions were completed during 
office hours, however this was not observable.   

When the instructor modeled the implications of using examples, she usually established 
the truth of a statement and connecting examples to proof language.  When establishing the truth 
of a statement, the instructor tied the examples back to the quantifiers and determined whether 
the given example proved the statement or simply provided some evidence.   

 
Discussion 

Throughout the course, the instructor modeled and discussed with the students all four 
phases of using example effectively on proof-related tasks.  However, not all four aspect were 
given equal class time; the instructor discussed indicators and purposes often, but constructions 
and implications with considerable less frequency.  The instructor argued that she would have 
liked to spend more time on the constructions and implications, but within the constraints of the 

SH: Okay. The question said, “Prove or disprove.”  Right now what do you think you've 
done? 
Amy: Disproven it? Well, I think I've done both! 
SH: Okay. …You came up with two examples where it worked and one example where it 
doesn't. 
Amy: Yeah, like this one it will never hold but this oh yeah it says it works. And that works. I 
don't know. I don't know. 
SH: How do you disprove something?  
Amy: Come up with one example where it doesn't work. Done. 
Amy: Is that really all I needed? I say one ... 
SH: That's really all you needed. 
Amy: Cool. 

Figure 5.  This is an excerpt from the first interview with Amy, where she did not recognize the 
implications of her constructions.  The underlined portions reveal the inconsistency between 
Amy’s stated purpose and her ability to recognize the fulfillment of said purpose. 
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classroom time, she decided to spend class time on other aspects of the course.  This is 
appropriate, since the primary purpose of the course is teaching students how to write proofs, not 
construct examples.   

The students seemed to perform more consistently on the more behavioral aspect of the 
using examples.  For instance, they were quick to recognize when the language of the task 
indicated using examples, but did not always recognize when an example would improve their 
understanding of the definitions.   

Overall, this framework extends the work of Alcock and Weber (2010) on the purposes 
of examples, the work of Iannone, et al. (2011) on the construction of examples to create a theory 
of the entire process of using examples.  Although this theory was established from a single 
transition-to-proof course, it is likely that it will have applicability to other courses and to the 
example use of mathematicians.   
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Examining students’ proficiency with operations on irrational numbers 
 

      Sarah Hanusch  Sonalee Bhattacharyya 
Texas State University Texas State University 

 
Abstract:  Fluency with our number system is a critical part of mathematics. Understanding how 
rational and irrational numbers work and fit in to the number system as a whole is at the 
foundation of a good understanding of mathematics. In this study, we present developmental 
mathematics students with a task which tests understanding of the closure of irrational numbers 
under addition and multiplication. We analyze the data using the strands of 
proficiency framework from Adding It Up (Kilpatrick, Swafford, & Findell, 2001), searching for 
evidence of each strand. The results show varied levels of proficiency within each strand and 
overall.  We conclude with implications for teaching. 
 
Key words:  Irrational Numbers, Developmental Mathematics Students, Strands of Proficiency, 
Qualitative Methods 
 

Introduction and Review of Literature 
Undergraduate students need proficient knowledge of the real numbers, because the real 

numbers form the foundation for more advanced mathematical concepts.  To achieve numerical 
literacy, students must have some proficiency in the real number system (Fischbein, Jahiam, & 
Cohen, 1995; Guven, Cekmez, & Karatas, 2011). Studies have shown that the set of irrational 
numbers is difficult to grasp, because of challenges with the definitions of rational and irrational 
numbers (Fischbein et al., 1995), with the connection between irrational numbers and limits 
(Peled & Hershkovitz, 1999), and with moving between multiple representations of irrational 
numbers (Arcavi, Bruckheimer, & Ben-Zvi, 1987; Sirotic & Zazkis, 2007a, 2007b).  

Irrational numbers literature.  Few studies have focused on irrational number concepts, and 
most of these studies have looked at pre-service or in-service teachers (Arcavi, et al., 1987; 
Fischbein, et al., 1995; Guven, et al., 2011; Peled & Hershkovitz, 1999; Sirotic & Zazkis, 2007a, 
2007b).  Fischbein et al. (1995) found that high school students and pre-service teachers cannot 
correctly define rational and irrational numbers, which was confirmed by Guven, et al. (2011).  
Additionally, pre-service and in-service teachers may struggle with the classification of numbers 
(Arcavi, et al., 1987; Fischbein, et al., 1995).   

Peled and Hershkovitz (1999) studied 70 pre-service teachers’ conceptions of irrational 
numbers.  The results from this study indicate that these teachers knew the definition of an 
irrational number, but they could not move between multiple representations flexibly.  In 
particular, they found that many of the teachers in their study believed that 5 (and all irrational 
numbers) cannot be placed on the number line.  These students failed to understand the 
connection between the graphical, decimal and radical representation of this number.  Sirotic and 
Zazkis (2007a) followed up this study by asking 46 pre-service teachers to locate 5 exactly on 
the number line.  Only 9 of these students were able to accomplish this, and most believed an 
approximation was the only way to accomplish the task.  The pre-service teachers could not 
connect the radical form of the number to the number line. 

Two studies have asked pre-service teachers about the closure of addition and subtraction on 
the irrational numbers (Guven, et al., 2011; Sirotic & Zazkis, 2007b).  Guven et al. (2011) found 
that only 39% of first year pre-service teachers and 18% of fourth year students thought it false 
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that the sum of two irrational numbers is always irrational.  They had better results with the 
product of two irrational numbers, where 93% of first year and 72% of fourth year pre-service 
teachers answered that the product is not always irrational.  Sirotic and Zazkis (2007b) found that 
much of the knowledge the students have regarding operations is procedural and rote, citing that 
the pre-service teachers could rationalize the denominator of a radical expression, but did not use 
the existence of conjugates to conclude that the product of two irrational numbers can be 
rational.  Another finding from this study is that the pre-service teachers had difficulty viewing 
some irrational numbers, such as 7−2 and 25 as single objects.   

Developmental mathematics literature.  In this study, we sought continue the work of Guven, 
et al. (2011) and Sirotic and Zazkis (2007b) regarding operations on irrational numbers.  We 
chose developmental mathematics students at a large university for the sample because rational 
and irrational numbers are included in the curriculum for the course, and to differentiate from the 
previous studies.  Developmental mathematics is a term for non-credit bearing courses taught at 
a college or university.  The topics vary, but most consist of arithmetic and algebra reviews to 
prepare students for success in college algebra.   

Few studies have focused on the mathematical knowledge of students at the developmental 
level (Givven, Stigler, & Thompson, 2011; Grubb & Cox, 2005; Stigler, Givven, & Thompson, 
2010).  In one large study, Stigler et al. (2010) and Givven et al. (2011) collected data from 
community college developmental mathematics students and concluded that most students at the 
developmental level suffer from “conceptual atrophy,” meaning the students are unable to 
connect “basic intuitive ideas about mathematics” (Stigler et al., 2010, p.15) with procedures and 
concepts.  

Theoretical framework.  In this study, we consider an individual to be mathematically 
proficient if they demonstrate procedural fluency, conceptual understanding, strategic 
competence, adaptive reasoning and productive disposition, as described in Adding It Up 
(Kilpatrick, Swafford, & Findell, 2001). These five are titled the strands of proficiency, and they 
“are interwoven and interdependent in the development of proficiency in mathematics” 
(Kilpatrick et al., 2001, p. 137). The interconnectedness of these strands emphasizes the 
importance of making connections between mathematical topics and skills.   

• Procedural fluency refers to the ability to accurately select, carry-out and interpret 
mathematical procedures.  The term fluency indicates an ability to choose between 
multiple procedures to find the most convenient or useful choice. 

• Conceptual understanding refers to understanding mathematical ideas, including 
definitions and logic.  It also refers to making connections between mathematical ideas. 

• Strategic competence is the ability to select a strategy to solve a problem, and revise the 
strategy as needed. 

• Adaptive reasoning is the ability to apply logic to a problem and to reach justified 
conclusions.  It also involves altering your assumptions when faced with new data. 

• Productive disposition refers to having positive beliefs about mathematics, such as 
believing that studying mathematics is worthwhile or that mathematics makes sense.  
Another indicator of productive disposition is when an individual believes they are 
capable of learning mathematics. 
Although this framework was originally designed to describe the mathematical 

knowledge of K-12 students, we felt that it could reasonable be extended to students at the 
developmental level.  The previous studies on developmental mathematics students seem to 
indicate that students at this level will demonstrate difficulties in the strands of conceptual 
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understanding, strategic competence and adaptive reasoning (Givven, et al., 2011; Grubb & 
Cox, 2005; Stigler, et al., 2010).  Similarly, the results regarding irrational numbers seem to 
indicate problems with conceptual understanding and adaptive reasoning. 

Our research questions for this study are: 
• Within each strand of proficiency, what are the developmental mathematics student’s 

ideas relating to operations on the irrational numbers? 
• In which strands of proficiency do the students demonstrate strengths and weaknesses 

with regards to operations on the irrational numbers? 
• Do developmental mathematics students demonstrate overall proficiency regarding 

operations on the irrational numbers? 
 

Method 
This study occurred in a developmental mathematics course at a large university in the 

southwest of the United States.  This university offers two mathematics courses at the 
developmental level, meaning non-credit bearing courses, which serve as prerequisites for entry 
level courses, such as College Algebra.  Students placed into level one must successfully pass 
level one and level two before enrolling in credit bearing courses.  For this project, we invited all 
the students enrolled in the level one course.   

The course is organized with large lecture sections and smaller laboratory sections.  Each 
week, students spend one hour in a large lecture taught by the instructor of record, and three 
hours in smaller laboratory sections, taught by graduate assistants.  A majority of the instruction 
occurs in the laboratory sections with a standardized curriculum among all sections.  The weekly 
lecture is intended to review, expand, and elaborate on the topics discussed in lab. Although most 
assignments were assigned and collected in the laboratory, this semester the lecturer assigned 
weekly homework assignments that connected directly to the lecture. 

During the semester in which data was collected, 77 students were enrolled in all sections of 
the level one course.  The data collected was a portion of one lecture homework assignment. 
After the students turned the homework into their instructor, photocopies of the students’ 
responses and the consent form were given to the researchers for analysis.  Only 31 students 
provided consent for their homework to be analyzed.  This study includes responses from two 
questions: 

1. What can you conclude about the sum of two irrational numbers? Is it always irrational? 
Always rational? Sometime irrational and sometimes rational? Explain your reasoning. 

2. What can you conclude about the product of two irrational numbers? Is it always 
irrational? Always rational? Sometime irrational and sometimes rational? Explain your 
reasoning. 

The written homework assignments were analyzed for evidence of the five strands of 
proficiency from Adding it Up (2001). An open coding scheme was developed within the lens of 
each strand of proficiency, in the style of Glaser and Strauss (1967).  A detailed description of 
each category is found in the results section.   

 
Results 

In the results that follow in the following sections, all counts are per problem. This means 
that there are 62 responses, two for each student. We made this decision because in several 
instances an individual student performed differently on the two questions, and because we are 
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focused primarily on the qualitative aspects of the results rather than the quantitative.  All names 
included are pseudonyms that reflect gender. 

Several of the responses were either blank (3) or included responses with a claim but no 
justification for the claim (14).  We included these responses in the presentation of the results 
because they spoke to productive disposition; however they do not provide evidence for the other 
strands.   A consequence of this decision is that within the individual strands a significant 
proportion of the responses were classified in a no evidence category. 

Procedural Fluency.  To analyze procedural fluency we considered three criteria: 1) the 
response included the correct operation, 2) the response included correct computations, and 3) 
the response correctly identified numbers as rational or irrational.  A student demonstrated strong 
procedural fluency if they satisfied all three criteria, moderate if they failed one criterion and 
weak if they failed two or more.  Some responses did not reference any relevant procedures, and 
these were coded as no evidence. 

Twenty-two of the responses exhibited strong procedural fluency, 10 exhibited moderate, 11 
exhibited weak and 19 provided no evidence.  Only two of the responses contained incorrect 
computations, and both of those responses came from the same student.  Generally when the 
students attempted to add or multiply two numbers they were successful in this task.  Most of the 
difficulties occurred with the classification of rational and irrational numbers rather than with the 
procedures themselves. 

Several responses did not indicate the operations of addition or multiplication.  One instance 
of a student whose response did not reference a specific operation is Olivia, who claims the sum 
of two irrational numbers “can be both, because an irrational number can be turned into a 
fraction which would be considered rational.”  Although Olivia does reference division, her 
explanation does not reference the relevant operation of addition.  Because Olivia did not 
consider addition, and performed no computation, we were unable to determine whether or not 
she can use procedures fluently.  The same is true of the other responses in the no evidence 
category; we could not classify these responses because they did not attempt to perform 
operations. 

Conceptual Understanding.  To analyze conceptual understanding we considered either the 
definitions provided for rational and irrational numbers, or the examples provided.  Responses 
were classified into four categories: correct, representation error, definition error and no 
evidence.  Twenty-six responses were classified as correct, meaning the student provided either a 
correct definition for rational or irrational numbers, or the students classified all numbers 
generated correctly as rational or irrational.   

Nine responses were nearly correct, but had representation errors.  One instance in this 
category is Nathan who wrote “irrational # is any number that isn’t rational,” but then used zero 
as both a rational and irrational number.  The other responses in this category misclassified the 
square roots of perfect squares as irrational numbers.  In some instances, the students believed 
that the rationality depends on the representation of the number, i.e. 4 is irrational, but 2 is 
rational; see Carl’s response in figure 1.  In four other responses, the students indicated that all 
fractions are rational, not just those with integers.  For instance, Andy claimed that “if we put 1 
under any number, it would be rational.”  These students clearly have misconceptions about 
rational numbers and fractions. 
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Six responses were classified as having a definition error.  In these responses, the student 
classified rational numbers as irrational numbers, and integers as rational numbers.  These 
students clearly do not have a sufficient understanding of the definition of an irrational numbers.   

The final category, no evidence, had 21 responses.  These responses did not provide 
sufficient information to infer the students’ understanding of the concepts.  For instance, Yvette 
wrote “an irrational number remains irrational, the product will not change it to a rational 
answer.”  It is unclear whether Yvette actually understands the definition of a rational or 
irrational number from her work.  Some of the students reached the correct conclusions to the 
problems, but many (including Yvette) reached incorrect conclusions. 

Strategic Competence.  In this category, the students were classified by the strategy the used 
to approach the problem.  The first category, called correct with examples, a response had to 
indicate that both rational and irrational sums are possible, and they had to attempt to provide at 
least one example to support each of those situations. These examples were not always correctly 
identified.  The second category, called incomplete with examples, a response included examples 
to justify their responses, but only included a rational or irrational example.  The third category, 
called properties, the students attempted to use properties of irrational numbers to justify their 
claims.  The final category is no evidence where the response includes no justification, or did not 
fit any other category. 

Sixteen responses included the correct strategy, although not all of these identified the 
rational and irrational numbers correctly.  Eighteen responses were classified as incomplete with 
examples.  An incomplete strategy took one of two forms: either the participants claimed that the 
sum or product was always rational or always irrational and only provided examples that 
supported their claim, or the participants claimed that the sum or product could be rational or 
irrational but only provided examples to show one of the cases.  We chose to use the convention 
that a claim was correct only if it distinctly mentioned that a sum (or product) can be rational or 
irrational.  There were a few instances where the student hedged their response with conditions, 
such as when Monica says “Two irrational numbers very rarely add up to be a rational number”, 

Figure 1 Carl's response to the sum problems where he classifies � as irrational, and � as 
rational. 
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as shown in Figure 2.  Although Monica seems to have a strong understanding of the concepts, 
she did not utilize a complete strategy since she only provided a rational example. 

Eleven responses attempted to use properties.  These responses were split between claiming 
the sum or product is always irrational and claiming the sum or product could be both.  None of 
these arguments produced valid results, and most of the premises included are false statements, 
such as when Andy claimed “if we put a one under any [irrational] number it would be rational.” 
Of the remaining 17 responses in the no evidence category, one response was particularly 
unusual.  Heather attempted to use the variable ! to create a general argument. She frequently 
wrote !2, and while we suspect she meant to use ! there is no evidence to support that 
supposition.  However, she did recognize that a number plus its negative is zero, and then 
attempted to use that to help her argument. She claimed “If two numbers sum to a rational 
number, both must be rational or both must be irrational," but she did not justify this claim any 
further. 

Adaptive Reasoning.  To analyze the strand of adaptive reasoning, we initially separated the 
responses into three categories.  The categories were students who made a claim and provided 
complete justification, students who made a claim and had incomplete justification, and students 
who made a claim, but provided no justification. Three responses did not make any claim at all. 

Figure 2 Monica demonstrated an understanding of rational and irrational 
numbers, but did not full justify her claim. 

!

!

!

Figure 3 David had a complete justification for his claim, even 
though he misclassified the numbers in his examples.   

!

!

!
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Sixteen responses made a claim and provide a complete justification.  Not every student in 
this category used correct definitions of rational and irrational, but they did include an example 
labeled as rational and another labeled as irrational as justification for their conclusion.  For 
instance, David in Figure 3 thought that negative numbers and fractions were irrational, and only 
positive integers are rational, yet he backed his claim that the product can be rational or irrational 
with examples for each category. 

The incomplete justification group contained 24 responses, and these responses were 
characterized by an attempt to justify a claim, but their reasoning erred at some point.  For 
instance, Victor made a claim that the sum of two irrational numbers is always irrational, but his 
justification was just a few examples. We infer that Victor's reasoning was limited by insufficient 
examples.  It is unclear whether or not Victor recognized that he could not prove a statement 
with examples. 

Betsy is the only student to indicate indecision in a response, see Figure 4. She initially 
claimed that that the sum of two irrational numbers is sometimes rational and sometimes 
irrational, but then crossed out her response and changed it to say always rational.  It seems that 
she was only able to produce a rational example, and then made a new claim. 

In the final category, most of the students either left a blank page or only included a phrase 
indicating their claim. A few attempted some justification, but these showed severe limitations in 
reasoning ability. 

Productive Disposition. The data collected in this study is inadequate to provide deep insight 
into the productive disposition of the students in the sample. However, a few insights can be 
gleaned from this data. One fact that may indicate low productive disposition among this group 
of students is the fact that fewer than 50% of the students enrolled in the course participated in 
this study. While that number is not unusual in research studies, in this study data collection 
came from a single homework assignment. Anecdotally, we know that many students enrolled in 
this course do not participate in the lectures, and as such we suspect that many of the students did 
not turn in the assignment. 

A few additional responses also indicated a low productive disposition. One student, Peter, 
turned in a completely blank paper. Fourteen responses included only a claim and did not 
provide a justification.  On one of these responses, Rachel said “I'm not sure why, or I can't give 
you reasoning. Without really studying notes or referring back, it's just what I think.”  It seems 
that either she felt that she was not allowed to use references, or she simply chose not to make 

Figure 4 Betsy changed her claim after working examples 
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the effort. She also included a frown face figure on the second question, indicating 
discontentment with the finished product. 

Overall.  Looking at the various responses as a whole we observed that 42 of the 62 
responses stated the correct claim of sometimes rational and sometimes irrational, see Table 1. 
Of the 31 students, 19 made the correct claim about sums of irrational numbers and 23 made the 
claim about products. Some of the responses were difficult to categorize because the students 
wrote statements such as “the sum can be rational.” However, unless a response explicitly 
mentioned the sum or product can be irrational, then we classified the response as always 
rational. The analogous protocol was used for always irrational responses. 

Although the majority of the claims were correct, many of the justifications were not. The 
most frequent justification scheme, 27% of the responses, included both rational and irrational 
examples. Tied at the same level were the responses that made a claim but did not provide any 
justification for their response. Attempting to use properties was the justification scheme used in 
21% of the responses.  This scheme is admirable because it could have led to sophisticated 
arguments, but unfortunately nearly all of the properties that the students used were false 
statements. The remaining responses provided examples that were either just rational, or just 
irrational.  

Table 1 A table of the claims made on the responses and the nature of the justifications 

Claim    Justification   
Rational or Irrational 42 68%  Two Examples 17 27% 
Always Rational 8 13%  Rational Example 9 14% 
Always Irrational 9 14%  Irrational Example 6 10% 
    Properties or Other 13 21% 
No Claim 3 5%  No Justification 17 27% 

 
Discussion 

The previous literature argues that developmental mathematics students struggle from 
conceptual atrophy, meaning the students undervalue concepts and focus exclusively on 
procedures (Givven, et al., 2011; Stigler, et al., 2010).  However, we feel that our results do not 
support that claim, since a majority of the responses included the correct claim, which indicates 
an intuitive understanding of rational and irrational number concepts.   

Although most of the students did make the correct claim, they struggled with their 
justifications.  The responses of several students indicate that they have insufficient examples of 
irrational numbers to be able to answer the questions posed. Leslie, George and David were the 
most egregious instances of this since these students clearly could not correctly distinguish the 
definitions of rational and irrational numbers. Other students demonstrated subtler problems with 
their example space. For instance, Carl, Jill and Walter struggled with the classification of the 
square roots of perfect squares. 

Several students provided only one example to justify their claims.  Many of these students 
tried to justify a universally quantified statement using a single example, and none of the 
responses included any indicator that the examples were insufficient.  These students did not 
seem to recognize the logic of their statements.  The remaining students who used only one 
example claimed that the sum or product could be rational or irrational.  In all of these cases, the 
student included an example for the rational case, but not the irrational case.  Some of the 
students quantified their responses, which seems to indicate that they believed the rational case 
to be the difficult case, and thus the only one that needs justification. 
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Relating to the examples spaces of these students, nearly every student chose square roots of 
small positive integers for the irrational number examples. The only other irrational number 
chosen was ". This is consistent with the work of Sirotic and Zazkis (2007b), where they argue 
that a limited example space can lead to misconceptions of irrational numbers. Although some of 
the students mentioned a decimal representation of irrational numbers, none of the students chose 
irrational numbers in this representation. A few expressed the sum or product in such a 
representation, although this seems to be a reaction from using a calculator to compute. More 
students made the correct claim about the products than the sums, and we attribute this to the 
choice of radicals for the examples. The procedures for multiplying radicals are significantly 
easier than adding radicals, and may have contributed to this result. 

We support some changes to the instruction given to students on irrational numbers during 
grade school, and in developmental mathematics courses. Specifically, we support instruction 
that connects multiple representations of irrational numbers, including decimal expansions, 
radicals, other constants and placement on the number line.  Providing students with questions 
that involve reasoning, such as “find an irrational number that lies between 32 and 53 on the 
number line,” can promote reasoning and translating between representations. Such a question 
also open a discussion about the abundance of irrational numbers without directly addressing the 
concepts related to the cardinality of sets. Clear understanding of representations of irrational 
numbers may aid students as they progress through algebra, especially with regards to 
identifying the x-intercepts of polynomials with irrational roots. 
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What is happening for in-service teachers at the classroom intersection of mathematics, 
culture(s), teaching, and learning? How can knowing the answer to that question inform teacher 
preparation, induction, and development? In ongoing efforts to model and measure the 
intercultural and relational aspects of pedagogical content knowledge, we present a model and 
data analyses. The focus is teacher learning and intercultural orientation development. Data are 
pre- and post-program written tests, surveys, and classroom observations among four cohorts 
(70 in-service teachers) enrolled in a two-year master’s program. The focus at the conference 
was harvesting the intellectual power of the audience to consider questions about the 
connections – qualitative, quantitative, and otherwise – among core constructs in pedagogical 
content knowledge, the thinking that teachers do in connecting them, and how knowing about 
intercultural orientation and how it plays out in the classroom can inform teacher education and 
professional development. 

Key words: Pedagogical content knowledge, Discourse, Intercultural awareness 

Background 
 What mathematical reasoning, insight, understanding, and skills are entailed when a 

person teaches mathematics well? Many have worked to develop theoretical models and 
measures to address this question (Ball, Thames, & Phelps, 2008; Hill, Ball, & Schilling, 2008; 
Shulman, 1986). In their work, Ball and colleagues have proposed three types of subject matter 
knowledge and three types of pedagogical content knowledge (PCK) as non-overlapping 
categories in the domain of mathematical knowledge for teaching (MKT, see Figure 1, next 
page).  

 Current U.S. educational policy requires evidence-based decisions about teacher 
preparation, induction, and development. Meeting this need calls for models and measures that 
are credible and transferable across at least a small range of mathematics instructional contexts. 
The MKT model and related instrument development for K-8 teachers have provided a reliable 
and useful foundation at these lower grades. Ongoing development of MKT models for grades 8 
and higher is adding to that foundation (Hauk, Toney, Jackson, Nair, & Tsay, 2014; Speer, King, 
& Howell, 2014). These additions at the secondary and post-secondary level have focused on 
mathematical discourse and meaning-making for teaching (Hauk et al., 2014; Powers, Hauk, & 
Goss, 2013; Speer et al., 2014; Thompson & Carlson, 2013). Thought, speech, and context 
inform each other. In particular, struggling with the ambiguities introduced in learning to use 
technical vocabulary, in and out of classroom contexts, supports mathematical meaning-making 
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(Barwell, 2005). In parallel, developments in teacher education research have included calls for 
attention to the cultural and sociopolitical aspects of mathematics instruction (e.g., Gutiérrez, 
2012, 2013). The knowing that happens in pedagogical content knowledge can be seen as both a 
set of connections among rather stable fact-sets and as contextualized, but dynamic, ways of 
thinking.  

Discourse, as an aspect of teaching, is central in our effort to bring an explicit attention to 
the use of language and the dense set of values about mathematical appropriateness, clarity, and 
precision that are integral to thinking, learning, and communicating in mathematics both in and 
out of school settings. Our previous work has discussed the connection between Ball and 
colleagues’ model of PCK and an additional aspect called knowledge of discourse that relies on 
ideas from intercultural orientation (Hauk, et al., 2014). Here we report on our continuing work 
to address the twin needs of measures that capture information about PCK and models that attend 
to the actively cross-cultural nature of most mathematics instruction in the U.S. Hinging on  
unpacking "discourse" and connecting it to the PCK model shown in Figure 1, this work has led 
to the model in Figure 2. 

 

 
 

 
 

 The development of the model in Figure 2 has been grounded in classroom practice. The 
need for a construct like Knowledge of Discourse emerged early in our efforts to develop a 
measure of PCK that would capture growth in the kinds of knowledge valued as a mathematics 
teacher builds instructional effectiveness. Across our work, secondary and post-secondary 
teachers have said they know they are effective when students learn facts and, also, build a 
flexible understanding of mathematical ideas that can be brought to mind and actively used when 
needed. Early assessment and interview development led us to reuse that as a description of how 
to know that professional development was effective: We know professional development is 
effective when teachers learn facts and, also, build a flexible understanding of MKT ideas that 
can be brought to mind and actively used when needed. It was in getting at the "brought to mind 
and actively used" aspect that Knowledge of Discourse came to the foreground.  
 Throughout the revisions of the model summarized so briefly in Figure 2, we have 
iteratively visited three major strands of work:  

Area 1. developing a written test that can capture change in PCK,  
Area 2. advancing work on an observation-plus-interview protocol that can document 

bringing to mind and using PCK, in real time in the classroom, and  
Area 3. refining a model of PCK to provide language, and examples, for our own further 

development as teacher educators and researchers in mathematics education. Each of these 

Figure 1. Dimensions of mathematical knowledge 
for teaching (MKT) from Hill, et al. (2008). 

Figure 2. Extended model of PCK, from 
Hauk, et al. (2014). 
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aspects has contributed to this report. Below, after providing some background on the model, we 
offer information on empirical results in a particular project related to Areas 1 and 2. These were 
shared at the conference presentation as background for a lively conversation about Area 3. We 
close with the fruits of the RUME conference discussions and some thoughts on next steps. 

Theoretical Framework  
In his review of over 100 research publications in mathematics education that reported on 

"discourse," Ryve (2011) found that the myriad conceptions of discourse offered by researchers 
could be understood through the work of Gee (1996), who distinguished between "little d" 
discourse and "big D" Discourse. "Little d" discourse is about language-in-use. In mathematics 
teaching and learning, this may include connected stretches of utterances and other agreed-upon 
ways of communicating mathematics such as symbolic statements or diagrams. Discourse (big 
D) is situated discourse, encompassing verbal and non-verbal aspects, from the subtleties of local 
vocabulary and symbolic or diagrammatic representation to the nuances of gesture, tone, 
hesitation, wait time, facial expression, hygiene, and other aspects that make for authenticity in 
an interaction (Gee, 1996). In what follows, our use of the term discourse is in the "big D" sense. 
Discourse, so defined, addresses Shulman’s (1986) attention to semiotics: 

The syntactic structure of a discipline is the set of ways in which truth or falsehood, 
validity or invalidity, are established... Teachers must not only be capable of defining for 
students the accepted truths in a domain. They must also be able to explain why a 
particular proposition is deemed warranted, why it is worth knowing, and how it relates 
to other propositions, both within the discipline and without, both in theory and in 
practice… This will be important in subsequent pedagogical judgments. (p. 9)  

As indicated in the excerpt above, Shulman’s original statements about pedagogical 
content knowledge included knowledge for interacting effectively with the multiplicity of 
discourses students, teacher, curriculum, and school bring into the classroom. In particular, in the 
cultures of secondary and post-secondary academic and research mathematics, valued 
communication includes (among others) the sense-making discourse practices of description, 
explanation, and justification. These are also valued in school mathematics curriculum and 
instruction (e.g., the Common Core Standards for Mathematical Practice, National Governors 
Association, 2010). 

The ways that teachers and learners are aware of and respond to valued forms of 
communication across multiple cultures is a consequence of their orientation towards cultural 
difference, their intercultural orientation. This is not a reference to teacher beliefs about the 
teaching and learning of mathematics. Rather, intercultural orientation is the perspectives about 
difference each person brings to interacting with other people, in context. For teachers, it 
includes perceptions about the differences between their own views and values around teaching 
and learning and the views of their students.  

Gutiérrez (2013) refers to conocimiento to identify a relational, connected, way of 
knowing that is qualitatively different from declarative kinds of knowing (e.g., of facts and their 
contexts). Our work, too, relies on this idea and it is reflected in the "thinking" edges of the PCK 
model in Figure 2. What is more, Gutiérrez’s (2012) Nepantla captures the aspects of 
professional learning Shulman described as "the exercise of judgment under conditions of 
unavoidable uncertainty" and the "need for learning from experience as theory and practice 
interact" (Shulman, 1998, p. 516), both of which are aspects of the interculturally informed 
discourse extension to the model of PCK. We join an already moving river of ideas. Various 
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streams of research and development on mathematics teacher learning already spring from a 
research-practice synergy that views all people in a classroom as participants in learning. It is the 
question of the nature of that learning and of the interaction of the people in its support that is 
foundational (Schoenfeld, 2013). 

Though some teachers work in largely monocultural classrooms – in the sense that most 
students share experience of a common set of culture-general norms and practices – the U.S. is 
shifting from such circumstances to cultural heterogeneity. For example, the 21st century version 
of multicultural can mean 2, 5, or even 10 different home language groups in a single classroom 
(Aud, Fox, & KewalRamani, 2010). Given the diversity of students in the nation’s classrooms 
and the demographics of instructional staff in U.S. schools, teachers are destined to have regular 
opportunities for cross-cultural classroom experience that, for most, will be fraught with 
unavoidable uncertainty. Many new teachers leave, citing as a reason that they were not prepared 
for what the work is really like (Keigher, 2010).  

What was recently explored in the project from which this research emerges is attention 
to this missing aspect of heterogeneity: dealing with the realities of navigating the multiple cross-
cultural relationships in professional development and school contexts. Several frameworks exist 
for interacting and communicating with people across professional (and personal) cultures. In 
particular, healthcare and international relations have generated suggestions based on theories of 
intercultural sensitivity development and styles of conflict resolution communication (e.g., 
Bennett, 2004; Hammer, 2009). The developmental model of intercultural sensitivity centers on 
orientations towards cultural difference (Bennett, 2004). The core of this approach is building 
skill at establishing and maintaining relationships in, and exercising judgment relative to, 
interculturally-rich situations. The developmental continuum has five named milestone 
orientations to noticing and making sense of cultural difference: denial, polarization, 
minimization, acceptance, and adaptation. With mindful experience we develop from ethno-
centric ignoring or denial of differences, moving through an equally ethno-centric polarization 
orientation that views the world through an us-versus-them mindset. With growing awareness of 
commonality, we enter the less ethno-centric orientation of minimization, which may, however, 
over-generalize sameness and commonalities. From there, development leads to an ethno-relative 
acceptance of the existence of intra- and intercultural differences, and on to a highly ethno-
relative adaptation orientation.  

Discourse is situated, in the present case it is situated in a mathematics class, and 
Knowledge of Discourse includes what a teacher may say. It also is used in how the teacher 
orchestrates conversation and discussion in the classroom. And, it is about what a teacher knows 
or anticipates about students' previous experiences and how to situate that in the classroom -- in 
the context of the mathematics goals in the classroom. For example, knowing how to establish, 
elicit, and respond to sociomathematical norms, would live in Knowledge of Discourse.  

The lens of intercultural orientation development leverages powerful agents for 
improving teaching and collegial interaction. Teachers can build self-awareness and apply 
developmentally (for them) appropriate approaches to their own learning with colleagues and to 
student learning in their classrooms. We return to our exploration and development of examples 
of these ideas (Area 3 of our research program) after first sharing a brief summary of some 
empirical results related to Area 1 and Area 2. The empirical work is to provide some of the 
context in which the model in Figure 2 was developed (and continues to be revised) and a 
foundation for the reporting on the results of the intellectual work of the group at the RUME 
conference session. 
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Written Test and Observation/Interview Protocols - Measuring PCK 
Methods 

Setting: The setting was a blended face-to-face and online delivered master’s degree 
program in mathematics for in-service secondary teachers. Designed to reach urban, suburban, 
and isolated teachers in rural areas, the program is conducted using a variety of technologies 
(e.g., Collaborate for synchronous meetings, Edmodo for asynchronous communication). 
Offered through a joint effort at two Rocky Mountain region universities, cohorts of 10 to 20 
participants complete a 2-year master’s program in mathematics with an emphasis in teaching 
(about half of the course credits in mathematics, half in mathematics education). 

Participants: Participants for the quantitative results reported here were in-service 
secondary teachers who teach grades 6 to 12 mathematics. To date 71 teachers have entered the 
program, 33 have completed it, 18 are continuing, and 20 have dropped or taken leave from the 
program. 

Instruments: The development of the written test of pedagogical content knowledge and 
real-time observation instrument is reported elsewhere (Hauk, Jackson, & Noblet, 2010; Jackson, 
Rice, & Noblet, 2011). The most important things to note here are that the written assessment 
included: released items from the LMT (Ball et al., 2008), new items with more complex 
mathematical ideas modeled on the LMT items, some secondary Praxis items, and open-ended 
extensions to these limited option items. Multi-year test development has included cognitive 
interviews with in-service teachers and mathematics teacher educators as they completed 
individual items or collections of items. In addition to the established face validity of the tests, 
tests of the constructs’ internal consistency (Cronbach’s alpha) indicate good overall reliability 
(α >.75 on each construct).  

Constructs on the written instrument were curricular thinking, anticipatory thinking, and 
kinds of Knowledge of Discourse. While the written test of PCK has included items related to 
KCT, as a component of implementation thinking, testing this knowledge by self-report is 
problematic. So far, it has seemed that a better way to get rich information about implementation 
thinking is through observing a teacher in the classroom and interviewing about the observation 
later. The observation instrument documented in-class actions, utterances, and behaviors related 
to curricular thinking, anticipatory thinking, implementation thinking, and kinds of Knowledge 
of Discourse (e.g., observation categories included noting instances of mathematical description, 
mathematical explanation, mathematical justification – more on this below). 

As of this writing, we have pre-tests for 70 teachers, first follow-up tests for 61 teachers 
(after 1 year in the program), and exit exams (post-program) for 33 teachers. Also at this writing, 
pre- and post-program observation data is complete for 17 teachers. The observation instrument, 
based on the LMT video observation protocol (see Learning Mathematics for Teaching website; 
development reported elsewhere) showed good reliability overall (α >.78 on each construct). 
Like the LMT protocol, the observation tool used samples called "segments" (6 minutes each: 3 
minutes observed, 3 minutes to record notes; each class visit had 7 to 12 segments). An 
"observation" was three consecutive classroom visits. Experienced observers trained new 
observers to use the instrument; inter-rater reliabilities were greater than 0.8. To measure 
intercultural orientation and sensitivity development we used the established Intercultural 
Development Inventory (Hammer, 2009; idiinventory.com). 

Empirical Results 
We care about generating research-based and theory-grounded quantitative results 

because school leaders have to make evidence-based decisions about teacher learning. Current 
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policy says "evidence" is based on test results. Reciprocally, what the empirical study is giving 
us is nuanced examination of teacher knowledge growth, in service of theory and model 
development.  

Results after four years have indicated teacher knowledge growth for each of the 
constructs of interest. Paired samples t-tests on teachers’ percent scores on the written test 
indicate statistically and practically meaningful growth in the desired direction in curricular 
content knowledge and discourse knowledge. Teachers’ scores on items coded as Knowledge of 
Discourse (KofD) increased significantly (t=2.189, p=.047) from pre-test (M=56.82, SD=15.43) 
to post-test (M=66.22, SD=19.09).  

For the observation data, to date there are two statistically significant results (Bonferroni 
correction applied). One was in the observation category "General language for expressing 
mathematical ideas (overall care and precision with language)." While such use of general 
language was seen, on average, in about 49% of pre-program classroom segments, by the end of 
the program it was present in more than 80%  (M=80.34, SD=19.71). The other significant result 
was in "Mathematical descriptions (of steps)" (i.e., segments where the teacher or students 
accurately used mathematical language – in symbols, words, shapes, or diagrams – to describe 
the steps of some process). On average, across pre-program observations, this was seen in about 
40% of class segments (M=40.28, SD=21.94), increasing to almost 70% of segments, post-
program (M=68.10, SD=19.31). Though not statistically significant, there was also increase in 
the relative frequency of mathematical explanations (from 40% to 51%) and justifications (14% 
to 23%). Three other observed variables appeared to be approaching significance (i.e., p<.01): 
the percent of segments where (a) student voices were present in the room (increasing from 80% 
to 90% of segments), (b) teachers were observed to use conventional notation (increasing from 
54% to 90% of segments), and (c) fewer mathematical errors occurred (decreasing from about 
4% of the time to nearly 0%). Similarly, we have seen changes in the desired direction on the 
measure of intercultural competence development (e.g., see Hauk, Yestness, & Novak, 2011). 

Examples - Communicating in and through PCK 
The ways teachers responded to PCK test items and their extensions (on paper and in 

cognitive interviews) led to questions for us related to discourse (little d) and, eventually, to big 
D discourse. To illustrate, we give two examples. First, we present an example that highlights the 
connection between intercultural orientation and Knowledge of Discourse. Then, a second 
example takes the form of an annotated script, a fictionalized version, based on an actual 
conversation between two teachers (one a novice and one more experienced) as they worked 
through a task from the written test of PCK.  

Example 1: Coexistence of Mathematics and Physics Discourses in Calculus 
In our current work to unpack Knowledge of Discourse we consider the continuum of 

intercultural orientation, of ways of seeing differences between one's own values, view, and 
communication of the (mathematical) world and that of others. Central to this idea of 
intercultural awareness is ways of noticing. Perhaps the denial orientation might take the form 
(in the context of mathematics instruction): "I know the MATH, the math discourse, I don't really 
notice any other discourse." Such an orientation is not of denial in the sense of "I'm going to say 
it is not there" but denial as in "I can't even see it."  

The polarization orientation towards orchestrating the conversation in a math class might 
be characterized as: "There's a RIGHT way to talk about things and there's a WRONG way to 
talk about things. And we're going to make sure we use the right way." Depending on the 
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experience and values of a teacher, the "right" way to talk about applied related rates problems in 
calculus may or may not include physics discourse or associated engineering discourse. 
Nonetheless, enacting a polarized orientation in mathematics teaching would mean seeing, for 
instance, that a mathematical practice is happening or noticing a norm being developed. Perhaps, 
when a teacher strongly identifies with the mathematical culture, they are loyal to that culture. 
And, when focused on right ways and wrong ways of talking, do not attend to (may not really 
care) what is done in a physics class.  

From a minimization orientation, minimizing differences and paying attention to 
similarities, teachers may also be very true to their mathematics knowledge, their mathematical 
culture, and valued ways of communicating. Yet, for someone mathematically trained, this might 
be characterized as, "Look how this is LIKE mathematics. Physics is like mathematics, the idea 
is similar even if the way it is said is a little different. Let's talk about how it is similar. Let's 
leverage the fact that students have seen this in physics before." Consider a basic example in the 
representation of vectors. Suppose the book represents vectors in the form v=3i+5j and some 
students, who are also in physics, write v=<3,5>. It may be characteristic of a minimization 
orientation to write both representations on the board once and then note "But these are basically 
the same, so we'll use the one I know, the one common in math." In development towards an 
acceptance orientation, it might be more characteristic to notice and accept either representation 
on students' written work and suggest students use whichever makes most sense for them – 
anchored in the idea of a common goal, that vectors make sense to students. Pushing this small 
example even further, a well-developed acceptance orientation might be evidenced when a 
teacher alternated between the notations when talking with students and encouraged students to 
become fluent in both (i.e., modeling fluency in moving back and forth among the different 
representations while also encouraging students to accept and understand the difference in the 
representations).   

More generally, an acceptance orientation might be characterized by a statements like: 
"I'm a mathematician, but I'm accepting the fact that all of my students are not going to be 
mathematicians" and "I'm accepting the fact that there may be other ways, physics ways or 
biology ways, of talking about this mathematical idea that are valuable, and maybe even more 
valuable to them [the students] than my math way of talking about it. I'm going to embrace that, 
those various ways, coming out in the conversation in the classroom." But a general intention of 
accepting the different ways in the classroom may not provide guidance to students about how to 
make decisions on which discourse(s) are useful in a given mathematical context (e.g., solving 
applied problems in biology may not be facilitated by an abstract mathematics vocabulary, and 
vice versa). 

A further developmental orientation is adaptation. Now, not only does a person accept 
that there are these differences, the adaptation oriented teacher seeks out ways to give students 
opportunities in noticing, articulating, and responding to those differences. An adaptation 
orientation might be characterized by statements such as: "I seek out ways to have students 
pursue opportunities that arise from variety in approach or strategy. I don't have to give many, or 
even one method to them. They can go get it. I don't have to be in the loop. So math is a relative 
thing now. Learning math is still central but, while the goals are for learning about rigorous math 
and include the standard math language and representations, how I and students connect ideas 
and access, or organize, or value ideas is not necessarily strictly limited to the ways valued by a 
purely mathematical perspective." 
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Though not fully delineated by researchers, the theory of intercultural competence 
development also hypothesizes something called an integration orientation. This is something 
that is likely to be very rare. This perspective might be characterized by a statement like: "Okay, 
that physics approach to this problem is a whole other way of looking at the world. It's internally 
consistent. Which I, as a mathematician, value. So, it's okay. And I'm going to integrate what I 
can without violating my own truth to mathematics. I'm going to be myself as a mathematician, 
in that environment." We suspect such a view might be analogous to the ultimate mission behind 
much of theology: studying a variety of belief systems, without disagreement or approval of the 
system, while remaining authentic in one's own beliefs. In the research around intercultural 
competence development, examples of how an integration orientation might be realized come in 
the shape of expert and effective negotiators in high stakes endeavors (e.g., diplomat, hostage 
negotiator). 

Example 2: Discourse During Use of Pedagogical Content Knowledge 
Bringing to mind and using mathematical knowledge for teaching happens in many ways. 

An example of curricular thinking in the model in Figure 2 comes when mathematically situated 
discourse and knowledge of curriculum are brought to mind to create a rubric for grading a quiz.  
Among the items appearing on the PCK 
written test, was a task that asked teachers to 
do a mathematics item and then to generate a 
rubric for grading the item. The 
conversations that follow were based on 
actual teacher work and cognitive interview. 
First we generated a 2-column conversation 
of "little d" discourse – the actions and 
utterances of two teachers, Selma 
(experienced) and Jamie (novice) in solving 
the problem (this material can be seen in the 
table of the interaction below in column 1 
and the bold face material in columns 2 and 
3). Then, based on cognitively guided 
interviews on the task, we created the extensively annotated 3-column example, sketching the 
thoughts of each teacher. The first part of the interaction is focused on subject matter knowledge, 
SCK in particular. The balance is about their work to make a rubric. The purpose here is to 
formalize an example. It is based on the needs that emerged from conference attendees' wrestling 
with the ideas presented. The example is meant as an illustration of why it matters and can be 
useful to consider various aspects of Knowledge of Discourse in teacher education, induction, 
and professional development. 

Selma's ethno-centric approach to noticing and dealing with difference, a polarization 
orientation to difference, is represented in her view that her own knowledge of mathematics is 
paramount in solving the problem, and that she must compare whatever Jamie says to that 
foundation. For each of Jamie's contributions, Selma must determine whether Jamie is with her 
(therefore right, part of "us") or not (therefore wrong, part of a different group or "them"). 
Elements of this are evidenced in her "I" language in rows 5, 16, and 18, and in Selma regularly 
pausing the problem solving process to evaluate whether suggestions are right or wrong (rows 9, 
12, 16, 18). Jamie, whose orientation is to minimize difference, views her knowledge as being 
essentially the same as Selma’s. For Jamie, because they both "speak mathematics," it will not be 

Part%1:%The%Richter%scale%is%a%base%10%
logarithmic%scale%used%to%measure%the%
magnitude%of%earthquakes;%i.e.,%an%earthquake%
measuring%7%is%ten%times%as%strong%as%an%
earthquake%measuring%6.%An%earthquake%that%
measures%6.8%on%the%Richter%scale%has%a%
magnitude%that%is%approximately%what%
percent%of%an%earthquake%measuring%6.6?%

Part%2:%Provide%a%rubric%that%you%could%use%for%
grading%student%answers.%%
 

Figure 3. Test item with extension. 
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difficult to work together to solve the problem. She interprets Selma’s comment in row 5 as 
affirming "their" problem solving process, and shifts to "we" language (rows 10, 13, 17).  

The interaction also has evidence of orientation in the approach each takes to (a) creating 
and (b) defending decisions about generating a rubric. Still focused on using her knowledge as 
the central reference, Selma asserts that how she awards points in her rubric is different from 
Jamie’s method. Meanwhile, Jamie works to find commonality between the two (row 29). Jamie 
maintains that they have an important commonality, the language of mathematics, though the 
specific wording may be different.  

Early in the conversation, Jamie decides she and Selma are "on the same page" (row 2). 
She spends the next few lines confirming they are thinking the same way about the problem, 
even while Selma considers whether they might be thinking differently (rows 6 and 7). In fact, 
Jamie spends much of the conversation looking for ways to affirm her convictions that she and 
Selma are thinking similarly about the problem-solving context (rows 5, 20, 21) and in creating a 
rubric (rows 28, 29, 30, 31, 39). Selma, on the other hand, looks to see if she and Jamie are like-
minded. Jamie confirms for her they are like-minded in the problem solving context (rows 14, 
18). Once they begin the rubric task, Selma must again decide whether she and Jamie are like-
minded. Given their initial rubrics (see Figures 4 and 5), she quickly decides they are not (rows 
27, 28). Pointing out those differences gives rise to some tension. When encountering conflict, as 
when the social or emotional stakes go up, people tend to fall back to an earlier developmental 
orientation. This is represented in the vignette when Selma and Jamie revert to denial and 
polarization, respectively (rows 31-37).  

 
! Description!of!actions!while!working!on!

prompt!
Selma!
!

Jamie!
!

1" The"prompt"is"written"on"the"center"of"the"
whiteboard."Both"stand"at"the"board,"the"
prompt"visible"between"them,"calculators"
in"hands."

! I’m!first!thinking!of!using!logs!because!
it!says!“base!10!log!scale.”!But!then!I’m!
thinking!we!want!to!make!a!ratio!
because!it!says!“10!times!as!strong.”!

2" Selma"picks"up"a"marker"and"writes"the"
following"on"the"board:"

10!
10×

10!
"

“10!times!as!strong”:!If!that’s!the!
information!in!the!prompt,!then!we!also!
need!information!about!10!.!!and!10!.!.!

She’s!writing!the!ratio.!We’re!thinking!
about!the!problem!the!same!way.!We’re!on!
the!same!page,!so!we’ll!proceed!together.!I!
don’t!have!to!think!about!that!part!
anymore.!

3" Selma"punches"on"the"keypad"of"her"
calculator."She"writes"the"following"on"the"
board"under"her"previous"figure:""

10!.! = 6309573.445
10!.! = 3981071.708"

So,!we!need…! [continuing!to!make!sense!of!the!prompt]!If!
I!have!to!figure!out!a!way!to!solve!this!
problem,!percent!is!also!going!to!be!
important.!!

4" Jamie"points"at"the"prompt." To!find!the!percent!change,!I!do!this!
procedure.!!

It!says!“percent.”!So,!greater!than!
100%.!

5" Selma"gestures"at""
10!.! = 6309573.445
10!.! = 3981071.708"

If!I!subtract!these!two.!Oh!wait.!!
!

We!have!a!shared!knowledge!of!how!to!
compute!percents.!I’m!continuing!with!your!
procedure.!!

6" Jamie"enters"“10!.! − 10!.! =”"into"her"
calculator."Then"she"enters""
“!"# ÷ 10!.! =”"

Something!about!the!prompt!saying!log!
scale!makes!me!uncomfortable.!I’m!worried!
your!way!is!not!the!right!way.!

And!divide!it!by!the!6!one.!!
!

7" Jamie"writes".58489"next"to"Selma’s"
calculations"of"10!.!"and"10!.!."

I’m!not!sure!that’s!right,!but!I’m!going!to!
see!what!you!do.!Maybe!you!are!doing!it!the!
right!way.!

So,!“.58489.”!58%.!!
!

8" Jamie"points"to""
10!

10×
10!

"

Something!about!the!nature!of!percents!is!
giving!me!pause.!Are!we!computing!these!
correctly?!

6!is!10%!of!the!7!one,!right?!

9" Selma"steps"back"from"the"board." Is!it?! What!is!10%!of!10!?!
10" Jamie"points"to"10!." Okay,!I’m!listening!to!you.!That’s!the!right! Well,!if!we!times!this!one!by!.1.!
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.58489."
21" " So,!now!it!says!to!write!a!rubric.! We!just!solved!the!problem!together.!We’re!

going!to!write!a!rubric!together,!too.!!
22" Jamie"points"at"Part"2"of"the"prompt"and"

reads"aloud.""
It!will!take!way!too!long!to!try!to!do!this!
together.!We!need!to!do!it!separately!first.!

!“That!you!and!your!colleague!could!use!
for!grading!student!answers.”!Does!that!
mean!we!should!make!it!together?!

23" " Well,!yes.!But!let’s!start!separate.!You!
make!yours!and!I’ll!make!mine,!and!
then!we’ll!come!together!

Okay.!That!way!we!can!use!any!small!
differences!in!our!rubric!to!make!the!final!
one!stronger.!

24" Both"are"quiet"for"several"minutes"as"they"
write"on"separate"sides"of"the"white"board."
"
Selma"writes"[Figure"X"below]"
Jamie"writes"[Figure"X"below]"

Getting!the!answer!wrong!doesn’t!get!you!
any!points.!Setting!the!problem!up!wrong!
doesn’t!get!you!any!points.!If!you!set!up!the!
first!part!of!the!problem!correctly,!you!can!
get!1!point.!If!you!set!that!part!up!correctly,!
and!recognize!the!correct!ratio!between!
10!.!!and!10!.!,!you!get!2!points.!And!of!
course,!you!get!full!credit!when!you!do!all!of!
it!right.!

Right!or!wrong,!I!want!them!to!be!able!to!
explain!why!they!did!what!they!did.!If!they!
can!get!the!right!answer!and!explain!why!
it’s!correct,!that!should!get!full!credit.!If!
they!can’t!do!any!of!that,!they!should!get!0!
points.!But!they!might!be!able!to!explain!the!
whole!problem!right,!but!then!have!
something!fall!apart!in!the!math!at!the!end.!
That!should!get!a!lot!of!credit!because!
that’s!better!than!just!guessing!the!right!
answer,!but!not!really!being!able!to!say!
why.!So,!that!should!get!1!point!and!the!
other!should!get!2!points.!!

"

" way!to!compute!the!percent.!
11" Jamie"looks"down"at"her"calculator"and"

enters"10!.!×.58493 ="
"

Something!about!the!nature!of!percents!is!
still!making!me!uncomfortable.!I’m!not!sure!
this!problem!is!right.!Does!it!want!percent!
increase?!Or!percent!change?!What!is!the!
right!answer?!

So,!!"!.!!times!.!"#$%!is!3,981,071.!
Okay,!so!!"!.!.!

12" Selma"points"to"the"prompt." Is!this!worded!correctly?!It!has!to!be!
over!100.!So,!that’s!the!percent!
increase.!Would!it!be!158%?!

We!subtracted!to!find!what!percent!more!
10!.!!is!than!10!.!.!But!the!question!asks!
what!percent!is!6.8!of!6.6?!

13" Jamie"enters"10!.! ÷ 10!.! =!into"her"
calculator."

Okay,!percent!change!is!the!right!question.!! Were!we!supposed!to!subtract?!We!
found!the!difference.!So!maybe!it’s!just!
!"!.! ÷ !"!.!.!So,!it’s!158.5,!which!
makes!sense.!

14" Selma"points"to""
10!

10×
10!

"

Yeah.!Like!that.! 10!!is!10%!more!than!10!!because!
10! ÷ 10! = .1.!So,!10!.! ÷ 10!.! = 1.58!
says!10!.!!is!158%!of!10!.!.!Okay,!so!it’s!
essentially!the!same!either!way.!

15" " I’m!still!not!sure!this!is!the!right!way!to!do!
this,!though.!The!prompt!says!log!scale.!I’m!
worried!your!way!is!not!the!right!way.!

Which!makes!sense.!

16" " Because!it’s!a!log!scale,!I!feel!like!it’s!a!
log!somewhere.!So,!I!don’t!think!we’re!
right.!

That’s!the!same!thing,!isn’t!it?!

17" Jamie"gestures"at""
10!.! = 6309573.445
10!.! = 3981071.708"

[first!points!to!right!side!of!equal!and!then!
to!two!exponents]!

Okay,!I!agree!with!you!about!the!log!thing.!
Is!percent!change!really!the!question?!

But!it’s!log!base!10!that!converts!it!to!
magnitude.!So,!if!we!were!to!take!the!
log!of!the!magnitude,!it!would!give!us!
the!Richter!scale.!

18" " Yeah,!that!makes!sense.!I!keep!going!
back!to!percent!change!not!increase.!

Because!they!mean!essentially!the!same!
thing.!It’s!just!how!the!question!is!worded.!!

19" " You!did!it!the!right!way.! It!was!a!58%!increase,!which!means!
158%.!!

20" Selma"writes"158.5%"under"Jamie’s" Okay.!That!makes!sense.! We!solved!the!problem!together.!Yay!us!!
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“correct!work.”!So,!a!right!answer!with!

correct!work!or!set!up!gets!full!credit.!

29" Selma"points"to"the"1T"and"2Tpoint"
columns"of"her"rubric."

Right,!but!what!I!think!is!different!is!

where!we!give!1!and!2!points.!I’m!

basing!all!my!points!on!how!much!of!

the!problem!they!get!right.!

Really?!!You’re!showing!what!the!“set[up”!is!

on!the!rubric.!That’s!essentially!what!I!

meant!when!I!wrote!“justification.”!

30" Selma"points"to"the"1T"and"2Tpoint"rows"on"
Jamie’s"rubric."

You’re!giving!points!for!a!wrong!

answer.!Why!would!you!do!that?!

!

!

I!don’t!think!the!wrong!answer!is!what’s!

important!there.!The!justification!is!what’s!

important.!Like,!if!they!wrote!
!"!.!
!"!.!!on!their!

paper!and!then!got!the!wrong!answer!for!

some!reason.!That’s!like!what!you!wrote!on!

your!rubric.!

31" " But!you!still!gave!2!points!for!the!wrong!

answer!!

We!want!to!know!what!they!can!do.!I!
know!sometimes!I!start!right,!but!then!

maybe!I!make!a!small!mistake.!But!I!

knew!what!I!was!doing.!I!want!to!be!

able!to!give!points!to!a!student!who!

made!a!small!mistake.!

32" " Yeah.!But!why!would!a!right!answer!get!

fewer!points!than!a!wrong!answer?!

I’m!just!saying!a!correct!set[up!might!also!

sometimes!get!a!wrong!answer!–!like!when!

they!accidentally!punch!in!the!wrong!

numbers!on!their!calculator.!

33" Jamie"stands"away"from"the"white"board"
and"gestures"back"and"forth"between"the"
two"rubrics"as"she"talks.""

Yeah.!But!my!1[point!column!doesn’t!have!a!

place!in!your!rubric.!Just!noticing!powers!of!

10!isn’t!going!to!get!2!points!when!there’s!a!

lot!more!to!the!problem!than!that.!

If!I!know!they!know!how!to!set!it!up,!I!

know!they’ve!got!the!foundations!of!the!

math!we’re!teaching.!That’s!what!we’re!

getting!at!in!both!of!these!rubrics.!

We’re!both!looking!at!how!they!set!up!

the!problem.!I’m!just!saying!a!correct!

setXup!might!also!sometimes!get!a!

wrong!answer!–!like!when!they!

accidentally!punch!in!the!wrong!

numbers!on!their!calculator.!!

"

"
Figure"X."Selma’s"rubric" Figure"X."Jamie’s"rubric"

"
"
" Description!of!actions!while!working!on!

prompt"
Selma!
!

Jamie!
!

25" Selma"steps"back"from"the"white"board." Are!you!ready!to!talk?! We!had!the!same!idea!about!the!math.!
We’re!probably!thinking!similarly!about!
how!to!grade!it.!!

26" Jamie"steps"back"from"the"white"board"and"
looks"over"at"Selma’s"work.""

Okay,!let’s!see!what!we!did!differently.! I!think!so.!!

27" Selma"looks"over"at"Jamie’s"rubric."
"

I’m!already!seeing!big!differences!in!these!
rubrics.!She!gives!2!points!for!a!wrong!
answer!and!1!point!for!a!right!answer.!How!
can!she!give!2!points!for!wrong!work?!

Okay,!this!is!what!I!did.!I!knew!I!wanted!
them!to!get!the!right!answer.!

28" Jamie"looks"again"at"Selma’s"work"and"
points"to"her"3Tpoint"column."

Yes,!those!cells!are!the!same,!but!there’s!still!
a!lot!of!difference!there.!

Okay,!like!yours!–!and!we!both!also!
want!them!to!be!able!to!explain!it.!Yeah,!
like!you!have!“set!up”!and!I!have!

Figure 4. Selma's rubric.                                                Figure 5. Jamie's rubric. 
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Applications and Discussion 

By adding Knowledge of Discourse as a variable to be described/measured, we include 
the interdependence of Knowledge of Discourse with KCS, KCT, and Knowledge of Curriculum 
in the extended model of PCK. The linking of these kinds of knowledge are represented through 
the connectors Anticipatory Thinking, Implementation Thinking, and Curricular Thinking, 
respectively, in Figure 2 (see Hauk et al., 2014 for more on these aspects).  

Inevitably, there are both similarities and differences between teachers’ own content-
based acculturations, their own everyday cultures, prior mathematical enculturation of students, 
everyday culture of students, intended mathematical enculturation of the curriculum or school, 
and interim classroom cultures that combine all of these (and others, e.g., physics). The teacher 
having knowledge of these is mathematically important. Each has a mathematical component in 
terms of how one [student or teacher] sees mathematics or uses mathematics or values 
mathematics or communicates mathematically. And at the same time, for other disciplines it also 
is important. A rich Knowledge of Discourse in the context of calculus can include a knowledge 
of physics discourse (see, for example, the report in these proceedings by Firouzian & Speer, 
2015). In fact, emergent from the conference presentation were conversations about the ways 
some knowledge of how those steeped in physics talk about and make sense of applied calculus 
problems is needed in order for a teacher to notice and point out to students the value of a 
physics approach (i.e., know and use the discourse of physics).  

How teachers and learners approach (a) navigating different discourses, (b) establishing 
classroom mathematical discourse(s), and (c) the tools they have to do this, are all informed by 
their intercultural orientation. In pursuit of applications of this model and data analyses, we had 
several questions for RUME participants in the session. 

Question 1 to attendees: What would make a compelling argument for you about the 
connections among these ideas? What kinds of data do you suggest we compare?  

Attendee response 1: Session participants clearly wanted some rich examples in which the 
ideas were evidenced so that the evidence could be pointed to (and distinguished from evidence 
of other aspects of MKT). This call for examples led to the addition (the Area 3 result) of the 
annotated example conversation between Selma and Jamie.  

34" Selma"gestures"at"her"rubric." Okay.!But!mine!breaks!down!the!steps!
of!this!problem!into!smaller!chunks.!
With!mine,!the!score!is!based!on!how!
much!they!know!how!to!do.!They!get!
credit!for!doing!each!piece!along!the!
way.!!

What!if!they!just!write!the!right!answer!
with!no!work?!

35" " That’s!not!going!to!happen.! What!if!they!just!write!the!right!answer!
with!no!work?!

36" " My!students!know!better!than!to!turn!in!
a!quiz!without!showing!their!work.!If!
they!got!the!right!answer,!the!work!will!
be!right.!

Eh,!that’s!not!an!answer.!We’re!going!to!
have!to!agree!to!disagree!here.!

37" " I!don’t!think!we’re!getting!anywhere!with!
this.!

I!don’t!think!we’re!getting!anywhere!with!
this.!

38" " We!need!different!rubrics!because!we’re!
different!teachers!and!we!notice!different!
things!about!this!problem.!

Maybe!the!rubrics!don’t!have!to!be!the!
same!exactly!if!they’re!still!getting!at!
the!same!kinds!of!ideas.!

39" " Well,!even!when!we!give!common!tests!
and!quizzes,!we!still!grade!our!own!
stuff.!I!think!we!should!have!different!
rubrics.!

What!we!have!in!common!is!that!we!agree!
that!as!different!teachers!we!need!different!
rubrics.!

"
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Question 2 to attendees: Based on your experience, what would you expect about 
connections among the ideas in the model? 

Attendee response 2: Attendees generally agreed that a substantive answer to this question 
would first require the examples called for in response to the first question. 

Question 3 to attendees: How would knowing the answer to the questions we ask help 
teacher preparation, induction, and development? How would they inform collegiate practice of 
teaching with the adults who are in-service and pre-service teachers? 

Attendee response 3: To get at a transition from theory to practice, participants in the session 
noted that knowing the answers, and having in hand some examples along with the model and 
ideas behind Figure 2, gives teacher educators tools and language for instruction (of both pre- 
and in-service teachers). Also, having an example that gets at the calculus/physics context could 
allow a contrasting cases approach to understanding the model for teachers. One might create a 
learning activity for teachers where they start with the calculus/physics discourse analysis (since 
the difference in the two professional discourses of math and physics may be more accessible to 
the highly mathematically trained). Then, have a second case where the nuances of analysis are 
applied to an examination of an example where there are similar professional cultures but 
differing intercultural orientations. The addition to this report of the Selma and Jamie case arose 
from the conference conversation. We have also begun development of a contrasting case about 
two teachers working on, and building a rubric for grading, an applied mathematics item with 
rich contrasts between physics and mathematical discourse. 
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How might students come to see a differential equation as a function of two variables?!

George Kuster 
Virginia Tech 

Morgan Dominy 
Virginia Tech 

 

Using Tall and Vinner’s notion of Concept Image (1981) we analyzed the concepts students 
used while working with the differential equation !′=3! and the connections between these 
concepts.  We identified five interconnected elements in the students image of !′ in the 
context of differential equations that played an integral role in the students’ reasoning while 
attempting to solve interview tasks.  In this study we report our findings concerning a pair of 
students’ beginning to treat a differential equation as a function of two variables by 
reasoning with their notions of slope and rate.  Specifically we address the students’ 
transition from seeing a differential equation as solely an  algorithm for verifying a function 
is a solution to a differential equation, to treating the differential equation as a relationship 
between a function’s rate of change and evaluated value. 

Key words: Differential Equation, Slope, Rate, Function 

Purpose and Background 
The predictive power of differential equations gives them a key role within science, 

technology, engineering, and mathematics (STEM) fields.  Given the large number of 
undergraduate STEM majors, and the recent efforts to increase these numbers (Engage to 
Excel Report, PCAST, 2012), the importance of improving students’ understanding of 
differential equations is significant.  Differential equations is an advanced topic in 
undergraduate mathematics that presents a unique challenge to students by invoking their 
understanding of mathematical concepts that were introduced in previous courses, and then 
building on them.  The course is traditionally taught to students majoring in various STEM 
fields, that have completed a three-course calculus sequence (differential, integral and multi-
variable) and usually serves as a gateway to more advanced topics, such as biological 
modeling, analysis, fluid dynamics, finite elements, and control systems.  For these reasons, it 
is immensely important that STEM majors have a robust understanding of at least the 
fundamental properties of differential equations.  As such, research that helps illuminate and 
support student learning in differential equations is also important.   

In its simplest form, a differential equation is a relationship between a quantity of interest 
and that quantity’s rate of change (Kohler & Johnson, 2006).  Embedded within this 
definition are a great number of concepts, however, for our purposes we primarily focus on 
function and rate of change.  Student understanding of function and rate of change have been 
the focus of extensive research (e.g. Carlson, 1998; Carlson, et. al, 2002; Tall &Vinner, 1981; 
Thompson, 1994; Zandieh, 2000), and the various complexities involved in understanding 
these concepts have been well documented.  The existence of these concepts within the more 
advanced topic of differential equations serves to further increase the complexity of these 
concepts for students; it has been noted that not only are multiple ideas coming together to 
form a cohesive whole, but there is a “fundamental leap in the thinking required” 
(Rasmussen, 2001, p. 67) to understand various aspects of differential equations with regard 
to these concepts.  With this in mind, a growing body of research has shown the concepts of 
function and rate of change to be necessary and important for students learning differential 
equations (Habre, 2000; Keene, 2007; Rasmussen & Blumenfeld, 2007; Rasmussen & King, 
2000).   
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  For instance, Stephan an Rasmussen (2002) document students utilizing the notion that 
", in differential equations of the form "!′=#$,", is both a function and a variable to reason 
about differential equations and their solutions.  Additionally, Rasmussen and Whitehead 
(2003) claim that this image is required for a robust understanding of differential equations, 
though that it is also one of the most difficult for students to attain.  In their work, they assert 
that students with this image were able to almost effortlessly transition between substituting 
values for " (seeing " as a variable) and treating " as a continuously changing function, in an 
effort to extract information from the differential equation. Students that had this ability were 
able to construct solution functions by using their notion of rate of change to determine the 
nature of the solution function’s behavior. 

Tangentially related, Donovan (2007) used a card-sorting task to explore what it means to 
conceptualize a differential equation as a function itself. Donovan, using Sfard’s (1991) 
reification theory, showed that students with the ability to act on differential equations as a 
function are afforded a more robust understanding of differential equations and their solutions 
as compared to students that do not conceptualize a differential equation as a function.  More 
specifically, students that are able to transition between graphical and algebraic 
representations of differential equations of the form "!′=#("), were better able to draw 
connections between differential equations and their solutions.  Additionally, Donovan’s 
work shows that this ability supports students in treating y as both a function and a variable in 
the differential equation, interpreting %"/%$!as a variable, slope or derivative, and 
understanding $ as an independent variable in both differential equations and their solutions.  
Donovan also noted that students with the ability to treat a differential equation as a function 
treated the differential equations as connected to and informative of their solutions. Based on 
these findings it is clear that students’ understanding of function is not only utilized in 
differential equations, but actually built on: functions are now solutions to, and embedded 
within equations, something not often encountered in previous coursework.   

 In her research on student reasoning in differential equations, Keene (2008) found that 
students reason with their notion of derivative and use the idea of changing rates to 
qualitatively discuss the relationship between differential equations and their solutions. 
Further, students reasoned with these ideas across both graphical and symbolic 
representations of differential equations and their solutions (e.g. slope fields, solution spaces 
and symbolic forms of solution functions/differential equations).  Connected to this, 
Rasmussen and Whitehead (2003) documented that students use rate to build images of 
prediction and function, and treat it as a quantity that determines the behavior of a function. 
Specifically, they note that students use the notion of rate to predict the values the solution 
function will attain at a certain point.  Their work points out the interaction between students’ 
images of rate and function, and shows that these two concepts come together to support 
student learning in differential equations. 

  Research also shows that student reasoning with rate is not limited to reasoning about 
only one solution function.  Stephan and Rasmussen (2002) present findings on how students 
reason with slope.  They found that students utilized the following ideas:  reasoning about the 
way in which slopes change over time, slopes are invariant horizontally for autonomous 
differential equations, and infinitely many slopes are encountered in a slope field but only 
finitely many are visible.  Each of these ideas relates to student thinking about slopes (a 
graphical representation of rate of change) and how they are useful in understanding solutions 
to differential equations.  Additionally, they noted that students reasoned with %"/%$ versus y 
graphs, which is precisely one of the graphical representations Donovan (2007) discusses in 
his research concerning understanding differential equations as functions. 
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While it has been shown that having the images of " as both a function and a variable, 
and a differential equation as a function itself are immensely important for a robust 
understanding of differential equations, how students construct these images is still unclear.  
We interpret the research findings above as indicating that students’ notions of rate can 
support their progression toward understanding a differential equation as a function itself.    
Given the importance of the concepts of function and rate of change in student learning of 
differential equations, this study investigates how students might come to see the differential 
equation ′&as a function of two variables.  More specifically we examine the students images 
of !′ and the role it plays in understanding a differential equation as function of two 
variables. 

Mathematics Background 
Much of what we discuss in this paper is related to what students understand about the 

ordinary differential equation !′=3! and variants thereof.  This relatively conventional 
differential equation encompasses a myriad of interconnected mathematical ideas and 
concepts.  For instance, some of the concepts within this equation are the notion of function, 
vector field, rate, solution space, derivative and the additional ideas that come with them.  
Using various analytical methods one can find the general solution to this equation, which is 
!($)='(3$.  This general solution, in fact, represents an entire space, in this case an infinite 
set of solutions that satisfy the differential equation.  Given an initial condition such as 
!($0)=!1, one is able to find a unique solution satisfying both the equation and the condition.  
Further, the equation !′=3! provides a relationship between the rate of change, !′, and the 
quantity !, that holds for all functions in the solution space.  That is, given a specific value of 
! one can find the rate of change for any solution function, at the instance when that function 
takes on the same evaluated value.  This differential equation also establishes a relationship 
between functions and their derivative.  That is, one can interpret !′=3! as a mapping 
between two function spaces.  Specifically, any solution satisfying this differential equation is 
such that operating on that function with the derivative is the same as multiplying the 
function by three.  Combining these two notions means that ! is both a function and a 
variable.  The general and particular solutions can also be found using graphical methods.  A 
tangent vector field for the differential equation, which is a map of the $!-plane that includes 
vectors tangent to the solutions at various points in the plane, can be used to construct a 
graphical image of the functions within the solution space.  The construction of a tangent 
vector field requires treating ′ as a function of two variables  because one must use values for  
and  to attain values for ′.  This means that the differential equation can also be interpreted as 
a statement about two rates: how ′ changes as ! changes, and how ! changes as $!changes.  
These concepts, ideas and techniques form a baseline for the mathematics underlying the 
equation !′=3!.  

Theoretical framework 
Due to the interweaving nature of the mathematical concepts involved in this study, Tall 

and Vinner’s (1981) notion of concept image serves as an effective medium for which one 
may interpret the students’ understanding of !′=3! and the various pieces and concepts 
associated with it. The term concept image is defined by Tall and Vinner as “all the cognitive 
structure in the individual’s mind that is associated with a given concept” (1981, p. 151).  
Further, one’s concept image can include visual representations, mental imagery, beliefs and 
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experiences associated with a given concept (Vinner, 1991).  For example, when a student 
thinks of a differential equation, they may envision a written equation, a direction field, a 
collection of analytic solutions, a rendering of one or more solutions in the plane, etc.  One’s 
concept image is not static, it is ever growing and evolving as the number of interactions one 
has with a given concept increases.  Additionally, this theoretical framework accounts for 
potential differences in the sets of elements within a concept image that are activated in 
different situations.  In other words, only some elements within ones concept image may be 
triggered during certain situations, at a given time, while other elements are not; this portion 
is defined as the evoked concept image (Tall and Vinner, 1981).  Because different elements 
may be activated in different situations, it is possible for a student’s concept image to contain 
seemingly contradictory elements, and for the student to not be aware of these contradictions.  
It is, however, also possible that a student may encounter a situation in which these 
contradictory elements are evoked simultaneously, potentially creating a problematic 
situation for the student for which resolution is needed.  The notion that seemingly 
contradictory elements may exist in ones understanding helps explain how the students we 
interviewed progressed toward seeing a differential equation as a function of two variables.  

For the purposes of this work, the notion of concept image will serve as a way to not only 
catalog the concepts the students used while attempting to solve differential equations tasks, 
their understanding of these concepts, and the connections between these concepts, but also 
as a way to identify when it might be possible to promote positive change in students’ 
understanding of these concepts.  We take a connection between elements within the students 
concept image to be indicated by occurrences in which the students related two or more 
elements in the same expression.  Our notion of connection is commensurate with the 
theoretical perspective, in that it can be thought of as an instance in which common elements 
between two separate images are evoked in the same situation.  It should be noted that a 
student’s concept image, like a nesting doll, can contain elements which are in and of 
themselves images.  For instance, in our analysis we identified slope and derivative as two 
elements within the students’ concept image of !′.  These are two distinct, though non-
disjoint concepts, and for the students each had its own image.   

This theoretical framework addresses the research question and methods by providing a 
way to analyze the students’ evoked image(s) of the various concepts they utilized when 
working with differential equations, as well as providing insight into how the individual 
notions differed throughout the interviews.  Most importantly the framework provides a way 
to explain the events that unfolded during the second interview, the students began treating ! 
as a variable and the differential equation as a function. 

Participants and Methods 
In order to better understand the students’ concept images, two, one-hour semi-structured 

pair interviews were conducted with Alice and Jen (pseudonyms).  Alice and Jen both earned 
A’s in a differential equations course one semester prior to the interviews.  The interviews 
were video recorded and analyzed using iterative video analysis (Lesh & Lehrer, 2000).  The 
main goal of the interviews was to generate verbal and written work that could be used to 
identify the concepts the students used while reasoning about changes in the solution 
functions with regard to changes in initial conditions.  To accomplish this the students were 
presented with tasks during the interview to engage them in problem solving activity.  Due to 
the exploratory nature of the research, a decision was made to keep the questions as general 
as possible in an effort to better examine the students’ mathematics (Steffe and Thompson, 
2000) by providing opportunities for them add their own interpretations of the mathematics 
involved.  Sample interview questions and potential follow up questions can be seen in 
Appendix A.  During the second interview,  the students began to reason about characteristics 
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of the solution functions using their notions of slope and rate, but a more interesting story 
developed.  These events changed the direction of the second interview, as it became more of 
a teaching experiment (Steffe and Thompson, 2000) towards the end. 

The first interview was designed to evoke the concepts the students used while solving 
differential equations tasks so they could be identified through analysis and further explored 
during a second interview.  After the first interview the authors watched the recording of the 
interview specifically looking for the concepts and reasoning students used while expressing 
the existence of a relationship between initial conditions and solution functions. These 
instances were then time stamped, transcribed, and coded further to aid in the development of 
the second interview protocol.   Specifically, the researchers identified categories such as 
rate, slope and relationship (between changes in t and changes in !) as important notions in 
the students’ discussions about !′=3! with regard to changes in initial conditions.  For 
example, when the students were asked to interpret the meaning of !′ and ! in the equation 
!′=3! their replies included “!′ is the relationship between changes in ! and changes in 
time,” and “it’s saying [!′], is equivalent to the ratio [%!/%$].”  Students also noted that 
changing the initial conditions changes!!, as it changes where the solution function starts.   

In an attempt to further explore the nature of these elements during the second interview, 
an unexpected event occurred for both the researchers and students that changed the direction 
of analysis during the second phase. While providing the students with an initial value 
problem aimed at gaining a better understanding of the students’ images of slope and rate, the 
students began to treat the differential equation as a function of two variables.  For instance, 
they began to attend to changes in ! while keeping t constant, something they had not done 
previously.  They also began to treat ! as a dependant variable in the differential equation, 
substituting numerical values in the equation to calculate!!′, which was something they had 
earlier stated as being incorrect.  Due to this, during the second phase, attention shifted to the 
students’ images of rate and slope and how their reasoning about these concepts promoted an 
understanding of !′ as a function of both ! and $.  The data collected during the first 
interview was then re-analyzed with this goal in mind.  In the following sections we present 
the results of our analysis and describe how the various elements in the students’ image of !′!
played a role in their progression towards seeing the differential equation as a function of two 
variables.   

Results 
Throughout the interviews the students expressed various interpretations of !′ in the 

differential equation !′=3!, each of which shaped their interpretation of the differential 
equation and its various components.  As a result of the analysis we discovered five elements 
within Alice and Jen’s concept image of !′: slope, relationship, rate, ratio, and derivative.  To 
a greater extent we focus on slope and rate, as these played a significant role in the student’s 
reasoning about !′=3! as a function of two variables.  Though each of these elements can be 
thought of as separate entities existing in the students’ larger understanding of !′, quite 
frequently the students discussed these elements in ways that indicated a more interconnected 
nature.  Additionally, the relationship between the elements played a significant role in the 
students’ reasoning at the end of the second interview, which lead to their treatment of !′ as a 
function of both !!and $.  Specifically, the students had certain expectations regarding the 
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value of !′, that were based on their notions of slope, rate and derivative.  These expectations 
were not met during their work on the initial value problem presented during the second 
interview and to reconcile this, they began to account for changes in !′ with respect to !.  
This is something they had not expressed in any of their prior interactions. 

The students’ image of !′ is shown in Figure 1; the solid lines represent elements within 
the students’ concept image of !′ in the context of a differential equation and the dashed lines 
depict connections between the elements.  A connection was identified during the second 
interview; for example, when Alice drew a line tangent to the solution function she graphed 
earlier, while saying “this is gonna be the rate at which it’s increasing.”  We took this as an 
indication of the existence of a connection between the students notions of slope and rate.  
Interestingly it was these connections that promoted the growth of the students understanding 
in a direction more commensurate with that of an expert.  This is discussed in more detail in 
the conclusion.  

The results are presented in three sections.  First, we discuss some of the elements within 
the students’ image of !′ prior to their engagement with an initial value problem task. Then, 
we describe the students’ reasoning while completing the initial value problem task from the 
second interview with an eye towards how they utilized the elements within their image of !′.  
Lastly, we outline how the students reasoned about and treated the differential equation as a 
function after the task.    

 

 
Figure 1: Students’ Various Interpretations of!!′ 

 
Image of Slope and Rate  

In the first interview, Alice noted that when she sees !′ (in !′=3!) it signifies, “a 
relationship between changes in ! and changes in time.” From this statement alone it was not 
clear what the relationship was or what defined it.  In the second interview Alice was asked to 
elaborate on this statement, the following is transcription of the conversation that followed. 

P' 

Rate 
"This could be 

fish per 
salimander" 

Ratio 
"In general I see 
P' as the change 

in P over the 
change in time." 

Derivative 
"When I see P', 
in my head I see 

dP/dt" 

Relationship 
"P' is a 

relationship 
between how 

fish changes as 
time changes 

Slope 
"P' which is the 

slope is 3P" 
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1 A: I wouldn't say that from !′!=!3! necessarily, it doesn't explicitly say that's a 
relationship of something changing as something else changes.  But when I see !′, in 
my head I see %!/%$.  

2 G: Ok and this thing saying 3! over here doesn’t tell you anything about %!/%$? 
3 A: It’s saying [3!] is equivalent to the ratio [%!/%$] or the relationship. 
4 G: And the relationship you mean is %!/%$? 
5 A: um hum 
6 G: So what does it mean for the relationship to be equivalent? 
7 A: To me it says given the solution of what ! is, that, if you plug it in or put it into 

that relationship spot !′, then they have to equal each other.  
8 … 
9 Yeah but you have to find ! to figure that out.  So they are equal.  So!!′ or the 

relationship is equal to !′ is equal to 3! but you have to have ! to understand that 
relationship. 

Jen also expressed the notion that the relationship (how ! changes as $ changes) is not 
explicitly defined by the differential equation and noted you need to “solve for” or be given!! 
(a solution function) first to meaningfully talk about !′.  From the transcript above we can see 
that in Line 7 is in reference to the algebraic manipulations involved to verify that a function 
is a solution to a differential equation (this was brought up by the students in the first 
interview).  This helps inform why the students, when initially asked to determine a 
numerical value for !′, would solve the differential equation, compute the derivative of the 
solution function and then use this derivative to find a value for !′.   Both of the students 
implied that the relationship (%!/%$ or !′) depends on!! because, “you need!! first,” but 
based on the fact that the differential equation does not define this relationship, we do not 
interpret this to mean that the differential equation was a function of ! for the students.   

The students’ notion of slope was strongly related to !′ and played a large role in their 
interpretation of the differential equation in relation to solution functions. Specifically, the 
students noted that the slope of the solution function at any point was represented by !′ and 
would be equal to 3!.  Further, they noted this would hold for any of the functions in the 
solution space.  They concluded this by reasoning that taking the derivative of any of the 
solution functions would result in getting three times that solution function.  Importantly, 
early in the interviews the scope of this idea seemed only to refer to the algebraic 
representation of the function, and not the function’s values.  In other words, the students 
noted that they could multiply the solution function by 3 to get !′($), but they did not express 
the idea that multiplying the value of ! by three would result in getting the value of the rate 
of change of !. Additionally, they expressed that the value of !′ would increase as $ increased 
and that this was true for any solution. The following excerpt explicates some of their 
expressed understandings from the second interview. 
10 A: When I think of!!′ equaling 3!, 3! is going to be the graphical solution of the 

growth or whatever [draws a particular solution for !′=3!].  Then!!′ is gonna be your 
slope… Then if you take the slope here [points to the arbitrarily defined point (10, 30) 
on the solution function] this [draws a line tangent to the curve at that point] is gonna 
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be the rate at which it's increasing at that given time. 
11 G: Take your arbitrary numbers.  Can you put that stuff [the values] in there [the 

differential equation ] and tell me what you think it [the slope] is? 
12 A: ! is an equation of sorts.  !!can't necessarily be a number because if you take the 

derivative of a number you get zero [pointing to a place on the graph where the slope 
is not zero]. 

13 … 
14 J: !′ which is the slope is 3! 
15 G: So what does that mean? 
16 J: It means your slope is 3! which whatever that is I don't know. 
17 G: So ! is the problem when you say  'whatever that is I don’t know' it's that you 

don't know what ! is or that you don't know what!!′ is? 
18 J: I know what!!′ is, I don't know what ! is. 

The students make an explicit connection between slope and !′ in Lines 10 and 14.  In 
Line 12, Alice expresses a connection between her notions of the derivative and slope which 
is also related to the algebraic manipulations she was referring to in Line 7.  Further, Line 12 
represents Alice’s notion that the differential equation does not accept “numbers” as inputs 
for ! and we interpret this as meaning that ! is not a variable in the function !′=#(!)=3! for 
the students.  Most importantly, for our purposes, she makes a clear connection between the 
value of the derivative and its graphical representation as the slope of a tangent line.  Alice 
may have very well utilized this connection to analyze what she believed a solution function 
would look like when making her claim about !′ increasing as $ increased. 

Jen’s statements in Lines 14-18 are closely related to her notions of rate in the context of 
differential equations.  Earlier in the interview the students calculated the particular solution 
!='(3$, unprompted.  Jen then noted that there were an infinite number of solutions that 
satisfied the differential equation.  When asked why these were all solutions to the same 
differential equation she said, “they all have the same rate.”  Jen also noted that for functions 
to be solutions to the differential equation they had to be such that when taking the derivative 
it was the same as multiplying by three.  She went on to say, “all of their rates are the same 
which is 3! and you get the (3$ as long as those [rates] are the same.” 

The students’ notion of rate is what allowed a single differential equation to have 
numerous solutions.  In this way it unified all of the functions in the solution space; they all 
had 3! as the rate.  It was not clear, however, what the quantities their use of rate was 
referring to, how rate was different from slope and whether or not the students were attending 
to different values for!!.  For instance, in some cases it seemed as though rate was a property 
between changes in ! and $, and at other times it seemed to be a property between in !′ and ! 
(comparing all of the solution functions and their derivatives or rate for the students).  The 
slope of a line tangent to a solution function was also an element of the students image of !′ 
and was closely related to the value of the derivative. The students expressed that the slope 
was!3!, and that taking the derivative of ! (a function) would result in 3 times !.  If we 
consider Lines 1, 7, 12 and 18, the students express not being able to use values for ! in the 
differential equation and not being able to understand !′ without an explicit function for !.  
In other words, the differential equation is an equation used to verify that the solution 
satisfies certain characteristics defined by the differential equation, but, it is not used to 

18th Annual Conference on Research in Undergraduate Mathematics Education 19218th Annual Conference on Research in Undergraduate Mathematics Education 192



determine the value of !′.  For the students, finding !′ is done by taking the derivative of the 
solution function and evaluating this at a certain t value.  These images came to play a role in 
the students reasoning during the initial value problem that will now be discussed. 

One of the interesting and important aspects of the students’ images of slope, rate and 
derivative lies in the ways in which the students related each of these images.  Namely, for 
the students, each of these was equated with 3!.  At various times during the interviews the 
students expressed that the slope was 3!, the rate was 3! and the derivative was 3!.  
Additionally at different times 3! represented a relationship between different quantities.  At 
times it was also used to relate changes in ! with changes in t, whereas at other times the 
students related changes in ! with changes in !′ (mostly when using their notion of rate).  
This, in and of itself, is not surprising, as to the expert, !′ does indeed represent these three 
concepts, and each is equal to 3!.  For the students, the connections between these images, 
however, do not exist solely in the value they take on, and illustrated in Figure 2. 

It should be noted that for the students, slope and derivative were qualities of a single 
solution function, whereas rate was also used to describe a property of each of the solutions 
in the entire solution space. These distinctions are important as these ideas play a crucial role 
in what transpired during the initial value problem task discussed in the following section.  
We assert that during this task the students’ images of slope, rate and derivative were evoked 
in a way that made the students aware of contractions in their understanding of these concepts 
with regard to differential equations. Namely, the students expected the values for the slope, 
rate and derivative to be equal across various solution functions at the same t value. 

Based on our analysis, we determined the existence of three main elements within the 
students’ image of slope within the context of differential equations: the slope of a solution 
function at any point is represented by !′ and is equal to 3!, without an explicitly defined 
!($) one cannot infer information about the slope, and one cannot substitute numbers into the 
differential equation to find the value of the slope.  Additionally, the ideas that solution 
functions all have the same rate and that the differential equation defines this rate (what !′ 
equals), were elements within the students’ image of rate.  We assert that these ideas came 
together in ways that promoted the understanding of a differential equation as a function that 
relates the value of a function to that functions rate of change. 
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Figure 2: Connections Between the Elements Slope, Derivative and Rate 

 
Initial Value Problem Task 

In an effort to better understand the nature of the students’ image of slope and rate, the 
students were asked to find the particular solutions for four initial value problems (IVP) all of 
which having the differential equation !′=3!!(See Appendix A, Interview 2, Question 2).  
The students used analytical methods to quickly find and then graph the four respective 
particular solutions.  When asked why these solution functions all satisfied the same 
differential equation Jen replied, “You said that.  You said the initial conditions are 5, 6, 7 
and 8 and all of their rates are 3P.”  Here Jen interpreted the rate as being dictated by !′ in the 
differential equation provided.  The students then began to calculate the derivative of each of 
the particular solutions and showing that the result was the same as multiplying the original 
function by three and that each of the solutions shared this property.  Based on this response, 
it was not clear exactly how their image of rate was different from their image of slope and if 
they were attending to changes in !, but it seemed that the students were attributing the word 
“rate” to a property they saw as unifying all of the solutions (e.g. !′ is the same as three times 
! for all of the functions).  Additionally, it was not clear what quantities the students were 
using when discussing the rate. 

Alice then began to explain that for a given solution, the rate was increasing as time 
increased.  To show this, she began calculating the derivative values of the particular solution 
!=5(3$ at increasing values of $, specifically 0, 5 and 10.  She represented this increasing 
value by drawing tangent lines on the solution curve, each with steeper slopes and marking 
each slope with the respective values, 15,!15(15 and 15(30.  She then repeated this for the 
solution function !=8(3$ getting the derivative values of 24,!24(15 and 24(30. Alice’s work 
can be seen in Appendix B.  This provided insight into the quantities this rate was referring to 
(namely ! and $) and prompted a turning point in the second interview as the students then 
began to question their conclusion that all of the solutions had the same rate.  Specifically, 
Jen stated that Alice’s work “proves the solutions increase at different rates” at a fixed time.  
Immediately following this statement, Jen began referring to the differential equation as a 

3P Derivative  Slope 

Rate 

 

Slope of the tangent line 
 (of a single solution function) 

 is the same as the derivative value at any point  

“…you get the e
3t

 as long 
as [the rates] are the same”  

“[Draws tangent line], this is 
gonna be the rate at which its 
increasing”  
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model.   Recall that earlier she interpreted the differential equation as indicating the solutions 
“all have the same rate” and that this rate was 3!.   When asked why she was drawing a 
distinction between the model and the rate, referring to the solution functions she said, “these 
all follow the same model but they have different rates.”   

We assert that at the moment Jen required drawing a distinction between the differential 
equation representing a rate, and the differential equation as a model, Jen’s image of !′ in the 
context of the differential equation !′=3! expanded to include a relationship between !′ and 
P.  That is, Jen began to see the differential equation as a relationship between the values 
!′($) and !$ not just a way to verify a function satisfies the differential equation.  Further, she 
began to attend to the different values !($) can attain even when holding t constant. 

A Differential Equation as a Function of P and t 
When Jen was asked to elaborate on the distinction between the model and the rate she 

began to incorporate ideas indicative of attending to changes in ! and how those changes 
related to !′ (in the sense of both the differential equation and the rate at which ! changes as t 
changes).  Jen said, “They [the model and the rate] are doing different things in my head, but 
the numbers follow the same formula.”   Here, Jen was comparing the numerical values Alice 
wrote down earlier (e.g. 15(15 and 24(15), to their respective solution functions noting that 
they both followed the formula !′($)=3!($).   For Jen, the model was a relationship between 
the solution function ! and the !′, and the rate was a relationship between changes in ! and 
changes in $.  Specifically, she was no longer reasoning about the differential equation solely 
as an relationship between two functions,!! and its derivative. The image of model reflected 
the fact that the form of the derivative for each solution function, !,  was three times ! 
(!′=3!), but allowed for differences in !($). She was now comparing the numerical values 
attained across multiple solutions and relating them to the form of the differential equation as 
if the differential equation was a function between !′($) and !($).   Additionally, she was 
doing this for multiple values of $.   

Their work on this task made them realize that to find the value of !′, they could simply 
determine the value of ! and substitute this value into the differential equation.  This was 
opposed to their method for calculating !′!earlier, which was solving for !($), taking the 
derivative and substituting an appropriate value of $ into the derivative function.  They noted 
that solution functions were such that the derivative of the function was three times !, and 
this meant that one need not take the derivative to calculate !′ as the differential equation 
already provided a way to calculate it.  Namely, that evaluating!! and multiplying it by three 
(as a result of taking the derivative), was the same as evaluating ! and multiplying it by three 
(as dictated by the differential equation).    

Conclusion 
It is important to note that for the students we interviewed, !′ represented multiple 

concepts that could be used interchangeably.  It is our opinion that this occurred not because 
of the conflation of the concepts, but because of the numerical values associated with those 
concepts.  Specifically, the rate at which the function changed, the derivative and the slope at 
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any point in time on the solution functions were all thought to equal 3!.  For the expert, this 
may not seem problematic because the value of !′$ at any point on a solution function (for 
!′=3!) is indeed 3!($) and this value will be the same as the slope of the tangent line at that 
point.  Further, this relationship holds for any point on any solution in the solution space. The 
key here is that this is in reference to a specific solution function, and that the value of!3! 
changes as ! changes.   

The relationship that the students expressed during this interview between rate and slope, 
relied on the notion that the slope, rate and derivative will each take on the same numerical 
value across all solution functions.  We suspect that their images for each of the three 
concepts (perhaps, at times, with the exception of rate) did not allow for attending to changes 
in !($), rather the students by and large associated ! in the term 3!, with representing only 
one solution function.   Half way through the second interview, the students were asked to 
determine four solution functions and use them to further explain what they meant by their 
comments from the first interview concerning slope and rate.  This presented a problem for 
the students since the “slope” across the solution functions changed as!!($) changed, but the 
“rate” (the unifying characteristic) did not.  In other words the slope was still 3!, but the 
functions (and, keeping $-values constant, the evaluated values of these functions) were not 
the same.  For the students, the slope was a numerical value that was calculated by taking the 
derivative and evaluating the derivative at a certain time.  When the numerical values of the 
slopes began to change across the various !-values (for the same $-value), the students began 
to second guess why their solutions satisfied the differential equation.  In doing so they began 
to attend to the nature of the solution’s derivative values in terms of the solutions respective 
values.   

As such, we claim that the students transitioned from seeing the differential equation as 
an algorithm for verifying that a solution satisfies a differential equation to treating ! in the 
differential equation as not just a function, but as a changing numerical value and related that 
numerical value to the value of !′ at that same $-value.  Recall, that initially the students 
rejected the idea of substituting values into the differential equation for !.  Their reasoning 
was that ! had to be a function, the students warranted this claim by stating that taking the 
derivative of a constant would yield zero, and this would not make the differential equation 
true.  In this case, the students were treating ! as a function, but not as a variable, in fact, they 
were outright rejecting it as a variable.  During their work in the second interview, they 
realized that ! took on multiple values, even without changing!$, arguably adding to their 
understanding of ! in the differential equation.  Namely, they realized that !′ took on 
multiple values at the same $-value due to the changing values for !.  That is, the students 
came to see the differential equation as a relationship between !′, the variable $!and as a result 
of their work on the initial value problem task, the variable !.  As such, they began to 
substitute values into the differential equation for !. 

Implications 
This work opens the door for asking how one might create tasks designed to evoke the 

students’ notions of rate, slope and derivative in ways that specifically promote coming to see 
a differential equation as a function of two variables.  Investigating if students enrolled in 
other differential equations courses share the ideas expressed by these students is also 
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warranted.  One aspect of our findings that seems most interesting is that individually, the 
students’ images of rate, slope and derivative (with the exception of only a few ideas) were 
by and large correct.  It was only when the students’ ideas come together at a single instance 
of time that confusion arose.  Further, this confusion led toward progressing the students 
mathematical understanding.   

Additionally, the findings suggest more attention is needed with regard to students’ 
coordination of quantities in differential equations.  A single ordinary differential equation 
relates at least three quantities: the function’s independent variable, the function’s value, and 
the function’s rate of change.  How students coordinate these three quantities when reasoning 
about differential equations and their solutions is a relatively open area of study, one that may 
illuminate the issues our students were having concerning the ambiguity of the quantities they 
associated with rate.    

Lastly, our findings show that students can learn/construct mathematical ideas in rather 
unconventional or surprising ways.  Though admittedly accidental on our part, the students’ 
mathematical ideas about rate, slope and derivative were leveraged in a way that afforded and 
promoted positive mathematical growth concerning differential equations as a function.  This 
begs the question, what other mathematical ideas could be developed utilizing students’ 
notions of slope, rate and derivative? 
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Appendix A - Sample Protocol Questions 
Interview 1 
1. What does the following differential equation mean to you? 

!′!=!3!!
a. What is !? 
b. What is !′? 
c. What is the relationship between them? 

 
2. Suppose the above equation(from Question 1) can be used to model the fish population in 
the duck pond. How might it be used to determine the number of fish in the pond at a given 
time? 

a. Are there graphical ways to solve this problem? 
b. Are there analytical ways to solve this problem? 

 
3. Now suppose the population in the year 2014 ($!=!0), is 6. What will the population be in 
2024?  
 
 a. How do you know that?  
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b. Can you represent this in a different way? 
 

Interview 2 
1. Recall the fish population problem from last time, !′!=!3!, where the population in 2014 
($=0) was given as !(0)!=!6. Now suppose that !(0)!=!10. 
 

a. What does this change mean to you? 
b. Given the new conditions what will the population be in 2024? 
c. What if the initial condition changed to !(0)!=!30, how would the solution change? 
d. Does every initial condition provide a distinct solution function? 
 

2. Suppose there are four identical ponds and that the fish population in each ponds can be 
modeled by the equation !′=3!.  Further, the initial populations for each of the respective 
ponds are 5, 6, 7, and 8.  Find the equation that models the population for each pond. 
 
 a. What does the differential equation tell you about the fish population in each of the 
 ponds? 
 b. What is the rate of change of the each of the populations at $=5? 
 c. What are the slopes of the lines tangent to each of the solution curves? 
 d. How is the slope different from the rate? 
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Appendix B - Alice’s Work for the Initial Value Problem 
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Unconventional uses of mathematical language in undergraduate proof writing 
 

Kristen Lew & Juan Pablo Mejía-Ramos 
Rutgers University 

Despite its perceived importance in the learning of mathematics, there is a dearth of research 
on students’ use of mathematical language, particularly when writing proofs at the 
undergraduate level. In this exploratory study, we analyze written student exams from an 
introductory proof course and identify fourteen categories of unconventional uses of 
mathematical language found in undergraduate student generated proofs.  

Key words: Proof writing, undergraduate mathematics, mathematical language 

Proofs are an essential type of communication in professional mathematical practice.  In 
an influential paper on the role of proof in mathematics, Rav (1999) wrote that proofs “are 
the heart of mathematics” that play an “intricate role […] in generating mathematical 
knowledge and understanding” (p.6). Thus, one of the primary goals of mathematics 
instruction at the advanced undergraduate level is fostering students’ abilities to understand 
and construct valid proofs. However, research has shown evidence of undergraduate students’ 
difficulties when reading and constructing proofs (e.g. Selden & Selden, 1987; Bills & Tall, 
1998, Weber, 2003). In particular, Moore (1994) suggested that one of students’ difficulties 
when constructing proofs is their inability to understand and use mathematical language and 
notation.   

Literature Review 
Mathematical language has been studied and interpreted in a variety of ways. For 

example, Kane (1968) viewed mathematical language as a combination of natural language 
and a system of mathematical symbols, whereas Ervynck (1968) viewed mathematical 
language as a foreign language composed almost entirely of technical symbolic 
representations. Further, Pimm (1987) described mathematical language as a set of meanings 
that is created and expanded with the formation of new terminology and the designation of 
technical definitions to words in natural language. One constant of these varied perspectives 
is that each notes significant differences between mathematical and natural language. For 
example, Veel (1999) discussed the precision necessary when implementing certain verb 
phrases in mathematical language (e.g. the verbs ‘to be’ and ‘to have’ are used in different 
relational processes in mathematics than in natural English) and Halliday (1978) noted the 
high degree of nominalization in mathematical language, in which a mathematical action or 
phenomenon becomes an object (e.g., the action of differentiating becomes differentiation). 
As these aspects of precision and rigor in mathematical writing may cause difficulties for 
students, a number of mathematics educators have suggested ways to improve students’ use 
of mathematical language at the K-12 level (e.g. Veel, 1999; Moschkovich, 1999; Lemke, 
2003).  

At the university level, a number of mathematicians have described how to properly and 
effectively use written mathematical language in professional settings, such as when writing a 
mathematics paper, an expository article, or a mathematics textbook (AMS, 1962; Halmos, 
1970; Gillman, 1987; Krantz, 1997; Higham, 1998). Other authors have written similar 
guides for undergraduate mathematics students, containing specific advise on mathematical 
writing at the undergraduate level (Houston, 2009; Alcock, 2013; Vivaldi, 2014). However, 
the advise on these guides is not informed on a systematic study of how mathematicians and 
undergraduate students understand the language of mathematics, but on these authors’ own 
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personal and professional experiences. For instance, in his influential essay on how to write 
mathematics, Halmos (1970) explained:   

The recommendations I have been making are based partly on what I do, more on 
what I regret not having done, and most on what I wish others had done for me.  […] 
Do, please, as I say, and not as I do, and you’ll do better.  Then rewrite this essay and 
tell the next generation how to do better still. (p. 152) 

Indeed, empirical research on how mathematicians and undergraduate students 
understand mathematical language is lacking. In particular, we only know of two studies 
(Konior, 1993; Burton & Morgan, 2000) that have explicitly and empirically investigated the 
language of mathematical proof writing, and neither study investigates how undergraduate 
students understand such language. Based on their teaching experience, Selden and Selden 
(1987) identified 17 types of reasoning errors undergraduate students made when writing 
proofs. One of these errors was related to the use of mathematical language and was 
described as a tendency to overextend symbols, where “one symbol is used for two distinct 
things” (p. 464). In this paper, we take a step towards better understanding mathematical 
proof writing at the undergraduate level by identifying a wider range of students’ 
unconventional uses of mathematical language. 

Furthermore, we believe that one possible reason for this gap in the research literature is 
the lack of an accessible point of entry for researchers interested in the language of 
mathematical proof writing at the undergraduate level. That is, as the learning and usage of 
this particular type of language is currently under theorized, it is difficult to systematically 
study it in an empirical manner. In this paper we describe a theoretical perspective that we 
believe could be useful to investigate the language of mathematical proof writing at the 
undergraduate level. In particular, we illustrate how this theoretical perspective helps us to 
understand undergraduate students’ unconventional uses of mathematical language when 
writing proofs. 

Theoretical Perspective 
Academic English is a “register of English used in professional books and characterized 

by the specific linguistic features associated with academic disciplines” (Scarcella, 2003, p. 
9). The conceptual framework of academic English, as developed by Scarcella (2003), 
describes the various components of academic English and how one might become literate in 
this register. In particular, Scarcella noted that sub-registers of academic English exist for 
different disciplines and that “one must ‘do’ discipline-specific work with academic and 
discipline-specific language” (p. 9). We consider mathematical proof writing to be a 
particular sub-register of academic English. Indeed, proofs are written in English1, but in a 
register with features (such particular lexica and sentence structures) that are specific to the 
academic discipline of mathematics. Scarcella’s (2003) framework has previously been 
applied to mathematics education, but only in studies of English language learners at the 
elementary school level (e.g. Silva et al., 2008; Heller, in press). We propose to apply this 
framework to investigate aspects of the mathematics sub-register of academic English, 
particularly of the language of proof writing at the undergraduate level. 

Scarcella’s framework is an expansion of Kern’s (2000) model of literacy, originally 
developed for the study of foreign language instruction, which includes three dimensions of 
literacy:  linguistic, cognitive, and sociocultural/psychological. Scarcella’s (2003) framework 
includes these same three dimensions and further specifies various components within the 

                                                
1 Clearly mathematical proofs are also written in other languages.  Nonetheless, we argue that 
proofs are written in a specific register of a natural, or common, language.   
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linguistic and cognitive dimensions. Scarcella suggested that learners must develop 
proficiency in diverse linguistic components in order to become literate in academic English. 
In particular, the linguistic dimension of academic English has phonological, lexical, 
grammatical, sociolinguistic, and discourse components. The cognitive dimension is 
comprised of knowledge, higher-order thinking, strategic, and metalinguistic awareness 
components. We will briefly describe the components of academic English and provide 
examples of how the components can be applied specifically to the academic language of 
mathematics.  
The Linguistic Dimension 

The phonological component “includ[es] stress, intonation, and sound patterns” (p. 11) 
and  “knowledge of graphemes (symbols) and arbitrary sound-symbol correspondences” (p. 
13). Given how much of mathematical language relies on the use of domain specific 
symbolism and notation, knowing these graphemes and having the ability to accurately 
pronounce them is particularly important in mathematical practice. Furthermore, as 
mathematical symbols carry precise, sometimes detailed meaning, proper use is particularly 
important to assure the correct meaning of a grapheme is communicated. Accordingly, 
Higham (1998), Krantz (1997), Houston (2009), Alcock (2013), and Vivaldi (2014) all 
suggested revising proof writing by reading the proofs aloud to identify misuses of language. 
Moreover, knowing these sound-symbol correspondences is vital for understanding advanced 
mathematics lectures and instruction.   

The lexical component requires knowledge of the words used in a field. In particular, 
Scarcella (2003) distinguished between general words used in everyday language, academic 
words used across academic fields, and technical words that are field-dependent. She noted 
that knowledge of fixed expressions, which are “expressions that tend to stick together and 
cannot be changed in any way” (p. 14), is also part of the lexical component. In mathematics, 
academic words such as therefore, thus, since, and hence are often used to connect arguments 
of a proof. Further, words like if and or have mathematical meanings that differ from those in 
other English discourses (both common and academic), which must be understood by 
learners of mathematical language. The knowledge of many technical words (e.g. coprime, 
monic, Euclidean, abelian, and discriminant) and technical fixed expressions (e.g. relatively 
prime, absolutely convergent, continuously differentiable, Cartesian product, and Jordan 
block) is also necessary for successful communication. Moreover, as discussed above, 
knowledge of the various symbols and notation commonly used in practice is crucial for 
those who wish to use mathematical language. This knowledge would include understanding 
the meanings of the symbols what are the appropriate symbols to use in a given proof.   

The grammatical component of academic English entails knowledge of “the grammatical 
co-occurrence relations that govern the use of nouns” (Scarcella, 2003, p.15). For instance, 
Scarcella noted students need to learn the associated grammatical features for these technical 
words, “certain nouns […] are generally followed by prepositional phrases” and that some 
“verb + preposition combinations […] cannot be changed” (p. 16). This is particularly 
common in mathematics where objects are often described in relation to other objects, e.g. a 
function is continuous at a point, an integer is relatively prime to another integer, a group is 
isomorphic to another group, and a function maps from one space to another. Omitting the 
appropriate prepositional phrases leads to semantic ambiguity, an undesirable trait of 
mathematical language. To this point, Scarcella (2003) also indicated that the reference 
system of academic English insists that students should not use “pronouns[,] such as it[,] that 
do not have identifiable noun referents” (p.16), which is consistent with Houston’s (2009), 
Alcock’s (2013), and Vivaldi’s (2014) recommendations that students avoid using unclear 
referents in mathematical writing. Gillman (1987), Krantz (1997), Higham (1998), Houston 
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(2009), and Vivaldi (2014) all also noted the importance of using correct grammar in the 
language of mathematics, including using correct grammar with symbols and mathematical 
expressions.   

The sociolinguistic component involves developing competence in a variety of functions 
of language, including an understanding of the appropriateness of a given sentence in a 
particular context. Scarcella (2003) noted that “signaling cause and effect, hypothesizing, 
generalizing, comparing, contrasting, explaining, describing, defining, justifying, giving 
examples, sequencing, and evaluating” (p. 18) are all examples of academic language 
functions. In mathematics, some important language functions would include proving, 
contradicting, generalizing, defining, justifying, and evaluating. Moreover, a student of 
mathematics would need to learn what uses of mathematical language are appropriate in what 
contexts. For example, the mathematical writing demonstrated by a mathematician in class 
may include abbreviations and shorthand notations that are not generally accepted in formal 
writing. Further, the language used by mathematicians to explain mathematical phenomena 
may be more informal than the language used in a written proof. Students must recognize 
these distinctions in order to be proficient in the sociolinguistic component of mathematical 
language.   

The discursive component entails understanding and using linguistic forms necessary to 
communicate successfully and coherently. For instance, in every day language, greetings and 
parting phrases indicate to speakers the beginning and end of conversations. Scarcella (2003) 
noted academic English “includes specific introductory features and other organizational 
signals”  (p. 19) and that “writers’ presentation of ideas must be orderly and convey a sense 
of direction” (p. 19). In mathematical proof writing, this relates to Konior’s (1993) finding 
that professionally written proofs share a common construction using organizational signals 
and frames to guide readers through the proof, as well as mathematicians’ suggestions to 
make the structure of a proof clear in mathematical writing (AMS, 1962; Halmos, 1970; 
Gillman, 1987; Higham, 1998; Houston, 2009; Vivaldi, 2014).   
The Cognitive Dimension  

In order to become literate in an academic language, Scarcella (2003) argued learners 
“must obtain factual information as well as what is often called critical literacy, the ability to 
read for intentions, to question sources, and to identify others’ and one’s own assumptions” 
(p. 22). In other words, academic English requires cognitive components in addition to the 
linguistic components described above.  

The knowledge component entails accumulating facts, ideas, and definitions that aid 
students’ composition of texts. In particular, Scarcella (2003) referred to schema theory to 
explain that a student’s prior experience and knowledge affects his or her proficiency at 
language. Scarcella (2003) argued, since in schema theory the “comprehension process 
involves, among other things, assimilation of new knowledge into existing schemata and 
accommodation of existing schemata to fit new knowledge” (p. 23), so background 
knowledge is necessary for students to comprehend language. Since mathematical knowledge 
is of a particularly cumulative nature (Robert & Scharzenberger, 1991; Veel, 1999), it is 
natural that background knowledge is critically important to acquiring proficiency in 
mathematical language and proof writing.  

The higher-order thinking component involves the critical thinking required to speak 
persuasively and write coherently. With respect to academic writing, this component includes 
the abilities to “determine which ideas are relevant to their texts, […] support thesis 
statements, remain focused on these statements, and frequently refer back to them” (p.23-24). 
In addition, Scarcella (2003) noted readers must be able to “interpret what the readings state 
and what they do not state” (p. 23) and writers must determine what ideas are relevant and 
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how they contribute to the thesis of a text. In the mathematics education literature, Alcock 
and Weber (2005) found that undergraduate students failed to notice missing warrants when 
reading a mathematical proof. Moreover, the mathematical writing guides by Halmos (1970), 
Gillman (1987), Krantz (1997), and Higham (1998) all discussed the importance of excluding 
irrelevant information, yet choosing necessary arguments to conclude one’s proofs – 
emphasizing the necessity of brevity and conciseness when writing proofs. 

The strategic component of academic literacy involves “knowledge of cognitive and 
metacognitive strategies for reading, writing, speaking, and listening” (Scarcella, 2003, p. 
24). Examples of such strategies when writing in academic English are “brainstorming, 
comparing their experiences with the texts they are writing about, giving examples, citing 
experiences, and providing evidence form other texts on the subject” (p. 25). In the realm of 
mathematical proof writing, Weber (2001) has suggested the importance of strategic 
knowledge when constructing proofs and Weber, Brophy, and Lin (2008) have identified 
some reading strategies used by successful mathematics students including: rephrasing part of 
the argument, justifying a step within a proof, anticipating arguments while reading the proof, 
and re-reading the proof. 

The metalinguistic awareness component involves the capacity to reflect and think about 
the language one uses. With respect to academic English, Scarcella (2003) emphasized the 
importance of revising and editing in communicating successfully in academic situations. In 
particular, Scarcella suggested “identifying content that should be addressed or removed from 
a text, and moving text to make it more effective” (p. 25). The topics of revising, editing, and 
proofreading (and their importance) were addressed in some way in each of the mathematical 
guides discussed in the literature review (AMS, 1962; Halmos, 1970; Gillman, 1987; Krantz, 
1997; Higham, 1998; Houston, 2009; Alcock, 2013; Vivaldi, 2014).   
The Sociocultural/Psychological Dimension 

Finally, the sociocultural/psychological dimension of academic English emphasizes the 
fact that academic English “arises not just from knowledge of the linguistic code and 
cognition, but also from social practices in which academic English is used to accomplish 
communicative goals” (p. 29). In this way, attributes such as cultural norms, beliefs, 
motivations, values, and practices all constitute the sociocultural/psychological dimension of 
academic language. Merely knowing the linguistic code and meeting the cognitive demands 
of learning academic English is not enough for a student to be literate in academic English. 
There is little point in learning a language that one does not know how to use to successfully 
communicate with others in practice.  

Scarcella (2003) argued that competence in each of these three dimensions (linguistic, 
cognitive, and sociocultural/psychological) contributes to a learner’s proficiency in academic 
English. Some of the existing literature concerning mathematical proof construction can be 
tied to the cognitive dimension of this particular type of academic language. For example, 
Weber (2001) found that undergraduate students lacked background knowledge, made 
irrelevant inferences when constructing proofs, and lacked strategic knowledge needed for 
constructing proofs. Each of these findings relates to a component of the cognitive dimension 
of academic language discussed above. However, a discussion of the linguistic dimension of 
learning the language of mathematical proof writing seems to have been left out of the 
conversation in the mathematics education research literature. In one exception, Selden and 
Selden (2003) made a brief comment that stylistic clarity is a valued norm in mathematical 
practice. Since the authors specifically note an instance of an undergraduate student 
participant’s confusion experienced due to an inappropriate use of one variable being used in 
multiple ways, one may infer that these stylistic norms are related to the linguistic dimension 
of mathematical language. Expanding on this, Selden and Selden (2003) suggested, “it would 
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be interesting to investigate how such norms are maintained and, in particular, adopted by 
novices in a wider mathematical community” (p. 21).   

We are however, unaware of any studies of the type suggested by Selden and Selden, 
which consider the use of language in proof writing at the undergraduate level. As the 
language ‘norms’ mentioned by Selden and Selden (2003) have not be studied, we first to aim 
to identify the ways in which undergraduate students use mathematical language in what 
could be considered non-standard ways. As a result, in this study we investigated the 
following research question: What are some of the unconventional ways in which 
undergraduate students use mathematical language when writing proofs?  

Methods 
For this study, we examined written student exams that were collected from four different 

instructors of an introductory proof course at a public, research university in the US. It is 
noteworthy that due to the exploratory nature of this study, these exams were collected 
through a convenience sampling technique and therefore we make no claims of the 
representativeness of our findings in a wider population of undergraduate students. An 
introductory proof course is an undergraduate-level mathematics course that intends to 
introduce mathematics students to various types of mathematical proof and reasoning. Such a 
course is often a student’s first exposure to formal mathematical proofs and a prerequisite to 
other proof-based mathematics courses. The exam tasks involving student proof writing were 
analyzed for use of mathematical language that we believed to be unconventional according 
to our own perceptions of the way that mathematicians communicate in formal writing 
settings.   

In this exploratory study, data were analyzed using open coding in the style of Strauss and 
Corbin (1998). Fourteen categories of unconventional uses of mathematical language 
emerged from the data. Once we had refined descriptions for each one of these fourteen 
categories, we moved into a second stage of analysis in which we considered how the 
linguistic dimensions of Scarcella’s conceptual framework for academic English related to 
each one of those categories. 

Results 
We found that the fourteen categories of unconventional use of mathematical language in 

undergraduate proof writing concerned students’ difficulties constructing complete and 
unambiguous mathematical sentences, making clear the flow of the argument, introducing 
variables, and using mathematical symbols. Furthermore, we found that each of these 
categories can be mapped to one or more linguistic components as described in Scarcella’s 
(2003) conceptual framework for academic English. 
Constructing Complete and Unambiguous Mathematical Sentences 

Four of the emerging categories of unconventional uses of mathematical language were 
related to the construction of complete and unambiguous sentences in mathematical proof 
writing. These four categories are: 1) lacks proper grammar and punctuation, 2) uses non-
statements, 3) uses unclear referents, and 4) uses lay speak.  

First, Scarcella argued that mathematical English is a subset of academic English. Since 
proof writing is still writing in the English language, a writer of a proof should use capital 
letters to begin a sentence and use proper punctuation to separate clauses and end the 
sentence. As such, a proof that lacks proper grammar and punctuation is an example of an 
unconventional use of mathematical language. For instance, one student wrote the passage 
shown in Figure 1. Based on this mathematical writing, it is unclear where the sentences 
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begin and end.  In particular, this category is related the grammatical component of 
mathematical proof writing, as complete sentences should be used throughout a proof. 

   
 Because !∘" is a bijection ∃#,"$�% such that !∘"#=& and 

!∘"$=!∘"# and $=# since " and !∘" are bijections then '=(=$=#  
!∘"'=!∘"(=!)=!(*) 

 

   
Figure 1.  Mathematical writing that lacks proper grammar and punctuation. 

Non-statements are a collection of words and symbols in mathematical language, which 
lack meaning and are not full sentences. Thus using non-statements entails that a student 
writes phrases, which are not complete sentences. Specifically, words in mathematical 
English such as “suppose”, “let”, and “assume” should precede both an object and a 
statement about the object. For example, “Suppose n is an integer” both introduces the 
variable n and describes the variable n as an integer, providing further information describing 
n.  However, when one student wrote the non-statement “Suppose (+∘,)−1.”, this student 
has not supposed anything about the relation (+∘,)−1. In English this would be akin to 
saying “Suppose a cat” – this statement says nothing about the cat, and a listener would likely 
ask “Suppose what about a cat?” Such non-statements are not grammatical sentences and are 
thus related to the grammatical component of mathematical proof writing.  

Using unclear referents indicates that a student has used a pronoun such as “this”, 
“these”, “it”, or “they” without specifying the necessary antecedent or antecedents. Such 
word use is unconventional as it introduces ambiguity into a written proof. For example, 
when one student wrote, “Thus, it is injective” without any explicit discussion of a function, 
or if there are multiple functions present within the proof, a reader would be unsure what or 
which object is injective. We note that using unclear referents in mathematical proof writing 
is related to the grammatical component of Scarcella’s framework of academic English.  
While the inclusion of antecedents to avoid unclear references is suggested in English 
grammar, we stress that it is particularly important to mathematical proof writing – where 
precision and rigor are key.  

A proof written using lay speak, or common language, means that the proof is written 
using informal and non-mathematical words.  Such a proof can indicate a student’s 
unfamiliarity with both the mathematical language and content.  Moreover, using a non-
standard vernacular for mathematical proofs can introduce confusion and ambiguity.  For 
example, in proving that the sets %0={0}, %+-={1,3,5,…}, %+.={2,4,6,…}, %−-={−1,−3,−5,…}, 
and %−.={−2,−4,−6,…} form a partition of ℤ, one student wrote the passage in Figure 2.  The 
phrases “positive sets”, “negative sets”, “the evens”, “the odds”, and “share nothing” are too 
imprecise to prove that %0,"%+-,"%+.,"%−-,"and"%−. are pairwise disjoint; we link using lay 
speak in mathematical proofs to the lexical component of academic English.  It is noteworthy 
that mathematicians use informal language when writing a proof sketch or a back-of-the-
napkin proof.  However using lay speak is unconventional in complete written proofs, so a 
writer must be cognizant of this distinction.  Thus, we also note that this category of 
unconventional use of mathematical language is related to the sociolinguistic component of 
academic English.   

   
 All are pairwise disjoint, since the positive sets share nothing the 

with negative sets and the evens share nothing with the odds and {0} 
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share nothing with the rest. 
   

Figure 2.  Mathematical writing that uses lay speak. 
Making the Flow of the Argument Clear 

Four of the emerging categories of unconventional uses of mathematical language were 
related to making the flow of the argument clear. These four categories are 1) lacks verbal 
connectives, 2) fails to state assumptions of hypothesis, 3) fails to make explicit the structure 
of the proof, and 4) includes statements of definitions.  

A proof lacks verbal connectives when the author does not sufficiently use English words, 
in particular conjunctive adverbs (such as ‘therefore’, ‘since’, ‘so’, ‘thus’, ‘then’, and 
‘hence’), to connect arguments and sentences in a proof. Without such words, a reader would 
be unsure whether a statement is being assumed or being concluded from previous assertions.  
Moreover, it would be unclear where the hypothesis of a statement ends and where the 
conclusion ends. The following work is an example of a student’s proof that lacks verbal 
connectives: 

   
 let ',"#�% s.t. 

     ',#�, 
     ,=+∘+−1 
     ',#�+∘+−1 
∃("s.t. ',(�+−1 and (,#�+ 
"""""(,#�+"�#,(�+−1  
"""""#,(�+−1�(,#�+" 

 

   
Figure 3.  Mathematical writing that lacks verbal connectives. 

Such a proof lacking verbal connectives would show the author’s lack of proficiency in 
both the discursive and sociological components of Scarcella’s (2003) framework. Since the 
proof lacked connecting words to indicate the direction of ideas or the structure of the 
argument, this proof indicates the author’s lack of proficiency in the discursive component. 
Moreover, constructing a proof lacking verbal connectives indicates that the author of the text 
may not be aware of the appropriate format of complete proofs. While a proof similar to the 
work shown in Figure 1 may be appropriate as a proof sketch, it would likely be 
inappropriate to write a complete proof in this way. Thus, writing proofs that lack verbal 
connectives would indicate that the author does not know in what context this type of 
presentation is appropriate and thus lacks proficiency in the sociolinguistic component.   

A proof that fails to state assumptions of hypothesis does not clearly state what is being 
assumed in each part of the proof. For example, in a proof of the statement “Let , and + be 
relations on a set %. Prove: +∘,−1=,−1∘+−1.”, one student began a proof as shown in 
Figure 4:  

   
 Suppose +∘,−1 s.t. ',#�+∘,−1. 

Since ',#�(+∘,)−1, then #,'�(+∘,). 
Since #,'�(+∘,), then (,'�+ and #,(�,. 

 

   
Figure 4.  Mathematical writing that fails to state assumptions of the hypothesis. 
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Besides beginning the proof with the non-statement discussed above, the student did not 
make it clear to the reader what he or she was assuming about the relations , and + (i.e. that 
they were both relations on a given set %). Further, a proof of a claim of set equality, like the 
statement above, usually requires two steps, showing that one set is a subset of the other and 
vice-versa. However, based on the writing, the structure of argument of the proof is not made 
clear to the reader, so Figure 4 is also an example of a proof where the writer needs to make 
structure the proof explicit. Both of these unconventional uses of mathematical writing make 
reading and understanding the proof more difficult for the reader, as failing to state the 
assumptions of the hypothesis and failing to make explicit the structure of the proof hide the 
flow of the logic of the proof. As a result, these unconventional uses of mathematical writing 
are tied to the discursive component of Scarcella’s (2003) framework for academic English.   

Finally, including stating of definitions—that is, including entire statements of definitions 
within a proof—is another category of an unconventional use of mathematical language. 
Including lengthy definition statements can disrupt the flow of the proof and distract readers 
from the argument at hand. For example, in another student’s proof of the statement “Let , 
and + be relations on a set %. Prove: +∘,−1=,−1∘+−1.”, the student included these 
following statements as shown in Figure 5.   

   
 So +∘,"=),/�%"×"0""∃*�1"s.t."),*"and"*+/} 

and +∘,−1=/,)�0"×"%""∃*�1"s.t.""/+*"and"*,)}. 
 

   
Figure 5.  Mathematical writing that includes statements of definitions. 

These statements of definitions may be superfluous and distract the reader from the 
argument of the proof. Naturally, keeping in mind the statement of a related definition may 
be crucial when constructing the argument for a proof; however, some mathematicians (e.g. 
Selden & Selden, 2004) disagree that the definition statement should be included in a written 
proof. Thus, a writer should be aware of the situations in which including an entire statement 
of a proof is or is not appropriate. That is to say, stating definitions in a proof shows that the 
writer may lack proficiency in the sociolinguistic component of the linguistic dimension of 
Scarcella’s framework. While we agree that this category is likely to be controversial due to 
the importance of applying definitions when constructing proofs we believe that it is 
worthwhile to investigate the extent to which students include entire statements of definitions 
in their written proofs and the extent to which mathematicians agree or disagree that this is 
indeed an unconventional use of mathematical language. 
Introducing Variables in Mathematical Proof Writing 

Four categories of students’ unconventional uses of mathematical language emerged that 
were related to the introduction of variables in mathematical proof writing. These categories 
are 1) overuses variable names, 2) uses unspecified variables, 3) uses the universal quantifier 
instead of “let”, and 4) uses overquantified variables.   

A proof that overuses variable names uses a single variable name to represent more than 
one value or object. For example, one student wrote “Suppose ) divides * and ) divides /, 
then ∃2�ℤ such that *=)2 and ∃2�ℤ such that /=)2”, then the variable name 2 has been 
overused. In particular, as it stands this statement assumes that * and / are the same integer. 
Thus, it is necessary for the student to introduce separate integers as the divisors of * and /. 
This category of unconventional use of mathematical language can be mapped to both the 
lexical and sociolinguistic components. This unconventional use is tied to the lexical 
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component as it shows that the student does not recognize how to choose and subsequently 
use the variables in an unambiguous manner. Further, overusing variable names is tied to the 
sociolinguistic component of mathematical language because one must be able to 
differentiate between situations in which repeating variables names may be acceptable and 
when it is unacceptable. For example, it may be appropriate to repeat the use of variable 
names in different sections of the same proof–for instance in a proof by cases, a variable may 
be used differently in the separate cases. It is also reasonable that a proof sketch may use the 
same variables for different purposes, which would be an acceptable use of variables as these 
sketches are not for public consumption. Thus, if a student overuses variable names within a 
proof, this suggests that the student may not understand in which contexts these uses of 
variable names are appropriate and may lack proficiency in the sociolinguistic component.   

Using a universal quantifier instead of “let” suggests that a student has made an 
argument for every element of a set, rather than an arbitrary element of that set. Many proofs 
require manipulation of an arbitrary representative element of a set to show some property 
holds for the entire set; such proofs begin with a statement such as “Let )�ℕ.” stating that a 
is in a particular set of numbers. However, some students instead stated “∀)�ℕ.”, which 
can be read “for all a in N”. These two statements “Let )�ℕ."Then for *�ℕ,"")~*.” and 
“∀)�ℕ."Then.for.*�ℕ,"")~*.” are semantically different based on the word/symbol choice 
between the word ‘let’ and ‘∀’. Using a universal quantifier instead of “let” or in conjunction 
with the word “let” when introducing a variable suggests that the writer lacks a proficiency in 
the lexical component of mathematical proof writing. While the phrase “∀)�ℕ” is not 
uncommon in mathematical notation, it is a prepositional phrase and thus is not a 
grammatical, complete sentence without a subject and a predicate. In this way, this 
unconventional use of mathematical language can be a particular case of a non-statement and 
is also related to the grammatical component of Scarcella’s (2003) framework.  

In a similar vein, using overquantified variables indicates that a student uses both 
mathematical quantifiers and words such as “let” or “suppose” immediately preceding them. 
For example, one student wrote “Let ∀),*,/�ℤ.”, we claim that this is an unconventional 
use of mathematical language as the variables are introduced both with the word “let” and 
with the universal quantifier. As this statement is not an appropriate use of the universal 
quantifier and is not a complete sentence, such a use of overquantified variables suggests that 
the writer lacks a proficiency in both the lexical and grammatical components of 
mathematical language.  

Unspecified variables are variables used in a proof, but they have not been designated the 
set to which the variable belongs. Failing to do so can introduce ambiguity to a proof. For 
example, one student wrote “Let '=)*"” but fails to indicate what set ) and * belong to, ' 
could be a rational or irrational number. We note that this category can also include 
incomplete specifications of the set to which a variable belongs; for example, when a variable 
is simply introduced as an integer, whereas it necessarily should be introduced as an integer 
greater than 3. Using unspecified variables suggests that a student lacks proficiency in the 
grammatical component of the mathematical register. Using a variable without specifying the 
set, or without sufficiently specifying the set, to which it belongs is comparable to using a 
pronoun without a clear referent. While the use of the variables may not be incorrect 
lexically, their use with respect to the words and sentences surrounding them creates 
confusion.  
Using Mathematical Symbols in Mathematical Proof Writing 
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Two categories of students’ unconventional uses of mathematical language emerged that 
were related to using mathematical symbols in mathematical proof writing. These categories 
are 1) using formal propositional logic and 2) mixing mathematical notation and text. 

Using formal propositional logic is another category of unconventional use of 
mathematical language. For example, in a proof of the task, “Let '�3. Let (�ℝ. Show that 
'+(�ℚ if and only if (�ℚ” one student wrote “So ∃)�ℤ�∃*�ℕ()*='+().”  In this 
example, we claim that the student’s focus on symbolic notation and use of the logical 
conjunction, �,"is unconventional of mathematical proof writing. While propositional logic 
certainly is mathematical, using phrases of propositional logic is non-standard for written 
proofs in most areas of mathematics2. Phrases of propositional logic are commonly used in 
early sessions of introduction to proof courses; however, they are not used in typical written 
proofs. Thus, a writer needs to recognize the situations in which using formal propositional 
logic is and is not appropriate. As such, this unconventional use of mathematical language is 
tied to the sociolinguistic component of mathematical language.   

  
Categories Description of the Category Linguistic 

Component 
Lacks proper 
grammar and 
punctuation 

Student does not attend to general rules of 
English grammar and punctuation – which is 
important not only in English but also in 
mathematical language. 

Grammatical 

Uses non-statements Student uses a collection of words and symbols 
that are not full sentences.   

Grammatical 

Uses unclear 
referents 

Student uses “this”, “these”, “it”, “they” and 
other pronouns without specifying to what they 
are referring.   

Grammatical 

Uses lay speak Student uses informal/non-mathematical words 
in sentences within a proof.   

Lexical and 
Sociolinguistic 

Lacks verbal 
connectives 

Student does not use verbal conjunctions, 
focusing on symbolic representation instead. 

Discursive and 
Sociolinguistic 

Fails to state 
assumptions of 
hypothesis 

Student does not explicitly state what is being 
assumed about the mathematical objects in the 
proof.  

Discursive 

Fails to make 
explicit the structure 
the proof 

Student does not indicate the general structure of 
the proof – such as introductory/closing 
statements or comments on the status of an 
argument. 

Discursive 

Includes statements 
of definitions 

Student provides entire statements of definitions 
within a proof.   

Sociolinguistic 

Overuses variable 
names 

Student uses the same variable name to 
represent different values.   

Lexical and 
Sociolinguistic 

Uses universal 
quantifier instead of 
"let" 

Student uses the universal quantifier when 
selecting an arbitrary element of a set. 

Lexical and 
Grammatical 

Uses overquantified 
variables 

Student uses both mathematical quantifiers and 
words such as "let" or "suppose" to introduce 

Lexical and 
Grammatical 

                                                
2 Naturally, one exception is the field of logic.  
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variables. 
Uses unspecified 
variables 

Student uses variables without first specifying 
the set to which they belong. 

Grammatical 

Uses formal 
propositional logic 

Student uses phrases of propositional logic in a 
proof – for example, using logical symbols. 

Sociolinguistic 

Mixes mathematical 
notation and text 

Student uses mathematical symbols in prose 
inappropriately. 

Lexical and 
Sociolinguistic 

Table 1.  Categories of unconventional use of mathematical language. 
 
Mixing mathematical notation and text indicates that a student has inappropriately used 

mathematical symbols or notation within prose. For example, students wrote proofs including 
included statements “So there are 19 possible differences that are ≥−9 and ≤9” or “since 
4⊆% and ⊆1”. We claim that this is an unconventional use of mathematical language since 
binary operators such as ≥ and ⊆ require notation on both the left and right sides of the 
symbols. As knowledge of how mathematical operators function within language is related to 
the lexical component, we contend that a proof including these types of unconventional uses 
indicates the writer’s lack of proficiency of the lexical component of the language of 
mathematical proof writing. One may note however, that it is not uncommon for 
mathematicians to use these symbols as shown in the examples of unconventional use when 
writing in informal settings. That is to say, some mathematicians may use binary operators in 
this way as a short hand when writing notes or even on the board in class to save time. Thus a 
student mixing mathematical notation and text in a written proof would indicate the student’s 
lack of proficiency in the sociolinguistic component since the student may not be aware that 
these ‘short hand’ uses of notation are inappropriate in formal settings. 

These fourteen categories describe different ways that undergraduate use mathematical 
language in unconventional ways when writing proofs.  The categories, brief descriptions of 
each, and their relations to the linguistic components of academic English are presented in 
Table 1. 

Discussion 
The language of mathematical proof writing is a particularly rigorous subset of academic 

English. As such, we believe an undergraduate mathematics student’s introduction to this 
mathematical language is somewhat similar to an English language learner’s introduction to 
academic English. In this paper, we described fourteen unconventional uses of mathematical 
writing found in undergraduate student-generated proofs and related these unconventional 
uses to the lexical, grammatical, sociolinguistic, and discursive components of the linguistic 
dimension of academic English. Due to the exploratory nature of this study, we make no 
claims of the generality or the exhaustive nature of these categories of unconventional uses of 
mathematical language. 

We have, however, found these components to be useful for understanding how the 
unconventional uses of mathematical language stray from what we find to be standard 
mathematical language at the advanced undergraduate level. Understanding how the different 
components of the linguistic dimension of academic English relate to these unconventional 
uses can help us to investigate how students understand and struggle with the linguistic 
aspects of mathematical language. In particular, understanding how students navigate these 
linguistic components can lead to improved teaching and learning of how to write proofs at 
the undergraduate level. By considering the related linguistic components of the types of 
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unconventional uses of mathematical language, we can begin to understand some ways that 
undergraduate students may be struggling with mathematical proof writing.  

For instance, the application of Scarcella’s (2003) framework can help educators to 
improve upon instruction of mathematical language, since instruction to address a lack of 
competence in one linguistic component may differ significantly from instruction to address a 
lack of competence in another component. For example, teaching a student to correct the use 
of non-statements, an unconventional use of mathematical language that is related to the 
grammatical component of proof writing, might entail instructing the student about the 
necessary parts of a sentence, about the use of mathematical words such as “suppose”, “let”, 
and “assume”, and why non-statements are ungrammatical and lack mathematical meaning. 
On the other hand, proofs and statements that are examples of unconventional uses of 
mathematical language that are related to the sociolinguistic component of proof writing are 
not necessarily incorrect. For instance, the example of a student using formal propositional 
logic described above makes perfect mathematical sense. Thus, teaching a student to correct 
unconventional uses of mathematical language related to the sociolinguistic component is not 
a matter of instructing the student how to write mathematical statements, it is a matter of 
teaching students to be aware of the particular situation and context in which they are 
working. This could involve providing examples of situations in which these uses are 
appropriate and inappropriate, and pointing out why this varies depending on the particular 
situation.  

We agree with Scarcella (2003) that instructors should provide direct instruction to their 
students, including calling explicit attention to form and giving instructional feedback 
concerning their use of academic English. While introduction to proof courses intend to 
introduce mathematics students to various types of mathematical proof and reasoning, it may 
be the case that these courses should also include more explicit discussion of the linguistic 
components of mathematical language.     

This application of Scarcella’s (2003) conceptual framework for academic English to the 
investigation of mathematical proof writing opens the doors to new avenues of research in an 
area that is both important and under-researched in mathematics education. In particular, we 
claim that having a clearer view of the language of mathematical proof writing will enable 
researchers to understand students’ difficulties with reading and writing mathematics. Further 
our discussion of unconventional uses of mathematical language in undergraduate proof 
writing lead to some interesting, future research questions: How do mathematicians view and 
describe the linguistic norms of mathematical proof writing at the undergraduate level? How 
do undergraduate mathematics students understand these norms? To what extend do students’ 
perceived views of these norms align with those of the professional mathematical 
community? How do students’ understandings of these norms develop and change throughout 
a semester of an introduction to proof course? We believe that answering these and other 
related questions would constitute a significant contribution to our current understanding of 
mathematical language in general, and the language of mathematical proof writing in 
particular. 
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 This paper explores the role examples play as mathematicians formulate conjectures. 
Although previous research has examined example-related activity during the act of proving, 
less is known about how examples arise during the formulation of conjectures. We 
interviewed thirteen mathematicians as they explored tasks requiring the development of 
conjectures. During the interviews, mathematicians productively used examples as they 
formulated conjectures, particularly by creating systematic lists of examples that they 
examined for patterns, an activity that we call “Exhaustive Example Generation.” The results 
suggest further research and pedagogical implications for explicitly targeting examples in 
conjecturing, and the study contributes to a body of literature that points to the benefits of 
exploring, identifying, and leveraging examples in proof-related activity.  
 
Key words: Examples, Mathematicians, Conjecturing, Proof   
 

Introduction and Motivation 
Formulating and proving mathematical conjectures are key aspects of mathematical practice at 
all levels (Ball, Hoyles, Jahnke, & Movshovitz-Hadar, 2002; Knuth, 2002; Sowder & Harel, 
1998), and yet there is much evidence that gaining facility with proof-related activities is 
challenging for students (e.g., Healy & Hoyles, 2000; Kloosterman & Lester, 2004; Knuth, 
Choppin, & Bieda, 2009; Porteous, 1990). Following a tradition of research investigating 
mathematicians’ thinking (Carlson & Bloom, 2005; Weber, 2008; Weber, Inglis, & Mejia-
Ramos, 2014), we have previously studied the work of mathematicians, who are themselves 
adept at proof-related activities, in order to better understand how to help students formulate 
and prove conjectures (Lockwood, Ellis, Dogan, Williams & Knuth, 2012; Lockwood, Ellis, 
& Knuth, 2013). In those studies we found evidence that mathematicians select and use 
examples strategically in their proving activities, which concurs with others’ findings (e.g., 
Epstein & Levy, 1995). To date, we have studied the roles of examples in mathematicians’ 
proving of conjectures, but not in their formulating of conjectures. In this paper, we extend 
our previous work by studying mathematicians’ example-related activity as they engage in 
conjecture development. We seek to answer the questions: What aspects of mathematicians’ 
example-related activity enable the productive formulation of mathematical conjectures? In 
what ways does exhaustive example generation facilitate mathematicians’ formulation of 
mathematical conjectures? Our examination details some of the ways in which 
mathematicians systematically generate and use examples in generating conjectures, and we 
discusses implications for the teaching and learning of proof.  
 

Relevant Literature and Theoretical Perspective 
We define an example as Bills and Watson (2008) do, as “any mathematics object from which 
it is expected to generalize” (p. 78). Although much of the existing literature emphasizes the 
limitations of example-based reasoning, particularly as a means of justification, a number of 
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researchers have suggested the potential value examples may play in proof-related activity (e.g., 
Buchbinder & Zaslavsky, 2011; Iannone, Inglis, Mejia-Ramos, Simpson, & Weber, 2011; 
Weber, 2010). Other researchers have similarly reported that students and mathematicians 
display strategic uses of examples that benefit their proof-related activities (e.g., Antonini, 2006; 
Garuti, Boero & Lemut, 1998; Pedemonte, 2007; Sandefur, Mason, Stylianides, & Watson, 
2013; Weber, 2008). As Epstein and Levy (1995) point out, “Most mathematicians spend a lot of 
time thinking about and analyzing particular examples….it is probably the case that most 
significant advances in mathematics have arisen from experimentation with examples” (p. 6). 
Likewise, Harel (2008) notes that, “Examples and non-examples can help to generate ideas or 
give insight [about the development of proofs]” (p. 7). Similarly, our previous work suggests that 
examples can be meaningful and helpful both for students (Ellis, et al., 2012) and for 
mathematicians (Lockwood, et al., 2012; Lockwood, et al., 2013). In focusing on 
mathematicians, we recognize that there may be some discrepancies between mathematicians’ 
practice and how students themselves might develop a particular practice. However, we agree 
with a number of researchers who argue for the importance of being informed about 
mathematicians’ thinking and activity in spite of such potential discrepancies (e.g., Carlson & 
Bloom, 2004; Weber, et al., 2014). 

In this paper, we focus on one particular aspect of the role of examples in proof-related 
activity by examining the activity of conjecturing. While other researchers have studied 
mathematicians’ conjecturing activities (such as Belnap & Parrott, 2013, who identify themes in 
comparing novice and expert conjecturers), here we focus on the role of examples in the 
development of conjectures. By seeking to identify potentially fruitful aspects of example-related 
activity in the development of conjectures, our work extends both research involving examples in 
proof and research involving conjecturing.  

Lannin, Ellis, and Elliot (2011) define conjecturing as “reasoning about mathematical 
relationships to develop statements that are tentatively thought to be true but are not known to be 
true (to the conjecturer)” (p. 13). We adopt this definition and note that whether or not a 
statement is a conjecture may depend on who is conjecturing – for example, a middle school 
student might make a conjecture that would not be considered a conjecture by someone more 
mathematically mature. Lannin, et al. also suspect that the role of examples in conjecturing could 
be significant, noting “Conjectures may be developed through examining specific examples and 
then reasoning inferentially from specific situations…” (p. 14). Our interest in conjecturing arose 
during interviews in which we studied mathematicians’ uses of examples in proving. In that 
work, we developed and refined a framework (Lockwood et al., 2012; Lockwood et al., 2013) 
categorizing example types, example uses, and example strategies. Although the framework is 
not presented here due to space, it served as a broader context to guide data analysis. In 
conducting interviews with this framework in mind, we realized that there might be value in 
asking mathematicians more open-ended questions, to see how their example-related activity 
might change as they conjectured rather than proved. We thus used the framework of example-
related activity as a guiding lens with which to situate the current study.  

 
Methods 

We conducted a sequence of two hour-long interviews with mathematicians. Thirteen of 
these mathematicians participated in an initial interview in which they were presented with one 
or two mathematics tasks, and ten continued for a second interview in which they were presented 
with two different tasks. The participants were from a large Midwestern university and included 
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seven professors, three postdocs, and three lecturers, with eight males and five females. Twelve 
participants hold a Ph.D. in mathematics, and one participant holds a Ph.D. in computer science. 
There were a variety of mathematical areas represented, including topology, number theory, and 
analysis. A member of the research team (an advanced mathematics PhD student, also the second 
author) conducted the interviews. During the interviews, the mathematicians were given time to 
work on the tasks on their own and were asked to think aloud; generally, the interviewer did not 
interrupt except to ask clarifying questions or to answer questions from the mathematicians. The 
mathematicians’ audio and written work were recorded using Livescribe pens, which keep live 
records of the mathematicians’ spoken words and written work. 

For this paper, we report on data from two tasks: The Interesting Numbers task from 
Interview 1, and the Fixed Point task from Interview 2. The Interesting Numbers task states: 
“Most positive integers can be expressed with the sum of two or more consecutive integers. For 
example, 24 = 7 + 8 + 9, and 51 = 25 + 26. A positive integer that cannot be expressed as a sum 
of two or more consecutive positive integers is therefore interesting. What are all of the 
interesting numbers?” One approach to solving this task is as follows: It can be shown that the 
sum of any two or more consecutive positive integers has an odd factor greater than 1. 
Conversely, if a positive integer N has an odd factor k > 1, it can be shown that N can be written 
as the sum of either k or 2N/k consecutive positive integers, whichever is smaller. The interesting 
numbers are thus exactly those positive integers that have no odd factors greater than 1 (in other 
words, powers of 2). 

The Fixed Point task states: “For each positive integer n, let 𝐹(𝑛) = ⌈𝑛
2⌉ + ⌈𝑛

4⌉ + ⋯ + ⌈ 𝑛
2𝑘⌉ , 

where k is the unique integer such that 2𝑘−1 ≤ 𝑘 < 2𝑘 and ⌈𝑥⌉ denotes the smallest integer 
greater than or equal to x. For which numbers n is 𝐹(𝑛) = 𝑛?”  One approach to solving this 
task is as follows: It can be shown that 𝐹(2𝑖– 1)  =  2𝑖– 1 for any positive integer i. It can also be 
shown that 𝐹(2𝑛) =  𝑛 + 𝐹(𝑛) for any positive integer n, so if 𝐹(𝑛) =  𝑛, then 𝐹(2𝑛) = 2𝑛. It 
follows that 𝐹(2𝑖– 2𝑗) =  2𝑖– 2𝑗 for any positive integers i > j. Conversely, it can be shown that 
𝐹(𝑛)  >  𝑛 for any integer n not of the form 2𝑖– 2𝑗. Therefore 𝐹(𝑛) = 𝑛 exactly when 𝑛 =
 2𝑖– 2𝑗 for positive integers i > j. 

The tasks were chosen because: a) they were accessible to the mathematicians (i.e., they did 
not require specialized content knowledge and were easy to explore) but were not trivial (i.e., a 
solution was not well known or immediately available), b) they were accessible to the 
interviewer, allowing her to ask relevant questions and engage with the mathematicians, and c) 
they involved open-ended questions that would facilitate conjecturing. These were not presented 
as “prove or disprove” statements that already specified a conjecture, but rather these tasks 
required that certain numbers and sets be characterized. Through such activity, the 
mathematicians developed conjectures that they could then attempt to prove. The Interesting 
Numbers task came from Andreescu, Andrica, & Feng (2007), and the Fixed Point task came 
from Krusemeyer, Gilbert, & Larson (2012). 

For analysis, the interviews were transcribed. In addition, the Livescribe pen yields both an 
audio record of the interview and a pdf document of the interviewee’s written work that can be 
played back, so one can see and hear what was written and said in real time. To analyze these 
interviews, two members of the research team independently coded and then discussed the same 
four Interview 1 interviews using Lockwood, et al.’s (2012, 2013) framework for example types, 
uses, and strategies. In coding the interviews, the researchers also developed emergent codes that 
were not captured by the previous framework. After the four interviews were initially coded, 
compared, and discussed, the remaining nine Interview 1 interviews were divided up and coded. 
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Similarly, for Interview 2 two members of the research team each independently coded the 
transcripts and then came together to discuss each of the transcripts and come to consensus. The 
two researchers ultimately agreed (through discussion) on the codes for all of the interviews. 
After completing the coding of all the interviews, the researchers met to discuss phenomena and 
themes that pertained especially to conjecturing and revisited relevant episodes in the transcripts. 
 

Results 
In this paper we elaborate a phenomenon called Exhaustive Example Generation, in which 

the mathematicians systematically and, in some sense exhaustively, went through every example 
in a finite sequence in order to gather information. This was a new use of examples that had not 
previously emerged in our framework of example types, uses, and strategies. In Exhaustive 
Example Generation, the mathematicians sequentially exhausted a list of examples and reflected 
back on these organized example lists while working towards developing a conjecture. This 
subsequent reflection is very important, as it suggests that the example generation served to 
create an exhaustive set of examples from which the mathematicians could reason. Among the 
thirteen mathematicians we interviewed, ten of them engaged in Exhaustive Example Generation 
while working on the Interesting Numbers task, and four of them did so while working on the 
Fixed Point task. This activity was productive for some mathematicians, as we explore below, 
suggesting that there is potential value in the methodical generation of examples in formulating 
conjectures. We specify three main affordances of Exhaustive Example Generation (Conjecture 
Development, Lemma Development, and Conjecture Breaking), which arose as consequences of 
three main underlying strategies (Pattern Searching, Identifying Structure Between Examples, 
and Identifying Structure Across the Data Set). We elaborate these ideas below. 

 
Affordances of Exhaustive Example Generation 

Many of the mathematicians used Exhaustive Example Generation to their benefit, but the 
specific affordances of the activity varied, depending on how the mathematician used it. Here we 
report on three different affordances that the mathematicians gained as they engaged in 
Exhaustive Example Generation.  

Conjecture Development. For some of the mathematicians, Exhaustive Example Generation 
contributed directly to the development of a conjecture. To illustrate this phenomenon, we 
present Dr. Sullivan’s (a professor) work on the Interesting Numbers task. Dr. Sullivan began by 
computing a sequence of small sums: 1+2=3, 2+3=5, 3+4=7, and 4+5=9. From these examples, 
he recognized that odd numbers greater than 1 could not be interesting. He proved this fact 
algebraically by showing that any odd number 2n+1 is the sum of n and n+1. Continuing with 
algebra, he then looked at general sums of 3, 4, and 5 consecutive numbers beginning with n. 
Each case gave him an algebraic expression (3n+3, 4n+6, 5n+10) representing numbers that 
were not interesting, from which he tried to generalize. 

After some time, Dr. Sullivan recognized that his algebraic manipulation had not illuminated 
a conjecture, and he said, “Okay. So at this point, I would start over and try and do something a 
little more visual.” He then drew a number line and began to write out the numbers. Because Dr. 
Sullivan already knew that the odd numbers were not interesting, he crossed those out as he 
wrote. He then proceeded to go through the even numbers and cross out those of the form 3n+3, 
4n+6, and 5n+10 for some n (Figure 1). After working through the numbers 1 through 21, he 
concluded, “well, the answer does kind of pop out that it's the powers of 2, doesn't it?” By 
actually writing out the examples and then crossing out non-interesting numbers, the pattern of 
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numbers not crossed out – 1, 2, 4, 8, and 16 – stood out in his figure. His construction of the 
complete table, and his subsequent reflection on it, suggest the Exhaustive Example Generation 
phenomenon – he systematically gathered a complete sequence of examples and deduced 
patterns from them. 

 

 
Figure 1: The “visual” list from which the powers of 2 conjecture emerges 

 
We perceive that Dr. Sullivan’s prior knowledge and experience made him attuned to this 

sequence of numbers as powers of 2. Dr. Sullivan continued to pursue the powers of 2, saying, 
“Okay, so, um, so at this point I would maybe try the next one, 32,” and he proceeded to write a 
conjecture that interesting numbers are powers of 2. To us, Dr. Sullivan’s careful construction of 
examples allowed for what was to Dr. Sullivan a common, familiar pattern to emerge visually on 
the page. His work suggests that the methodical generation of examples (Exhaustive Example 
Generation) directly facilitated the efficient formulation of the conjecture.  

Lemma Development. Some of the mathematicians made observations about the examples 
they generated that led to the statement and proof of lemmas. One example of this can be seen in 
Dr. Sullivan’s work described above. After generating a sequence of small sums (1+2=3, 2+3=5, 
3+4=7, and 4+5=9), he observed that all of the odd numbers greater than 1 could be obtained as 
the sum of two consecutive numbers. He then formulated this as a lemma (odd numbers are not 
interesting) and produced an algebraic proof.   

Another example can be seen in Dr. Taylor’s (a postdoc) work on the Interesting Numbers 
task. Dr. Taylor first looked at the numbers 1 to 11 and tried to write each one as a sum of 
consecutive numbers (Figure 2a). He noticed that odd numbers were sums of 2 consecutive 
numbers and multiples of 6 were sums of 3 consecutive numbers. Dr. Taylor formalized these 
observations as lemmas and produced algebraic proofs of each statement (Figure 2b). Regarding 
multiples of 6, he said,  

 
Dr. Taylor:  So, if your number is divisible by 6, well, you divide by 3, you get some k. So like 

  3k is equal to whatever your number is, say A. And so, it's k+k+k equals A. And  
  then you just make one of them bigger and one of the smaller.”  

 
In the final step of his argument, he replaced one of the k terms in the sum with k+1 and replaced 
one of the k terms in the sum with k-1, writing (k-1)+k+(k+1) = A. For Dr. Taylor, this proved 
that multiples of 6 can be written as sums of 3 consecutive numbers. 
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Figure 2a: Dr. Taylor’s lists of examples  Figure 2b: Dr. Taylor’s algebraic proofs 

 
At this point, Dr. Taylor tried 14 since it was the next smallest number not ruled out by his 

lemmas. Looking at 10 (written as 1+2+3+4) and 14 (written as 2+3+4+5), he recognized that 
two times an odd number can always be written as the sum of 4 consecutive numbers.  

 
Dr. Taylor: So, yeah, it's true that if you have a number which you can write as the sum  
  of two things - so every odd number you can write as the sum of two things -   
  then twice that number, you should also be able to write as four things. 
 

Dr. Taylor formalized this observation as well, proving a lemma that numbers congruent to 2 
mod 4 other than 2 are sums of 4 consecutive numbers. These lemmas allowed Dr. Taylor to 
restrict his attention to multiples of 4, which led to the development of the full conjecture. 

Conjecture Breaking. Exhaustive Example Generation also allowed the mathematicians to 
find examples that broke preliminary conjectures, which in turn led to the articulation of more 
accurate conjectures. This is seen in Dr. Hughes (a postdoc) as he worked on the Interesting 
Numbers task. Dr. Hughes initially conjectured that the interesting numbers were the non-primes 
after looking at the numbers 1 to 6 (and incorrectly deciding that 6 was interesting, Figure 3a). 
He continued on to look at the numbers 7 to 10 before he realized his mistake, saying about 6, 
“Oh, 1, 2... 1 plus 2 plus 3. Right. Revise conjecture. So far, so, the interesting numbers so far 
are 4, 8, [...] It looks like it’s the [multiples] of 4” (Figure 3b). As a result of collecting more 
data, Dr. Hughes found a counterexample to his initial conjecture. This counterexample 
prompted him to reflect on his (corrected) set of data and refine his conjecture. 
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Figure 3: Dr. Hughes’s initial (3a) and revised (3b) conjectures  

 
Dr. Hughes revised his conjecture once more (to a correct conjecture) when he looked at 11, 

12 and 13 and discovered that 12 was also not interesting. We note that Dr. Hughes was 
developing and breaking conjectures as he was in the process of generating examples, and not 
after he had already completed the example generation. This stands in contrast to some of the 
other mathematicians (such as Dr. Weisman, described below) who formulated conjectures once 
the exhaustive list of examples had been completed and could be reflected upon.  
 
Strategies for engaging with Exhaustive Example Generation 

The mathematicians varied in how they engaged in Exhaustive Example Generation, in the 
sense that they appeared to have different broad strategies about how they should engage with 
the set of examples they had made. Here we explore three different strategies that we observed 
among the mathematicians. 

Pattern Searching. Most of the mathematicians used their Exhaustive Example Generation as 
a means by which to look for empirical patterns among the working or non-working examples. In 
this activity, the mathematicians searched for and identified a numerical pattern among the 
exhaustive list they had constructed. They then used the pattern they had identified to develop a 
conjecture, a lemma, or to find a counterexample (the three affordances described above).  

The work of Dr. Sullivan and Dr. Hughes in the previous section provides examples of 
Pattern Searching behavior. In the case of Dr. Sullivan, he wrote out a number line with the 
numbers 1 to 21, crossed out all the non-interesting numbers, and circled the remaining 
interesting numbers. He then reflected on the compiled list of interesting numbers and identified 
a pattern among them – that they were all powers of 2 – which led him to a conjecture.  

In the case of Dr. Hughes, he searched for patterns as he generated examples and made 
conjectures based on those patterns. When he thought 4 and 6 were the first interesting numbers, 
he conjectured that the interesting numbers were the non-primes. After correcting his work and 
noticing that 4 and 8 were the first interesting numbers, he conjectured that the interesting 
numbers were the multiples of 4. In both cases, he developed conjectures based on the patterns 
he identified in the interesting numbers. 

As another example of Pattern Searching, we consider Dr. Weisman’s (a professor) work on 
the Interesting Numbers task. Dr. Weisman had found that the non-interesting numbers were of 
the form (n-m)(n+m-1)/2 with n>m>0. He proceeded to make a table of the first few numbers of 
that form (Figure 4).  
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Figure 4: Dr. Weisman’s initial table of examples 

 
By examining his table, Dr. Weisman deduced some patterns in the non-interesting numbers, 

but he did not find anything conclusive. He then said the following:  
 

Dr. Weisman:  Okay, well, I’m a believer in generating some data…what I’m gonna do is make 
an even bigger version of this table. And just look to see what numbers show up.  

 
Dr. Weisman then proceeded to create this larger table (Figure 5a), and his work displays a 

great deal of care in detailing out a large number of cases. By referencing this larger table, Dr. 
Weisman made a conclusive list of the interesting numbers up to 50 by crossing out the non-
interesting ones (Figure 5b), making the following comments after he was finished. 

 
Dr. Weisman:  That’s rather remarkable. So, wild conjecture at this point. Certainly quite 

surprising. Interesting corresponds to the powers of 2. 
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Figure 5a: Dr. Weisman’s complete table Figure 5b: Dr. Weisman’s corresponding list 

 
We want to point out that Dr. Weisman’s remarks suggest that he was searching for a pattern 

among the interesting and non-interesting numbers. He used the table (Figure 5a) as a tool to 
systematically generate examples, then he used the list (Figure 5b) to organize his examples. His 
remarks also suggest that he was not completely sure of the conjecture as he was working, but 
rather the reflection on the list of examples helped him to record and recognize the salient 
property of interesting numbers. We thus see that the conjecture he developed was facilitated 
through the strategy of Pattern Searching among the exhaustive list of examples he had 
generated. 

Leveraging Structure Between Examples. The mathematicians also at times identified 
structure between examples and used this structure productively in their conjecturing activity. 
When using this strategy, the mathematicians observed a common structure between two or more 
examples. By a common structure, we mean a mathematical property or relationship between 
two or more examples that can be used to explain why the examples do or do not satisfy the 
conditions of the task. The mathematicians used this common structure to classify the general 
case (Conjecture Development) or to identify key features or subcases of the general case 
(Lemma Development). 

One example of this strategy appears in Dr. Taylor’s work, described in the previous section. 
In that work, he developed lemmas based on a common structure he observed between examples. 
For his first lemma, Dr. Taylor observed that all of the odd numbers he generated were sums of 2 
consecutive numbers. Moreover, for a given odd number N, he observed that the two consecutive 
numbers in the sum were the integers just below N/2 and just above N/2. From this observation, 
Dr. Taylor was able to prove that all odd numbers were non-interesting. 

Dr. Taylor also observed a common structure between 6 and 12 (that they both could be 
written as the sum of 3 consecutive numbers) and between 10 and 14 (that they both could be 
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written as the sum of 4 consecutive numbers). By leveraging the common structure between each 
of those sets of examples, Dr. Taylor proved lemmas stating that multiples of 6 and numbers that 
were two times an odd number were non-interesting. 

Leveraging Structure Across the Data Set. On some occasions, the mathematicians identified 
structure across the entire set of examples they had generated. That is, rather than identifying 
structure in a particular example or among a couple of examples, they actually looked to the set 
of examples itself as a source of structure. An example of this is Dr. Jones’ work on the Fixed 
Point task. She began by computing F(n) for n=1 through 10 (Figure 6). 

 

 
Figure 6: Dr. Jones’ initial listing of examples 

 
This activity did not allow her to see a pattern for which numbers that worked, and so she began 
to look at patterns in the sums themselves. She recognized a potential pattern and more 
systematically listed and arranged the sums for F(2) through F(16) so that the summands lined 
up in columns. Note that her language in the following excerpt, along with the written work in 
Figure 7, suggests that she is looking at a structural pattern across the entire list of examples:  
 
Dr. Jones: The first [summands] go up every second one, the next one goes up every 4. The 

ones after that go up every 8.  
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Figure 7: Dr. Jones notices a pattern among the summands 

 
Her observation of this structure allowed Dr. Jones to generate examples more quickly 

through F(32) (Figure 8) and eventually up to F(40). This work demonstrates a case in which the 
mathematicians used the list of examples that was made during Exhaustive Example Generation 
in order to detect some broader structure in the entire list. The particulars of the examples were 
less important for her in this investigation, but rather she was focused on a structure that she 
identified by examining the collective set of examples. 

 
Figure 8: Dr. Jones uses the pattern to construct more examples quickly 
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It is unclear how helpful this particular activity was for her on this particular task, as she did 
not ultimately arrive at a correct conjecture of the problem. However, we consider her work on 
this task to be an instance of how one might use Exhaustive Example Generation productively, 
and it is conceivable that this strategy of identifying structure in a set of examples could be an 
effective and powerful tool for some conjectures and tasks. 
 

 
Discussion and Conclusions 

 The results highlight ways in which example-related activity such as Exhaustive Example 
Generation may play a valuable role in the development of conjectures. Specifically, 
systematically generating exhaustive sets of examples and subsequently reflecting on them 
facilitated direct conjecture formulation, lemma development, and preliminary conjecture 
breaking. Such example-related activity was widespread among the mathematicians we 
interviewed, as ten of the 13 mathematicians used examples while conjecturing on the Interesting 
Numbers task. All ten who used examples formulated a correct conjecture, while the remaining 
three mathematicians used a purely algebraic approach toward the task. Of those three 
mathematicians, one formulated a correct conjecture through algebraic manipulation, one solved 
the task algebraically without ever formulating a working conjecture, and one never developed a 
correct conjecture. Although algebraic manipulation was an effective strategy for two of the 
mathematicians, we suspect that for conjecturing purposes, it did not so clearly illuminate 
potential patterns as the actual generation of concrete examples did for the other mathematicians. 
 It is not clear, however, that example use while formulating a conjecture affected the ultimate 
strategy and success in proving that conjecture. Of the ten mathematicians who used examples 
while conjecturing on the Interesting Numbers task, only four continued to use examples while 
developing a proof (three of those four mathematicians successfully proved the full conjecture, 
although only two of those three used examples to develop the final proof). Of the six 
mathematicians who used examples in conjecturing but not in proving, four successfully proved 
the full conjecture. Two of the three mathematicians who used algebra throughout successfully 
provided a full proof. Although the evidence suggests that examples helped in conjecturing, there 
is more to investigate as to the relationship between example use in conjecturing and proving or 
disproving those conjectures. 

It is also important to note that some mathematicians (as seen with Dr. Sullivan and Dr. 
Weisman) took the time to painstakingly catalogue a number of examples. The generation of sets 
of examples and subsequent reflection on these examples enabled the mathematicians to 
formulate conjectures effectively and efficiently. Their extant knowledge clearly played a key 
role in their formulation of conjectures based on their lists of examples. Also notable is the fact 
that these mathematicians engaged in deliberate and strategic example generation, and this is in 
line with other studies that have demonstrated metacognitive aspects of mathematicians’ activity 
(e.g., Carlson & Bloom, 2005; Lockwood, et al., 2013; Savic, 2012). These observations suggest 
that in developing conjectures, there was much to gain for mathematicians who were willing to 
engage carefully, systematically, and intentionally with sets of examples, and who could relate 
these examples to their prior mathematical knowledge.  

These results suggest some preliminary pedagogical implications. There may be value in 
helping students learn to be more methodical in their use of examples, going beyond finding a 
few confirming examples that simply come to mind. Specifically, students may benefit from 
generating comprehensive sets of data that they can survey in search of patterns, although they 
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must learn to relate such data with their own mathematical knowledge. Such activity could in 
turn illuminate conjectures, and it is important to emphasize for students that such work may take 
patience and care. Also, the tasks in our study were well suited to facilitate Exhaustive Example 
Generation. Other tasks might be more or less effective in fostering conjecturing. Instructors 
should be aware of what kinds of activity and thinking certain tasks elicit and should expose 
students to tasks that might encourage Exhaustive Example Generation activities. 
 

References 
 

Andreescu, T., Andrica, D., & Feng, Z. (2007). 104 Number Theory Problems: From the 
Training of the USA IMO Team. Boston, MA: Birkhauser. 

 
Antonini, S. (2006). Graduate students’ processes in generating examples of mathematical 

objects. In J. Novotna, H. Moraova, M. Kratka, & N. Stehlikova (Eds.), Proceedings of the 
30th Conference of the International Group for the Psychology of Mathematics Education, 
Vol. 2, 57-64. 

 
Ball, D., Hoyles, C., Jahnke, H., & Movshovitz-Hadar, N. (August, 2002). The teaching of proof. 

Paper presented at the International Congress of Mathematicians, Beijing, China. 
 
Belnap, J., & Parrott, A. (2013). Understanding Mathematical Conjecturing. In the Electronic 

Proceedings for the Sixteenth Special Interest Group of the MAA on Research on 
Undergraduate Mathematics Education. Denver, CO: Northern Colorado University. 
February 21-23, 2013. 

 
Bills, L., & Watson, A. (2008). Editorial introduction. Educational Studies in Mathematics, 69, 

77-79. 
 
Buchbinder, O. & Zaslavsky, O. (2011). Is this a coincidence? The role of examples in fostering 

a need for proof. ZDM – The International Journal on Mathematics Education, 43(2), 269-
281. 

 
Carlson, M & Bloom, I. (2005). The cyclic nature of problem solving: An emergent 

multidimensional problem-solving framework. Educational Studies in Mathematics, 58, 45-
75. 

 
Ellis, A. E., Lockwood, E., Williams, C. C. W., Dogan, M. F., & Knuth, E. (2012). Middle 

school students’ example use in conjecture exploration and justification. In L.R. Van Zoest, 
J.J. Lo, & J.L. Kratky (Eds.), Proceedings of the 34th Annual Meeting of the North American 
Chapter of the Psychology of Mathematics Education (Kalamazoo, MI). 

 
Epstein, D., & Levy, S. (1995). Experimentation and proof in mathematics. Notice of the AMS, 

42(6), 670–674. 
 

18th Annual Conference on Research in Undergraduate Mathematics Education 22818th Annual Conference on Research in Undergraduate Mathematics Education 228



Garuti, R., Boero, P., & Lemut, E. (1998). Cognitive unity of theorems and difficulty of proof. 
Proceedings of the 22nd Annual Meeting of the Psychology of Mathematics Education, Vol. 2, 
345-352. 

 
Harel, G. (2008). What is Mathematics? A Pedagogical Answer to a Philosophical Question. In 

R. B. Gold & R. Simons (Eds.), Current Issues in the Philosophy of Mathematics From the 
Perspective of Mathematicians, Mathematical American Association.  

 
Healy, L. & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in 

Mathematics Education, 31(4), 396–428. 
 
Iannone, P., Inglis, M., Mejia-Ramos, J. P., Simpson, A., & Weber, K. (2011). Does generating 

examples aid proof production? Educational Studies in Mathematics, 77, 1–14. 
 
Krusemeyer, M. I., Gilbert, G. T., & Larson, L. C. (2012). A Mathematical Orchard: Problems 

and Solutions. Washington, DC: Mathematical Association of America.  
 
Kloosterman, P., & Lester, F. (2004). Results and interpretations of the 1990 through 2000 

mathematics assessments of the National Assessment of Educational Progress. Reston, VA: 
National Council of Teachers of Mathematics. 

 
Knuth, E. (2002). Secondary school mathematics teachers’ conceptions of proof. Journal for 

Research in Mathematics Education, 33(5), 379–405. 
 
Knuth, E., Choppin, J., & Bieda, K. (2009). Middle school students’ production of mathematical 

justifications. In D. Stylianou, M. Blanton, & E. Knuth (Eds.), Teaching and learning proof 
across the grades: A K–16 perspective (pp. 153–170). New York, NY: Routledge. 

 
Lannin, J., Ellis, A.B., & Elliott, R. (2011). Essential understandings project: Mathematical 

reasoning (Gr. K – 8). Reston, VA: National Council of the Teachers of Mathematics. 
 
Lockwood, E., Ellis, A.B., Dogan, M.F., Williams, C., & Knuth, E. (2012). A framework for 

mathematicians’ example-related activity when exploring and proving mathematical 
conjectures. In L.R. Van Zoest, J.J. Lo, & J.L. Kratky (Eds.), Proceedings of the 34th Annual 
Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education (pp. 151 – 158). Kalamazoo, MI: Western Michigan University. 

 
Lockwood, E., Ellis, A., & Knuth, E. (2013). Mathematicians’ Example-Related Activity When 

Proving Conjectures. In the Electronic Proceedings for the Sixteenth Special Interest Group 
of the MAA on Research on Undergraduate Mathematics Education. Denver, CO: Northern 
Colorado University. February 21-23, 2013. 

 
Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? 

Educational Studies in Mathematics, 66, 23-41. Doi: 10.1007/s10649-006-9057-x. 
 

18th Annual Conference on Research in Undergraduate Mathematics Education 22918th Annual Conference on Research in Undergraduate Mathematics Education 229



Porteous, K. (1990). What do children really believe? Educational Studies in Mathematics, 21, 
589–598. 

 
Sandefur, J., Mason, J., Stylianides, G. J., & Watson, A. (2013). Generating and using examples 

in the proving process. Educational Studies in Mathematics. Doi: 10.1007/s10649-012-9459-
x. 

 

Savic, M. (2012). What do mathematicians do when they have a proving impasse? In the 
Electronic Proceedings for the Fifteenth Special Interest Group of the MAA on Research on 
Undergraduate Mathematics Education. Portland, OR: Portland State University. February 
23-25, 2012. 

 
Sowder, L., & Harel, G. (1998). Types of students’ justifications. Mathematics Teacher, 91, 

670–675. 
 
Weber, K. (2008). How mathematicians determine if an argument is a valid proof. Journal for 

research in Mathematics Education, 39(4), 431-459. 
 
Weber, K. (2010). Mathematics majors’ perceptions of conviction, validity, and proof. 

Mathematical Thinking and Learning, 12, 306-336. 
 
Weber, K., Inglis, M., & Mejia-Ramos, J. P. (2014). How mathematicians obtain conviction: 

Implications for mathematics instruction and research on epistemic cognition. Educational 
Psychologist, 49(1), 36-58. Doi:10.1080/00461520.2013.865527. 

 
 
 

18th Annual Conference on Research in Undergraduate Mathematics Education 23018th Annual Conference on Research in Undergraduate Mathematics Education 230



Business Faculty Perceptions of the Calculus Content Needed for Business Courses 
 

Melissa Mills 
Oklahoma State University 

 

In 2000, the MAA composed a the Curriculum Reform Across the First Two Years report that 
outlined their recommendations for Business Mathematics, among other mathematical topics. 
For Business Mathematics, they recommended an emphasis on applications, modeling, and 
communication of mathematical results. Because of time constraints, adding in more 
applications and modeling must require cutting out some topics that are traditionally covered 
in such a Calculus course. This study aims to determine the specific Calculus content that is 
used in undergraduate level business courses to inform decisions about which content to 
cover in Business Calculus. This study uses an online survey instrument and interviews to 
explore what Calculus topics business faculty view as relevant to, and necessary for, various 
business specializations.  

Key words: Business Calculus, Applied Calculus, Business Faculty, Calculus Concepts  

Literature review 
Calculus for business students (which is often referred to as Applied Calculus) is typically 

taught in mathematics departments by instructors who are unfamiliar with business 
applications and terminology. Because the course is a service course for other departments, 
the content covered and the way in which it is covered by mathematics professors may not be 
consistent with the needs of the students. Because of this dissonance, some institutions have 
dropped this mathematics requirement and have moved the content into a quantitative course 
taught by business faculty (Depaolo & Mclaren, 2006).  

A significant body of research has examined Calculus for STEM students (Asiala, 
Cottrill, Dubinsky & Schwingendorf, 1997; Bressoud, Carlson, Mesa & Rasmussen, 2013; 
Carlson, Jacobs, Coe, Larsen & Hsu, 2002; Gonzalez-Martin & Camacho, 2004; Gravemeijer 
& Doorman, 1999; Oehrtman, 2009; Thompson, 1994; Zandieh, 2000),  however, the 
research on Applied Calculus and Business Calculus in particular is far less extensive (Garner 
& Garner, 2001; Liang & Martin, 2008). In 2000, the MAA released the CRAFTY 
Curriculum Foundations Project, which outlined recommendations for the reform of many 
different courses including Calculus for Business students. Reforms include using realistic 
business problems, business technology, and modeling from real data sets. The report 
concludes that the cooperation and communication between the business and mathematics 
faculties is critical to the implementation of their recommendations (Lamoreux, 2000).  

Calculus for business students typically covers topics similar to those covered in 
engineering calculus, but with less rigor and more applications. The Business and 
Management recommendations portion of the CRAFTY report were written by a team of 36 
Business professors and 6 mathematics professors from across the country. They stated that 
“the business calculus curriculum should include an introduction to rates of change, the 
dynamic nature of real-world systems, constrained optimization, and interpretations of area 
under a graph.” They called for MORE emphasis on realistic business problems, modeling 
with realistic data, use of business technology, development of mathematical communication 
skills and interpretation of solutions and LESS emphasis on computation and techniques of 
symbolic differentiation and integration. 

They advise that “math departments can help prepare business students by stressing 
problem solving using business applications, conceptual understanding, quantitative 
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reasoning, and communication skills. These aspects should not be sacrificed to breadth of 
coverage.”   They also state: “when in doubt, mathematics faculty should cover less material 
– and treat the material covered with respect – imparting to students a sense of the importance 
of mathematics as a necessary part of the development of successful business people.” For 
instructors of these business mathematics courses, the reality is that adding more modeling 
and applications must require cutting out some topics that were previously covered, or 
possibly covering them in a different way.  

Differentiation and integration are foundational calculus concepts, and business calculus 
tends to cover both topics and how they apply to business settings (Liang & Martin, 2008; 
Garner & Garner, 2001). However, in a recent survey of business faculty at a liberal arts 
college, May (2012) found that they viewed partial derivatives as more important than 
integration. He also found that business faculty value modeling data to fit functions and skill 
with using Excel for business problem solving more than they value theoretical understanding 
and computational techniques. However, the final exams in the business calculus course at 
that particular institution showed that the mathematics instructors placed more emphasis on 
things like symbolic integration than applications, for example. It is unclear whether these 
results were specific to liberal arts colleges or are more widespread.  

As we move forward in reforming applied calculus, it is important to assess the needs of 
business students and the expectations of business faculty so that we can make informed 
decisions about the specific calculus content that should be covered. To do this, it is 
necessary to open the lines of communication between business faculty and the mathematics 
faculty who are teaching these courses. This leads to the research question addressed in this 
study: 

What calculus concepts do business faculty members at a large comprehensive research 
institution perceive as necessary for their students to succeed in their subsequent business 
courses?  

Methods 
With the approval of the university’s Institutional Review Board, I sent a recruitment 

email to all faculty members in the school of Business at a medium sized U.S. comprehensive 
research university. The email contained a link to an anonymous online questionnaire using 
the Surveymonkey website. The questionnaire contained six free-response items addressing 
the usage of calculus concepts in business courses (see appendix). I purposefully chose not to 
provide a list of calculus concepts, because I was interested in what the business faculty 
perceived as calculus concepts.  

 
Table 1: The number of participants and number of instructors in each department 

Department Participants Instructors 
Accounting 2 20 
Economics and Legal Studies 8 21 
Entrepreneurship  1 13 
Finance 5 16 
Management 3 29 
Marketing 5 21 
MSIS 4 20 

       (20% overall response rate) 
 
The university at which the study was conducted has seven departments within the School 

of Business. The departments are Accounting, Economics and Legal Studies, 
Entrepreneurship, Finance, Management, Marketing, and Management Science and 
Information Systems (MSIS). Out of the 140 faculty members and lecturers in the Business 
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School, there were 28 respondents. The respondents represented a wide range of departments, 
and all departments were represented by at least one participant, as shown in Table 1. 

The respondents to the survey identified courses in Economics, Finance, and MSIS that 
utilized calculus concepts. Based on these recommendations, I contacted the faculty members 
who were currently teaching those courses or who had taught them in the previous two 
semesters to recruit them for interviews. Seven instructors agreed to participate: three from 
Economics, two from Finance, and two from Management Science Information Systems. In 
the interviews, I asked them to elaborate on the calculus content that they use in their courses 
and the applications of calculus content specific to the courses they teach. 

 
Results 

Instructors from four of the seven departments listed calculus concepts used in their 
courses. Instructors from Accounting, Entrepreneurship, and Management did not list any 
Calculus concepts at all. All of the concepts that were mentioned by instructors are listed in 
Table 2, organized by department. When more than one instructor was representing a 
department, I took the intersection of the responses. The most frequent Calculus concepts 
mentioned were optimization, derivatives, and rates of change. Three participants mentioned 
marginal functions or marginal analysis. Economics instructors seemed to emphasize 
multivariable functions, partial derivatives, and optimization of multivariable functions. Two 
finance instructors mentioned integration, though one specified that he was referring to 
numerical integration such as the normal distribution. One economics instructor mentioned 
that integration was used some by doctoral level students in his department.  
 
Table 2: Calculus concepts needed in business courses by department 
Economics and Legal 
Studies 

Finance Marketing MSIS 

Derivatives, marginal 
functions, constrained 
optimization, partial 
derivatives, Lagrange 
multipliers,  
integrals (for doctoral 
level students) 

Rates of change, second 
derivatives, geometric 
series, marginal analysis, 
integration 

marginal 
cost/revenue 
rates of change 

optimization, 
derivative rules, 
Economic Order 
Quantity 
 

 
The topics covered in Applied Calculus tend to be similar to topics covered in a first 

semester Calculus course, though not as rigorous. For example, derivative rules may be 
taught without a detailed study of limits. The CRAFTY report recommended that “the 
business calculus curriculum should include an introduction to rates of change, the dynamic 
nature of real-world systems, constrained optimization, and interpretations of area under a 
graph” (Lamoreux, 2000). The business instructors in this study did mention rates of change, 
derivatives, optimization, and integration. The Economics instructors believed that 
multivariable functions and partial derivatives were also important topics. It was unclear the 
extent to which integration was used by the instructors, as only three of the 28 participants 
mentioned integration.  

Technology usage was also recorded. The instructors were asked to indicate both the 
technology that they use in the courses they teach as well as the technology with which their 
students should be familiar to succeed in their program. Sixty-eight percent of the instructors 
said that their students need to be able to use Excel and 54% said that their students need to 
be familiar with (non-graphing) calculators. Only 7% said students should be familiar with 
graphing calculators, and 7% said their students should be familiar with Wolfram Alpha. No 
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respondents selected Maple, and 18% of respondents selected “Other” and specified SAS or 
SPSS, which were not specifically listed because they are statistics software.  

The survey participants were asked to identify courses in their department whose content 
uses calculus concepts. The courses identified were: Macroeconomics, Microeconomics, 
Managerial Economics, Investments, Futures & Options, Financial Management, Operations 
Management, Management Science Methods, and Management Decision Theory. The 
instructors who were currently teaching these courses or who had taught the course in the 
previous two semesters were solicited for interviews, and seven instructors volunteered to 
participate. Three were from Economics (E1, E2, and E3), two from Finance (F1 and F2), and 
two from MSIS (M1 and M2).  

From the interviews, I learned that business calculus is currently not a prerequisite for the 
economics or finance courses listed above. The MSIS department has recently added business 
calculus as a prerequisite for their upper-division courses. Professor E3 said, “I have switched 
to using more algebra and less calculus. But, of course, you cannot avoid calculus in 
Intermediate Micro.” He later said, “I think I don’t want my students to be penalized because 
they don’t understand the math. So, if I get the feeling that my students are struggling with 
the math, I find a way to simplify it.” Another economics professor, E2, lamented, “a lot of 
students don’t have the mathematical background. It would be nice for my students to have 
Calculus first.” One of the finance professors, F1, said, “I use quite a bit of math, but not a 
ton of Calculus.” The next few paragraphs will outline the calculus concepts that the 
instructors from each department use in their courses. 

Instructor E1 said, “In economics, everybody is maximizing or minimizing something. 
Whether it’s a consumer trying to maximize their well-being subject to a budget constraint, a 
firm attempting to minimize production costs associated with producing some output, or a 
firm attempting to maximize their profit. In economics, life is constrained optimization.” 
When asked what types of optimization problems are given to students, the instructor said 
that they typically give students optimization problems with linear constraints so that they 
can be brought back to single-variable optimization problems. They sometimes use Lagrange 
multipliers to solve more complicated optimization problems. E3 said, “If I have students 
who have some Calculus background, then I will use Lagrange multipliers.”  

All three economics professors said that they use derivatives to find marginal functions 
and that they do marginal analysis in their courses. They also verified that it was a standard 
convention in Economics to always graph using quantity as the independent variable and 
price as dependent. Professor E1 stated that he would use the second derivative test if the 
students had the mathematical background. They all said that they use the derivative when 
computing elasticity of demand. The professor who has taught macroeconomics said that he 
uses the first derivative of the logarithm of the Gross Domestic Product to determine the 
growth rate.  

The final question for each of the economics professors was whether they thought that 
integration or partial derivatives were more important for their students. All three said that 
they thought partial derivatives were more important. They all said that they use integration 
in their graduate courses, but that the graduate students were required to have had a more 
traditional calculus sequence along with differential equations and linear algebra.   

The finance professors said that they review elasticity, cost, revenue, profit, supply, and 
demand. They use mathematics to compute present and future values of exponential 
functions. Professor F1 said that he thought it was essential to emphasize applications. In his 
course, F1 said that he uses geometric series. He also said that they often maximize return for 
a given risk or minimize risk for a given return, but that they reason about these things 
graphically and don’t usually derive them analytically. F1 also stated that using spreadsheets 
is important for Finance students, and that graphing calculators are not useful for them 
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outside of their math classes. He said that when they take their licensing exam, they are not 
allowed to use programmable calculators, but may use a financial calculator.  

Professor F2 said that there is an application of the derivative in bonds. The duration is 
the partial derivative of the price of a bond with respect to interest rates. He said that they 
usually reason about duration graphically. The convexity of the bond is the second derivative. 
When asked about integration, F2 said, “In my course, there’s really not any integration, but 
that doesn’t mean I don’t think it’s important. To get to the level of finance that you are using 
integrals, that will be Master’s or PhD level, because a lot of it is in probability where you’re 
integrating over the normal density, but we don’t do that in undergrad, at least as far as I 
know.” F1 also said that he does a lot with Excel in his courses, and does some optimization 
problems using the Solver tool in Excel.  

The MSIS professors said that they didn’t use much calculus per se in their courses, but 
M1 stated, “It’s more of a mathematical maturity that we’re wanting background-wise before 
we do linear programming, for instance.” In one MSIS course, there is a chapter on non-
linear programming which deals with optimization of two-variable functions using Lagrange 
multipliers, and M1 said that he would quickly review the derivative rules in that chapter, but 
that “if [the students] have never had that, then the little 5 minute time that I spend on it isn’t 
enough.” M2 stated that he didn’t use calculus in his course, but did expect students to be 
able to solve systems of linear equations. M1 also uses optimization when determining the 
Economic Order Quantity, which deals with finding the quantity that a business should order 
to minimize the total costs, including purchasing costs and carrying costs. Neither of the 
MSIS professors mentioned partial derivatives or integration.  

 
Discussion 

The survey showed that the concepts of differentiation, optimization, and rate of change 
were mentioned most frequently by business faculty as topics that would be useful to their 
students. Instructors in three departments: Accounting, Entrepreneurship, and Management, 
did not list any calculus concepts needed by their students.  

In mathematics departments, courses tend to be taught with graphing calculators, but very 
few of the business instructors viewed graphing calculators as a useful technology for their 
students. Spreadsheets and non-graphing calculators were the most frequently selected type 
of technology used in business courses. Interviews with Finance professors revealed that their 
students are encouraged not to use graphing calculators because they are not allowed on their 
licensing exams. Thus, if we are trying to prepare students to succeed in their subsequent 
business courses, it makes sense to reconsider the technology that is used in the classroom.  

Like May (2012) found, integration may not be a topic that is as important to business 
students as it is to mathematics instructors. The Economics and Finance professors 
specifically stated that integration was not used in their undergraduate courses, and that the 
masters and doctoral students who would use integration were required to have a more 
rigorous mathematical background (up through differential equations) before entering the 
program. Calculus of several variables, particularly partial derivatives and optimization of 
multivariable functions, is used in undergraduate Economics courses, and was also mentioned 
by one of the Finance instructors. Thus, it may be that partial derivatives are more directly 
applicable to business students than integration, at least for students who do not plan to attend 
graduate school. 

Since the study has a small sample size and is restricted to one institution, it is not clear 
whether these results reflect the perspective of business faculty on a national scale. Also, this 
study only addressed the calculus content needed for students’ success in their subsequent 
business courses, which may differ from the content needed to succeed in their future careers. 
It is unclear whether the content goals of business faculty are consistent with the needs of the 
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students’ future employers. Further studies could investigate either the perspectives of 
business faculty at other institutions or the perspectives of managers in business industries.  

This study is meant to begin a conversation about the needs of the students who are taking 
these courses and the goals of the departments who are being served by the Business Calculus 
course. Along with the addition of more problem solving, business applications, and business 
technology as suggested by the CRAFTY report (Lamoreux, 2000), mathematics departments 
may need to re-think the sequencing of the content in these courses to reflect the students’ 
needs. 
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Appendix 
Survey Questions for Business Faculty 

Business Calculus (MATH 2013) is a required course for all business majors. The current 
study will investigate the usage of Calculus concepts in Business courses. The goal is to tailor 
the Business Calculus course to meet the needs of Business students and to help them transfer 
the concepts of Calculus to the various applications that they will see in their subsequent 
courses and in their future careers.  

1. What department are you in? 

2. Which courses in your department use calculus concepts? 

3. What calculus concepts are used in these courses? 

4. Are there other mathematics concepts that students need to succeed in courses in your 
department? 

5. Do you use technology in your courses to investigate mathematical concepts?  

6. What type of technology do you use in the courses you teach? (Check all that apply)  

Calculators Graphing Calculators  Maple  Wolfram Alpha
 Microsoft Excel Other (Please specify) 

7. What type of technology do students in your department need to be successful in their 
business courses? (Check all that apply)  

Calculators Graphing Calculators  Maple  Wolfram Alpha
 Microsoft Excel Other (Please specify) 
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ABSTRACT ALGEBRA AND SECONDARY SCHOOL MATHEMATICS: 
IDENTIFYING MATHEMATICAL CONNECTIONS IN TEXTBOOKS  

Ashley L. Suominen 
University of Georgia 

Many stakeholders concur that secondary teacher preparation programs should include 
study of abstract algebraic structures, and most certification programs require an abstract 
algebra course for prospective mathematics teachers. However, research has shown that 
undergraduate students learning abstract algebra for the first time often struggle to relate the 
new abstract concepts to previously learned concepts found in secondary school 
mathematics. In this study, I examined nine undergraduate abstract algebra textbooks to 
elaborate on the mathematical connections explicitly stated in the textbooks between abstract 
algebra and secondary school mathematics concepts, and categorized them according to an 
analytic framework based on categories of mathematical connections found in previous 
literature. In this report, I discuss three specific categories of connections: comparison 
through common features, generalization, and hierarchical or inclusion. I found that the 
connection types discussed in textbooks differ from past literature that highlight connections 
related to abstract algebra as generalization of school algebra. 

Key words: Abstract algebra, Mathematical connections, Textbook analysis 

Introduction 
Zazkis and Leikin (2010) revealed that beginning undergraduate students experience great 

difficulty when starting their undergraduate mathematics courses because of their inabilities 
to build connections between these courses and the secondary school mathematics 
curriculum: 

Without connections students have to rely on their memory only and to remember many 
isolated concepts and procedures. To connect mathematical ideas means linking new 
ideas to related ideas considered previously and solving challenging mathematical tasks 
by thinking how familiar concepts and procedures may help in the new situations. (p.275)  

Similarly, the first CBMS (2001) report on the mathematical education of teachers 
acknowledged, “Unfortunately, too many prospective high school teachers fail to understand 
connections between [abstract algebra and number theory] and the topics of school algebra” 
(p. 40). Further, Cuoco (2001) noted in an article about secondary teacher preparation 
programs, “Most teachers see very little connection between the mathematics they study as 
undergraduates and the mathematics they teach. This is especially true in algebra, where 
abstract algebra is seen as a completely different subject from school algebra” (p. 169). Cofer 
(2012) confirmed these assertions when she considered how prospective secondary 
mathematics teachers communicated the conceptual connections between abstract algebra 
and their teaching practices. She discovered that these prospective teachers were unable to 
link the two, despite having just finished an abstract algebra course. To put it simply, 
undergraduate mathematics students and especially prospective mathematics teachers are not 
recognizing the mathematical connections between abstract algebra and secondary school 
mathematics.  

The purpose of this study was to examine abstract algebra textbooks in order to identify 
the mathematical connections explicitly stated between abstract algebra and secondary school 
mathematics concepts and classify how these connections were discussed. Few studies have 
explored these mathematical connections between secondary and tertiary mathematics, and 
the perspectives of textbooks have also not been considered. Thus, this research attempted to 
address these gaps in literature by considering the mathematical connections stated in abstract 
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algebra textbooks. Textbooks were chosen as the chief source of data regarding the abstract 
algebra curriculum, because it is my belief that textbooks often drive the tertiary mathematics 
curriculum. Robitaille and Travers (1992) discovered that mathematics teachers rely heavily 
on their textbooks to help design the curriculum that they teach, and while Robitaille and 
Travers were referring to Grades K–12 mathematics teachers, I believe their observation is 
also true of tertiary mathematics professors. Further, I believe that if a textbook were to 
identify mathematical connections between abstract algebra and school mathematics, then 
professors will more likely discuss these connections in the course.  

Theoretical Framework 
Businskas (2008) and Singletary (2012) provided similar definitions of a mathematical 

connection in their dissertations: “a true relationship between two mathematical ideas” 
(Businskas, 2008, p. 18) and “a relationship between a mathematical entity and another 
mathematical or nonmathematical entity” (Singletary, 2012, p. 10). These relationships take 
different forms in existing literature: mathematics connections as a characteristic of 
mathematics, mathematical connections as an artifact of learning, and mathematical 
connections as an active process of doing mathematics. Mathematical connections as a 
characteristic of mathematics can be interpreted in different ways. For instance, Coxford 
(1995) described mathematical connections as unifying themes within the discipline (e.g., 
function and variable) or mathematical processes (e.g., proof and problem solving). Others 
(Businskas, 2008; Skemp, 1987; Zazkis, 2000) have explained this relationship as a concept-
by-concept link in which two very specific concepts are linked in some way. Still other 
research (Businskas, 2008; Chappell & Strutchens, 2001; Hodgson, 1985) defined 
mathematical connections as equivalent representations across mathematical ideas. Despite 
these differences, these researchers shared an underlying belief that mathematical 
connections exist within the discipline of mathematics.  

A second perspective of connections found in the literature is mathematical connections 
as an artifact of learning. These connections are described as “a process that occurs in the 
mind of the learner(s) and the connection is something that exists in the mind of the learner” 
(Businskas, 2008, p. 12-13). Mathematical connections in light of this perspective are a 
necessary component to learning because new mathematical ideas are connected to pre-
existing schema or networks within the mind of the learner. Hazzan (1999) and Hiebert and 
Carpenter (1992) concluded that the teacher plays a pivotal role in helping the students to 
construct these connections among mathematical ideas. The final perspective, mathematical 
connections as a mathematical process or activity, blends the initial two perspectives in 
acknowledging that connections exist across the discipline and the learner should be involved 
in the activity of establishing or identifying these connections. Research from this perspective 
affirmed that the activity of making connections across mathematics is a significant aspect of 
doing mathematics (Boaler, 2002).  

The theoretical perspective of mathematical connections as a characteristic of 
mathematics was utilized in this study because it best allows me to address my research 
question: What mathematical connections are explicitly stated between abstract algebra and 
secondary school mathematics in abstract algebra textbooks and how are these connections 
discussed? Previously established categories of mathematical concept-to-concept connections 
are displayed in Table 1 (Businskas, 2008; Singletary 2012). These categories aided me when 
analyzing the textbook and interview data. 
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Table 1 

Categories of mathematical connections from research 
Category  Description 
Alternate representation One concept is represented in different ways such as symbolic 

(algebraic), graphic (geometric), pictorial (diagram), 
manipulative (physical object), verbal description (spoken), or 
written description. 

Comparison through 
common features 

Two concepts share some features in common, which allows a 
comparison through the concepts being similar, exactly the 
same, or not the same. 

Equivalent representation One concept is represented in different ways but within the 
same form (i.e., one concept could be represented in different 
ways symbolically). 

Generalization One concept is an example of specific instance of another 
concept. 

Hierarchical or inclusion One concept is a component of or included in another concept. 
Since one concept is included or contained in the other concept, 
a hierarchical relationship exists between two concepts. 

Logical implication One concept logically dependences on another concept. Often 
an if-then relationship exists between the two concepts. 

Procedural One concept can be used to find another concept. The first 
concept could be a type of procedure or connecting method 
used when working with the other concept. 

Real world application One concept is an example of another concept in the real world 
(i.e., a concept refers to another concept outside the current 
mathematical context). 

Relevant Literature 
In one of the first articles to address the mathematical connections between abstract 

algebra and secondary school mathematics, Usiskin (1974) examined the generalization 
connection between the properties of addition and multiplication of real numbers and the 
structural properties of groups and fields. In this article he also described the isomorphic 
relationship between linear and exponential functions through the map ! → !!, which forms 
an isomorphic group under composition. In a second article, Usiskin (1975) further discussed 
the connections between algebraic structures and familiar number systems and operators. He 
also described connections between the group structure and solving simple linear equations, 
the multiplicative group of invertible 2×2 matrices and solving systems of linear equations, 
and additive and multiplicative groups with familiar number systems and groups of geometric 
transformations. Usiskin classified the connections mentioned in these two articles as 
generalizations taught in abstract algebra. 

The Conference Board of the Mathematical Sciences [CBMS] (2001, 2012) published 
two reports, The Mathematical Education of Teachers [MET] and The Mathematical 
Education of Teachers II [MET2], that made recommendations regarding the necessary 
mathematical knowledge for teaching. In these recommendations, CBMS provided specific 
connections that could be made between tertiary mathematics courses and secondary school 
mathematics. In the first MET report, the mathematical connections mentioned primarily 
focused on abstract algebra concepts being generalizations of secondary school mathematics 
concepts. For instance, the report suggested incorporating a task into an abstract algebra 
course that showed “explicitly how the number and algebra operations of secondary school 
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can be explained by more general principles” (CBMS, 2001, p. 40). Another example was 
given in which the algebraic structures found in abstract algebra are the generalizations of 
familiar solving procedures of linear equations. The MET report also highlighted 
mathematical connections between abstract algebra and school geometry by discussing a 
symmetry group as generalization of the geometry of transformations of regular polygons. In 
the second MET report, CBMS (2012) recommended the study of ring and field structures as 
the underlying structures of operations with polynomials and rational functions, and a focus 
on mathematical concepts inverse and identity. That is, the abstract algebra concept inverse is 
clearly connected to the secondary school mathematics concepts additive and multiplicative 
inverse, inverse matrix, and inverse function. The MET2 report also identified the abstract 
algebra concept isomorphism to be important to draw connections through comparison of 
common features of secondary school mathematics concepts. 

Two research studies have been conducted exploring the perspectives of prospective 
secondary mathematics teachers about the mathematical connections between their 
undergraduate mathematics courses and the mathematics they will teach at the secondary 
level. In a qualitative study in Turkey, Bukova-Güzel, Ugurel, Özgür, and Kula (2010) 
interviewed 36 prospective teachers during their last year of their teacher preparation 
program. They found that 83% of the prospective secondary mathematics teachers did not see 
connections between the undergraduate content courses they had taken and the secondary 
school mathematics curriculum. However, 25% of the participants did believe first year 
undergraduate courses, such as Calculus and Analytic Geometry, were coherent and related to 
the secondary curriculum. One participant’s response stated: 

Since the courses are based on memorizing theorems and passing exams, it is really hard 
for us to apply even useful knowledge. At least on my own behalf, I was better at 
secondary school mathematics topics when I graduated from secondary school. (p. 2236) 

In fact, 42% of the participants recommended designing new undergraduate courses that were 
directly related to secondary school mathematics. Cofer (in press), in an interview study with 
five prospective secondary mathematics teachers whom had recently completed coursework 
in abstract algebra, found similar results. The participants were unable to relate abstract 
algebra concepts to the school mathematics curriculum when asked about specific concepts 
such as division by zero and even numbers. 

Methodology 
In this study I examined nine abstract algebra textbooks to identify the explicitly stated 

mathematical connections between abstract algebra and secondary school mathematics and 
classify the ways in which these connections were discussed. Textbooks were selected based 
on a few criteria. First, I narrowed my focus to introductory undergraduate abstract algebra 
textbooks. While graduate textbooks may explicitly state mathematical connections between 
abstract algebra and secondary school mathematics, this study concentrated solely on 
undergraduate learning of abstract algebra. Second, all textbooks were published within the 
past 20 years from the start of the research study because they would be more likely to be 
used in undergraduate classrooms today. Next, I compiled a list of recently published abstract 
algebra textbooks by: (1) examining syllabi available online for introductory abstract algebra 
courses at more than 20 colleges and universities around the United States, (2) contacting five 
different textbook publishers about widely readily used abstract algebra textbooks, and (3) 
conducting online searches of textbook provider websites for textbooks that explicitly 
emphasis connections to school mathematics. The textbooks used in the study are listed in 
Table 2. 
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Table 2 

Included abstract algebra textbooks 
Author  Title Publication 

year 
Cuoco & Rotman Learning Modern Algebra: From Early Attempts to 

Prove Fermat’s Last Theorem 
2013 

Dummit & Foote Abstract Algebra (3rd ed.) 2004 
Fraleigh A First Course in Abstract Algebra (7th ed.) 2003 
Gallian Contemporary Abstract Algebra (8th ed.) 2013 
Hillman & 
Alexanderson 

Abstract Algebra: A First Undergraduate Course (5th 
ed.) 

1994 

Hodge, Schlicker, & 
Sundstrom 

Abstract Algebra: An Inquiry-based Approach 2014 

Nicholson Introduction to Abstract Algebra (4th ed.) 2012 
Nicodemi, Sutherland, 
& Towsley 

An Introduction to Abstract Algebra with Notes to the 
Future Teachers 

2007 

Shifrin Abstract algebra: A geometric approach 1996 
 

Each abstract algebra textbook was read and analyzed it in its entirely (explanation 
sections, homework problems, and any additional material). However, I primarily focused on 
concepts associated with the algebraic structures groups, rings, and fields. For each textbook, 
I created a list of every identified mathematical connection, noted where each connection was 
found in the text, and classified the type of connection based on my analytic connection 
framework. I used the previously established categories of mathematical connections (seen in 
Table 1) as my analytic framework but modified it slightly to better categorize the data. The 
finalized analytic connection framework can be seen in Table 3. Next, I constructed separate 
tables for each connection category detailing all the connections found in the textbooks. In 
order to ensure accuracy, I reexamined all of the mathematical connections found in the 
textbooks a second time using the finalized analytic framework.  
 
Table 3 

Analytic connection framework 
Category  Description 
Alternate representations One concept is represented in different ways such as symbolic 

(algebraic), graphic (geometric), pictorial (diagram), 
manipulative (physical object), verbal description (spoken), or 
written description. 

Comparison through 
common features 

Two concepts share some features in common, which allows a 
comparison through the concepts being similar, exactly the 
same, or not the same. 

Generalization One concept is a generalization of another specific concept. 
Hierarchical or inclusion One concept is a component of or included in another concept. 

Since one concept is included or contained in the other concept, 
a hierarchical relationship exists between two concepts. 

Real world applications One concept is an example of another concept in the real world 
(i.e., a concept refers to another concept outside the current 
mathematical context). 
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Results 
In this section, I will elaborate on the three most commonly stated mathematical 

connections categories found in abstract algebra textbooks: comparison through common 
features, generalization, and hierarchical or inclusion. Categorizing the written texts was not 
a simple task. The textbook authors, for instance, may have intended to make a generalization 
connection when in fact the written text is more of a comparison connection. In addition, 
there is a fine line between these types of connections. Some hierarchical connections could 
also be generalizations depending on how the authors presented the connection. In short, the 
findings presented in this paper are those that were most explicitly stated in the abstract 
algebra textbooks. 
 
Comparison through common features 

The former connection category allowed for two concepts to be compared as being 
similar, exactly the same, or not the same because the concepts share some common features. 
Table 4 summarizes the comparison connections I found in the abstract algebra textbooks. I 
then provide a detailed description of the most frequently made connections. 
 
Table 4 

Mathematical connections: Comparison through common features 
Abstract algebra concept Secondary school mathematics concept Number of 

textbooks 
Algebraic structures & 
properties 

Number systems, arithmetic operators 8 

Congruence Solving linear equations 1 
Fundamental theorem of 
algebra 

Polynomial roots 2 

Homomorphism, kernel, image Mathematical modeling 1 
Polynomial ring Polynomial operators and vocabulary 8 
Quaternions Complex numbers 2 
Unit Invertible matrices 2 

 
Eight of the nine abstract algebra textbooks introduced algebraic structures such as group, 

ring, or field by comparing their defining properties to those of familiar number systems and 
arithmetic operators. Five of these textbooks explicitly stated and described these 
connections. For instance, Cuoco and Rotman (2013) wrote, “The main idea is to abstract 
common features of integers, rational numbers, complex numbers, and congruences, as we 
did when we introduced the definition of commutative ring” (p. 191); Hodge, Schlicker, and 
Sundstrom (2014) wrote, “Rings are algebraic objects that share the same basic structure as 
the integers” (p. 89); and Nicodemi, Sutherland, and Towsley (2007) wrote, “The arithmetic 
of fields is similar to the arithmetic of the rational numbers” (p. 89). All of these textbooks 
also stated or explained that the set of integers ℤ, rational numbers ℚ, real numbers ℝ, and 
complex numbers ℂ each form a group under addition because these sets share the four 
common features with groups: closure under addition, associativity, zero as the identity 
element, and negative numbers as inverse elements.  

Arithmetic operators such as addition and multiplication were also used in this 
comparison. For instance, the set of integers ℤ forms a group under addition but not under 
multiplication. The known arithmetic operators—addition, subtraction, multiplication, and 
division—were also compared to a field, given that it is a smallest algebraic structure in 
which all of these operators can be performed by nonzero set elements. Most textbooks also 
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noted that known arithmetic operators have the same features as binary operators; namely, 
two set elements are combined to obtain one set element. Hillman and Alexanderson (1994) 
wrote, “Our notation for the operation has been the same as for multiplication in our familiar 
number system” (p. 74). This relationship is not surprising given that arithmetic operators are 
specific examples of binary operators. Focusing on the properties and characteristics of 
known number systems and arithmetic operators enabled the textbook authors to compare 
them to the newly introduced algebraic structures by drawing on shared and unshared 
features. 

The polynomial ring was compared in eight of the nine abstract algebra textbooks to an 
abundance of polynomial information from secondary school mathematics. Much of the 
vocabulary used with polynomials in secondary algebra, such as coefficient, degree, and 
polynomial equality, was stated to be the same as the vocabulary used with polynomial rings. 
For instance, Nicodemi, Sutherland, and Towsley (2007) wrote, “In high school algebra, the 
polynomials studied usually had coefficients that were either integers or rational numbers. 
We will extend the scope of that investigation to consider polynomials with coefficients in 
other commutative rings” (p. 111, emphasis added). In fact, five textbooks explicitly 
mentioned the different types of polynomial coefficients found in secondary algebra and 
abstract algebra. Fraleigh (2003) also pointed out, “We will be working with polynomials 
from a slightly different viewpoint than the approach in high school algebra or calculus” (p. 
198) when he contrasted the vocabulary used for the symbol x as a variable with polynomials 
in secondary algebra and indeterminate with polynomial rings in abstract algebra. Similarly, 
all of the textbooks mentioned the similar types of operations performed on polynomials and 
polynomial rings. For example, Dummit and Foote (2004) wrote, “The operations of addition 
and multiplication which make ! !  into a ring are the same operations familiar from 
elementary algebra: addition is componentwise” (p. 234). The eight textbooks then discussed 
polynomial long division using a comparison of similar features and vocabulary with either 
numerical long division or polynomial long division.   
 
Generalization 

The generalization connection category designated when one concept is a generalization 
of another concept. Table 5 summarizes these connections found in the abstract algebra 
textbooks and then I provide a detailed description of the most frequently made connections. 

 
Table 5 

Mathematical connections: Generalization 
Abstract algebra concept Secondary school mathematics concept Number of 

textbooks 
Algebraic structures  Number systems 5 
Binary operators Arithmetic operators and number systems 4 
Direct product Cartesian plane and ordered pairs 2 
Inverse Negatives; Multiplicative reciprocal 5 
Irreducibility Factoring polynomials 5 
Quotient Field Fractions, operations with fractions 5 
Sign rule in a ring Product of two negative numbers is 

positive 
5 

 
One of the most commonly discussed connections in the abstract algebra textbooks was 

how various algebraic structures (i.e., group, ring, field) were generalizations of familiar 
number systems. Five of the nine textbooks explicitly mentioned that generalization. For 

18th Annual Conference on Research in Undergraduate Mathematics Education 24418th Annual Conference on Research in Undergraduate Mathematics Education 244



instance, several textbooks noted that the integers ℤ, the rational numbers ℚ, the real numbers 
ℝ, and the complex numbers ℂ were familiar number systems that form groups under 
addition and the nonzero elements of ℚ,ℝ, and ℂ form groups under multiplication. Hillman 
and Alexanderson (1994) stated, “The most basic number systems are examples of groups, 
and we all learn to deal with these early on” (p. 40) and Nicodemi, Sutherland and Towsley 
(2007) called these number systems “protypes” under the “umbrella” of an arbitrary algebraic 
structure. Four textbooks then introduced the more general binary operator * for the familiar 
addition and multiplication operators. The definition of a group is then developed having that 
understanding of a binary operator. A similar approach was used to introduce rings, integral 
domains, and fields.  

Five of the abstract algebra textbooks connected the concept of irreducible polynomials in 
a polynomial ring to prime polynomials and factoring. Upon introducing irreducibility, 
Fraleigh (2003) wrote, “The concept is probably already familiar. We really are doing high 
school algebra in a more general setting” (p. 213). In secondary school mathematics a 
polynomial is defined to be prime if it is unable to be factored, whereas in abstract algebra a 
polynomial is irreducible if it has no factorization of polynomials of lower degree than 
original polynomial. The latter is the generalization of the former for all polynomial rings.  

The quotient field was introduced in five of the abstract algebra textbooks as the 
generalization of fractions and operations on fractions. Those textbooks reviewed concepts 
such as equivalent fractions, equating two fractions, and operating on the fractions (addition 
and multiplication) prior to introducing the more general understanding of a fraction. For 
example, Dummit and Foote (2004) noted, “In more precise terms, the fraction !! is the 
equivalence class of ordered pairs !, !  of integers with ! ≠ 0 under the equivalence 
relation !, ! ~ !,!  if and only if !" = !"” (pp. 260–261). With this definition in mind, 
the textbook then explored the properties, operations, and proven results of quotient fields.  

Five of the textbooks also generalized the notion that the product of two negative 
numbers is positive. These textbooks utilized ring properties to prove four sign rules for 
negatives. Hillman and Alexanderson (1994) wrote, “The following result [sign proof] is a 
generalization of one of the rules of signs of elementary algebra” (p. 217). Nicodemi, 
Sutherland and Towsley (2007) noted, “It is interesting to see how to deduce these facts from 
the abstract properties of rings rather than from the elementary cookie-counting arguments 
that we usually use to explain the arithmetic of the natural numbers” (p. 84). These authors in 
particular allude to the importance of this connection in teaching by providing a ring based 
rationale for the positive result of multiplying two negative numbers and contrasting it with 
the rationale generally accepted in school mathematics. 
 
Hierarchical or inclusion 

A hierarchical or inclusion connection is one in which a concept is a component of or 
included in another concept. When one concept is included or contained in the other concept, 
a hierarchical relationship exists between the two concepts. Table 6 summarizes the 
comparison connections I found in the abstract algebra textbooks. I then provide a detailed 
description of the most frequently made connections. 
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Table 6 

Mathematical connections: Hierarchical or inclusion 
Abstract algebra concept Secondary school mathematics 

concept 
Number of 
textbooks 

Algebraic structures & properties Solving linear equations 6 
Compass/geometric constructions Ruler, circles, intersection, and other 

geometric concepts 
7 

Cyclic group Division algorithm 1 
Extension field/splitting field Solving for the roots of a polynomial 5 
Isomorphism Function 3 
Nilpotent Geometric series and convergence 1 
Permutation group  Function and function composition 3 
Polynomial ring Power series 1 
Symmetry group Rotation, reflection, function 

composition 
7 

Zero divisors Solving quadratic equations by 
factoring 

4 

 
Seven of the nine abstract algebra textbooks included a chapter or section on compass or 

geometric constructions, which are geometric applications of field theory. The geometric 
constructions first experienced in high school geometry using a compass and straightedge 
were given an algebraic context. Thus, students should first have a basic understanding of 
geometric concepts such as angles, circles, distance, intersection, regular n-gons, and 
trisection in order to understand how their understanding relates to geometry. In fact, Dummit 
and Foote (2004) wrote: 

It is an elementary fact from geometry that if two lengths a and b are given one may 
construct using straightedge and compass the lengths ! ± !, !", and !!. It is also an 
elementary geometry construction to construct ! if a is given: construct the circle with 
diameter 1+ ! and erect the perpendicular [line] to the diameter. The length is !. (p. 
532) 

Thus, all arithmetic operations can be constructed using a compass and straightedge, and 
additive or multiplicative inverses, the product of two numbers, and the square root of a 
number are all constructible numbers. Gallian (2013) defined a constructible number as a real 
number ∝ in which a line segment can be drawn with length ∝  in a finite number of steps 
(p. 400). He then provided three ways to construct such points: intersect two lines, intersect 
two circles, or intersect a line and a circle (p. 401). One chief result is to show the set of all 
constructible numbers then forms a subfield of ℝ and any constructible number must be a 
field extension of ℚ. Another result that is especially useful for future secondary mathematics 
teachers is that one cannot trisect an angle using compass and straightedge.  

Similarly, seven of the abstract algebra textbooks introduced symmetry groups with 
geometric transformations. For instance, Nicodemi, Sutherland and Towsley (2007) defined 
symmetry of a regular figure as “a rotation of the figure around an axis of symmetry that 
takes the figure congruently onto itself” (p. 196). Gallian (2013) posed it this way: 

Suppose we remove a square region from a plane, move it in some way, then put the 
square back into the space it originally occupied. More specifically, we want to describe 
the possible relationships between the starting position of the square and its final position 
in terms of motion. (p. 31) 
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Thus, students can use their knowledge of high school geometry concepts of rotations, axes 
of symmetry, angle bisectors, and reflections in order to understand a symmetry group. 
Several of the textbooks illustrated the six symmetries (identity, 2 rotations, and 3 
flips/reflections around the axes) for an equilateral triangle. Dummit and Foote (2004) 
generalized those findings for all regular n-gons: “There are exactly 2n symmetries of a 
regular n-gon” and “These symmetries are the n rotations about the center through 2!" ! 
radian, 0 ≤ ! ≤ ! − 1, and the n reflections through the n lines of symmetry” (p. 24). In 
addition, these textbooks employed students’ knowledge of function composition to discuss 
the operator used with symmetry groups. Gallian (2013) explained the operation order in this 
way, “In lower level math course function composition ! ∘ ! means g followed by f” (p. 33), 
meaning that the order of the symmetries moves right to left similarly to function 
composition. 

Six of the abstract algebra textbooks seemed to rely on students’ previous understandings 
of solving linear equations to serve as a foundation for the new algebraic structures. For 
instance, simple linear equations of the forms ! + ! = ! and !" = ! form groups under 
addition and under multiplication, respectively. Four of the textbooks asserted that the 
knowledge of solving such equations was an integral component in the definition of a group; 
namely, the properties used to solve a simple linear equation define the group structure. Table 
7 illustrates this information with three different operators: addition, multiplication, and the 
more formal binary operator. Three of the nine textbooks introduced a field in a similar 
manner by walking through the properties needed to solve a linear equation of the form 
!" + ! = !" + !. To solve this problem one must utilize additive and multiplicative 
inverses, additive and multiplicative identities, additive and multiplicative associativity, 
closure under addition and multiplication, and the distributive law. These properties along 
with commutativity are integral components of understanding the definition of a field. In both 
instances the properties used in solving linear equations are contained in the definitions of 
various algebraic structures. 
 
Table 7 

Simple linear equations form a group 
1) Given 

! + ! = ! !" = ! ! ∗ ! = ! 
2) Determine the inverse of a under the operation and apply the operation with its inverse on 

the right of both sides of equation. 
 ! + ! +−! = ! +−! !" ∙ 1! = ! ∙ 1! ! ∗ ! ∗ !!! = ! ∗ !!! 

3) Use the associative law under the operation to regroup the left side of the equation. 
   ! + ! +−! = ! +−! ! ! ∙ 1! = ! ∙ 1! ! ∗ ! ∗ !!! = ! ∗ !!! 

4) The result of regrouping a with its inverse is the identity under the operation [let e be the 
unknown identity under the operation].   
 ! + 0 = ! +−! ! ∙ 1 = ! ∙ 1! ! ∗ ! = ! ∗ !!! 

5) Combining x with the identity under the operation results in x itself.  
 ! = ! +−! ! = ! ∙ 1! ! = ! ∗ !!! 

 
Similarly, five of the textbooks introduced the concept of extension field by building 

upon students’ knowledge of solving for the roots of polynomial functions. For instance, if 
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the given field is the real numbers ℝ, then the simple polynomial function is ! ! = !! + 1. 
Clearly, this polynomial does not have a solution in the field and is thus irreducible, so the 
question then arises whether or not a larger field that contains ℝ would provide a root for the 
polynomial. Gauss answered that question by introducing the complex number system 
ℂ = ℝ+ℝ! where !! = −1. Thus, to solve the polynomial ! ! = !! + 1, the domain needs 
to be extended to the complex number system. 

Analogously, four of the textbooks made a connection between students’ previous 
knowledge of solving quadratic equations by factoring and the abstract algebra concept of 
zero divisors. These textbooks illustrated that to solve a quadratic equation, say !! + 2! −
15 = 0 where ! ∈ ℝ, the students learned to factor the equation, ! + 5 ! − 3 = 0, and 
conclude the only way that a product can equal zero is if one of the factors is zero, ! + 5 = 0 
or ! − 3 = 0, so the only two possible solutions of the equation are ! = −5 or ! = 3. 
Students are then asked to utilize this previous knowledge to understand zero divisors. 
Several of these textbooks then problematized solving quadratics in a modular ring. Thus, the 
understanding of solving for the roots of a quadratic was included in the abstract algebra 
concept of zero divisors.  

Conclusions 
One interesting conclusion that emerged from this research is that despite the varying 

mathematical connection perspectives described in abstract algebra textbooks, there were 
similar key perspectives that could be categorized into specific groups. That is, the textbook 
authors discussed mathematical connections in five distinct ways: alternate representation, 
comparison through common features, generalization, hierarchical or inclusion, and real 
world application. However, textbooks primarily described specific mathematical 
connections using alternate representations, comparison through the common features, and 
hierarchical or inclusion as seen in Table 8. To be more specific, the sheer number of 
different connections explicitly made in textbooks was highest for the hierarchical or 
inclusion connection category, but the most commonly stated mathematical connection of 
specific concepts found in the largest number of textbooks used comparison of common 
features. These results are inconsistent with previous research that has suggested the 
primarily mathematical connection between abstract algebra and secondary school 
mathematics is generalization. 
 
Table 8 

Most commonly stated mathematical connections  
Connection category Abstract algebra 

concept 
Secondary school 
mathematics concept 

Number of 
textbooks 

Alternate 
representation 

Group Geometric transformations, 
Solving linear equations 

7 

Comparison through 
common features 

Algebraic structures 
& properties 

Number systems, arithmetic 
operators 

8 

Comparison through 
common features 

Polynomial ring Polynomial operators and 
vocabulary 

8 

Hierarchical or 
inclusion 

Compass/geometric 
constructions 

Ruler, circles, intersection, 
and other geometric concepts 

7 

Hierarchical or 
inclusion 

Symmetry group Rotation, reflection, function 
composition 

7 
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Another interesting conclusion that emerged from this research is that the mathematical 
connections stated in the abstract algebra textbooks were linked to secondary school 
geometry nearly as often as secondary school algebra. These results were also inconsistent 
with previous research that suggested that the importance of abstract algebra lies in its 
mathematical connections to school algebra. To be more specific, seven of the nine textbooks 
connected group theory to geometric transformations through alternate representation and 
hierarchical or inclusion connections. In addition, seven textbooks connected the abstract 
algebra concepts compass or geometric constructions to school geometry concepts angles, 
circles, regular n-gons, etc. A comparable number of abstract algebra textbooks explicitly 
made connections to secondary school algebra. That is, seven textbooks made an alternate 
representation connection between the abstract algebra concept group theory and secondary 
school algebra concept solving linear equations, and eight textbooks compared specific 
abstract algebra structures to secondary school algebra structures, operators, and vocabulary.  

Implications 
One major implication that can be drawn from the results of this research is the rationale 

for requiring prospective secondary mathematics teachers to take abstract algebra should be 
reevaluated. Stakeholders and policymakers’ recommendations and previous research have 
often characterized abstract algebra as the generalization of school algebra. However, the 
findings of this study revealed a discrepancy between these held beliefs and the actual 
mathematical connections described in abstract algebra textbooks. In fact, other connections 
and connection types were discussed with greater frequency in this study. Abstract algebra 
can no longer be considered simply as the generalization of school algebra but rather it 
should be regarded as an extension of previous mathematical knowledge from algebra and 
geometry. This study’s results revealed that textbook authors identified and discussed 
mathematical connections between abstract algebra and secondary school geometry nearly as 
often as those connections to secondary school algebra. Thus, abstract algebra provides 
prospective secondary mathematics teachers knowledge that is important to their 
understandings of school algebra as well as their understandings of school geometry. 

Furthermore, the mathematical connections between abstract algebra and secondary 
school algebra in addition to the connections between abstract algebra and secondary school 
geometry are not simply generalizations. In fact, I discovered through this research that 
abstract algebra textbook mentioned connections of other types more frequently; namely, 
connections of the types: comparison of common features, hierarchical or inclusion, or 
alternate representations. The rationale for requiring prospective secondary mathematics 
teachers to take an abstract algebra course should then include abstract algebra as a further 
study of familiar mathematical ideas through studying structural comparisons, building upon 
previous mathematical concepts, and using alternate representations of algebraic concepts. 

Another implication that can be drawn from the results of this study is that a variety of 
mathematical connections between abstract algebra and secondary school mathematics can be 
made, and these connections can be described in various ways. It is important for abstract 
algebra professors to recognize that not all abstract algebra textbooks identify the same 
mathematical connections nor do all the textbooks discuss mathematical connections in the 
same way. For instance, not all of the abstract algebra textbooks analyzed introduced 
polynomial rings using comparison of common features even though the majority of the texts 
did. By identifying the specific mathematical connections found in their assigned textbook, 
can build on these connections to help students develop more accurate concept images and 
concept definitions of abstract algebra content. For instance, professors can discuss 
connections with students in the classroom analogously to the ways in which connections are 
described in the assigned text. Coherently discussing mathematical connections may enhance 
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student understanding of important connections or help students build new understandings 
from previous knowledge. Further, professors should be aware of the identified connections 
and connection types omitted from their assigned textbook so that they can discuss omitted 
connections in class or through supplementary materials. Abstract algebra professors may 
also want to talk about connections with students in ways that are not found in the textbook 
but would be beneficial to learning. For example, a professor may want to introduce alternate 
representations of a group when the assigned textbook only presents one representation of a 
group. 
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PROOF EXPECTATIONS OF STUDENTS: THE EFFECTS ON PROOF VALIDATION 

Ashley L. Suominen, Hyejin Park, & AnnaMarie Conner  
University of Georgia 

In this study, we examined how fifteen prospective secondary mathematics teachers validated 
five different arguments purported to be proofs that the sum of the first n odd natural numbers is 
n2 in an interview setting. We also investigated the participants’ stated expectations for middle 
student proof work. Our participants had varying evaluation criteria when validating arguments, 
but largely focused on generality and proof form or appearance. The majority of our 
participants expected only the empirical argument to be given by a middle school student. This 
was also the argument fewest participants accepted as a proof. In general, our participants were 
less likely to expect an argument from middle school students if they accepted it as a proof. 
Further research is needed to examine how argumentation experiences during their teacher 
preparation program influence prospective teachers’ expectations of students’ abilities to 
produce appropriate arguments. 

Key words: Proof validation, Prospective secondary teachers, Teacher expectations, Middle 
school students 

Proof plays a prominent role in the discipline of mathematics. Smith and Henderson (1959) 
wrote, “The idea of proof is one of the pivotal ideas in mathematics. It enables us to test the 
implication of ideas, thus establishing the relationship of the ideas and leading to the discovery 
of new knowledge” (p. 178). Current national recommendations (e.g., National Governors 
Association Center for Best Practices & Council of Chief State School Officers, 2010) suggest 
that reasoning and proving should become central to students’ mathematical experiences across 
all grades. Consequently, teachers are asked to teach in ways that require a robust knowledge of 
proof, including proficiency for reading and analyzing students’ arguments. Stylianides and Ball 
(2008) suggest that specific kinds of knowledge of proof and proving are necessary for teachers 
to analyze students’ arguments and proofs. 

Teachers’ expectations for student arguments are one form of evidence of their pedagogical 
content knowledge specialized to their mathematical knowledge for teaching proof. Previous 
research on teachers’ expectations has often focused on the relationships of expectations to self-
fulfilling prophecies (e.g., Brophy, 1983; Jussim & Harper, 2005). However, for our purposes, 
the literature examining the accuracy of teachers’ expectations for students is more relevant, 
particularly those studies that examine teachers’ expectations for and analyses of students’ proof 
attempts (e.g., Bergqvist, 2005) or other mathematical work (e.g., Pemberton & Galbraith, 2000). 

Little research has been conducted on teachers’ expectations for students' answers, 
particularly in the areas of argumentation and proof in mathematics. In this paper, we describe 
fifteen prospective secondary mathematics teachers’ validations (after Knuth, 2002a; Selden & 
Selden, 2003; Weber, 2010) of mathematical arguments purported to prove that the sum of the 
first n odd natural numbers is n2. We examined whether they found them to be mathematical 
proofs and whether or not they would expect each argument from middle school students. 

Relevant Literature  
Several researchers (e.g., de Villiers, 1999; Hanna, 1990; Knuth, 2002b) have discussed the 

types and roles of proof in mathematics and in mathematics education. However, research 
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investigating students’ conceptions of proof is complicated by a lack of consensus on a formal 
definition of proof within the field of mathematics (Hersh, 1993). Hanna (1990) proposed to 
distinguish between two kinds of proofs: proofs that prove and proofs that explain (p. 9). For the 
statement investigated in our study, Hanna stated that the proof by induction would be a proof 
that proves and Gauss’ proof regarding the sum of the first n natural numbers would be a proof 
that explains. When considering the proof validation of practicing secondary teachers, Knuth 
(2002a) modified Hanna’s proofs to construct similar arguments for the sum of the first n odd 
natural numbers and found that practicing teachers accepted empirical arguments in addition to 
deductive arguments as proofs. Other researchers (e.g. Selden & Selden, 2003; Weber, 2010) 
have investigated the process of proof validation in undergraduate mathematics classrooms by 
focusing on the process by which students determine whether an argument is a valid proof. In 
Weber’s (2010) study, undergraduate students did not accept empirical arguments as proofs, 
although they did accept some faulty deductive arguments as proofs. This discrepancy raises an 
interesting question: Are differences in acceptance of empirical arguments due to the different 
sample populations or differing expectations of teachers and students in their respective 
communities of practice? 

In general, the few studies reporting research on teachers’ expectations for students’ 
solutions have differing conclusions. In Bergqvist’s (2005) follow-up study to how secondary 
mathematics students verify conjectures, eight upper secondary mathematics teachers in Sweden 
were interviewed to investigate their expectations of how students would verify conjectures. 
During the interview, participants were given three conjectures and asked how they thought 
students would approach each conjecture. They were then given four hypothetical student 
arguments for each conjecture and asked which solution matched their expectations for student 
work. Initially, these secondary mathematics teachers underestimated students’ levels of 
reasoning based on the results from the previous study of student work. In fact, these participants 
expected only a few students to possess the high level of reasoning required to verify the 
conjecture. Algebraic solutions or the use of advanced mathematical notation also signaled to 
these participants that the argument came from a high performing student. Their expectations of 
students, however, were more accurate when they examined the hypothetical student arguments.  

Conversely, Pemberton & Galbraith (2000) found that practicing secondary mathematics 
teachers overestimated what students would do. In this study, 340 students who had been 
accepted into undergraduate mathematics courses at the University of Queensland in 1997 were 
selected to complete a 24-item test during the first lecture session of the academic year. This test 
covered the content areas: algebra, graphs, indices and logarithms, trigonometry, and calculus. 
One hundred and twenty eight practicing secondary mathematics teachers in Queensland were 
then asked for each test item if they would expect students to successfully complete the question. 
In all but two of the test items, the teachers expected far greater success than the students’ actual 
performance.  

Tabach, Levenson, Barkai, Tsamir, Tirosh, and Dreyfus (2009) investigated 50 high school 
teachers’ knowledge of students’ correct and incorrect proof constructions within the context of 
elementary number theory (ENT). The teachers were given a questionnaire of six ENT 
statements and then asked to present correct and incorrect proofs that students would give to 
each of these statements. A total of 763 proofs were presented by the teachers. These were then 
categorized according to their modes of argumentation, modes of representation, and types of 
errors. The teachers in this study suggested that their students, when writing correct proofs, 
would use a general proof for two of the statements and a numeric example to validate or refute 
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the other statements. Additionally, the teachers expected their students to use symbolic 
representations for correct proofs and numeric representations for incorrect proofs, which 
contradicts studies that students use numeric examples correctly and incorrectly in proofs. Few 
teachers also expected verbal representations. In a connected study, Tsamir, Tirosh, Dreyfus, 
Barkai, and Tabach (2009) investigated how one secondary practicing teacher evaluated 
students’ arguments purported to prove six ENT statements. The teacher was asked to analyze 43 
correct and incorrect arguments from hypothetical students and to determine their correctness. 
When determining whether students’ arguments were acceptable, the teacher not only examined 
their correctness but also considered students’ understanding of adequate ways of proving. 
Tsamir et al. also found that the teacher had very high expectations for students’ proof work, 
expecting proofs to be not only correct but also minimal. 

Theoretical Perspective 
In our larger study, we combine a situative perspective on learning to teach mathematics 

(Peressini, Borko, Romagnano, Knuth, & Willis, 2004) with current research on teachers’ beliefs 
about teaching, mathematics, and proof (e.g., Cooney, Shealy, & Arvold, 1998; Knuth, 2002a; 
Liljedahl, Rolka, & Rosken, 2007). From this perspective, we focus on the practices in which our 
participants participate as they attempt to position themselves as educators. As we narrowed our 
focus for this part of the study, we considered how prospective teachers situated themselves as 
secondary mathematics teachers in describing their expectations of what middle school students 
can or cannot do. Hammerness (2003) explained that these expectations are made by taking into 
consideration the images of students that make up their vision of teaching. In our study, we 
examined fifteen prospective secondary mathematics teachers’ expectations for middle school 
students’ arguments via their validations of purported proofs that the sum of the first n odd 
natural numbers is n2, situated in the context of hypothetical middle school students’ work. 

Methodology 
This paper presents a small part of the results of a larger study following fifteen prospective 

teachers through three semesters of mathematics education coursework and one semester of 
student teaching. Participants were asked to take part in five video-recorded semi-structured 
interviews (45–90 minutes long), one at the beginning of the larger study and one at the end of 
each semester. In this study, we focused our attention on one proof task from the third interview, 
which was conducted at the end of the participants’ second semester in the mathematics 
education program. (Most participants were at the end of their junior year in college.) Our 
research questions for this research were: 1) How do prospective secondary mathematics 
teachers analyze arguments from students? and 2) What expectations do prospective secondary 
mathematics teachers have for middle school students’ arguments?  

During the interview we asked students to read the following claim and then reflect on five 
different hypothetical student arguments: 

During an activity on pattern-seeking in your 8th grade class, Jesse, one of your students, 
said, “I think I found something. If you add the odd numbers, you get the perfect squares. 
You know, 1 is 1; 1 + 3 is 4; 1 + 3 + 5 = 9; see?” Jesse then asks, “Does this pattern keep 
going?” Rather than answer, you asked the students to work on answering Jesse’s question. 

A summary of the different arguments (developed based on other studies) presented in the 
interview can be seen in Figure 1. For each argument in turn, we asked our participants their 
thoughts about the argument, if it was a proof, and if they expected the argument from a middle 
school student. Due to the semi-structured interview format, not all participants were asked every 
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question about every argument; occasionally the interviewer did not push for an explicit answer 
for whether an argument was a proof or if it would be expected. Each interview was transcribed 
by one member of the research team and checked by another member to ensure accuracy. 
 

Arguments Argument Summary 
Bart Examples: First 10 cases shown 

Daphne Visual argument with use of multi-colored dots in square arrays. 

 
Charlie Gauss’s proof using the property of symmetry  

Algebraic manipulation of sum of the first n odd natural numbers: 
! ! = 1+ 3+⋯+ 2! − 1 

Eva Algebraic manipulation of summation formula of the first n natural 
numbers: 1+ 2+ 3+⋯+ ! = !(!!!)

!  
Archie Proof by induction 

Figure 1. Summary of proof validation tasks 
 

To analyze our data, we first summarized each participant’s proof validation work for each 
argument, noting specific actions and statements from each participant. We then coded their 
proof responses for the characteristics of proof used by the participants in their validations of the 
arguments. For instance, we coded references to the form of an argument, the generality of an 
argument, and the audience of an argument. Next, we created a data table with participants’ 
responses to whether or not each argument was a proof and whether or not each participant 
expected the argument from a middle school student. We then summarized participants’ 
rationales for their expectations of middle school students’ arguments. 

Results 
Our analysis of the data was guided by the following questions: How do the prospective 

secondary mathematics teachers analyze arguments purported to be proofs that the sum of the 
first n odd natural numbers is n2? What expectations for middle school students’ solutions are 
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reflected in their analyses? In this section, we describe our participants’ validations of each 
argument and their accompanying expectations for middle school students’ arguments.  
Bart’s Argument: Table of Examples 

For Bart’s argument, our participants focused primarily on the generality of a proof in 
determining whether or not it was a proof. For instance, Elliot said, “He [Bart] gives a lot of 
examples but it's also, I don't think it necessarily like proves it for every single term n and so I 
guess, I don't think you can make a conclusion or anything.” Several participants classified this 
argument as a set of examples. Ultimately, eleven out of fifteen participants said this argument 
was not a proof, with rationales including that it did not prove it in general or did not prove for 
all n. Four participants identified Bart’s argument to be a proof or part of a proof in the context 
of a middle school solution. These participants either overtly situated themselves as a middle 
school student or specifically considered how a middle school student would think about such a 
problem. For instance, one participant stated, “Let me try to get in my eighth grade class,” and 
another said, “I feel like it is representative of an eighth grader.”  

Eight participants initially said they would expect this argument from middle school students. 
After seeing the other student arguments, six participants changed their answer from no to yes, 
for a total of fourteen participants expecting this argument from middle school students. These 
participants offered two main reasons for these expectations. Four participants based their 
expectations on students’ prior mathematical knowledge. For instance, Vanessa would expect 
this argument because “they [middle school students] know what a perfect square is, they know 
what an odd number is, they know how to sum it, they know what consecutive odd numbers 
means.” However, Robin would not expect it because a middle school student would just use 
numbers and not variables. Three participants based their expectations on what they would have 
done at that age. Reilly suggested that because he could see himself constructing a similar 
argument at that age, he expected the same from middle school students. Alex also mentioned 
what he would have done, discussing how he would move from a few examples to the general 
case, and concluding that an eighth grader would naturally begin with examples. 
 
Daphne’s Argument: Visual Dot Arrays 

Daphne’s argument generated the most diverse set of statements from our participants. Most 
seemed initially surprised about the appearance or form of Daphne’s argument. For instance, 
Alex’s initial response was, “It’s a lot more abstract, or visually different.” Vanessa was 
uncertain whether Daphne’s argument was a complete proof, because she was used to seeing 
more writing and variables in a proof. However, fourteen participants ultimatelyclassified this 
argument as a proof, with one participant left unsure. Six of these participants considered the 
generality of the argument for validation. For instance, Josephine said, “She proved it for all N,” 
and Rachel said, “They generalized it for N.” Two other students relied on the computational 
accuracy of the argument to decide if Daphne’s argument was a proof. For example, Jill verified 
the arrays were actually square with the correct numbers of dots, and William stated, “the 
reasoning is not as clear, but the computation works out.”  

Ten participants initially said they would not expect this argument from middle school 
students, four said they would, and one was unsure. However, three participants changed their 
answer from “no” to “yes” or “maybe” after seeing the other student arguments, for a total of 
seven participants expecting this argument from middle school students. The rationales for these 
expectations varied. Six of the participants based their expectations on what they would have 
done at that age. For instance, Elliot stated, “I mean I think it's really good. I don't think I would 
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have done that in middle school though,” so he would not expect this argument from a middle 
school student. Susan said it would be possible for a middle school student to produce Daphne’s 
argument despite admitting she wasn’t sure if she would be able to come up it as a college 
student. Susan was a unique participant in that she said most arguments were possible for middle 
school students. Four participants based their expectations on students’ prior mathematical 
knowledge and classroom experiences. That is, if a middle school student had seen or been 
taught this type of argument before, then they might expect the student to produce Daphne’s 
argument. Five participants appealed to the visual nature of the argument as being appropriate 
for middle school students. For instance, Rachel expected it from a middle school student 
because “I think they like to be really visual and draw things out.” 
 
Charlie’s Argument: Adaptation of Gauss's proof 

Fourteen participants classified Charlie’s argument as a proof with only one remaining 
unsure. These participants provided two different rationales for validation: the form or 
appearance of the argument, and the generality of the argument. Five participants mentioned the 
form or appearance of the argument when classifying it as a proof. For example, Elliot said it 
“looks to be right,” and Reilly said, “It looks like an algebraic proof.” Susan said that Charlie’s 
argument “models” something that she had seen before and would be how she would prove the 
number theory statement. Four participants pointed out that Charlie proved the general case, so 
this argument is a proof. Six participants provided no rationale for their decision and were not 
asked to explain further. 

When asked whether they would expect this argument from a middle school student, nine 
participants initially said they would not expect it and three said it would be possible. Only one 
participant changed her answer to possible after being shown the other arguments. Three 
participants were not asked their expectations for this argument. Five participants based their 
expectations on students’ prior mathematical knowledge or classroom experiences. For instance, 
Cathy observed that this argument relied on notation that students may have never seen before, 
which could cause confusion in understanding the argument. In addition, Elliot admitted his own 
confusion about the argument, “I just don’t understand why they would add those two numbers,” 
which led him to declare, “There’s no way a middle schooler would do this.” Elliot further based 
his expectations of middle and high school students on what he would have done in high school: 

I wouldn't have ever done that in high school. And I was one of the smarter ones in 
my high school. I mean there are people that can do this stuff, but…not a lot of 
people can do that. 

Five participants based their expectations on what they would have done at that age, and 
two other participants mentioned that they would not expect this argument unless the 
middle school students were explicitly taught this approach. 
 
Eva’s Argument: Algebraic Manipulation of Formula for Sum of First n Natural Numbers 

Thirteen participants classified Eva’s argument as a proof with one remaining unsure. One 
participant was not explicitly asked whether or not this argument was a proof. Few participants 
provided their rationales or were asked to further elaborate their thoughts for their decision. 
However, three participants mentioned the form or appearance of the argument as one that 
resembles a proof. For instance, Charissa classified Eva’s argument as a proof because it looked 
like one. One participant, Vanessa, seemed to consider the prior mathematical knowledge or 
classroom experiences of the audience when assessing if Eva’s argument was a proof. She 
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asserted that this argument would not be a proof to a middle school student even though it would 
be to a college student, because middle school students would not know the formula or necessary 
proof for the sum of the first n natural numbers is ! !!!

! , so Eva’s argument would not make 
sense to them.  

Ten participants said they would not expect Eva’s argument from a middle school student 
and four said it might be possible. One participant was not asked about his expectations for this 
argument. Also, no participants changed their expectations for this argument based on viewing 
other student arguments. When determining their expectations, nine participants pointed to the 
prior mathematical knowledge needed to complete this argument; namely, the proof of the sum 
of the first n natural numbers is ! !!!

! . Seven of these participants would not expect middle 
school students to know this formula or have proven it previously since they themselves learned 
it in college, whereas two participants said it would be possible if the middle school student had 
been explicitly taught this prior necessary knowledge. Susan provided a unique rationale for 
stating it would be possible. That is, she discussed the more algebraic nature of Eva’s argument 
as being appropriate for middle school students. 
 
Archie’s Argument: Proof by Induction 

All fifteen participants classified Archie’s argument as a proof. Twelve of these participants 
explicitly noted the proof technique used in the argument as proof by induction. Recognizing this 
technique was important for our participants when validating this argument. In fact, a few 
participants did not deeply examine the argument upon recognizing the induction technique. For 
instance, Josephine said Archie’s argument was a proof after only ten seconds of reading. She 
then mentioned she didn’t need to read the whole thing because Archie used induction, which 
seemed to be a favored proof technique of hers given that she compared nearly every other 
argument to induction.  

The majority of our participants based their expectations of middle school students for 
Archie’s argument on what they would have done in at that age. Because our participants did not 
learn proof by induction until college, thirteen participants said they would not expect this 
argument from middle school students. For instance, Cathy declared that induction is a college-
level idea that would not be appropriate for a middle school student. Helen also asserted that this 
argument was too abstract and had too many variables for middle school students. Two 
participants, however, said it might be possible depending on the students’ classroom 
experiences. Despite the fact that Susan learned induction in college, she discussed that it would 
be possible for a middle school student to produce this argument if “we had introduced like just 
basic proving ideas in elementary school.”  

In summary, the prospective secondary mathematics teachers that participated in this study 
seemed to value different things when validating arguments and determining their expectations 
of students. Our participants focused on generality when validating Bart and Daphne’s 
arguments, but emphasized themselves as middle school students when discussing their 
expectations for students. The participants also highlighted the visual nature of Daphne’s 
argument as being appropriate for middle school students, so many would expect it from a 
middle school student. However, the more complicated arguments (Eva, Charlie, Archie) were 
commonly accepted as proofs without rationales, perhaps due to the familiar proof techniques or 
forms of these arguments. In their expectations for middle school students, our participants often 
considered when they had learned the concept or proof technique. Our participants’ expectations 
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also changed upon viewing other arguments, which aligns with the findings of previous research 
(Bergqvist, 2005) that the accuracy of teacher expectations increased when given hypothetical 
student arguments. A summary of the findings can be seen in Table 1. 
 
Table 1 
 
Summary of participants’ proof validations and expectations  
Arguments Proof? Expect from middle school student? 

Yes No Unsure Yes No Maybe 
Bart 41 11  8 initial 

(14 final) 
7 initial  

(6 changed to yes) 
 

Daphne 14  1 4 initial  
(7 final) 

10 initial  
(3 changed to yes/maybe) 

1 

Charlie 14  1 3 initial 
(4 final) 

9 initial 
(1 changed to possible) 

 

Eva 
 

13  1 4 10  

Archie 15   2 13  
Note: Several participants adjusted their expectations upon seeing the other student arguments. 
This change is noted in the table. 
 
1Participants classified this argument as a proof or part of a proof in the context of a middle 
school solution 
 

Discussion 
In this study, we noticed that our prospective secondary mathematics teachers often based 

their expectations on what they did or think they would have done in middle school. For 
instance, Cathy, when considering Archie’s argument, said: 

Because I probably wouldn't have been able to do this until last year, which was my 
sophomore year of college. I wouldn't have, I don't think I would have been able to do this in 
high school much less middle school. 

Many of our participants stated that since they couldn’t produce Archie’s proof until college, 
they would not expect it from a middle school student. Furthermore, since our participants had 
little formal proof writing experience in middle school, they did not expect middle school 
students to be able to develop arguments that were proofs. As a result, proof writing seemed to 
be an unfamiliar context or idea to think about in recollections of middle school. For instance, 
Alex said he wouldn’t expect Charlie’s argument, because “I don't think I would ever thought of 
this in high school. I don't even remember learning like proofs like this in high school.” 
Similarly, Reilly mentioned: 

I said one of the things I want to do is build expectations for students, what to expect. I feel 
like these students probably expect and have like learned how to prove things when, when I 
was like I guess I hadn't done proofs until I got to college. 
Our prospective secondary mathematics teachers expected middle school students to think 

empirically about arguments. Hence, most of our participants more readily expected Bart’s 
argument from a middle school student and the majority did not expect Archie’s argument. For 
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instance, Reilly, when discussing his expectations for middle school students, stated, “I guess my 
expectations or what I would expect to see the most would be things that were more like this 
[referring to Bart’s argument], in essence is maybe prove more examples.” Many of our 
participants mentioned similar expectations by expecting the middle school students to use 
examples when formulating arguments. William provided a slightly different but related 
rationale for expecting empirical arguments when discussing Archie’s argument: 

I would definitely just like expect a little bit of exploration maybe trying to get to this 
[referring to Archie’s argument], you know playing around with even numbers odd numbers 
and making conclusions. Maybe that exploration, but I'm not, I don't know if I'd expect them 
to formulate the argument as middle schoolers. 

In general, our participants did not believe the middle school students were able to apply the 
abstract thinking necessary in order to move from example usage and number exploration to 
formulating formal arguments. To them, the ability to think abstractly about mathematical 
problems is developed at a much later age, often at the tertiary level. A few participants also 
noted that the formality and structural nature of proofs require this abstract thinking, which is 
why they did not expect middle school students to write proofs.   

The participants’ assessments in this study sometimes depended on what the specific students 
would have learned in the class or their prior mathematical knowledge. For instance, when 
considering Archie’s argument, William said, “I wouldn't expect this out of my high schoolers or 
middle schoolers unless we were in a class where induction was the main topic and we were 
really harping on that.” Only a few of our participants would expect middle school students to 
produce the more complicated arguments (Charlie, Eva, or Archie) and only they were in a class 
that explicitly discussed these proof writing approaches. Additionally, our participants primarily 
mentioned students’ prior mathematical knowledge with Eva’s argument. For instance, Cathy 
discussed her expectations about Eva’s argument: 

I would be surprised, but if you've already discussed what it means for something to be a 
sum, or for all the sums of natural numbers, I feel like if you've discussed that then students 
would be capable of doing it. But if you haven't even touched on what it means for, to find 
just the sum of all natural numbers then I feel like it would be a struggle for students to get to 
this point. 

Cathy based her expectations of this argument on students’ prior mathematical knowledge. Two 
participants (Jason and Susan) possessed this attitude of openness towards expectations for 
student. They expressed opinions consistent with a belief that there is no limitation on what a 
student could do mathematically. For each argument, these participants discussed that if a 
student were taught the background knowledge necessary to understand the given argument, 
such as a certain proof form or certain mathematical ideas, then a middle school student could 
potentially construct any of the arguments. Thus, their expectations for middle school students 
were shaped by their beliefs about students rather than their proof validations. 

Implications  
The tendency of prospective secondary mathematics teachers to expect only empirical 

arguments from middle school students may not necessary be atypical; however, their primary 
rationale for these expectations, a comparison to themselves and their experiences, causes us to 
consider the experiences these teachers are given during their teacher preparation program. That 
is, what specific types of learning experiences are given to prospective secondary mathematics 
teachers regarding argumentation? From this study we see that prospective teachers need 
experiences in which they engage in argumentation, both as students and as teachers with 
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different levels of students. Explicit discussions of what a valid argument is or what proof might 
look like in middle school or high school may be important for these prospective teachers as we 
consider how they will evaluate their students’ arguments and what they will expect from their 
students. Future research should examine how these experiences influence prospective teachers’ 
expectations of students’ abilities to produce proof arguments. 
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Calculus Students’ Understanding of Interpreting Slope and Derivative and Using them 
Appropriately to Make Predictions  

Jennifer G. Tyne 
University of Maine 

Studies have shown that students have difficulty with the concepts of slope and derivative, 
especially in the case of real-life contexts. Following up from a previous study, written 
surveys were used to collect data from 69 differential calculus students, and 7 clinical 
interviews were conducted. On the surveys, students answered questions about linear and 
nonlinear relationships and interpretations of slope and derivative. They also critiqued the 
reasoning and accuracy of a hypothetical person’s predictions. In interviews, students 
explained their thought processes and reasoning while answering questions similar to the 
written survey but in a different context. Results indicate that students struggle with knowing 
what the derivative represents and how to use it appropriately to make predictions. These 
struggles might stem in part from students’ incorrect interpretations of slope as a ratio of 
totals, as opposed to a ratio of changes over a particular interval.  

Key words: Calculus, Derivative, Rates of Change, Slope, Student Understanding  

Introduction and Research Questions  
A robust understanding of derivatives and instantaneous rates of change in calculus 

requires an understanding of slope and average rates of change from precalculus (Hackworth, 
1994). It is thus important for instructors to be alert to students’ understanding of slope 
coming into calculus, and to design instruction that expands on that knowledge in teaching 
the derivative. Calculus students may not have the robust understanding of slope and rates of 
change that instructors assume, which likely impacts their learning of derivative. 
Furthermore, calculus requires students to leverage their slope and rates of change knowledge 
to understand instantaneous rates of change and continuously changing rates, requiring strong 
covariational reasoning on the part of students (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002).  

The focus of this study is an investigation of the interpretation and use of slope and 
derivative in real life contexts, as well as students’ abilities to critique the reasoning of 
others’ predictions involving slope and derivative. Real life applications require students to 
translate from the context to the abstract level of calculus and then back to the context, a 
process that requires conceptual knowledge (White & Mitchelmore, 1996). Educators have 
emphasized the utility of these sorts of problems as providing “meaningful opportunities for 
students to develop their understanding of mathematics… [and] opportunities for students to 
communicate their understanding of mathematics” (Stump, 2001, p. 88).  

The importance of modeling real life situations is reflected in the Common Core State 
Standards for Mathematics (National Governors Association Center for Best Practices, 2010). 
One of the Standards for Mathematical Practice is to “model with mathematics,” which 
focuses on the importance of solving problems that arise in everyday life (Standards for 
Mathematical Practice section, CCSS.MATH.PRACTICE.MP4). Likewise, research points to 
the use of problems in which “the problem situation is experientially real to the student” 
(Gravemeijer & Doorman, 1999, p. 111) as key to students’ understanding of formal 
mathematics and their improved mathematical reasoning. The practice standards also call for 
students to be able to critique the reasoning of others, distinguish between correct and flawed 
logic and reasoning, and, if there is a flaw in an argument, explain what it is (Standards for 
Mathematical Practice section, CCSS.MATH.PRACTICE.MP3).  
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The present study builds on research about student understanding of rates of change 
(Beichner, 1994; Carlson, 1998; Hackworth, 1994; Hauger, 1995; Orton, 1983; Teuscher & 
Reys, 2007; Thompson & Thompson, 1992; Wilhelm & Confrey, 2003), slope (Barr, 1980; 
Crawford & Scott, 2000; Lobato & Thanheiser, 2002; Nagle, Moore-Russo, Viglietti, & 
Martin, 2013; Stump, 2001), and derivative (Asiala, Cottril, Dubinsky, & Schwingendorf, 
1997; Bingolbali, Monaghan, & Roper, 2007; Ferrini-Mundy & Graham, 2004, 1991; Habre 
& Abboud, 2006; Park, 2013; White & Mitchelmore, 1996; Zandieh, 2000). Findings from 
these studies indicate that students have difficulty understanding slope as a constant and 
derivative as an instantaneous rate of change. However, there has not been much research on 
college students’ verbal interpretation of slope and derivative, or students’ understanding of 
the differences in making predictions involving constant and instantaneous rates of change. 
For example, do students know that a slope of 5 dollars per child means that “for each 
additional child, the cost increases by 5 dollars,” and that a derivative of !! 20 = 4 dollars 
per day means “when the number of children are equal to 20, the cost is increasing at a rate of 
4 dollars per child”? Do students understand that the slope can be used to calculate the 
increase in cost over any interval, but the derivative can be used only to estimate the cost 
increase close to the value of interest?     

Recent research found that students with under-developed conceptions of slope and 
derivative were not able to correctly use rates of change to make valid predictions (Tyne, 
2014). Almost two-thirds of the 74 students in that study incorrectly used the instantaneous 
rate of change as a constant rate of change, indicating confusion about the derivative’s 
meaning.  Results also pointed to an incomplete across-time understanding (Monk, 1994) of 
the derivative as a function. The present study extends this work by addressing the following 
research questions: (1) Can students interpret the slope and derivative in the context of the 
problem? (2) Can students appropriately critique the reasoning of someone else’s use of slope 
and derivative to make valid predictions?  

Student Understanding of Rates of Change, Slope, and Derivative 
The current research most relevant to this study centers on students’ understanding of 

rates of change in general and, more specifically, their understanding of slope and derivative.  
Rates of change are the overarching connection between the concepts of slope and derivative, 
and while slope is often considered a middle school and high school concept, it is an essential 
building block for students’ success with the derivative.  

Student Understanding of Rates of Change 
With their basis in everyday experiences, rates of change are fundamental for 

understanding the relationships between various quantities (Confrey & Smith, 1994). Many 
researchers claim that students’ success in higher level mathematics depends on a deep 
understanding of rate (Carlson et al., 2002; Zandieh, 2000). As rates of change play a 
significant part in describing and understanding changing quantities in biology, physics, 
chemistry, economics, and other areas, rates of change are a critical mathematical topic. 

Research findings about rates of change relevant to this study fall into three categories:  
(1) students’ underdeveloped concepts of rates, (2) students’ difficulties interpreting rates of 
change, and (3) students’ incorrect view of rates of change as the ratio of totals.   

Thompson (1994) and Hackworth (1994) both speak to students’ underdeveloped 
concepts of rates. In studying student understanding of the Fundamental Theorem of 
Calculus, difficulties in understanding were often tied to under-developed understanding of 
rates of change (Thompson, 1994). Hackworth (1994) found that instruction about derivatives 
failed to substantially change students’ reasoning about rate situations, and that students who 
did poorly in calculus seemed to have an impoverished understanding of rates of change. 
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Orton (1983) suggests that rates of change “need to be introduced whilst the opportunity is 
there and long before any formal algebra/calculus treatment of the issues” (p. 26). Orton 
found that many calculus students do not think about rates of change in derivative problems, 
hence losing a connection that is useful as they moved on to higher-level mathematics.  

Many studies point to students’ difficulties with interpreting rates of change (Carlson, 
1998; Teuscher & Reys, 2007; Wilhelm & Confrey, 2003). Teuscher and Reys (2007) studied 
Advanced Placement calculus students and concluded that students lack an understanding of 
the interpretation of rate of change (although their survey included only one interpretation 
question that had students use a graph to interpret a rate of change). Wilhelm and Confrey 
(2003) reported that most research on the rate of change concept involved motion and speed, 
the context most dealt with in calculus textbooks and courses. They promote teaching rates of 
change in multiple contexts, allowing the “learner the opportunity to see the ‘like’ in the 
contextually unlike situation, so that the learner might later be able to project these rates of 
change and accumulation concepts into novel situations” (p. 904).  In  Carlson's  (1998) 
study, even the most talented calculus students had trouble interpreting rate of change 
information from a dynamic situation, as well as interpreting the covariant aspects of a real 
world situation. She found that current calculus curricula gave very little opportunity for 
students to interpret the covariant aspects and language of functions. 

Rates of change can be viewed as a ratio of differences (∆!∆! or !!!!!!!!!!
) but some students 

misinterpret this and interpret it as the ratio of totals !
! , possibly because the expressions ∆!∆! 

and !! are so similar (Hauger, 1995). Hauger concluded that “unless these subtle distinctions 
are made in the minds of students, it is a small wonder that they use !! when they should be 

using ∆!∆!”(p.27). Whether or not a line passes through the origin also results in difficulties for 
students regarding slopes and rates of change. Beichner (1994) found that students were 
much less successful in calculating slope when the line did not pass through the origin. 
Students would regularly divide a single ordinate value by a single abscissa value, forcing the 
relationship through the origin, in other words calculating slope as !

!  instead of ∆!
∆! . 

Student Understanding of Slope 
Researchers have documented difficulties students have with the concept of slope (Barr, 

1980, 1981; Crawford & Scott, 2000; Lobato & Thanheiser, 2002; Stump, 2001). Research 
findings fall into two categories relevant to this current study:  (1) students’ inabilities to 
interpret the slope as a rate of change, (2) students’ under-developed conceptions of slope.   

Researchers have called for instruction that allows for more opportunities for students to 
communicate about slope (Crawford & Scott, 2000; Stump, 2001).  Stump (2001) found that 
while high school students demonstrated a better understanding of slope in functional 
situations, as opposed to physical situations,  “many students had trouble interpreting slope as 
a measure of rate of change” (p. 81). She suggested instruction should focus on providing 
opportunities for students to communicate their understanding of slope.  Crawford and Scott 
(2000) also call for having students communicate and reason about slope, as well as using 
real-world examples to introduce the concept of rates of change prior to introducing slope. 
Lobato and Thanheiser (2002) found that students can correctly calculate slope using the 
“rise over run” formula, but only view slope as a number, not as a measure of rate. They 
proposed ratio-as-measure tasks that can “help students develop an understanding of slope 
that is more general and applicable” (Lobato & Thanheiser, 2002, p.174).  

Slope can be conceptualized in many different ways; researchers have focused on the 
conceptions both students and teachers bring to the classroom. Stump (1999) studied 
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teachers’ knowledge of slope. She found a substantial majority of teachers thought of slope as 
a geometric ratio, with less than 20% thinking of it as a functional concept that had no 
connection to rates of change. She notes that the teachers might have been capable of making 
the connection, but that they did not incorporate the connections into their definitions. Nagle, 
Moore-Russo, Viglietti, and Martin (2013) studied both college students’ and instructors’ 
responses to questions about slope, and classified their responses among 11 
conceptualizations of slope. They found that while instructors demonstrated a multi-
dimensional understanding of slope as a functional property, students rely on procedurally-
based conceptualizations of slope and showed little evidence that they engaged in 
covariational reasoning. They conclude that it is imperative that instructors understand the 
conceptualizations commonly held by their students in order to build advanced ideas.     

Student Understanding of Derivatives 
Students’ difficulties with the derivative are well documented in the literature (Asiala et 

al., 1997; Bingolbali et al., 2007; Ferrini-Mundy & Graham, 1994, 2004; Habre & Abboud, 
2006; Park, 2013; White & Mitchelmore, 1996; Zandieh, 2000). Students are often able to 
compute derivatives using algorithms, but have very little conceptual knowledge about the 
derivative (Ferrini-Mundy & Graham, 1994; White & Mitchelmore, 1996). Research about 
derivative understanding relevant to this study falls into three categories: (1) student 
weaknesses with underlying concepts, (2) students’ difficulties with covariational reasoning, 
and (3) the difficulties which stem from the multi-faceted nature of the derivative. 

 The underlying concepts of variable and function are difficult for students. White and 
Mitchelmore (1996) cite the need for a mature view of variable as a prerequisite to a 
successful study of calculus. Many of the students in their study did not hold abstract-general  
understanding of variable, instead taking a focus where they treated the variables as symbols 
to be manipulated instead of quantities to be related. Many students also come to calculus 
with a very primitive understanding of functions (Carlson, 1998; Ferrini-Mundy & Graham, 
1994; Monk, 1994). Monk (1994) looked at students’ understanding of functions from two 
approaches – pointwise and across-time. Point wise understanding is what students first attain 
in their learning about functions, thinking of particular values of the independent variable 
corresponding to particular values of the dependent variable. However, in calculus, students 
must have “across-time” understanding of functions, where changes in one variable lead to 
changes in another variable. 

Similarly, rates of change knowledge is strongly linked to the notion of covariational 
reasoning, defined by Carlson et al. (2002) as “the cognitive activities involved in 
coordinating two varying quantities while attending to the ways in which they change in 
relation to each other” (p. 354). Such reasoning requires someone to hold an image of two 
quantities’ values simultaneously (Saldanha & Thompson, 1998).  Researchers have found 
that students lack the understanding necessary to deal with these co-varying quantities 
efficiently, thus not grasping the across-time understanding (Bezuidenhout, 1998; Carlson, 
1998). Students need to understand the covarying nature of the derivative function, not just 
the pointwise interpretation, in order to fully make sense of this key calculus concept. Park 
(2013) studied differential calculus students and found that most students use a point-specific 
understanding, and they do not have a fully developed function concept of the derivative.  

The derivative is a multi-faceted idea, with students needing to connect many underlying 
concepts in order to think fully about the derivative (Ferrini-Mundy & Graham, 1994; 
Zandieh, 2000). The concept of the derivative can be represented graphically as the slope of a 
tangent line, verbally as the instantaneous rate of change, physically as velocity, and 
symbolically as the limit of the difference quotient (Zandieh, 2000). Researchers have found 
that students often do not connect a function’s derivative with its rate of change, which leads 
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to the inability to understand differentiation as an operator that measures a rate of change 
(Weber, Tallman, Byerley, & Thompson, 2012). Even when they can connect the derivative 
with rates of change, students often confuse derivative at a point with the derivative function 
(Ubuz, 2007). Habre and Abboud (2006) found that when students thought of functions in an 
analytic setting, they took a geometric approach concerning the concept of the derivative.  

What is Not Yet Known about Student Understanding 
Researchers have documented that students often have incomplete conceptions of rates of 

change, slope, and derivative, all key concepts in understanding the tasks in the current study.  
While some research has focused on students’ abilities to interpret slope in real-life contexts, 
it has mostly involved high school students. Very little research has been done on students’ 
verbal interpretation of the derivative as a rate of change. Maharaj (2013) calls for calculus 
instruction that focuses on “verbal approaches to applications on the derivative concept” (p. 
15) that is related to the verbal interpretation of slope and derivative, a focus of the present 
study.  

A second focus of the study, and one that is not covered in the literature, is student 
understanding of appropriate uses of slope and derivative to make predictions and to critique 
the reasoning of others. Though focused on functions in general, and not derivatives, Carlson 
(1998) found that second-semester calculus students were “unable to use information taught 
in early calculus and had difficulty interpreting and representing covariant aspects of a 
function situation” (p. 115). The current study also focuses on covariant aspects of functions, 
what Carlson (1998) defines as “recognizing and characterizing how change in one variable 
affects change in another” (p. 117). This study includes an examination of students’ abilities 
to recognize how change in independent variables affects change in dependent variables.   

Research Design 

Theoretical Perspective 
The present study was conducted within a cognitivist framework (Byrnes, 2000; Siegler, 

2003), which posits that students make sense of the mathematics they are doing based on 
their experiences and that their answers are rational and subject to explanation (Ferrini-
Mundy & Graham, 1994). Because a cognitive lens focuses on individuals’ thinking, it is 
useful for investigating how students think about slope and derivative and use them to make 
predictions. The focus here is on detailed analyses of student understanding of a few key 
concepts, gained from direct student responses. Hence this study used a written survey 
instrument and follow-up interviews as data sources.  

Setting  
The data for this study were collected from 69 students enrolled in differential (e.g., first 

semester) calculus at a pubic university in the Northeast. Students completed the surveys 
during class time, approximately 80% through the course. Over 50% of the students had seen 
calculus in high school, and all needed to either pass a placement exam or complete 
precalculus at the University with a C or better to gain enrollment into differential calculus. 
Follow-up clinical interviews were done at the start of the following semester. Seven students 
participated, all of who completed the written survey the previous semester and were enrolled 
in Calculus 2 when the interviews were conducted. Interviews lasted 30-45 minutes and 
written work and audio were recorded with a Livescribe pen.  

Data Collection 
The survey instrument consisted of questions about slope and derivatives, including 

questions about linear and nonlinear relationships between the yield of a crop of corn 
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(bushels) as a function of the amount of nitrogen put on the field (lbs.). The interview 
instrument was very similar to the written survey, except the context was the amount of drug 
given to a patient as a function of the patient’s weight. The main focus of this paper is on the 
results from the interview tasks (Figure 1). The survey and interview questions are not 
mechanical in nature and therefore do not assess computational skills; instead, they are 
questions about students’ interpretations of slope and derivative and their ability to critique 
others’ reasoning, and therefore try to uncover their understanding about these topics.  

 

The questions in the interview instrument were informed by the typical presentation of 
slope and derivative in textbooks, the Common Core Standards for Mathematical Practice, 
and the call for assessing students’ across-time view of functions (Monk, 1994). In textbooks 
and in instruction, when focus is given to students’ understanding of slope and derivative, 
usually the questions asked are similar to A1, A2, B1, and B2 (Figure 1). These questions 
address units (Bezuidenhout, 1998) and students’ pointwise understanding of rates of change 
(Monk, 1994). Based on the Common Core’s call for critiquing the reasoning of others, as 
well as students’ across-time understanding of rate of change (Monk, 1994) the survey 
included questions A3, A4, B3, and B4. The linear questions (A3 and A4) were included to 

For certain drugs, the amount of dose given to a patient, D (in milligrams), depends on 
the weight of the patient, w (in pounds).  

A.  Assume that D(w) is a linear function with a slope equal to 2 (m = 2).  
0. On the graph below, give a rough sketch of what the function D(w) looks like. Label the 

axes, but no need to scale them. 
1. What are the units on the slope, m = 2? 
2. Explain what this slope (m = 2) means in the context of the problem.  
3. Using the slope (m = 2), Nurse Jodi predicts that a patient’s dose will increase by 2 mg 

when the patient’s weight changes from 140 pounds to 141 pounds. How much confidence 
do you have in her reasoning?  (circle one and provide explanation) 

Very Confident   Somewhat Confident   Not Confident 
4. Nurse Jodi accurately doses a 140-pound patient using the model.  Her next patient is 

twenty pounds heavier and she reasons that she must increase the dose by 40 mg (2 mg for 
each pound of weight).  How much confidence do you have in her reasoning?  (circle one 
and provide explanation) 

Very Confident   Somewhat Confident   Not Confident 
B. Now, assume D(w) is a non-linear function.  

0. On the graph below, give a rough sketch of what the function D(w) might look like. 

1. What are the units on ? (also known as ) 

2. Explain the meaning of the statement in the context of the problem. 
3. Using the fact that , Nurse Jodi predicts that a patient’s dose will increase by 

2 mg when the patient’s weight changes from 140 pounds to 141 pounds. How much 
confidence do you have in her reasoning?  (circle one and provide explanation) 

Very Confident  Somewhat Confident   Not Confident 
4. Nurse Jodi accurately doses a 140-pound patient using the model.  Her next patient is 160-

pounds and she reasons that since , she must increase the dose by 40 mg (2 
mg for each pound of weight).  How much confidence do you have in her reasoning?  
(circle one and provide explanation). 

Very Confident  Somewhat Confident   Not Confident 
 

Figure 1.  Interview Instrument 
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gain an understanding of students’ knowledge of predictions based on linear change and are 
similar to typical textbook/instruction presentation of slope.  

The focus on the present study is student responses for questions A2 and B2 (pointwise 
interpretation of slope and derivative, respectively), and questions A3-4 and B3-4 (across-
time interpretation of slope and derivative, respectively; ability to critique the reasoning of 
others). In Figure 2, I give a hypothetical answer from an “ideal knower,” what such a student 
would be thinking while solving the task, and what the question is designed to give 
information about. These descriptions were used to inform the data analysis. 

Data Analysis 
My approach to the interviews was informed by data analysis on the written surveys. I 

took a modified Grounded Theory (Strauss & Corbin, 1990) approach to analyzing the 
surveys. In pure Grounded Theory, the researcher does not look at literature until after the 
analysis. After an earlier literature review, I had an idea of possible categories that would 
emerge, but used Grounded Theory techniques to identify and refine my analysis categories.  

I examined data from the written surveys by first categorizing answers from the pointwise 
questions (questions A2 and B2), and then categorizing answers from the across-time 
critiquing questions (questions A3-4 and B3-4). These categorizations helped in identifying 
themes to be addressed in interviews, and whether there were relationships between student 
responses on linear vs. non-linear and pointwise vs. across-time questions. 

Interviews allowed me to probe student thinking more deeply, especially focusing on 
themes that emerged in the survey data analysis.  I used categories from the survey data as 
my starting point, and if I saw a categories appear in the interview, I asked questions to get 
students to explain their reasoning.  For example, one of the categories from the written 
survey data analysis was the need for another derivative to predict the change in dosage. If an 
interviewee engaged in this sort of reasoning, I asked, “Why do you need a different 
derivative to answer the question?  What could you do with that information if you had it?”  

Written Survey Findings 
The written survey question context was different than the drug/weight interview context, 

but the questions were similar in content. The context was: Let B(n) be the number of bushels 
of corn produced on a 10-acre tract of farmland that is treated with n pounds of nitrogen.  

For the purpose of this study, I examined four of the questions on the written survey:  (1) 
pointwise interpretation of slope in the context of the problem, (2) pointwise interpretation of 
the derivative in the context of the problem, and (3) the two across-time derivative questions 
where the student is asked to critique the reasoning in Farmer Jim’s predictions.  

Pointwise Slope Interpretation 
In examining student responses to the question of what a slope of 2 means in the context 

of the linear problem, three categories of responses emerged. First, some students responded 
correctly, saying something like “for each additional pound of nitrogen, two more bushels of 
corn are produced.” The key language here is that students recognize that the slope represents 
a constant ratio in the changes in variables, thus the “additional” language.   

Many more students responded using language that implied they were assuming a direct   
relationship that goes through the origin, in other words that the slope represents a constant 
ratio in the variable values !

! . The most common response was that “2 represents the 
number of bushels produced per pound of nitrogen” or “for every pound of nitrogen, 2 
bushels of corn are produced,” implying a direct proportional relationship of !(!) = 2!.  
This was coded as “ratio of totals” interpretation, and denoted it as !(!) = 2!. 
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A.  Assume that D(w) is a linear function with a slope equal to 2 (m = 2). 
A2. Explain what this slope (m = 2) means in the context of the problem. 

The ideal knower would respond that the slope of 2 means that for each additional pound of 
weight, the patient gets an additional 2 mg of drug. This question assesses students’ 
understanding of slope as a constant rate of change, where the ratio of changes in variables 
is constant. This is different than a directly proportional relationship where the ratio of 
amounts is constant, which implies a vertical intercept of zero. 

A3. Using the slope (m = 2), Nurse Jodi predicts that a patient’s dose will increase by 2 mg 
when the patient’s weight changes from 140 pounds to 141 pounds. How much confidence 
do you have in her reasoning? 
The ideal knower would respond “very confident” by understanding that a slope of 2 
represents the increase in milligrams per pound, and that it is a constant rate of change. As 
the pounds increase by 1, the dosage increases by 2 mg. This question begins to assess 
students’ across-time understanding of functions; they have to understand how the 
dependent variable changes as the independent variable increases by one.  

A4. Nurse Jodi accurately doses a 140-pound patient using the model. Her next patient is 
twenty pounds heavier and she reasons that she must increase the dose by 40 mg (2 mg for 
each pound of weight). How much confidence do you have in her reasoning?   
The ideal knower would respond, “very confident” and explain that the increase of 2 
milligrams per pound is constant and would be applied to the twenty-pound increase. This 
question is designed to assess students’ knowledge of the slope as a constant rate of change, 
and how it can therefore be applied to any change in the independent variable.  

B.  Now, assume D(w) is a non-linear function. 
B2.  Explain the meaning of the statement in the context of the problem. 

The ideal knower would respond that when a patient is 140 pounds, the patient’s weight is 
increasing at a rate of 2 mg per pound. This question assesses students’ understanding of 
the derivative in the context of the problem, and their ability to demonstrate a pointwise 
understanding of the derivative at a point.  

B3. Using the fact that , Nurse Jodi predicts that a patient’s dose will increase by 2 
mg when the patient’s weight changes from 140 lbs. to 141 lbs. How much confidence do 
you have in her reasoning?   
The ideal knower would respond “somewhat confident,” with some explanation of the 
instantaneous rate of change as an appropriate approximation for the marginal change, or 
for input values very close to the input value of the derivative. Students might also discuss 
linear approximation and how the tangent line is a good approximation for the function 
near the point of tangency. This problem is designed to assess students’ understanding of 
the instantaneous rate of change for use in predicting marginal change. It is important that 
students demonstrate an understanding that the non-linear nature of the function means the 
derivative gives an estimate of the change (and because information is not given about the 
type of non-linear function, one cannot be sure how much error is involved).  

B4. Nurse Jodi accurately doses a 140-pound patient using the model. Her next patient is 160-
pounds and she reasons that since , she must increase the dose by 40 mg (2 mg 
for each pound of weight). How much confidence do you have in her reasoning?   
The ideal knower would respond, “Not confident because 2 milligrams per pound is the 
instantaneous rate of change for a 140-pound person. Because the function is non-linear, 
one can not use the instantaneous rate of change to make a prediction so far away from 
140-pounds.” This ideal knower would understand that the instantaneous rate of change is 
not a constant rate of change, and cannot be used as an estimate of the rate of change 
except at or around the specific input value. This question is designed to assess students’ 
across-time understanding of instantaneous rates of change. 

 
Figure 2.  Ideal knower responses. 
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Thirdly, there were incorrect or incomplete responses. For example, some gave answers 
out of context such as “the rate of increase of the function,” or gave vague answers such as “it 
tells us that the corn is increasing.” Table 1 summarizes the results. 

 

Correct 

“Ratio of 
Totals” 

Interpretation 
!(!) = 2! 

Incorrect/ 
Incomplete 

17% 39% 43% 

Table 1. Student responses for the slope interpretation question, N=69 

Pointwise Derivative Interpretation 
In examining students’ responses to the question of what !! 20 = 2 means in the 

context of the non-linear problem, six categories of responses emerged (Table 2). First, some 
students responded correctly, saying something like “when the nitrogen is equal to 20 
pounds, the corn yield is increasing at a rate of 2 bushels per pound of nitrogen.” The key 
language here is that students recognize that the derivative represents a rate of change at a 
point. Some students responded similarly, except with no units or incorrect units, answering, 
for example, “when the nitrogen is equal to 20 pounds, the corn is increasing at a rate of 2.”   

 

Correct Correct but 
no/wrong units !(!) = !! ! ∗ ! !! !) = !(!  No 

context 
Incorrect/ 

Incomplete 
13% 10% 16% 10% 19% 32% 

Table 2. Student responses for the derivative interpretation question, N=69 

Even more students responded using language that implied they were assuming that the 
rate of change could be used to calculate the total yield, stating that the derivative means 
“that at 20 pounds, there are 2 bushels produced for each pound of nitrogen.” Some went on 
to conclude that equaled a total yield of 40 bushes, implying that !(!) = !! ! ∗ !. 

Some other students interpreted the derivative as the function value, concluding that 
!! 20 = 2 means that when 20 pounds of nitrogen are applied, the total bushels are equal to 
2. The last two categories were for students who gave a correct answer but not in the context 
of the problem (for example, “it is the slope of the tangent line when n = 20”) and those who 
gave incomplete or incorrect answers. Table 2 summarizes the results. 

Of the 11 students (16%) who answered the derivative question using the “!(!) =
!! ! ∗ !” interpretation, 8 of them answered the linear question using the incorrect ratio 
interpretation!(! = 2!).  

Across-Time Derivative Interpretation and Critiquing  
Five categories emerged from the responses to the two across-time non-linear questions in 

which were asked to critique the reasoning of Farmer Jim. Some students answered correctly, 
stating that they were somewhat confident on the one-pound increase but not confident in the 
ten-pound increase, and gave an explanation about the derivative being a good approximation 
close to 20 pounds of nitrogen. Other students said they could not answer the question 
because they were not given the derivative at 21 or 30. Still others said they needed to know 
where the derivative was zero (or where the critical point of the function was located). 

Another category of answers was for those students who stated they were not confident in 
both predictions, because the relationship is non-linear, and therefore the derivative is 
different at each pound. Some students answered “confident” on both, and gave reasoning 

18th Annual Conference on Research in Undergraduate Mathematics Education 27118th Annual Conference on Research in Undergraduate Mathematics Education 271



such as “for each pound of nitrogen, 2 bushels are produced,” reasoning that would be 
appropriate for a linear function. Lastly, some students’ answers were incomplete or 
incorrect, and did not fall into the other five categories.  Table 3 summarizes the results. 

 

Correct 

Need 
another 

derivative 
to make 

prediction 

Need to know 
maximum/critical 

value to make 
prediction 

Not 
confident on 

both 
predictions 

because 
relationship 
is non-linear 

Confident 
on both 

because for 
each pound 
of nitrogen, 

2 bushels are 
produced 

Incorrect/ 
Incomplete 

16% 14% 4% 19% 4% 42% 

Table 3. Student responses for the critiquing Farmer Jim’s non-linear predictions, 
N=69 

Interview Survey Findings 
There were themes in the written surveys that I wanted to delve into in the interviews. 

First was the pointwise interpretation of the slope and derivative in the context of the drug 
problem. In the surveys, 39% of students gave a slope explanation using an incorrect “ratio of 
totals” interpretation (!(!) = 2!), thus implying a direct proportional relationship, and 16% 
gave a similar derivative explanation (!(!) = !! ! ∗ !). Second, the responses for Farmer 
Jim’s non-linear predictions brought some questions to the forefront. Twenty-three percent 
(23%) of the students did not distinguish between the 1-pound and the 10-pound increases, 
giving similar confidence levels and reasoning. Finally, 14% stated that they did not agree 
with Farmer Jim because they needed a different derivative to answer the question. 

Of the seven interviewees, two gave what I consider ideal answers for all questions. For 
example, for !! 140 = 2, Brandon said that at 140 pounds, the weight “is increasing at a 
rate of 2 mg per pound.” He was very confident in Nurse Jodi’s 1-pound response, stating 
that the linear approximation is a good approximation of the total dosage near 140 pounds. 
He was not confident in the 20-pound increase, because it would be a huge under 
approximation (based on his concave up graph), and said it was different than the 141-pound 
answer because it was so much farther from 140 pounds.  

Slope and Derivative Interpretation 
For the interpretation of a slope of 2 in the context of the problem, 3 of the 7 interviewees 

gave correct responses. The other four gave “ratio of total” responses, using language such as 
“for every pound, they would need 2 mg of drug” or “dosage is twice the number of pounds.” 
In other words, these students thought of the slope as the ratio of totals (instead of the ratio of 
changes), that leads to an implied !(!) = 2! relationship (where the y-intercept is zero). 

For the derivative interpretation, three gave correct responses (at 140 pounds, the drug 
dosage is increasing at a rate of 2 mg per pound), and four gave responses stating that it 
allows you to calculate how much dosage to give per each pound. For example, Kelly stated 
that it is the slope of the tangent line and tells us “at that point, the dosage is twice the weight; 
so at 140 pounds the dosage is 280 mg.” In other words, she thinks that the total dosage is 
equivalent to the derivative at a point times that input value (! ! = !! ! ∗ !).  

Table 4 summarizes the slope and derivative interpretations. The three students who 
interpreted slope correctly went on to interpret the derivative correctly. All four who 
interpreted slope as the “ratio of totals” (thus implying a direct proportional relationship) uses 
the derivative to calculate the total dosage (multiplying derivative by x-value to get the total).  
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Slope Interpretation 

Correct “Ratio of Totals” (! = 2!. ) 

D
er

iv
at

iv
e 

In
te

rp
re

ta
tio

n Correct 3 0 

! ! = !! ! ∗ ! 0 4 

Table 4. Interview responses for the slope and derivative interpretations, N=7 

Critiquing of Nurse Jodi’s Non-linear Predictions 
Two interviewees correctly critiqued Nurse Jodi’s predictions, using language about 

linear approximation, or language about the derivative being a good approximation for small 
increases in the independent variable.  

Two interviewees used a derivative to calculate the change, whether it was a one-pound 
or twenty-pound increase. For example, Jackie was equally confident in both Nurse Jodi’s 
responses, saying that the derivative could be used to approximate the change in dosage. John 
also agreed that the derivative could be used to calculate the change in both one-pound and 
twenty-pound increases, but explained that he needed a different derivative (at 141 or at 160) 
to calculate the change. For example, he said if we knew the derivative at 160 was equal to 4 
mg per pound, you would multiple that by the change in weight (20 pounds) to get the total 
increase of dosage of 80 mg. 

The three remaining students stated that you needed another derivative (either at 141 or 
160) to calculate the total dosage (not the change in dosage). For example, for the 20-pound 
increase, Harry said that he would need to know the derivative at 160. If that were 3 mg per 
pound, he would “multiply 160 by 3. That would give her the right dosage.” He went on to 
confirm it was the total dosage, not the increase in dosage. Similar to those who described the 
derivative as the amount of milligrams of drug to give for each pound, this interpretation is 
also one that concludes incorrectly that ! ! = !! ! ∗ !. 

Summarizing Interview Findings 
The two students who correctly critiqued Nurse Jodi’s predictions also interpreted both 

the slope and derivative correctly. For the three students who critiqued Nurse Jodi’s 
predictions by saying that they needed another derivative, and the derivative could be used to 
find the total dosage (! ! = !! ! ∗ !), all three interpreted slope incorrectly as the ratio or 
totals, and the derivative incorrectly as meaning “2 pounds for every n.” Table 5 summarizes 
the students’ approaches to both the pointwise slope and derivative interpretation, and the 
across-time critiquing of Nurse Jodi’s predictions.  

 
Slope & Derivative Interpretation 

Correct Use ! = 2! for slope and  
! ! = !! ! ∗ ! for derivative 

C
rit

iq
ui

ng
  J

od
i’s

 
Pr

ed
ic

tio
ns

 Correct 2 0 

Use derivative to find change over any interval 1 1 

Use derivative to find the total dosage  
! ! = !! ! ∗ ! 0 3 

Table 5. Interview responses for the slope and derivative interpretations, N=7 

18th Annual Conference on Research in Undergraduate Mathematics Education 27318th Annual Conference on Research in Undergraduate Mathematics Education 273



Conclusions and Implications 
My research focused on student understanding of calculus concepts that required both 

pointwise and across-time understanding of functions (Monk, 1994). While slightly improved 
over Bezuidenhout’s (1992) findings, where only 2 of 100 participants were able to interpret 
the meaning of a derivative in the context of a problem, it is still discouraging that only 17% 
of students interpreted the slope correctly in the context of the problem, and only 13% 
interpreted the derivative correctly. Similarly, only 17% of the students were able to use a 
valid argument when critiquing the reasoning of someone else’s predictions. 

The interviews revealed interesting connections between students’ abilities to interpret the 
slope and derivative in the context of the problem, and their abilities to critique the reasoning 
of Nurse Jodi. The four interviewees who interpreted the slope using an incorrect “ratio as 
total” approach (implying !(!) = 2!) went on to interpret the derivative using an incorrect 
! ! = !! ! ∗ ! approach. Three of these four students carried this incorrect interpretation 
on to their critiques, where they said that from the derivative at a point, one could figure out 
the total dosage (! ! = !! ! ∗ !). These undesirable generalizations that students formed 
using their impoverished view of slope seem to be interfering with their understanding the 
derivative as a continuously varying rate of change.  

Revisiting the Research Questions 
Recall my two original research questions: (1) Can students interpret the slope and 

derivative in the context of the problem?  (2) Can students appropriately critique the 
reasoning of someone else’s use of slope and derivative to make valid predictions? 

A large majority of students did not successfully interpret the slope and derivative in the 
context of the problem. We know students must understand rates of change in general to 
succeed in calculus (Hackworth, 1994), and my research adds to the set of findings that show 
that rates of change are not well-understood by calculus, many of whom may have 
fundamental misconceptions (Bezuidenhout, 1998). Over a third of the surveyed students 
took an approach to the slope interpretation where they interpreted slope as a ratio of the 
totals, which is much higher than the 12% of interviewees in Hauger (1995).  As Hauger 
(1995) pointed out, the differences between !

!  and ∆!
∆!  are very subtle. These are probably 

even more pronounced when verbally describing the slope, as just leaving out the word 
“additional” can alter the meaning. However, the four interviewees who used the incorrect 
interpretation of slope went on to interpret the derivative in a similar incorrect fashion, 
leading me to believe that it was not just a simple act of leaving out the word “additional.”  

We know that proportional reasoning is difficult for students (Hoffer & Hoffer, 1988; 
Lawton, 1993; Lesh, Post, & Behr, 1988; Tourniaire & Pulos, 1985), and perhaps students’ 
misunderstandings of linear functions in general, and directly proportional relationships 
specifically (for which the slope is a ratio of totals) lead to an impoverished understanding of 
slope. Even with the pointwise interpretation questions, students performed poorly. 

Considering the poor performance on the interpretation questions, it is not surprising that 
students were not able to critique the reasoning of someone else’s predictions. Often their 
misunderstandings from the pointwise questions carried over to the critiquing questions. Only 
16% of the surveyed students (11 out of 69), and 2 out of 7 of the interviewees, answered the 
non-linear critiquing questions correctly. Of the 11 surveyed students who answered them 
correctly, only one student used language about linear approximation.   

Future Research and Teaching Implications 
Expanding on previous findings that show students lack solid understanding of rates of 

change in general (Hackworth, 1994; Orton, 1984), findings suggest that students do not have 
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full understanding of what slope and derivative mean in the context of modeling situations, 
nor do they understand appropriate uses of slope and derivative to make predictions. 

More research must be done on students’ incorrect interpretations of both slope and 
derivative. I am most interested in students’ “ratio of totals” interpretation of slope 
(! ! = ! ∗ !) and the connection to their incorrect interpretations of derivative to calculate 
the total (! ! = !! ! ∗ !). From middle school, when direct proportional relationships are 
first covered, do students see slope as something to multiply the x-value by to get the y-
value? If so, is that being carried over to the derivative (which they equate with slope)?  

As mathematics instructors, we need to assess our students coming into our calculus 
courses. What is their understanding of slope, and their interpretation of slope in modeled 
contexts? We also need to look at the middle school curriculum. Can we do a better job 
introducing linear relationships, making clear that directly proportional relationships are a 
subset of all linear relationships, and that not all linear relationships are of the form 
! ! = ! ∗ !? Lastly, we need to focus on not just what derivatives can be used for (linear 
approximation, marginal cost, etc.), but also stress their limitations in making predictions.  
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This study explored the effect of participation in Math Teachers’ Circles (MTC) on aspects of 
teacher leadership. MTCs are a collaborative professional development model, aimed primarily 
at middle school mathematics teachers, focused on problem-solving and open-ended 
mathematical explorations. Prior studies have linked them to increased content knowledge and 
pedagogical content knowledge, particularly in the domains of number and operation. This 
exploratory study used self-report data gathered from a national survey across 13 MTC sites and 
consisting of 169 completed surveys from MTC participants. Analysis of the data showed that 
MTC participation can help teachers develop across the three stages of leadership presented in 
the PRIME leadership framework.  Further research is needed to ascertain characteristics of 
teachers for whom this effect is particularly pronounced, as well as to reconcile some of the self-
report data with actual practice. 

Key words: Math Teachers’ Circles, Professional Development, Middle School Education, 
Teacher Leadership, Teacher Knowledge 

 
Introduction 

The widely-implemented Common Core for State Standards in Mathematics (CCSS-M) is 
leading to a need for mathematics teachers to improve their own knowledge of mathematical 
content and how to teach that content as well as to lead students, parents, colleagues, 
administrators, and communities in understanding and meeting the new standards (CCSSI, 
2010). Math Teachers’ Circles (MTCs) are a relatively new and innovative form of professional 
development in which mathematics professionals, generally mathematicians and mathematics 
educators meet with math teachers to work on mathematics problems and discuss teaching 
strategies.  Math Teachers’ Circles offer potential to strengthen content knowledge (White et al., 
2013; White et.al., 2014) while also developing teacher leadership skills (Yow and Lotter, 2014). 

This study highlights the potential of MTCs to contribute substantially to the development of 
mathematics teacher leaders. This paper will provide background on MTCs, their history, and 
some problems MTCs have addressed. Both researchers are experienced MTC leaders, and this 
paper augments the resulting knowledge of MTCs, teacher leadership, and teacher professional 
development.  Specifically, we examine quotes from national surveys of MTC participants using 
the National Council of Supervisors of Mathematics’ PRIME Leadership Framework (NCSM, 
2008) as a lens. Our specific research question is: How does teacher involvement in a Math 
Teachers’ Circle encourage their enactment of teacher leadership?  Concluding remarks 
highlight the potential of MTCs as an important component in the development of mathematics 
teacher leaders.  

 
Math Teachers’ Circles  

MTCs are accessible entry point for mathematicians to work with mathematics teachers and 
for teachers interested expanding their mathematical knowledge and skill.  The advent of the 
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CCSS makes this partnership particularly timely. MTCs tap into mathematicians’ instinct to 
share their passion for mathematics to provide professional development, primarily to middle 
school math teachers. Mathematicians facilitate sessions, guiding the group, ask probing 
questions, modeling mathematical thinking, and in general facilitating mathematical 
conjecturing, exploring, communication, and discovery – all skills that a research mathematician 
uses on a daily basis in their work. Additionally, MTC leaders draw on their experience training 
graduate students, providing research experiences for undergraduates, and leading capstone 
experiences for mathematics majors, as these experiences all share some commonalities with 
MTCs.   

MTCs began as an extension of Math Students’ Circles, which have their roots in Eastern 
Europe, migrating to the United States in the 1990s. The first MTC began at the American 
Institute of Mathematics (AIM) in Palo Alto, California in 2006.  It arose from teachers who took 
their own students to a Math Students’ Circle in the local area deciding that they wanted their 
own venue to explore mathematics together.  Today 71 active chapters in 36 states around the 
country host MTCs (AIM, 2015).  For about seven years, AIM held two weeklong trainings for 
MTC leaders every summer, resulting in 10-12 new MTCs each year.  MTC leaders were 
required to attend as a team, typically including two mathematicians, two middle school math 
teachers, and one administrator. After the summer training workshop, teams typically spend 
September through May securing funding and then launch their own MTC the following 
summer. Summer workshops are generally residential, lasting 4-5 days. Meetings then continue 
during the academic year with typically three per semester, each 2-2.5 hours in duration. Each 
MTC team tailors this basic model to meet the needs of its local setting. Many MTCs have been 
active for years, and the model makes it possible for circles to continue indefinitely.  

 
Typical Session and Connecting to the Common Core 

Sessions typically begin with the session facilitator, generally a mathematician, presenting a 
mathematically rich problem. MTCs select problems involving multiple levels of deep 
mathematical content to foster exploration. Participants work individually and in groups through 
various problem-solving strategies.  Consider the following sample problem: 
          Write numbers from 1 to 100 on the board. Each minute, you select any two of the 

numbers, erase them, and write on the board the sum plus the product of the two 
numbers. For example, if you erased 3 and 5, the sum plus the product is 8 plus 15, or 23, 
and so you write a 17 on the board. Now there are two 23s, but that’s OK. Each minute, 
repeat this process of selecting two numbers and replacing them with their sum plus their 
product. What are the possible outcomes? 

This problem also lends itself to discussing a variety of mathematical topics, to include, 
algebraic representations and functions, symmetry, and arithmetic and algebraic properties such 
as the associative, commutative, and distributive laws.  From a problem-solving perspective, it 
readily lends itself to the techniques of “ask a simpler question” and “work backwards”.  In 
addition, this problem lends itself well to problem-posing, as a variety of other related questions 
can also be asked. 

In addition, in working on this problem participants will naturally use most of the Standards 
of Mathematical Practice from the Common Core State Standards.   As just a few examples, they 
must make sense of this problem, which to some is initially ambiguous, and persevere toward a 
solution (MP1); they must attend to precision (MP6), as calculation errors are extremely easy to 
make with so many computations involved; they must use appropriate tools strategically (MP5), 
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as a calculator only helps minimally due to the large numbers that quickly arise; and they must 
look for and makes use of structure when they begin to use algebraic representations to facilitate 
their work on this problem (MP7). 

This problem also has what many mathematics educators refer to as the “low-threshold, high-
ceiling” property.  That is, participants can understand it and begin to explore with a minimal 
mathematics background (“low threshold”), yet it can keep research mathematicians 
meaningfully challenged and connected to research-level mathematics (“high-ceiling”).  One of 
the authors has found that this problem is so intriguing to mathematicians that when she uses it to 
describe MTCs she must preface her description by asking them not to spend the remainder of 
the talk engaged with the problem. 

The sum plus the product problem prompts in-depth explorations; MTCs also investigate 
shorter problems, such as “What happens to the last (units) digit of 7n as you substitute in 
consecutive natural numbers for n?  What happens to the last two digits?  The last three?”.  
Computing either of these by hand would be quite cumbersome, and plugging them into a 
calculator provides an estimate in scientific notation, but does not help directly with finding the 
last few digits. However, an MTC can have a meaningful discussion of these problems in about 
30 minutes. Participants are still asked to justify their reasoning, with an emphasis on 
understanding a pattern and being able to mathematically explain why it holds, as opposed to 
simply observing that it seems to exist.  

In working through these problems, teachers work directly with content relevant to their 
students, while also developing their own mathematical reasoning skills.  For considerable 
additional discussion of how MTC sessions may develop, see Fernandes, Koehler, and Reiter 
(2011), Donaldson et. al. (2014), Geddings, White, and Yow (2015), Taton (2015) and White 
(2015). 

 
Connecting to the Classroom 

Many MTCs also directly address teaching techniques, addressing diverse topics such as 
effective questioning strategies, how to translate lessons learned in MTCs to the classroom, and 
how to implement the CCSS. The authors have used both Boaler and Humprey’s (2005) 
Connecting Mathematical Ideas: Middle School Video Cases to Support Teaching and Learning 
and Burago’s (2010) Mathematical Circle Diaries, Year 1: Complete Curriculum for Grades 5 to 
7 to lead such sessions. By necessity, these sessions take on a different flavor than the 
mathematical problem solving sessions.  For example, using a well-known problem such as the 
border problem (Boaler and Humprey’s 2005), teachers watch a classroom video, discuss 
instructional practices that the instructor implemented, and make observations on student 
responses.  Such sessions are often best led by a skilled mathematics educator with experience 
facilitating such discussions, thereby leveraging the partnerships between mathematicians and 
mathematics educators. 

The first national survey of MTC participants in 2010 revealed that the benefits of MTCs 
went beyond the individual classroom. A number of participants made comments that indicated 
that since joining the MTC they had emerged as informal or formal leaders in their schools or 
districts. They attributed this at least in part to their participation in MTCs. The remainder of this 
paper discusses how MTCs connect directly with the PRIME Leadership Framework of the 
National Council of Supervisors of Mathematics (2008).  As this preliminary data is entirely 
based on self-report data from participating teachers who elected to complete the survey, 
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significant further research will be called for to deepen our understanding of the impact of and 
connections between MTCs and teacher leadership. 

 
Literature Review & Theoretical Framework 

Teacher Leadership 
Dozier (2004) defined teacher leaders as “good teachers who influence others.” Graham and 

Fennell (2001) identified the influence of teachers who believe they have the “skills and 
knowledge to act on a situation and improve it.”  Research suggests teacher leadership in 
mathematics education improves student performance broadly (Pellicer & Anderson, 2001).  

Professional organizations define educational leaders in teaching and have only recently 
begun to identify teacher leadership that is subject-specific (NBPTS, 2010; NCTM, 1991).  
Several studies describe characteristics specific to mathematics teacher leaders (Yow, 2007; 
Langbort, 2001; Miller et al., 2000); however, few empirical studies about how to develop 
mathematics teacher leaders exist (Yow, 2010; Webb, Heck, & Tate, 1996).  

CCSS-M emphasize K-12 students should be learning mathematics through problem solving 
(National Council of Teachers of Mathematics [NCTM], 2000; CCSSI, 2010). The incorporated 
Standards call for students to discuss, collaborate and justify their thinking through engaging 
tasks (NCTM, 2000; CCSSI, 2010). However, research shows that middle school mathematics 
teachers still often teach content in traditional didactic manners emphasizing textbooks and 
lecture (Grouws & Cebulla, 2000; Kent, Pligge, & Spence, 2003; Weiss, Pasley, Smith, 
Banilower, & Heck, 2003) and many barriers to instructional change exist (Anderson, 1996; 
Roehrig, Kruse & Kern, 2007). MTCs seek to empower teachers to make changes to their 
instruction in keeping with the current understanding of best practices (Fullan, 2001).  

Professional Development 
Professional development is one avenue for empowering teachers to make changes. Effective 

professional development of mathematics teachers should build their content knowledge, 
immerse them in authentic mathematical inquiry, address beliefs about mathematics, involve 
them in collaborative communities, and provide long-term support for pedagogical growth 
(Darling-Hammond, Chung Wei, Andree, Richardson, & Orphanos, 2009; Johnson, 2006; 
Loucks-Horsley, Hewson, Love, & Stiles, 2003). Flowers and Merten (2003) documented that 
middle school teachers have specific needs related to content and student learning. Further, 
teachers who attended professional development experiences connected to other school-based 
initiatives and that consisted of at least 8 total hours reported the experiences improved their 
teaching where shorter unconnected experiences had not (Flowers & Merten, 2003). Other 
studies show long-term professional development of more than 80 hours will prompt teachers to 
enact inquiry-based practices where shorter programs will not (Porter, Garet, Desimone, & 
Birman, 2003) and that professional development focused on mathematical problem solving 
improves teachers’ pedagogical strategies and increases their content knowledge (Anderson & 
Hoffmeister, 2007). The design of MTCs incorporates characteristics this research supports: they 
are focused on building teacher content knowledge through problem solving strategies, long-
term, and involve building collaborative communities between teachers, mathematics educators, 
and mathematicians.   

MTCs are specifically recommended by the Conference Board of the Mathematical Sciences 
in their Mathematical Education of Teachers II document: 
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Math teachers’ circles [sic], in which teachers and mathematicians work together on 
interesting mathematics, provide ongoing opportunities for teachers to develop their 
mathematical habits of mind while deepening their understanding of mathematical 
connections and their appreciation of mathematics as a creative, open subject.… A 
substantial benefit of such programs is that they address the isolation of both teachers and 
practicing mathematicians: they establish communities of mathematical practice in which 
teachers and mathematicians can learn about each others’ profession, culture, and work. 
(p. 68) 

Other articles (White et. al., 2013) have aligned MTCs with Desimone’s (2009) model for 
profession development, noting that it meets her five suggested criteria for effective professional 
development: content focus, active learning, coherence, duration, and collective participation. 
 
Theoretical Framework 

Our data analysis tool consists of the Principles and Indicators for Mathematics Education 
Leaders (PRIME). The National Council of Supervisors of Mathematics (NCSM) developed 
PRIME in 2008 to call attention to the importance of school leadership to improve teaching and 
learning. PRIME “aims to describe actions for mathematics education leaders across all settings, 
preK-12”; it notes the “complexity” of leaders’ task (NCSM, 2008, p. 2). While PRIME 
addresses educational administrators as well, the current study focuses on teachers as those most 
closely connected to student learning.  

PRIME lists a number of actions on a continuum of three stages of leadership growth. Stage 
1, Leadership of Self, consists of knowing and modeling leadership; Stage 2, Leadership of 
Others, consists of collaborating and implementing structures for shared leadership on a local 
level; Stage 3, Leadership in the Extended Community, consists of advocating and systematizing 
improvements into the wider educational community (NCSM, 2008, p. 2). At each stage, NCSM 
notes, teachers have to build important attributes of self-knowledge, influence of others, and 
advocacy on a larger scale.   

 
Methods 

A national survey measuring MTC teacher impact was distributed to the leaders of 21 MTCs 
in 2010, with a request for them to disseminate it to their participants. The survey was modeled 
on the Student Assessment of their Learning Gains (SALG) survey (Seymour et al., 2000).  It 
contained Likert scale and open-response items asking teachers to rate and address their gains in 
mathematical content knowledge, changes in attitudes and dispositions toward mathematics, 
growing knowledge of classroom instructional practices, and their professional activities before 
and after participation.  Each of the open-ended prompts asked teacher respond with comments 
that were specific to the impact of MTCs. For example, one open-ended prompt read “Please 
comment on how your knowledge and understanding of mathematics has changed as a result of 
participating in your local Math Teachers’ Circle.”  Another read “Please comment on how your 
attitudes and dispositions toward mathematics have changed as a result of participating in your 
local Math Teachers’ Circle.”  A third read “Please comment on how participating in your local 
Math Teachers’ Circle has affected your professional activities outside the classroom.” 

In keeping with the PRIME Leadership Framework (NCSM, 2008), responses to the open-
response items were examined for evidence that they were exhibiting characteristics 
representative of Stage 1, Stage 2, or Stage 3 leaders.    
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Results and Discussion 
In this section we integrate results and discussion, showing how participant responses that 

fell within each of the framework’s three stages of leadership.  These preliminary results were 
based on self-report data only.  As such, further research would be needed to ascertain if their 
report of their classroom activities reflects the reality of their classroom.  Moreover, this study 
makes no claims that MTCs will enable all teachers to transition through these three stages of 
leadership.  Rather, we present evidence that some teachers who participate in MTCs perceive 
them as having effects that align with this continuum. 

Fourteen MTCs had participant responses, ranging from three to 41, with a total of 169 
responses.  This represents both the variation in sizes of different MTCs as well as the length of 
time over which they have been in existence.  Over 80% of these teachers had at least five years 
of teaching experience, and most (59%) had participated in and MTC for at least one full year.  
They taught in diverse settings, with 43% reporting that they taught in an urban setting, another 
29% reporting that they taught in a suburban setting, and the remaining 28% reporting that they 
taught in a rural setting.  Approximately 38% reported that they taught in high-needs schools.  
Both of the aforementioned categorizations were left for them to determine.   

We now address each of the three stages. 
 
Stage 1: Leadership of Self 

MTCs encourage teachers to develop their content and pedagogical expertise, change 
classroom practices, and take risks (Yow, 2007), all of which are part of leadership of self. 
MTCs focus on building teacher content knowledge through problem-solving while also 
strengthening teachers’ problem-solving skills and fluency with implementing the CCSS 
Standards of Mathematical Practice.  Understanding the content and the disciplinary practices of 
mathematics provides a foundation for good teaching practices.  

Participants have highlighted the power of taking on the role of learners of mathematics 
through MTCs. In the national survey, over 75% of respondents reported at least moderate gains, 
with approximately 60% reporting good or great gains, in their overall content knowledge of 
mathematics, their mathematical problem-solving skills, their understanding of various problem-
solving strategies, and their understanding of connections between areas of mathematics. There 
was no formal measure of their gains in these areas.  However, prior work (White et.al.. 2013; 
White et.al., 2014) using overlapping but different MTCs has demonstrated content gains related 
to the domain of number and operation as a result of summer workshops. 

Teachers connected their perceived learning in the MTC to the underlying nature of 
mathematics with quotes such as “…given me the opportunity to see a bigger picture in 
mathematics”, “… can see many more connections between various mathematical activities”, 
and “The logic and order that mathematics creates seems to become more clear the deeper we 
explore.” 

In the context of CCSS-M, which asks many teachers to teach in ways that are often quite 
different from how they were taught, the opportunity to revisit the role of learner has particular 
power.  As one teacher notes: 

MTCs also emphasize the habits of mind and the disciplinary practice of mathematics, in 
which a question does not necessarily have a single “answer” and exploration follows 
uncertainty. As one MTC participant noted, “I have not participated in a workshop where 
I as a person have to struggle through, and the presenter did not share the correct 

18th Annual Conference on Research in Undergraduate Mathematics Education 28318th Annual Conference on Research in Undergraduate Mathematics Education 283



answer.” Another comments, “ [I] feel more comfortable with open ended questions… [I] 
feel comfortable with questions where I might not know the solution”. 

Another takes this a step further, noting how this has changed her mathematical sense of identity, 
“You encouraged me as a mathematician. I have never actually seen myself as one before.”   

In the MTC environment, leaders rarely give participants “answers” to the problems, even at 
the end of problem-solving session, which encourages them to continue to grapple and discuss 
the problem. We argue that this in turn leads to MTC participants feeling more comfortable in 
allowing their students time to explore mathematics and to hold off on immediately offering 
assistance.  One teacher notes, “We have always done a lot of inquiry based lessons, but now I 
feel more comfortable allowing students to go deeper in their exploration.”, while another 
comments that s/he now has the confidence “to allow students to explore deep mathematics.”  
We argue that the teachers’ experience in the MTCs and their report about engaging in more and 
deeper inquiry may mean that their student are more fully engaged in the first CCSS Standard of 
Mathematical Practice, perseverance.  

Participants also describe the influence of the MTC on their own teaching, connecting also to 
the CCSS’s third mathematical practice (constructing viable arguments and critiquing the 
reasoning of others): 

As a teacher I tell students that I don’t have an answer key and we as a class have to 
decide if we solved a problem and whether our solution is reasonable.  It is getting my 
students to understand the problem solving process and be able to reflect upon their 
thinking and justify their solution.  It has helped build a community of problem solvers in 
the classroom. 

MTCs allow teachers to work in community to learn mathematics and solve problems that 
they can then implement in their own classrooms. As another participant stated, “My classroom 
teaching has become more student-centered and engaging. Students are working together and 
discussing problems in groups, or exploring individually before sharing with a larger group.” 
The skills MTC facilitators model and ask the teachers to engage in complement the 
development of content knowledge; through these elements MTCs encourage teachers to be 
Stage 1 Leaders.  

Finally, teachers perceive that their MTC participation has increased their effectiveness in 
other mathematically intensive roles at their schools: “Math Circles training greatly increased my 
comfort level and confidence as a math competitions coach”, “I had been involved with Math 
Team, MATHCOUNTS, A[merican] M[athematical] C[ompetitions] 8, and N[ew] Y[ork] 
M[ath] L[eague] in the past, but I have appreciated it more and done a better job at it since 
joining the Math Teachers Circle.”, and “Math Circle was simultaneous to being asked to work 
on district curriculum development, and added to the process.” 
 
Stage 2: Leadership of Others 

MTCs by their design lend themselves to Stage 2 Leadership of Others by “collaborating and 
implementing,” encouraging participants to build community and learning how to solve 
problems alongside colleagues. Over 80% of respondents reported at least moderate gains, with 
over a third reporting great gains, in their enthusiasm for mathematics, their interest in discussing 
mathematics with colleagues, and their interest in discussing mathematics with professional 
mathematicians.  One teacher commented, “I am inspired by a group of people who just want to 
get together and talk about math.  I am not usually surrounded by people like that.”  Another 
notes the impact of collaboration “I have interacted with several participants that have 
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approached problems differently than me, and have learned how to look at a problem from a 
different perspective than I would have otherwise.” 

Responses further reveal the MTC shows them how to collaborate with and hold 
mathematical discussions with their colleagues. A participant wrote: “I feel that working on 
mathematics with my colleagues gives me a wider perspective on how to view mathematics and 
what it means to teach mathematics,” suggesting the ways in which MTCs reveal what it means 
to be a part of a mathematics education community.  Another participant goes on to connect 
confidence in problem solving with collaborating with colleagues: 

My confidence with problem solving has increased a lot.  I realize that just because I 
don’t totally know a topic in math, I can still look at a problem and try to break it down to 
solve it.  I’m not as intimidated.  Also, being able to look at problems in this way enables 
me to be more likely to discuss the problem with other teachers or mathematicians who 
may suggest ways to solve the problem. 

Finally, responses reveal how MTC have affected their direct and indirect leadership roles. 
One comments on the impact on attendance by colleagues, noting “I have shared with colleagues 
about the Math Circle and have more coming to each meeting.”  Others note direct mentorship or 
leadership: “I've been able to share as department chair these practices with other teachers” and 
“I've been able to mentor younger teachers and involve them in [mathematical content] 
discussions as well as help them structure more open ended lessons.” 
 
Stage 3: Leadership in the Extended Community 

Because MTCs often span several schools and school districts, teachers are able to interact 
with an extended community of math teachers within a region and increase their ability to 
systematize the practices used in MTCs. This leads directly to preludes to Stage 3 Leadership, as 
teachers build a wider network of colleagues with whom to learn and collaborate.   

For some teachers, this begins with an increase of awareness of and participation in the 
broader community.  As one participant noted: “Participating in the MTC meetings has 
encouraged me to network with others and attend conferences with them.”  Others note an 
increase in interest in professional organizations and attendance at associated conferences:  “I 
was more interested in going to the national NCTM this past April and I did.”, “I decided to join 
NCTM for the first time.”, and “Since attending Teacher's Circles [sic] I've been to the local 
Math Educator Conference every year.” 

Others commented directly about the connection to mathematicians and feeling like they are 
part of the same extended community of mathematics professionals.  One notes “I enjoy the 
opportunity to discuss mathematics with my colleagues and especially with the professional 
mathematicians. I feel that they see us as peers and treat us as the math teachers/professionals 
that we are.”  One notes how this has led to further connections with higher education 
institutions, “Participating in the Math Teachers' Circle has made me more likely to participate in 
other math/science activities at the university.”  Finally, one connects this directly to 
mathematical leadership, “I have come into contact with more professional mathematicians, and 
I have been willing to step in and take more of a leadership role myself in the field of 
mathematics.” 

Through MTC participation, teachers recognize their role as part of a professional 
community. One notes “I'm much more connected to mathematics education community outside 
of my school, as I am now working with various other teachers.”  Another participant described 
the confidence this experience has provided, saying, that being a part of an MTC “has given me 
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the confidence to step into more of a leadership role and a role in developing curriculum and 
lesson plans.”   

Teachers from MTCs have presented at state mathematics conferences as a result of their 
participation in MTCs.  One teacher shared, “I have started giving presentations at meetings and 
conferences, have become the mentor for new math teachers, and am peer reviewer of math 
activities for the classroom at my level for the region.” Presenters such as these use the example 
of MTC meetings to advocate for strong instructional practices, describing the rich problems that 
they themselves have spent time solving with their students in their turn. By describing the rich 
mathematical content of the problem and the mathematical directions they or their students may 
take to solve the problem, they provide a large number of teachers the opportunity to consider 
these methods, thereby engaging in tenets associated with Stage 3 Leaders.  

One participant who has become an instructional coach credited her MTC with helping in her 
job transition. “My leadership role in our math circle has correlated directly with my role change 
in my district from classroom teacher to teacher leader (instructional coach).” These stories 
suggest that MTCs play an important role in empowering some teachers to be mathematics 
teacher ambassadors (Yow 2007); in this role they tell others about the work they are doing in 
the MTC and in their classrooms with students, which can wield broad influence. 

 
Conclusion 

MTCs provide a valuable professional development experience for mathematics teachers. 
This study documents the powerful sense of community and broad understanding teachers report 
gaining of mathematical concepts and the mathematics education community as a result of their 
participation in MTCs. By developing mathematics teachers’ leadership of self (by developing 
their content and pedagogical expertise, changing their practices, and encouraging risk-taking), 
leadership of others (by encouraging them to recognize they are a part of a collaborative learning 
community), and leadership in the extended community (by empowering them to assume formal 
and informal leadership roles beyond their own classrooms and schools), MTCs have the 
potential to influence teacher education beyond their actual participants. 

Research on MTCs reveals their influence on mathematical knowledge for teaching (White, 
2013).  Marle, Decker, and Khaliqi (2012) report that classroom observations of participants in 
one MTC revealed an increase in the use of inquiry-based learning and in pedagogical content 
knowledge after a year of participation. Future research might address how extended 
participation in a long-standing MTC aids the continued evolution of a mathematics teacher 
leader from Stage 1 leadership to Stage 3 leadership (NCSM, 2008). Through these influences, 
the national community and network of MTCs has opportunities to contribute toward 
transforming mathematics teacher leadership throughout the country.   
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A Model of the Structure of Proof Construction 
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This paper offers a model of the structure of proof construction.  The model provides a 
comprehensive view of proof construction, which can encompass the aspects, factors, patterns, 
and features involved in cognitive processes in proof construction.  The model also clarifies the 
skills and abilities necessary for proof construction.  Moreover, the model provides an algorithm 
for advancing a reasoning process.  Using some examples, this paper shows that the model can 
serve as metacognitive and methodological knowledge to help students construct a proof based 
on logical deduction.  The model may help students not only grasp a view of proof construction 
but also develop their skills for proof construction.   

 
Keywords: Structure of proof construction, Metacognitive knowledge 

 
Introduction 

Proof is a central and essential skill for mathematics.  However, studies have shown that 
proving is challenging for students at all levels.  Although this phenomenon has been well 
documented, there is still room for an investigation of students’ difficulties with proof 
construction.  Ball, Hoyles, Jahnke, and Movshovitz-Hadar (2002) emphasized the need for 
empirical studies of students’ difficulties with proofs and the development of effective strategies 
to teach proofs.  Dreyfus (2012) suggested that various questions should be answered regarding 
students’ cognitive difficulties with proof.  This paper presents part of the findings from my 
study, in which I examined students’ cognitive difficulties with proof construction in light of the 
structure of proof construction.  In particular, this paper focuses on answering one research 
questions in my study: What is a model of the structure of proof construction?   

 
Literature Review 

Logical deduction is a central aspect of proof construction.  Weber and Alcock (2004) 
discussed two types of proof production: syntactic and semantic approaches.  The former draws 
inferences by manipulating definitions through “unwrapping the definitions” and “pushing 
symbols.”  The latter guides the inferences by using instantiations of concepts with intuitive and 
non-formal representations.  They indicated both approaches should concur for successful proof 
construction based on logical deduction.  Selden and Selden (2007) considered that a proof 
consisted of two parts: the formal-rhetorical and problem-centered parts.  The former is 
produced through syntactic approach, which involves manipulation of logic and definitions. The 
latter is produced through semantic approach, which involves conceptual understanding and 
mathematical intuition.  They provided a method, as proof framework, of constructing the 
formal-rhetorical part.  They suggested that students should first write a hypothesis, leave a 
blank space, put the conclusion at the end, and fill in the blank space by unpacking the 
conclusion.  According to their method, students write a proof from both ends toward the middle.  
Their method may not help students write a proof from the top down.  There seems to be room 
for an exploration of an effective method to help students practice syntactic and semantic 
approaches and write a proof from the top down.   
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Harel and Sowder (1998) stressed the necessity of fostering students’ skills for logical 
deduction.  Some researchers pointed out the significance and necessity of establishing a view of 
proof construction so that it can help students develop their skills for logical deduction.  
CadwalladerOlsker, Miller, and Hartmann (2013) attributed student’s incomplete concepts of 
proofs to a source of their difficulties with proof construction.  Knuth (2002) suggested the 
nature and components of proofs should be clarified to help students.  Ayalon and Even (2008) 
claimed that views and approaches to deductive reasoning should be given more attention.   

Considering the above gaps to fill and the needs to meet, I created a model of the 
structure of proof construction so that it could (a) encompass the aspects, factors, patterns, and 
features involved in cognitive processes in proof construction across mathematical subjects, (b) 
help to build a framework for analyzing sources of students’ difficulties with proof construction 
in a clear, organized, and systematic way, and (c) provide metacognitive and methodological 
knowledge to help students enhance their skills for logical deduction.   

 
Theoretical Perspectives 

Harel and Sowder (2007) asserted that “a single factor usually is not sufficient to account 
for students’ behaviors with proof.” (p.4)  Furinghetti and Morselli (2009) observed that 
mathematical thinking was not dominated by purely cognitive behavior but might be influenced 
by another factor such as affect.  I considered the following four aspects as major aspects of 
proof construction: reasoning activity (cognitive actions or thinking operations for advancing a 
reasoning process), background knowledge (knowledge around a given proof problem); mental 
attitudes (tenacity, persistence, flexibility, carefulness, and precision); and affect and beliefs 
(emotions, self-confidence, beliefs toward mathematics, proof, and logic). Those aspects were 
considered not to be independent but to be intertwined to influence one another.  This study 
focused on the first three aspects because the last aspect (affect and beliefs) depended on 
individuals. 

Those aspects were found to agree with the categories of the theoretical framework for 
exploring mathematical cognition, which Schoenfeld (2010) presented.  The following are the 
categories of the framework: (1) knowledge base (what students know); (2) problem-solving 
strategies (the tools or the techniques for solving problems); (3) self-regulation or monitoring 
(monitoring and assessing progress); (4) beliefs (one’s understanding, feelings, perceptions, and 
decisions).  The aspects of the structure of proof construction found some similarities and 
correspondences with those categories: (1) and background knowledge; (2) and reasoning 
activity; (3) and mental attitudes; (4) and affect and beliefs.     

   
Method 

To create a model of the structure of proof construction, I applied, as a variation of the 
think-aloud method, a self-analysis to my cognitive processes in proof construction.  Think-aloud 
is a valid and effective research method to understand an individual’s thinking process (Van 
Someren, Barnard, & Sandberg, 1994).  I observed, described, abstracted, and organized my 
thinking processes while solving proofs for theorems and propositions.   In particular, I focused 
on examining and organizing the operations used to generate a statement from the previous 
statement while exploring the patterns and features necessary for successfully advancing a 
reasoning process.  The model was refined and established by going through 42 proofs.  Those 
proofs ranged over several mathematical subjects: Algebra, Analysis, Topology; Calculus, 
Discrete Mathematics, and Trigonometry.  The proofs examined to create a model included not 
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only direct proofs but also proofs by contradiction, by contrapositive, and by mathematical 
induction, but did not include the proofs that asked to construct a counter example.   

For inter-rater reliability, I had six mathematics professors review the model.  Using the 
proofs that I made and that I had them make, I had them check if my model could be applicable 
to those proofs.  The model was also compared with Newell and Simon’s theoretical framework 
for problem solving (1972).  

 
Results 

The exploration of a model of the structure of proof construction, in particular the 
structure of the reasoning activity, provided the following findings: (1) types of operations for 
advancing a reasoning process; (2) roles of the operations; (3) an order of the operations to be 
tried; (4) similarities and correspondences with the theoretical framework for problem solving 
(Newell & Simon, 1972); (5) stages of proof construction; (6) types of proofs; (7) mathematical 
language; (8) types of variables; (9) ignition phrases; (10) starting variables; (11) major steps for 
the opening stage; (12) framework for describing the skills and abilities necessary for proof 
construction; and (13) inter-rater reliability.   

 
Types of Operations  

While examining the operations used to generate a statement from the previous statement, 
all the observed operations were categorized into four types: rephrasing an object; combining 
objects; creating a cue; and checking and exploring (Table 2).  An object means a statement or a 
sentence for each step, and sometimes a phrase in a statement.  The operations in Table 2 
explained any cognitive action taken to move from one statement to the next statement in each of 
the proofs I examined.  

Rephrasing an object has three subtypes: (R1) rephrasing an object by applying the 
definition or the property of a concept; (R2) rephrasing an object through interpretation; (R3) 
rephrasing an object through algebraic manipulation.  The following are examples of the 
subtypes.   
(R1) “f : X→Y is continuous” can be rephrased with “for every open set U in Y, )(1 Uf � is open in 
X.”   
(R2) “ )(GxZa� ” can be rephrased with “a = xz 1 for some z 1 �Z.”   
(R3) “ϕ(a) = ϕ(b), where ϕ is a ring homomorphism” can be rephrased with “ϕ(a�b) = 0” or  
“a – b �Ker (ϕ).” 

Combining objects is an operation to combine two or more pieces of given information to 
create a new object.  The operation of combining objects is automatically followed by rephrasing 
an object.  In other words, when the operation of combining objects is used, the new object is 
created through rephrasing an object.  The following is an example.   

The object (1) “a sequence (x n ) converges to x 0  in X” and the object (2) “� an open set U 
that contains x 0 ” can be combined into the object (3) “�N�Z � such that for every nt  N, x n �U. ”  
When (1) and (2) are combined into (3), (3) is obtained through rephrasing an object by 
applying the definition of convergence of a sequence to the open set U.  The operation code used 
here is CO(A, B)R1, which means that the objects (1) and (2) were combined into (3) and that 
the new object (3) was obtained through applying the definition of the concept of convergence.      

Creating a cue has 5 subtypes: (C1) setting a variable; (C2) recalling prior knowledge 
and applying it to an object; (C3) setting some cases; (C4) making a claim or creating a new 
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object; and (C5) considering an object.  The operation of creating a cue by recalling and 
applying prior knowledge to an object (C2) is automatically followed by the operations of 
combining objects and rephrasing an object successively. The following is an example of C2. 

Suppose (1) “∃ 𝑦 ∈ 𝐺” and (2) “A coset is generated by 𝑥𝑍.”  Recalling and applying the 
fact that (3) “an element in G belongs to some coset,” the objects (1), (2), and (3) can be 
combined into (4) “the element y belongs to some coset of 𝑍.” The object (4) can be further 
rephrased with “𝑎 ∈ 𝑥𝑛𝑍 for some 𝑥 ∈ 𝐺 𝑎𝑛𝑑 𝑛 ∈ 𝑁” through interpretation.  

Exploring includes thinking by trial and error, intuiting, experimenting, and creating an 
example.  Checking includes reviewing, testing, evaluating, adjusting, modifying, and correcting 
what has been done.     

 
Roles of the Operations 

I classified the four operations into two major cognitive actions: the main actions and the 
supporting actions (Table 2).  The main actions included rephrasing an object, combining 
objects, and creating a cue.  Rephrasing an object and combining objects play a role of 
transforming objects while creating a cue plays a role of igniting a process.  The supporting 
actions included checking and exploring.  Rephrasing an object and combining objects may 
contribute to syntactic approach while creating a cue and checking and exploring may contribute 
to semantic approach.  The following are the differences between the main actions and the 
supporting actions.  First, the main actions are taken by everyone while the supporting actions 
depend on individuals.  Second, in order to convince others, the statements produced through the 
main actions must be explicitly expressed while the statements produced through the supporting 
actions do not have to be explicitly expressed.  The supporting actions do not mean that they are 
less important than the main actions.  The supporting actions are as crucial as the main actions, 
which work behind and support the main actions.  

 
Order of the Operations  

For the operations in the main actions, there is a hierarchy in the order of the operations 
to be tried in advancing a reasoning process.  Rephrasing an object is the first operation to be 
tried.  Combining objects is the second measure.  Creating a cue is the last resort.  In other words, 
in advancing a reasoning process, one should first try rephrasing an object.  If rephrasing an 
object does not work, try combining objects.  If combining objects does not work, try creating a 
cue.  If creating a cue does not work, try checking and exploring.   

 
Comparison with Theoretical Framework for Problem-Solving  

I considered proof construction as a sort of problem-solving.  The types of operations 
were found to have some similarities with the components of the standard theory for problem-
solving, which Newell and Simon (1972) introduced.  Langley and Trivedi (2013) agreed Newell 
and Simon’s theory was one of the most robust and stable theories on high-level cognition.  The 
following are the characteristics pertinent to problem solving in their theory: (a) representation, 
interpretation, and manipulation of symbolic structures; (b) search through a set of available 
information; (c) selective search through heuristics; and (d) reduction of the differences between 
current and desired states.  In the model of the structure of the reasoning activity, rephrasing an 
object plays a major role of (a).  Combining objects and creating a cue can function as (b).  
Checking and exploring corresponds to (c).  The first three operations (rephrasing an object, 
combining objects, and creating a cue) contribute to realizing (d).  
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Stages of Proof Construction 

Considering the importance of a start of a proof, two stages were set for proof 
construction: the opening stage and the body construction stage.  The opening stage is a 
preparation stage, which has four major roles: (i) setting a major proving strategy (a direct proof, 
a proof by contradiction, a proof by contrapositive, mathematical induction, a proof by a counter 
example); (ii) making the goal of the proof clearer; (iii) preparing for setting a starting variable, 
and (iv) deciding the type of the proof.  The body construction stage is the main part of a proof, 
in which one advances a reasoning process by making good use of the four types of operations 
(Table 2).  

 
Mathematical Language 

I made a distinction between mathematical language and mathematical language.  
Mathematical language is the mathematical language that is fine-grained enough to enable 
students to advance a reasoning process and to convince others without leaving any ambiguity.  
For example, “A topological space X is compact” is mathematical language.  The mathematical 
language for this statement is “for every open cover of X, there exists a finite open subcover of  
X,” which is obtained by applying the definition of continuity in the topological sense.  The 
definitions of concepts are the most paradigmatic examples of mathematical language.  The 
effectiveness of translating an object into mathematical language is not limited to proof 
problems.  Mathematical language plays a significant role in other types of mathematical 
problem-solving as well.  For example, if a Pre-calculus student is given a statement “vectors u 
and v are orthogonal,” which is mathematical language, they may need to translate it into 
mathematical language in order to solve a given problem, which is “uxv = 0.”   

 
Types of Variables 

A variable is a fundamental and crucial element of the mathematical language.  Using a 
variable in a mathematical argument enables students to practice logical deduction in advancing 
a reasoning process.  There are two types of variables.  One type of variable is the one which 
appears or is explicitly written in a given problem.  I call this type of variable “a given variable.”  
The other type of variable is the one which does not appear or is not explicitly written in a given 
problem.  I call this type of variable a hidden variable.  A hidden variable may need to be derived, 
revealed, and used for advancing a reasoning process.  In particular, I call a hidden variable that 
students must derive and explicitly set “a hidden variable.”  Students advance a reasoning 
process in a proof by making good use of both given and hidden variables. 

A hidden variable has four types: controlling variables, trivial variables, conditioned 
variables, and non-conditioned variables.  Both controlling and trivial variables are derived from 
the phrases such as “for every …,” “for all …,” or “If …” A controlling variable can have the 
power to confine another variable and to change another variable when it is set, while trivial 
variables do not.  Both conditioned and non-conditioned variables are derived from the phrases 
such as “for some …” or “there exists …”  A conditioned variable is defined by a controlling 
variable while a non-conditioned variable is not.  For example, in the definition of continuity of 
a function YXf o: at 0xx  , which is “For every 0!H , there exists a 0!G such that if

G�� 0xx , then H�� )()( 0xfxf ,” the variable “H ,”is a controlling variable because it is 
derived from “For every 0!H ” and confines “G ” when it is set.  The variable “G ” is a 
conditioned variable because it is derived from “there exists a 0!G ” and is subject to the 
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controlling variable “H .”  In the definition of a bounded sequence, which is “For every ��Zn , 
Man d for some RM� ,” ��Zn is a trivial variable because it is derived from “For every
��Zn ” and does not confine another variable.  The word “trivial” does not mean “not 

important.”  It can play a significant role in the process of reasoning process.  RM� is a non-
conditioned variable because it is derived from “for some RM� ” and it is not confined by any 
controlling variable.   

 
Types of Proofs    

It is crucial to start a proof with a correct variable.  I call the variable that students need to 
derive and set at the beginning of a proof a “starting variable.”  The proofs examined in this 
study were classified into three types by ways to derive a starting variable.  Type I: Students 
were to derive and set a starting variable from the conclusion of the given statement.  This type 
of proof contains an ignition phrase in the mathematical language for the conclusion.  Type I 
had two sub-types of proofs.  While Type I (a) did not ask students to show A = B, Type I (b) 
asked them to prove A = B.  Type II: Students were to derive and set a starting variable from a 
hypothesis of the given statement.  This type included the proofs in which the mathematical 
language for the conclusion did not include an ignition phrase.  Proofs by contradiction belong 
to this type.  The proofs that required students to construct an object might belong to this type.  
In both Types I and II, some proofs had more than one starting variable.  Type III: Students did 
not have to derive a starting variable because it was already given in the problem.  The proofs 
that asked students to prove A = B belonged to this type.  Proofs by mathematical induction and 
proofs of trigonometric identities were such examples.   

 
Ignition Phrases 

I called the phrases in the mathematical language that provide hidden variables “ignition 
phrases.”  There are two types of ignition phrases: a primary ignition phrase and a second 
primary ignition phrase.  A primary ignition phrase is “for any …” “for every …,” or “for all ….”  
The phrase “If …” also can be considered a primary ignition phrase if it is rephrased with “for 
any …” or “for every ….” A second primary ignition phrase is “for some …”  The phrase “there 
exists …” also can be considered a second primary ignition phrase if it is rephrased with “for 
some ….”  Controlling and trivial variables come from primary ignition phrases while 
conditioned and non-conditioned variables come from second primary ignition phrases.   

An ignition phrase enables students to derive and set a starting variable.  I call the 
ignition phrase that provides a starting variable “an ignition phrase.” In a proof of Type I, the 
primary ignition phrase that provides a controlling variable in the mathematical language for the 
conclusion is an ignition phrase.  However, if a primary ignition phrase provides a trivial 
variable, it may not be an ignition phrase.  In a proof of Type I, a second primary ignition phrase 
in the mathematical language for the conclusion cannot be an ignition phrase.  In other words, 
students should avoid deriving and setting a starting variable from a second primary ignition 
phrase in the mathematical language for the conclusion.  If the mathematical language for a 
conclusion does not contain a controlling variable, the proof belongs to Type II, in which a 
starting variable should be found in the mathematical language for a hypothesis.  In a proof of 
Type II, both primary and second primary ignition phrases can be ignition phrases.             

The following are some examples of ignition phrases.  Suppose students are asked to 
prove that a topological space X is Hausdorff.  They can begin their proofs with setting a starting 
variable, which can be derived from an ignition phrase in the mathematical language for the 
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conclusion.  The mathematical language for the statement is “For any two distinct points x and y 
in X, there exists an open neighborhood U of x and an open neighborhood V of y such that U and 
V are disjoint.”  The ignition phrase is “For any two distinct points x and y in X”.  Students can 
start their proofs with “Let x and y be distinct points in X.”  The phrase “there exists an open 
neighborhood U of x” is a second primary ignition.  Since it is in the conclusion, it cannot be an 
ignition phrase.  Suppose students are asked to prove that a sequence }{ na is bounded.  The 
mathematical language for the statement is “For every ��Zn , Man d  for some RM� .”  There 
are two ignition phrases, which are “For every ��Zn ” and “for some RM� .”  However, neither 
of them is an ignition phrase.  The phrase “For every ��Zn ” is not an ignition phrase because

��Zn is not a controlling variable but a trivial variable.  The phrase “for some RM� ” is not an 
ignition phrase either because an ignition phrase “for some ....” in the mathematical language for 
the conclusion is not considered an ignition phrase. Since the mathematical language for the 
conclusion does not provide an ignition phrase, this proof belongs to Type II, in which a starting 
variable should be found in the mathematical language for a hypothesis of the proof. 

 
Major Steps for the Opening Stage 

Model steps in the opening stage were established tentatively: (i) Decide a major proving 
strategy (a direct proof, a proof by contradiction, a proof by contrapositive, a proof by 
mathematical induction).  If students choose a proof by contradiction or by contrapositive, 
rephrase the problem accordingly.  (ii) Note the conclusion of the given statement.  (iii) Translate 
the conclusion into mathematical language.  By doing this, students can make the goal of the 
proof clearer and the distance between the beginning and the end of the proof shorter.  (iv) Look 
for an ‘ignition phrase’ in the mathematical language.  By doing this, students can tell the type 
of the proof and prepare a starting variable.  If there is an ignition phrase in the mathematical 
language for the conclusion, it belongs to Type I.  If there is no ignition phrase, the proof 
belongs to either Type II or Type III.   

 
Framework for Analyzing Students’ Proofs 

A framework for analyzing students’ difficulties with proof construction (Table 1) was 
created based on the model of the structure of proof construction.  The analysis framework also 
serves as a list of the skills and abilities necessary for proof construction.    

 
Inter-rater reliability 

For an inter-rater reliability, I had six mathematics professors review the model.  Using 
the proofs I created and/or their own proofs I had them create, I had them confirm that the model 
of the structure of proof construction was applicable to those proofs.  I received an agreement 
from all of them.  
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Table 1:  Components of the Structure of Proof Construction  
 

Reasoning Activity  (O: Opening Stage, B: Body Construction Stage) 
O            OPS Decide a major proving strategy (a direct proof, an indirect proof, etc). 

OTC Set a goal: translate the conclusion of the given statement into mathematical language.  
ODT Prepare a starting variable: Decide the type of the proof by noting an ignition phrase. 

B R R1 Rephrase an object by applying a definition, a property, or a theorem. 
R2 Rephrasing an object through interpretation. 
R3 Rephrasing an object through algebraic manipulation. 

 CO CO(A,B)R Combine objects to create a new object. 
C C1 Set a variable. 

C2 Recall concepts, properties, theorems, propositions, problem-solving techniques. 
C3 Set some cases. 
C4 Make a claim or create a new object. 
C5 Consider an object. 

CE Ch Review, test, evaluate, adjust, modify, or correct what has been done. 
Ex Search a clue, explore a solution by making a graph, a diagram, and an example, by 

intuiting, or by doing trial and error. 
Background Knowledge 

KDF Know definitions and properties of concepts. 
KTH Know theorems, propositions, and lemmas. 
KNT Know notations. 
KTE Know proving techniques or problem solving techniques. 

Mental Attitudes 
MT Have tenacity and persistence; not give up proving or solving problems easily. 
MF Have flexibility to give up an idea that does not work and to try a new or different method.  
MC Have carefulness, precision, or alertness. 

Affect and Beliefs 
AF Have self- confidence, have a mentality to not let negative emotions affect proving or 

solving performances. 
BL Have a right belief on proofs, logic, and mathematics. 
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Table 2: Structure of the Reasoning Activity  
 

Reasoning 
Activity 
in Proof 

Construction 

  ACTIONS MAIN SUPPORTING 

Roles of the Actions Transforming objects Igniting a process Supporting  
the main actions 

 
                 

STAGES 

  
          Operations 
  
Steps 

R 
Rephrasing 

Objects 

CO 
Combining 

Objects 

C 
Creating a Cue 

Ch 
Checking 
(review, 
evaluate,  
test, 
modify, 
correct) 

Ex 
Exploring 
(search, do 
trial and error  
illustrate, 
experi- 
ment, 
intuit) 

R 
1 

R 
2 

R 
3 

CO(A,B)R C 
1 

C 
2 

C 
3 

C
4 

C
5 

 
 
 
 
 

Opening 
Stage 

Z: Choose a major proving 
strategy. 

Decide which strategy to use (a direct proof, a proof by 
contradiction, a proof by contrapositive, a proof by finding a 
counter example, or a proof by mathematical induction. If 
necessary, rephrase the problem according to the chosen 
method.   

  

X:  Make sure of the goal. Given.  (Find the conclusion of the given statement.)   
Y: Make the goal clearer 
with mathematical 
language. 

R1, R2, R3 (Translate the conclusion into mathematical 
language.) 

  

P:  Make sure of the   
hypotheses. 

Given  (Find all the hypotheses of the given statement and 
translate them into mathematical language if necessary.) 

  

S: Prepare a starting 
variable. 

   

 
 

Body 
Construction 

Stage 

Step 1: State the 
hypothesis. 

Given. 
 

  

Step 2: Set a starting 
variable. 

 
 

 C1   

…      
…      
Conclusion  

 
    

                                        
      Footnotes 

Actions 
Main Actions The operations applied to a step to generate the next step, whose outcome  must be explicitly expressed to convince 

others 
Supporting Actions The operations to produce side work, whose outcome does not necessarily have to appear in the proof to convince 

others 
   

Rephrasing an object 
R1 Rephrase an object by translating a concept, a theorem, or a property of concept into mathematical language mainly through 

applying its definition. 
R2 Rephrase an object through formal or informal interpretation. 

R3 Rephrase an object through algebraic manipulation or calculation, including solving an equation. 

 
Combining objects 

CO(S, T)R Connect and combine different pieces of objects (S and T) to create a new object. This action is always followedd by an 
operation of rephrasing. 

 
Creating a cue 

C1 Set a variable. 

C2 Recall prior knowledge, including a theorem, a proposition, a property of concept, or a mathematical law. 

C3 Set some cases. 

C4 Make a claim or create a new object. 

C5 Consider an object. 
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Discussion 
The model of the structure of proof construction provides an algorithm for advancing a 

reasoning process in proof construction.  This section introduces the algorithm and illustrates 
how the algorithm works.   

 
Algorithm for Proof Construction 
A: Opening Stage 
A0: Read the problem 

x If necessary, translate the whole problem into mathematical language. (A0.1) 
A1: Decide a major strategy. 

x Decide which proving strategy to use, a direct proof, by contrapositive, by contradiction, 
by counter example, or by mathematical induction.  (A1.1) 

x For a proof by contrapositive or contradiction, rephrase the problem.  (A1.2) 
x For Type III, skip to B0. (A1.3)  

A2: Note the conclusion. 
x Do not be tempted to note a hypothesis. (A2.1) 

A3: Translate the conclusion into mathematical language. 
x Rephrase the whole conclusion through R1 (See Table 1). (A3.1) 
x Rephrase the conclusion more than once, if necessary. (A3.2) 

A4: Find an ignition phrase in the mathematical language for the conclusion. 
A5: Decide the type of the proof. 

x If A4 is a primary ignition phrase, the proof belongs to Type I. (A5.1) 
x If there is no ignition phrase, the proof belongs to Type II or Type III. (A5.2)   
x If there is no ignition phrase and the problem asks to prove A = B, it belongs to Type III. 

(A5.3) 
A6: Find a starting variable. 

x For Type I, derive a starting variable from the ignition phrase. (A6.1) 
x For Type II, note a hypothesis, translate it into mathematical language, and find an 

ignition phrase. (A6.2) 
x For Type III, start the body construction stage by trying one of the followings: Work on 

either A or B to change it into B or A, work on both to obtain A = C = B, or show BA�
and AB� .  This can work for the proofs in Type I (b).  (A6.3) 

TA: Supporting tips for the opening stage 
TA1 (Type I): A starting variable should be first found in a primary ignition phrase in the 
mathematical language for the conclusion.  However, if a variable in the primary ignition phrase 
is a trivial variable, it may not be a starting variable.  A variable from a second primary ignition 
phrase in the mathematical language for the conclusion cannot be a starting variable.  If there is 
not ignition phrase in the conclusion, derive a starting variable from a hypothesis. 
TA2: (Type II) A starting variable can be derived from both a primary and a second primary 
ignition phrases in a hypothesis.   
TA3: (Type I.b and Type III) Try one of the following methods. (i) Work on either A or B until 
you change it into B or A, (ii) Work on both A and B until you get A = C = B, or (iii) Show both 
A ⊂ B and B ⊂ A.  For A ≅ B, (iv) find an isomorphism between A and B.   
 
B: Body construction stage 
B0: State the hypothesis (hypotheses). 
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B1: Set a starting variable.  
x For Type I, set a starting variable from the ignition phrase obtained in A4.1. (B1.1) 
x For Type II, translate the hypothesis into mathematical language.  (B1.2) 
x For Type III, skip this step and start to work on part of the conclusion.  (B1.3) 

B2: Make sure of the new goal of the proof. 
B3: Try rephrasing an object, recalling the three sub-types (See Table 3). 

x Whenever seeing a sentence containing a mathematical concept, translate it into 
mathematical language, and make it as fine-grained as possible. (B3.1) 

B4: If it does not work, try combining objects. 
x Find a hypothesis and use it (B4.1). 
x If there is more than one hypothesis, choose the one that has a connection with the 

object you would like to combine with.  (B4.2) 
x When the mathematical language for a hypothesis contains a controlling variable, use 

this operation (combining objects) to specify the controlling variable.  
B5: If it does not work, try creating a cue, recalling the five sub-types (See Table 1). 
B6: If it does not work, try exploring and checking. 

 
T: Supporting Tips.   
T1: For all types of proofs, whenever encountering a statement containing a mathematical 
concept, translate it into mathematical language and make it as fine-grained as possible.  
T2: For Type II, when the mathematical language for a conclusion contains a trivial variable or 
when the mathematical language for a hypothesis contains a controlling variable, confine the 
variable to some specific object at a certain step.   
T3: For type I(b) and Type III, try one of the followings. (i) Work on either A or B until you 
change it into B or A, (ii) Work on both A and B until you get A = C = B, or (iii) Show both A ⊂ 
B and B ⊂ A.  For A ≅ B, (iv) find an isomorphism between A and B.  
T4: Always, keep the goal obtained in A3 in mind.  

 
The following examples show how the above algorithm helps students to construct a 

proof.  To make the algorithm more understandable, I will explain in the form of a dialogue 
between an instructor and students.  In the dialogue, I assume that the students are fully equipped 
with not only the knowledge of the above algorithm but also the knowledge necessary for 
solving the given problems.  

 
Example 1 (Type I) 

“Suppose G/Z(G) is cyclic, where Z(G) is the center of G.  Prove G is abelian. What 
should we do first?”  “Decide the major proving strategy (A1).”  “What strategy would you use?”  
“A direct proof.”  “What is the next step?”  “Note the conclusion (A2), translate it into 
mathematical language (A3), and find an ignition phrase (A4).”  “What is the conclusion?”  “G 
is abelian.”  “What is the mathematical language?”  “For any Gba �, , baab  .” “What is the 
ignition phrase?”  “For any Gba �, .”  “What is the type of this proof?”  “Type I(b).”  “How did 
you figure that out?”  “The mathematical language for the conclusion contains a primary ignition 
phrase ‘for any Gba �, ’ and the goal of the proof is to show A= B, where A = ab and B = ba.”  
“Let’s begin the body construction stage.  After stating the hypothesis (B0) ‘Suppose )(/ GZG
is cyclic, where Z(G) is the center of G,’ what would you do?”  “Set a starting variable from the 
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ignition phrase ‘for any Gba �, ’ (B1.2).”  “How?”  “(1) Let Gba �, .”  “Then?”  “Work on the 
left hand side (2) ‘ ab ’until it changes into the right hand side ‘ba ’ so that we can show ab = ba.”  
“Then?”  “First, try rephrasing an object (B2)”  “Does that (B2) work for ‘ ab ’ or ‘a’ and ‘b’?”  
“No.”  “What should we do?”  “Try B3 (combining objects).”  “How?”  “Note the hypothesis 
and use it.”  “What is the hypothesis?”  “(3) G/Z(G) is cyclic.”  “Are we ready to combine the 
objects (2) ‘ ab ’ and (3) ‘G/Z(G) is cyclic’?”  “No.”  “Why not?”  “Because (3) ‘G/Z(G) is cyclic’ 
contains a mathematical concept ‘cyclic.’ “So?”  “Translate the object (3) ‘G/Z(G) is cyclic’ into 
mathematical language. (T1)”  “What is the mathematical language?”  “(4) ‘A coset of Z(G) is 
generated by !� xZ for some Gx� .’”  “Now, are we ready to combine the objects (2) ‘ ab ’ (or 
‘a’ and ‘b’) and (4) ‘a coset of Z(G) is generated by !� xZ ’?”  “Not really.”  “What can we do?”  
“Since B3 (combining objects) does not work, try B4 (creating a cue).”  “There are five types of 
creating a cue (Table 2).  Which would you try?”  “C2 (recalling and applying prior knowledge).”  
“What relevant fact can we use to combine the objects (2) ‘ ab ’ and (4) ‘a coset of Z(G) is 
generated by !� xZ for some Gx� ’?”  “ (5) ‘Every element in a group belongs to some coset.’”  
“Now, can we combine these three objects (2) ‘ ab ’, (4) ‘a coset of Z(G) is generated by !� xZ ’, 
and (5) ‘every element belongs to some coset’?”  “Yes, we can combine them to obtain (5)

Zxa m� and Zxb n� for some Gx�  and for some ��Znm, .”  “Then?”  “Since we have 
finished applying B4 (creating a cue), we can resume with B2 (rephrasing an object).”  “Can we 
further rephrase the object (5) ‘ Zxa m� and Zxb n� ’?”  “Yes. 1zxa m and 2zxb n for some

Zzz �21, .”  “So?”  “Using the commutative property of elements of the center Z of G, we obtain
bazxzxzzxzzxzxzxab mnmnnmnm      ��

12122121 .” 
 

Example 2 (Type II) 
“Suppose that a sequence }{ na is convergent.  Show }{ na is bounded.”  “What major 

strategy would you use? (A1)”  “A direct proof.”  “How would you start the opening stage?”  
“Note the conclusion (A2), translate it into mathematical language (A3), and find an ignition 
phrase (A4).”  “What is the conclusion?”  “ }{ na is bounded .”  “What is the mathematical 
language?”  “For every ��Zn , Man d for some RM� .”  “What is the ignition phrase?”  
“None.”  “Are not ‘For every ��Zn ’ and ‘for some RM� ’ ignition phrases?”  “ The phrase 
‘For every ��Zn ’ is not an ignition phrase because ��Zn is a trivial variable.  A primary 
ignition phrase that provides a trivial variable is not considered as an ignition phrase.  The 
phrase ‘for some RM� ” is not an ignition variable because a phrase ‘for some …” in the 
conclusion cannot be an ignition phrase.”  “Then, how would you set a starting variable?”  
“Since there is no ignition phrase in the conclusion, this proof belongs to Type II.  So, after 
stating the hypothesis (B0), translate it into mathematical language. (B1.2)”      “What is the 
hypothesis?”  “ }{ na is convergent .”  “What is the mathematical language?”  “ Lann

 
fo

lim for 

some RL� .”  “Then, what would you do?”  “We can further rephrase it.”  “How?”  “For every
0!H , ��� ZN such that for every Nn t , H��Lan .”  “Next?”  “ Derive a starting variable 

(A5).”  “How would you do that?”  “Find an ignition phrase (A6.2)”  “What is an ignition 
phrase?”  “’For every 0!H .”  “So?”  “We can set 0!H  as a starting variable.  However, since 
the variable is a controlling variable derived from a hypothesis, you might want to confine it to 
certain object by T2.”  “How would you do that?”  “Let 1 H .”  “What have we gotten so far?”  
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“(1) ��� ZN and RL�  such that for every Nn t , 1�� Lan .”  “How would you advance a 
reasoning process?”  “First, try B2 (rephrasing an object).”  “Does it work?”  “Yes. (1) can be 
rephrased with (2) for every Nn t , 1�� Lan .”  “Can B2 (rephrasing an object) still work?”  
“No.”  “Then?”  “Try B3 (combining objects).”  “Would that work?”  “No, there is nothing to 
combine with the object (2) for every Nn t , 1�� Lan .”  “Then, what would you do?”  “Try 
B4 (creating a cue).”  “There are five types of creating a cue. (See Table 2).  Which type would 
you try?”  “Create a new object (C4).”  “What would you create?”  “The M such that Man d  

for every ��Zn .”  “How would you do that?”  “(3) Let M = max }1,,...,,{ 121 �� Laaa N .”  “Can 
you rephrase it? (B2)”  “No.”  “So?” “Combining the objects (2) and (3), conclude that for every

��Zn , Man d .”    
 

Example 3 (Type III) 
“Let’s solve the following problem.  ‘Suppose )(modnba { for Zba �, and Nn� .  Prove  

)(mod33 nba { .”  “What would you do first?”  “Decide a proving strategy.”  “What strategy 
would you use?”  “A direct proof.”  “Next?”  “Note the conclusion (A2) and translate it into 
mathematical language (A3).”  “What is the conclusion?”  “ )(mod33 nba { .”  “What is the 
mathematical language?”  “ ncbabababa  ��� � ))(( 2233 for some Zc� .”  “Are we going 
to find an ignition phrase (A4)?”  “No.”  “Why not?”  “Because this proof belongs to Type III, 
so you don’t need to derive a starting variable. (B1.3)”  “Then, after stating the hypothesis, how 
would you start the body construction stage?” “Consider the left hand side (1) 

))(( 22 bababa ���  and work on it until it can be changed into nc . (A6.3)”  “Then, what would 
you do?”  “First, try rephrasing an object (B2).”  “Does that work for (1) ))(( 22 bababa ��� ?”  
“No.”  “Then, what would you do?”  “Try combining objects. (B3) ”  “How would you do that?”  
“Find a hypothesis and use it.”  “What is the hypothesis?”  “(2) )(modnba { for Zba �, and 

Nn� .”  “Can we combine (1) and (2)?”  “No.”  “Why not?”  “Because (2) )(modnba {
contains a mathematical concept ‘mod n.’”  “Then?”  “Translate (2) )(modnba { into 
mathematical language. (T1)”  “What is the mathematical language?”  “(3) ndba  �  for some

Zd � .”  “Are we ready to combine (1) and (3)?”  “Yes, we can combine them to obtain (4) 
ncbabandbababa  �� ��� )())(( 2222 , where Zbabac ��� 22 .”   

 
Conclusion 

The model of the structure of proof construction elucidates the aspects, factors, patterns, 
and features involved in a cognitive process in proof construction.  I viewed proof construction 
from four aspects: (1) reasoning activity; (2) background knowledge; (3) mental attitudes; and 
(4) affect and beliefs. Each aspect consists of multiple factors.  The reasoning activity consists of 
four major factors: (i) rephrasing an object; (ii) combining objects; (iii) creating a cue; and (iv) 
checking and exploring (Table 2).  Background knowledge includes students’ knowledge of 
definitions, properties, notations, relevant facts, theorems, problem-solving strategies or 
techniques.  Mental attitudes consist of three major factors: (i) persistence and tenacity; (ii) 
flexibility; (iii) carefulness, alertness, and precision.  Affect and Beliefs consists of two major 
factors: (i) emotions, feelings, self-confidence; (ii) beliefs toward proofs, mathematics, and logic. 
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Those factors directly provide the skills and abilities necessary for proof construction (Table 1).  
Some patterns involved in cognitive processes were detected: the types of proofs that were 
classified according to the ways to manage the opening stage; the types of variables; the model 
steps for the opening stages for each type of proofs; and the algorithm for advancing a reasoning 
process in the body construction stages.  The features of proof construction are found in the 
significance of the use of mathematical language, roles of the operations for advancing a 
reasoning process, roles of the stages of proof construction, and roles of ignition phrases.  

This paper ends with two hypotheses.  One is that the model of the structure of proof 
construction can help to analyze students’ difficulties with proof construction in a clear, 
organized, and systematic way.  Students’ proofs can be examined in terms of the three aspects 
(reasoning activity, background knowledge, and mental attitudes).  Students’ difficulties can be 
defined by the aspect of the reasoning activity. The sources of their difficulties can be explained 
in terms of the other two aspects (background knowledge and mental attitudes).  The other 
hypothesis is that the knowledge of the structure of proof construction itself can help students 
overcome their difficulties with proof construction.  The model can serve as metacognitive and 
methodological knowledge to enable students to practice logical deduction in proof construction.   

The limitation of this study was that the number of proofs that were examined was 
limited in constructing the model and algorithm.  There is still room for adjusting, modifying, 
correcting, and improving the model, especially the types of the proofs, the features of variables 
and the roles of ignition phrases, and the algorithm for advancing a reasoning process.  Many 
more proofs from various mathematical subjects will need to be examined to refine the model of 
the structure of proof construction.    
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Analysis of Students’ Difficulties with Starting a Proof 
 

Tetsuya Yamamoto 
University of Oklahoma 

 
This paper examines students’ difficulties with starting a proof.  The target population was those 
students who were enrolled in undergraduate Algebra, Analysis, and Topology in a large 
research university.  81 proofs, which were collected from students’ mid-term and final exams 
and in-class problem solving sessions, were analyzed.  The results showed that 39 proofs (about 
48%) were not successful because the early stages of those proofs had defects.  This paper 
investigates the sources of students’ difficulties with starting a proof and provides pedagogical 
suggestions to help them overcome their difficulties.    

 
Keywords: Difficulties with Starting a Proof, Opening Stage of Proof Construction 
 

Introduction 
Researchers have agreed that proof is an essential and key component in mathematics at 

all grades (Baylis, 1983; Wu, 1996; Hanna, 2000; Ball, Hoyles, Jahnke, & Movshovitz-Hadar, 
2002).  Researchers have also shown that proof is challenging to students at all levels (Paola & 
Inglis, 2011; Pfeiffer, 2009; Stylianides, Stylianides, and Phillippou, 2007; Harel and Sowder, 
2007).  Although students’ difficulties with proof construction have been well-documented, there 
seem to be few studies that spotlighted students’ difficulties with starting a proof.  As part of the 
findings from the study for my dissertation, this paper attempts to answer the following two 
questions:  What are possible sources of students’ difficulties with starting a proof?  What is an 
effective method to help students start a proof more successfully?    

 
Literature Review 

Different researchers examined students’ difficulties with proof construction from 
different angles: mathematical language (Finlow-Bates, 1994; Selden and Selden, 1995; 
Thurston, 1994; Dreyfus, 1999); students’ understanding and usage of definitions (Tall, 1991; 
Vinner 1991; Frid, 1994; Moore, 1994; Edward & Wards, 2004; Zaslavsky & Shir, 2005; Knapp, 
2006; Alcock, 2007; Selden & Selden, 2007; Paramerswaran, 2010); logic (Weber, 2002; 
Stylianides & Stylianides, 2007; Selden & Selden, 2009; Savic, 2011); informal representations 
(Alcock, 2004; Alcock & Weber, 2010; Lew, Mejia-Ramos, & Weber, 2013); proving strategies 
(Weber, 2001); and proof schemes (Harel & Sowder, 1998; Racio & Godino, 2001; Housman & 
Porter, 2003; Weber & Alcock, 2004; Zaslavsky & Shir, 2005).  However, it seems there is not 
much research that focused on students’ difficulties with starting a proof. 

Moore (1994) examined students’ cognitive difficulties with proof construction and 
provided seven major sources of students’ difficulties.  He pointed out that students’ inability to 
begin a proof was one of the major sources of their difficulties.  There seems to be little research 
that explored exactly what difficulties students had with starting a proof and specifically what 
factors hindered students from starting a proof successfully.   

Selden and Selden (2012) provided a proof framework as an instructional method to help 
students with their early-stage of proof construction.  They suggested that students should first 
write the hypotheses at the beginning of their proofs, leave a space for the body, write the 
conclusion at the end, and fill the blank space through unpacking the conclusion of the given 
statement.  They also indicated that the proof framework worked well for some proofs but not for 
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all.  There still seems to be room for exploring an effective instructional method for helping 
students with proof construction in their early-stage proof construction.    

This paper attempts to fill those above gaps.  In order to explore possible sources of 
students’ difficulties with starting a proof, a framework was created, with which to analyze 
students’ difficulties in a clear and organized way.   

 
Framework 

In order to create a framework for analyzing students’ proofs, a model of the structure of 
proof construction (Tables 1) was created.  I created the model so that it could encompass the 
aspects, factors, patterns, and features involved in proof construction across mathematical 
subjects.  In particular, I focused on the operations used to generate one statement from the next 
statement, which produced the structure of the reasoning activity (Table 2).  The model was 
tested and refined through solving more than 42 theorems and propositions.  The proofs 
examined to create the model ranged over several subjects including undergraduate Algebra, 
Analysis, and Topology.  For inter-rater reliability, I had 6 mathematics professors at a large 
research university review it.  Using my proofs and their proofs, I had them confirm that the 
model can be applicable to those proofs and earned an agreement from them.   

Two stages were set for proof construction in the model: the opening stage and the body 
construction stage.  I defined the opening stage, which I focus on in this paper, to be a 
preparation stage at which students (1) choose a major proving strategy (a direct proof, a proof 
by contradiction, a proof by contrapositive, a proof by mathematical induction, or a proof by a 
counterexample), (2) make the goal of the proof clearer, and (3) prepare a starting variable.   

First, I discuss the factors involved in the opening stage: mathematical language, 
variables, and ignition phrases.  Then, I discuss the types of proofs and the features of the 
opening stage. 
 
Mathematical language 

I made a distinction between mathematical language and mathematical language.  I 
defined mathematical language to be mathematical language that is fine-grained enough to help 
students further advance a reasoning process and convince others without leaving any ambiguity.  
For example, “ YXf o: is continuous in topological spaces X and Y” is mathematical language.  
The mathematical language for this statement is “For every open set U in Y, )(1 Uf � is open in 
X.”  The definition of a mathematical concept is the most paradigmatic example of mathematical 
language.  Mathematical language is a key factor for constructing a proof based on logical 
deduction.  The significance of the use of mathematical language is not limited to proof 
construction.  Mathematical language plays a crucial role in solving a regular mathematical 
problem.  For example, if a student is given the condition in a Calculus problem, which says “the 
function YXf o: has a horizontal tangent line at ax  ,” the student may need to translate the 
statement into “ 0)('  af ” in solving the problem.  The former statement “the function 

YXf o: has a horizontal tangent line at ax  ,”is mathematical language while the latter 
“ 0)('  af ” is mathematical language.   

 
Types of variables 

A variable is a principal and key element of mathematical language.  Students can 
convey their mathematical thoughts rigorously by way of variables.  The variables used in a 
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proof can be classified into two types: a given variable and a hidden variable.  A given variable 
is a variable that appears or is explicitly written in a given problem while a hidden variable is not.  
However, a hidden variable sometimes need to be derived, explicitly expressed, and used for 
advancing a reasoning process.  I call that type of hidden variable a “hidden variable.”  A hidden 
variable can be found in some special phrases in mathematical language, which I call ignition 
phrases.   I call those expressions “ignition phrases.”  There are two types of ignition phrases: a 
primary ignition phrase and a second primary ignition phrase.  The former is “for every …,” “for 
any …,” or “for all ….”  The phrase “If …” can be a primary ignition phrase of this type if it is 
rephrased with “for every …,” “for any …,” or “for all ….”  The latter is “for some …”  The 
phrase “There exists …” can be a second primary ignition phrase if it is rephrased with “for 
some …”  According to the types of ignition phrases, variables can be classified into four sub-
types: controlling variables, trivial variables, conditional variables, and non-conditional 
variables.  (The naming and classification of variables are tentative.)   

Controlling and trivial variables are derived from primary ignition phrases.  A 
controlling variable can have the power to confine and change another variable or a given 
statement when it is set while a trivial variables is not.  Both conditional and non-conditional 
variables are derived from second primary ignition phrases.  A conditioned variable is confined 
by a controlling variable while a non-conditioned variable is not.  For example, in the definition 
of compactness, which is “For every open cover W of X, there exists a finite open subcover.”  
The variable “an open cover W ” is a controlling variable because it is derived from the primary 
ignition phrase “For every open cover W of X” and confines “a finite open subcover ” when it is 
set.  The variable “a finite open subcover” is a conditioned variable because it is derived from 
the second primary ignition phrase “there exists a 0!G ” and is subject to the controlling 
variable “an open cover W.”  In the definition of a bounded sequence, which is “For every

��Zn , Man d for some RM� ,” “ ��Zn ” is a trivial variable because it is derived from “For 
every ��Zn ” but does not affect another variable by its change.  “ RM� ” is a non-conditioned 
variable because it is derived from the primary ignition phrase “for some RM� ” but is not 
controlled by a controlling variable.   

 
Ignition phrases 

I made a distinction between ignition phrases and ignition phrases.  Ignition phrases are 
the ignition phrases that enable students to derive and set a starting variable.  A starting variable 
is the one with which students start a proof.  The primary ignition phrase that provides a 
controlling variable in the mathematical language for the conclusion can be an ignition phrase 
while the one that provides a trivial variable may not.  The second primary ignition phrase in the 
mathematical language for the conclusion cannot be an ignition phrase.  In other words, students 
should not derive and introduce the hidden variable from the second primary ignition phrase as a 
starting variable if it comes from the conclusion.  If the mathematical language for the 
conclusion does not provide a starting variable, a starting variable should be found in the 
mathematical language for a hypothesis.  Both primary and second primary ignition phrases in 
the mathematical language for a hypothesis can be ignition phrases.   

The following are some examples.  Suppose that students are given a problem, which 
asks to prove that “a function YXf o: is continuous at 0xx  .”  They need to set a starting 
variable to start a proof.  They should derive a starting variable from an ignition phrase.  A 
starting variable should be first found in a primary ignition phrase in the mathematical language 
for the conclusion.  In this case, the mathematical language for the conclusion is “For every
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0!H , there exists a 0!G such that if G�� 0xx , then H�� )()( 0xfxf .”   The phrase “For 
every 0!H ” is a primary ignition phrase, which provides a controlling variable.  Therefore, “For 
every 0!H ” is an ignition phrase.  Students can start a proof with “Let 0!H .”  The phrase 
“there exists a 0!G ” is a second primary ignition phrase, but it is in the conclusion of the given 
statement.  Therefore, the phrase “there exists a 0!G ” is not an ignition phrase.  For another 
example, suppose that students are given a problem that asks them to prove that a sequence }{ na
is bounded.  The mathematical language for the statement is “For every ��Zn , Man d  for 
some RM� .”  There are two ignition phrases, which are “For every ��Zn ” and “for some

RM� .”  However, neither of them is an ignition phrase.  The phrase “For every ��Zn ” is not 
an ignition phrase because ��Zn is not a controlling variable but a trivial variable.  The phrase 
“for some RM� ” is not an ignition phrase either because an ignition phrase “for some ....” in 
the mathematical language for the conclusion is not considered to be an ignition phrase.   

 
Types of proofs    

Proofs can be classified into three types by ways to derive a starting variable.  Students 
can tell the type of a proof by examining the conclusion of the given statement.  In the first type 
of proof (Type I), students derive and set a starting variable from the mathematical language for 
the conclusion of the given statement.  This type of proof contains an ignition phrase in the 
mathematical language for the conclusion.  In the second type of proof (Type II), students derive 
and set a starting variable from the mathematical language for a hypothesis.  Students can tell 
that a given proof belongs to this type when they first note the conclusion, translate it into 
mathematical language, and find out that the conclusion does not include an ignition phrase.  
The proofs that ask students to construct an object may belong to this type of proof.  In both 
Type I and Type II, a proof can have more than one starting variable.  In the third type of proof 
(Type III), students do not have to derive and set a starting variable because a starting variable is 
given in the problem.  A trivial example is a proof of a trigonometric identity.  A proof by 
mathematical induction also belongs to this type.  The proofs that ask students to prove A = B is 
typical in Type III.  There are also proofs in Type I that ask students to prove A = B.  In any case, 
in order to prove A = B, students can work on either A or B until they can change it into B or A, 
work on both sides until they get A = C = B, or show that BA� and AB� . 

 
Example 1 (Type I).  “Prove that if 0)(' !xf on ),( ba , )(xf  is strictly increasing on 

),( ba .”  The conclusion of the given statement is “ )(xf  is strictly increasing on ),( ba .”  The 
mathematical language for the conclusion is “ For every ),(, 21 baxx � with 21 xx � , 

)()( 21 xfxf � .”  The ignition phrase is “For every ),(, 21 baxx � with 21 xx � .”  Therefore, 
students may start their proofs with “Let ),(, 21 baxx � with 21 xx � .”  

 
Example 2 (Type II).  “Suppose that YX , are topological spaces, Y is compact, Xx �0 , 

and N is an open set containing  Yx u}{ 0  in the product space YX u .  Prove that there exists an 
open neighborhood XW � of 0x such that NYW �u .”  The conclusion of the given statement 
is “there exists an open neighborhood XW � of 0x such that NYW �u .”  The conclusion 
contains an ignition phrase “there exists,” which is a second primary ignition phrase.  However, 
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since the primary ignition phrase is in the conclusion, it cannot be an ignition phrase.  Therefore, 
students should note a hypothesis and translate it into mathematical language to derive a starting 
variable.  In this case, students can note the hypothesis “N is an open set containing Yx u}{ 0  in 
the product space YX u ” and translate it into mathematical language.  The mathematical 
language for the hypothesis can be that “for each Yxyx u� }{),( 00 , there exists a basis open set 

yyy NVU �u containing ),( 0 yx , in which yU and yV are open neighborhoods of y in X and in Y 
respectively.  The ignition phrase for the hypothesis is “for each Yxyx u� }{),( 00 .”  So, students 
may start their proofs with “Let Yxyx u� }{),( 00 .”  

 
Example 3 (Type III).  “Suppose Lsnn

 
fo

lim and .lim Mtnn
 

fo
 Prove MLts nnn

� �
fo

)(lim .”  

The conclusion of the given statement is “ MLts nnn
� �

fo
)(lim .”   At this point, students can tell 

this proof belongs to Type III.  Students can work on the left hand side of the equation 
“ )(lim nnn

ts �
fo

” until they can change it into  ML� .  They can start their proofs with “Consider 

)(lim nnn
ts �

fo
.” 

 
Features of the opening stage 

The most important operation to be taken in the opening stage is to translate the 
conclusion of the given statement into mathematical language.  By translating the conclusion 
into mathematical language, students can (1) make the goal of the proof clearer, (2) make the 
processing distance between the beginning and the end of the proof shorter, (3) tell the type of 
the proof by finding an ignition phrase, and (4) prepare a starting variable to be set to develop a 
proof.   
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Table 1:  Components of the Structure of Proof Construction  

 
Reasoning Activity  (O: Opening Stage, B: Body Construction Stage) 
O            OPS Decide a major proving strategy (a direct proof, an indirect proof, etc). 

OTC Set a goal: translate the conclusion of the given statement into mathematical language.  
ODT Prepare a starting variable: Decide the type of the proof by noting an ignition phrase. 

B R R1 Rephrase an object by applying a definition, a property, or a theorem. 
R2 Rephrasing an object through interpretation. 
R3 Rephrasing an object through algebraic manipulation. 

 CO CO(A,B)R Combine objects to create a new object. 
C C1 Set a variable. 

C2 Recall concepts, properties, theorems, propositions, problem-solving techniques. 
C3 Set some cases. 
C4 Make a claim or create a new object. 
C5 Consider an object. 

CE Ch Review, test, evaluate, adjust, modify, or correct what has been done. 
Ex Search a clue, explore a solution by making a graph, a diagram, and an example, by 

intuiting, or by doing trial and error. 
Background Knowledge 

KDF Know definitions and properties of concepts. 
KTH Know theorems, propositions, and lemmas. 
KNT Know notations. 
KTE Know proving techniques or problem solving techniques. 

Mental Attitudes 
MT Have tenacity and persistence; not give up proving or solving problems easily. 
MF Have flexibility to give up an idea that does not work and to try a new or different method.  
MC Have carefulness, precision, or alertness. 

Affect and Beliefs 
AF Have self- confidence, have a mentality to not let negative emotions affect proving or 

solving performances. 
BL Have a right belief on proofs, logic, and mathematics. 
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Table 2: Structure of the Reasoning Activity  
 

Reasoning 
Activity 
in Proof 

Construction 

  ACTIONS MAIN SUPPORTING 

Roles of the Actions Transforming objects Igniting a process Supporting  
the main actions 

 
                 

STAGES 

  
          Operations 
  
Steps 

R 
Rephrasing 

Objects 

CO 
Combining 

Objects 

C 
Creating a Cue 

Ch 
Checking 
(review, 
evaluate,  
test, 
modify, 
correct) 

Ex 
Exploring 
(search, do 
trial and error  
illustrate, 
experi- 
ment, 
intuit) 

R 
1 

R 
2 

R 
3 

CO(A,B)R C 
1 

C 
2 

C 
3 

C
4 

C
5 

 
 
 
 
 

Opening 
Stage 

Z: Choose a major proving 
strategy. 

Decide which strategy to use (a direct proof, a proof by 
contradiction, a proof by contrapositive, a proof by finding a 
counter example, or a proof by mathematical induction. If 
necessary, rephrase the problem according to the chosen 
method.   

  

X:  Make sure of the goal. Given.  (Find the conclusion of the given statement.)   
Y: Make the goal clearer 
with mathematical 
language. 

R1, R2, R3 (Translate the conclusion into mathematical 
language.) 

  

P:  Make sure of the   
hypotheses. 

Given  (Find all the hypotheses of the given statement and 
translate them into mathematical language if necessary.) 

  

S: Prepare a starting 
variable. 

   

 
 

Body 
Construction 

Stage 

Step 1: State the 
hypothesis. 

Given. 
 

  

Step 2: Set a starting 
variable. 

 
 

 C1   

…      
…      
Conclusion  

 
    

                                        
      Footnotes 

Actions 
Main Actions The operations applied to a step to generate the next step, whose outcome  must be explicitly expressed to convince 

others 
Supporting Actions The operations to produce side work, whose outcome does not necessarily have to appear in the proof to convince 

others 
   

Rephrasing an object 
R1 Rephrase an object by translating a concept, a theorem, or a property of concept into mathematical language mainly through 

applying its definition. 
R2 Rephrase an object through formal or informal interpretation. 

R3 Rephrase an object through algebraic manipulation or calculation, including solving an equation. 

 
Combining objects 

CO(S, T)R Connect and combine different pieces of objects (S and T) to create a new object. This action is always followedd by an 
operation of rephrasing. 

 
Creating a cue 

C1 Set a variable. 

C2 Recall prior knowledge, including a theorem, a proposition, a property of concept, or a mathematical law. 

C3 Set some cases. 

C4 Make a claim or create a new object. 

C5 Consider an object. 
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Method 
This study took place in a large research university in the Midwest in the Spring of 2013.  

The target population was those students who were enrolled in undergraduate Algebra, Analysis, 
and Topology.  There were two types of data sources: (1) students’ in-class midterm and final 
examinations and (2) students’ in-class problem solving sessions.  Students’ examinations were 
conducted by their  instructors.  Students’ problem solving sessions were conducted by the 
researcher.  In total, 81 students’ proofs over twelve problems were collected.  Students’ proofs 
were analyzed with the analysis framework (Table 1).  In particular, their difficulties with the 
opening stage were investigated in terms of the following two factors: students’ ability to 
successfully translate the conclusion of the given statement into mathematical language; students’ 
ability to set a correct starting variable.  For each problem, an analysis table was created, which 
showed a model proof, in order to detect where students had difficulties in the proof.  The table 
also showed what type of operation was used to obtain a statement from the previous statement 
for each step in the proof (Tables 4, 5, and 6).  Each mistake or impasse the student made was 
analyzed based on the analysis framework (Table 1) in terms of the three aspects: reasoning 
activity, background knowledge, and mental attitudes (Tables 1 and 2).   

 
Results 

Out of the 81 proofs that were analyzed, 59 proofs (about 73%) were incomplete or 
unsuccessful.  Out of those incomplete or unsuccessful 59 proofs, there were 39 proofs (about 
66%) that had defects in their opening stages.  Overall, in about 48% of 81 proofs, students had 
defects in the opening stage.  This section presents three examples, showing how students’ 
mismanagement in the opening stage occurred and affected their proofs.  
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Example 1: Frank and Anthony (Algebra) 
Frank’s proof is a representative example showing that students let their proofs go off 

track because they do not pay proper attention to the goal of a proof.  Both Frank’s and 
Anthony’s proofs were also representative examples showing that students made their proofs 
unsuccessful because they set a wrong starting variable.  Their difficulties occurred because they 
did not note the conclusion of the given statement in the opening stage.  Moreover, the root 
cause of their difficulties was that they first noted a hypothesis of the given statement and set a 
starting variable from it.   

 
Table 4: Analysis of Frank’s and Anthony’s proofs 

 

   
       Figure 1: Frank’s proof    Figure 2: Anthony’s proof 
 
Frank first noted the hypothesis of the given statement “ )(/ GZG is cyclic” and derived 

starting variables from it instead of from the conclusion of the given statement.  Having 
difficulties in dealing with the concepts and notations of cosets as well as )(/ GZG  being cyclic, 
his proof went off track and ended up with “ )(/ GZG is cyclic,” which was given as a hypothesis 
at the beginning.  He did not seem to make the goal of the proof “G is abelian” clear to himself.  
This might have caused him two problems.  One was that he did not realize that his argument 
was going astray and ended up with a conclusion that he was not asked to prove.  The other was 
that he was unable to set the correct starting variables “ Gba �, .”  Similarly, Anthony started to 
work on a given hypothesis, set starting variables from it, and tried to reach the goal by 
manipulating the variables, which made his proving argument unsuccessful.   
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Example 2: Ryan (Topology) 
Ryan’s proof is a representative example showing that students’ failure to derive a 

starting variable from an ignition phrase in the mathematical language for the conclusion spoils 
their whole proofs.   

 
Table 5: Analysis of Ryan’s proof (Topology) 

 

     
                  Figure 3: Ryan’s proof                                    Figure 4: Ryan’s statement 
 
Ryan successfully made the goal of the proof clear to himself.  As he indicated by trying 

to construct a finite open subcover of K (Figure 3), he noted the conclusion of the given 
statement “K is compact.”  He also knew the definition of compactness as he made a correct 
statement for the definition of compactness (Figure 4) in a previous problem.  Moreover, he was 
knowledgeable enough to correctly translate the given hypothesis " }{ nx  converges to 0x ” into 
mathematical language (Step 4), which was one of the key steps for the proof.  However, he was 
still unable to make his proof completely successful because he failed to set a correct starting 
variable.  In particular, he failed to note the ignition phrase “For any open cover of K” and to 
construct an open cover of K.   
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Example 3:  Cade (Algebra) 
Cade’s proof is a representative example showing that students’ failure to translate the 

whole sentence of the conclusion into mathematical language makes their proofs unsuccessful.  
 
Table 6: Analysis of Cade’s proof  

 

      
Figure 5: Cade’s strategy     Figure 6: Cade’s proof 
 
As Figure 5 shows, Cade successfully noted the conclusion of the given statement “G is 

cyclic” as his goal for the proof.  However, he was unable to translate it into “ ! � gG for some 
Gg �  with 1zg ” correctly, which seemed to result in his failure to develop his argument 

successfully (Figure 6).  In particular, he focused on only part of the conclusion “cyclic” and did 
not translate the whole sentence “G is cyclic,” which caused him to fail to derive a starting 
variable.  Cade also depended on the hypothesis “ pG  ” in deriving a starting variable. 

   
Discussion 

As the above examples show, students’ difficulties with the opening stage may occur in 
two ways: (1) Students failed to make the goal of the proof clear and (2) Students set a wrong 
starting variable.  The sources of these difficulties can be attributed to their failure to note the 
conclusion of the given statement and to translate it into mathematical language at the beginning 
of a proof.  The results also detected the causes that hindered students from noting the conclusion 
of the given statement: (a) students tended to start to work on a hypothesis and to set a starting 
variable from the hypothesis (Examples 1, 2, and 3); (b) students failed to pay attention to an 
ignition phrase in the mathematical language for the conclusion (Example 2); and (c) students 
focused on only part of the conclusion and failed to translate the whole sentence into 
mathematical language (Example 3).  In particular, students’ failure to set a correct starting 
variable was a crucial cause of their unsuccessful proofs.  Students seemed to be tempted to start 
to work on a hypothesis and to derive a starting variable from it by the expression of a hypothesis, 
which often started with “Suppose …”  Based on the model of the structure of the opening stage 
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and the findings from the analysis of students’ proofs, this section ends with presenting 
algorithm for dealing with the opening stage as pedagogical suggestions. 

 
Algorithm for the Opening Stage 
A: Opening Stage 
A0: Read the problem. 

x If necessary, translate the given problem into mathematical language. (A0.1) 
A1: Decide a major proving strategy  

x Decide which proving strategy to use, a direct proof, by contrapositive, by contradiction, 
by counter example, or by mathematical induction (A1.1) 

x If using a proof by contrapositive or contradiction, rephrase the whole problem.  (A1.2) 
x If finding out that the proof belongs to Type III, skip to B0. (A1.3) 

A2: Note the conclusion. 
x Do not be tempted to note a hypothesis. 

A3: Translate the conclusion into mathematical language. 
x Rephrase the whole sentence of the conclusion through R1 (Table 2). (A3.1) 
x Rephrase the conclusion more than once, if necessary. (A3.2) 

A4: Find an ignition phrase in the mathematical language for the conclusion. 
x A primary ignition phrase providing a controlling variable is an ignition phrase.  (A4.1) 
x A primary ignition phrase providing a trivial variable may not be an ignition phrase. 

(A4.2) 
x A second primary ignition phrase from the conclusion cannot be an ignition phrase. 

(A4.3) 
x If there is no ignition phrase in the conclusion, find one in a hypothesis. (A4.4) 

A5: Decide the type of the proof. 
x If there is a primary ignition phrase providing a controlling variable in A4, the proof 

belongs to Type I. 
x If there is no ignition phrase in A4, the proof belongs to Type II or Type III. 
x If there is no ignition phrase and the problem asks to prove A = B, it belongs to Type III. 

A6: Derive a starting variable. 
x For Type I, derive a starting variable from the ignition phrase. (A6.1) 
x For Type II, note a hypothesis, translate it into mathematical language, and find an 

ignition phrase.  (A6.2) 
x For Type III, start the body construction stage by trying one of the following: Work on 

either A or B to change it into B or A, work on both to obtain A = C = B, or show BA�
and AB� .  This also works for Type I (b).  (A6.3) 
 

B: Body Construction Stage 
B0: State the hypothesis (hypotheses).  
B1: Set a starting variable based on A6. 
B2: Make sure of the goal of the proof obtained in A3. 
B3: Start to apply the four types of operations for advancing a reasoning process in Table 2.  
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Conclusion 
This paper started with creating a model of the structure of the opening stage, which 

encompassed the factors, patterns, and features involved in the opening stage.  The opening 
stage has two major roles in proof construction: making the goal of the proof clear and setting a 
starting variable.  Translation of the conclusion of a given statement into mathematical language 
is the key operation in the opening stage.  By translating the conclusion into mathematical 
language, students can make the goal of the proof clear, tell the type of the proof, and set a 
starting variable.  Then, this paper provided several sources of students’ difficulties in staring a 
proof: students’ failure to note the conclusion of the given statement; their inability to translate 
the conclusion into mathematical language due to lack of their knowledge of definitions; and 
their tendency to note a hypothesis rather than the conclusion in deriving a starting variable.  
Finally, this paper presented algorithm for dealing with the opening stage of each type of proof.  
This paper ends with hypothesizing that the knowledge of the structure of the opening stage 
serves as metacognitive and methodological knowledge to help students start a proof more 
successfully.   

The number of the proofs that were examined to create the model of the structure of the 
opening stage was limited.  There is still room for adjusting, modifying, correcting, refining and 
improving the model, especially the roles and features of variables and ignition phrases, the types 
of proofs, and the algorithm for dealing with the opening stage.  More proofs from various 
mathematical subjects must be examined to improve the model.   
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Analysis of Students’ Difficulties with Proof Construction 
 

Tetsuya Yamamoto 
University of Oklahoma 

 
Proof is a central and essential skill in mathematics.  However, it is a challenging task for 
students at all levels.   This paper presents the findings from the analysis of students’ difficulties 
with proof construction, clarifies possible sources of their difficulties in light of the structure of 
proof construction, and offers an algorithm for proof construction as metacognitive knowledge 
for helping students with proof construction based on logical deduction.   

 
Keywords: Structure of Proof Construction, Algorithm for Proof Construction  
 

Introduction 
Proof is an essential skill in mathematics and a central component in mathematics 

education: (Cirillo & Herbst, 2012; Kilpatrick, Swafford & Findell, 2001).  However, studies 
have shown students encounter various difficulties with proofs at all levels (CadwalladerOlsker 
& Miller, 2013; Paola & Inglis, 2011).  Proof is challenging not only for students to learn but 
also for instructors to teach (Hanna & Villers, 2007; Mariotti, 2006).  There is still need for 
development of an effective teaching method to help students with proof construction (Harel & 
Sowder, 2007; Ball, Hoyles, Jahnke, & Movshoitz-Hadar, 2002).  This paper presents part of the 
findings from my thesis, in which I examined students’ cognitive difficulties in light of the 
structure of proof construction.  This paper introduces the model of the structure of proof 
construction, clarifies students’ difficulties with proof construction, and provides a practical 
method to help them overcome their difficulties.    

 
Literature Review 

Students’ difficulties with proof construction have been well-documented.  Many 
researchers spotlighted a particular aspect of proof construction: mathematical language (Dreyfus, 
1999; Thurston, 1994) students’ understanding and usage of definitions (Paramerswaran, 2010; 
Edwards & Ward, 2008; Knapp, 2006); logic (Stylianides & Stylianides, 2007; Savic, 2011); 
informal representations (Alcock, 2004; Lew, Mejia-Ramos, & Weber, 2013); and proving 
strategies (Weber, 2001).  Several researchers provided a comprehensive error list and clarified 
various types of students’ difficulties (Selden & Selden, 2003; Moore, 1994).  
CadwalladerOlsker, Miller, and Hartmann (2013) noted students’ incomplete understanding of 
the components of a proof as a source of students’ difficulties with proof construction.  Kieran 
(1998) stressed the significance of establishing a model for describing observed phenomena in 
both theoretical and empirical research.  However, there seems to be little research that examined 
students’ difficulties based on a framework established by modeling the structure of proof 
construction.   

Logical deduction is a key aspect of analytical proof scheme.  Several researchers 
examined students’ proof schemes to show their difficulties with practicing analytical proof 
scheme, while indicating the necessity of fostering students’ skills for logical deduction 
(Stylianou, Chae, & Blanton, 2006; Harel and Sowder, 1998).   Ayalon and Even (2008) claimed 
views and approaches to deductive reasoning should receive more attention.  Papaleontiou-Louca 
(2003) stressed the importance of providing metacognitive knowledge (knowledge of one’s 
processes and cognitive states) by modeling task completion for students’ effective learning.  
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However, there seems to be little research that explored specific and practical instructional 
method to help students with logical deduction.   

This paper attempts to fill the above gaps by the following ways: (1) offering a model of 
the structure of proof construction, (2) revealing what cognitive difficulties students had and 
what were possible sources of their difficulties; and (3) providing metacognitive knowledge for 
helping students with proof construction based on logical deduction. 

 
Theoretical Perspectives 

This study started with the creation of a model of the structure of proof construction.  The 
model was built to (1) clarify the aspects, factors, patterns, and features involved in cognitive 
processes in proof construction, and (2) build a framework for analyzing students’ proofs in a 
clear and organized manner.  In creating the model, I used a self-analysis method as a variation 
of the think-aloud method while solving proof problems.  Think-aloud is a valid and effective 
research method to understand an individual’s thought process (Van Someren, Barnard, & 
Sandberg, 1994).  I observed, described, abstracted, and organized my thought processes while 
proving more than 42 theorems and propositions.   I investigated the operations used to generate 
one statement from the previous statement and categorized all the observed operations (Table 1).  
For inter-rater reliability, I had 6 mathematics professors review the model.  Using my proofs 
and their proofs, I had them confirm that the model was applicable to those proofs.       

The operations for the reasoning activity in the model were classified into the following 
four types: (a) rephrasing an object (through applying definitions and properties; interpretation; 
or algebraic manipulation); (b) combining objects; (c) creating a cue (setting a variable; applying 
prior knowledge; setting some cases; making a claim or an object; and considering an object) ; 
and (d) checking and exploring.  Newell and Simon (1972) included the following four 
categories in their theoretical framework for problem solving: (i) representation, interpretation, 
and manipulation of symbolic structures; (ii) search through a set of available information; (iii) 
selective search through heuristics; (iv) reduction of the differences between current and desired 
states.  The model seems to cover the categories that Newell and Simon (1972) set in their 
theoretical framework for problem solving: (a) plays a role of (i), (b) and (c) play a role of (ii), 
(d) plays a role of (iii), and a combination of (a), (b), and (c) realizes (iv).   

The following tables show the structure of the reasoning activity (Table 1) and the 
aspects and factors of proof construction (Table 2).  Table 2 serves not only as a framework for 
analyzing students’ proofs but also as a list of the skills and abilities necessary for proof 
construction.  

 
Table 1:  Components of the Structure of Proof Construction  

 
Reasoning Activity  (O: Opening Stage, B: Body Construction Stage) 
O            OPS Decide a major proving strategy (a direct proof, an indirect proof, etc). 

OTC Set a goal: translate the conclusion of the given statement into mathematical language.  
ODT Prepare a starting variable: Decide the type of the proof by noting an ignition phrase. 

B R R1 Rephrase an object by applying a definition, a property, or a theorem. 
R2 Rephrasing an object through interpretation. 
R3 Rephrasing an object through algebraic manipulation. 

 CO CO(A,B)R Combine objects to create a new object. 
C C1 Set a variable. 

C2 Recall concepts, properties, theorems, propositions, problem-solving techniques. 
C3 Set some cases. 
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C4 Make a claim or create a new object. 
C5 Consider an object. 

CE Ch Review, test, evaluate, adjust, modify, or correct what has been done. 
Ex Search a clue, explore a solution by making a graph, a diagram, and an example, by 

intuiting, or by doing trial and error. 
Background Knowledge 

KDF Know definitions and properties of concepts. 
KTH Know theorems, propositions, and lemmas. 
KNT Know notations. 
KTE Know proving techniques or problem solving techniques. 

Mental Attitudes 
MT Have tenacity and persistence; not give up proving or solving problems easily. 
MF Have flexibility to give up an idea that does not work and to try a new or different method.  
MC Have carefulness, precision, or alertness. 

Affect and Beliefs 
AF Have self- confidence, have a mentality to not let negative emotions affect proving or 

solving performances. 
BL Have a right belief on proofs, logic, and mathematics. 

 
Table 2: Structure of the Reasoning Activity  

 
Reasoning 
Activity 
in Proof 

Construction 

  ACTIONS MAIN SUPPORTING 

Roles of the Actions Transforming objects Igniting a process Supporting  
the main actions 

 
                 

STAGES 

  
          Operations 
  
Steps 

R 
Rephrasing 

Objects 

CO 
Combining 

Objects 

C 
Creating a Cue 

Ch 
Checking 
(review, 
evaluate,  
test, 
modify, 
correct) 

Ex 
Exploring 
(search, do 
trial and error  
illustrate, 
experi- 
ment, 
intuit) 

R 
1 

R 
2 

R 
3 

CO(A,B)R C 
1 

C 
2 

C 
3 

C
4 

C
5 

 
 
 
 
 

Opening 
Stage 

Z: Choose a major proving 
strategy. 

Decide which strategy to use (a direct proof, a proof by 
contradiction, a proof by contrapositive, a proof by finding a 
counter example, or a proof by mathematical induction. If 
necessary, rephrase the problem according to the chosen 
method.   

  

X:  Make sure of the goal. Given.  (Find the conclusion of the given statement.)   
Y: Make the goal clearer 
with mathematical 
language. 

R1, R2, R3 (Translate the conclusion into mathematical 
language.) 

  

P:  Make sure of the   
hypotheses. 

Given  (Find all the hypotheses of the given statement and 
translate them into mathematical language if necessary.) 

  

S: Prepare a starting 
variable. 

   

 
 

Body 
Construction 

Stage 

Step 1: State the 
hypothesis. 

Given. 
 

  

Step 2: Set a starting 
variable. 

 
 

 C1   

…      
…      
Conclusion  

 
    

                                        
      Footnotes 

Actions 
Main Actions The operations applied to a step to generate the next step, whose outcome  must be explicitly expressed to convince 

others 
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Supporting Actions The operations to produce side work, whose outcome does not necessarily have to appear in the proof to convince 
others 

   
Rephrasing an object 

R1 Rephrase an object by translating a concept, a theorem, or a property of concept into mathematical language mainly through 
applying its definition. 

R2 Rephrase an object through formal or informal interpretation. 

R3 Rephrase an object through algebraic manipulation or calculation, including solving an equation. 

 
Combining objects 

CO(S, T)R Connect and combine different pieces of objects (S and T) to create a new object. This action is always followedd by an 
operation of rephrasing. 

 
Creating a cue 

C1 Set a variable. 

C2 Recall prior knowledge, including a theorem, a proposition, a property of concept, or a mathematical law. 

C3 Set some cases. 

C4 Make a claim or create a new object. 

C5 Consider an object. 

 
Method 

This study took place in a large research university in the Midwest.  The target population 
was students who were enrolled in undergraduate Algebra, Analysis, and Topology.  There were 
two types of data sources: (1) students’ in-class midterm and final exams, and (2) in-class 
problem solving sessions.  The former was conducted by the students’ instructors.  The latter was 
conducted by the researcher.  In total, 12 problems were collected.  Five of them came from in-
class problem solving sessions for Algebra I and II.  Those 5 problems provided 39 students’ 
proofs.  The other 7 problems came from students’ mid-term and final exams for Analysis I and 
Topology.  Those 7 problems provided 42 students’ proofs.  In total, 81 students’ proofs were 
reviewed.  The problems used in in-class problem solving sessions were created by the 
researcher but chosen by the instructors of the courses.  A model proof was created for each 
problem in the form of a table (Tables 5, 6, and 7).  The table included the type of operation used  
to generate one statement for each step of the proof.  This type of table helped to detect where 
students had difficulties and what operation students failed to use.  Every mistake, impasse, or 
difficulty that a student made was examined to explore the sources of their difficulties.  Table 2 
was used to identify possible sources of each mistake or difficulty a student made. 

 
Results 

The analysis revealed that students had difficulties with setting variables, applying 
definitions and properties of concepts, interpreting an object,  practicing algebraic manipulation, 
using a given information, recalling relevant facts, considering cases, creating a useful object, 
and considering an object.  The analysis also indicated how greatly their difficulties were 
affected by their lack of knowledge of definitions, properties, notations, relevant facts and 
theorems, proving problem techniques, and their lack of persistence, flexibility, carefulness, 
alertness, and precision.  The following are some examples.   

 
Example 1 (Natalie) and Example 2 (Ed) (Topology) 
Table 5: Analysis of Natalie’s and Ed’s proofs 
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              Figure 1: Natalie’s proof                                Figure 2: Ed’s proof 
 
Natalie’s proof was not successful mainly because she did not know how to start a 

proving argument.  The following can be possible causes of her difficulties.  (1) OTC: She failed 
to translate the conclusion “ ZYf o: is continuous” into mathematical language, that is, “for 
an open set W in Z , ))(( 1 Wf � is open in Y.” (2) KDF: Her knowledge of “continuity” is not 
strong enough to express the concept in mathematical language.  The knowledge that a starting 
variable “an open setW ” can be derived from the ignition phrase “for any open set W in Z ” 
could have helped her start a proof successfully. 

Ed failed in Step 3 (Table 5).  The following can be possible causes of his difficulties.  
(1) C2: He was unable to recall the property of a quotient map “that if )(1 Vq� is open in X, then 
V is open in Y.” and (2) KPR: He might not have known the property of a quotient map.   

 
Example 3 (Eric) and Example 4 (Olivia)  

Table 6: Analysis of Eric’s and Olivia’s proofs 
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                 Figure 3: Eric’s proof                                     Figure 4: Olivia’s proof 
 
Eric’s proof had mainly two defects.  First, Eric had )()( ba \\  though he was 

supposed to have ])([])([ ba \\  . The following can be possible causes.  (1) MC: He might not 
have been careful to realize that )()( ba \\  had a domain error.  (2) KNT: He might have 
lacked the knowledge of a coset, including the meaning and notation.  Second, he did not reach 
Step 2 (Table 6).  The following can be possible causes.   (1) MF: He might have lacked 
flexibility to consider )()( ba \\   though he had )(])([ aa I\  and )(])([ bb I\  .   (2) CO: 
Apart from his notation problem, he failed to note the given hypothesis SKerR o:)(/( I\  
“ )(][: rr Io ” so that he could have rephrased ])([])([ ba \\  with )()( ba II  .   

Olivia reached Step 2 (See Table 6), but was unable to show clearly how she can derive 
[r] = [s] from Step 2.  The following can be possible causes.  (1) MF: She might have lacked 
flexibility to change the expression of )()( sr II  into )()(0 srS II � .  (2) R3: She failed to 
rephrase )()( sr II  with )()(0 srS II � through algebraic manipulation. 

 
Example 5 (Olivia)  
Table 7: Analysis on Olivia’s Proof 

 

 
Figure 5: Olivia’s proof 
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Olivia’s proof was not successful because she was unable to show that 
])([])([])][([ bbba \\\  by way of )()()( baab III  .  The following can be possible causes.  

(1) MC: She might not have been careful enough to realize she was unable to move from Step 3 
to Step 7 and from Step 9 to Step 13 respectively.  (2) MC: She was not careful enough to think 
about using the given hypothesis “ )(][:)(/: rrSKerR II\ oo .”  (3) CO: She missed using 
the hypothesis “ )(][:)(/: rrSKerR II\ oo to obtain Step 4 and Step 10.  

 
Discussion 

 The model of the structure of proof construction led to defining students’ difficulties to 
be those they had with the reasoning activity.  Namely, in the model, students’ difficulties with 
advancing a reasoning process were those with rephrasing an object, combining objects, creating 
a cue, and checking and exploring.  There were two major factors that caused students’ 
difficulties in the reasoning activity: (1) their lack of knowledge and (2) their lack of persistence, 
flexibility, and precision.  For example, students’ lack of knowledge may hinder them from 
rephrasing an object (Example 1) and creating a cue (Example 2), and may affect their use of 
notation (Example 3).  Students’ lack of flexibility and carefulness may hinder them from 
rephrasing an object (Example 4) and combining objects (Example 5).  The results support that 
the aspects of proof construction  (background knowledge, reasoning activity, mental attitudes) 
are intertwined to affect students’ performances of proof construction. 

  The analysis of students’ proofs led to the hypotheses: (1) the model of the structure of 
proof construction may help students grasp a comprehensive view of proof construction; (2) the 
knowledge of the structure of proof construction itself can help them advance a reasoning 
process.  For example, the model suggests that in starting a proving argument, students should 
note the conclusion of the given statement, translate it into mathematical language, find an 
ignition phrase, and derive and set a starting variable from the ignition phrase.  This knowledge 
might have helped Natalie (Example 1) start a proof.  The model also suggests students should 
first try rephrasing an object, then, combining objects, and lastly creating a cue when they have 
impasses.  This methodological knowledge could have helped, for example, Eric (Example 3) to 
rephrase ])([])([ sr \\  with )()( sr II  , which could have further led him to obtain

)()()(0 srsrS � � III .   
 

Pedagogical Suggestions 
This section provides an algorithm for proof construction as an instructional method 

which is derived from the analysis of students’ proofs and the model of the structure of proof 
construction.  First, I introduce some special terms used in the model of the structure of proof 
construction: mathematical language, variables, and ignition phrases. Then, I introduce the 
structure of proof construction in the model I have established: types of operations; types of 
proofs; stages of proof construction; and algorithm for proof construction.   

Mathematical language.  A distinction was made between mathematical language and 
mathematical language.  Mathematical language is the mathematical language that is fine-
grained enough to enable students to advance a reasoning process, to make a clear distinction 
from everyday language, and convince others without leaving any ambiguity.  For example, “A 
group G is abelian” is mathematical language.  The mathematical language for this statement is 
“for any two elements Gba �, , baab  .  The definitions of concepts are the most representative 
examples of mathematical language.  Translation of an object into mathematical language is 
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effective not only in proof construction but in any mathematical problem-solving.  For example, 
if a Calculus student is given a statement “vectors u and v are parallel,” which is mathematical 
language, they may need to translate it into mathematical language in order to solve a given 
problem, which is “ 0 uvu .”   

Variables.  Variables are fundamental elements of mathematical language.  It is crucial 
for students to be able to deal with variables correctly in advancing a reasoning process.  There 
are two types of variables: a given variable and a hidden variable.  The former is the one that 
appears in the problem while the latter does not.  The latter sometimes needs to be derived and 
used for advancing a reasoning process.   I call that type of variable “a hidden variable” to make 
a distinction from a hidden variable that students do not need to derive and set to advance a 
reasoning process.  A hidden variable can be further classified into four types: controlling 
variables, trivial variables, conditioned variables, and non-conditioned variables.  Both 
controlling and trivial variables are derived from the phrases such as “for every …,” “for all …,” 
or “If …, which I call primary ignition phrases.  A controlling variable can have the power to 
confine, decide, and change another variable, while a trivial variable does not.  The word “trivial” 
does not mean “not important.”  It happens that students can advance a reasoning process by 
considering a trivial variable.  Both conditioned and non-conditioned variables are derived from 
the phrases such as “for some …” or “there exists …,” which I call second primary ignition 
phrases.   A conditioned variable is defined by a controlling variable while a non-conditioned 
variable is not.  For example, in the definition of a sequence }{ na being convergent to }{ 0a , 
which is “For every 0!H , there exists an ��ZN such that if Nn t , then H�� 0aan .”  the 
variable “H ,”is a controlling variable since it was derived from “For every 0!H ” and decides 
“ N ” when it is set.  The variable “ N ” is a conditioned variable since it is derived from “there 
exists an ��ZN ” and is defined by the controlling variable “H .”  In the definition of }{ na being 
bounded, which is “For every ��Zn , Man d  for some RM� .”  The variable “ ��Zn ” is a 
trivial variable because it is derived from “For every ��Zn ” and does not confine another 
variable.  The variable “ RM� ” is a non-conditioned variable because it is derived from  “for 
some RM� ” and it is not decided by any controlling variable.   

Starting variables.  I call the first hidden variable that students derive and set at the 
beginning of proof “a starting variable.”  It is crucial for students to set a correct starting variable 
to develop a poof.  If a primary ignition phrase in the mathematical language for the conclusion 
provides a controlling variable, the variable should be a starting variable.  If a primary ignition 
phrase provides a trivial variable, the variable may not be a starting variable.  If the 
mathematical language for a conclusion does not contain a controlling variable, a starting 
variable should be found in the mathematical language for a hypothesis.  A controlling variable 
in the mathematical language for a hypothesis can be a starting variable.  After deriving a 
controlling variable, a second primary ignition phrase can be an ignition phrase.  Namely, a 
conditioned variable may need to be set.  A second primary ignition phrase in the mathematical 
language cannot be an ignition phrase.  In other words, a conditioned variable in the 
mathematical language for a conclusion cannot be a starting variable.  I call the ignition phrases 
from which students derive and set a starting variable “an ignition phrase” to make a distinction 
from the one from which students do not need to derive and set to advance a reasoning process.      

Types of proofs.   Proofs can be classified according to ways to derive and set a starting 
variable.  There are three types.  In the first type (Type I), students derive and set a starting 
variable from the conclusion of the given statement.  This type of proof contains an ignition 
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phrase in the mathematical language for the conclusion.  Type I has two sub-types.  While Type 
I (a) does not ask students to show A = B, Type I (b) asks to prove A = B.  In the second type of 
proof (Type II), students derive and set a starting variable from a hypothesis of the given 
statement.  The proof in this type does not contain an ignition phrase in the mathematical 
language for the conclusion.  A proof by contradiction belongs to this type.  The proof that asks 
to construct an object may belong to this type.  The proofs in Types I and II can have more than 
one starting variable.  For the third type of proof (Type III), students do not have to derive a 
starting variable because it is already given in the problem.  The proofs that ask to prove BA  
belong to this type.  Proofs by mathematical induction and proofs of trigonometric identities are 
such examples.   

Stages of proof construction.  There are two stages in proof construction: opening stage 
and body construction stage.  The opening stage is a stage, at which students (i) set a major 
proving strategy (a direct proof, a proof by contradiction, a proof by contrapositive, 
mathematical induction, a proof by a counter example); (ii) make the goal of the proof clear; (iii) 
prepare for setting a starting variable, and (iv) decide the type of the proof.  Students can make 
the goal of the proof clearer, prepare for setting a starting variable, and decide the type of a proof 
by translating the conclusion into mathematical language and examining an ignition phrase. The 
body construction stage is the main part of a proof, in which students advance a reasoning 
process by making good use of the four types of operations (Table 1).  

 
Algorithm for Proof Construction 
A: Opening Stage 
A0: Read the problem 

x If necessary, translate the whole problem into mathematical language. (A0.1) 
A1: Decide a major strategy. 

x Decide which proving strategy to use, a direct proof, by contrapositive, by contradiction, 
by counter example, or by mathematical induction.  (A1.1) 

x For a proof by contrapositive or contradiction, rephrase the problem.  (A1.2) 
x For Type III, skip to B0. (A1.3)  

A2: Note the conclusion. 
x Do not be tempted to note a hypothesis. (A2.1) 

A3: Translate the conclusion into mathematical language. 
x Rephrase the whole conclusion through R1 (See Table 1). (A3.1) 
x Rephrase the conclusion more than once, if necessary. (A3.2) 

A4: Find an ignition phrase in the mathematical language for the conclusion. 
A5: Decide the type of the proof. 

x If A4 is a primary ignition phrase, the proof belongs to Type I. (A5.1) 
x If there is no ignition phrase, the proof belongs to Type II or Type III. (A5.2)   
x If there is no ignition phrase and the problem asks to prove A = B, it belongs to Type III. 

(A5.3) 
A6: Find a starting variable. 

x For Type I, derive a starting variable from the ignition phrase. (A6.1) 
x For Type II, note a hypothesis, translate it into mathematical language, and find an 

ignition phrase. (A6.2) 
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x For Type III, start the body construction stage by trying one of the followings: Work on 
either A or B to change it into B or A, work on both to obtain A = C = B, or show BA�
and AB� .  This can work for the proofs in Type I (b).  (A6.3) 
 

TA: Supporting tips for the opening stage 
TA1 (Type I): A starting variable should be first found in a primary ignition phrase in the 
mathematical language for the conclusion.  However, if a variable in the primary ignition phrase 
is a trivial variable, it may not be a starting variable.  A variable from a second primary ignition 
phrase in the mathematical language for the conclusion cannot be a starting variable.  If there is 
not ignition phrase in the conclusion, derive a starting variable from a hypothesis. 
TA2: (Type II) A starting variable can be derived from both a primary and a second primary 
ignition phrases in the mathematical language for a hypothesis.   
TA3: (Type I.b and Type III) Try one of the following methods. (i) Work on either A or B until 
you change it into B or A, (ii) Work on both A and B until you get A = C = B, or (iii) Show both 
A ⊂ B and B ⊂ A.  For A ≅ B, (iv) find an isomorphism between A and B.   
 
B: Body construction stage 
B0: State the hypothesis (hypotheses). 
B1: Set a starting variable.  

x For Type I, set a starting variable from the ignition phrase obtained in A4.1.  
 (B1.1) 

x For Type II, translate the hypothesis into mathematical language.  (B1.2) 
x For Type III, skip this step and start to work on part of the conclusion.  (B1.3) 

B2: Make sure of the new goal of the proof. 
B3: Try rephrasing an object, recalling the three sub-types (See Table 3). 

x Whenever seeing a sentence containing a mathematical concept, translate it into  
mathematical language, and make it as fine-grained as possible. (B3.1) 

B4: If it does not work, try combining objects. 
x Find a hypothesis and use it (B4.1). 
x If there is more than one hypothesis, choose the one that has a connection with the 

 object you would like to combine with.  (B4.2) 
x When the mathematical language for a hypothesis contains a controlling variable, 

 use this operation (combining objects) to specify the controlling variable. 
B5: If it does not work, try creating a cue, recalling the five sub-types (See Table 1). 
B6: If it does not work, try exploring and checking. 

 
Examples    

The following are the examples showing how the above algorithm works.  To make the 
algorithm more understandable, I explain in the form of a dialogue between an instructor and 
students.  In the dialogue, I assume that the students are fully equipped with not only the 
knowledge of the algorithm but also the knowledge necessary for solving a given problem.  

   
Example 1 (Type I).   “Suppose that q: X → Y is a quotient map and that f : Y → Z is a 

map such that f$q: X→Z is continuous.  Prove f : Y → Z is continuous.  Let’s start the opening 
stage.  What proving strategy would you use? (A1)”  “A direct proof.”  “What is the next step?”  
“Note the conclusion. (A2).”  “What is the conclusion?”  “ ZYf o: is continuous.”  “Next?”  
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“Translate it into mathematical language (A3).”  “What is the mathematical language?”  “For 
any open set W in Z , ))(( 1 Wf � is open in Y.”  “Then?”  “Find an ignition phrase. (A4)”  “What 
is the ignition phrase? (A3)”  “‘For any open set W in Z .’”  “What is the starting variable? (A4)”  
“An open set W in Z .”  “Let’s start the body construction stage.  After writing the hypothesis, 
what would you do?”  “Set a starting variable (B1).”  “So?”  “Start with ‘Let W be an open set in
Z ’”  “Then?”  “Make sure of the new goal.”  “What is that?”  “To show ))(( 1 Wf � is open in Y.” 
“Next?”  “Start to apply the four types of operations while keeping the supporting Tips (T1 – T2) 
in mind.”  “We have gotten the object (1) an open set W in Z .  What would you do?”  “Apply 
rephrasing an object to the objet (1) an open set W in Z. (B3)”  “ Does that work?”  “No.”  “Then, 
what would you do?”  “Try the second operation ‘combining objects.’”  “How would you do 
that?”  “Find a hypothesis and use it. (B4.1)”  “What is the hypothesis?”  “There are two.  (i) 

YXq o: is a quotient map and (ii) ZXqf o:$ is continuous.”  “Which hypothesis should 
we use?”  “Choose the one which has a connection with the object (1) ‘the open set W in Z.’ 
(B4.2)”  Which hypothesis has a connection with the object (1) an open set W in Z?”  “The 
second hypothesis (ii) ZXqf o:$ is continuous.”  “Why?”  “Because both involve the space 
Z.”  “Now are we ready to combine (1) ‘W is open in Z’ and (ii) ‘ ZXqf o:$ is continuous’?”  
“No.”  “Why not?”  “Because the object (ii) ‘ ZXqf o:$ is continuous’ contains a 
mathematical concept ‘continuous.’”  “So?”  “By T1, translate the object (ii) into mathematical 
language.”  “What is the mathematical language?”  “ (2) For any open set V in Z , )()( 1 Vqf �$  
is open in X.”  “What do you observe in the object?”  “The object (2) comes from the hypothesis 
of the given statement and the mathematical language for the statement contains a primary 
ignition phrase ‘for any open set in Z.’ So, By T2, we may want to specify the open set V in Z 
later.”  “Now, are we ready to combine the objects (1) W is open in Z and (2) for any open set V
in Z , )()( 1 Vqf �$  is open in X?”  “Yes, we can confine V by replacing V with W to obtain (3) 

)()( 1 Wqf �$  is open in X.”  “Then, what should we do?”  “Try rephrasing an object on the 
object (3) )()( 1 Wqf �$  is open in X (B3).”  “Does that work?” “Yes, the object (3) 
‘ )()( 1 Wqf �$  is open in X’ can be rephrased with the object (4) ‘ ))(( 11 Wfq ��  is open in X.’”  
“Can we further rephrase it?”  “No”  “Then?”  “Try combining objects. (B4)”  “How?”  “Find a 
hypothesis and use it (B4.1).”  “Do we have one?”  “Yes, we have not used the first hypothesis 
(i) ‘ YXq o: is a quotient map’ yet.”  “Can we combine the objects (4) ‘ ))(( 11 Wfq ��  is open 
in X’ and the hypothesis (i) ‘ YXq o: is a quotient map’?”  “No.”  “Why not?”  “Because (i) 
‘ YXq o: is a quotient map’ contains a mathematical concept ‘a quotient map.’  “So?”  
“Translate the hypothesis (i) into mathematical language. (T1)”  “What is the mathematical 
language?”  “ (5) ‘For any set H in Y that satisfies )(1 Hq� is open in Z for a quotient map

ZYq o: , H is open in Y.’”  “Now, are we ready to combine the objects (4) ‘ ))(( 11 Wfq ��  is 
open in X’ and (5) ‘For any set H in Y that satisfies )(1 Hq� is open in Z for a quotient map

ZYq o: , H is open in Y’”  “Yes, since )(1 Wf � is a set in Y, we can specify the H by replacing 
H with W to obtain (6) ‘ )(1 Wf � is open in Y.’”   
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Example 2 (Type II).   “Suppose Za� .  Prove 4 does not divide 32 �a .”  “What 
proving strategy would you use? (A1)”  “A proof by contradiction.”   “Then, what would you 
do?”  “Rephrase the problem. (A1.2)”  “What is the new statement?”  “Suppose that 4  divides 

32 �a  for every Za� ”    “What is next?”  “Make sure of an ignition phrase in the new 
statement and start the body construction stage by directly working on the new statement to lead 
it to a contradiction. (A1.2)”  “What is an ignition phrase?” “For every Za� , which is a 
controlling variable.”   “What does that imply?”  “Since Za� is a controlling variable derived 
from the mathematical language for a hypothesis, it may happen that we may want to confine the 
variable to a certain object (T2).”  “Now, what would you do?”  “Since it contains a 
mathematical concept ‘divide,’ translate it into mathematical language (T1).”  “What is the 
mathematical language?”  “(1) There exists Zn� such that 34 2 � an .”  “Next?”  “First, try B3 
(rephrasing an object).”  “Can you do that?”  “Yes, rephrase the object (1) with, for example, (2)

na 43 2 � , but I am not sure if that will work.”  “OK, then let’s keep it to see what will happen.  
Then, what would you do?”  “Since B3 (rephrasing an object) does not work anymore, try B4 
(combining objects).”  “Does that work?”  “No, there is nothing to combine with (2) na 43 2 � .”  
“Then, what would you do?”  “Try B5 (creating a cue).”    “There are five sub-types for creating 
a cue (See Table 2).  Which would you try?”  “C3 (set some cases).” “How would you use that?”  
“Set two cases, in which (i) Za� is even and (ii) Za� is odd.  As expected, confine Za� to a 
certain object (T2).”  “Next?”  “Consider the case (i).  Suppose (3) Za� is even.”  “Then?”  
“Since the statement contains a mathematical concept ‘even,’ translate it into mathematical 
language (T1).”  “How?”  “(4) Let ma 2  for some Zm� .”   “Then?”  “First, try B3 
(rephrasing an object).”  “Does that work?”  “Not anymore.”  “So?”  “Try B4 (combining 
objects).”  “How would you do that?”  “Combine the objects (2) na 43 2 �  and (4) ma 2  to 
obtain )(44)2(3 22 nmnm � � , where Znm ��2 .”  “Then?”  “Since 4 does not divide 3, 
which is a contradiction.”  “Next?”  “Work on the case (2) in a similar way.  By letting (5)

ma 2 +1, combining the objects  (2) na 43 2 �  and (5) ma 2 +1, obtain 
)(44)12(3 22 nmmnm �� �� , where Znmm ���2  (R1). It is a contradiction because 4 

does not divide 3.   
 
Example 3 (Type III).  “Suppose Rbaf o),(: has a global maximum at some ),( bac�

and is differentiable at ),( bac� .  Prove that 0)('  cf .  What proving strategy would you use? 
(A1)”  “A direct proof.”  “Then?”  “Note the conclusion. (A2).”  “What is the conclusion?”  
“ 0)('  cf .”  “Next?”  “Translate it into mathematical language (A3).”  “What is the 

mathematical language?”  “ 0)()(lim  
�
�

o cx
cfxf

cx
.”  “What do you observe in the object?”  “This 

proof belongs to Type III.”  “Then, what would you do?”  “Work on the left hand side of the 

equation 
cx

cfxf
cx �

�
o

)()(lim until we can change it into the right hand side, which is 0.”  “So?”  “(1) 

Consider 
cx

cfxf
cx �

�
o

)()(lim .”  “Then?”  “Apply rephrasing an object to the object (1) 

cx
cfxf

cx �
�

o

)()(lim . (B3)”  “Can you do that?”  “Yes, considering 
cx

cfxf
cx �

�
o

)()(lim means 
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considering both (2)
cx

cfxf
cx �

�
�o

)()(lim and  (3) 
cx

cfxf
cx �

�
�o

)()(lim . So, work on each separately.”  

“Next?”  “Apply rephrasing an object to the object (2) 
cx

cfxf
cx �

�
�o

)()(lim . (B3)”  “Does it work?”  

“No.”  “Then?” “Try combining objects. (B4)”  “How?”  “Find a hypothesis and use it. (B4.1)”  
“What hypothesis is available?”  “(4) Rbaf o),(: has a global maximum at some ),( bac� .”  
“How would you combine the objects (2) and (4)?”  “We are not ready to combine them.”  “Why 
not?”  “Because the object (4) Rbaf o),(: has a global maximum at some ),( bac�  contains a 
mathematical concept ‘a global maximum.’”  “So?”  “Translate it into mathematical language. 
(T1)” “What is the mathematical language?”  “(5) For all ),( bax� , )()( cfxf d .”  “Now, can 

we combine the objects (2) 
cx

cfxf
cx �

�
�o

)()(lim and “(5) For all ),( bax� , )()( cfxf d ?”  “ Yes.  

Since )()( cfxf d , 0)()( d� cfxf .  Also, since �o cx , 0�� cx . So, we can obtain the object 

(6) 0)()(lim t
�
�

�o cx
cfxf

cx
.”  “Then?”  “Work on the object (3)

cx
cfxf

cx �
�

�o

)()(lim in a similar way to 

obtain (7) 0)()(lim d
�
�

�o cx
cfxf

cx
.”  “Then?”  “Since we cannot rephrase each object anymore, we 

try combining objects. (B4).”  “How?”  “Find a hypothesis and use it. (B4.1.)”  “Do we have 
one?”  “Yes, we have (8) Rbaf o),(:  is differentiable at ),( bac� .”  “How would you 
combine them?”  “The object (8) Rbaf o),(:  is differentiable at ),( bac� ” contains a 
mathematical concept, translate it into mathematical language (T1).”   “What is the 

mathematical language?”  “(9)
cx

cfxf
cx

cfxf
cxcx �

�
 

�
�

�� oo

)()(lim)()(lim .”  “Are we ready to combine 

the objects (6) 0)()(lim t
�
�

�o cx
cfxf

cx
, (7) 0)()(lim d

�
�

�o cx
cfxf

cx
, and (9)  

�
�

�o cx
cfxf

cx

)()(lim

cx
cfxf

cx �
�

�o

)()(lim ?”  “Yes.”  “How?”  “ 0)()(lim)()(lim0 d
�
�

 
�
�

d
�� oo cx

cfxf
cx

cfxf
cxcx

.”  “Then, what 

would you do?”  “Try rephrasing an object. (B3)” “Does it work?”  “Yes. 

cx
cfxf

cx
cfxf

cxcx �
�

  
�
�

�� oo

)()(lim0)()(lim .”  “So?”  “ 0)()(lim  
�
�

o cx
cfxf

cx
, which means 0)('  cf .”    

 
Conclusion 

The model of the structure of proof construction can help students grasp a view of proof 
construction.  It informs of not only the aspects of proof construction but the skills and abilities 
that are necessary for proof construction.  Among the aspects of proof construction, the greatest 
factor that affects students’ performances is their background knowledge.  The analysis of 
students’ proofs found how severely students’ lack of knowledge affected their performances, in 
particular, their reasoning activities.  Students should be encouraged and helped to acquire 
strong knowledge around concepts including definitions, notations, properties, relevant facts, 
theorems, propositions, and problem solving techniques and strategies.  The analysis of their 
proofs also indicated that they needed metacognitive and methodological knowledge for 
advancing a reasoning process.  The model of the structure of proof construction provides the 
metacognitive knowledge for advancing a reasoning process.  The model provides not only the 
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types of operations but also the order of the operations to be tried.  The model also reveals the 
features of the structure of proof construction.  Mathematical language is a key factor for the 
construction of a proof based on logical deduction.  In particular, variables are principal elements 
of mathematical language.  The model clarifies the types of variables, the relationships between 
variables and ignition phrases, and the ways to deal with variables according to their positions in 
a statement.  Finally, the model offers algorithm for constructing a proof according to the types 
of proofs.  An investigation of the effectiveness of the knowledge for the structure of proof 
construction can be a possible future project.   

There is still room for improvement for the model of the structure of proof construction, 
in particular, the types of proofs, the types and roles of variables, and algorithm for proof 
construction.  In order to improve the model, more proofs from various subjects must be 
examined.  An exploration of stronger algorithm that can be applicable to various proofs can be 
another possible future project. 
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Teachers’ meanings for average rate of change in U.S.A. and Korea 

Hyunkyoung Yoon Cameron Byerley Patrick W. Thompson 
Arizona State University Arizona State University Arizona State University 

This study explores teachers’ meanings for average rate of change in U.S.A. and Korea. We 
believe that teachers convey their meanings to students and teachers who have productive 
mathematical meanings help students build coherent meanings. We administered a diagnostic 
instrument to 96 U.S. teachers and 66 Korean teachers. Some of teachers’ responses revealed 
particular problematic meanings for average rate of change that should be addressed in 
professional development. Our analyses suggest that Korean teachers’ meanings for average 
rate of change are substantially stronger than U.S. teachers’ meanings. 

Key words: Average rate of change, Mathematical meanings for teaching, Secondary teachers, 
International comparisons  

There has been substantial interest in comparing student and teacher performance in the 
United States to other countries (Cai, 1995; Ma, 1999; Tatto, Ingvarson et al., 2008). Many 
people are aware that U.S. students are outperformed on mathematics assessments by students in 
many Asian countries. It is more surprising that according to PISA (Program for International 
Student Assessment) and NAEP (National Assessment of Educational Progress) that white 
students in our best performing state, Massachusetts, did not do as well as the average student in 
Korea (Hanushek, Peterson, & Woessmann, 2010). Furthermore, the average Korean student 
from any background outperformed students in Massachusetts who had at least one college 
educated parent. It is not easy to explain Korean students’ superior performance by pointing to 
substantial diversity in the United States  

Studies have demonstrated that there is a positive relationship between teacher knowledge 
and student performance (Baumert, Kunter et al., 2010; Hill, Ball et al., 2007). The TEDS-M 
(Teacher Education and Development Study in Mathematics) study investigated differences in 
teachers’ mathematical content knowledge in seventeen countries to give further information 
about the relationship between teachers’ knowledge and student performance internationally 
(Tatto, Peck et al., 2012). Although Korean teachers were not included in the TEDS-M study, 
secondary teachers in the United States did have lower scores than secondary teachers in other 
high performing Asian countries such as Singapore. TIMSS (Trend in International Mathematics 
and Science Study) and PISA scores indicated that Korean students outperformed other countries 
in international assessments. However, there are few studies that reveal Korean teachers’ 
knowledge (Kim, 2007).  

Our research team developed the Mathematical Meanings for Teaching Secondary 
Mathematics (MMTsm), a 44 item diagnostic instrument designed primarily to give professional 
developers insight into mathematical meanings with which teachers operate. We have piloted the 
MMTsm with 460 high school mathematics teachers in the United States. The MMTsm contains 
items that assess teachers’ meanings for variation and covariation, function, proportionality, rate 
of change, and structure sense (Byerley & Thompson, 2014; Thompson, 2015; Yoon, Hatfield, & 
Thompson, 2014). In the summer of 2014 the first author translated the instrument into Korean 
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and administered 42 items1 to a convenience sample of 66 Korean teachers who taught 7th to 12th 
grades. The goal of the pilot in Korea was to understand how well the items revealed Korean 
teachers’ meanings, to unearth any issues in the item translations, and to generate hypothesis 
about similarities and differences between Korean and U.S. teachers. As such, we have three 
research questions: 

1) Do the translated versions of items make sense to Korean teachers in the way we 
intended? 

2) What are the Korean teachers’ mathematical meanings in the areas that the MMTsm 
asseses? 

3) What are similarities and differences in U.S. and Korean teachers’ meanings for average 
rate of change? 

Our study of 7th to 12th grade teachers in Korea and the United States contributes to the 
investigation of international differences in teacher knowledge in two ways:  

1) The MMTsm provides insight into the productive and unproductive meanings teachers 
operate with instead of categorizing responses as right or wrong. 

2) Beyond a few studies with small sample sizes, little is published about secondary teachers’ 
meanings of average rate of change in either the U.S. or Korea. 
 

Literature Review 
The third author (Thompson, 1994b) conducted a teaching experiment on the Fundamental 

Theorem of Calculus with 19 senior and graduate mathematics students, many of whom planned 
to teach secondary mathematics. He attended to the concept of average rate of change explicitly 
in his teaching experiment because of its centrality in understanding difference quotients and the 
Fundamental Theorem of Calculus. Thompson (1994b) described a typical mature meaning for 
average rate of change:  

[By “average rate of change”] we typically mean that if a quantity were to 
grow in measure at a constant rate of change with respect to a uniformly 
changing quantity, then we would end up with the same amount of change in the 
dependent quantity as actually occurred. An average speed of 55 km/hr on a 
trip means that if we were to repeat the trip traveling at a constant rate of 55 
km/hr, then we would travel precisely the same amount of distance in precisely 
the same amount of time as had been the case originally (p. 50).  

Based on quizzes and transcribed recordings of class discussions and tutoring sessions he 
concluded, the university mathematics students “apparently did not have operational schemes for 
average rate of change” (p. 49).  

Coe (2007) conducted an interview-based study of three secondary teachers’ meanings for 
rate of change. Peggy, an experienced teacher with an undergraduate degree in mathematics, was 
unable to provide a definition for average rate of change and became confused about how to 
account for varying speeds in the middle of a trip. The study found, “not one of the [three] 
teachers evidenced a fully coherent model of thinking that allowed them to work with the 
average rate tasks” (Coe, 2007, p. 237). If one thinks of speed as a multiplicative comparison of 
the changes in distance and time, it is possible to imagine an average speed as the constant speed 
that one must travel to go the same distance in the same amount of time. However, Peggy was 
                                                
1 We removed two items that did not work because of differences in language. 
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inclined to think that speed is an index of “fastness”, so all of the changes in speed throughout 
the trip might seem important to take into consideration.  

Additional U.S. studies of calculus students and secondary teachers are related to teachers’ 
understandings of rate of change (Bowers & Doerr, 2001; Stump, 1999; Weber & Dorko, 2014). 
These studies suggest that teachers’ meanings for rate of change might be inadequate for making 
sense of average rate of change. For example, Bowers and Doerr (2001) investigated 26 
secondary teachers’ thinking about the “mathematics of change” in two university technology 
based mathematics classes. They designed the first two instructional sequences to help the 
participants understand the Fundamental Theorem of Calculus by exploring relationships 
between linked velocity and position graphs (Bowers & Doerr, 2001, p. 120). Given a non-
constant velocity versus time graph, more than seven teachers found the total distance traveled 
by simply multiplying time elapsed by the velocity at the end of the time interval using the 
formula d=rt. The formula d=rt only works in situations with constant rates of change because 
the formula reflects a proportional relationship between distance traveled and time elapsed. 
Technically, this formula should be written “∆d=r∆t”, because “d=rt” is only true if distance and 
time are both measured from zero. This misapplication of d=rt suggests that teachers do not have 
an image of constant speed as a proportional relationship between changes in distance traveled 
and changes in elapsed time—an understanding of constant speed that is productive in 
developing a mature meaning of average rate of change.  

Weber & Dorko (2014) investigated calculus students’ and professors’ descriptions of rate of 
change in various calculus situations. The meanings students displayed did not depend on 
making multiplicative comparisons of the change in one quantity to the associated change in 
another. For example, students conveyed meanings such as “rate as the process of differentiating 
a function, defined algebraically, using rules (e.g. product rule)”, “rate as the slant or steepness 
of a graph” and “rate as something a function (or object) possesses (e.g. weight)” (p. 23). These 
meanings for rate do not involve relative size of changes and do not support a mature meaning of 
average rate of change. It is by thinking about the proportional relationship between changes in 
distance and changes in time that one sees why an understanding of “average rate of change” as 
arithmetic mean does not work. The mathematics professors in Weber & Dorko’s study were 
much more likely to describe rate as “measuring the simultaneous variation of variable, or how 
fast variables change with respect to each other” (p. 23). 

The first author did not find any studies about Korean teachers’ meanings for rate of change 
or average rate of change after searching in Korean and English. However, Cho (2010) found 
that 36 Korean high school mathematics teachers showed high Mathematical Knowledge for 
Teaching (MKT) for Differentiation. The Korean teachers demonstrated particularly high subject 
matter knowledge on Cho’s instrument that included a task on average rate of change. TEDS-M 
did not release any information on secondary teachers’ understandings of rate of change (Tatto & 
Senk, 2011). 
 

Theoretical Perspective 
Coherent mathematical meanings serve as a foundation for future learning, so it is important 

that students build useful and robust meanings. One way students develop meanings is by trying 
to make sense of what their teacher say and do in the classroom. Before discussing how 
meanings are conveyed in the classroom, we will explain what we mean by meanings. According 
to Piaget, to understand is to assimilate to a scheme (Skemp, 1962, 1971; Thompson, 2013; 
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Thompson & Saldanha, 2003). Thus, the phrase “a person attached a meaning to a word, symbol, 
expression, or statement” means that the person assimilated the word, symbol, expression, or 
statement to a scheme. A scheme is an organization of ways of thinking, images, and schemes. 
When we say assimilate we mean the ways in which an individual interprets and make sense of a 
text, utterance, or self-generated thought. According to Piaget, repeated assimilation is the source 
of schemes, and new schemes emerge through repeated assimilations, which early on require 
functional accommodations and eventually entail metamorphic accommodations (Steffe, 1991).  

We focus on teachers’ mathematical meanings because of their centrality in students’ 
construction of meaning. In classrooms, students might construct their meanings from their 
peers, from prior schemes, from resources the teacher selects for them or resources they find on 
their own. However, we suspect that a main source of students’ mathematical meanings lies in 
what teachers say and do. Students try to assimilate what the teacher says and does using their 
understandings of what is being taught. In doing so, the students will adjust what they say and do 
according to their understanding of what their teacher intends. In this sense, conversations in the 
classroom between a teacher and students entail mutual attempts by the teacher and students to 
understand each other. We suspect that teachers exert less effort in this regard than do students, 
and hence teachers have a greater impact on students’ meanings than do students have on the 
teacher’s meanings. 

Our theory of meaning, and of ways meanings are conveyed through mutual interpretation, 
allows us to bridge theoretically what teachers know, what they teach, and what their students 
learn. While we cannot access the teachers’ mathematical meanings directly, we can delimit 
categories of responses according to particular mathematical meanings that we discern from 
them. We categorize teachers’ response based on meanings we believe might underlie the 
response based on the best available evidence of interviews and prior qualitative work. We 
assumed that, for the most part, meanings that teachers used to construct their responses to an 
item are meanings that would guide their decisions in the classroom.  

 We believe that meanings students construct are related to but not identical to a teachers’ 
meanings. In other words, there might be some gap between what teachers have in mind and 
what students understand. For example, a teacher might define average speed for her students by 
writing down a formula, but understand that the formula is related to finding a constant speed a 
hypothetical object would need to travel to go the same distance in the same amount of time. 
However, her students might understand that average rate of change is a formula to be applied in 
situations with the key words “average rate of change”, failing to develop a quantitatively rich 
meaning for average rate of change that helps them use it in a variety of contexts. Knowing a 
normatively correct mathematical formula for average rate of change is not the same as having a 
productive meaning for the formula. We found many teachers who were able to write a 
normatively correct formula to compute average rate of change on one item (not discussed in this 
paper), but who were unable to use it productively to answer the two items discussed later in this 
paper. Our focus on teachers’ meanings as a root for their actions allows us to think of meanings 
we think students might construct based on meanings we attribute to teachers. For example, if 
the teacher conveys the meaning that average rate of change is a formula, we believe the students 
might only construct a meaning for average rate of change as a formula that should be used in 
particular situations. 
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Methodology 
Thompson (2015, p. 979) explained the process of creating items and rubrics for the MMTsm. 

We summarize the steps of a three year process below: 
1) Draft items, interview teachers, and give item to mathematicians and math educators 
for review. 
2) Revise items, interview teachers again. 
3) Administer items to large sample of teachers and analyze responses in terms of the 
meanings they revealed. 
4) Retire unusable items. 
5) Interview teachers to understand why they gave the response that they did. 
6) Revise items, potentially using teacher responses to make items multiple choice. 
7) Administer revised items to large sample 
8) Develop scoring rubrics.  

 
After a first round of data collection in 2012, we categorized the responses from 144 teachers 

using a modified grounded theory approach (Corbin & Strauss, 2007). The modification was that 
we began our data analysis with strong theories of understanding magnitudes and rates of 
change, and of the nature of mathematical meanings and of characteristics that make them 
productive in instruction. After the 2013 pilot with revised items we developed a scoring rubric 
for each item by grouping grounded codes into levels based on the quality of the mathematical 
meanings expressed. The 96 U.S. high school teachers’ responses reported in this paper are from 
the 2013 pilot. During team discussions of rubrics and responses, we continually asked ourselves 
“how productive would meanings we can discern from the teacher’s response be for a student 
were the teacher to convey it?” 

The first author translated each item into Korean. A Korean mathematics Ph.D. student, who 
taught high school mathematics in Korea for 7 years and wrote items for the Korean version of 
the practice SAT, translated the items back into English. The Ph.D. student had never seen the 
English versions. The first author and the third author reviewed the back translations and the first 
author made adjustments to the Korean versions (Behling & Law, 2000; Harkness, Van de Vijver 
et al., 2003).  

The first author recruited Korean teachers from three groups: 13 peers of the first author from 
her undergraduate school, 32 teachers who were taking a qualification program2 in eastern South 
Korea, and 21 teachers who were taking a graduate mathematics education class. The 96 U.S. 
high school teachers signed up voluntarily to participate in summer professional development 
projects taking place in two different states. They took the MMTsm as part of their professional 
development. U.S. and Korean teachers had similar years of teaching experience. The Korean 
teachers taught for an average of 4.5 years. This time included time teaching both middle school 
and high school mathematics. The 96 teachers in the U.S. sample analyzed in this paper taught at 
least one high school math class (algebra and above). We asked high school teachers how many 
times they had taught each subject and recorded the total number of high school classes taught. 
On average the U.S. teachers had taught 17.3 classes, which corresponds to approximately 4-5 

                                                
2 In Korea, all teachers who have taught more than three years must take a qualification training 
program to earn “1st class” teacher certificates. 
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years teaching. We also recorded the undergraduate major of teachers in the U.S. and Korea (See 
Table 1 and Table 2). 

 
Table 1. U.S. teachers' undergraduate majors. 

 Math MathEd STE Other Total 
Bachelor’s 10 14 6 8 38 
Master’s 17 22 5 14 58 
Total 27 36 11 22 96 

 
Table 2. Korean teachers' undergraduate majors. 

 Math MathEd Stat Other Total 
Bachelor’s 8 45 1 1 55 
Master’s 1 10 0 0 11 
Total 9 55 1 1 66 

 
Two Average Rate of Change Tasks 

Korean teachers saw 7 items on rate of change in MMTsm in the Summer of 2014. This 
report highlights the responses to two of these items. The item in Figure 1 is about a function’s 
average rate of change over an interval. One can answer this item’s question by joining two 
meanings: (1) an average rate of change is a constant rate of change, and therefore that it tells 
how many times as large a change in y is as an associated change in x, and (2) that a difference 
between two values of a function is the amount the function changed between those two values.  

 

 
Figure 1. The item named "difference from rate." © 2014 Arizona Board of Regents. Used with 
permission. 
 
     We constructed the multiple choice options from teachers’ answers to an earlier open-ended 
version and from teacher interviews. If the teacher thinks of average rate of change as “how 
many times as large a change in y is as a change in x over an interval”, we believe that they will 
select choice (a). During an interview one teacher explained that the answer is 4 because the 
interval of 0.3 as identical to an interval of 1. We suspect that teachers who picked a response 
with a quotient (choices (c) and (d)) thought that rate of change should involve a formula that has 
a quotient. In this sense, we hypothesized that if a teacher had a calculational approach such as 
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“average rate of change is dividing change in y by change in x” he would select (c) or (d). We 
included choice (e) to attract teachers who focused on the word “difference”, so we think (e) 
reflects considering only change in x values. Additionally, we anticipated that the teacher who 
believes the function must be linear to determine the answer would select (f).  

We used the item “San Diego to El Centro” (Hackworth, 1994) to reveal teachers’ meanings 
for the idea of average rate of change (see Figure 2). 

 

 
Figure 2. Part A of the item called "San Diego to El Centro". © 2014 Arizona Board of Regents. 
Used with permission. 
 

The item “San Diego to El Centro” is composed of two parts. Part A (shown in Figure 2) and 
Part B (whether the teacher’s answer was consistent with the fact that it would take 3 hours at a 
constant speed to go 180 miles). We put Part B on a separate page to guard against teachers 
looking ahead to Part B before answering Part A.  

We found this item to be particularly useful for revealing the meaning that an average rate of 
change is an arithmetic mean of rates. Teachers with this meaning typically solve the equation 

, ending with an answer of 80 miles per hour. However, the desired meaning of average 

speed is the constant speed that the car would need to travel to go the same distance in the same 
amount of time as the actual trip. If the car were to travel 180 miles at a constant speed of 60 
mi/hr, it would travel for 180/60 hours (3 hours). The car spent 2.25 hours traveling from San 
Diego to El Centro. It therefore has 0.75 hours remaining to travel the rest of the trip. So it must 
have an average speed of 120 mi/hr in the second leg of the trip to have an overall average speed 
of 60 mi/hr. 
 

 
Figure 3. Part B of the item called "San Diego to El Centro". © 2014 Arizona Board of Regents. 
Used with permission. 
 

We added Part B so as to see whether teachers can understand the inconsistency of an answer 
found from thinking of average speed as the arithmetic mean of two speeds. We added “please 
do not cross out your prior work” because, in earlier trials, some teachers crossed out their work 
on Part A after reading Part B. We focus later on whether Part B perturbed teachers’ meanings 
for Part A.  
 

Responses to “San Diego to El Centro” Part A were scored with a rubric. Responses to “San 
Diego to El Centro” Part B were scored in terms of whether the teacher thought the answer on 
Part A is consistent with the fact stated in Part B. The first author scored the Korean responses 

40 + x
2

= 60
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with the English rubric. The item “San Diego to El Centro” Part A was scored with the following 
rubric:  

 
Level Level description Sample response 

Level 3 
Response: 

The response determined the return speed 
is 120mph by finding how much time 
remains for the second leg of the trip and 
computing the return speed accordingly. 
We ignore small computational errors if the 
response demonstrated a Level 3 type of 
reasoning.  
 

 
Level 2 
Response: 

The response first wrote 80 mph, and then 
ultimately found a return speed of 120 
mph. (Note: We believe teachers whose 
first instinct is incorrect are less likely to 
have strong meanings for average rate of 
change than a teacher who immediately 
uses a productive meaning for average rate 
of change.) 
  

Level 1 
Response: 

Any of the following: 
• The response found an arithmetic mean 

of two speeds (e.g. (40 + S)/2 = 60) 
• The response found 80 mph without 
explicitly showing that they were using an 
arithmetic mean of two speeds. 

 
Level 0 
Response: 

Any of the following: 
• I don’t know, scorer can’t interpret, 

work doesn’t address question. 
• The response does not fit level 1 to 3 

 
 

We categorized responses that changed from an arithmetic mean of two speeds to a 
productive meaning for average speed at Level 2. As mentioned in the theoretical perspective, 
we focus on meanings that teachers might convey in classrooms. We imagine that students might 
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construct mixed meanings for average rate of change (arithmetic mean and desired meaning) 
from the Level 2 teachers. In this sense, we think Level 2 responses are less productive than 
Level 3 responses. 

We did not attend to computational errors when placing responses at Level 3. We only 
focused on whether the meanings we could discern from a teacher’s response fit the item’s 
purpose. In this sense, we ignored minor computational errors.  
 

Results 
Teachers’ responses to the item “difference from rate” are shown in Table 3.  
 
Table 3. Responses to "difference from rate." 

Response U.S.   
(any degree) 

U.S. w/ Math 
Degree 

U.S. w/ Math 
Ed. Degree 

Korea 

0.3 * 4 47 14 18 61 
4 9  1 6 1 
0.3 / 4 12  2 6 0 
4 / 0.3 11  3 3 1 
7.6 - 7.3 6  2 2 0 
Not enough information 19  3 1 3 
I don’t know 1 1 0 0 
No answer 1  1 0 0 
Total 96  27 36 66 

 
About 49% of high school teachers from the United States gave the highest-level response, 

0.3 times 4, to “difference from rate”. About half of the teachers (51%) whose degree is 
mathematics or mathematics education from the United States gave the highest-level response. 
On the other hand, 61 out of 66 grade 7 to 12 teachers from Korea gave the highest-level 
response to this item. Since almost all Korean teachers had math or math education degree we 
did not distinguish the responses of Korean teachers by major. 

The responses to “San Diego to El Centro” Part A show disparity between performance 
between U.S. and Korean teachers. 

 
Table 4. Responses to "San Diego to El Centro" Part A 

Response U.S. 
(any degree) 

U.S. w/ Math 
Degree 

U.S. w/ Math Ed. 
Degree 

Korea 

Level 3 42 12 15 64 
Level 2 8 3 4 0 
Level 1 (80) 31 7 13 2 
Level 0 14 4 4 0 
No answer 1 1 0 0 
Total 96 27 36 66 

 
Approximately one third of teachers (31/96) in the United States revealed a meaning for 

average rate of change as an arithmetic mean of rates. Having a mathematics or mathematics 
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education degree did not appear to be correlated to stronger meanings for average rate of change 
because 26% (7/27) of teachers with mathematics degree and 36% (13/36) of teachers with 
mathematics education degree showed a meaning for average rate of change as an arithmetic 
mean of rates. Only 2 out of 66 teachers in Korea had a meaning for average rate of change as an 
arithmetic mean of rates.  

The responses to “San Diego to El Centro” Part B in U.S. show that most of the teachers in 
the United States that revealed a meaning for an arithmetic mean as average rate of change 
realized that it is not consistent with the fact given in Part B (Table 5).  

 
Table 5. United States Teachers Responses to "San Diego to El Centro" Part B 

Response 
U.S. Teachers 

Consistent Not 
Consistent 

Scorer Cannot 
Tell 

No answer Total 

Level 3 41 0 0 1 42 
Level 2 6 2 0 0 8 
Level 1 (80) 5 22 4 0 31 
Level 0 7 4 1 2 14 
No answer 0 0 0 1 1 
Total 59 28 5 4 96 
 
Results from “San Diego to El Centro” Part B show that Part B perturbed teachers because 

about 71% of teachers who revealed a meaning for average rate of change as an arithmetic mean 
of rates wrote that their answer is not consistent with the fact that the trip will take 3 hours on 
Part B. However, five teachers who revealed a meaning for average rate of change as an 
arithmetic mean of rates stuck to the their original response of arithmetic mean of rates arguing 
that it is consistent with the given fact on Part B (Table 6).  
 
Table 6. Two sample responses in Level 1 and Consistent category 
! Part A Part B 

Mr. 
Adams 

!

!

18th Annual Conference on Research in Undergraduate Mathematics Education 34418th Annual Conference on Research in Undergraduate Mathematics Education 344



Ms. 
Augusta 

!
!

 
Both Mr. Adams and Ms. Augusta revealed an arithmetic mean of rates meaning for average 

rate of change. However, their responses to Part B show that Mr. Adams and Ms. Augusta’s 
meanings for average rate of change are not identical. Mr. Adams applied the arithmetic mean of 
rates to the fact that the total trip will take 3 hours. He thought that the first leg of trip and the 
second leg of trip both took 1.5 hours. On the other hand, Ms. Augusta’s response suggests that 
she did not check the fact that the total trip will take 3 hours. Rather, her response confirmed that 
“average” in average rate of change is no more than an arithmetic mean.  

The responses to “San Diego to El Centro” Part B in Korea are in Table 7.  
 

Table 7. Korean Teachers Responses to "San Diego to El Centro" Part B. 
Response Consistent Not 

Consistent 
Undecided No answer Total 

Level 3 56 5 3 0 64 
Level 2 0 0 0 0 0 
Level 1 (80) 1 0 1 0 2 
Level 0 0 0 0 0 0 
No answer 0 0 0 0 0 
Total 57 5 4 0 66 

 
The reason why five Korean teachers in Level 3 wrote “not consistent” is that they made a 

computational error in Part A. Because we do not consider computational errors as part of our 
categorization system, the responses that show a Level 3 type of reasoning were categorized at 
Level 3. Three teachers in Level 3 wrote “I don’t know”, but we do not know why they wrote “I 
don’t know”. One possibility is that they did not carefully read Part B. One teacher in Level 1 
stuck to an arithmetic mean as average rate of change in Part B, and the other in Level 1 wrote “I 
don’t know”.  
 

Conclusion 
The results show that, in our convenience samples, Korean teachers’ meanings for average 

rate of change are substantially stronger than U.S. teachers’ meanings. Almost all Korean 
teachers knew that average rate of change tells us that  a change in y is a number of times as 
large as a change in x over an interval and did not confound “average” with “arithmetic mean”. 
We believe that the meanings teachers hold, such as average rate of change as an arithmetic 
mean, are the meanings they will operate with during instruction. It is likely that students will 
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develop meanings for average rate of change that are similar to their teachers’ meanings. Thus, if 
a teacher has incoherent meanings the probability is high that his students will develop 
incoherent meanings. Because average rate of change is a Common Core Mathematics Standard 
it is critical that teachers’ have opportunities to learn this standard. 

We could not investigate why teachers’ in Korea have stronger meanings for average rate of 
change. However, some studies suggest a plausible possibility if we consider that Chinese, Hong 
Kong, and Korean students have similar performance on international tests. Ma (1999) identified 
that Chinese elementary teachers showed more profound understanding than U.S. elementary 
teachers even though U.S. teachers have longer formal schooling and higher degree. Leung 
(2006) also suggested that Hong Kong and Korean elementary teachers already acquired 
mathematics competence when they were students in school. Thus, we suspect that the disparity 
in U.S. and Korean teachers’ meanings is because Korean teachers developed stronger meanings 
while students than did U.S. teachers while students.  Put another way, teachers in Korea were 
students in Korea, and teachers in the U.S. were students in the U.S.  It is possible that Korean 
teachers developed meanings as students that U.S. teachers did not develop. We agree with 
Stigler and Hiebert (1999) that teaching is a cultural activity and that teachers’ experiences as 
students are highly influential in their later career as teachers. 

Our results suggest that if school students are to develop strong meanings for average rate of 
change, pre-service teacher preparation programs in the U.S must ensure that their graduates 
develop strong meanings for average rate of change. We emphasize that a strong meaning for 
average rate of change involves other major ideas in the school curriculum. A strong meaning for 
average rate of change entails strong meanings for constant rate of change, which itself entails 
concepts of variation, covariation, and proportionality (Thompson & Thompson, 1996; 
Thompson, 1994a, 1994b; Thompson & Thompson, 1992, 1994). 

One obvious limitation of our study is that the sample is not random and thus generalization 
of the results to the larger populations in either U.S. or Korea is not possible. However, the 
convenience samples did provide evidence that the Korean teachers understood the translated 
items in the way we intended and that the rubrics written based on grounded coding of U.S. 
teachers’ responses were sufficient to categorize the range of Korean teacher’s responses. The 
two items reported here required understandings of mathematics useful for teaching, but are not 
specifically related to student thinking. We anticipate that our analyses of rate of change items 
that asked Korean and U.S. teachers to respond to a teaching situation will allow us to speculate 
about teachers’ attention to student thinking regarding average rate of change.  
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RUME Working Group: Research on Community College Mathematics 
 
Attendees  
 
Ann Sitomer (Oregon State University), Irene M. Duranczyk (University of Minnesota), John 
Smith (Pellissippi State Community College), Martha Makowski (University of Illinois at 
Urbana-Champaign), April Strom (Scottsdale Community College), Gabriel Tarr and Matt 
Weber (Arizona State University), Donna Bassett (Roane State Community College), and 
Rebecca Walker (Guttman Community College). 
 
 
Working Group Report 
 

The primary goal for the working group this year was to write a proposal to request 

funding for a conference with a focus on mathematics education research that addresses 

questions unique to the community college setting. This research is particularly critical now as so 

many curriculum decisions are being made, especially with respect to developmental or remedial 

mathematics. Consistent with the mission of two-year colleges, developmental mathematics is a 

fundamental part of community college mathematics. Frequently these curriculum decisions are 

being made without considering the research base that could better inform our understanding of 

mathematics learning and teaching in the community college setting (Mesa, Wladis, & Watkins, 

2014). The discussion at the working group helped to identify two primary reasons for making 

the work of education researchers within the community college setting more visible: (1) This 

work should be a prominent subdomain of mathematics education research, and (2) Mathematics 

education research should inform mathematics learning and teaching at community colleges. For 

this reason, the group started work on two proposals at RUME. The first proposal is for a 

symposium to be held at the Research Session at the annual meeting of the National Council of 

Teachers of Mathematics, one of the major conferences for disseminating research in 

mathematics education. The focus of the symposium will be research on community college 

mathematics teaching. The RUME working group organizers are currently inviting mathematics 

education researchers focused on community college teaching to collaborate on this proposal 

next summer.  

The second proposal is a request for NSF funding for a one-day conference to be held 

prior to the annual meeting of the American Mathematical Association of Two-Year Colleges 

with the purpose of bringing together researchers and practitioners. Similar to the design of the 
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Mentoring and Partnerships for Women in RUME (MPWR) seminar, the structure of the one-day 

conference will be panel discussions and conversations centered on research at the community 

colleges. We chose three areas in mathematics education research that would be of interest to 

community college practitioners: proportional reasoning, statistical reasoning and students’ 

understanding of functions. We propose to invite panelists working in these areas to discuss their 

research. The conversations with practitioners will be guided by activities so that participants 

have an opportunity to discuss the ways research findings might impact practice. Ann Sitomer 

and April Strom are writing the proposal; John Smith and Kelly Mercer (a working group 

Participant from a previous year) will help organize the conference if funded.  

Other working group activities included sharing accomplishments over the last year by 

current and previous working group participants. These accomplishments include a revision of 

an IES proposal submitted by Vilma Mesa, April Strom, Irene Duranczyk and Laura Watkins to 

be submitted to the NSF; the working title of this proposal is An Exploration of Characteristics 

of Algebra Instruction at Community Colleges and their Relationship with Student Learning and 

Performance/Success. Working group members have at least five articles published or in press: 

 
• Mesa, V., & Lande, E. (2014). Methodological considerations in the analysis of 

classroom interaction in community college trigonometry. In Y. Li, E. A. Silver & S. Li 
(Eds.), Transforming mathematics instruction: Multiple approaches and practices (pp. 
475-500). The Netherlands: Springer. 

• Mesa, V., Wladis, C., & Watkins, L. (2014). Research problems in community college 
mathematics education: Testing the boundaries of K-12 research. Journal for Research in 
Mathematics Education, 45(2), 173-192. 

• Mesa, V. (In press). Mathematics education in community colleges. In J. Cai (Ed.), Third 
Handbook in Research in Mathematics Education. Reston, VA: National Council of 
Teachers of Mathematics. 

• Mesa, V., Burn, H., White, N. (In press). Basic good teaching in the Characteristics of 
Successful Programs in College Calculus.  In D. Bressoud, V. Mesa, C. Rasmussen & H.  
Burn (Eds.) Findings from the Characteristics of Successful Programs in College 
Calculus.  

• Mesa, V. (In press). Curriculum in the Characteristics of Successful Programs in College 
Calculus. In D. Bressoud, V. Mesa, C. Rasmussen & H.  Burn (Eds.) Findings from 
the Characteristics of Successful Programs in College Calculus.  

 
One member of the working group (Irene Duranczyk) is undertaking with a colleague a meta-

analysis of quantitative studies conducted between 2001 and 2010 that focus on questions in 

community college mathematics education. This research is in progress and should be completed 
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this year.  We considered expanding this project to analyzes qualitative and mixed methods 

studies. Frequently decisions are made without regards to contextual differences. The 

experiences of community college students and faculty may best be revealed through their 

personal stories that are prevalent within qualitative and mixed methods community college 

mathematics education research base. 

The primary purpose of our working group is to build a community of researchers 

working in the domain of community college mathematics education. We have been very 

successful towards achieving this goal. Some working group participants have participated each 

year, but every year we are introduced to new colleagues working in the domain who become 

collaborators on future projects. A secondary purpose is to link research to practice in 

mathematics teaching and learning at community colleges. The outcomes from the working 

group that convened at RUME 2015 moved us closer to this goal. 
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Working Group on Education Research at the Interface of Mathematics and Physics 
 

Warren Christensen Megan Wawro 
North Dakota State University Virginia Tech 

 
The area of focus for the 2015 Mathematics & Physics Working Group was the interface of 

student understanding of linear algebra and its application in physics courses, such as Quantum 
Mechanics. This working group brought together researchers in Undergraduate Mathematics 
Education and Physics Education to analyze data, compare methods for analysis, and highlight 
areas of interest or focus from within the data on student thinking. This focus was intended to 
foster discussions and possible collaborations about research at the interface of RUME and 
PER, in linear algebra and beyond, broadly conceived.  

Keywords: Physics, Linear algebra, Interdisciplinary Research, quantum mechanics, eigentheory 
 

Overview 
The NRC’s report Discipline-Based Education Research: Understanding and Improving 

Learning in Undergraduate Science and Engineering (2012) charges that the U.S. must improve 
STEM education, specifically recommending “interdisciplinary studies of cross-cutting concepts 
and cognitive processes” (p. 3) in undergraduate STEM courses. It further states that “gaps 
remain in the understanding of student learning in upper division courses” (p. 199), and that 
interdisciplinary studies “could help to increase the coherence of students’ learning experience 
across disciplines … and could facilitate an understanding of how to promote the transfer of 
knowledge from one setting to another” (p. 202). This working group contributes towards this 
national need for basic research by investigating students’ reasoning about and use of 
mathematics within upper-division physics (specifically, linear algebra).   

Mathematics is often referred to as the language of science, and its use as a theoretical 
modeling tool for physics goes back centuries. Despite the significant amount of overlap in 
content and goals for instruction among courses in calculus, linear algebra and differential 
equations in Mathematics Departments and courses in Physics Departments that use these tools 
to solve physics problems, such as Quantum Mechanics, Electricity and Magnetism, Mechanics, 
Thermal Physics, there are very few published studies on the learning and teaching of these 
topics that touch on both the mathematics and physics (e.g., Christensen & Thompson, 2012; 
Wilcox, Caballero, Rehn, & Pollock, 2013; Pepper, Chasteen, Pollock, & Perkins, 2012). The 
community of PER and RUME faculty who are interested in and committed to collaborative 
research at the boundary of mathematics and physics need a space to exchange and develop ideas 
for collaboration and research. 

In 2013, the first working group on RUME/PER was lead by Wawro and Christensen to start 
the conversation between researchers in physics and mathematics education researchers. There 
was been a demonstrable interest from the community, as evidenced by the interest in the 2014 
working group on RUME/PER. Led by Eric Weber (RUME), Corinne Manogue (PER), and 
Aaron Wangberg (RUME), the 2014 Working Group on RUME/PER focused on curriculum 
development and implementation related to issues in multivariable calculus. It created a great 
deal of important discussion about the content of physics and mathematics, as well as the 
teaching of this content. At RUME 2014, the various researchers agreed that the 2015 focus 
would be on data analysis regarding mathematics and physics thinking, with a crosscutting 
content focus of linear algebra. Thus, the 2013 Working Group began a conversation of 
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interdisciplinary issues, the 2014 Working Group focused on curriculum development and 
implementation, and the 2015 Working Group was focused on research methodology and 
analysis. We envision an ongoing series of such working groups, with a slightly different focus 
and leadership team each year. 

The area of focus for the 2015 Mathematics and Physics Working Group was the interface of 
student understanding of linear algebra and its application in physics courses, such as Quantum 
Mechanics. This working group brought together researchers in Undergraduate Mathematics 
Education and Physics Education to analyze data, compare methods for analysis, and highlight 
areas of interest within a specific theme. The aim of this group was to use this specific and 
detailed discussion to educate and broaden the depth of understanding of research on the learning 
and teaching of math and physics for both PER and RUME faculty. We specifically engaged in 
discussion about various ways to use qualitative analysis methodologies to understand how 
people think and reason within and across disciplines. While the focus of the working group was 
focused linear algebra and quantum mechanics, the methods discussed are broadly applicable to 
research within either field (math or physics education research) and across most any content 
within either discipline. 
   

Summary of Major Activities and Discussions 
In order to create a focused discussion on research methodology and analysis, the central 

content for discussion at the working group was linear algebra and its uses in quantum 
mechanics. Specifically, the organizers chose a 20-minute video clip of a problem-solving 
interview with a physics professor, known as AC, from Christensen’s research around which to 
focus during the working group. Approximately one week prior to the working group, 
Christensen provided access to the video for those who had indicated they would attend the 
working group and requested they watch it prior to the working group.  

Part One: Introductions and Overview of the Content (8-9:30am) 
The primary goal for the working group was to focus discussion on research. While 

discussions in previous working groups concerning pedagogical innovation and curriculum 
development were fruitful, the organizers wanted to limit discussion to content and research on 
faculty/student thinking about the content at hand. Additionally, discussion of research methods, 
theoretical frameworks and analysis were appreciated in so far as they applied to the study of 
mathematics and physics. The goal was to create a rich discussion on research without the oft-
followed path of “When I teach _____ in my class.” Also stressed was the importance of being 
sensitive to all individuals in the room, knowing that due to the differences in content 
backgrounds and research backgrounds, there was a strong possibility of misunderstandings and 
necessary clarifications. 

The start of the Working Group featured brief presentations about relevant content from 
Linear Algebra and Quantum Mechanics. We recognized that few faculty in the room will be 
familiar with the perspectives of both mathematics and physics, and therefore having a 
conversation about content to start the session was crucial to a rich discussion of analyzing the 
subsequent video data. 

After introductions, the working group began with Michelle Zandieh, Arizona State 
University, summarizing some of her relevant work in student understanding of linear algebra. In 
particular, Zandieh focused on a framework for student interpretation of the matrix equation 
!" = !, which was a result of work with Christine Andrews-Larson of Florida State University 
(Larson & Zandieh, 2013). This framework details three prominent interpretations of the 
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equation !" = !, highlighting the role of the vector ! in each interpretation. The linear 
combination interpretation is when ! is a linear combination of the column vectors of the matrix 
! and ! is the set of weights on the column vectors of !. The systems interpretation is when ! is 
interpreted as the set of values that satisfy the system of equations corresponding to !" = !, and 
the transformation interpretation of !" = ! corresponds to a view in which an input vector!! is 
transformed into the output vector ! via multiplication by the matrix !. The utility of this 
framework is that it offers an analytic lens through which to make sense of a person’s thinking 
via the variety of both correct and incorrect ways that a person blends and coordinates ideas. 
This interactive presentation helped prepare the working group participants for the forthcoming 
time of analyzing a physicist’s interview by introducing a method for interpreting and analyzing 
interview data for nuanced aspects of the interviewee’s reasoning. 

John Thompson, Associate Professor at the University of Maine, presented on the use of 
eigentheory as a mathematical tool for understanding the Ising Model for spin ½ particles (such 
as electrons) in Quantum Mechanics. He gave an overview of the experimental findings of the 
Stern-Gerlach experiment, which demonstrated the peculiar behavior of certain particles passing 
through a series of strategically aligned magnetic fields. He showcased the Ising Model can be 
modeled using vectors and matrix in ℝ!. The matrix acting on an eigenvector produces an 
eigenvalue and that matrix, just as in mathematics. However, in physics (within the Ising Model), 
the matrix is an operator, and has the physical significance of being a measurement of the spin of 
a system, (or perhaps the z-component of the spin, depending on the measurement taken). The 
eigenvectors for this measurement are the two possible quantum states of the particle, i.e., spin 
up or spin down. The eigenvalues are energy eigenvalues, as they represent the energy of the 
measured particle. The goal of this content lecture was to motivate why physicists care about 
eigentheory, and the nuances of the language used by physicists to talk about physical systems 
that may well look like pure mathematical expressions to mathematicians 
 
Part Two: Video Analysis and Discussion (9:30-11:00am) 

After the content discussion, the Working Group broke into small groups of three per group, 
with at least one math and physics person in each group, to watch the interview in its entirety. 
Each group had a computer to watch the video, and even though the video was made available in 
advance many attendees were viewing the video for the first time. Participants were asked to 
develop research questions, alternative lines of inquiry and other theoretical frameworks. The 
goal was to provide participants with a sense of the content at play –how it’s taught in math 
classes and how it’s taught and used in physics classes– and then to dig deeply into a rich piece 
of data that will create conversation. Following the viewing, significant time was made available 
for questions and comments on the interview protocol and other aspects of the research. 
Participants shared out points of interest from the video with the entire group.  

Part Three: Prepared Analyses and Wrap Up (11:00am-12:00pm) 
Christensen presented research on a different interview with an undergraduate using the same 

protocol, using a popular theoretical framework from PER, Framing and Resources (Hammer et 
al., 2006). This framework considers that student ideas come from a set of interconnected 
resources that are accessible (or inaccessible) to the student depending on how the student frames 
the problem (often unconsciously). The study used a lexicon analysis to mark to the frame in 
which the student was. The student seemed to use words that were consistent with physics in 
certain scenes where he was making appropriate sense of the task at hand, however this language 
was not used immediately thereafter when the student was struggling to make sense of something 
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that was directly related. The findings were of interest to the attending group but additionally the 
articulation and use of the framework was novel for many of the RUME faculty in the audience. 

Wawro concluded the working group’s time together of considering analyses of the given 
video by summarizing the approach she used towards analysis. The guiding question, “What are 
any research questions that emerge for you as you watch the video?” prompted her to consider 
the request question, “What are AC’s notions of “solution” in the data at hand?” She explained to 
the working group that her approach included watching the video and reading the transcript 
multiple times in order to notice a theme of interest with respect to AC’s mathematics evidenced 
in the interview. In general, her process was informed by a sensitivity and tendency towards 
considering learners’ concept images (Tall & Vinner, 1981) of a particular concept, which can 
lead to grounded analysis of the data and organization of learners’ notions around various 
emerging themes.  It can also lead to adoption and adaptation of pre-existing frameworks 
through which to further make sense of nuances within the data at hand. As such, the 
aforementioned framework by Larson and Zandieh (2013) provided a useful orientation towards 
the notion of “solution” for !" = !, and the conference paper by Henderson, Rasmussen, 
Sweeney, Wawro, and Zandieh (2010) introduced the idea of “solution sense” when looking at 
students’ interpretations of the matrix equation !" = 2!. Because the time for the working group 
to come to a close was drawing near, Wawro discussed a selection of pre-prepared slides that 
contained transcript and accompanying analysis of AC’s notions of “solution.” One theme in her 
analysis was AC’s notion that “to solve” seemed to involve determining specific values for ! and 
! in 4 2

1 3
!
! = 2 !

! , evidenced in statements such as “we don't have enough different 
equations here to actually solve numerically for ! and ! I suppose” and “which leaves us with an 
expression with two unknowns, which of course we can't solve” when converting it to a system 
of equations and noticing the second equation is redundant. The conversation concluded by 
discussing implications for what students might think “solution” means and the various 
possibilities for infinite solution sets for matrix equations in linear algebra. 

The session wrapped with a brief discussion of future working group sessions including other 
in-depth analysis of video covering different topics and possibly review of other developed 
curriculum. One of the outcomes of the working group was a special session featuring PER and 
RUME faculty presenting at the 2015 Physics Education Research Conference at College Park, 
MD in July. This session has aided faculty in establishing points of compatible collaborations 
and deepening existing ties, and the participants look forward to pursuing these opportunities.   

 
Conclusion and Future Directions 

This working group was an excellent setting for a number of groups to network and 
collaborate, including: (a) qualitative researchers from RUME, (b) RUME members that research 
the teaching and learning of linear algebra, (c) qualitative researchers from PER, (d) PER 
members that research the teaching and learning of upper-division physics content, particularly 
quantum mechanics; and (e) any faculty member (physics or math) looking to engage in a 
discussion on student thinking, theoretical frameworks, and research methods. The combination 
of presentations, interactive data analysis, and discussions combined both novice and 
experienced researchers to begin collaborations and provide mentoring for those new to research 
in these areas. The 2015 Working Group organizers and participants, in conjunction with 
members of the previous 2013 and 2014 Math-Physics Working Groups, feel strongly that this 
conversation between PER and RUME faculty is not one that will end soon. Indeed, these 
conversations continued throughout the RUME conference, during meal times and research 
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presentations. Plans are underway for the 2016 Math & Physics Working Group, to be led by 
other members of this community. 
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Working Group: Research on College Mathematics Instructor 
Professional Growth – 2015 Conference Report 
 
Shandy Hauk, Jessica Deshler, Natasha Speer 
 

Abstract. The Research on College Mathematics Instructor Professional Development 
working group meets online several times per year and annually at the RUME conference. We 
solicit proposals from researchers in all areas of the professional development of college 
mathematics instructors across institutional types (e.g., community college, university). This 
includes, but is not limited to, research on factors that shape instructional practices and the 
experiences of instructors as they attend to student thinking in their instruction. The group’s 
goals, historically and as they have evolved, continue to drive the focus of annual meetings. They 
include interaction that offers (1) informed support and feedback for researchers, (2) 
opportunities for networking and collaboration among mathematics educators interested in 
research and development of materials, processes, models, and theories to support the 
professional development of collegiate mathematics instructors, (3) continuing discussion of 
issues central to the field and ways to address them. The intended participants of this group 
include researchers in all of these areas, whether new to the field, to research in general (early 
career researchers) or experienced. Researchers need not present their work to participate in the 
group or provide feedback to others. Group meeting time is structured to allow feedback on 
research projects that are in progress. The working group is not meant to be a forum for 
presenting completed studies, but rather an opportunity to get feedback from peers on projects in 
any stage; from the refinement of research questions to study design, data collection and 
analysis, to discussion of venues for future presentation and proposals for funding of projects. 
We also discuss strategies for sharing our work with the practice-oriented college mathematics 
instructor professional development community, the needs of the working group, and ways of 
sustaining collaborations and communication among group participants during the year. 

Background and Significance. Begun with a focus on the early professional 
development of graduate students who work as teaching assistants (TAs), this group has evolved 
to include research and research-to-practice work across the college instructional population. For 
the 2015 Conference on RUME, the group continued its many-threaded investigations and 
dissemination about the professional growth of post-secondary mathematics instructors, from 
novice to veteran. The definition for “novice” varies in mathematics education research. In 
current reports, a novice is someone whose teaching experience at the college level involves 
either a limited amount of time or of autonomy. For our purposes, a “novice college mathematics 
instructor” is a person with fewer than 1000 instructional classroom-contact hours with 
undergraduates (e.g., about 3 years experience teaching as instructor of record for three courses 
per semester) or - in terms of autonomy – a novice is someone having experience only as a 
discussion section leader who does not have responsibility for the design and delivery of 
syllabus, lesson content, and course grades. Most mathematics graduate student teaching 
assistants will complete their doctorates and still be “novices” in this sense. Novice instructors 
play a critical role in undergraduate mathematics education: graduate students are instructor of 
record for as many as a half-million undergraduates each year in the U.S. (Lutzer, Rodi, 
Kirkman, & Maxwell, 2007). What is more, Belnap and Allred (2009) found that this figure may 
underreport novice involvement in mathematics instruction, since 40% of graduate student TAs 
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teach labs or discussion sections, without being the instructor of record. Speer, Murphy, and 
Gutmann (2009) estimated that more than a third of undergraduates will have a graduate student 
as a mathematics instructor. Other “novices” involved in instruction outside the classroom can be 
found among those graduate and advanced undergraduate students who tutor individuals and 
small groups. 

Rationale and Purpose. While researchers in the group are committed to conveying 
their findings to practitioners, this working group conference forum is focused on research. 
Though such research may go hand in hand with development of curriculum or activities for 
those who provide professional development to college mathematics instructors, the RUME 
meeting is not a venue for disseminating curricular resources. At the same time, the working 
group is not a place to present mature research results, such as might be appropriate for regular 
presentation sessions at the RUME conference. Our purpose is to allow for early feedback on 
research projects, the tuning of design and analysis strategies, and the building of collaborations. 
Participating in the group and receiving feedback on emergent projects will scaffold work that 
can be shared later, at future conferences and through grant project development, as well as in 
research-to-practice dissemination. For some, having a formal way to participate in the 
conference by being a part of the working group may enable them to secure funds to attend. 
Guided by the mantra “the purpose of the group is to serve the needs of its members” we have 
three priorities: (a) to provide critical, informed support and feedback for those conducting 
research on or about college mathematics instructors; (b) to help mathematics educators 
interested in the experience of college mathematics instructors and their professional 
development connect and collaborate; (c) to consider over-arching issues related to individual 
research agendas and to endeavor to contribute to these common concerns.  

 
History. The working group originated in 2002. From 2002-2007, the group convened at 

PME-NA and since 2009 the group has convened at the Conference on RUME. From the 
beginning, a main goal of the group has been to help develop a community of researchers with 
interests regarding novice instructors of college mathematics. Over the years, we have identified 
central issues in our area of research and extended the population of interest to include more 
experienced instructors, with the group primarily serving as a venue for building collaboration 
and getting constructive feedback on independent research projects. The group’s work has 
provided valuable networking and collaborative opportunities, producing tangible outcomes. In 
addition to papers in the proceedings of the PME-NA and RUME conferences, some of the 
organizers published a paper based on the 2002 conference proceedings in College Teaching 
(Speer, Gutmann, & Murphy, 2005) and more recently the co-chairs published an overview of 
the current state of research in the field (Deshler, Hauk & Speer, 2015). Many working group 
members became authors of peer-reviewed papers in a themed volume of Studies in Graduate 
and Professional Student Development (Border, 2009) – seven of the eight articles are authored 
by researchers who have participated in the working group (e.g. Belnap & Allred, 2009; Gutman, 
2009; Hauk et al., 2009; Kung & Speer, 2009; Latulippe, 2009; Meel, 2009; Speer et al., 2009). 
Several productive and ongoing research collaborations have developed among the group’s 
participants (e.g., Hauk, Toney, Jackson, Nair, & Tsay, 2014). The group’s current set of leaders 
(authors of this report), come from a variety of backgrounds, have been regular group 
participants, and have been involved in various related groups (e.g., MAA-AMS Joint 
Committee on Teaching Assistants and Part-Time Faculty, MAA Committee on Professional 
Development), have conducted grant-funded research in the area, and have presented at RUME 
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previously. With increasing regularity since 2010, the group has met on-line during the year. 
 
Working Group 2015 RUME Session Summary 
This year the online registration for the RUME conference included an option for expressing 
interest in a pre-conference working group. As a result, many new people found out about the 
working group. At the working group meeting on February 19 there were 49 attendees (47 in 
person and 2 by Skype). About half of the attendees were new to the research work of the group.  
This year's meeting time was used for introdution, design, and research resource development: 
Activity 1 (20 minutes). Introductions and an overview of developments in the past year for the 

group, including upcoming publication of the AMS Notices article by group members 
Deshler, Hauk, and Speer (2015).  

Activity 2 (15 mintues). Given the large number of new attendees, we arranged a set of five 
research capsule reports by working group members about a past or current research project 
(Jess Ellis, Kitty Roach, Kim Rogers, Mary Beisiegel, Jason Belnap).  

Activity 3 – Work in Progress Session 1 (50 minutes). An activity-based research design session. 
This small group activity provided feedback on study design and defining technological 
pedagogical content knowledge instrument development for “Design Challenge: Web-based 
Activity and Test System (WATS) – Randomized Controlled Trial of Online Tools in 
Developmental Algebra Instruction” a newly grant-funded research project that Shandy 
Hauk shared with the group. 

Activity 4 – Work in Progress Session 2 (60 minutes). A set of small group conversations 
orchestrated by Natasha Speer and Jessica Deshler about the research and development 
resources to be made available through the web portal for a newly funded project: 
“Improving the Preparation of Graduate Students to Teach Undergraduate Mathematics” 
(temporarily known as the TAPD project). The attendees naturally fell into the two 
categories the new portal is meant to serve: active researchers in CMI development and 
consumers of that research. The activities focused on Design of the “Researchers’ Corner” 
and the “Instructional Resources” sections of the site and suggesting potential project short 
name or acronym. 

Activity 5 (45 minutes) Next Steps. Paired and whole group conversations to generate ideas for 
how the group can continue to serve the needs of its members (now and in the future). This 
included announcements (e.g., the summer web portal development TAPD meeting planned 
for June), and identifying potential days/times and topics for the next online Collaborate 
sessions.  
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Research on College Mathematics Instructor Professional 
Growth – 2015 Participant Report 
 
Facilitators:  
Shandy Hauk <shauk@wested.org>,  
Jessica Deshler <deshler@math.wvu.edu>, 
Natasha Speer <speer@math.umaine.edu>  
 
Participants Indicated in the table below. 
! First!Name! Last!Name! Occupation/!

Title! University! Email!Address!

1" Alison" Lynch" Student" University"of"
Wisconsin7Madison" gordon@math.wisc.edu"

2" Allison" Toney" Assistant"
Professor"

U."North"Carolina"
Wilmington" Toneyaf@uncw.edu"

3" Alon" Pinto" Postdoc" UC"Berkeley" alonp@berkeley.edu"

4" Amy" Ellis" Associate"
Professor"

University"of"
Wisconsin7Madison" aellis1@wisc.edu"

5" Andrew" Tonge" Professor" Kent"State" tonge@math.kent.edu"

6" Anna" Titova" Assistant"
Professor" Becker"College" anna.titova@becker.edu"

7" Annie" Selden" Adjunct"
Professor"

New"Mexico"State"
University" aselden@math.nmsu.edu"

8" Ashley" Duncan" Graduate"TA" Arizona"State"
University" ashley.duncan.1@asu.edu"

9" Beverly" Reed" Associate"
Professor" Kent"State" breed1@kent.edu"

10" Christina" Starkey" Doctoral"IA" Texas"State"
University" cs1721@txstate.edu"

11" Christine" Andrews7
Larson"

Assistant"
Professor"

Florida"State"
University" cjlarson@fsu.edu"

12" Doug" Squire" faculty" West"Virginia"
University" dsquire@math.wvu.edu"

13" Edgar" Fuller" Professor"and"
Chair"

West"Virginia"
University" ef@math.wvu.edu"

14" Estrella" Johnson" Assis."Prof" Virginia"Tech" strej@vt.edu"

15" Houssein" El"Turkey" Assistant"
Professor"

University"of"New"
Haven" helturkey@newhaven.edu"

16" Hyunkyoung" Yoon" Grad"Student" Arizona"State"
University" hyoon14@asu.edu"

17" Iwan" Elstak" Professor/Dr" Valdosta"State"
University" irelstak@valdosta.edu"

18" Jacqueline" Dewar" Professor"
Emerita"

Loyola"Marymount"
University" jdewar@lmu.edu"
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19" James" Epperson" Associate"
Professor"

The"University"of"
Texas"at"Arlington" epperson@uta.edu"

20" Jason" Belnap" Assistant"
Professor"

University"of"
Wisconsin"Oshkosh" belnapj@uwosh.edu"

21" Jeffrey" Truman" Graduate"
Student"

Simon"Fraser"
University" jtruman@sfu.ca"

22" Jennifer" Kaplan" Assoc"Prof" UGA" "

23" Jennifer" Tyne" Lecturer" University"of"Maine" jennifer.tyne@maine.edu"

24" Jessica"**Facilitator" Deshler" Assistant"
Professor"

West"Virginia"
University" deshler@math.wvu.edu"

25" Jessica" Ellis" Asst."
Professor"

Colorado"State"
University" jess.ellis84@gmail.com"

26" Jessica"Brooke" Ernest"
doctoral"
candidate/lec
turer"

San"Diego"State"
University" brookeernest@gmail.com"

27" John" Selden" Adjunct"
Professor"

New"Mexico"State"
University" js9484@usit.net"

28" Joshua" Case" Student" University"of"Maine" joshua.case@maine.edu"

29" Kedar" Nepal" Assistant"
Professor" Mercer" nepal_k@mercer.edu"

30" Kimberly" Rogers" Assistant"
Professor"

Bowling"Green"State"
University" kcroger@bgsu.edu"

31" Kitty" Roach" Grad"Student" University"of"
Northern"Colorado" kitty.roach@unco.edu"

32" Kristin" Noblet" Graduate"
Student"

University"of"
Northern"Colorado" kristin.noblet@gmail.com"

33" Kyeong"Hah" Roh" Associate"
Professor"

Arizona"State"
University" khroh@asu.edu"

34" Mary" Beisiegel" Assistant"
Professor"

Oregon"State"
University" mary.beisiegel@oregonstate.edu"

35" Nadia" Hardy" Associate"
Professor" Concordia"University" nadia.hardy@concordia.ca"

36" Natasha"**Facilitator" Speer" Associate"
Professor"

The"University"of"
Maine" speer@math.umaine.edu"

37" Nathan" Clements" Calculus"
Coordinator"

University"of"
Wyoming" nathan.clements@uwyo.edu"

38" Nathan" Wakefield" Professor" University"of"
Nebraska"7"Lincoln" nathan.wakefield@unl.edu"

39" Nissa" Yestness" Postdoctoral"
Researcher"

Colorado"State"
University" Nissa.yestness@colostate.edu"

40" Paul" Regier" GRA" The"University"of"
Oklahoma" paulrregier@gmail.com"
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41" Sarah" Bleiler" Assistant"
Professor"

Middle"Tennessee"
State"University" sarah.bleiler@mtsu.edu"

42" Shahram" Firouzan" Student" San"Diego"State"
University" sfirouzi@ucsd.edu"

43" Shandy"**Facilitator" Hauk" Researcher" WestEd/U."Northern"
Colorado" shauk@wested.org"

44" Silvia" Saccon" Dean's"Fellow" The"University"of"Texas"at"Dallas" Silvia.Saccon@utdallas.edu"

45" Sonalee" Bhattachar
yya"

Doctoral"
Teaching"
Assistant"

Texas"State"
University" sb1212@txstate.edu"

46" Sue" Jong" " Minnesota"State"
University" "

47" Teri"Jo" Murphy" Program"
Officer" NSF" "

48" Valerie" Kasper" Research"
Assistant"

Florida"State"
University" vpk05@my.fsu.edu"

49" Younhee" Lee" Graduate"
student"

The"Pennsylvania"
State"University" yul182@psu.edu"
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 Undergraduate students reading and using mathematical definitions: 

Generating examples, constructing proofs, and responding to true/false statements 

 

Valeria Aguirre Holguín  

New Mexico State University 

 

University students often encounter difficulties making correct use of definitions. This is partly 

because they are not familiar with the difference between dictionary definitions and mathematical 

definitions (Edwards & Ward, 2004). However, in order to succeed in upper-level mathematics 

courses, they must often construct original (to them) mathematical proofs, which intrinsically 

require the correct use of definitions. Only a little research has been conducted to discover how 

university students handle definitions new to them (e.g., Dahlberg & Housman, 1997). Our 

research question is: How do university students use definitions, to evaluate and justify examples 

and non-examples, to prove results, and to evaluate and justify true/false statements? Data were 

collected through individual task-based interviews with 23 volunteer students from a transition-to-

proof course. There were five definitions but each student considered only one of the five. Content 

analysis and grounded theory are being used for analysis. Preliminary results are presented. 

 

Introduction and research questions 

The role of definitions in mathematics is fundamental. Such a statement might sound obvious 

and almost natural for mathematicians. Professors apparently expect students to be able to grasp 

definitions and then proceed to do something with them (Alcock, 2010). Nevertheless, “Many 

students do not categorize mathematical definitions the way mathematicians do; many students do 

not use definitions the way mathematicians do, even when the students can correctly state and 

explain the definitions; many students do not use definitions the way mathematicians do, even in 

the apparent absence of any other course of action.” (Edwards & Ward, 2004).  

This study is aiming to shed some light on how undergraduate students proceed when they are 

presented with new (to them) mathematical definitions. We have narrowed our questions to the 

following: 

• How do students make use of mathematical definitions new to them? What are their natural 

reactions? 

• What contributes to their difficulties with “unpacking” and using abstract mathematical 

definitions?  

• How do they use a definition in three different settings: examples, proofs, and true/false 

questions? 

This research falls within the scope of a framework developed by Selden and Selden (1995, 

2008, 2009). I particularly focus on the part of the framework referring to operable interpretations 

of statements and formal and informal forms of a mathematical statement. 

 

Literature Review 

Research has revealed that students have a variety of difficulties understanding and using 

definitions (Furina, 1994; Zazkis & Leikin, 2008; Fernandez, 2004; Roh, 2008), many of which 

could be attributed to the “structure of mathematics as conceived by mathematicians and the 

cognitive processes involved in concept acquisition” (Vinner, 1991). Pierie and Kieren (1994) 

developed a nested model of understanding. Their theory suggests that understanding is not always 
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a linear or continuous process, rather learners move back and forth within various levels of 

understanding.  

According to Tall (1980), “concept image is regarded as the cognitive structure consisting of 

the mental picture and the properties and processes associated with the concept…Quite distinct 

from the complex structure of the concept image is the concept definition which is the form of 

words used to describe the concept.” A mismatch between the concept image developed by an 

individual and the actual implications of the concept definition often leads to obstacles in learning. 

The work of several researchers has confirmed this (Alcock & Simpson 2002a, 2002b; Wihelmi, 

Godino & Lacasta, 2007; Zaslavsky & Shir, 2005).  

Parameswaran (2010) has addressed how mathematicians approach new definitions; her 

research shows that examples and non-examples play a very important role in the process of 

learning a new definition. However, students are not frequently asked to generate examples, most 

of the time they are provided with a worked-out example or an illustration (Reimann & Schult, 

1996; Watson & Mason, 2002). It is also infrequent for students to discuss and analyze the reason 

why a proposed example is actually an example or a non-example. “The relationship between 

examples, pedagogy and learning is under-researched, but it is known that learners can make 

inappropriate generalizations from sets of examples” (Bills, Dreyfus, Mason, Tsamir, Watson & 

Zaslavsky, 2006). Watson and Mason introduced the concept of example spaces as sets of 

examples developed according to one’s previous experience and to accomplish certain objectives 

(Watson & Mason, 2005). Zazkis and Leikin (2007) observed the distinction between examples of 

mathematical concepts and examples of mathematical tasks; my research involves the former. 

Although there are some studies addressing students’ and mathematicians’ use of definitions in 

the construction of proofs, there seems to be a lot more to investigate in respect to students’ 

perceptions of mathematical definitions, particularly about the competencies needed for them to 

make correct use of such definitions.  

 

Methodology 

I designed and conducted a series of semi-structured task-based interviews with voluntary 

participants taking a transition-to-proof course during Fall 2013. An interview protocol was 

designed for each of five selected definitions, but all the interviews followed the same format. 

These definitions were: function, continuity, semigroup, ideal, isomorphism, and group, spanning 

most of the course. I interviewed 23 volunteer students, which was almost the entire cohort. The 

interviews were conducted individually in a small seminar room. For each definition, 4-5 students 

were interviewed approximately two weeks before that particular definition came up in the course. 

The interviews were audio-recorded, and the students used LiveScribe pens in order that their real-

time responses could be analyzed.  

Based on my research interests and with the support of the existing literature, I wanted the 

interviews to address the following four main points. First, I wanted the students to be presented 

with a definition for the first time, that is, they were interviewed about a definition that they had 

not yet seen in class. Second, I also wanted to test their ability to interpret the definition, so I asked 

the participants if they were able to come up with some examples that could illustrate the 

definition. Third, I looked for information on their ability to make use of the definition in the 

construction of a proof that required no more than the definition itself. And fourth, I was interested 

in the way they could reason about true/false statements involving the definition. These four points 

were addressed by the design of five handouts, presented one after the other to each student 
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individually in a 60 to 90 minute interview. This design was partly inspired by the work of 

Dahlberg and Housman (1997) and the work of Housman and Porter (2003).  

Students were also allowed to use their course notes during the interview, and the handouts 

already given to them. I was an assistant in the course, so the interaction between the participants 

and me was naturalistic, more than an interview it could be seen as a conversation about a 

particular mathematical definition. I kept track of the possible divergent paths followed by the 

participants. 

The first analysis of the data was done considering each of the five definitions separately. I 

concentrated on only one definition at a time, analyzing all the data on the five handouts for the 

four to five respective students individually considering that definition. The second analysis was 

done by handout. I looked at the general performance across all handouts, considering one handout 

at time, across all participants. 

 

Preliminary results 

Some results that have emerged from the analyses are confirming how sturdy one’s previous 

knowledge can be when trying to understand new definitions. Such knowledge can strongly 

influence, not necessarily in a beneficial way, the acquisition of new concepts. I found supporting 

evidence suggesting that the newer the definition to the student, and the less related to everyday 

language, the less was the interference of inappropriate previous knowledge. Function and 

continuity, for instance, are related to Calculus and Algebra classes taken previously, whereas 

ideal and isomorphism did not bring any previous mathematical knowledge to mind. Interestingly, 

the concept of group brought to mind the everyday usage of this word. I also observed that 

students tended to neglect the details of a definition, if not the complete definition, in constructing 

a proof, and were not fully aware that these details are provided for a reason. Very few of them 

seemed to try hard to follow what the definition states. Another observation is that students were 

initially reluctant to provide examples of a newly provided definition, but if I probed a little further 

and provided time, students were often able to provide an example, or at least they came to realize 

that their example or their ideas were inappropriate. Therefore my observations suggest that the 

newer the concept (to them), the harder to provide examples or non-examples but also the newer 

the concept the less the interference of inappropriate previous knowledge. 

From my observations I have developed a preliminary conjecture on the different stages a 

student goes through in order to learn to correctly use mathematical definitions in a given context 

(which in this case is to construct a proof of a given statement). There seemed to be four stages: (1) 

Understand there is a difference between dictionary/everyday definitions and mathematical 

definitions (as Edwards and Ward (2004) suggested). (2) Understand when, and where, to use 

mathematical definitions. (3) Recall, look for, and attempt to use/follow definitions, not 

necessarily with success. (4) Use the definition successfully (within the given context). 

 

Some possible questions for the audience 

• Are there any other interesting behaviors we should account for when observing students 

working with definitions new to them? 

• Thinking of designing a future intervention, how should definitions be taught in such 

courses? Should we provide students with more opportunities to grasp definitions before 

they have to use them? 
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Social networks among communities of undergraduate mathematics instructors at PhD-
granting institutions 

 
Naneh Apkarian 

San Diego State University 
 
Calculus is typically the first undergraduate mathematics course for science, technology, 
engineering, and mathematics (STEM) majors in the United States. Internationally as well as 
domestically, first year mathematics courses are credited with preventing students from 
continuing along STEM paths. A recent study of the features that characterize exemplary 
calculus programs from five PhD-granting institutions highlighted several common 
characteristics, one of which was the existence of a well-established system for coordinating 
Calculus I. This coordination of courses and instructors seems to engender a community of 
practice. This study aims to expand on this finding by leveraging social network theory to map 
the underlying structure of the social ties between instructors of lower-division undergraduate 
mathematics courses, to compare informal and formal organizational structures in each case, 
and to compare the communities across the five selected institutions. Here I report on the results 
from one of the five selected institutions. 
 
Key words: Social Network Analysis, Communities of Practice, Calculus, Social Capital 
 

Calculus is typically the first undergraduate mathematics course for science, technology, 
engineering, and mathematics (STEM) majors in the United States. Internationally as well as 
domestically, first year mathematics courses are credited with preventing students from 
continuing along STEM paths (Seymour & Hewitt, 1997) a fact which has led to increased 
research and attention by professional societies. Complicating an understanding of the situation 
in Calculus I is the fact that most PhD-granting universities offer many sections of calculus each 
semester. These sections tend to be taught by a wide range of instructors including visiting 
faculty, postdocs, adjunct lecturers, graduate students, as well as ladder rank faculty. The 
tremendous variation in who is teaching calculus makes for a situation where different students 
taking calculus the same semester at the same university may not be taught the same core 
material. This is particularly problematic for calculus since it is a fundamental prerequisite for 
subsequent STEM courses. Moreover, the quality of instruction may vary considerably, which 
can affect what students actually learn, even if the same content is being covered and assessed.  

As part of a large national study of Calculus I programs, the Characteristics of Successful 
Calculus Programs (CSPCC) conducted case studies at five PhD-granting institutions selected 
for having a relatively more successful Calculus I program. At each of the five selected 
institutions, there was a central individual, the calculus Coordinator, who organized and led the 
enactment of the uniform aspects of calculus instruction. While the background of the 
Coordinator varied, what was common among the five Coordinators was their disposition toward 
their role. Each of the five Coordinators viewed themselves as a resource and facilitator rather 
than as the owner of the calculus program or the authority on how to teach. This finding suggests 
that further research needs to examine the extent to which faculty involved in teaching the 
calculus sequence communicate and interact with each other. Accordingly, the study reported is 
a first step in addressing the following goals:  
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1. To map and characterize the social network (informal structure) that exists among the 
actors within each community. 

2. To compare the informal structure derived from the social network with the formal 
structure of the departmental hierarchy. 

3. To compare and contrast the social networks across the five selected institutions. 
 
The first goal aims to fill a gap in the research literature. Social network analysis admits 
quantitative measures to the description of a community of practitioners in a way that has not 
been seen at the undergraduate level, although it has been used extensively with K-12 
communities (Daly, 2010). Such analyses will enable us to say more about how these 
communities support the successful calculus programs at the selected institutions. The second 
goal, comparing formal and informal structures, will be used to determine whether the instructors 
actually interact in the ways implied by the case studies. Specifically, I wish to discover whether 
the Coordinators are truly central actors who function as hubs for the dissemination of social 
capital, and if they are other brokers in the community. The third goal, which is beyond the scope 
of the current analysis, aims to describe differences between the communities at each of the five 
selected institutions.  
 

Theoretical Perspective 
This research is grounded in two complementary perspectives, the first of which draws on 

the community of practice perspective put forth by Wenger and colleagues (Lave & Wenger, 
1991; Wenger, 2000). A community of practice is a collective construct in which the joint 
enterprise of achieving particular goals evolves and is sustained within the social connections of 
that particular group. In achieving a particular joint enterprise, such as the teaching and learning 
of calculus, a community of practice point of view highlights the role of brokers and boundary 
objects. A broker is someone who has membership status in more than one community and is in 
a position to infuse some element of one practice into another. The act of doing so is referred to 
as brokering (Wenger, 2000).  

The community of practice perspective is well aligned with the perspective of social 
capital theory. This theory, which places value on social connections, has been leveraged in a 
wide variety of contexts, informing studies of “families, youth behavior problems, schooling and 
education, public health, community life, democracy and governance, economic development, 
and general problems of collective action” (Adler & Kwon, 2002, p. 17). The concept of social 
capital has also gained traction in organization studies, and it is in this area that our contribution 
falls. As social capital has been used in a wide variety of concepts, it has been conceptualized of 
in a wide variety of ways. However, common to all definitions is the notion that social capital 
consists of “resources embedded in social relations and social structure, which can be mobilized 
when an actor wishes to increase the likelihood of success in purposive actions” (Lin, 2002, p. 
24). In a sense, social capital refers to the human capital that an actor can access through his or 
her social ties. In some cases, central actors, referred to as hubs, facilitate the flow of capital 
between otherwise unconnected actors. In these cases the hub functions in a way similar to that 
of a broker. I believe that the overlap in characteristics will help to identify potential brokers in 
the observed networks. 
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Methods 
Following up from the CSPCC study, data collection for this study has commenced at the 

five selected institutions identified as having more successful Calculus I programs, with all data 
collection to be completed this spring. Data from one institution has been collected at the level 
required for network analysis (Daly, 2010). Social network surveys are being distributed to 
individuals at the selected institutions who have recently taught lower-division undergraduate 
courses, including Pre-Calculus, Calculus I, II, III, Linear Algebra, and Differential Equations. 
Network questions are used to ascertain the ties that exist between members of the community of 
calculus instructors, as well as the strength of those ties, and a variety of Likert scale and 
demographic questions are being used to characterize the actors between whom ties do or do not 
exist (Coburn & Russell, 2008).  
 Since this study aims to map the social network of a community of practice, I embarked 
on a whole network analysis. This type of analysis is performed by selecting a set of actors and 
measuring the ties between them. The standard approach for whole network analysis is to collect 
information regarding a few types of ties between many pairs of nodes (Daly, 2010). This study 
encompasses two types of group level analyses, those concerning network structuring and group 
social capital. That is, I am looking both to determine the structure of these communities and 
how they compare, as well as to see how social capital flows through each network (Daly, 2010). 

In this case, the actors selected are instructors of lower-division undergraduate 
mathematics courses, gleaned from course catalogs, as well as all members of the department 
who have administrative roles relating to undergraduate students and courses. The CSPCC 
results hinted that a community of practice might exist within this larger community. The 
network ties being measured in this survey relate to advice, influence, and friendship. The survey 
also includes Likert scales designed to characterize the individuals, subgroups, and the larger 
community in terms of trust, innovative climate, professional learning community collaboration 
and involvement, as well as mathematical affect and beliefs. The general design of the study has 
been used widely, with success, for this type of analysis, though not among this type of 
community (Adler & Kwon, 2002; Coburn & Russell, 2008; Daly, 2010; Tichy, Tushman, & 
Fombrun, 1979). The questions themselves have also been adapted from the K-12 literature, 
reworded to reflect the difference in the institution type (Antonakis, Avolio, & 
Sivasubramaniam, 2003; Daly, Der-Martirosian, Moolenaar, & Liou, 2014; Daly, Moolenaar, 
Bolivar, & Burke, 2010; Daly, 2010; Moolenaar, 2012). 
 

Preliminary Results 
 Based on the case study analyses from the CSPCC study, which identified coordination 
as a key feature across the five selected institutions, Rasmussen and Ellis (2014) argued that an 
important part of the story is the role that calculus Coordinator, among others, plays in creating 
and sustaining a community of practice around the joint enterprise of teaching and learning of 
calculus. In other words, the conjecture is that calculus is not seen as being under the purview of 
one person, such as the Coordinator, but rather that at these institutions, calculus is viewed as 
community property. 
 To explore this conjecture, I have begun to analyze the social networks that exist within 
the posited communities of practice at one of the selected institutions, using social network 
analysis methodology. The data collection for this project is ongoing, in part because high 
response rates are required for conclusive social network analysis (Daly, 2010). Toward research 
goal 1, as data is collected each participant becomes a node on a graph, and each connection 
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becomes an edge. The frequency of communication, as well as the variety of connections 
between two actors, are used to weight these edges. Graph theoretic approaches can then be 
leveraged to analyze network density and centrality, in order to characterize the community as a 
whole. It is also possible to identify central actors in the network by locating hubs, which will 
allow the identification of those members of the community who act ask brokers. Of further 
interest are any existent subgroups within the community, located by identifying cliques in the 
graph. At the first institution, we already see the emergence of subgroups characterized by 
experience level. 
 Data collection at the first institution to be investigated has begun to yield hints for 
research goal 2. It appears that the hypotheses from Phases I and II regarding Coordinators are 
being supported. Preliminary analysis reveals that the official calculus Coordinator is in fact a 
central actor in the network, a main conduit for social capital, and therefore appears to be a hub – 
matching his formal job description.  
 

Questions for Audience 
1.   To what extent might the general culture of mathematics departments foster or inhibit the 

existence of social networks revolving around issues of teaching and learning? 
2.   This study analyzes the existence and structure of social networks, but does not provide 

insight into how existing social networks came to be. What follow-up studies are needed to 
address this goal? 

3.   In what ways do these social networks provide informal professional development 
opportunities for mathematicians? 
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The Multiple Representations of the Group Concept 
 

Annie Bergman  Kathleen Melhuish  Dana Kirin 
     Portland State University         Portland State University      Portland State University 

 
This poster will explore the various representations of groups found within introductory abstract 
algebra textbooks.  Representations play an essential role in students understanding of 
mathematics (Goldin, 2002).  Textbooks provide one source for analyzing the intended 
curriculum and what representations students may have access to within their introductory 
course. 
 
Key words: Abstract Algebra, Group theory, Textbook Analysis, Representations 

 
 As part of a larger study aimed to develop a validated assessment in introductory group 
theory, we conducted an in-depth textbook analysis of the most frequently used introductory 
abstract algebra texts.  The texts where identified through a random sample of 294 institutions of 
the 1,244 schools offering mathematics majors.  In schools where the textbook is not uniform, 
the textbook most recently utilized was included. Any textbook used by at least 20 schools was 
included for analysis. (This number was eventually lowered to include the 4th most popular 
textbook.)   
 In order to answer the question, what representations are being used in introductory group 
theory textbooks to express a group, we began with Mesa’s framework for identifying 
representations of functions including symbolic, verbal, tabular, and other representations.  The 
research team used a thematic analysis (Braun & Clarke, 2006) approach to address additional 
representations that emerged within the group theory context.  
 After analyzing both the narrative and exercises for all sections relevant to introductory 
group theory, we had identified 11 different representations for the group topic.  The three most 
frequently used representations were documented over a hundred times each, Group Name (297), 
Verbal Description (128), and List of Elements (107).  The poster will illustrate various 
representations, their respective frequencies, and potential nuanced relationships.  The table 
below provides an example of the Klein four-group in each of the representations.  
 Mesa argues, while what students learn from textbooks is mediated by the school context 
(teacher, peers, instruction, assignments), the textbook provides a source of potential learning 
(Mesa, 2004, p. 1).  Rich representations can be an asset to deep conceptual understanding. Our 
initial textbook analysis indicated a huge variety of representations available for reasoning about 
groups. However, textbook analysis provides a starting point. Further research is needed to 
explore the role of representations in the enacted curriculum and how they may help (or even 
potentially hinder) student understanding.  
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Type%of%Representation%
Example%
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%

Set%Builder%Notation% ℤ!!×!ℤ! = {(!, !)|! ∈ ℤ!, ! ∈ ℤ!}%
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Group%Presentation%%%%%%%%
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List%of%Elements% ℤ!!×!ℤ! = { 0,0 , 0,1 , 1,0 , 1,1 }%%
%

Verbal%Description% The%group%of%order%4%where%each%element%is%his%own%inverse.%
%
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%

%
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Permutation% ℤ!!×!ℤ! = { 1234 , 12 34 , 13 24 , 14 23 }%
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0 1 0 0
0 0 1 0
0 0 0 1
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0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

%

%

! =
0 0 1 0
0 0 0 1
1 0 0 0
0 0 1 0
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0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

%
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Roles of proof in an undergraduate inquiry-based transition to proof course 
 

                   Sarah K. Bleiler                                               Jeffrey D. Pair 
    Middle Tennessee State University                 Middle Tennessee State University 

De Villiers (1990) suggested five roles of proof important in the professional mathematics 
community that may also serve to meaningfully engage students in learning proof: verification, 
explanation, systematization, discovery, and communication. We investigate written reflections 
on an end-of-semester assignment from undergraduates in an inquiry-based transition to proof 
course, where students reflected on instances during the semester when they engaged in the five 
roles of proof.  We present (a) student rankings of role engagement, (b) the types of activities 
students recalled as influential to their engagement in the roles of proof, and (c) how students 
perceived they engaged in the five roles. Students in this course reflected on activities distinctive 
of the inquiry-based environment (such as discussing, presenting, conjecturing, and critiquing) 
as influential to their engagement in the roles of proof. We provide student quotations 
highlighting these activities and offer implications for both research and practice.      

Key words: Introduction to Proof, Student Perceptions, Inquiry-Based-Learning 

Proving is a central activity to the discipline of mathematics as it is the means by which 
mathematicians develop and communicate knowledge (Hemmi, 2010; Schoenfeld, 2009). 
Despite educational recommendations that students learn to prove (National Council of Teachers 
of Mathematics [NCTM], 2000; Conference Board of Mathematical Sciences [CBMS], 2012), 
proof is still largely absent from K-12 classrooms (Stylianou, Blanton, & Knuth, 2009). Even 
university mathematics majors report varied, and often limited, experiences in terms of their 
exposure to proof at the undergraduate level (Boyle, Bleiler, Ko, & Yee, under review). 
Additionally, undergraduate mathematics majors have difficulty constructing and validating 
proofs (Bleiler, Thompson, & Krajcevski, 2014; Selden & Selden, 2003; Weber, 2001).  De 
Villiers (1990) noted that while proof serves a variety of important functions for mathematicians, 
students often do not see a need for proof.  He posits that this may be due to an overemphasis on 
one function of proof in the classroom, namely, verification. While a central function of proof in 
the mathematics community is verification (i.e., obtaining conviction that a mathematical 
statement is true) students may already be convinced that instructor-selected theorems are true.   

De Villiers argued that in order for students to learn proof in a meaningful way, additional 
roles of proof must be considered.  This notion was echoed by CBMS (2012) in their 
recommendations for the preparation of undergraduate prospective mathematics teachers, 
“teachers must know that proof and deduction are used not only to convince but also to solve 
problems and gain insights” (p. 59).  De Villiers suggested five roles of proof important in the 
professional mathematics community that may also serve to meaningfully engage students in 
learning proof: verification, explanation, systematization, discovery, and communication. De 
Villiers posits that students may better understand the need for proof if they understand and are 
able to engage in these additional roles. 

Knuth (2002) and Hemmi (2010) argued that more research is needed to understand how the 
various roles of proof could be incorporated into mathematics instruction. Recent research has 
demonstrated the benefits of active-learning in undergraduate classrooms (Freeman et al., 2014).  
In mathematics, active inquiry-based learning (IBL) (Yoshinobu & Jones, 2012) approaches are 
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often constituted by a focus on discourse and student-to-student interaction in the classroom 
(e.g., Stein, Engle, Smith, & Hughes, 2008). Some researchers (e.g. Blanton & Stylianou, 2014; 
Smith, 2006) have demonstrated the benefits of approaches that allow for student discourse in 
learning mathematical proof.  However, no research has been conducted into the opportunities 
students have to engage in the different roles of proof during IBL instruction.  An investigation 
into those opportunities is important so the field can gain greater insight into the ways IBL 
instruction may or may not support students’ engagement in the discipline of mathematics as 
practiced by mathematicians. In this study, we seek to contribute to this research area by 
answering the following research questions:  RQ1. Which of the five roles/functions of proof do 
students in an IBL proofs course perceive they engaged in the most? The least?  RQ2. During 
which types of activities do students in an IBL proofs course recall engaging in the five 
roles/functions of proof?  RQ3. How do students perceive that the activities they identify engage 
them in the five roles/functions of proof? 

Theoretical Framework 
The theory of situated learning (Lave & Wenger, 1991; Wenger, 1998) frames our study. 

Under this perspective, mathematical learning occurs when students have the opportunity to 
participate in the legitimate practices of the mathematical community. Proof is an activity central 
to the discipline of mathematics (Hemmi, 2010; Schoenfeld, 2009), and the following five roles 
of proof provide us with further insight into how mathematicians use proof (de Villiers, 1990). A 
mathematician engages in verification when a proof convinces the mathematician of the truth of 
a mathematical statement. The reason why the mathematical statement is true may be illuminated 
as a mathematician engages in the explanation role of proof. Systematization refers to proof’s 
role in organizing and creating a deductive system of axioms, definitions, and theorems. A 
mathematician engaged in discovery may deduce an unanticipated result during the completion 
of a proof. Proof also provides a means for communication among mathematicians as they 
transmit mathematical knowledge. We use these roles of proof as a lens to qualitatively 
understand the different ways in which students engage with proof in an IBL classroom. 

Methodology 
Setting 

The 13 undergraduate student participants (8 seniors, 2 juniors, 3 sophomores) in this 
research study were all enrolled in a single section of “Foundations of Higher Mathematics,” 
which serves as the transition to proof course at a large southeastern U.S. institution. Nine were 
mathematics majors (seven of whom were prospective secondary mathematics teachers); the 
remaining four were mathematics minors.  In the university catalog, the course describes a class 
that introduces students to set theory, proof, the language of mathematics, number systems, 
mathematical structures, and relations and functions.  The overall goal of the course is to aid in 
students’ transition from lower- to upper-level undergraduate mathematics courses, with a focus 
on proof/reasoning, problem solving, and informal and technical writing.  

The instructor (first author) designed the course in an effort to achieve the aims in the 
university course description.  The instructor also added some additional objectives that were 
stated on the course syllabus (see Table 1). Particularly relevant to this research is the objective 
“[Students will] gain an appreciation of the many roles of proof and reasoning in the discipline of 
mathematics (e.g., verification, explanation, systematization, discovery, communication).” 
Although gaining an appreciation of these five roles of proof was an objective of the course and 
was an implicit focus of instruction throughout the semester, students were not explicitly 
introduced to the terms describing the five roles until the last week of the semester. 

18th Annual Conference on Research in Undergraduate Mathematics Education 37718th Annual Conference on Research in Undergraduate Mathematics Education 377



Table 1. Course objectives for IBL Foundations of Higher Mathematics Course 
Students(will…(

Develop'a'deeper'understanding'of'key'concepts'from'prior'mathematics'courses'through'the'informal'
and'formal'justification'of'mathematical'propositions.''
Develop'knowledge'of'new'mathematics'content,'including'concepts'related'to'set'theory,'relations'and'
functions,'number'systems,'and'mathematical'structures.''
Develop'knowledge'of'the'working'practices'of'professional'mathematicians,'including'conventions'of'
language'and'writing.'
Gain'an'appreciation'of'the'many'roles'of'proof'and'reasoning'in'the'discipline'of'mathematics'(e.g.,'
verification,'explanation,'systematization,'discovery,'communication)'and'come'to'understand'proof'as'
inextricably'connected'to'community'norms'and'expectations'in'a'particular'socioAhistorical'context.''
Be'able'to'think'about'mathematics'in'flexible'ways'(using'different'representations'of'mathematical'
objects)'to'develop'intuitive'and'oftentimes'informal'arguments'around'a'mathematics'concept.''
Be'able'to'translate'informal'arguments'into'formal'written'proofs.''
Be'able'to'describe'what'constitutes'(and'what'does'not'constitute)'a'valid'proof,'according'to'the'proofA
writing'expectations'defined'by'our'classroom'community'(and'drawing'on'the'community'expectations'
of'professional'mathematicians).'
Be'able'to'read'mathematical'arguments,'provide'constructive'critiques'of'arguments,'and'revise/refine'
arguments'to'better'align'with'the'proofAwriting'expectations'defined'by'our'classroom'community.''
Be'able'to'construct'valid'arguments'using'varying'modes'of'argumentation'(e.g.,'direct'proof,'indirect'
proof,'proof'by'cases,'mathematical'induction,'construction'of'counterexamples)'and'varying'modes'of'
argument'representation'(e.g.,'symbolic,'pictorial,'narrative).'
Recognize'the'importance'of'inductive'reasoning'(e.g,'for'conjecture'formation)'and'the'importance'of'
deductive'reasoning'(e.g.,'for'systematization'and'formal'communication'of'mathematics),'and'be'able'to'
move'fluently'between'inductive'and'deductive'reasoning'to'formulate'mathematical'proofs.'
This IBL course was structured so that students worked individually on problems outside of 

class, and then during class they worked collaboratively to either solve new problems or refine 
proofs to problems they had already worked individually.  The instructor served as a facilitator of 
class activities and discussions, and used little direct instruction or lecture.  The course differed 
from what one might expect in a Modified Moore Method (MMM) classroom (Coppin, 
Mahavier, May, and Parker, 2009).  In a typical MMM classroom, students individually work on 
their problem sets, and then take turns presenting their individual results to the whole class 
throughout the majority of the class period.  Alternatively, in this IBL course, students rarely 
presented individual work to the whole class. Instead, students discussed their individual work in 
small-groups, and then spent a large amount of time in class refining their ideas with their 
teammates so that the small group could present their co-constructed ideas to the whole class.  
Data Collection 

Students in this class had a two-part final exam.  The first part was an in-class content-based 
exam (worth 80% of final exam grade) and the second part was an at-home reading/reflection 
assignment (worth 20% of final exam grade).  The at-home assignment constitutes the primary 
data source for this research study. For this assignment, students read de Villiers’ (1990) paper, 
summarized each of the five roles in their own words, described events related to the class in 
which they recalled engaging in each of the five roles, and ranked the five roles of proof 
according to perceived level of engagement. See Figure 1 for the full directions provided to 
students for this assignment.  Data in the form of classroom videos was also collected every class 
meeting.  We consult this video data as a secondary source for our analysis, to inform and clarify 
the descriptions of activities that engaged students in the five roles of proof. 
Data Analysis 

We conducted a mixed methods analysis of students’ responses on their reading/reflective 
assignment, where they ranked the five roles of proof in terms of level of engagement 
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(quantitative analysis/RQ1) and recollected an event in which they engaged in each of the five 
roles (qualitative analysis/RQ2 and RQ3). Here, we describe the data analysis process that we 
used to analyze responses for all five roles of proof. 

 

Figure 1. Instructions for students’ end-of-semester reading/reflective assignment 
For the quantitative component of our analysis we examined the sum, mean, and median of 

the students’ engagement rankings (see RQ1). For the qualitative component of our analysis, 65 
descriptions of recollected events form our units of analysis (each about one paragraph in 
length). The analysis occurred as a four-step process. In step 1, two researchers independently 
read the collection of students’ written responses and engaged in open process coding (Saldaña, 
2009). In step 2, we used our individual lists to help us compile one list of process codes that 
could be used to describe the activities that students recalled when reflecting upon the five roles 
of proof. Through comparison of our individual lists and reference back to students’ written 
reflections, we identified six broad activities to which students referred: presenting, discussing, 
conjecturing, working on problem sets, critiquing, and constructing/developing proofs (see 
RQ2).  In Step 3, we returned to the data to conduct a more precise second-cycle coding 
(Saldaña, 2009), individually assigning each unit of analysis to the relevant activity codes from 
Step 2. As an example, we coded the following reflection from Stephanie (on the 
communication role of proof) as related to the activities of discussing and critiquing:  

We engaged in the communication role/function of proofs throughout the whole semester…. 
In our groups, we were given proofs already worked out and we would critique those proofs 
using our rubric.  There would be a lot of discussion/debate within our groups as well as in 
the class that involved noticing errors in the proof or the good aspects of that proof.  It helped 
with giving a better understanding of how proofs work.   

Read the article by de Villiers (1990) titled, “The Role and Function of Proof in Mathematics.”  In 
this article you will find five roles/functions of proof that are discussed, namely, (1) verification, (2) 
explanation, (3) systematization, (4) discovery, and (5) communication.  After reading carefully 
through the article, write 2-3 sentences to describe in your own words each of the five 
roles/functions of proof.  Then, think back on your experience in this course and identify a 
different time when you believe you were engaged in each of the five roles/functions of proof. You 
might review our course PowerPoint slides and/or problem sets in order to jog your memory about 
particular instances when you engaged in the roles/functions of proof.  Describe clearly and 
completely your recollection of this event, for example, by providing background information on 
(a) the problem/proof on which you (or a group of you and your peers) were working, (b) how 
your work on that problem engaged you in the identified role/function of proof, (c) why you think 
that experience engaged you most in the identified role/function of proof rather than other 
possible roles/functions, and (d) any other information that would help me to understand how you 
see yourself and your peers engaging in the identified role/function of proof.  If there is a particular 
role/function of proof for which you cannot think of any experience that represents that 
role/function, please state so, and then describe an activity that could be included in next 
semester’s Foundations course to make sure that those students have the opportunity to engage in 
the relevant role/function of proof.  You may handwrite or type your assignment.  Please try to 
think of your own examples for each category, rather than discussing with peers before completing 
the assignment.  At the end of your assignment, please rank order the roles/function of proof 
according to which you believe you engaged in the most (1) to that which you believe you engaged 
in the least (5) throughout this semester. 
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Finally, in Step 4, we restricted our focus to the role and activity pairings for which each of 
us coded four or more student responses (see shaded cells in Table 2). For these pairings, we 
returned to the original data and identified themes in terms of how those students perceived the 
relevant activity (e.g., critiquing) engaged them in the role (e.g., communication) (see RQ3).  
 
Table 2.  Types and frequency of activities students recalled when reflecting on engagement in 
the five roles of proof.  The number inside each cell represents the number of student responses 
(out of 13) that both researchers coded for a particular activity/role pairing.  Shaded cells 
represent the activity/role pairing where both researchers coded four or more student responses. 
 Verification Explanation Systematization Discovery Communication 
Presenting 2 2 1 0 5 
Discussing 0 5 1 1 7 
Conjecturing 4 1 1 7 0 
Working on 
Problem Sets 

6 7 5 6 8 

Critiquing 0 0 2 0 4 
Constructing/ 
Developing 

5 5 8 4 2 

Results 
RQ1: Which of the five roles/functions of proof do students in an IBL proofs course 
perceive they engaged in the most? The least? 

The results of students’ ranking of their engagement in the five roles of proof are presented in 
Table 3.  Recall, a student assigned a rank of “1” to the role they perceived they engaged in the 
most and a “5” to the role they perceived they engaged in the least.  Thus, according to the mean 
rankings, the role students perceived they engaged in the most overall was the communication 
role, followed by verification, explanation, systematization, and discovery, respectively.   
Table 3. Results of student rankings: Engaged the most (rank of 1) to least (rank of 5).  (N=13) 

Role/Function Sum Median Mean S.D. 
Verification 33 2 2.54 1.34 
Explanation 37 3 2.85 1.41 

Systematization 43 3 3.31 1.26 
Discovery 52 4 4.00 1.04 

Communication 30 2 2.31 1.32 
Students’ quantitative rankings aligned with their qualitative reflections. Many students 

wrote of constant engagement in the communication role of proof, such as Carla’s reflection, “I 
experience this every day in class” (Carla). Moreover, for the least engaged role (i.e., discovery), 
three students explicitly mentioned not recalling an experience when they engaged in discovery. 
For example, Jeb wrote, “I don't think I was directly involved with finding some new 
mathematical result.” (Note: Discovery was the only role where any students mentioned that they 
could not recall an experience related to that role). 
RQ2: During which types of activities do students in an IBL proofs course recall engaging 
in the five roles/functions of proof?   

The six activities students recalled were presenting, discussing, conjecturing, working on 
problem sets, critiquing, and constructing/developing proofs.  In a longer version of this article, 
we will describe these activities and how they were implemented in the IBL course.   
RQ3: How do students perceive that the activities they identify engage them in the five 
roles/functions of proof? 
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We present a selection of the results for three of the five roles of proof, with intentions of 
expanding on these results in a longer version of this paper.   

As students reflected on their engagement in the verification role of proof, four recalled 
conjecturing as a relevant activity.  In fact, each of these students specifically mentioned 
“Carla’s conjecture” or “Susan’s conjecture.”  These two conjectures were formed based on 
ideas of students in the class, and aptly named after those students. Both conjectures stemmed 
from students’ exploration of content that extended beyond the boundaries of the planned course 
curriculum (as written in the problem sets). Our data suggest that for students, being presented 
with a conjecture posed by one of their peers caused them to legitimately consider the veracity of 
the conjecture.   David’s reflection provides us insight into his perceived engagement in 
verification through conjecturing: 

Just recently, when learning about unions and intersections of sets in class, Carla had a 
question regarding sets and intersections and unions of sets.  She wondered if ! ∪ !!could 
equal ! ∩ !.! You had us reflect, create a conjecture, and prove that conjecture. By us getting 
the chance to create and prove a conjecture based on this situation, we were making a 
hypothesis regarding sets and verifying that hypothesis. 
Five of the students recalled discussing proofs as meaningful to their engagement in the 

explanation role of proof.  Three of these students described how discussing proofs with peers 
allowed them to share and learn about why a particular proof technique works (i.e., 
understanding the proof process).  The other two students described how discussing examples of 
a mathematical statement allowed them insight into why the statement was true (i.e., 
understanding the mathematics). Millie’s reflection serves as an example of when proof was used 
as a means to gain insight into the underlying mathematics: 

For example, in Problem Set 9, we had to prove by induction that if |!| = !!, then      
|!(!)| = !2!….we started working on that one by first doing some examples. After we did 
those examples and examined how the number of elements in the power set changed from 
one example to the next, Susan said that each time the cardinality of the power set doubled. 
We then discussed why that happened and decided that it was because each time you added a 
new element to !, the element also had to be added to each of the subsets of ! (or each 
element of the power set). Then we had the original set of subsets (which are still subsets so 
we have to keep them) and the new set with the new element added. So, as we talked it 
through and thought about how to write the proof, we discovered WHY the statement was 
true. The validity wasn’t so much in question, but the why behind it was. 
As a final example of our results, when students reflected on their experiences with the 

communication role of proof, four reflected on critiquing activities (recall Stephanie’s reflection 
in the Data Analysis section of this paper) and five reflected on presenting activities.  Notably, 
two students mentioned a specific presenting activity where students would share their individual 
arguments with their group members and then the whole group worked together to create a new 
product that best communicates their argument to present to the class.  Both presenting and 
critiquing seemed to engage students in an active consideration of what counts as mathematical 
proof and exchange of strategies and ideas for approaching new arguments.  For example, Krissy 
reflected:  

I found the most significant examples of engagement with the “communication” role of proof 
as the times in class that we evaluate multiple arguments for the same proof…. Every time 
we have engaged in this exercise, I have found new ideas and techniques for proof-writing 
that I eagerly attempted to use in my own proofs. 
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Discussion and Implications 
Students in this IBL course reflected on many opportunities they had to meaningfully engage 

in five roles of proof.  In addition to activities that might be considered common in traditional 
undergraduate proof classes, such as constructing/developing proofs or working on problem sets, 
students in this course reflected on activities such as discussing, presenting, conjecturing, and 
critiquing as influential to their engagement in the roles of proof.  Student-generated conjectures 
fostered an environment where the validity of the conjectures was truly in question, and students 
saw the need for proof as a means to convince (i.e., verification). Discussions in the classroom 
were instrumental in helping students gain a “sense of illumination” (de Villiers, 1990, p. 18) 
into why a particular mathematical statement was true, or why a particular mode of 
argumentation (Stylianides, 2007) was appropriate (i.e., explanation). Moreover, students 
recalled presenting and critiquing activities as influential to their engagement in 
communication, where proof is “a form of social interaction…[that] involves the subjective 
negotiation of not only the meanings of concepts concerned, but implicitly also of the criteria for 
an acceptable argument” (de Villiers, 1990, p. 22).   

Student reflections suggested that the roles of proof for them as newcomers in the 
mathematics community (Lave and Wenger, 1991) go above and beyond the roles of proof for 
mathematicians. For example, with respect to the explanation role of proof, students used proof 
as a means to make sense not only of the underlying mathematics but also of the proof process in 
general.  Similarly, Yopp (2011) found that mathematicians identified a variety of roles of proof 
in undergraduate mathematics instruction beyond those mentioned by de Villiers (1990). 
Moreover, student reflections on roles such as explanation or discovery were not always 
restricted to deduction, but also included quasi-empirical methods (deVilliers, 2004).  

 In future research, we would like to use a broader lens to consider how such quasi-empirical 
methods foster students’ engagement in practices of the mathematics community. We contend 
that to create a learning environment where students have opportunities to engage in authentic 
mathematical practices, more attention needs to be given to activities such as discussing, 
presenting, critiquing, and conjecturing in the mathematics classroom.  Moreover, because we 
found that discovery was the least engaged role of proof for students in this class, our next step 
for course development is to design activities that foster students’ engagement in the discovery 
role of proof. As an implication for practice, we believe that it would be beneficial for instructors 
to engage their students in a similar reflective assignment so that (a) students can more explicitly 
reflect on the roles of proof, and (b) instructors can gain insight into the roles of proof that are 
most prominent for students, and the areas for which more learning opportunities are needed.   
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Table 1: Comparison of grades in MA125 based 
on first math course at UAB for Freshman 

First 
MA 

course 
N Mean Standard 

Deviation 

Std. 
Error 
Mean 

Signif. 
level 

125 1115 2.676 1.43191 0.04288   
98 101 0.931 1.28263 0.12763 0.000 

102 204 1.427 1.42098 0.09949 0.000 
105 299 1.977 1.54011 0.08907 0.000 
107 118 2.203 1.33691 0.12307 0.326 
106 128 2.648 1.45586 0.12868 0.836 

Coding: A=4, B=3, C=2, D=1, W/F=0 
"

Poster: Can Mathematics Be a STEM Pump? 
Student Trajectories in Engineering, Mathematics, and the Sciences (STEMS) 

The national goal of increasing STEM majors is well-established.  As noted in “Rising Above 
the Gathering Storm” (National Academies, 2008); “Preparing the Next Generation of STEM 
Innovators: Identifying and Developing Our Nation’s Human” Capital (National Science Board, 
2010) and several other recent publications (National Academy of Science, 2011;  CRS Report, 
2008; National Academy of Science, 2010; National Academy of Science, 2012), it is widely 
recognized that sustaining the economic leadership of the United States over the next two 
decades will require a robust supply of 
bachelor’s degree graduates in the STEM 
disciplines.  Certain specific courses within 
the first two years in mathematics and the 
sciences are rate-limiting for students that 
have a realistic chance of success in a major 
in science, technology, engineering, or  
mathematics (STEM), but “bog down” at a 
particular point in their trajectory of 
courses.  Identification of such points, and 
application of resources to improve student 
success at those points, can dramatically 
improve retention in STEM.   

Pilot Study. The UAB Department of Mathematics together with the NSF-funded Greater Birmingham 
Mathematics Partnership conducted a preliminary trajectory study (Bond, 2013) of student success in 
Calculus 1 (all STEM majors at UAB require Calculus 1 or higher) as a function of the first UAB 
mathematics course taken. Table 1 is looking at just the starting point of the trajectories of first time 
freshmen in entry-level mathematics courses through Calculus 1 (MA125) in the years 2006-2012. Grades 
being compared are all MA125 grades (Chart 1):  those of freshman placing directly into MA125 (first 
row of Table 1) versus the MA125 grade (subsequent rows) of those placing originally into a lower-level 
course and eventually making it to MA125.  (The courses considered are, in order of mathematical level, 
Basic Algebra—MA098, Intermediate Algebra—MA102, Pre-Calculus Algebra—MA105, Pre-Calculus 
Algebra and Trigonometry Combined—MA107, and Pre-Calculus Trigonometry—MA106.) 

This study shows that MA105 (Pre-Calculus 
Algebra) is a critical entry-level course.  It is the 
highest level course below MA125 where students 
have a statistically significantly WORSE chance 
of succeeding in MA125 than those who are 
originally placed into MA125.  (The significance 
results were confirmed with non-parametric 
Mann-Whitney analysis.  Also, the significant 
differences remain when the students with higher 
ACT mathematics sub-scores, above 27, were 
eliminated from the data pool.)   

Over the past decade, STEM departments at UAB 
"Chart"1"
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have conducted isolated studies on a departmental basis.  Such studies are useful, but the conclusions are 
limited in scope since they typically only consider choosing one of several possible predictors.  If 
mathematics is to be a STEM pump, then you have to understand the flow! 

Proposed STEMS Study.  The proposed STEMS study of Student Trajectories in Engineering, 
Mathematics and the Sciences would examine student grade, admission testing, and demographic data in 
the same mathematics courses, but not just the starting course: the data on all intermediate courses taken 
by each student would be captured and analyzed.  In addition, the same data for entry-level courses in 
biology, chemistry, computer science, engineering, and physics would be captured and analyzed in 
parallel with the mathematics courses. Trends and commonalities would be identified in student 
trajectories with the goal of identifying critical rate-limiting points for success in STEM majors, such as 
exemplified by the MA105 starting point in student mathematics trajectories. 

This poster reports both on the Pilot Study (Bond, 2013) of two points in mathematics student trajectories, 
and an outline of a planned study of STEM trajectories more generally. 
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Learning in one classroom: Developmental mathematics 
students and prospective mathematics teachers 

 
Kenneth Bradfield, Raven McCrory, Aditya Viswanathan, & Kristen Bieda 

Michigan State University 
 
Developmental mathematics courses in the United States continue to lack in curriculum 
and instructional practices that promote students’ mathematical proficiency.  The 
instructional practices that researchers argue can promote students’ mathematical 
proficiency in K-12 classrooms can apply to undergraduate classrooms as well.  This 
poster will discuss an NSF-funded research project that facilitates students’ 
mathematical development in a non-credit-bearing developmental mathematics course, 
in concert with providing prospective mathematics teachers an opportunity to learn to 
teach for mathematical proficiency.  The project team collected quantitative data that 
compared the intervention students to their peers before and after participation in the 
course.  Results indicated that developmental mathematics students who participated in 
our intervention started behind, caught up, and experienced more success than their 
peers in their subsequent mathematics course. 
 
Keywords: Developmental mathematics, mathematical proficiency, pedagogy 
 

Across the country, post-secondary institutions design courses to meet the needs of 
students that are underprepared for their mainstream sequence of mathematics courses.  
Although mathematics departments attend to the diversity of the methods and their 
participants, developmental courses continue to lack in teacher preparation (Conference 
Board, 2012; Schmidt, Blömeke, & Tatto, 2011) and cognitively-demanding 
curriculum (Attewell, Lavin, Domina, & Levey, 2006; Fairweather, 2008; Larnell & 
Smith, 2010).  Larnell (2013) argued that these conditions hinder the development of 
students’ mathematical proficiency. 

Researchers in K-12 mathematics education have articulated the best pedagogical 
practices to promote the five strands of students’ mathematical proficiency which are 
applicable to this undergraduate student population (Hodara, 2011).  In the National 
Research Council’s report Adding It Up, Kilpatrick, Swafford, and Findell (2001) 
identified the five strands for mathematical proficiency: conceptual understanding, 
procedural fluency, strategic competence, adaptive reasoning, and productive 
disposition.  To promote these strands, undergraduate instructors can engage students 
in doing, talking, and thinking about mathematics by encouraging students to 
participate in class discussions and focusing on students’ justification of their own 
mathematical ideas (Fuson, Kalchman, & Bransford, 1999; Kilpatrick et al., 2001; 
Stein, Engle, Smith, & Hughes, 2008; Hodara, 2011). 

This project investigated collaboration between a mathematics department and a 
university teacher education program where prospective mathematics teachers provided 
instruction, and received mentoring to learn to teach, in a developmental mathematics 
course.  Developmental mathematics students enrolled in a face-to-face section that met 
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twice a week for one hour and forty minutes to supplement their work in an online-
based tutoring and assessment program.  In our intervention section, pre-service 
mathematics teachers took turns co-teaching lessons in pairs who employed research-
based instructional methods to promote students’ mathematical proficiency under the 
guidance of mathematics education researchers. 

Quantitative data demonstrated that students in the intervention started behind and 
caught up to their peers in the control group and in addition surpassed their peers in 
the non-intervention face-to-face sections.  Research assistants collected test scores 
before (standardized tests, math department placement exam, and ALEKS pre-score), 
and after the course (final exam, ALEKS post-score) as well as course grades in the 
online course and their subsequent mathematics course.  Pre-intervention test scores 
indicated that the intervention students started behind and caught up to their peers on 
the online-only control group.  Based on post-intervention test scores, the 
intervention students passed the online course and also their subsequent mathematics 
course at higher rates than their peers in the non-intervention face-to-face sections. 

Currently in its third year, the project continues to generate data with a new cohort 
of developmental mathematics students and pre-service mathematics teachers.  Project 
members will use this new data along with attitudes and belief survey data to generate 
multi-level models of the intervention students, in conjunction with qualitative data that 
includes video observations and interviews.  Project leaders continue to ensure that our 
curriculum aligns with minor changes in the pacing of the course and course design 
meets the needs of a new group of developmental mathematics students. 
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Seeking Solid Ground: A Study of Novices Indirect Proof Preferences 
 

Stacy A. Brown 
California State Polytechnic University, Pomona 

The aims of this study are two-fold: (1) to investigate novices’ proof preferences as indicated by 
novices’ selection of the “most convincing” argument when engaging in proof comparison tasks 
involving an indirect and a direct proof; and, (2) to explore the criteria students’ bring to bear 
on proofs as they engage in proof comparisons. Informed by the cK¢ model of conceptions 
proposed by Balacheff (2010), analyses indicate that directness was not a primary criterion used 
for the select of a proof during proof comparisons, even though this criterion was suggested by 
prior research. Instead, the primary criteria identified in students’ rationales were familiarity 
and the degree of certainty in one’s understanding of the given proofs, which in turn suggests 
that it is the subjective sense of being on solid conceptual grounds that determine students’ 
preferences. These findings are considered in light of the cK¢ model of conceptions.  

Key words: Indirect proof, Proof preferences, Proof by contradiction 

Researchers interested in students’ conceptions of indirect proofs, which include proofs by 
contraposition and proof by contradiction, have observed that students do not find indirect proofs 
convincing (Harel & Sowder, 1998) and experience difficulties accepting indirect proofs 
(Antonini & Mariotti, 2008). For instance, Harel and Sowder (1998) assert that in their teaching 
experiments, “Students seldom used proof by counterexample and they did not seem to be 
convinced by it; nor were they convinced by proof by contradiction” (p. 253). Furthermore, they 
argue that students’ lack of preference for proofs by contradiction is a particular manifestation of 
the constructive proof scheme. Leron (1985), reflecting on the implementation of an instructional 
innovation, also argued that students do not find proofs by contradiction convincing and prefer 
constructive proofs. In an earlier study of students’ levels of confusion with regard to the 
standard proof for the irrationality of √2, Tall (1979) noted that while the proof is “aesthetically 
pleasing … learners often feel a sense of emptiness and lack of explanation as to why √2 is not 
irrational” (p. 206). Working from the Cognitive Unity perspective, Antonini and Mariotti (2008) 
have highlighted how indirect proofs require learners to be able to shift between logically 
equivalent statements (e.g, from a principal statement, p→q, to a secondary statement,¬q → ¬p, 
in a proof by contraposition). They argue that students’ experience difficulties accepting the 
proof of the secondary statement as a proof of the principal statement and note that doing so may 
require “mental efforts that not all students seem to be able to make” (p. 411).  

Given the amount of research indicating students’ lack of preference for and difficulties 
deriving a sense of conviction from indirect proofs, it is surprising that none of the research 
discussed engaged students in comparative tasks involving both an indirect and a direct proof. 
This aspect of the research is especially surprising since several well-known studies, which 
explored the types of arguments students and teachers find convincing, have employed 
comparative tasks (Healy & Hoyles, 2000; Knuth, Choppin, & Bieda, 2009). Moreover, while 
Tall engaged students in comparisons his tasks only involved indirect proofs, for he sought to 
understand if certain indirect proof structures created less confusion for students. Thus, 
comparisons between indirect and direct were not employed. Other researchers, such as Harel 
and Sowder (1998), Leron (1985), and in some investigations by Antonini and Mariotti, inferred 
students’ preferences from students’ reactions to an indirect proof during a teaching experiment; 
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that is, students were reacting to a single argument. Thus, there is a need for research that 
explores students’ proof preferences in the context of comparative tasks. This study aims to 
address this need by exploring the following questions:  
1. Do novice proof writers find indirect proofs less persuasive than direct proofs when 

engaging in proof comparisons? 
2. Which rationales do students’ provide for their selection of a more convincing proof during 

proof comparisons involving both direct and indirect proofs? 
These questions are of importance for several reasons. Research on indirect proofs is unique 

in that it represents the only area of research on students’ proof conceptions that posits that 
students’ difficulties stem from a desire for alternative forms of proof. Indeed, if you look to 
research on students’ difficulties with other specific forms of proof, such as mathematical 
induction (Harel & Brown, 2008; Harel, 2001, Brown, 2003) or combinatorial proofs 
(Lockwood, 2011; Maher & Martino, 1996), you will not find such rationales. Moreover, it may 
be the case that when an actual alternative is present, other aspects become salient to students.1 
Lastly, as noted above, Antonini and Mariotti (2008) have made progress on identifying features 
that are unique to indirect proofs, both from a mathematical and cognitive perspective; namely, 
indirect proofs’ use of shifts between principal and secondary statements. Yet, researchers have 
not documented whether or not it is these very features that students’ attend to when engaging in 
comparative tasks. It is for these reasons that the current study was conducted. 

Theoretical Perspective 
This work is part of a larger research program generally focused on tertiary students: 

development of a conception of indirect proof, where conception is used in the sense of 
Balacheff’s cK¢ model; the emergence of hypothetico-deductive reasoning (Piaget, 1968/1964); 
and, the cohabitation knowings (Balacheff, 2010) related to the verification and explanation 
functions of proof. While space limitations do not permit a full description of the cK¢ theory, a 
general comment and a discussion of key features are needed. The general comment is that the 
cK¢ model was designed as a theory to model individuals’ development of conceptions and is a 
complementary theory to the Theory of Didactical Situations (Brousseau, 1997). The key 
features are best understood by examining the meaning of the symbols cK¢, which stand for 
conception, knowing, and concept. A conception is understood as the quadruplet (P, R, L, Σ), 
where P is a set of problems, R is a set of operators, L is a representational system, and Σ is the 
control structure. Roughly speaking, the set of operators, R, are the set of allowable actions with 
the learner’s milieu. The control structure, Σ, consist of “the tools needed to make decisions, 
make choices, and express judgments on the use of an operator or on the state of a problem (i.e., 
solved or not)” (Balacheff, 2010, p. 127).  One way of thinking about control structures is that 
they are the means that students bring to bear on a concept during acts of validation. A knowing 
is “the set of conceptions which can be activated by different situations the observer considers 
conceptually the same” (Balacheff, 2013, p. 4). Lastly, a concept is defined as follows, “Let’s 
now claim the existence of a conception Cµ more general than any other conception to which it 
can be compared … A ‘concept” is the set of all conceptions having the same object with respect 
to Cµ” (Balacheff, 2013, p. 10). The perspective taken in this paper is that the cK¢ model is 
appropriate for the research conducted since the research sought to understand students’ 
judgments and their relation to the problem situations encountered. Indeed, this research can be 

                                                
1 This is not to say an alternative is always available; e.g., there is not a well-known direct proof of the irrationality 
of √2. 
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viewed as asking, which criteria do students’ bring to bear on indirect proofs? Which control 
structures are employed to decide if a given proof is the most convincing proof to the learner? 

The Study 
The research reported occurred in two phases. Phase I involved the administration of an 

electronic survey to novice proof writers; that is, second and third year mathematics majors who 
were either concurrently enrolled in or had taken during the same academic year an introduction 
to proof course. The survey consisted of 3 comparison tasks and a statement selection task. 
Students were asked in the survey, “Which proof, in your opinion, is the most convincing? In 
other words, which proof better persuades you of the truth of the theorem?” Phase 2 of the study 
involved interviews with 20 novice proof writers. The interview tasks were the same as the 
survey tasks, with the exception that students were asked to verbally explain their selection and 
to respond to two proof comprehension questions. Specifically, students were provided with two 
proofs, given time to read the proofs, asked the preference question and then the comprehension 
questions. The first comprehension question asked students to classify the given proofs, using the 
most appropriate proof type, after having been given a list including the following types: direct 
proof, proof by cases, proof by contradiction, proof by mathematical induction, proof by 
contraposition, and other. The second comprehension question asked students to engage in the 
following hypothetical scenario: “Imagine that another student comes to you and says, ‘Hey, I 
don’t understand this proof. Can you explain it to me?’ What would you say?” Data collection 
for the interviews included all of the students’ written work and a video-recording of the 
interview. For the purposes of this paper, we will consider students responses to the 
direct/indirect comparison tasks, which where the Theorem 1 and Theorem 3 tasks. 

The Theorem 1 task involved the comparison of an unfamiliar direct proof, Proof 1A, and a 
proof by contradiction, Proof 1B (see Appendix A), with familiar content. The inclusion of this 
task was motivated by pilot work in which students were asked to compare a direct proof 
involving the Principle of Mathematical Induction (PMI) to a proof by contradiction involving 
the Well-ordering Principle. In the pilot trials, which involved surveys and interviews, it was 
found that the majority of students (11:4 in Trial 1 and 12:3 in Trial 2) selected the direct proof 
as the “most convincing.”  However, when asked to explain their selections students’ written and 
interview responses were overwhelmingly focused on the students’ familiarity with PMI and 
their lack of familiarity with the Well-ordering Principle. Indeed, there was no evidence of 
students’ attention to directness (or a lack thereof) as a criterion for making judgments. To see if 
directness could be invoked as a criterion, the Theorem 1 task was design to present the less 
familiar content with the direct proof (1A) and the more familiar content with the indirect proof 
(1B).2 It was posited that if students prefer direct proofs then that preference might override the 
lack of familiarity in 1A. If students did not exhibit a preference for 1A, then either: directness is 
among those criteria that are subordinate to other criteria, such as familiarity; or, directness is 
only a criterion in problem situations with specific characteristics, which were not evident.  

The Theorem 3 task was design to control for familiarity and length in that the proofs 
provided were nearly identical in length and involved content presented in the same chapter in 
multiple texts. Proof 3A was an indirect proof (proof by contraposition) and Proof 3B was a 
direct proof (Appendix B). It was hypothesized that if students lack a preference for indirect 
proofs, then 3B would be selected by the majority of students and directness would be employed 
as a criterion for justifying one’s selection of the “most convincing” proof. If 3B was not 
                                                
2 The unfamiliar content in 1A required more text, so the unfamiliar argument (1A) was slightly longer than the 
familiar argument (1B), which may be a complicating factor. 
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selected by the majority of novices, then the findings would provide grounds for questioning the 
extent to which directness is a general criteria for novices and, furthermore, if there are 
comparative situations in which a lack of preference is exhibited among novices.  

Results 
We will report findings from the selection tasks of Phase 1 and Phase 2 together (n = 33). 

Data from the Theorem 1 task indicate that the students found Argument 1B, the familiar indirect 
proof (proof by contradiction), more convincing than Argument 1A, the unfamiliar direct proof. 
The indirect:direct (1B:1A) selection ratio was 30:3. Data from the Theorem 3 task, however, do 
not suggest that students viewed the direct proof (3B) as more convincing that the indirect proof 
(3A). The indirect:direct (3A:3B) selection ratio was 15:17.3 In pilot trials, the Theorem 3 task, 
which had minor modifications for the study, produced similar results. The selection ratio was 
12:9. Taken together the pilot and study data yield an indirect:direct selection ratio of 27:26.  

Findings from the 20 interviews with novice proof writers indicate that multiple criteria other 
than directness were used to judge the most convincing proof. Due to space limitations, the three 
most common criteria will be discussed. One of the most common criteria used in the Theorem 1 
task for students’ selection of 1A was familiarity. Below is an illustrative interview excerpt. 

Nicholas: It’s just the familiarity of the structure … to see it as the way we define odd. I am 
familiar with this (gestures to Argument 1B), as compared to … they jump into … series … 
and a … it’s a little bit rough with my memory right now.  

When responding to the classification task, Nicholas immediately pointed out that the first 
sentence of 1B was the negation of Theorem 1 and that this indicated that 1B was a proof by 
contradiction, suggesting his awareness of the proof type. Whereas, when asked to classify 1A, 
he was quite hesitant, which suggests a proof type was not of readily available to him.  

Nicholas: And, here (gestures to Argument 1A),  …  (long pause) …  [re-reading argument] 
I feel like this is more of a … more of a direct proof. 

Another common criterion expressed by students was the complexity of the content. This 
concern manifested itself through comments focused on the complexity of the notations 
(symbols) and equations used in 1A, such as the summation notation.  

Anthony: B definitely. The structure of 1B seems a lot more straight forward and it looks a 
lot more simpler and less symbols … so less symbols is always a preference for me. 

When Anthony was asked to classify the proofs he noted that in 1B the statement, “a2 cannot 
be both even and odd,” indicated a contradiction. However, when he was asked to explain the 
first line of 1B, he became confused and began to question if the proof was correct. After re-
reading the proof, he was asked again about the first sentence. He noted that it was the negation 
of Theorem 1 and reiterated his preference for 1B, indicating that even though he was aware of 
having some confusion, he wanted to avoid the “complicated” argument, 1A.  

The third criterion that was common was distinct from the others in that it was a highly 
subjective criterion: the degree of certainty in one’s understanding of the proof. This criterion 
manifested itself during the Theorem 1 task through students’ remarks regarding their certainty 
in the validity of proof 1B, and in relation to concerns about their own understanding of the 
validity of proof 1A. For instance, Tina noted that she thought 1A was “too complicated” 
because of the summation notation and then justified her selection of 1B.  

Tina: I feel that this (Argument 1B) is way more easier than this one (1A) and … it’s shorter 
… and I don’t know … I just understand that one better (gestures to 1B). 

                                                
3 One student responded by selecting both proofs. 
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Responses to the Theorem 3 task were similar to the Theorem 1 task in terms of the criteria 
students brought to bear on the proofs when selecting the “most convincing” proof, with three 
exceptions. First, familiarity was not used as a criterion to distinguish the arguments in any of the 
interviews. A second distinction was that it was common for students to consider the Theorem 3 
proofs in terms of their alignment with the novices’ own way of thinking.   

Oliver: “I do not know why but I choose 3A … it’s kind of logically like … in life you know, 
you’re talking to your friend and you say ‘but if this happens’ then …”  

A third distinction is that since proofs 3A and 3B were similar in their level of complexity 
(from an expert’s perspective), considerations of complexity were highly dependent on the 
students’ understanding of the related content. In other words, while students uniformly viewed 
1A as more complex that 1B, this was not the case with the Theorem 3 proofs. Also, inquiries 
into students’ rationales revealed that for many students the criterion, the degree of certainty in 
one’s understanding, was the primary criterion by which students selected the most convincing 
proof. For instance, Kurt selected 3B (direct) and rationalized his choice by stating, “I just like 
this one better.” Yet, when asked to explain 3A (indirect), responded: “To be honest, I’m a little 
confused by this one.” Similarly Marianne, selected 3A, stating “they explain it better in this one 
(3A) than this one (3B).” When asked the comprehension questions she immediately classified 
3A as a proof by contraposition and was able to clearly explain the sequence of statements. 
However, with 3B (direct) she proceeded hesitantly and then remarked, “I don’t understand why 
they said this here” in reference to “By the given property, A ⊆ ∅.” Both of these examples 
illustrate students’ awareness of a point of personal confusion and their selection of the proof for 
which they experienced a higher degree of certainty in their understanding of the proof. 

Discussion 
The purpose of this study was two-fold: (1) to examine if novice proof writers find indirect 

proofs less persuasive than direct proofs when engaging in proof comparison; and (2) to identify 
the criteria students’ provide for their selection of a more convincing proof during proof 
comparisons involving both direct and indirect proofs. The students’ responses to the Theorem 1 
proof comparison task indicate that when a direct proof is viewed as more complex and less 
familiar, students will prefer an indirect argument and that they may do so even if some level of 
confusion occurs in relation to the indirect argument. The students’ responses to the Theorem 3 
proof comparison task indicate that even when familiarity, length, and relative complexity were 
controlled for, novices do not use directness as a criterion for their selection of the “most 
convincing” proof. Furthermore, closer examination of the students’ rationales indicates that a 
primary criterion is the degree of certainty in one’s understanding. Taken together these findings 
support two conclusions: (1) directness is not a primary criterion for comparisons; and, (2) 
familiarity, complexity, alignment with one’s own thinking, and the degree of certainty in one’s 
understanding are the primary criteria used during comparison tasks, with the latter criteria being 
the most critical. Furthermore, if directness is a criterion for students, then the characteristics of 
the situations that evoke this criterion must be different than those of the tasks used in the study.  

In relation to existing research, this study found, as have others (Healy & Hoyles, 2000; 
Knuth, Choppin, & Bieda, 2009), that familiarity impacts students’ selection of the “most 
convincing” proof. Also, in terms of the theoretical perspective of this work, considerations of 
familiarity are not unexpected. Specifically, if the student is able to recognize similarities to a set 
of problems, P, a set of operators, R, (acceptable actions), and/or the representational system, L, 
and is able to comprehend the expression of judgments, which are indicative of a control 
structure, then the learner is viewed as having evoked an emerging conception. Thus, from the 
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cK¢ perspective, students gravitate towards what they have conceptions of; that is, towards what 
they know. Moreover, according to the cK¢ model, a conception is defined in terms of a 
quadruplet (P, R, L, Σ), rather than the triplet (P, R, L) because the control structure component 
is essential. Specifically, Balacheff argues, “a conception is validation dependent,” as is 
knowing, since “no one can claim to know without a commitment to and a responsibility for the 
validity of the claimed knowledge” (p. 126). In other words, conceptions require solid grounds. 
Thus, students’ gravitation towards the proof for which they’ve experienced a higher degree of 
certainty in their understanding can be seen as indicative of students’ need to recognize and 
agree with the control structure employed. Viewed in this way, it is students’ emergent 
conceptions of the proofs that predicts students’ selection of the most convincing proof, rather 
than the particular proof form, be it direct or indirect.  
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Conditions for cognitive unity in the proving process 
 

Kelly M. Bubp 
Ohio University 

Although a mathematical proof is a syntactic product, the proving process often entails other 
reasoning types, such as semantic or intuitive, that contribute to the evaluation of conjectures 
and the construction of supporting arguments.  Cognitive unity and rupture refer to the possible 
continuity or discontinuity, respectively, between various reasoning types, argumentation and 
mathematical proof, and the processes of evaluating and proving conjectures.  Undergraduate 
students struggle with mathematical proof, but it is hypothesized that cognitive unity facilitates 
the proving process.  In this study, task-based interviews were conducted with undergraduate 
students who completed three prove-or-disprove tasks.  The goals are to determine conditions 
under which students experience cognitive unity or rupture when evaluating and proving the 
conjectures and conditions under which cognitive unity and rupture aided or hindered the 
proving process.  Preliminary findings suggest that various factors affect cognitive unity, 
cognitive unity can hinder proving, and cognitive rupture can facilitate proving.        

Key words: Cognitive Unity, Semantic and Syntactic Reasoning, Argumentation, 
Mathematical Proof, Task-Based Interviews 

Proof is an essential aspect of doing mathematics.  The proving process encompasses a 
multitude of activities including exploring and identifying patterns and relationships, 
generating conjectures and generalizations, and testing, refining, and proving conjectures 
(Committee on the Undergraduate Program in Mathematics (CUPM), 2004; de Villiers, 2010; 
Durand-Guerrier, Boero, Douek, Epp, & Tanguay, 2012).  This complex process often involves 
potentially conflicting components: reasoning inside and outside the representation system of 
mathematical proof, argumentation and mathematical proof, and producing or evaluating 
conjectures and constructing proofs of such conjectures.  It has been suggested that continuity, 
or cognitive unity, between these sets of components facilitates proving whereas discontinuity, 
or cognitive rupture, hinders it (Alcock & Weber, 2010; Garuti, Boero, & Lemut, 1998). 

Research continues to show that many undergraduate students struggle with numerous 
aspects of mathematical reasoning and have limited facility in constructing mathematical 
proofs and counterexamples (Weber & Alcock, 2009; Harel & Sowder, 1998).  It is imperative 
that we continue searching for ways to alleviate these difficulties.  With this goal in mind, this 
study explores the following research questions: Under what conditions do undergraduate 
students experience cognitive unity or rupture?  Under what conditions does cognitive unity 
facilitate or hinder the proving process?  Under what conditions does cognitive rupture 
facilitate or hinder the proving process?      

Literature Review 
Undergraduate students are typically expected to construct mathematical proofs that belong 

to the representation system of mathematical proof (Weber & Alcock, 2009).  Reasoning within 
the representation system of mathematical proof is called syntactic reasoning, and it has unique 
features that distinguish it from reasoning in other representation systems (Weber & Alcock, 
2009).  First, syntactic reasoning requires the precise use of language, notation, symbols, and 
definitions (CUPM, 2004; Weber & Alcock, 2009).  Second, a syntactic proof must be 
unambiguous and have an apparent proof framework (CUPM, 2004; Weber & Alcock, 2009).  
Third, acceptable proof frameworks, such as direct or indirect proof, structure the proof and 
specify admissible assumptions and proper conclusions (Weber & Alcock, 2009).  Fourth, 
syntactic proofs contain only mathematical statements employing some combination of the 
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precise use of the English language and first-order logic.  Finally, all reasoning in a syntactic 
proof must be based on definitions, assumptions, theorems, and the use of logical deduction.  
Informal representations such as graphs or examples, as well as reasoning based on informal 
representations, are not permitted as a basis for conclusions (Weber & Alcock, 2009). 

 Although a mathematical proof resides in the representation system of mathematical 
proof, the proving process often involves argumentation based on reasoning from other 
representation systems, such as semantic or intuitive reasoning.  Semantic reasoning focuses 
on general understanding guided by examples, diagrams, or other informal representations, and 
intuitive reasoning is rooted in acquired knowledge and experience.  Semantic and intuitive 
reasoning can help students evaluate conjectures and develop informal arguments by (a) 
suggesting a direction to pursue, (b) revealing similarities to see a “common global situation,” 
(c) supporting empirical inferences, or (d) exposing underlying structure or patterns (Burton, 
2004; de Villiers, 2010; Fischbein, 1987, p. 53; Weber & Alcock, 2009).  However, students 
often struggle to link their argumentation outside and proving inside the representation system 
of mathematical proof (Raman, 2003; Weber & Alcock, 2009). 

Cognitive unity occurs when arguments that are developed while evaluating (or producing) 
conjectures are transformed into a mathematical proof or counterexample (Garuti et al., 1998).  
Thus, cognitive unity represents continuity between the exploration and evaluation of a 
conjecture and the construction of an associated proof or counterexample.  Additionally, 
because the evaluation of a conjecture often involves intuitive and semantic reasoning, 
cognitive unity can represent cohesion between reasoning outside and inside the representation 
system of mathematical proof.  When such continuities are not achieved, cognitive rupture 
occurs.  Garuti, Boero, and Lemut (1998) hypothesize that the greater the gap between the 
arguments for the truth value of the conjecture and the arguments which can be translated into 
mathematical proofs, the greater the difficulty in constructing a mathematical proof.            

Method of Inquiry 
The data in this paper come from a larger study that (a) investigated the types of 

reasoning students use to evaluate conjectures, (b) identified systematic errors students made 
during the proving process, and (c) examined connections between students’ evaluation of 
conjectures and their success in constructing associated proofs and counterexamples. 
Participants 

Twelve participants were selected from the main campus of a public university in Ohio 
who met the criteria of being an undergraduate student who had passed at least one proof-based 
mathematics course with a B or better.  Ten participants were in their fourth year of study at 
the university, and eleven participants were mathematics or secondary mathematics education 
majors.   
Procedures 

I conducted two task-based interviews with each participant which were audio-recorded 
and transcribed.  Participants were asked to think aloud during the completion of three tasks 
and to clarify or expand on their thinking as necessary.  Each task was provided one at a time 
on a separate sheet of paper.  Participants were provided with a list of definitions of terms in 
the tasks, but no other materials were allowed.  Participants used a LiveScribe Pen and paper 
that recorded synchronously audio and writing.  After each task, I asked follow-up questions 
regarding the participants’ work on the task, and specifically asked them to recall and identify 
when they made decisions about the truth value of the task.    
Tasks 

Each of the three tasks required the participants to determine the truth value of a given 
mathematical statement and prove or disprove the statement accordingly. The tasks dealt with 
basic information on functions and were chosen to be accessible to the participants.  In line 

18th Annual Conference on Research in Undergraduate Mathematics Education 39918th Annual Conference on Research in Undergraduate Mathematics Education 399



with Alcock and Weber (2010), each of the tasks referred to general objects and their properties 
and should have been amenable to semantic or syntactic reasoning strategies.  Finally, the tasks 
provided opportunities to construct both proofs and counterexamples.  The following three 
tasks will be discussed in this paper: 

Injective Function Task: Let 𝑓: 𝐴 → 𝐵 be a function and suppose that 𝑎0 ∈ 𝐴 and 𝑏0 ∈ 𝐵 
satisfy 𝑓(𝑎0) = 𝑏0.  Prove or disprove: If 𝑓(𝑎) = 𝑏 and 𝑎 ≠ 𝑎0, then 𝑏 ≠ 𝑏0. 

Monotonicity Task.  Prove or disprove: If 𝑓:ℝ → ℝ and 𝑔:ℝ → ℝ decreasing on an 
interval I, then the composite function 𝑓 ∘ 𝑔 is increasing on I. 

Composite Function Task.  Let 𝑓:ℝ → ℝ and 𝑔: ℝ → ℝ be functions.  Prove or disprove: 
If the composite function 𝑓 ∘ 𝑔 is one-to-one, then 𝑔 is one-to-one. 

Analysis 
The analysis for this study includes distinguishing between (a) reasoning in different 

representation systems, (b) argumentation and mathematical proof, and (c) the processes of 
evaluating a conjecture (leading to a decision with regards to its truth value) and constructing 
a proof or counterexample for the conjecture.  Semantic and syntactic reasoning will be 
classified according to their definitions in the literature review, with subtypes identified and 
created as necessary.  Each instance of reasoning will be classified separately in order to capture 
the use of multiple reasoning types throughout the decision process.  Any argument that 
contains semantic reasoning will be classified as argumentation whereas an argument that 
includes only syntactic reasoning will be considered a proof.  In order to distinguish between 
the evaluation and construction processes, reasoning that precedes the decision on the truth 
value of a conjecture will be classified as part of the evaluation process.  Reasoning that is 
offered as support of the decision will be classified as part of the construction process, 
regardless of whether it precedes or succeeds the decision itself.  Finally, the decision itself 
will be identified through either its statement during the proving process or its establishment 
by the participant during post-task questioning.     

Preliminary Results 
Analysis is ongoing, but preliminary results indicate that cognitive unity may depend on a 

variety of factors such as subtypes of semantic and syntactic reasoning used, the complexity of 
a correct proof or counterexample for a task statement, and whether the task statement was true 
or false.  Additionally, I have distinguished two distinct types of cognitive unity and rupture 
(Table 1). 
 
Table 1 
 
Types of Cognitive Unity and Rupture 
 

Cognitive Unity (CU) Cognitive Rupture (CR) 
CU1 Construction based on evaluation CR1 Construction not based on evaluation 
CU2 Simultaneous construction and evaluation CR2 No evaluation 

 
The students in this study attained cognitive unity in the majority of cases on the Injective 

Function and Monotonicity Tasks, but there was only one case of cognitive unity on the 
Composite Function Task.  Across all three tasks, cognitive unity was equally linked to correct 
and incorrect solutions.  Cognitive rupture was mostly connected to incorrect solutions, but 
there were situations in which it corresponded to correct solutions.   

Examination of the links between reasoning inside and outside the representation system 
of mathematical proof suggests that success in achieving cognitive unity between these 
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reasoning types may be task-dependent.  On the Injective Function Task, most cases of 
cognitive unity occurred between the representation system of mathematical proof and another 
representation system.  However, on the Composite Function Task, most cases of cognitive 
rupture occurred between the representation system of mathematical proof and another 
representation system.  Additionally, there were cases of cognitive rupture within the 
representation system of mathematical proof on the Composite Function Task.   

Continued analysis will delve into (a) the effects of the above factors on cognitive unity 
and rupture, (b) the significance of distinguishing types of cognitive unity and rupture, and (c) 
the correlation between cognitive unity and rupture and correctness.  Such analysis should 
contribute to the questions of what conditions may lead to cognitive unity and rupture and 
under which conditions cognitive unity facilitates proving and cognitive rupture hinders it.    

Questions for the Audience 
How can this research be used to effect curriculum change in which students are engaged 

in activities that promote cognitive unity?  How might cognitive rupture be used to provoke 
cognitive conflict to help students identify misconceptions or inconsistent concepts images? 

References 
 

Alcock, L., & Weber, K. (2010). Referential and syntactic approaches to proving: Case 
studies from a transition-to-proof course. In F. Hitt, D. A. Holten, & P. Thompson (Eds.), 
Research in collegiate mathematics education. VII (pp. 93–114). Providence, RI: 
American Mathematical Society. 

Burton, L. (2004). Mathematicians as enquirers: Learning about learning mathematics. 
Boston, MA: Kluwer.  

Committee on the Undergraduate Program in Mathematics. (2004). Undergraduate programs 
and courses in the mathematical sciences: CUPM curriculum guide. Washington, DC: 
Mathematical Association of America.   

de Villiers, M. (2010). Experimentation and proof in mathematics. In G. Hanna, H. N. Jahnke 
& H. Pulte (Eds.) Explanation and proof in mathematics: Philosophical and educational 
perspectives (pp. 205–221). New York, NY: Springer.  

Durand-Guerrier, V., Boero, P., Douek, N., Epp, S., & Tanguay, D. (2012). Argumentation 
and proof in the mathematics classroom. In G. Hanna & M. de Villiers (Eds) Proof and 
proving in mathematics education: The 19th ICMI study (pp. 349–367). Dordrecht, 
Netherlands: Springer.   

Fischbein, E. (1987). Intuition in science and mathematics: An educational approach. 
Dordrecht, Netherlands: Kluwer. 

Garuti, R., Boero, P., & Lemut, E. (1998). Cognitive unity of theorems and difficulty of 
proof. In A. Olivier, & K. Newstead (Eds.) Proceedings of the 22nd Conference of the 
International Group for the Psychology of Mathematics Education, (Vol. 2, pp. 345–352). 
Stellenbosch, South Africa.  

Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. 
In A. H. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), Research in collegiate mathematics 
education. III (pp. 234–283). Providence, RI: American Mathematical Society. 

Raman, M. (2003). Key ideas: What are they and how can they help us understand how 
people view proof? Educational Studies in Mathematics, 52, 319–325. 

Weber, K., & Alcock, L. (2009). Proof in advanced mathematics classes: Semantic and 
syntactic reasoning in the representation system of proof. In D. A. Stylianou, M. L. 

18th Annual Conference on Research in Undergraduate Mathematics Education 40118th Annual Conference on Research in Undergraduate Mathematics Education 401



Blanton, & E. J. Knuth (Eds.), Teaching and learning proof across the grades: A K–16 
perspective (pp. 323–338). New York, NY: Routledge. 

 
 
 
 

18th Annual Conference on Research in Undergraduate Mathematics Education 40218th Annual Conference on Research in Undergraduate Mathematics Education 402



The effects of supplemental instruction on content knowledge and attitude changes  
 
There are many reports on the impact of Supplemental Instruction (SI) on grades and retention 
of students within STEM disciplines. Although we know that many factors contribute to higher 
academic success (e.g., increased content knowledge, motivation toward subject, and/or time on 
task), there is little evidence for the mechanism by which SI improves student performance in any 
of these factors. This report is a preliminary analysis of an ongoing, multi-disciplinary study, 
using preexisting valid and reliable content knowledge assessments and attitude surveys, to gain 
insight into the effects of SI on STEM students. 

Supplemental Instruction (SI) was developed at University of Missouri – Kansas City 
(UMKC) in the early 1970’s, in which SI workshops, led by students, provide opportunities for 
students in historically difficult classes to work together on additional problems. The SI leader is 
typically a junior or senior level student who has succeeded in the same class. There is a large 
body of work showing that students who participate in SI workshops typically have higher 
grades and retention rates (e.g; Fayowski & McMillan, 2008; Malm, Bryngfors, & Mörner, 2011). 
Prior data indicates that the SI program at our institution, in place since 2007, also have the same 
strong positive effects. However, the specific ways in which SI workshops help students improve 
content knowledge or attitudes towards the subject are less clear. 

Our research project is working to rectify this deficiency in the literature by conducting a 
large-scale, multidisciplinary study measuring the effects of SI in terms of students’ content 
knowledge and attitudes and beliefs about science and mathematics learning. Our specific 
research questions are: 
 
1: To what extent is attendance in SI sessions associated with improved performance on course 
specific surveys of conceptual understanding? 
2: Do the attitudes and beliefs about learning science and math of students who participate in SI 
sessions differ from the views of their peers who did not attend SI sessions? How, if at all, do 
these attitudes and beliefs shift from beginning to end of a course? 
 

This project is interdisciplinary, but the poster presented will focus on our mathematics 
SI classes. In mathematics, we will focus on precalculus and first-semester calculus classes. Our 
methodology is twofold: first, we will measure the impact of SI on student learning via pre- 
/post- discipline-based concept inventories; in mathematics, we will use the Precalculus Concept 
Assessment (PCA) developed by Carlson, Oehrtman, and Engelke (2010). Second, we will study 
the impact of SI on student attitudes and beliefs about learning though a pre/post study of scores 
on the Mathematics Attitudes and Perceptions Survey (MAPS), developed by Code, Merchant, 
and Lo (in preparation). The science classes will use the Colorado Learning Attitude about 
Science Survey, or CLASS, and its derivatives. 
 This poster will present our preliminary analysis of the first semester of data collection, 
which consists of data collected at the end of the semester only. At the time of this proposal, data 
is still being collected and analyzed, but the data collection and analysis will be complete by the 
end of 2014. 
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Calculus students’ understanding of logical implication and its relationship to their 
understanding of calculus theorems 

 
Joshua Case 

University of Maine 
 

In undergraduate mathematics, deductive reasoning is an important skill in the learning of 
theoretical ideas. Deductive reasoning is primarily characterized by the concept of logical 
implication (inferring what follows from a given premise). This plays a role whenever 
mathematical theorems are applied, i.e. one must first check if a theorem’s hypothesis is 
satisfied and then make a correct inference. In Calculus, students must learn how to apply 
theorems. However, most undergraduates have not yet received extensive training in 
propositional logic. How do these students comprehend the notion of logical implication and 
how does it relate to their understanding of theorems? Results from a pilot study indicated 
that students struggled with the notion of logical implication in both symbolic and Calculus 
contexts. However, findings were inconclusive regarding the relationship between the two 
areas. Background on the current literature, results of the pilot study, and further avenues of 
inquiry are discussed. 

Key words: [Logic, Implication, Calculus, Theorems, Converse] 

Background and Research Question 
Calculus plays a fundamental role in many STEM areas such as physics and engineering. 

Thus, many STEM majors will have to take at least one semester of Calculus in order to be 
successful in their specialization. During their Calculus journey, these students will encounter 
– in some form or another – propositions, lemmas, and theorems. These statements are used 
to infer further statements, which help to build up and make coherent any area of 
mathematical investigation. For example, Calculus students must first understand the basic 
algebraic properties of the real numbers (commutativity, associativity, etc.) in order to infer 
the rest of the results that will be presented to them throughout the semester. This deductive 
process, characterized by the notion of logical implication, is the hallmark of all 
mathematical thinking. Thus, in using a theorem effectively, a student must first comprehend 
logical implication, which requires the understanding of four reasoning patterns. These 
patterns are provided below with the assumption that the rule “A implies B” holds. 

 
Modus ponens 

Suppose A is True. Then B is True. 
 

Inverse 
Suppose A is False. Then it is not known whether B is True or False. 

 
Contrapositive 

Suppose B is False. Then A is False. 
 

Converse 
Suppose B is True. Then it is not known whether A is True or False. 

 
Past research has shown that both children and adults struggle to understand these 

reasoning patterns and that the Inverse and Converse tasks are known to be particularly 
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difficult (O'Brien, Shapiro, and Reali, 1971; Wason, 1968). Additionally, individuals appear 
to be less successful when tasks are placed in abstract settings (A. Stylianides, G. Stylianides, 
Philippou, 2004). Also, it is well known that students struggle with Calculus ideas such as 
limits, differentiation, and integration (e.g., Carlson & Rasmussen, 2008; Tall, 1993; Orton, 
1983a; Orton, 1983b; Zandieh, 2000). The instruction students receive about these key ideas 
often includes theorem or theorem-like statements that make use of the above reasoning 
patterns. Although much work has been done on the issue of logical implication and Calculus 
learning, little (if any) research has been done concerning whether the understanding of 
logical implication is associated with the understanding of Calculus theorems. This research 
project was designed to answer the following research question: How do Calculus students 
comprehend the notion of logical implication and how does it relate to their learning of 
Calculus theorems? Similar to much of the prior work on student thinking about Calculus, 
this study was done from a cognitive theoretical perspective and thus students’ written 
statements were used as data on their thinking and understanding of the ideas. 

 
Research Methods 

First, I describe the data collection that has taken place so far. Two surveys (Survey A 
and Survey B) were given in a first semester differential Calculus I class at a university in 
New England near the end of the spring 2014 semester. These surveys were distributed in the 
three recitation sections associated with the course. There were a total of 61 participants. 
Both surveys are structurally the same and have two parts. Part I (consisting of eight tasks) 
was designed to gauge student understanding of logical implication in an abstract setting. 
Many of these tasks resemble syllogisms (ex: All men are mortal. Socrates is a man. 
Therefore, Socrates is mortal) but are stated in a formal context. Part II (consisting of one 
task) was designed to gauge student understanding of Calculus theorems. Figure 1 shows 
examples of survey tasks from Part I and Part II. 

 

 
Figure 1. (Left) A sample task from Part I. (Right) A sample task from Part II. 

 
Data Analysis 

Part I was coded for correctness only. For example, the solution to task 3) above is c, not 
enough information to decide if (2)(13)(2) ~ (13)(2)(13) is true or false. Part II was coded 
using the scheme below: 

0 – An incorrect and unclear response with little or no attempt at applying the 
theorem. 

1 – A partially correct or clear response with an attempt to apply the theorem. 
2 – A mostly correct and clear response with an attempt to apply the theorem. 
3 – A fully correct and clear response. The theorem was applied successfully. 

 
Below are examples to illustrate the above scores used to code the task from Part II (the task 
on the right in Figure 1): 
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Response coded 0: That this is a problem I don’t understand, sorry I couldn’t be more useful. 
Response coded 1: That -5 is k, which is the number Between f(a) and f(b) and f(a) = -27 and 
                    f(b) = 8. 
Response coded 2: That there is some value of x between [-3, 2] on the graph that represents 

-5 on the y-axis. 
Response coded 3: There is at least one number in [-3,2] such that f(c) = -5. 

 
Results 

Table 1 gives quantitative results for tasks 3-6 of Part I (both Survey A and B).  
 

 
Table 1. Results for Part I (both Survey A and Survey B). 

 
These results indicate that students struggled with tasks resembling inverse and converse 
patterns (tasks 3 and 6), but struggled less with tasks resembling modus ponens and 
contrapositive patterns (tasks 4 and 5). Table 2 gives the results for Part II of both Survey A 
and B. Since the vast majority of participants were given a score of either 0 or 1, it appears 
that these Calculus students struggled to apply theorems clearly and correctly. Additionally, 
there did not appear to be a clear correlation between student performance on Parts I and II 
(see Table 3). For example, if a strong correlation existed between performance on the logical 
tasks (Part I) and the theorem interpretation task (Part II), the percentages on the diagonals of 
Table 3 would be much larger. The majority of students could correctly answer most 
problems from Part I, but struggled to give a coherent answer in Part II.  
 

 
Table 2. Results for Part II (both Survey A and Survey B). 

 
Implications and Further Avenues of Inquiry 

Based on the preliminary findings, it seems that undergraduate Calculus students do not 
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have a complete grasp of logical implication and struggle to apply Calculus theorems. It also 
appears that there is not a clear relationship between student performances on the two parts. 
These results suggest that undergraduate Calculus students may need more training in logic, 
but that this preparation may not improve student ability to apply theorems learned in class. 
Future research plans include administering surveys with theorem questions that more closely 
match the structure of the questions in Part I to examine possible connections more directly. 
Also, interviews will be conducted to further explore students’ interpretation and 
understanding of logic-based statements in Calculus theorems. 

 

  
Table 3. Comparing student success on Part I with student success on Part II. 

 
Questions posed to the audience will include: 

1. If I were to use a different theorem for the task in Part II, which theorem would you 
suggest I use? 
2. I plan to interview students to study their understanding of theorems. How should I 
design the interview? If the student struggles to express him or herself, what can I say to 
help elicit their thinking?!
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Students’ perceptions of the disciplinary appropriateness of their approximation 
strategies 

 
Danielle Champney, David Kato, Jordan Spies, Kelsea Weber 

California Polytehnic State University 
 

  Within the context of Taylor series expansions as approximations, we illustrate the 
context dependence of student reasoning about these approximations - specifically the ways 
in which students’ notions of what is appropriate in mathematics, physics, or engineering, 
drive how they engage in and reflect on the solutions they produce. Using data from semi-
structured interviews, we build on previous work to argue that students' epistemological 
framing not only plays a role in their choice of solution strategies, but also how they feel 
those solution strategies would be perceived within various disciplines.  

Keywords: Taylor series, interdisciplinary, calculus, approximation 

While traditionally, much of the literature and emphasis around interdisciplinary curricula 
has focused on the alignment of disciplinary content, there has been a recent push to look at 
other contributing factors, such as the epistemological differences between disciplines, and 
how students view and take those up when reasoning with problems across contexts (Stevens, 
et al., 2005; Watkins et al., 2012; Champney & Kuo, 2012, 2014). This research has 
suggested the importance of both understanding how students perceive and manage these 
epistemological differences between disciplines (Kuo & Champney, 2012), and of studying 
how these perceived epistemological differences could potentially offer alternate diagnoses to 
situations that the previous state-of-the-art might refer to as ‘failed transfer’ (Kuo & 
Champney, 2014). In this study, we intend to expand on the importance of understanding 
students’ perceived epistemological differences, extending the analysis beyond the students’ 
actual solution strategies to mathematics and physics tasks, toward their rhetoric around who 
they think the ‘target audience’ of their work is, and why their work and solutions are 
‘appropriate’ for that audience, but not others. Therefore, we aim to demonstrate, with 
examples, how students’ epistemological framing not only plays a role in their choice of 
solution strategies, but also how they feel those solution strategies would be perceived within 
various disciplines, such as physics, mathematics, and engineering.  

Theoretical Grounding 
We pursue this line of work drawing heavily on the notions of resource activation (e.g. 

Hammer et al., 2005) and the importance of attending to students’ epistemological framing.  
Hammer, Elby, Scherr, and Redish (2005) argue that what has been described as transfer is 
the activation of similar knowledge resources in various situations, and that this activation 
depends not only on content knowledge and problem features, but also on epistemological 
stances towards what kinds of knowledge are appropriate in different situations.  That is, 
there are factors beyond simply the students’ content knowledge that can contribute to why 
they apply their math knowledge differently on similar problems, and one of those factors can 
be students’ epistemological framing – the epistemology diagnosis (Kuo & Champney, 
2014). 

Champney & Kuo have drawn on this perspective (2012), to examine the ways that a 
single student’s epistemological framing of two isomorphic tasks, which differed in context, 
dictated entirely different solution strategies, to the point where he denied any commonalities 
in what the tasks required of him, even though the underlying mathematics was virtually the 
same. Here we will expand on the 2012 findings, to demonstrate how three different students’ 
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epistemological framings of the same task not only dictate how they solve the problem, but 
for whom they feel their solution is most appropriate. 

Data collection and methods 
In the spring of 2011, 15 students participated in semi-structured interviews to investigate 

their reasoning about approximations on introductory physics and calculus content (see also 
Champney & Kuo (2012, 2014)). Interviews consisted of several questions, during which 
students reasoned aloud and an interviewer asked clarifying questions. Students were able to 
use a calculator on these tasks. The cases we present here are three undergraduate students 
(Joanne, Chris, and Brad), all of whom had recently completed introductory calculus and 
physics sequences at the same institution. These students were selected to highlight in this 
proposal because they represent broader categories of students in the larger data set, which is 
currently being analyzed for a final report.  

Each student completed 3-4 tasks, including ARCTAN (see Figure 1), and a similar 
problem (PENDULUM), in which they were asked a similar question, within the context of 
calculating period of a pendulum. At the time of the interview, all students had studied Taylor 
series approximations. Because “bad approximation” is not well defined, in the task or by the 
interviewer, these tasks were designed to reveal how a student makes judgments about 
approximations, not whether students can solve these tasks “correctly.” 

Figure 1. ARCTAN problem. 

Results and ongoing analyses  
 The data described here are incomplete, as this is a preliminary report. However, included 
are highlights of the aforementioned students’ interviews, and their work that is currently 
being analyzed and coded for presentation. We hope that the snapshot provided illuminates 
the type of contribution that we will make with this work in February 2015.   

Joanne. Joanne solved the ARCTAN task first, and produced a quick and confident 
answer. To Joanne, this problem was no different than any other problem in which she was 
asked to approximate something (solutions to ODEs, root finding, etc…), and she had a 
scheme for performing a numerical approximation that looked like:  

|Actual-Approximation| ≤ Tolerance. 
Joanne’s choice of mathematical method was not ambiguous in any way – she utilized 

what she viewed as a flexible method, one she had used countless times in computer science, 
mathematics, engineering, and other courses, and applied it to the given problem. To Joanne, 
while the method is flexible enough to handle this problem, the role of context only came to 
bear when considering ‘how precise’ she wished to be. That is, Joanne’s use of mathematical 
tools was not dictated by the context, but the outcome that she was attempting was bound by 
her interpretation of ‘who would care’ about this problem. In her own words,  

J:   Or whatever tolerance ... Well I was just when I did the first approximation [I used a  
tolerance of] ten to the negative 2 so I just arbitrarily set it, but if I were to, I'm trying to 
think… In my class, our tolerance is usually 10 to the negative 6 or something like that. But 
that's because for engineering it's a little more uh … Let’s just change that to 10 to the 
negative 6.  

I:   And so all you did was change that right hand number? 
J:   Yeah you can interchange your tolerance to whatever you need it to be set to.  

The Taylor series about x=0 for arctan(x) is given by: 

€ 

arctan(x) = x −
1
3
x 3 +

1
5
x 5 −

1
7
x 7 + ... 

How big a value can x be, before stopping after the second term is a bad approximation? 
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Joanne’s method for PENDULUM was essentially identical to her work on ARCTAN, 
though her value for the acceptable ‘tolerance’ was adjusted:  

J:   Well, since this is an... It’s a real life, still kind of, a real life problem … Because  
you're using this to model this to model something that is actually happening, you might be 
using it in an engineering context. So I would end up doing is for this one I would have a 
smaller tolerance value.  

I:   Smaller than the previous one?  
J:   Yeah, well the previous one was ten to the negative 2 or negative 6. So I would just  

make this ten to the negative 7 or 8.  
 We find it worthwhile to note that, (a) for Joanne, the process she uses to reason with the 
Taylor series is not uniquely tied to any particular context – and she in fact uses it across 
multiple contexts, but (b) Joanne’s interpretation of an ‘engineering audience’ for her work 
dictated a stricter tolerance than she would employ in a mathematics or physics context. 
Thus, her framing of the problem as one in a much larger class of ‘approximation problems,’ 
for which this particular, flexible method is appropriate, permits her to make progress toward 
reasoning with the task itself, and to appropriate any desired mathematical tools.  
 Chris. To contrast Joanne, Chris settles on a ‘data-driven’ approach, through which he 
produces a table of values for arctan(x), its series approximation, and the difference between 
the two. Upon discussing his solution, Chris articulates that the approach is satisfactory, but 
different audiences may view it as more or less successful: 

C:   I feel like a math professor would want you to do some sort of math thing to it rather  
than just looking at a bunch of data points and being like, "oh, that's where it's too far away." 

I:   So you felt like you didn't do a 'math thing'? 
C:   It wasn't like a math approach. It was kind of like more a physics approach, which is  

approximation. If you're building something and you need an approximation, you just decide 
when it's outside the tolerance and that's it. 

I:   Does that mean a physicist would like the way you thought about it, probably? 
C:   I think an engineer would. If you're building something and you need an  

approximation, you just decide when it's outside the tolerance and that's it. 
I:   But you said that you didn't do something very 'mathy.' 
C:   Yeah, I don't know. That's just kind of a feeling. When you integrate something as  

opposed to just guessing or just looking at something... If you don't do any math, it doesn't 
feel like a math problem. Even though it's presented like one. I think the presentation is the 
math problem but my approach wasn't a math problem's approach. 

 Thus, while Chris had a successful approach that led him to an answer with which he was 
comfortable, he viewed his approach as not being suitable within particular disciplines. Chris 
frames the task as one that may be appropriate for many disciplines, while his solution 
method may only be appreciated by some subset of those disciplines – that is, the type of 
knowledge required for an engineering context would permit him to pursue a more basic, 
comparison type of approach, while other disciplines, in his opinion, would desire either 
more ‘rigorous’ or “mathy” approaches in order to be acceptable. 

Brad.  One final point of contrast, Brad, made no progress with the ARCTAN task 
whatsoever – a phenomenon that we at least partially attribute to his framing of the task as 
one of a highly specialized class of tasks, for which more information is required in order to 
produce any reasonable results. Rather than quickly finding an appropriate method of attack 
and pursuing a solution, Brad’s time with the ARCTAN task is mired in conversation about 
how these problems are all specific and require an authority figure (professor, TA, etc…) to 
provide a target error or method by which he ‘should’ solve the problem:  

B:    Cuz I’m an  engineering major, so therefore I like ... you're usually calculating to  
determine the tolerance or the stress levels or whatever of some material. Therefore I like to 
be super, super exact so I’d choose a really, really small tolerance. But, if this is just like a 
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math problem, I mean you know, we are usually just given numbers and just work it out to get 
an answer.  

 For Brad, both the method and the desired accuracy are driven by the perceived context, 
and therefore no amount of mathematical tools that he may or may not have at his disposal 
will make any difference, until he is provided more information. To reinforce this point, 
Brad’s framing of this problem as one of a highly specialized class of problems leads him to 
abandon his attempts to utilize the Alternating Series Remainder Theorem, a graphical 
approach, and other approaches that he suggests and then immediately discounts.  

Next steps, and Questions for the audience 
 In our final report, we will demonstrate that these three students represent broader 
groupings of students from the larger study – Joanne, representing those students who have 
flexible mathematical tools that they can appropriate for whatever audience they feel is 
appropriate; Chris, representing those students who are able to produce an answer and 
approach, but do not feel that it is suitable for all audiences; and Brad, representing those 
students who have a variety of mathematical tools available, but do not perceive the context 
as permitting them to use said tools without knowing more about their audience. These 
classifications are interestingly tied to the students’ epistemological framings of the tasks 
with which they are presented  - a phenomenon that can be more substantially demonstrated 
outside a 3-page proposal, but was briefly discussed in the previous section.  
 The audience of the preliminary report session can assist this work by helping the 
research team here to think through the following points of interest: (1) How may these 
students’ respective framings of the ARCTAN task inform initial instruction of this topic in 
calculus classes, or reviews of this topic in physics/engineering classes? and (2) How can this 
speak to a broader program of helping students distinguish between an approach being 
appropriate for problem solving in a particular discipline vs. the result of problem solving be 
acceptable to a particular discipline.  
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Developing abstract knowledge in advanced mathematics: 
Continuous functions and the transition to topology 

 
Daniel Cheshire 

Texas State University 
 
Despite intuitive foundations, the nature of the transition to abstract topology often results in 
students’ reliance on dissociated collections of definitions and theorems, without any integrated 
cognitive structure. In recent decades, there have been numerous analyses of proof, symbols, and 
the encapsulation of processes as factors in student comprehension, as well as content-specific 
studies examining which mental constructions support the development of coherent schemata for 
particular topics. I will expand this research by categorizing students’ understanding in the 
domain of topology. In a year-long, mixed-methods study, I will analyze the components involved 
in the development of an axiomatic schema for continuous functions in topological contexts. I 
will compare this model with actual student constructions in an introductory topology course, 
collected through task-based interviews and a path-analysis on the coded data. The goal is to 
confirm the theoretical model, or to provide support for altering the model to increase its 
validity. 

Key words: Topology, Mathematics Education, Continuous Functions, Open Sets, Abstraction 

The field of topology is rooted in the abstraction and generalization of intuitive notions, such 
as continuity and connectedness, derived from the familiar settings of the real numbers and 
Euclidean space. These attributes make topology an ideal candidate for studying the intermediary 
processes between students’ perceptual models of understanding and their development of 
formal conceptual schemas. Recent trends in research into abstract thinking have provided rich 
insights into processes involved in learning advanced mathematics, supporting the development 
of theoretical learning models for many abstract topics (Tall & Vinner, 1981; Sfard, 1991; Pirie 
& Kieren, 1994; Gray & Tall, 2007). However, few of these studies have measured the relation 
of these models to the development of topology-specific constructions. I will investigate concept 
development in this field through a synthesis of theories concerning genetic decomposition 
(Piaget, 1989; von Glasersfeld, 1995; Arnon et al., 2014), example use and instantiation of 
mental objects (Alcock, 2004; Pimm & Mason, 2004), and proceptual compression (Gray & Tall, 
1994). The results of this analysis will be a starting point for the creation of instructional 
strategies to aid in the introduction to this challenging field of study.  

Research Questions 
To develop and expand the new theoretical learning models noted above, as well as to 

address the noted domain-specific deficit in the research, I wish to answer the following 
questions concerning students’ understanding in an introductory topology course: 

1) How, and to what extent, does a learner’s formal schema for the continuity of functions 
depend on the existence, coherence and developmental level of these conceptual schemas? 

a) set theory and cardinality  
b) functions, images and pre-images on abstract domains 
c) sequences, limits, and related notions 
d) open/closed sets in metric and topological spaces 
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2) For each of these schemas, how do learners instantiate and use the requisite empirical, 
proceptual, and axiomatic objects; and what influence does this have on the development of 
formal, definition-based objects and an axiomatic level of understanding of continuity? 

Methodology 
The investigation will consist of a combination of qualitative and quantitative methods, and 

will be conducted at a large emerging-research university in central Texas. Classroom 
observations, artifact analyses, knowledge assessments, and task-based interviews with students 
in an introductory topology class, will be used to construct case studies of 3-5 students’ 
experiences. In addition, all of the interviews will be coded with a rubric based on recent 
theoretical research and a factor analysis of the assessment results. These will serve as inputs into 
a structural equation model to determine the contributions of the factors proposed above. Finally, 
the model will be used to evaluate a series of preliminary concept decompositions for several key 
topological concepts, developed in light of current research and the expertise of two topologists. 

In order to detect confounding variables, I will also examine how, and to what extent the 
students’ construction of a formal schema for continuous functions is mediated by the students’:  
a) notational fluency and proof construction/validation skills, and b) levels of self-efficacy in 
mathematics, especially in analysis and topology. 
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The equation has particles! How calculus students construct definite integral models 
 

Michael Oehrtman and Kritika Chhetri 
University of Northern Colorado 

 
This research characterizes the cognitive challenges that students encounter while constructing 
definite integrals to model physical quantities and relationships, how students resolve those 
challenges, and the resulting conceptual artifacts. We video-recorded four groups of second-
semester calculus students working with definite integral models during two 50-minute labs. This 
paper focuses on how two groups of students that worked on the same problem reasoned about 
and constructed an integral representing the gravitational attraction between a co-linear thin 
rod and point mass. Prior research on students’ understanding of definite integrals posits the 
multiplicative structure ( )f x x�'  in a Riemann sum as an essential component in conceiving an 
integral. Our findings indicate that in many contexts, other symbolic forms subsume the simple 
product in this essential conceptual role and that they interact significantly with students’ 
symbolic forms for the definite integral. 
 
Keywords: Definite integral, Riemann sum, adding up pieces, symbolic form 
 

Introduction and Research Question 
Selden, Selden, Hauk and Mason (2000) witnessed that when presented with non-routine 

problems, more than half of the students who had completed a year and half of traditional 
calculus “were unable to solve even one problem and more than a third made no substantial 
progress towards any solution” (p. 128). Prevailing research on students’ understanding of 
integration, one of the core concepts of calculus, posits that students have difficulty 
understanding how definite integrals may model actual quantities (Orton, 1983; Chhetri & 
Martin, 2014; Sealey, 2006; Sealey & Oehrtman, 2007; Von Korff & Rebello, 2012). Sealey 
(2006) decomposed the understanding of a Riemann integral into layers based on the order of 
mathematical operations involved in its definition. One conceives of i) quantities represented by 
an evaluated function ( )f x  and an increment in its domain x' , ii) their product, iii) a 
summation of these products, and iv) a limiting process applied to this sum in which 0x' o . 
Jones (2014) proposed the symbolic form of “adding up pieces” is helpful for students 
conceiving the definite integral. All existing research on definite integral frames the pieces being 
added as entailing the multiplicative structure ( )f x x� ' , but we hypothesized that that many 
definite integral models are not productively conceived in terms of this multiplicative structure. 
The example we explore in this paper asked students to express the gravitational force between a 
thin uniform rod of mass M and length L and a particle of mass m lying in the same line as the 
rod at a distance a from one end as 

2

a L

a

GMm dr
Lr

�

³  

where G is the universal gravitational constant. Although we can always mathematically express 
the terms in the Riemann sum as a product, in this case as 2

GMm
Lr

r� ' , it is unlikely that these 
factors are useful quantities to conceive either in the interpretation of the integral or in the 
modeling process. Our research question is:  
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Given that students have already conceptualized the Riemann integral as a model of 
accumulation, how do they reason about a novel problem in which the integral does not 
clearly a multiplicative quantitative structure?  

In this paper, we detail how two groups of students in a second semester calculus course 
reasoned about and constructed this integral. 
 

Theoretical Perspective 
Sherin (2006) introduced the construct of symbolic forms to explore the ways people create 

or interpret novel equations, and hypothesized that we accumulate schemes of numerous types of 
mathematical expressions, which we discern almost as a Gestalt. For instance, when people see 
an equation of the form [ ] = [ ] + [ ], they may immediately interpret it through a schema of parts 
of a whole, considering quantities in the location of the brackets on the right hand side as parts 
and the quantity located on the left hand side as the whole, and where the equality indicates a 
balance of two (Jones, under review). Conversely, a situation involving a quantity decomposed 
into parts may invoke an equation of this form through activation of the same schema. Sherin 
(2006) defined a symbolic form as consisting of a symbol template and an associated a 
conceptual schema. The symbol template defines the arrangement of symbols in a mathematical 
expression. An associated conceptual schema is comprised of a network of meanings that people 
may use to bind particular symbols to the slots in the symbolic template (Sherin, 2006). Often a 
conceptual schema is driven by p-prims, basic ideas about how things work (diSessa, 1993).  

 For the purpose of this study, we consider the ways in which symbolic forms influence 
calculus students’ construction of definite integrals to model physical situations. Jones (2014) 
characterized three symbolic forms for integrals with the template 

[ ]

[ ]
[ ] [ ]d³  or 

[ ]
[ ] [ ]d³ : function 

matching, perimeter and area, and adding up pieces. Function matching refers to conceiving of 
integrals in terms of an antiderivative, where the slots determine the function, variable of 
integration, and (possibly) limits at which to evaluate the antiderivative. The perimeter and area 
schema associates each box with part of a perimeter in the x,y-plane where the variable inside 
d[ ] determines the horizontal axis, the limits of integration represent either vertical sides or the 
length of the horizontal side, and the slot for the function represents a fourth side along its graph. 
These boundaries form the perimeter of a region and the value of the integral represents the area 
of that region (Jones, under review). In the adding up pieces scheme, students break a quantity 
into smaller pieces formed as products [ ] [ ]d�  throughout a region determined by the limits of 
integration then add those pieces to form a whole, represented by the entire integral. 
 

Methods 
We videotaped four groups (approximately four students in each group) of second-semester 

calculus students during two 50-minute labs about applications of the definite integral. In this 
paper, we present data from two groups of students working on the following problem: 

The gravitational attraction between two particles of mass 1m  and 2m  at a 
distance r apart is 

1 2
2( ) Gm mF r

r
 . 
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Write a definite integral that that gives the gravitational attraction between 
a thin uniform rod of mass M and length l and a particle of mass m lying in 
the same line as the rod at a distance a from one end. 

While analyzing the videos, we paid close attention to instances that were problematic to 
students and carefully observed how students resolved their problems, coding for both active 
symbol templates and schemas.  
 

Results 
Five students from Group A (Aaron, Andy, Amber, Alexis and Austin) engaged in three key 

episodes of reasoning as they constructed a definite integral to model the gravitational force of 
attraction between a rod and point mass. The first episode constitutes their realization that the 

equation for gravitational force, F  GMm
r2

 
, cannot be used to directly compute the force in this 

situation. Initially, this formula emerged as a symbolic template, 2
[ ][ ][ ]
[ ]

G
  where the meanings 

of the slots (schema) were 2
[mass][mass][force]

[separation]
G

 . The students associated masses M and m 

into the mass slots and a into the separation. But when Amber said, "because we have a rod and 
particle not 2 particles,” they recognized that the formula was not applicable when one of the 
masses was distributed along a rod rather than being located at a single point. The second 
episode comprises their activities of reconceiving the problem in terms of an “adding up pieces” 
scheme.  

They then drew a rod (as seen in Figure 1) and broke it into pieces to form point masses to which 

the formula F  GMm
r2  could apply. The students drew the curved lines in Figure 1 to represent 

the force of attraction between each segment of the rod and the point mass. As they drew and 

reasoned about their diagram, they referenced elements in the template 2
[ ][ ][ ]
[ ]

G
  with their 

revised schema focused on point masses to make several decisions about their activity. This 
symbolic form focused their attention on relevant quantities and forced them to represent and 
organize these quantities into a larger structure required to develop an appropriate model.  

The adding up pieces symbolic form for the integral influenced the students’ modeling 
process in two primary ways. First, it triggered and supported their shift to conceiving the rod as 
composed of numerous point masses and focusing on the formula as applying to one of these 

            
Figure 1. An artifact of students splitting the rod 
into pieces. 

Figure 2. An illustration of students’ breaking up 
idea. 
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segmented point masses and the point mass in the original problem statement. Second, after the 
students developed an appropriate expression for these pieces of force, the symbolic form guided 
its incorporation into a definite integral with appropriate limits and separation of integrand and 
differential.  

Developing an expression for the force between one piece of the rod and the point mass 
required the most time in the students’ modeling process. The third episode involved the students 
working to fit the pieces into the slots. Even though they recognized the mass of segments of the 
rod conceptually, they struggled to represent this in terms of the given quantities. After several 
minutes and initial non-quantitative reasoning, they eventually realized that if the rod were to be 

broken into n pieces, the mass and length of each piece would be M
n

 and L
n

, respectively. Some 

quick algebra motivated by a need to express the eventual integral in terms of r'  rather than n 
allowed them to rewrite the mass of each piece as 

r M
L
'

� . At this point the students were able to 

appropriately represent all of the slots in the template 

2
[mass][mass][force]

[separation]
G

 . Again driven by a need to 

develop a definite integral, the students identified the 
distance between each segment and the point mass as 
ranging from a to a L�  and bound these quantities 
into a definite integral whole  [pieces]

[start ]

[end]³ , where 

[pieces] [] d[variable] resulting the final expression, 

2

a L

a

MG m
L dr
r

�

³ . They summarized their work by 

elaborating the meaning of each piece of their integral 
as seen in Figure 3. 

The four students (Cameron, Colt, Colby and 
Caesar) from Group C charted a different path solving 
this problem, but ultimately relied on the same symbolic forms to make progress. They engaged 
in three episodes of reasoning. Their first episode comprised of breaking the rod into segments 
without evoking the idea of “adding up pieces.” Immediately after reading the problem, they 
drew a rod and point mass then broke the rod into bunch of little segments (Figure 4) and wrote 

the integral as 2

a L

a

MGm
r

�

³ . When the instructor inquired, none of the students were able to 

justify why they needed to break the rod into segments. Colby indicated that breaking the rod 
could help them identify the various parts of the definite integral template 

[something involving the variable]
[start ]

[end]³  but did not explain how ‘breaking’ the rod and integral 

related. In one of their several attempts they accidentally wrote the correct integral, 

2

a L

a

GMm dr
Lr

�

³ , but changed it immediately. For a while their discussion shifted from deciding 

 
 Figure 3. Final expression of students’ work. 
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what to write in the slot for the integrand and differential to discussing if and how the mass of 
the segments would vary, but still without attention to an adding up pieces schema.  

 
 
 
 
 
 
 
 
 
 
 

During the second episode, the adding up pieces idea emerged after the teacher inquired if 
they had accomplished anything by segmenting the rod. Caesar introduced the idea of adding up 
pieces saying, “When we break it [the rod] up, the gravity at the end closest to the particle is 
gonna be greater than the other end…So then you add them [the force of attraction between the 
segments and point mass] all up and that’s gonna give you total gravity of the whole rod since its 
one end is further away from the particle.” The instructor then asked the group whether they 

could apply the formula F  GMm
r2 to each segment of the rod that Caesar described. Everyone 

except Caesar instead continued attempting to identify in the components of the template 
[something involving the variable]

[start ]

[end]³ for another fourteen minutes. When the instructor 

returned and inquired about the evolution of Caesar’s idea of adding up pieces of force, Cameron 
did not mention anything about adding up pieces. Caesar reasserted that they needed to add the 
forces of attraction between the segments of the rod and point mass to obtain the total force of 
attraction, i.e. whole  [ piece]� ...�[ piece]. At this point, everyone agreed with Caesar’s idea 
and began to split the rod into segments (as seen in Figure 5), and they began identifying the 
slots of the new symbolic form, whole  [pieces]

[start ]

[end]³ , where [pieces] [] d[variable]. With the 

instructor’s prodding, Colt stated that by treating the segments of the rod as point masses, they 

would be able to apply the formula F  GMm
r2 . By this point, they had interpreted this as the 

template 2
[mass][mass][force]

[separation]
G

  and were aware that they had to add the force of attraction 

between segments of the rod and point mass. Similar to Group A, this group also struggled to 
find mass of the segments. With their instructor’s help, they determined that the proportion of the 

mass in each segment is r
L
'  so their mass is r M

L
'

� , which they then associated with a mass slot 

                  
        Figure 4. Students’ initial illustration of their 
context. 

Figure 5. Students’ final illustration of force 
between a rod and point mass. 
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in the template 2
[mass][mass][force]

[separation]
G

 . Finally, they expressed the total gravitational force of 

attraction between the rod and point mass as 2

a L

a

MG m
L dr
r

�

³  (Figure 5). 

    
Discussion 

Sealey’s (2006) work on students’ understanding of definite integrals emphasized the layers 
of Riemann sum as fundamental for students to understand the need for definite integral. Her 
framework decomposed students’ reasoning based on the mathematical operations involved on 

the right hand side of the definition 
1

( ) lim ( )
nb

ia n k
f x dx f x x

of
 

 '¦³ . Alternately, Jones (2014) 

posited the adding up pieces as a critical symbolic form for students to understand the definite 
integral, focusing on the left hand side of the equation. Our investigation illustrated critical 
interactions between these two basic structures. Our data reveals that students’ interpretations of 
a symbolic form for the integrand can inhibit or trigger an adding up pieces scheme for the 
integral. Students in neither group invoked an adding up pieces scheme until they focused on the 
meaning of Newton’s law of gravitation as applying specifically to two point masses (even 
though the students in Group C had already segmented the rod in the problem). The adding up 
pieces symbolic form alternately influenced student’s interpretation of elements of Newton’s law 
by focusing their attention on expressing the integral in terms of r, coaxing it into a form 
involving r'  as a factor, and considering the range of variation of r.  

The definite integral modeling task discussed in this paper requires conceptually “breaking 
apart” and “adding up” pieces quantitatively more complicated than a product of the form 

( )if x x�' . We thus generalize Sealey’s product layer to include more general symbolic forms, in 

this case drawn from the inverse square law in Newton’s law of gravitation, 2
[ ][ ][ ]
[ ]

G
 . Unlike 

the groups that we have discussed in this paper, one of our other group of students worked on a 
relatively similar routine problem (finding the force of attraction between magnets) and they 
were able to construct the integral rather quickly and easily since the integrand was directly 
conceived as a product, [energy] [force] [distance] ( )f x x �  �' . Another group worked on a 
task that was easily conceived as a product but required the group an intermediate amount of 
effort to reconceive with an appropriate integrand, 
[mass] [density] [area] ( ) ( ) ( ) ( )r A r r C r rG G �  �  � � ' .  

We observed that students’ ability to solve this non-routine problem was limited by the 
narrowness of the schemas that students applied. They achieved success upon being able to 
consider alternate, and eventually more appropriate symbolic forms for the situation.  
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Impacts on learning and attitudes in an inverted introductory statistics course 
Emily Cilli-Turner 

Salve Regina University 

Recent studies have highlighted the positive effects on learning and retention rates that active 
learning brings to the classroom.  A flipped classroom is a type of active learning where 
transmission of content occurs outside of the classroom environment and problem solving 
and learning activities become the focus of classroom time.  This article reports on results of 
a study conducted in flipped and non-flipped introductory statistics classroom environments 
measuring student achievement in both classrooms on traditional assessments as well as 
measuring student attitudes toward the flipped classroom environment.   

Key words: flipped classroom, introductory statistics, students’ attitudes, learning outcomes 

Introduction & Background 
Although there continues to be debate amongst educators about the most effective way to 

teach students mathematics, several studies (e.g. Freeman et al., 2014; Lage et al., 2000) have 
demonstrated that lecturing may be doing a disservice to our undergraduate students.  A 
meta-analysis of studies in STEM fields by Freeman et al. (2014) determined that “active 
learning increases examination performance by just under half a SD and that lecturing 
increases failure rates by 55%” (pg. 3).  Thus, educators owe it to students to implement 
active learning, such as the inverted classroom, to increase their learning and performance in 
mathematics. 

Models of the flipped classroom exist in many forms (e.g. Dove, 2013; McGivney-
Burelle & Xue, 2013; Wilson, 2013), but there exist common elements that define this 
pedagogy.   For one, the flipped or inverted classroom requires students to participate in 
instruction outside of class, where much of the content is introduced, usually in the form of 
videos, readings or other computer-based modules.  Class time is then reserved for engaging 
with the content through small-group problem solving and discussions. 

Teaching undergraduate introductory statistics courses present many unique obstacles for 
instructors and thus may be especially suited for inverted pedagogy.  Statistics is usually a 
required course for a wide range of undergraduate majors, which can make it difficult to 
engage students in the material (Connors et al., 1998) Additionally, students often enter the 
course with a wide variety of previous instruction in statistics (Hudak & Anderson, 1990); 
with some students completing a statistics course in high school and others having no training 
at all.  Recent studies (Dove, 2013; Strayer, 2012) have used flipped pedagogy to teach this 
course and found that this method allowed students to work at their own pace and contributed 
to an increase in student engagement. 

The effectiveness of the inverted pedagogy has been identified in other disciplines (e.g. 
Hake, 1998; Lage et al., 2000; Moravec et al., 2010), yet there are only a handful of studies 
on the use of the inverted classroom in statistics. This study aims to build upon previous 
studies (Strayer, 2012; Wilson, 2013) of flipped pedagogy in introductory statistics courses. 
by answering the research questions: 

1) What are the impacts of teaching introductory statistics in a flipped classroom format 
on students’ learning? 

2) What are introductory statistics students’ attitudes towards the flipped classroom 
format and do these attitudes impact their performance in the course? 

In this report, results of a completed study will be discussed as well as methodology for a 
follow-up study to further measure learning outcomes in statistics due to a flipped classroom.  
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Methodology 
An exploratory study measuring the impact on introductory statistics students’ attitudes 

and learning outcomes using flipped pedagogy was completed over two subsequent semesters 
at a small liberal arts university in the Northeastern United States. The undergraduate 
introductory statistics course included topics in descriptive and inferential statistics as well as 
probability.  This course is broadly focused (i.e. content is not restricted to any one major or 
discipline) and is a required course at this university for students in numerous majors. 
 
Course Design & Participants 

During the first semester, two sections of the course were taught in a traditional lecture 
format.  Class time was primarily spent lecturing and, although students were encouraged to 
ask questions during lecture, there was little dedicated class time for small-group or whole-
group discussion of the material. Homework problems from the textbook were collected 
weekly and turned in on paper.  

The second semester, three sections of the course were taught using a flipped classroom 
format. No more than five minutes of lecture was provided in class with some class days 
having no dedicated lecture time. The content was delivered in videos that the students were 
required to watch outside of class and classroom time was spent with students working in 
small groups on conceptual and problem solving activities related to the material.  The videos 
students watched were created by the textbook publisher and ranged in length from 10 to 20 
minutes. Students were required to take notes on the video as they watched it and a short, 
open-note quiz on the video was given each class day to encourage the students to watch the 
videos and to attend class. Homework was assigned each class day and was completed online 
using the MyStatLab (www.mystatlab.com) course management system.  

The activities that the inverted classroom students were given to work on during class 
time ranged from a set of problems to solve as a group to conceptual activities meant to 
deepen their understanding of the material.  Classroom activities were designed to be 
completed in groups of 3 – 4 and students were encouraged to use their notes and each other 
as resources. While students were completing the activities, the instructor would go around 
the room to answer questions as well as monitor student work and identify and correct 
misconceptions.  

The flipped classroom group consisted of 78 students across three sections, of which 20 
were male and 58 were female.  The control group, that experienced the traditional 
classroom, consisted of 56 students across two sections, of which 27 were male and 29 were 
female. 

 
Data Collection 

Students in the flipped classroom group were given a survey at the end of the semester to 
assess their attitudes toward the flipped pedagogy.  The survey required them to rate their 
agreement on a 5-point Likert scale with several questions regarding the flipped classroom.  
Additionally, the survey asked students to self-report what percentage of the assigned videos 
they actually watched during the semester, what percentage of the videos they re-watched and 
what percentage of the videos they took notes on.  Course grades and grades on the final 
exam were collected for both the flipped group of students and the control group.  

Results 
From the attitudinal survey, the majority of students reported learning a lot from the 

videos (59%) and enjoying working on problems in class with their group members (50%), 
however only 31 of the 78 (40%) student participants indicated “Agree” or “Strongly Agree” 
with the statement “Overall, I like the flipped classroom method” as shown in Table 1. 

18th Annual Conference on Research in Undergraduate Mathematics Education 42618th Annual Conference on Research in Undergraduate Mathematics Education 426



Additionally, only 27 (35%) students responded that they “Agree” or “Strongly Agree” with 
the statement “I enjoyed the flipped classroom more than traditional teaching”. This is 
somewhat perplexing since the results show that some students who reported enjoyment of 
the flipped classroom methods did not report that they preferred this way of teaching to a 
traditional lecture format. Strayer (2012) found similar attitudes toward the flipped classroom 
and writes about the “disequilibrium or unsettledness that students face in an inverted 
classroom” due to the inversion of traditional classroom roles. 

 
   Likert Scale Response (%) 

Statement  Mean SD Agree Neutral Disagree 
I learned a lot from watching the videos. 3.41 1.13 59 22 19 
I often watched the videos or parts of the videos 
more than once. 

2.82 1.29 35 18 47 

I found the videos confusing and not helpful. 2.40 1.01 17 21 63 
I enjoyed working on problems in groups in 
class. 

3.38 1.10 50 32 18 

Class time did not help my understanding of the 
material. 

2.78 1.09 23 36 41 

Overall, I like the flipped classroom method. 2.92 1.31 40 23 37 
I enjoyed the flipped classroom teaching more 
than traditional teaching. 

2.88 1.31 35 29 36 

Table 1: Descriptive statistics for survey items focusing on experience of the flipped classroom. 
 
Regardless of students overall attitudes toward the flipped classroom, results show a high 

level of participation in the activities of the flipped classroom. On average, students reported 
watching 86% of the videos that were assigned and taking notes on 94% of the videos that 
they watched. Also, approximately 35% of students reported that they watched all of the 
assigned videos. These results may be partly due to the daily quizzes that were given in class; 
as students were told that they could notes on the quizzes and they knew that the quiz would 
contain content presented in the video.  

Although student attitudes were not wholly positive about the flipped classroom, positive 
impacts on student learning as measured through traditional assessments were present. 
Overall course grades did improve significantly, t(132) = 4.96, p < 0.001, d = 0.87 when the 
course was taught using the flipped classroom.  However, since the grading structure was 
different in the flipped classroom and the homework was completed online, an increase in 
average course grade is perhaps not that surprising.  The final exam administered to both 
groups was very similar and can serve as an accurate measure of learning gains. The final 
exam grades were significantly higher, t(132) = 6.57, p < 0.001, d = 1.15, in the flipped class 
than the traditional class. Furthermore, several common final exam questions were given to 
both groups in order to measure and compare student learning on important topics in 
introductory statistics.  The flipped class group did better on all of the common final exam 
questions and significantly better on questions about writing hypothesis for a hypothesis test 
and finding sample size given an acceptable margin of error. 

This study also wished to measure the relationship between statistics students’ 
perceptions about the flipped classroom and students’ performance in this learning 
environment. To address this, each student in the flipped classroom group was given a FC+ 
score based on their responses to statements on the attitudinal survey. The purpose of 
calculating the FC+ score is to determine if a student’s attitudes about the flipped classroom 
have an impact on that student’s performance in this learning environment. A correlation of 
FC+ scores with student grades on the final exam showed a weak relationship, r = 0.18, p = 
0.1087 between these variables. A correlation of FC+ scores with student course grades also 
showed a weak relationship, r = 0.27, P = 0.0152. Thus, it seems that a statistics student’s 
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perception of the flipped classroom is not a reliable indicator of how well that student will 
perform in a flipped classroom course. 

Follow-Up Study 
During the Fall 2014 semester a follow-up study will be conducted using a Statistics 

Concept Inventory developed by Allen (2006).  This inventory will be given to students in a 
flipped classroom group and a control group as a pre- and post-assessment.  This will allow 
for a determination of topics and concepts in which the flipped classroom teaching is most 
effective for introductory statistics.   

Questions for the Audience 
• How can the results of this study best be presented to students to convince them of the 

utility of the flipped classroom? 
• Survey data will also be collected about how students learn best.  How can this data 

be used in conjunction with the results presented here? 
 

References 
Allen, K. 2006. The statistics concept inventory: Development and analysis of a cognitive 

assessment instrument in statistics. Ph.D. Thesis, University of Oklahoma. 
 
Conners, F., S. Mccown and B. Roskos-Ewoldsen. 1998. Unique challenges in teaching 

undergraduate statistics. Teaching of Psychology. 25: 40–42.  
 
Dove, A. 2013. Students’ perceptions of learning in a flipped statistics class. In R. McBride 

and M. Searson (Eds.), Proceedings of Society for Information Technology & Teacher 
Education International Conference 2013 (pp. 393-398). Chesapeake, VA: AACE.  

 
Freeman, S., S. Eddy, M. McDonough, et al. 2014. Active learning increases student 

performance in science, engineering, and mathematics. To appear in: PNAS. Retrieved 
from: www.pnas.org/cgi/doi/10.1073/pnas.1319030111.  

 
Hake, R. 1998. Interactive-engagement versus traditional methods: A six-thousand-student 

survey of mechanics test data for introductory physics courses. American Journal of 
Physics. 66(1): 64–74.  

 
Hudak, M. and D. Anderson. 1990. Formal operations and learning styles predict success in 

statistics and computer science courses. Teaching of Psychology. 17: 231–234.  
 
Lage, M., G. Platt and M. Treglia. 2000. Inverting the classroom: A gateway to creating an 

inclusive learning environment. The Journal of Economic Education. 31(1): 30–43.  
 
McGivney-Burelle, J. and F. Xue. 2013. Flipping calculus. PRIMUS. 23(5): 477–486. 
 
Moravec, M., A. Williams, N. Aguilar-Roca, and D. O’Dowd. 2010. Learn before lecture: A 

strategy that improves learning outcomes in a large introductory biology class. CBE Life 
Sciences Education. 9(4): 473–481. 

 
Strayer, J. 2012. How learning in an inverted classroom influences cooperation, innovation 

and task orientation. Learning Environments Research. 15: 171–193. 
 

18th Annual Conference on Research in Undergraduate Mathematics Education 42818th Annual Conference on Research in Undergraduate Mathematics Education 428



 
Wilson, S. 2013. The flipped class: A method to address the challenges of an undergraduate 

statistics course. Teaching of Psychology. 40(3): 193–199. 
 
 
 
 
 

18th Annual Conference on Research in Undergraduate Mathematics Education 42918th Annual Conference on Research in Undergraduate Mathematics Education 429



The Transfer of Knowledge from Groups to Rings: An Exploratory Study  
 
Typical undergraduate course sequences in abstract algebra initiate with group theory before 
proceeding to ring theory.  This sequencing, along with the structural similarities between 
groups and rings, enables many ring-theoretic concepts to be formulated in terms of results from 
group theory.  What remains to be seen, however, is the extent to which students are able to 
transfer their knowledge of groups while studying topics in ring theory.  Using Wagner's transfer 
in pieces framework, we conducted an exploratory study to investigate how students in an 
inquiry-oriented classroom capitalized on their knowledge of groups to make sense of rings.  
Preliminary results indicate both instances of obvious transfer (e.g. subgroup to subring) and 
also more creative approaches that might lend insight into how students think about ring 
structure (e.g. characterizing field-like structures as ‘abelian grouprings’).   
 
Key words:  student thinking, abstract algebra, ring theory, transfer 
 

Introduction 
A course sequence in undergraduate abstract algebra devotes significant amounts of time to 

both group theory and ring theory.  These courses are typically sequenced so that group theory 
precedes ring theory.  An interesting consequence of the groups-first approach is that many 
concepts in group theory have direct mathematical analogues in ring theory.  Indeed, from an 
expert’s perspective, the potential for formulating ring-theoretic ideas in terms of groups is 
abundant.  The rings content in some prominent abstract algebra texts illustrates some of this 
potential.  For example, Fraleigh (1982) outright defined a ring in terms of an abelian group, and 
Gallian (2002), defining a ring in terms of each of its axioms, immediately thereafter explains 
that a ring is essentially “an Abelian group under addition, also having an associative 
multiplication that is left and right distributive over addition” (p. 230).  Such characterizations 
set the tone for the remainder of the content to capitalize on these similarities whenever 
appropriate, including motivating ideals by drawing analogies to normal subgroups (Fraleigh, 
1982, p. 250) and quotient rings by starting with the group of additive cosets (ibid; Gallian, 2002, 
p. 254).  The similarities, of course, do not end there. 

These analogies, presumably included in textbooks to help students make sense of rings, 
elicit an important pedagogical question:  to what extent are students transferring their 
knowledge of group theory as they come to understand rings?  It should be noted that the above 
attestations of expert mathematicians do not necessarily indicate definite avenues for student 
transfer.  In fact, Wagner (2010) cautioned against basing judgments about students’ ability to 
transfer structural knowledge based on the capabilities of experts.  Research on student learning 
of algebraic structure corroborates this warning as well:  students struggle (and perhaps fail) to 
access their formal knowledge of abstract algebra in situations that clearly call for it (Simpson & 
Stehlikova, 2006).  As such, in this paper we address the following exploratory research 
questions:  (1) Which group-theoretic concepts do students intuitively recognize and leverage as 
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they come to understand ring-theoretic concepts?  (2) What knowledge ‘cues’ from ring-theoretic 
concepts do students notice that enable them to frame their understanding of these concepts in 
terms of groups? 

Theoretical Perspective 
We employ Wagner’s (2006) transfer-in-pieces (TIP) framework, which “demonstrates how 

means of attending to (reading out) and coordinating information available in particular instances 
may vary as a single mathematical principle is perceived as relevant in different contextual 
circumstances” (Wagner, 2006, p. 1).  This is accomplished by investigating “the conditions 
under which particular resources and knowledge elements are most likely to be cued and used” 
(p. 6).  The TIP approach is an adaptation of diSessa’s (1988, 1993) knowledge-in-pieces 
framework, a constructivist lens for analyzing knowledge acquisition based upon “the 
fragmented system of intuitive knowledge we find in our students” (1988, p. 70).  Indeed, the 
TIP framework aims to investigate evidence of knowledge transfer from a novice’s (and not an 
expert’s) perspective.  This involves identifying those aspects of the problem scenario that cue 
various knowledge resources.  The supports offered by these knowledge resources are called 
affordances.  To investigate the implications of these knowledge resources and their 
corresponding affordances, we adopt diSessa and Wagner’s (2005) related heuristics of readout 
strategies and causal net.  Readout strategies “determine how characteristic attributes of a 
concept are attended to or seen” (Wagner, 2006, p. 7).  The causal net “consists of knowledge 
and reasoning strategies that determine how what is observed is related to the desired 
information” (ibid.).  These heuristics guided our identification and analysis of instances of 
transfer from groups to rings. 

Methods 
An abstract algebra classroom, both the students and the instructor, from a small Midwestern 

liberal arts college comprise the participants for this study.  The instructor, Dr. North 
(pseudonym), was an experienced inquiry practitioner.  The students had previously completed 
an inquiry-based unit on group theory; 8 class periods of 75 minutes apiece at the end of the 
course were devoted to ring theory.  Each of these 8 classes was video recorded (portions of the 
class devoted to small group work focused on one small group)).  The portions of the course 
dedicated to group theory were audio recorded using a Livescribe pen.  Dr. North met regularly 
with members of the research team during this time to prepare for and debrief from the week’s 
classes.  Dr. North used an instructional sequence derivative of those developed by Author 
(2012) to support the guided reinvention (Gravemeijer & Doorman, 1999) of ring, integral 
domain, and field.  In this way, the transfer-in-pieces framework is compatible with and ideally 
suited for the constructivist orientation of the classroom studied in this paper.   

In particular, the data was subject to Cobb and Whitenack’s (2000) iterative analysis method 
for analyzing classroom video data in which we viewed the video data multiple times, each time 
incorporating more detail.  In alignment with our research questions and theoretical perspective, 
in the first viewing we identified those particular concepts (or aspects of a particular concept) in 
ring theory that cued concept projections from group theory. In the second and third viewings we 
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determined how the characteristics of a group are attended to in these contexts, and examined 
how these observations are related to the intended concepts to be learned, respectively.   

 
Results 

While there were several prominent instances of transfer that arose as the students 
investigated rings, in this brief preliminary report we focus specifically on those related to the 
commutativity and inverse axioms and their roles in the students’ self-appointed names for new 
structures.  Each of these episodes resulted from an open-ended task in class in which Dr. North 
challenged the students to make conjectures related to their newly reinvented definition of ring.  
These episodes occurred after the students had reinvented the formal definition of ring (but 
before defining any other ring structures like commutative ring or field).   

Commutativity and ‘abelian rings’:  One small group conjectured about the existence and 
nature of subrings (an obvious transfer of the notion of subgroup in itself).  In doing so, they first 
defined an ‘abelian ring’ as a ring in which “both operations are commutative,” listing R, Z and 
Q amongst the examples.  Their subrings conjecture was “if R is an abelian ring, then any 
subring S of R is an abelian ring.”   

 
Figure 1:  a small group’s definition of an ‘abelian ring.’ 

The cue for this instance of transfer appears to be noticing that a ring’s multiplication is not 
required to be commutative (yet they are able to cite several examples in which the 
multiplication is, indeed, commutative).  Their readout strategies in this regard appear to be 
grounded in their understanding of the utility of the distinction between group and abelian group.  
Notice that their proposed definition of an ‘abelian ring’ exactly parallels that of the 
conventionally-named commutative ring, while also indicating that students have decided that 
commutativity is an important axiom for characterizing different types of rings.  We may frame 
these developments as affordances of the students’ knowledge resources related to group and 
abelian group.   

Multiplicative inverse.  Along the same lines, a different group defined a ‘group ring’ as “a 
ring that contains a multiplicative inverse and identity, but does not mean that the multiplicative 
[sic] is commutative.”  A student in the group goes on to explain that “add [sic] is basically 
abelian but multiplication is now all the properties of a group, is the way I think of it.”  The cue 
for this attempt to frame their concept image of fields in terms of groups appears to rely 
primarily on the presence of multiplicative inverses and the multiplicative identity (using the real 
numbers as a reference), as evident in the ensuing class discussion led by Dr. North: 

Dr. North: So what’s a group ring mean? 
Student: It’s a ring that contains the multiplicative inverses and the multiplicative  

identity.   
Dr. North:   OK, can anyone think of an example? 
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Student:   The real numbers under addition and multiplication. 
As such, their readout strategies in this regard seem to be rooted in the prevalence of 
multiplicative inverses.  Though these affordances are not entirely correct (as the additive 
identity, for example, never has a multiplicative inverse), this link certainly does convey a 
productive initial understanding of field.  Additionally, this might be suggestive of a tendency for 
students to characterize field-like structures as a group under both addition and multiplication. 

 
Questions 

(1) What other types of evidence of transfer (aside from direct mentions of ‘group’) should we 
look for in such an analysis?  (2) What are some other, less-obvious instances of transfer that 
have emerged in your own classroom experience?  (3) What other aspects of Wagner’s transfer 
in pieces framework might help us expound upon identified instances of transfer? 
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Semantic and logical negation: Students’ interpretations of negative predicates

Paul Christian Dawkins
Northern Illinois University

John Paul Cook
University of Science and Arts of Oklahoma

During exploratory teaching experiments intended to guide students to reinvent basic truthfunc-
tional definitions for basic logical connectives, it unexpectedly emerged that undergraduate stu-
dents reasoned about negation and negative properties in ways incompatible with the conventions
and norms of mathematical practice. Specifically, our study participants often unpacked negative
properties (not a rectangle) in terms of positive properties (is a parallelogram), which we call
semantic negation. In this way, students did not readily adopt the mathematical assumption that
the logical negation of a predicate designates the complement of the set of examples that satisfy
that predicate. Students especially understood geometric sets of objects as being partitioned by
familiar categories rather than those stipulated in a given statement. Semantic negation inhibited
students systematizing activity regarding linguistic interpretation because their reasoning about
disjunctions in various mathematical contexts depended intrinsically upon their understanding of
particular topics so as to preclude abstractions approximating normative logical tools.

Keywords: truth-functional logic, guided reinvention, negation, disjunctions, reasoning about
logic

One common justification provided for mathematics instruction in general, and prooforiented
instruction in particular, is that it promotes students development of logical or deductive reasoning
(Gonzalez & Herbst, 2006; Inglis & Simpson, 2008, 2009). Though professional mathematicians
rarely use formal logic in their work (Hanna & De Villiers, 2008; Thurston, 1994), their mathe-
matical reasoning conforms rather faithfully to formal logical norms (Azzouni, 2009; MacKenzie,
2001). This could suggest that formal logical structure can emerge from mathematical content
itself, inasmuch as formal logic grew out of mathematics historically (Durand-Guerrier, 2008).
Unfortunately, in many proof-oriented classrooms matters of logic (both norms of linguistic inter-
pretation and normative modes of argumentation) pose persistent barriers to students apprentice-
ship in mathematical proving (e.g. Durand-Guerrier et al., 2012; Epp, 2003). Matters of linguistic
interpretation are especially challenging because students preconscious reasoning processes can
lead them to understand mathematical statements in ways quite different from their professors
(e.g. Dubinsky & Yiparaki, 2000; Durand-Guerrier, 2003).

To address such difficulties, we conducted a sequence of exploratory teaching experiments
(Steffe & Thompson, 2000) intended to guide students to reinvent (Gravemeijer, 1994) basic struc-
tures of predicate logic including truth-functional definitions of common logical connectives (or,
if, then). We thereby intend to simultaneously 1) investigate how students untrained interpretations
mathematical language diverge from the norms and conventions of the mathematical community
and 2) develop learning trajectories (Clements & Samara, 2004) that support students identifi-
cation and imposition of such norms and conventions upon their own mathematical activity. In
this paper, we report about one (unexpected) emergent phenomenon that distinguished students
untrained interpretations of mathematical statements from the normative interpretations used by
mathematicians and suggest directions for guiding students systematizing activity. We use the term
systematizing activity because our task sequence led
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students to 1) attend to and problematize their interpretations of mathematical language before 2) 
pursuing systematic tools for interpreting and assessing various mathematical statements of the 
same logical form (disjunctions and conditionals, both quantified and non-quantified). This 
emphasis placed upon students’ own reasoning about logic (compatible with Stenning & van 
Lambalgen’s, 2004, reasoning for an interpretation) distinguishes our analytical and 
instructional approach from much previous logic or deductive reasoning literature, which 
primarily investigated the emergent logical form of students’ pre-conscious reasoning processes 
(e.g. Evans, 2005, 2007).  

Mathematical Property/Category Relations 
An extensive body of literature in mathematics education documents how students reason 

about property/category relations in non-normative ways (e.g. Alcock & Simpson, 2002; 
Edwards & Ward, 2008; Vinner, 1991). While mathematicians generally treat ratified definitions 
as stipulated (necessary and sufficient conditions for category membership), students often treat 
mathematical definitions as extracted, meaning they may include false examples or exclude 
desired examples (Edwards & Ward, 2008). For instance, students may not think of squares as 
rectangles even though they have all the defining properties of rectangles. This is partly because 
the terms square and rectangle are also shape names and because such categories in students’ 
minds are more prototype-driven than property-driven (Murphy & Hoffman, 2012).  

Such matters of category/property relations are essential to the normative logical models of 
mathematical language inasmuch as properties as diverse as “not a rectangle,” “greater than 5,” 
or “isosceles” may all be represented as predicates P(x) where x could be a quadrilateral, 
number, or triangle, respectively. In the tradition that treats logic as “what remains when all 
meaning has been removed” (Sentilles, 1975, p. 12), this reduces each property to a function that 
maps examples to either 0 (“false”) or 1 (“true”). One traditional tool for evaluating compound 
statements in predicate logic (e.g. “Given any quadrilateral, it is a rectangle or it is not a square”) 
is the Venn diagram (Figure 1). In this view, quadrilaterals can be imagined as points in a 
rectangular region and the two predicates partition the region according to those examples that 
do or do not have the property P. By stipulating a region by the predicate P the Venn diagram 
assumes agreement between the property and a related category and that every example is in 
exactly one group (the “law of excluded middle”). Thus, the “not” operator or a property being 
“false” are understood to correspond to the complement of the set of examples that satisfy P. The 
value of this representation is that it can accommodate any disjunction rendered in the form 
“Given any ! ∈ !,!P(x) or Q(x)” where P and Q represent predicates quantified over the set of 
examples S. In this interpretation, the disjunction is true only if every element of S is in at least 
one of the two circles, which also means there are no examples for which P and Q are both false. 
While the example statement above could also be modeled using P as “is a rectangle” and Q as 
“is a square” as in Figure 1, the models’ compatibility relies upon the identification of logical 
“not” with the complement of the set partitioned by Q. Also, because this interpretation 
quantifies P and Q over all of S, for the purposes of evaluating the truth-value of the disjunction 
“Given any ! ∈ !” is considered equivalent to “For every ! ∈ !.”  
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Figure 1: Alternative Venn diagrams partitioning examples by the predicates in a disjunction. 

Study and Methods 
The normative model for the logic of mathematical disjunctions achieves generality by being 

heavily abstracted from particular mathematical content. To replace “not a rectangle” with the 
Boolean function P(x) entails a large “loss of information” in line with the assumption that logic 
ignores meaning. However, such views of logic take them far afield from (even expert) 
reasoning (Dawkins, 2014) and seem contrary to the afore-mentioned view that logic can emerge 
from mathematical structure. Furthermore, it is unclear how directly teaching students such pre-
abstracted tools (as is common in many introduction to proof courses; Selden, 2012) will help 
them revise their pre-conscious modes of linguistic interpretation when reasoning about 
particular mathematical content. We anticipate that, for many students, logic answers a set of 
questions (about language, meaning, and reference) that they have not yet asked.  

Because of these concerns, we restricted the activities in our teaching experiments to 
providing students with meaningful mathematical disjunctions to interpret, assess (determine true 
or false), and negate. We intended any logical structure to emerge from their reflections on their 
own reasoning and any abstractness to result from their abstractions and anticipations (Simon et 
al., 2013) regarding the truth-values of mathematical disjunctions. In this way, we anticipate that 
the resulting modes of reasoning about logic may be embedded within their mathematical 
(semantic) reasoning so as to influence their proof-oriented mathematical activity in context. We 
did not explicitly instruct students that they were learning logic and we tried to avoid introducing 
normative models or structures for predicate logic until students imposed them spontaneously.  

We recruited Calculus 3 students from a medium-sized university in the Mid-Western United 
States. We selected this population because they were 1) mathematically proficient (their 
reasoning about basic topics is rich enough to display formalizable structure), 2) untrained in 
collegiate proving and mathematical logic, and 3) likely to benefit in future courses from the 
content to be reinvented. The data presented in this paper comes from the first three teaching 
sessions (all on disjunctions) with one pair of participants. Eric and Ovid had received no prior 
instruction in formal logic. Table 1 presents the disjunctions provided to study participants on the 
first two days. Their tasks over the three days were respectively to 1) determine whether each 
was true or false and explain any patterns in why the statements were true or false, 2) develop a 
“How-to guide” for assessing the truth of “or” statements, and 3) develop a method for negating 
disjunctions (formulating a related statement that will always have the opposite truth-value).  

Day 1 Disjunctions Day 2 Disjunctions: How-to Guide 
A1. Given an integer number x, x is even or x is odd.  B1. Given an integer x, x is an even number or x+1 

Rectangles 
that are not 

squares 

Squares that 
are not 

rectangles 

Rectangles 
that are 
squares 

Quadrilaterals that are neither squares nor 
rectangles 

Venn Diagram for “[rectangle] or not [square]” 

Rectangles 
that are 
squares 

Non-squares 
that are not 
rectangles 

Rectangles 
that are not 

squares 

Squares that are not rectangles 

Venn Diagram for “[rectangle] or [non-square]” 
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A2. The integer 15 is even or 15 is odd.   
A3. Given any two real numbers x and y, ! < ! or 

! < !.  
A4. Given any two real numbers x and y, ! ≤ ! or 

! ≤ !.  
A5. Given any real number y, y has a reciprocal !! 

such that ! ∗ !! = 1 or y=0.  

A6. The real number ! has a reciprocal !! such that 

! ∗ !
! = 1 or ! = 0.  

A7. The real number 0 has a reciprocal !! such that 

0 ∗ !! = 1 or 0=0.  
A8. Given any real number x, x is even or x is odd.  
A9. Given any even number z, z is divisible by 2 or z 

is divisible by 3.  
A10. Given any even number z, z is divisible by 4 or z 

is divisible by 3.  
A11. Given any even number z, z is divisible by 2 or z 

is divisible by 4.  
A12. Given any even number z, z is divisible by 4 or 

z+2 is divisible by 4.  

is an even number.  
 B2. 10 is an even number or 20 is an even number. 
 B3. 13 is an even number or 6 is an even number.  
 B4. 5 is an even number or 7 is an even number. 
 B5. 8 is an even number or 37 is an even number.  
 B6. Given any triangle, it is equilateral or it is not 

acute. 
 B7. Given any triangle, it is acute, or it is not 

equilateral. 
 B8. Given any triangle, the sum of the measures of 

the interior angles is 185.7° or the sum of the 
measure of the interior angles is 180°.  

 B9. Given any quadrilateral, it is a square or it is not 
a rectangle.  

 B10. Given any quadrilateral, it is not a square or it is 
a rectangle.  

 B11. Given any rectangle, the interior angles are all 
right angles or the interior angles are all obtuse.  

 B12. Given any two integer numbers x and y with 
x<y, there is an integer between x and y or 
x+1=y.  

 B13. Given any two real numbers x and y with x<y, 
there is a real number between x and y or x+1=y. 

 B14. Given any two natural numbers x and y with 
x<y, there is a natural number between x and y 
or x+1=y. 

 B15. Given any quadrilateral, it is a rhombus or it is 
not a parallelogram.* 

 B16. Given any quadrilateral, it is not a rhombus or it 
is a parallelogram.*  

*: Disjunctions introduced by interviewer during teaching session.  
Table 1: Sample disjunctions from the first two instructional sessions. 

The first author served as the teacher-researcher (Cobb & Steffe, 1983) and the second author 
served as the outside observer (Steffe & Thompson, 2000) for the exploratory teaching 
experiments. All teaching sessions were video recorded. Consistent with the teaching experiment 
methodology, the researchers met between each teaching session to reflect, review and analyze 
the teaching session recording, form hypotheses about student understanding, and formulate 
tasks and hypotheses for prompting student learning in the subsequent session. These hypotheses 
formed the initial codes and categories for retrospective analysis after the conclusion of the 
experiment. The teaching sessions were later analyzed and coded after the method of grounded 
theory analysis (Strauss & Corbin, 1998). In this paper, we report primarily upon the strongly 
emergent phenomena surrounding how students interpreted negative propositions and how they 
negated various kinds of mathematical properties. We use the description “strongly emergent” to 
mean: 1) common among the many study participants, 2) often resistant to change, and 3) 
inhibitive to students’ systematizing activity and thus the learning goals of the study.  

Results 
Throughout the study, it became clear that students’ reasoning about the mathematical 

disjunctions varied greatly depending upon the particular mathematical content of the statement. 
Thus, if logic means the structure that is left when all meaning is removed from the statements, 
then it might be said students did not have a single or consistent logic of mathematical 
disjunctions. Instead, the way students interpreted each disjunction depended greatly upon their 
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reasoning about the statement’s mathematical content (semantic meaning), and students’ 
interpretation would even vary for a given statement as they would read, discuss, and reread the 
statement trying on various methods of interpretation. For instance, Eric and Ovid had the 
following discussion regarding B9 and B10 during the second teaching session: 
E: [After reading B9] If it’s a square, it’s not a rectangle. Well, squares are rectangles, but… 
O: “Is not a rectangle,” that could mean it’s a parallelogram or anything like that too, right so I 

would say it’s true.  
E: There’s a square. There’s not a rectangle. It could be the rectangle. I don’t think a rectangle is 

considered a square. A square is, they’re all even sides… But a square is a rectangle.  
O: With equal sides. 
E: But it’s a specific rectangle, yeah. So I’d say it’s false.  
O: Umm, but for a quadrilateral it doesn’t mean they all have to be right angles. You could have 

a parallelogram that is also not a rectangle.  
I: So [Eric], what was your reasoning for saying it was false?  
E: Well it could be a square, or it could be a rectangle that isn’t a square… So it can be a square 

or it can be a rectangle or it can be anything else.  
I: So that makes it false because?  
E: It’s saying, “If it’s not a square it can’t be a rectangle.” But it could really be anything…  
O: Yeah cause “not a rectangle” that’s just a parallelogram then, or a square. So I would say that 

it’s true.  
E: Or it could be angled or it could be 90 degrees, it could be anything. It could be a rectangle if 

it’s not a square. So, like, if it’s not a square, it could still be a rectangle. This is saying, “it’s 
either a square or it’s not a rectangle.” It could be a square, it could be a rectangle, it could 
be, like, an angled quadrilateral. So it’s giving you, yeah like the “or statement” is like, “If 
it’s not a square, it can’t be a rectangle either,” but it could be a rectangle if it’s not a square.  

O: So “it’s either a square or a parallelogram,” which is not a rectangle. So the only, so actually 
the only way that this is false if the “any quadrilateral” is a rectangle… [Reads B10 aloud 
quietly] Okay, so then I would say that’s false too.  

E: Yeah. Cause it’s basically like a third thing it could be that doesn’t satisfy those two… If they 
included all possible quadrilaterals, but this is pretty much saying there is only two types of 
quadrilaterals, when there could be a third.  

As described to above, study participants often analyzed the provided disjunctions by iteratively 
paraphrasing or restating the given claims, as they understood them. In this episode, Eric 
provided multiple paraphrases for what B9 was “saying.” He used both “either… or… ” 
language and an “if not… then…” formulation. Regarding B10, he abstracted his interpretation 
in terms of his trichotomy of examples claiming that there are three groups and the disjunctions 
only mention two (though this was inaccurate for this statement). Though some of these 
particular interpretive trends recurred, students clearly did not interpret these mathematical 
disjunctions (all of the form “Given any ! ∈ !,!P(x) or Q(x)”) in a uniform way.  

Semantic Negation and Logical Negation 
Some of Ovid’s reasoning reflects one primary reason their interpretations varied with the 

mathematical context. In this episode, Ovid employed a strategy of choosing examples (“given 
any”) and testing whether they satisfied either condition in the statement. It is important that 
while Eric was satisfied to treat “not a rectangle” as a group of quadrilaterals, Ovid replaced the 
negative predicate with an alternative shape name. Ovid’s behavior is one instance of a recurrent 
pattern of how participants in our experiments interpreted negative properties. The standard 
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logical negation of being a rectangle is being a non-rectangle, which can be understood as a 
predicate that parallelograms satisfy. Our participants instead often treated negative predicates 
(“not a rectangle”) as needing “unpacking” in terms of positive properties (“is a parallelogram”). 
This move constitutes what we call semantic negation rather than logical negation. This was 
most obviously problematic when the alternative property did not correspond to the complement 
of the original class, as when students replaced “not acute” with “obtuse,” interpreted “not even” 
as “odd,” or negated “<” with “>.” Even after discussing that ! is neither even nor odd, students 
persisted to negate “even” with “odd” and vise versa. Semantic negation inhibited students’ 
systematizing activity because negations that depended strongly upon mathematical context did 
not display repeated structure for students to abstract.  

Ovid’s strategy of testing various examples in a quantified disjunction was quite common, 
but the students’ strategy for example generation varied with the mathematical context. For 
statements like A9-12, students enumerated examples serially (and were generally convinced 
after 3-5 examples). Order relations (e.g. A3-4) led students to trichotomize examples into <, >, 
and = to a given example. In geometric contexts, students relied on familiar shape names or 
categories. In the episode above, though Eric partitioned the example space into the three 
normatively relevant groups (similar to a Venn diagram), he clearly did so with reference to the 
shape properties (even sides, right angles). In this case, he accepted negative properties (“not a 
rectangle”) more in line with logical conventions. This afforded his quite generalized explanation 
that “this is pretty much saying there is only two types of quadrilaterals, when there could be a 
third.” In this way, he anticipated that the two predicates in B10 would each capture only one of 
the three categories of quadrilaterals and thus one must be left out. However, assimilating B10 to 
his understanding of B9 led to a misconception that he was very slow to revise. Eric’s accurate 
interpretation of B9 relied on the fact that its predicates eacj corresponded to one of the three 
relevant groups. The predicates in B10 (the negations of those in B9) thus each corresponded to 
two relevant groups in his trichotomy. It is clear from his rejection of B10 (which he defended in 
various ways for at least 10 minutes) that Eric did not perceive this negation/complement 
relation. Ovid’s case-based strategy led him to affirm B10 more quickly.  

A further consequence of Ovid’s semantic negation and Eric’s lack of negation/complement 
correspondence appeared later in the same session. We provided B15 and B16 to encourage them 
to reflect on the repeated structure of the set of examples across the geometric disjunctions we 
provided. They identified three relevant examples (as before) and Eric classified them according 
to whether they were or were not parallelograms and rhombi (see Figure 2). While the 
researchers anticipated that their classifications in terms of these properties relevant to the 
statements would convince them that they did not need to check any other examples to verify 
that B16 was true (i.e. these two properties trichotomize all quadrilaterals), the students instead 
began introducing other categories such as parallelograms and kites. This suggests they were still 
attending to semantic categories instead of the categories introduced by the propositions in the 
disjunction. Though they were initially convinced, their reasoning did not afford any justification 
for all examples fitting into three (or four) possible categories as suggested by the Venn diagram 
organization of examples. Only after some guided reflection did their attention shift from the 
familiar shapes to the four possibilities for any quadrilateral: is (not) a rhombus and is (not) a 
parallelogram. Categorizing the various examples in this way allowed them to begin to recognize 
the quadrichotomy structure available in a disjunction of two predicates.  
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Figure 2: Classifying examples according to the predicates in a disjunction.  

One useful strategy that emerged in several students’ reasoning is represented by Eric’s 
paraphrase of B9 as saying, “it can’t be a rectangle.” For at least one other student, this kind of 
ontic paraphrase allowed him to interpret a negative category properly without unpacking it in 
terms of another geometric category. Psychological literature (e.g. Evans, 2005) on conditional 
reasoning similarly found that adults reason more normatively about negative conditions in an 
ontic frame (what is allowed or what is possible). In our study, such pragmatic paraphrases 
sometimes helped students adopt more conventional interpretations of mathematical parlance.  

Summary and Implications 
Our teaching experiments succeeded over time in guiding students to reason about logical 

structure within their semantic (mathematical) reasoning. They adopted normative interpretations 
of non-quantified disjunctions and developed some useful heuristics for quantified disjunctions. 
However, their progress toward normative logical structures for quantified disjunctions was 
strongly inhibited by the prevalence of semantic negation. It seems that for students like Ovid, 
properties described shapes, but it would be inaccurate to say that “not a rectangle” served as a 
predicate (non-rectangle) in his untrained thinking, as predicates are understood in normative 
mathematical logic. As such, the way Ovid read and interpreted such mathematical disjunctions 
differed importantly from mathematicians’ intended meanings. We did not anticipate before the 
study that the logical operator “not” would be so problematic for students’ reinvention of 
conventional logic. Our study participants clearly did not automatically partition example spaces 
in a manner stipulated by the given statement (as in Venn diagrams), but rather thought of 
examples as being divided by more familiar semantic categories. This suggests that further 
attention to property/category relations and negative property/complement relations might 
benefit students being trained in mathematical proving. We anticipate that guiding students to 
attend to and reason about logic in context will provide further insight into students’ untrained 
interpretations of mathematical parlance and actionable tools for apprenticeship in proving.  
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Value judgments attached to mathematical proofs 
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In mathematics, it is a common phenomenon to find several proofs for a single result. This 
inevitably leads us to believe that proofs are far more than a convincing argument. Indeed, it 
appears that there is considerable interest in the insight that is gained from the reasoning 
utilized in a proof. With the existence of several proofs of the same theorem, we are then 
confronted with a question of value judgment, as it is not necessarily the case that one values all 
proofs of a given theorem equally.  In this theoretical report, I attempt to provide a framework 
that contributes to the discussion regarding value judgments about proofs by providing a 
comparative language to systematically talk about judgments one may attach to a proof. I argue 
that proofs can be valued for reasons such as  (1) comprehensibility, (2) explanatory power, (3) 
originality and surprises, and (4) generalizability. 
 

Key words: Proof; Value Judgment; Purpose of Proof. 

In mathematical research, it is not unusual to see different published proofs of a single result. 
For instance, we have several published proofs of the Pythagorean theorem, the irrationality of 
√2, and the Fundamental Theorem of Algebra (FTA) – the last of these asserts that the field of 
complex numbers is algebraically closed. In fact, journals have published proofs for the FTA 
using theory from different mathematical perspectives (e.g. complex-analytic, topological, and 
algebraic). Dawson (2006) provides several reasons for why mathematicians produce new proofs 
of already proven theorems; they are, however, neither exhaustive nor necessary to seek new 
proofs of already proven theorems. 

The existence of several proofs for a single result naturally leads to a question about value 
judgments regarding proofs. In this paper, I argue that mathematicians may value a proof for 
reasons such as: (1) comprehensibility, (2) explanatory power, (3) originality, and (4) 
generalizability. Before I begin my discussion of the above list, I must note that this list is 
certainly not exhaustive.  Moreover, the qualitative values assigned to elements of the list are not 
objective; among other things, they depend on the mathematician’s background. For example, it 
could be certainly the case that a proof deemed explanatory by one mathematician might not 
been seen as such by another.  

 
 Comprehensibility 

Arguments that are complex, convoluted, and lengthy can be tedious and difficult to 
comprehend. Proofs that are short in length are usually preferred since shorter proofs are usually 
easier to follow. There is no reason to make an argument longer than it should be. Recall that one 
of the purposes of a proof is to convince others that a theorem is true; therefore, it is reasonable 
to prefer shorter proofs since they may be easier to follow. This notion of comprehensibility is 
related to Gowers’ (2007) idea of memorability. Proofs that are easier to recall might be more 
valued over those that are more difficult. According to Gowers, the concept of memorability has 
to do with the number of ‘key ideas’ one has to keep in mind when following a proof. More 
specifically, proofs that are easier to remember have low width (Gowers, 2007). 
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It is important that one distinguishes the width of a proof from the length of a proof, the latter 
of which being the number of deductive steps required to complete the proof.  It is possible to 
have long proofs with low width. In fact, this is common for proofs in measure theory. Suppose 
that one wanted to show some property, say X, holds for a positive measurable function f. One 
common technique used to prove theorems in measure theory is to show that X holds for 
characteristic functions, simple functions, and by way of approximation theorems, positive 
measurable functions, in that order. Proofs like this might be long when fully written, but one 
usually only needs to remember the common technique. In summary, proofs that are relatively 
short and have low width are easier to comprehend and, for this reason, they are usually 
preferred. In contrast, Dawson (2006) makes the point that formal proofs that are common in 
computer science or mathematical logic, when written out fully, are typically long and difficult 
to comprehend, hence they are less desirable. To elaborate this notion of comprehensibility, I 
will use two proofs showing the irrationality of √2. 
Theorem 1.1: 2!!"!!""#$!%&#'. 
Proof A: Suppose not. Consider the set W = a+ b 2: a, b! ∈ ℤ . !! is closed under 
multiplication and addition. Define ! = 2− 1 ∈!. Since!0 < α < 1,we!have!that!α! ⟶
0!as!!⟶ ∞.!!Assume! 2 = !

! !for!some!!, ! ∈ ℤ. Since!α
! ∈!,!! =

! + ! 2!!"#!!"#$!!,! ∈ ℤ.!!So!α! = ! !"!!"! ≥ ! !!!, contradicting the fact that !! → 0!as!! → ∞.  
Q.E.D.                                                                               
Proof B: Suppose not. Then, ∃!, ! ∈ ℤ!such!that! 2 = !

!.! Further,(suppose(without(loss(of(
generality,(that(gcd(p,q)=1.(Then, !! = 2!!. This would eventually imply that both p and q are 
even, contradicting the supposition that gcd !, ! = 1.  Q.E.D.                                                                                                                                      (

Both proofs establish that √2 is irrational. One can also argue that neither proof is 
significantly longer than the other. However, if one were to reproduce these proofs, one observes 
that there are more key ideas to remember in the first proof than there are in the second; thus, the 
second proof has lower width than the first. It is therefore conceivable to see why one might 
value the second proof over the first. There is even a shorter proof using the rational root 
theorem. This proof uses the fact that any rational root of a monic polynomial is necessarily an 
integer. Then the argument proceeds by showing that ! ! = !! − 2 is a monic polynomial 
whose root is not an integer. We then conclude that √2 is irrational. Certainly this proof is 
shorter in length and it is relatively easier to remember, but one has to first know the rational root 
theorem. 

 
 Explanatory power 

Even though a proof may establish a cogent argument for one to believe a claim is true, it 
might fail to provide the sort of illumination or insight mathematicians hope for. Mathematicians 
prefer proofs that convey understanding or provide insight ( Bell, 1976; Hanna, 1990; Hersh, 
1993; Weber, 2008, 2010). Proofs are more desirable when they provide an explanation why a 
theorem is true, and less desirable when it fails to provide a “psychological satisfactory sense of 
illumination.” (de Villiers, 1990). The notion that some proofs provide an explanation for why a 
theorem is true while others do not is debatable amongst philosophers of mathematics. For 
instance, according to the Aristotle-Pólya tradition argues that within deductive or demonstrative 
reasoning “there is a sharp contrast between two kinds of reasoning, the reasoning which shows 
why something is the case and the reasoning which only shows that something is the case” 
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(Cellucci, 2008, p. 202). Based on this tradition, a proof that shows not only that something is the 
case but also why it must be the case is desirable because it provides a sense of illumination why 
something is the case. In contrast, philosophers such as Popper (1934) and Balacheff (1987) 
argued that all deductive reasoning is essentially explanatory in the sense that such reasoning 
establishes both that something is the case and why it must be the case (Cellucci, 2008). 
According to this tradition, which goes from Popper to Balacheff, to explain X is to provide a 
deductive argument from given principles. Of course, all proofs do just that. Therefore, 
according to this school of thought, to distinguish various proofs of the same result in terms of 
their explanatory power makes little sense. However, the Popper-Balacheff perspective on 
mathematical explanation is problematic. For instance, philosophers such Cellucci (2008) argued 
that the Popper-Balacheff perspective on mathematical explanation is neither necessary nor 
sufficient. He offered, as an example, a proof of the Pythagorean theorem that reasons from the 
axioms of set theory. Such a proof, he argued, qualifies as an explanation according to Popper-
Balacheff perspective; however, it does not give an explanation of the Pythagorean theorem 
because “it deduces the theorem from very general principles which have no special connection 
with the theorem”(Cellucci, 2008, p. 204).  

Besides, if one were to seriously look at how mathematics is being practiced, I argue that we 
have good reasons to believe that talking about proofs in terms of their explanatory power is 
appropriate and it may be necessary. In fact, mathematicians often distinguish proofs that only 
demonstrate something is true from those that also show why something must be true. Take, for 
instance, the controversy surrounding Appel and Haken's joint proof of the Four-Color theorem 
(Thurston, 1995). Their computer-assisted proof drew criticism from eminent mathematicians 
such as Paul Halmos because he and others believed it failed to provide insight into why the 
theorem must be true (Thurston, 1995). Also, it is not unusual for mathematics educators to talk 
about proofs in terms of their explanatory power. Weber (2010), for instance, characterizes 
explanatory proof from a reader’s point of view as a “proof that reconceives a domain of 
mathematics” (p.34). To further elaborate the notion of explanatory power, I will provide two 
examples. First, consider the proofs of the following theorem: 
!ℎ!"#!$!1.2: 2!! + 1!!"!!"#!!"#$%. The following two proofs appeared in Avigad (2006). 
Proof A: A calculation shows that 2!! + 1 = 641 6700417 .!Q.E.D. 
Proof B: First, note that 641 = 5 2! + 1⟹ 5 2! ≡ −1 !"#!641 ⟹ 5! 2!" ≡ 
1 !"#!641 .On!thoe!other!hand,we!have!that!641 = 5! + 2! ⟹ 5! ≡ −2!(!"#!641). 
Then! 5! 2!" ≡ −2!" !"#!641 . So!we!have!that!1 ≡ −2!" !"#!641 . Q.E.D.  

Once again, both proofs verify that 2!! + 1!is not prime. However, one may still value one 
proof over the other. For example, the first proof essentially says nothing besides stating that 
2!! + 1!is the product of 641 and 6700417. As a result, it may be more difficult to recall the first 
proof than the second, which means the first is less memorable. In addition, in the first proof it is 
not clear how one initially thought of the factors 641 and 6700417. However, the second proof at 
least illustrates that 2!! + 1!could not be prime because 641 can be written both as 5! + 2! and 
5 2! + 1. Next, let us consider two proofs, modified from Hanna (1990), regarding the sum 

of the first n positive integers. 

!ℎ!"#!$!1.3:! ! = !(! + 1)
2

!

!!!
. 

Proof A: We write out the terms first forward (as in *) and then backward (as in **) 
      1         +        2       +      3       +…   +       (n-1)    +    n  …………………………………….(*) 
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     n          +      (n-1) +     (n-2)    +…   +          2       +   1  …………………………………...(**) 
 
The conclusion follows from the fact that the sum of the two terms in each column is (n+1) and 
we have n columns. Q.E.D.   
Proof B: We will proceed by induction.!Let!!(!) be the sum of the first n natural number is 
! !!!

! , we will show that !(!) holds for all natural numbers !. The case for n=1 is immediate. 

For the inductive step, assume that for some !,! ! !holds, so!1+ 2+⋯+ ! = !(!!!)
! . We must 

show that ! ! + 1 !holds. Since 1+ 2+⋯ ! + ! + 1 = ! !!!
! + ! + 1 = !!! !!!

! . We 
conclude that ! !  holds when ! ! + 1 !holds. Q.E.D. 

There is no doubt that both proofs are certainly valid; hence, they are both convincing to a 
knowledgeable audience. Yet one might prefer the first proof over the second because the first 
proof provides us with some explanation as where !(!!!)! !comes from. In contrast, the proof by 

induction does not provide any insight regarding where !(!!!)! !comes from. In fact, philosophers 
such as Steiner (1978) and Lange (2006) argued that proofs by mathematical induction are 
generally non-explanatory. For Lange (2006), proofs by induction lack explanatory power 
because they run into what he calls “explanatory circularity”. 
  

Generalizability, fruitfulness, and illustrating significance of a theory or theorem 
Proofs that succeed in proving more than the theorem are desirable. Consider, for instance, 

the intermediate value theorem which asserts that for any continuous function f over closed 
interval [a, b] such that f(a)<y<f(b) for some real number y there exists a real number c such that 
! ∈ [!, !] and f(c)=y. One common proof of the theorem that appears in most undergraduate real 
analysis books uses the completeness axiom and properties of continuous functions. There is also 
an elementary proof that uses the nested interval property. It uses concepts about real numbers 
and techniques of trapping a real number inside of a sequence of nested intervals. The proof I 
present next, which is independent of the preceding techniques, is shorter and involves 
topological arguments. 
Proof: Suppose not. Then one observes that the sets ! = {! ∈ !, ! : !(!) < !}!and !′ = {! ∈
!, ! : ! ! ≤ !} are the same. Therefore, ! is both an open and closed set. Since ! ∈ !, ! ∉ !  
and!! is a non-empty proper subset of [!, !] that is both open and closed. This contradicts the 
fact that  [!, !] is connected. Q.E.D. 
This proof is certainly shorter and more generalizable than the previous proof. Indeed, the 
argument in this proof  shows that the intermediate value theorem holds for any continuous 
functions from a connected space ! to the real numbers (Renz, 1981). 
 

 Surprises, originality, and connecting different domains of mathematical ideas 
Given two different proofs (A and B) of a theorem X, there are times where proof A is more 

explanatory and more generalizable than proof B, but some may still view the former as less 
interesting. This usually occurs when an unexpected technique is used to prove existing and/or 
new problems.  Consider the following two proofs (A and B) of the theorem below. 

!ℎ!"#!$!1.4:!2
!
!!!"!!""#$!%&#'!!"#!!""!! ≥ 3.!
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Proof A: Suppose not. Then ∃!, !!such!that!2
!
! =!!. Further suppose that gcd !, ! = 1. 

Then!!! = 2!!. We will eventually get both !!and!!!are even, which contradicts the supposition 
gcd !, ! = 1. Q.E.D.  
Proof B: Suppose not. ∃!, ! ∈ ℤ!such that 2

!
! =!!. Now we have 2!! = !! ⟹ !! = !! + !!, 

contradicting Fermat's Last Theorem. Q.E.D. 
Clearly, proof A is more generalizable because it shows the result holds for all ! ≥ 2; however, 
the second proof only applies when ! ≥ 3. In addition, it is both essential and clear in proof A 
that if a prime p (in our case p=2) divides the product of two integers, then p will divide at least 
one of them. As a result, proof A provides some sense of insight or explanation why the result 
must hold (Cellucci, 2008). However, one could find proof B more interesting because, in a 
somewhat unexpected way, it uses a famous theorem, Fermat's Last Theorem. This suggests that 
some proofs have a natural shape and pop out of a comparatively narrow search. Other proofs – 
for instance, proof B – have an unnatural shape. Interestingly, mathematicians seem to value 
such “unnatural” proofs. Thus, the preceding shows that one could find a proof more valuable 
and/or interesting not necessarily due to its explanatory power or generalizability, but for reasons 
such as when a proof uses theorems or techniques in somewhat unexpected ways. 

 
 Implication for mathematics pedagogy 

 The above discussion on value judgments of proofs is naturally connected to mathematics 
pedagogy. I will therefore conclude this paper by elucidating some implications this notion of 
value judgment has in mathematics education pedagogy. In undergraduate mathematics, while 
there are various proofs of a given theorem, one cannot afford to present all existing proofs; 
indeed, it is not necessary to present all of them. This fact alone forces professors to choose some 
proofs over others. A natural question then follows: what should be the basis of the decision to 
present some proofs over others? There is no one single answer to this question, but it will 
certainly incorporate a subset of the criteria for value judgments I put forward earlier. Consider, 
for instance, a formal proof of the Pythagorean theorem from Hilbert's axioms that can easily be 
nearly 80 pages long. This proof, as Renz (1981) argued, might not be appropriate for a high 
school geometry course, or even for any undergraduate mathematics course. For starters, 
students may not comprehend the proof and the presentation of the proof may not be practical 
given the time constraints.  

Other than temporal issues, there are issues such as instructional goals the professor has to 
consider when deciding which proofs to present. Take, for instance, the proofs about the sum of 
the first k positive integers in Theorem 1.3 discussed above. In an introductory proof class where 
a professor might be interested in covering particular proof technique of mathematical induction, 
it is more appropriate that he chooses the inductive argument over the other. In summary, there 
are many other considerations one has to account for when choosing which proof of a theorem to 
present during lectures. These include, but are not limited to: available class time; the 
mathematical knowledge that students possess (professors should present only proofs that their 
students are able to comprehend); and the instructor's goal (this may include proof techniques 
that instructors want to communicate to their students).  
   

!
!
!
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The purpose of reading a proof: A case study of Lagrange’s theorem 
 

Eyob Demeke May Chaar 
University of New Hampshire University of New Hampshire 

 
In typical undergraduate advanced mathematics courses, professors spend ample class time 
presenting proofs; however little is know with regards to what students actually gain from these 
experiences. In our preliminary report we will attempt to address this gap, specifically with 
respect to a proof of Lagrange’s theorem. We used Mejia-Ramos and colleagues’ (2012) model 
in designing a proof comprehension test and task-based interviews to shed light on (1) the extent 
to which undergraduates comprehend the proof and (2) what undergraduates gain or learn from 
reading the proof. Initial examination of our data reveals that although the participants could 
follow the proof line by line, they had difficulty identifying key ideas and summarizing the proof. 
Participants acknowledged their responsibility to fill in gaps in proofs; yet they had trouble 
justifying non-trivial assertions. Despite participants’ superficial comprehension of the proof, we 
still observed that participants gained conviction and learned new definitions. 
 
Key words: Proof, Role of Proof, Proof Comprehension, Abstract Algebra. 
 

Undergraduates in most upper-level mathematics courses are expected to spend ample time 
reading and writing proofs; however, the indisputable conclusion from the literature on proof is 
that students do struggle in courses that require proofs; in particular, students have difficulty 
grasping the concept of proof and the role logic and definitions play in mathematical 
argumentation (Harel & Sowder, 1998; Inglis & Alcock, 2012; Moore, 1994; A. Selden & 
Selden, 2003). 

Although there are many studies on undergraduates’ experience with respect to proof 
construction and validation, there are significantly fewer studies on undergraduates’ reading 
comprehension of proof (J. Mejia-Ramos, Fuller, Weber, Rhoads, & Samkoff, 2012; J. P. Mejia-
Ramos & Inglis, 2009). As a result, researchers (Mamona-Downs & Downs, 2005; Roy, Alcock, 
& Inglis, 2010; A. Selden & Selden, 2003) have called for more empirical studies on students’ 
proof comprehension. In this study we applied a proof assessment model suggested by Mejia-
Ramos et. al (2012) to address the following research questions: (1) To what extent do 
undergraduates comprehend proofs? (2) What do undergraduates gain or learn from reading 
proofs that are typically found in their textbook? In particular, we addressed these questions with 
respect to a proof of Lagrange’s theorem in a typical undergraduate abstract algebra course.  

Theory 
The two most important roles of proof discussed in the literature are: (1) conviction or 

verification, and (2) explanation. Convincing is the idea that a proof demonstrates that a theorem 
is true. Although undergraduates and surprisingly mathematicians (e.g., Weber, Mejia-Ramos, & 
Inglis, 2014) are sometimes convinced without proof, De Villiers (1990) writes that “the well-
known limitations of intuition and quasi-empirical methods” underscore the vitality of proof as a 
useful means of verification (p.19). Convincing may be the primary goal of any published proof; 
however, there is a consensus that the functionality of a proof is not, and should not, be limited 
to verifying that a theorem is true (De Villiers, 1990; Hersh, 1993). Indeed, it appears that there 
is considerable interest in the insight that is gained from the reasoning utilized in a proof. For a 
mathematician, a proof—beyond convincing—also functions as an explanatory argument. To 
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explain is to provide insight as to why a theorem is true (De Villiers, 1990; Hersh, 1993;  
Thurston, 1995; Weber, 2008).  Explanatory proofs are insightful precisely because they make 
“reference to a characterizing property of an entity or structure mentioned in the theorem, such 
that from the proof it is evident that the result depended upon the property” (Steiner, 1978). 
According to De Villiers (1990), explanatory proofs provide “psychological satisfactory sense of 
illumination” (p.19). In fact, all eight mathematicians interviewed in Weber’s (2008) study 
reported that the primary reason they read published proofs is to gain insight. 

Proofs, beyond convincing and explaining, can function as a tool to communicate techniques 
or ways of reasoning that can later be used to tackle other problems (Weber, 2008, Thurston, 
1995). Thurston (1995) maintains that mathematicians sometimes use proofs to communicate a 
developed body of common knowledge or new techniques in the case of truly novel proofs. For 
example, mathematicians interviewed in Weber’s (2010) study stated that when reading a proof, 
they would hope to learn new techniques that might eventually help them prove conjectures or 
problems they have been thinking about in their research. 

Previous research on proof comprehension 
Research on students proof comprehension is rare. Studies by Conradie and Frith (2000) and 

Weber (2012) report that mathematicians evaluate their students’ understanding of proofs 
superficially. They usually ask students to reproduce proofs, a task that requires little beyond 
recalling facts and procedural fluency. For example, mathematicians in Weber’s (2012) study 
said that they measured their students’ understanding of proofs by (1) asking students to 
construct a proof of a theorem similar to one that was proven in class, and/or (2) asking them to 
reproduce a proof; some actually said they do not assess their students’ understanding of a proof 
at all. Conradie and Frith (2000) argue for the development of a proof comprehension test aimed 
at assessing students’ understanding of a proof rather than their ability to merely recall it. In their 
comprehension test, they provide the proof and pose several questions to their students. These 
questions vary from stating items such as the proof’s form, hypothesis, and conclusion to filling 
in and/or explaining specific details in the proof. 

Building on the work of Conradie and Frith (2000) and Yang and Lin (2008), Mejia-Ramos 
and colleagues (2012) developed a framework for a proof comprehension assessment. In this 
theoretical framework, the authors propose seven dimensions for understanding a proof: 
(1)  meaning of terms and statements; (2) logical status of statements and proof framework; (3) 
justification of claims; (4) summarizing via high-level ideas; (5) identifying the modular 
structure; (6) transferring the general ideas or methods to another context; and (7) illustrating 
with examples. Dimensions one through three are directed towards assessment of students’ 
comprehension of local aspects of a proof. By this they mean “understanding that can be 
discerned either by studying a specific statement in the proof or how that statement relates to a 
small number of other statements within the proof” (p.5).  Whereas dimensions four through 
seven are holistic in nature, which means they are geared toward assessing students’ overall 
comprehension of a proof.  It is important to note that each of the dimensions should not be 
understood hierarchically. In our own study, we designed both our proof comprehension test and 
task-based interview questionnaires based on Mejia-Ramos and colleagues’ (2012) framework 
for proof comprehension assessment. 

Research Methodology 
The targeted population for this study is undergraduate students enrolled in an introductory 

abstract algebra course in a large public university in the northeastern United States.  We also 
conducted a video-recorded semi-structured interview with an algebraist who has over 15 years 
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of experience teaching abstract algebra. Our student participants were asked to (1) complete a 
survey of background information, (2) complete a preliminary pre-proof written task, (3) read a 
proof, (4) respond to written items assessing his or her comprehension of this proof, and finally 
(5) respond to questions aloud asked by the interviewer to further assess their comprehension and 
mathematical learning gained by reading the proof.  Altogether each task-based interview took 
approximately one and a half hours. 

Recall that the two main research aims in this study are: (1) to examine to what extent 
undergraduates comprehend proofs, and (2) to investigate what they gain or learn from reading a 
proof. In order to address the first research goal, our initial analysis focused on how participants 
responded to the written comprehension test. To address what undergraduates gain from a proof, 
our preliminary analysis used roles of proofs documented in the proof literature such as 
conviction or verification, explanation, and communicating techniques. 

Preliminary results and discussion questions 
In what follows we will present results of a preliminary analysis of one participant, Amy, 

specifically with regards to her comprehension of Lagrange’s theorem. Amy explained that the 
she understands a proof when it “makes sense from one step to another”. Her statement was 
consistent with the linear approach she took to reading the proof as well as her inability to 
identify the key ideas of the proof when providing a summary. For example, she did not seem 
aware of the importance of creating a bijection to show equivalent cardinality. It had been our 
hope that she would notice this aspect of the proof, because (i) prior to reading the proof Amy 
stated that she did not know how to prove two sets have the same cardinality and (ii) she noted 
that whenever she reads a proof she hopes to learn “the strategy that they use in proof - in 
abstract they use a lot of different strategy in how they do it”. Post-proof, Amy did report that 
she learned new strategies such as proving an equivalence relation; however she had exhibited 
knowledge of these strategies prior to reading the proof. Thus Amy did not seem to have 
acquired any new strategies or techniques from reading the proof. Furthermore, although Amy 
acknowledged her responsibility to fill in gaps in the proof, she was only able to justify trivial 
assertions. Despite the fact that Amy did not appear to completely comprehend the key 
arguments of the proof, she did suggest that she was convinced after reading the proof 
stating,  “It makes sense to show it”; whereas, “before the proof I didn’t believe it”. We plan to 
analyze the interview transcripts of our remaining participants, and prior to this we would like to 
use our presentation to receive feedback regarding the following questions: 

(1) Are there non-mathematical benefits that one can acquire from reading a proof, and if 
so, to what extent do we care about them?  

(2) What methodological suggestions might you offer us to examine what undergraduate 
students do when reading a proof (without the use of eye tracking)?  

Implications for further research and mathematics pedagogy 
Given that a recent systematic investigation of a sample of 131 studies on proofs only yielded 

three studies that focused specifically on proof comprehension (J. P. Mejia-Ramos & Inglis, 
2009), this study will be a welcome addition to the paucity of the proof literature in 
undergraduate mathematics education.  Moreover, our further analysis of students’ difficulties 
with respect to learning mathematics from a proof will perhaps suggest ways to help them better 
understand the higher level key ideas in proofs. Consequently, we will develop supportive 
materials for students’ proof comprehension and disseminate among mathematicians who 
typically teach advanced undergraduate courses.  
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Formative assessment and classroom community in calculus for life sciences 
 

Rebecca-Anne Dibbs    Brian Christopher 
         Texas A&M-Commerce        University of Northern Colorado 
 

Most of the attrition from STEM majors occurs between the first two semesters of calculus, 
and prospective life science majors are one of the groups with the highest attrition rate. One 
of the largest factors for students that persist in STEM major beyond the first semester of 
calculus was a sense of community and a perceived connection with their instructor. Since 
building a sense of community is one of the stated purposes of formative assessment, we 
investigated to what extent formative assessments could help build a sense of community in a 
calculus for life science majors course. Two cases of formative assessment used in two 
sections of this course will be discussed. When implemented as intended, the formative 
assessments completed weekly by the students made a positive contribution to students' sense 
of classroom community and their perceived connection with their instructor. 
 
Key words: attribution, calculus, formative assessment 
 

Students who have a poor perception of their quality of relationships with their instructors 
are more anxious, earn lower grades, and are more likely to cheat on assignments during their 
first year (Kurland & Siegel, 2013; Nadelson et al, 2013). The first year of college is also 
where the largest number of students switch out of a STEM major, and this switch is most 
likely to occur after calculus (Bressoud, Carlson, Mesa, & Rasmussen, 2013). Biology majors 
are most likely to switch majors after calculus (Bressoud, Carlson, Mesa, & Rasmussen, 
2013), but students who passed calculus who perceive a personal connection with their 
instructor are less likely to switch. Formative assessment can create a communication loop 
between instructor and student, even in large classes, and is a low labor intensive way to 
address post-calculus STEM attrition (Clark, 2011; Shute, 2008; Wiliam, 2009). The purpose 
of this study was to investigate how different implementations of the same formative 
assessments influenced students’ observable attribution behaviors in otherwise identical 
calculus courses. Without explicit mention of formative assessment during class by the 
instructor, students tended to display more entity-orientated behaviors.  

Black and Wiliam’s (2009) formative assessment framework and Vygotsky’s (1987) 
Zone of Proximal Development (ZPD) were used as the theoretical perspective of the larger 
project. This report will focus on the scaffolding characterization of ZPD; where a learner is 
in their ZPD if they can complete a problem with assistance they could not complete 
independently. This characterization of ZPD dovetails with the fifth purpose of Black & 
Wiliam’s framework (2009): increasing student ownership of learning, because students that 
feel they own their own learning are more likely to have incremental attribution.  

The specific aspect of ownership investigated in this study was attribution (Dweck, 2006). 
According to Dweck (2006), attribution is the implicit beliefs that students have about 
intelligence. There is a continuum of attributions, with the two extreme cases being entity and 
incremental attribution (Figure 1). In either case, attribution is a pattern of thoughts and 
behaviors that is not entirely conscious; these patterns are easiest to observe when students 
struggle or fail with new material. Students with entity attribution believe that intelligence is 
a fixed quantity. These students are focused on performance goals, like grades. On material 
students with the entity attribution find easy, these students will generally outperform 
students with the incremental theory of intelligence; however, students with the entity 
attribution tend not to persist on difficult material. Since students in this category believe that 
intelligence is fixed, having any difficulty with material means that you cannot learn the 
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content. Students who have the incremental theory believe understanding the material is the 
main reason for learning. These students will show high persistence on material, regardless of 
the difficulty level, because effort is how learning occurs. 

 
Figure 1. Consequences of each extreme attribution view (adapted from Dweck, 2006)  

Methods 
The data was collected as part of a larger educational ethnography (Wolcott, 2005); this 

study may be considered a case study (Patton, 1990) bounded by one semester of calculus for 
life science majors. There were two sections of calculus for life science majors held at the 
same time1 were observed for one semester. Both of the instructors teaching were teaching 
the course for the first time and used a common schedule and assignments. Students in both 
classes were asked to complete a formative assessment related to the forthcoming content; 
this assignment was intended to be used as a planning tool for the instructors. Before a 
section of the textbook was covered in class, students were asked to read the section, define 
all major terms, write down all formulas, attempt a sample problem, and state what questions 
they had about the section; these assignments were graded on completion and worth 5% of 
the course grade. In Class 1 these formative assessments were collected weekly and not 
referenced in class by the instructor while in Class 2 these assignments were collected before 
every new section and referenced at the start of every new section by the instructor. 

There were 33 students randomly assigned to each instructor after unexpected demand for 
the course required that the original roster be split in half and a second section created. All of 
the students taking the course were biology or biochemistry majors. There is no formal pre-
health major at the institution, but the majority of the students enrolled in the course intended 
to apply for medical schools at the end of their undergraduate careers. Since this course is 
recommended as a first year course, 75% of the students in each section were freshmen 
participating in a first year experience; these students took several classes together and lived 
in the same dorm. The remaining students in each section were upperclassmen.  

Each researcher chose a section as their primary observation responsibility. A researcher 
was present every day in class except for three exam days and three class days from each 
section where both researchers observed the same class to triangulate the observations. 
Informal interviews took place throughout the semester with students. At the end of the 
semester, 12 students were formally interviewed; eight from Section 1 and three from Section 
2. During data analysis, the observation notes were coded for differences in instructor use of 
the formative assessments and students’ persistence during challenging tasks; this data was 
used to triangulate the students’ formal and informal interviews. The student interviews were 
coded for statements about students’ beliefs about learning calculus as well as statements 
about the formative assessments.   

                                                
1 In order to accommodate the biology labs, this 4 credit course met 100 minutes on Monday and 50 minutes 
Wednesday and Friday. 
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Findings 
Although the implementation of the same formative assessments (called reading sheets in 

the class) was different in the two classes, all of the interviewed students identified these 
assignments were a helpful tool for learning the material. Students found the reading sheets 
helpful because they made the learning objectives for each section clear and helped identify 
which parts of the content students found most difficult before instruction; this is one of the 
five purposes of formative assessment identified in Black and Wiliam’s (2009) theoretical 
framework; this was one of the two major purposes students ideally identify as a use for 
formative assessment. Robert in Class 1 explained, “They [the reading sheets] give a warning 
for what’s coming up next. I know ahead of time which parts of class I have to listen closely 
ahead of time. This makes a big difference, especially on Monday.” Pat in Class 2 concurred: 
“I think that they’re a good tool to using cause it a little bit of an overview of what you’ll be 
going over that day usually…”  

While students from both classes found that the formative assessments clarified the 
objectives of the upcoming content, students in each class used the information differently. In 
Class 1, students used the identified objectives to seek outside sources of supplemental 
instruction; half of the students interviewed from this class regularly watched YouTube 
videos based on keyword searches gleaned from the formative reading sheets. The other four 
students from Class 1 used the reading sheets to identify when they needed to pay attention in 
class like Robert mentioned in his interview. The Class 2 students did not watch YouTube 
videos outside of class; they considered the reading sheets as a preview of the upcoming 
material and a chance to ask for help. 

In Class 1, the students’ behavior showed low confidence, and entity theory of 
intelligence. Of the 189 times during the semester when the instructor asked a question, three 
students accounted for 133 of the answers. When asked about her low participation in the 
class, Gloria, a student who spoke twice in class all semester, explained, “The class is hard 
for me, and I’m not going to talk unless I’m sure that I’m right.” Darcy, who responded to 
68/189 questions throughout the semester, had performance orientated reasons for her 
participation: 

I’m a junior, and med school isn’t that far off anymore. I only have a 3.69 right now. I 
need to pull my GPA up over a 3.7 or I lose my scholarship, and to do that I need A’s 
in all of my classes this semester. I don’t care if I look dumb in front of freshmen I 
don’t know as long as [my instructor] gives me my A. 

Five of the eight (62.5%) of the Class 1 interviewees stated that the main reason that they 
wanted an A because they had medical school aspirations,  and these students showed beliefs 
and behavior patterns indicative of low confidence and an entity theory of intelligence. 75% 
(6/8) of the interviewees said that the most important part of the class was to memorize 
procedures, and that being asked to solve story problems or applications where they had not 
seen a prior example exactly like it was unfair. All eight participants felt that the instructor 
did not do enough examples. When students encountered what they considered a novel 
problem2 on an exam, 62.5% of the interviewees left the answer blank. During group work, if 
a group did not succeed on their first attempt, 58% of all groups observed during the semester 
would wait and wait for the instructor to come by and ask if they needed help. Only the 
students that regularly participated in class would call the instructor to their group when they 
had questions. The data for Class 2 is sparser, but the interview participants showed less 
entity beliefs than the students in Class 1. Most students would participate in Class 2 by 
talking with peers or instructor about confusing topics which was made easy by the 

                                                
2 Students defined a novel problem as one that was not a question on the study guide with the numbers changed, 
or if there were “hard” numbers, like fractions. 
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instructor's use of group work in most classes excluding review and test days. If group work 
is too hard, all of the interview participants would try what multiple strategies and then ask 
for help when out of ideas. This behavior was also observed in 11 of 16 group work situations 
during class. Also, the instructor would have students approach him right after class or during 
office hours to better understand the material that the class went over, and had at least four 
students working in groups during office hours after the first test.  

Discussion 
Students in all classes found the formative assessments to be a valuable learning tool, 

albeit in different ways, which suggests there were benefits to the formative assessments 
regardless of implementation. The more frequent mention of formative assessment as well as 
explicit mentions of the formative assessments by the instructor appeared to support more 
incremental attribution behaviors and increase students’ sense of connection with their 
instructor. However, the class with the less frequent collection of formative assessment 
appeared to exhibit more performance goals and was reluctant to seek help from their 
instructor. Although the literature on best practices in formative assessment does not indicate 
that weekly collection of formative assessments is necessarily problematic (Shute, 2008), the 
lack of feedback from instructor to students did appear to contribute to students’ feelings of 
disconnection with their instructor in Class 1. 

Since the students in these classes were almost all freshmen life science majors randomly 
assigned to these two instructors in moderately sized classes, we did not anticipate that 
students in the two classes would exhibit large differences in goal orientation and persistence 
on the more challenging group work problems. Without quantitative data, it is unclear if these 
differences were significant, but the findings of this investigation suggest that further inquiry 
into the relationship between formative assessment and attribution for first year 
undergraduates may be warranted. 

1. Have any quantitative data instruments beside P.A.L.S been developed that could aid 
in further exploration of this topic? 

2. What does ‘ownership of material’ mean for undergraduates? 
3. How would the formative assessment being submitted electronically affect its 

usefulness? 
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Generalization in undergraduate mathematics education 
 

Allison Dorko     Steven R. Jones 
Oregon State University  Brigham Young University 

Generalization is a critical component of mathematical thought and thus a goal of 
instruction. However, most generalization research has focused on pattern generalization 
and generalization in algebra, not undergraduate mathematics. It is not known whether 
the generalization frameworks derived from such work adequately describe 
generalization in undergraduate mathematics, where the sorts of generalizations students 
must make are not regarding patterns, but rather the meanings of concepts and ideas. In 
this paper, we propose elaborations on existing generalization frameworks in order to 
take into account issues in learning advanced mathematics. We use how students 
generalize their notion of integration from single to multiple integrals as an illustrative 
case study.  

Key words: generalization, calculus, multivariable calculus, integrals, and integration 

Introduction 
Generalization is a critical component of mathematics and mathematical thought and 

is thus a goal of k-12 mathematics instruction (NGA & CCSSO, 2010). While there exists 
a body of knowledge regarding generalization in k-12 mathematics topics, such as pattern 
generalization (Becker & Rivera, 2007; García-Cruz & Martinón, 1998), algebraic 
reasoning (Amit & Klass-Tsirulnikov, 2005; Becker & Rivera, 2006; Carpenter & 
Franke, 2001; Carraher, 2008; Cooper & Warren, 2008) and functional thinking (Ellis, 
2007), fewer studies have explored how students generalize undergraduate mathematics 
topics. It is not known whether the generalization frameworks derived from work in k-12 
mathematics adequately describe generalization in undergraduate mathematics, where the 
sorts of generalizations students make are not regarding patterns, but rather the meaning 
of ideas.  

Undergraduate mathematics topics require students to increasingly generalize their 
notions of function, limits, derivatives, and integrals. For example, students must 
generalize their notion of function from single to multivariable functions, then to 
considering entire classes of functions. In this paper, we use how students generalize their 
notion of integration from single to multiple integrals as an illustrative case study to 
explore the ways in which current generalization frameworks capture the sorts of 
generalizations undergraduate students make, and ways of generalizing that existing 
frameworks do not adequately describe. In this preliminary report, we describe our 
current work using two generalization frameworks to explore generalization in 
undergraduate mathematics. So far we have found that Harel and Tall’s (1991) expansive, 
reconstructive, and disjunctive generalizations framework works well for categorizing 
generalizations at a large grain size. The second, Ellis’ (2007) generalizing actions and 
reflection generalizations, works well for talking about generalization at a smaller grain 
size, but does not contain categories that describe all of the ways in which undergraduate 
students generalize. Thus the main contribution of our work is to adapt and expand these 
two frameworks to better describe generalization at the undergraduate level. 
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Comparison of Various Generalization Frameworks 
In this section, we explore Harel and Tall’s (1991) and Ellis’ (2007) generalization 

frameworks. We chose Harel and Tall’s framework because it was developed specifically 
for describing generalization in undergraduate mathematics, and Ellis’ because it has 
been used in the undergraduate mathematics context (Dorko & Weber, 2014). A second 
reason for choosing Ellis’ framework was the actor-oriented nature. That is, Ellis (2007) 
defines generalization as what students see as similar across situations. We like the actor-
oriented perspective because we think that studying how students think necessitates 
taking their perspective.  

Ellis’ (2007) generalization taxonomy was developed from a teaching experiment 
with middle school algebra students. The framework, shown in Table 11, distinguishes 
between generalizing actions, or students’ mental activity as they generalize as inferred 
through their actions and talk, and reflection generalizations, which are students’ final 
statements of generalization. Harel and Tall’s (1991) framework was developed from 
studying students learning’ of linear algebra, and distinguishes between expansive, 
reconstructive, and disjunctive generalizations (Table 2).  

 
Table 1. Adaptation of Ellis’ (2007) generalization taxonomy 
Generalizing actions 
Type I: 
Relating 

1. Relating situations: association between two or more problem 
situations. (a) connecting back (b) creating new 

2. Relating objects: association between two or more present objects.  
(a) property (b) form  

Type II: 
Searching 

1. Searching for the same relationship 
2. Searching for the same procedure 
3. Searching for the same pattern 
4. Searching for the same solution or result 

Type III: 
Expanding 

1. Expanding the range of applicability 
2. Removing particulars 
3. Operating 
4. Continuing  

Reflection Generalizations 
Type IV: 
Identification 
or Statement 

1. Identifying a phenomena that continues beyond a specific case 
2. Making a statement of commonality or similarity regarding a 

common (a) property (b) objects or representations (c) situations 
3. Stating a general phenomenon. (a) rule (b) pattern (c) global rule  

Type V: 
Definition 

1. Class of objects: The definition of a class of objects all satisfying a 
given relationship, pattern, or other phenomenon 

Type VI: 
Influence 

1. Prior idea or strategy 
2. Modified idea or strategy 

 
 

                                                 
1 Space considerations prohibit us from including all the details of the framework. What 
is shown in Table 1 is the category titles. The reader is encouraged to read the category 
descriptions in Ellis (2007).  
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Table 2. Harel and Tall’s generalization framework (Harel & Tall, 1991, p. 1) 
Type Definition 
Expansive Expansion of the applicability range of an existing schema without 

reconstructing it 
Reconstructive Reconstruction of an existing schema in order to widen its range of 

applicability 
Disjunctive Construction of a new, disjoint schema to deal with the new context. 

The student adds the new schema to the array of schemas available.  
 

Data Collection and Analysis 
Throughout the paper, we use how students generalize integration from single- to 

multivariable integrals to illustrate some instances of generalization in higher 
mathematics. We chose to study integration because it is a core concept in undergraduate 
mathematics, spanning single and multivariable calculus as well as analysis. Our data 
comes from semistructured interviews (Hunting, 1997) with twelve students from 
multivariable calculus and undergraduate real analysis. Each student completed two 
interviews that lasted 45 minutes to an hour. We asked students to talk about their 
meanings for , , , and … ,… , … . Specific 
questions included the meaning of the dx, dydx, and dxn terms, and what it meant if the 
integral equaled some specific value (e.g., if 5.2, what does the 5.2 mean?). 
The interviews were recorded using LiveScribe technology, which provides a synched, 
real-time recording of audio and students’ written work.  

What Current Frameworks Do Not Capture  
 While current frameworks do capture some of the ways in which students generalize 
integration (e.g., pattern matching such as interpreting the meaning of dydx and dx1 based 
on their similar appearance to dx), there are ways of generalizing that fall outside of these 
frameworks. 
 Analogous reasoning. One of the ways undergraduate students generalize is through 
use of analogy 2 , and this is something that is not captured well in Ellis’ (2007) 
framework. For instance, students talked about the n-integral as “n volume, or n+1 
volume”, “n space”, “volume in some sense”, or “something in higher dimensional space; 
an n-dimensional surface that’s bounding some, whatever that concept is in n+1 
dimensions”. Using Harel and Tall’s (1991) terms, this is a reconstructive generalization 
because while the students expanded the idea of volume, they must reconstruct it to be 
able to talk about a “volume-like” measure of higher dimensional space. Ellis’ (2007) 
framework does not include a category that adequately describes this sort of 
generalization. The two that are the closest fit, expanding the applicability of a 
phenomenon, or stating a general rule (the phenomenon/rule being that integrals 
represent a measure of space) do not capture the analogical reasoning that students seem 

                                                 
2 We use ‘analogy’ to mean a similarity used to make comparisons, not as a reference to 
the large body of psychological literature about analogical reasoning.  
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to use when they call the n integral measuring “volume in some sense” or “whatever that 
[measurement] concept is in n+1 dimensions”.  
 Students may reason by analogy and make a generalization that is mathematically 
incorrect. For example, Melissa thought that a double integral found surface area. She 
drew the graph of a paraboloid and said “when we’re dealing with a flat picture, like f(x), 
we just find the area of that flat picture, so it’s a regular area, but because we’re dealing 
with a three dimensional graph and g(x,y), we would be finding the area of the entire 
surface.” She seemed to think that surface area is a measure of three dimensional space (a 
not uncommon belief among calculus students; see Dorko & Speer (2014). Thus Melissa 
generalized that area is to R2 as surface area is to R3. It is unclear how to label this using 
Ellis’ (2007) framework. It would perhaps fit under extending, but it is not clear whether 
it is expanding the range of applicability of a phenomenon (the phenomenon being that 
integrals find area) or stating a general rule (the rule being that integrals find area). Using 
Harel and Tall’s (1991) terms, this is an expansive generalization because the student 
expanded the area conception to a different context.  
 We think that merely calling generalizations reconstructive, expansive, or disjunctive is 
not descriptive enough. In contrast, saying that students generalize through use of 
analogy is far more informative in terms of the specific actions in which students engage 
as they generalize.  
 Representative rectangles to representative rectangular prisms. Many students 
generalized a representative rectangle in a Riemann sum to a representative rectangular 
prism in a sort of ‘Riemann sum’ for double integrals. For instance, one student said “we 
could take rectangles of width dx, depth dy, and height g(x,y) [draws a thin prism]. Yeah, 
a rectangular prism. And then add all those together in this rectangle from a to b and c to 
d [draws a rectangle to represent the domain] and we’re measuring the rectangular prisms 
underneath the surface.” It is clear that the student extended the idea of a representative 
rectangle as something useful beyond the context of single integrals, but it is not clear 
exactly how to categorize this using Ellis’ (2007) framework. Did he relate situations, 
one being a single integral and a Riemann sum, and the other being a double integral? Or 
did he expand the range of applicability of a Riemann sum? Both seem to fit. Using Harel 
and Tall’s (1991) categories, we would classify this as a reconstructive generalization 
because the student adapted his notion of Riemann sums to use prisms rather than 
rectangles. 
 The above two examples illustrate our finding, thus far, that Harel and Tall’s (1991) 
framework describes how undergraduate students generalize, but due to the larger grain 
size it subsumes many different generalizing actions into single categories. In contrast, 
Ellis’ (2007) framework is of a smaller grain size yet it is sometimes unclear into which 
category students’ generalizations fit. Further, sometimes generalizations fit multiple 
categories. While mutually-exclusive categories is not necessarily a goal of Ellis’ 
framework, we think that the fact that students’ generalizations often have many types of 
generalizing actions reveals the complex nature of generalization in undergraduate 
mathematics, and thus illuminates a need to explore generalization in this area.  

Discussion 
Our main finding is that Harel and Tall’s (1991) framework captures students’ 

generalizations but does so at a large grain size that is not always useful, while Ellis’ 
(2007) framework captures, some, but not all, of students’ generalizations at a smaller 
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grain size. We believe that this is a result of using a framework that emerged from a work 
with middle school students. Specifically, we suspect that the sorts of pattern-generating 
activity involved in her teaching experiment are dissimilar to generalizing integration, 
which we see as a more nuanced and multifaceted concept.  
 We wish to create an actor-oriented framework at the grain size of Ellis’ with which 
to describe generalization in undergraduate mathematics. Such a framework might use 
something like Harel and Tall’s (1991) three categories as broad categories, with 
subcategories similar to those in Ellis’ (2007) framework. We suspect that if integration 
data alone suggests a need to elaborate generalization frameworks, then other advanced 
mathematical topics (e.g., derivatives, limits) will likely also reveal other ways in which 
current frameworks need to be expanded. This provides a starting point for future 
research.   

References 
Amit, M., & Klass-Tsirulnikov, B. (2005). Paving a Way to Algebraic Word Problems 

Using a Nonalgebraic Route. Mathematics Teaching in the Middle School, 10(6), 
271-276.  

Becker, J. R., & Rivera, F. (2006). Sixth graders’ figural and numerical strategies for 
generalizing patterns in algebra. Paper presented at the 28th annual meeting of 
the North American Chapter of the International Group for the Psychology of 
Mathematics Education, Mérida, México.  

Becker, J. R., & Rivera, F. (2007). Factors Affecting Seventh Graders’ Cognitive 
Perceptions of Patterns Involving Constructive and Deconstructive 
Generalizations. Paper presented at the 31st Conference of the International 
Group for the Psychology of Mathematics Education, Seoul, Korea. 

Carpenter, T. P., & Franke, M. (2001). Developing algebraic reasoning in the elementary 
school: Generalization and proof. Paper presented at the Proceedings of the 12th 
ICMI study conference. The future of the teaching and learning of algebra. 

Carraher, D. W., Martinez, M.V., & Schliemann, A.D. (2008). Early algebra and 
mathematical generalization. ZDM Mathematics Education, 40, 3-22.  

Cooper, T. J., & Warren, E. (2008). The effect of different representations on Years 3 to 
5 students’ ability to generalise. ZDM, 40(1), 23-37.  

Dorko, A., & Weber, E. (2014). Generalising calculus ideas from two dimensions to 
three: how multivariable calculus students think about domain and range 
Research in Mathematics Education. doi: 10.1080/14794802.2014.919873 

Ellis, A. (2007). A taxonomy for categorizing generalizations: generalizing actions and 
reflection generalizations. The Journal of the Learning Sciences, 16(2), 221-262.  

García-Cruz, J. A., & Martinón, A. (1998). Levels of generalization in linear patterns. 
Paper presented at the 22nd Conference of the International Group for the 
Psychology of Mathematics Education Stellenbosch, South Africa  

Harel, G., & Tall, D. (1991). The general, the abstract, and the generic in advanced 
mathematics. For the Learning of Mathematics, 38-42.  

Hunting, R. P. (1997). Clinical interview methods in mathematics education research and 
practice. The Journal of Mathematical Behavior, 16(2), 145-165.  

NGA, & CCSSO. (2010). Common Core State Standards Washington, DC: Authors  
 
 

18th Annual Conference on Research in Undergraduate Mathematics Education 46518th Annual Conference on Research in Undergraduate Mathematics Education 465



 

Studying the understanding process of derivative based on representations used by 
students 

 
Sarah Dufour 

Université du Québec à Montréal  

The research presented in this paper aimed to construct models of understanding processes 
of students learning the derivative concepts. The models are constructed following Duval’s 
theoretical framework and Hitt’s ideas on representations. A teaching experiment was 
designed to observe students in action while they were participating to teaching episodes on 
the introduction of the derivative. Preliminary results for one participant are presented.   

Key words: [calculus, understanding, representations] 

Introduction 
Calculus has been a subject well studied in our field for many years. A common concern 

among different studies results is about the lack of conceptual understanding of students in 
calculus. Namely, studies of Engelbrecht, Harding & Potgieter (2005), Carlson, Oehrtman & 
Elgelke (2010), Zerr (2010), Haciomeroglu, Aspinwall & Presmeg (2010) and, Baker, Cooley 
& Trigueros (2000) point out this concern. To cope with this problem, these researchers 
propose ideas and paths to follow that could lead to a better conceptual understanding of 
calculus. From different theoretical frameworks, they suggest, among other, that different 
teaching approaches adopted by teachers, types of tasks given to students and the 
coordination of different representations could lead to the development of a conceptual 
understanding. Following this line of thought, Zandieh (2000) and Hähkiöniemi (2006) 
proposed a model and a hypothetical learning path, respectively, for the understanding of the 
derivative.  

Moreover, of all the work done on the difficulties of students in calculus (e.g. Tall, 1992), 
epistemological obstacles (e.g. Sierpinska 1985) that could be related to the study of these 
concepts or conceptions that students may encounter about concepts in calculus is a strong 
base to develop tasks, activities or whole teaching sequences of calculus. All these aspects are 
essential and have to be considered to observe the development of students’ understanding 
processes and in a context designed to promote a conceptual understanding.  

Objectives  
The main aim of this project is to analyze students’ discussions and productions related to 

the solution of tasks, in order to study the understanding processes of the derivative, in 
particular, the construction of a conceptual understanding, in a context in which the teaching 
sequence aims to promote this kind of understanding by reinvesting different aspects 
proposed in the literature (such as difficulties and conceptions already pointed out by 
different studies).  

Theoretical framework 
Because conceptual understanding is the main object of this study, it is important to 

determine how it is defined in this project. Particularly in the mathematics education field, 
different visions or paradigms exist to describe what understanding is. I share Haciomeroglu 
et al. (2010)’s view that understanding is “the ability to recognize the idea embedded in 
different representations, to manipulate the idea within given representations, and to translate 
the idea from one representation to another” (p. 153). I will present the theoretical framework 
about the notion of register of representations of Duval (1993) and the notions of functional 
representation of Hitt (2003) related to the construction of knowledge.  
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Duval describes the understanding of a concept by the ability of the student to pursue 
different actions on semiotic representations belonging to different registers. Registers are 
defined as systems that are described by different inherent rules and respond to signs that 
have an interpretation proper to a particular system (Duval, 1995). These rules and signs are 
commonly accepted by a community such as the mathematics community or more precisely 
here, the “college level” mathematics community. Therefore, in the context of this project, an 
introduction to calculus course, the different registers we are dealing with are graphic 
register, algebraic register, verbal register (written or spoken), table register and schematic 
register.  

Furthermore, one of the most important aspects to consider in Duval’s theory is the 
actions that students do with the representations: production, treatment, conversion or 
coordination. Indeed, Duval argues that for a student having an integrative understanding, he 
must be able to not only produce or recognize a representation of a concept in different 
register but also be able to convert from a representation in a register to a new representation 
in another register using the “significant units” proper to the representations (Duval, 2007). 
Ultimately, this conversion must be done in all the possible ways and Duval identifies it as 
the coordination of the representations from different registers.  

Moreover, the representations described by Duval are quite “formal” since they belong to 
a register so they follow different rules and criteria. However, since I want to study the 
understanding of students as a process, I need to consider all kinds of representations even if 
they are more intuitive or do not follow every single rule associated to a register. Following 
Hitt (2006), I refer to this kind of representations as functional representations. Therefore, the 
aim is to formulate models of the understanding processes of students by describing the 
representations they use and how they use it through the learning of the concept of derivative. 

Method 
Taking into account the theoretical aspects given above, the research took a perspective 

on understanding as a construction process that develops through several actions (produce, 
treat, converse, coordinate) taken on representations of various types (formal or functional) 
and in various registers (algebraic, graphic, verbal, schematic, table). To observe an evolution 
of this understanding process, it is necessary to pay attention to the actions students do when 
facing a task that was previously elaborated with a specific learning intention. 

Under these conditions, the teaching experiment appeared to be indicated to reach the 
objectives of the research. Indeed, this methodology aims to document, through the 
production of a model, the mathematical development of students by observing, for example, 
their learning processes in a “teaching” context. The teaching experiment “involves 
experimentation with the ways and means of influencing students’ mathematical knowledge” 
(Steffe and Thompson, 2000, p.7). 

A teaching experiment includes teaching episodes that are constructed as the 
experimentation progresses and which are based on what students did in the precedent 
episode. In this project, I favor teaching episodes with a group of students outside their 
regular calculus course.   

The experiment 
Eight students volunteered to participate to the teaching experiment. There were five 

teaching episodes, one every week, of 1 hour 30 minutes long. I conducted the teaching 
episodes as the teacher/researcher.  

I will focus, in this paper, on the first episode in which the task below was proposed to 
students (figure 1). It is an open problem proposed only in the verbal register. First, students 
had 10 minutes to think about the problem individually. After this period, they formed teams 
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and started to share their ideas for almost an hour. Finally, we discuss the problem, the whole 
group together, for 30 minutes.  

 
A car is driving on the highway. The driver sees an animal about 70 meters in front of him and immediately 
pressed on the brakes. He stopped after 4 seconds and narrowly did not hit the animal.  
If the animal had been closer, say 35 meters, and the driver could not avoid it, at which speed would he hit the 
animal? 

Figure 1: Task proposed for the first teaching episode 

Preliminary results 
For this paper, I chose to write about what one participant, Julie, did during the first 

episode.  
Throughout the teaching episode, Julie presents some representations around the concept 

of derivative. First, Julie assigns specific role to the variables involved in the situation. 
Indeed, distance and time do not have the same status as speed in the representation she 
produces. For example, she says:  “We are supposed to have a line [the relation between time 
and distance] whose slope is speed” (translation from the episode 1). Here, speed is 
depending on the two other variables.  

In addition, she shows a certain “structure” involving relations between these variables, as 
if she sees a kind of hierarchy:  

• On the one hand, Julie talks about the distance and the time as objects (variables) 
and the speed as a relation depending on these variables (she actually talks about 
the speed as a slope);  

• On the other hand, she can also treat the speed and the time as objects (variables) 
that are related to “give” the acceleration (which is also a slope). 

Besides, she also gives some clues that this “structure” also exists in the graphic register. 
For example, she says: “The first slope is always…the distance! Oh no! This is the reverse”. 
She also suggests that the structure, in the graphical register, is recognizable by graphics with 
a slope and another one with a curve. However, she cannot tell which graphic is associated 
with which relations. Finally, she uses three verbal representations that could conceptually be 
connected to each other that are “slope”, “rate of change” and “derivative”.  However, in this 
first episode, Julie uses these three representations really distinctly, in different contexts (that 
is to talk about different objects). Maybe, she will connect them somehow in the next 
episodes.  

This is another indication that Julie is not really “coordinating” the representations, which 
means she does not necessarily analyses significant units or information given by a 
representation to produce another. She is more in a posture in which she tries to remember 
something that she already saw in class. It is a way to access to different representations that 
can help to produce others and then maybe, along a process, be able to finally coordinate the 
representations of a concept from different registers. That will be really interesting to see how 
Julie’s understanding will evolve from these representations that she seems here to simply 
remember.  

Questions for discussion 
The analysis has only started. The first episode is really rich and is providing some 

information about how students convert or not from one representation to another. Although 
the theoretical framework presented earlier seems very useful and operational for detailed 
analysis of students' learning processes, I sometimes wonder if it would be necessary to call 
another concept or framework that would describe more broadly the understanding processes. 
Moreover, since the teaching experiment was done with a group of students, it is sometimes a 
challenge to construct individual model of students’ understanding while considering the 
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interactions that happened during the episodes. Would it be necessary or relevant to produce 
individual models and a more general model to shed light on interactions?   
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An intended meaning for the argument of a function 
 

Ashley Duncan 
Arizona State University 

 
This poster describes an intended meaning for the argument of a function when reasoning about 
a function covariationally.  An instructional investigation was designed to promote this meaning 
with students in a college-level precalculus course using an instructional task and a didactic 
object relating to modeling the relationship between the time elapsed since Tommy threw a rock 
off of a bridge in seconds and the height above a lake in feet of the rock.  Students were formally 
introduced to the term argument after the task and asked to evaluate and explain the meaning of 
functions defined with an argument as the function input.  After engaging with the task, these 
students demonstrated larger learning gains than students in previous studies on the same 
questions that involved evaluating a function for an argument expression.  
 
Key words: Function, Quantity, Argument 

Introduction  
 An overarching goal of most precalculus courses should be to study the relationships 
between two quantities.  Most of the time, students study these relationships in the context of a 
function with one quantity defined as the input of the function and the second quantity defined as 
the output of the function.  A function is the constrained covariational relationship between two 
quantities where the value of one quantity uniquely determines the value of the second quantity 
(Thompson & Carlson, in press).  In a study conducted that investigated undergraduate students’ 
development of the function concept, undergraduate students were given the following question: 
“Compute f (x + a) given   f (x) = 3x2 + 2x − 4 ” (Carlson 1998, p. 128).  The mean response on 
this item was a 2.07/5 for a group of students who had recently completed College Algebra.  The 
students who were able to correctly compute the answer justified their solution as “either a 
substitution of x + a  for x, or a procedure of adding a to every x” (Carlson 1998, p. 128). This 
suggests that students were not thinking about evaluating f at another point, nor were they 
thinking about x + a as an input for f.  However, the term input no longer applies when 
evaluating f at an expression, so I propose the use of the term argument in such situations.  
Figures 1 shows a traditional function definition and figure 2 shows the same function with a 
different representation of the argument.  

 f
Name  !

(t)
Input!

Output"#$ %$

= −9.8t 2 + 25t + 80
Rule of Assignment" #$$ %$$

Function Definition" #$$$$ %$$$$

 
Figure 1 Conventions of function notation as depicted in Pathways 

 
f

Name!
( t
input
" − 3)
Argument#$% &%

Output# $% &%

= −9.8(t − 3)2 + 25(t − 3)+ 80  

Figure 2 Introduction of the argument to a function. 
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Once a function has been defined, the relationship between the quantity whose values are the 
output of the function and the quantity whose values are represented by the argument is fixed.  
By changing the representation of the argument, we can use the same function to relate a new 
input variable to the values of the output of the function.  The purpose of this study was to 
develop a meaning for argument that would promote student’s understandings of functions. 

An Instructional Investigation 
A hypothetical learning trajectory was created to build this meaning for argument with a 

class of 40 precalculus students in the Pathways to Calculus curriculum (Carlson, Oehrtman, and 
Moore, 2013).  An investigation was designed involving Tommy throwing rocks off of a bridge 
into a lake.  A didactic object (Thompson,  was created using a computer program called 
Graphing Calculator (Avitzur, 2011).  Students were given the following situation:    

1. Tommy is standing on a bridge and throwing rocks off of the bridge into a lake.  
Suppose the function f models the relationship between the height above the lake (in feet) 
of any rock Tommy throws with respect to the time elapsed (in seconds) since Tommy 
threw that rock off the bridge.  

As students progress through the task, they are asked to think about Tommy throwing a rock C 
that is thrown exactly 3 seconds after rock A is thrown.  If t represents the time (in seconds) 
since rock A was thrown, t − 3  represents the time (in seconds) since rock C was thrown.  The 
height above the lake (in feet) of rock C can now be represented as f (t − 3) , with t − 3  now 
representing the argument to f.  The figure below shows a screenshot of the didactic object. 

 
Figure 3 Tommy throws rock A. 

 
Results and Future Research Implications 

Students were assigned two online homework questions related to the task.  One of the 
questions gave them g(x + 3) = 2x + 7  and asked them to identify the argument of g, the input to 
g, and to evaluate g(4) .  The mean scores on these two questions were 92% and 91%.  This is an 
improvement from the study conducted by Carlson (1998).  There are many future implications 
for the usefulness of being able to change the representation of the argument of a function such 
as with function composition, n-unit growth factors, and function transformations, to name a 
few.  Further research is necessary to connect each of these ideas to this meaning of argument so 
that more students will be able to successfully build meanings for each of these concepts.   
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A preliminary categorization of what mathematics undergraduate students include on 
exam “crib sheets” 

Antony Edwards Birgit Loch 
Swinburne University of Technology Swinburne University of Technology 

Many undergraduate examinations permit students to use a limited quantity of previously 
prepared notes: so-called “crib sheets”, or “cheat-sheets”. The majority of evidence from 
the literature suggests that students sitting such exams feel less anxious, and that they 
perform to a higher standard, although such results are idiosyncratic to discipline and 
course, and few are set in the context of undergraduate mathematics. Less is known about 
what content students choose to include on such a sheet, and how they interact with this 
material. This preliminary research report presents the first results from a three-year project 
investigating students’ use of crib sheets in undergraduate mathematics exams. It explores 
the content and layout of crib sheets used by students for an end-of-semester calculus exam. 

Key words: Examinations; Revision; Phenomenography; Calculus 

Introduction 
In mathematics exams at Swinburne University of Technology, Australia, undergraduate 

students may bring with them a single, double-sided, page of written notes. It is hoped that, in 
the process of creating these “crib sheets”, students will revise effectively as they will have 
access to certain content of their choosing during the exam.  There is also a belief that there 
will be a reduction in anxiety and the amount of rote learning of formulae and procedures 
required of students, who are then freed up to focus on deeper conceptual understanding of 
material.  

Literature 
When crib sheet exams are referred to in the literature, it is typically within the contexts 

of exam anxiety and exam performance. When considering the effect on exam anxiety, the 
majority of authors note that the use of crib sheets is effective in reducing anxiety (Butler & 
Crouch, 2011; Erbe, 2007; Janick, 1990; Weimer, 1989). Dickson and Miller’s (2005) study 
with students in an undergraduate child development course found that students’ prior beliefs 
about anxiety and subsequent reflections may not align: 80% believed that by using a crib 
sheet they would feel less anxious, but only 40% stated after the exam that they had done so.  

In terms of exam performance, Dorsel and Cundiff (1979) noted that there is a link to the 
note-taking literature, in which authors such as Rickards and Friedman (1978) describe an 
‘external storage hypothesis’ which implies that students will do better because they have 
access to more information during the exam, and an ‘encoding hypothesis’ that suggests the 
process of creating crib sheets allows students to organize their thinking. In line with these 
hypotheses, Gharib, Phillips, and Noelle (2012) found that psychology undergraduates scored 
significantly better on crib sheet exams than closed book, but also that they did better still on 
open book tests. Similar improvements were seen with Economics students (Wachsman, 
2002) and students in a teaching course (Skidmore & Aagaard, 2004). In contrast, other 
authors have found no significant effect on performance (e.g. Dickson & Miller, 2005, and 
the statistics undergraduate students in Gharib et al.’s 2012 study). Such results do vary with 
the type of assessment, with improvements stronger for recall-based tests. Dickson and Bauer 
(2008) investigated the encoding hypothesis, and found that construction of crib sheets did 
not improve performance when students did not have access to their crib sheets. A meta-
analysis of quantitative studies on crib sheets and open book exams by Lawin, Gorman, and 
Larwin (2013) found that overall, there is a “substantially higher” effect size for studies 
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comparing student performance between crib sheet exams and closed-book exams, compared 
with those studies that had compared open-book and closed-book exams. 

Less has been researched in the context of undergraduate mathematics. It is often argued 
that students consider mathematics to be primarily based on surface procedures (Crawford, 
Gordon, Nicholas, & Prosser, 1994; Frank, 1988; Garofalo, 1989). We might expect from the 
external storage hypothesis that crib sheets will boost performance in exams that require such 
procedural understanding. There is, however, growing evidence that crib sheets encourage 
reliance on procedural surface-level understanding of topics (Dickson & Bauer, 2008), 
dependence on the crib sheets (Funk & Dickson, 2011), and a “search” mentality when stuck 
on a problem (Burns, 2014). Whitley (1996) proposed a null effect: having more information 
is counter-acted by a belief from students that they need to understand it less well. 

There is a need therefore to investigate crib sheet use in the context of undergraduate 
mathematics. We begin to do this here by first exploring the content on students’ crib sheets. 
A limited amount of work has been done in this area outside of mathematics. Ludorf and 
Clark (2014) measured the quality of psychology undergraduates’ crib sheets subjectively on 
scales measured 1-5 for Overall quality, Verbal process information, Numeric process 
information, Density, Organization, Use of color, and Date of submission (it is not clear from 
the paper how each scale was constructed, or how they compare). They found a positive 
correlation between the quality of a crib sheet, and performance in an exam. Content of the 
crib sheets produced by undergraduates on a programming course was encoded by de Raadt 
(2012). This took the form of binary indicators in the themes of Layout and Content, which 
were broken down into sub-themes: Density/Organization/Ordering and Examples [of 
code]/Abstract representations [diagrams]/Sample Answers/Duplication. Better exam 
performance was linked to those students whose crib sheets had a similar order to the course, 
who gave abstract representations, whereas indicators of poor performance were giving 
examples of code and sample answers. Our preliminary coding of our data from an 
undergraduate calculus class echoes de Raadt’s broad themes, although inherent differences 
between the disciplines result in several differences at a more detailed level. 

Methodology 
This report presents preliminary results from the first of a four-stage research project. It 

addresses the questions “what do students choose to include on crib sheets?” and “how is this 
information presented?” Our data is crib sheets produced (and used) by students for a final 
unit examination in a first calculus course for non-mathematics majors. 

Underlying our work is an assumption that a student’s crib sheet represents that student’s 
awareness of a course. More specifically, we believe crib sheets are a good indicator of the 
content students consider important for an exam and the material with which they feel least 
confident, both presented in a way that is intended to be helpful in an exam. We acknowledge 
that material already committed to memory may not be included on crib sheets, but we note 
that authors suggest that students aim to fill up their sheets completely (Erbe, 2007; Visco, 
Swaminathan, Zagumny, & Anthony, 2007). We have framed the four-stage project is within 
the interpretivist methodology of Phenomenography (Marton & Booth, 1997; Marton & 
Saljo, 2005), with an aim to explore students’ use of crib sheets as a lens indicating their 
awareness of the course content. The results presented here from the first stage of the project 
are categories of description of the salient features of our students’ crib sheets. We subscribe 
to the principle of Variation Theory (Runesson, 1999; Watson & Mason, 2006), in that we 
believe that if students are exposed to and become comfortable with many facets of crib sheet 
construction and content, they will be able to produce better, more effective crib sheets. 

Our preliminary analysis is based on both authors independently open-coding salient 
properties of 30 crib sheets. The authors then discussed their codings, and constructed  
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Table 1 
Dimensions of variation emerging from the preliminary coding exercise 
Theme Category of 

description 
Types of difference 

Layout-
based 

Density Font size, Amount of white space, Location of white space 

Emphasis Coloring, Boxing, Headings, Linearity, Box outs, Starring, 
Separation 

Sheet structure Course Structure, Similarity structure, Neatness, Bullets, 
Orientation, Sub-division 

Content-
based 

Examples Worked solutions, Boundary examples, Sketches, 
Transferability of examples 

Representations Brevity / Complexity, Calculator procedures, Fill in the gaps, 
Other languages 

Formulae Listed, Grouped, In situ, Repetition of formulae sheet content 

Meta-content Reminders, Messages, Thematic commentary, Arrows 
Indexing with color themes 

Correctness Errors, Completeness 
 
dimensions of variation, presented in Table 1. In the next stage of the project, we will 
examine all crib sheets from this class and also those from a different, more advanced course, 
in an attempt to describe the categories of variation as completely as possible, and to see if 
there are any differences between the groups. By the time this work is presented, we will 
have recorded a complete set of dimensions of variation for the crib sheets, and also recorded 
their occurrences and linkages between occurrences. Further stages of the project are planned, 
have received ethics clearance, and are described in more detail below. 

Preliminary Results 
Our preliminary themes and categories of description are listed and described in Table 1. 

We noted a distinction between the themes of content and layout, a distinction also made by 
de Raadt (2012). Due to the differences in subject and course, our categories of description 
were different to de Raadt’s, and we note that our categories are rarely binary indicators. 

In terms of layout, there were distinctions between density of text (i.e. font size), amount 
of white space (or gaps), and where white space was located. We also observed different 
techniques used to emphasize parts of their sheets: coloring, boxing, underlining. On some 
sheets these were present throughout, and on others only for key concepts (which is a link to 
the content-based categories of description). The structure of sheet layout also varied, with 
various methods to sub-divide space. In terms of content-based categories, there is a 
difference from de Raadt in that no students choose to include portions of code, but instead 
we saw many worked examples from lectures stated verbatim. The parts of these examples 
that were generalizable to the topic in question were seldom indicated and some contained 
copying errors. Different representations were used, with formulae statements being so 
ubiquitous that they were included as a sub-theme. A minority of students included content 
that was not directly from lectures and we labeled this meta-content. 

Discussion 
By taking the crib sheets as primary data, we have a snapshot of what students consider 

important to their exam performance. We do not know how the sheets were constructed, why 
particular layout and content were chosen, the relative importance of the content, or any links 
to anxiety or exam performance. This initial analysis has been necessary to address the gap in 
the literature of what students choose to include in crib sheets for undergraduate mathematics 

18th Annual Conference on Research in Undergraduate Mathematics Education 47418th Annual Conference on Research in Undergraduate Mathematics Education 474



exams. It also will allow us to ground further parts of this project with an appropriate coding 
structure, rather than one taken from the literature of a different discipline area. 

With this in mind, for the remainder of the first stage of the project, we will assume that 
students considered everything on their sheets important, and draw the inference that certain 
layout properties on the sheet such as boxing, underlining, highlighting and the use of color 
indicate emphasized importance. For instance, although worked examples were 
commonplace on many sheets, indicating students found them an important part of the 
course, they were rarely given a status of emphasis. By the time this work is presented we 
will have a more detailed description for each dimension of variation for two different levels 
of students, we will have investigated which mathematical topics are associated to which 
categories of description, and also considered the associations between categories themselves. 

The next stage in the project will be to explore the links between crib sheet content and 
exam performance (including total and by-question scores, and displayed misconceptions). 
We will also conduct research interviews with students, to see if our interpretations of the 
data fit student views on the construction of crib sheets. Both these parts of the study will be 
completed in the second half of 2015. Our overall aim with the project is to formulate 
guidance to give to students before they produce crib sheets, and to conduct a randomized 
trial to see whether such guidance brings a performance gain in examinations (and thus, we 
hope, understanding of the course content). As Visco et al. (2007) noted, there is seldom a 
social aspect to construction of crib sheets, and we hope that encouraging a dialogue will aid 
construction and therefore performance. Such a trial will take place in 2016.  

Questions to consider: 
1. What is the relationship between content included on a crib sheet, the perceived 

importance of such content, and a students’ level of confidence with that material? 
2. Do crib sheets promote surface-level procedural understanding of a topic, or do they 

help students prioritize deeper understanding by relegating procedural content to the sheet? 
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The Structure, Content, and Feedback of Calculus I Homework at Doctoral Degree Granting 
Institutions and the Role of Homework in Students’ Mathematical Success 

 
In this study we investigate the relationship between the nature of Calculus I homework and 
student success. We examine these connections at five PhD granting institutions that were 
identified in a large US national study as having relatively successful Calculus I programs 
(compared to similar institutions) and we draw on both qualitative and quantitative from this 
study. Mixed method analyses point to a clear relationship between homework systems with 
varied structure, high feedback, and varied content emphases at more successful Calculus I 
programs where students persist onto Calculus II at higher rates and where students maintain 
more positive dispositions towards mathematics.  

 
Keywords: Calculus, Homework, Student success, Mixed methods, Instructional triangle 
 

Homework is an important part of how students develop fluency with the ideas and 
techniques in mathematics in general, and in calculus in particular. This is especially true at the 
undergraduate level, where the expectation is that students spend considerable time outside of 
class working on homework and studying course material. The time undergraduate students 
spend outside of class is an important venue to grapple with the material and interact with the 
content. In this study, we investigate the relationship between the nature of Calculus I homework 
and students’ success in Calculus I at five PhD granting institutions in the US. The Calculus I 
programs at the five US institutions were selected as part of a large, national study at over 500 
institutions, including Community Colleges, Bachelors-granting institutions, Masters-granting 
institutions, and PhD-granting institutions. These sites were selected because students at these 
institutions were more successful in Calculus I when compared to students at comparable 
institutions. This project enables us to ask the following questions that shed light on how 
homework is related to student success in Calculus I: 

 
1. What characterizes the nature of homework at the selected PhD institutions with 

demonstrated successful Calculus I programs? 
2. How does the nature of Calculus I homework relate to student success at PhD institutions?  
 
To answer our first research question, we rely on the case study data from the five selected 
institutions to describe the nature of homework at each institution and more broadly. To answer 
our second research question, we draw on both the survey data to compare the nature of 
homework at selected institutions to non-selected institutions, and the student focus group 
interviews to examine students’ accounts of the role of homework on their success.  
 

Theoretical Background 
We draw on Herbst and Chazan’s (2012) elaboration of the instructional triangle (Cohen, 

Raudenbush, & Ball,  2003) to examine the relationships between students, their instructors, and 
the content. Herbst and Chazan’s (2012) elaboration of the instructional triangle employs the 
concepts of didactical contract and milieu (Brousseau, 1997) to describe the interactions at play 
between teachers, students, and knowledge at stake through instruction, as shown in Figure 1. 
The knowledge at stake is used by Herbst and Chazan refers to the potential mathematical 
knowledge one might learn through instruction in all its forms. The major difference from the 
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original instructional triangle is that the student component has been expanded into a subsystem 
in which students work on tasks maintained by the milieu. In this context, the milieu is “a 
counterpart environment that provides feedback on the actions of the students” (Herbst & 
Chazan, 2012, p. 607). Included within the milieu are the goals for students and the resources 
available to students while working on tasks (see Figure 1).  

 
Figure 1. Instructional Triangle adapted by Herbst & Chazan (2012).  

 
 Following Herbst and Chazan (2012), we also use the construct of didactical contract 

(Brousseau, 1997) in which teachers, students, and knowledge at stake are bound to each other 
and the environment through implicit responsibilities. These implicit responsibilities are 
represented by the bidirectional arrows between each of the components in Figure 1. To satisfy 
the didactical contract teachers are responsible for students’ development of the knowledge and 
students are responsible for partaking in the tasks needed to construct the knowledge.  

Differences in the didactical contract exist between education at the K-12 level and 
education at the undergraduate level. In contrast to the K-12 level, undergraduate students are 
expected to put in considerably more hours in doing homework to learn course material. 
Therefore, studying the nature of homework at the undergraduate level can aid in the 
understanding of students’ success.   

 
Literature Review 

Educators have investigated the role homework plays in student success for many years 
(Cartledge, & Sasser, 1981; Halcrow & Dunnigan, 2012; Morrel, 2007; White & Mesa, 2014). 
Student success entails both student learning and the confidence that one can achieve this 
learning (Dweck, 2008; Seymour & Hewitt, 1997). Research into the role homework has on 
student success has demonstrated the potential positive influence homework can have on student 
learning as well as student confidence (Halcrow & Dunnigan, 2012; Morrel, 2007; White & 
Mesa, 2014; Young et al., 2011). These studies also demonstrate that this is dependent on many 
aspects of the instructional environment and the interactions that take place between the teacher, 
student, and content within the instructional environment. Our study contributes to this literature 
by exploring the nature of homework assignments at selected institutions that were identified as 
having a successful Calculus I program. Further, we ground this exploration within the 
perspective of the instructional triangle, which allows us to examine relationships between 
aspects of homework as part of a system involving knowledge at stake, students, and the teacher. 
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Methods 
 To answer our research questions we conducted a mixed method analysis on data coming 
from a large, national study focused on successful calculus programs in the US, the 
Characteristics of Successful Programs in College Calculus (CSPCC) project. The CSPCC study 
consisted of two phases, the first of which was a survey given to Calculus I students and their 
instructors at the beginning and end of the term. The goal of this phase was to identify 
institutions with more successful Calculus I programs, as well as to learn more about the 
landscape of Calculus I in the US. The second phase of this study included explanatory case 
studies at five doctoral granting institutions selected for having more successful Calculus I 
programs as measured by increased student confidence, enjoyment, and interest in mathematics, 
Calculus I grade, and persistence onto Calculus II.  
 The five selected institutions varied in characteristics related to institution type, 
enrollment, the structure and class size of Calculus I sections, and the type of faculty employed 
to teach Calculus I. These five institutions included private, public, technical, small (less than 
20,000 undergraduate population) and large (more than 20,000 undergraduate population) 
universities. The enrollment of undergraduate students ranged from approximately 3,000 to over 
25,000. Also important to note was that the structure of the course and class size varied. Three of 
the institutions convened small class sizes of about 30 students, while the others had large lecture 
sections of about 200 students accompanied by smaller recitation sections.  
 A mixed methods approach was taken to analyze the quantitative survey data and the 
qualitative case study data (Creswell, 2002). End-of-term survey data from 2,023 students and 
204 instructors from 60 PhD-granting universities were analyzed, as well as student focus group 
interviews and instructor interviews at the five case study PhD-granting universities. Of the 
2,023 students, 597 came from a selected case study institution. Of the 204 instructors, 51 came 
from a selected institution. Descriptive analyses were conducted on both student and instructor 
responses to understand the nature of the homework at selected and non-selected institutions. 
Concurrently, inductive thematic analysis (Braun & Clarke, 2006) of the case study data was 
conducted to understand the nature of the homework assignments implemented at each of the 
case study sites.  
 

Results 
 Research Question 1. The inductive thematic analysis of the case study data resulted in 
the identification of three salient features related to the nature of homework: structure, content, 
and feedback. We refer to these aspects together as a homework system. Figure 2 provides an 
overview of the homework systems at the five selected institutions. 
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Figure 2. Homework systems at selected institutions 

 
 At some of the institutions we saw that a part of the homework system was uniform 
across instructors, which  is indicated in Figure 2 by a filled in circle. For example, Private 
Technical University (PTU) had an online procedural component that every Calculus I instructor 
assigned. We also saw that some but not all instructors at PTU assigned additional written 
conceptual homework, as indicated by the circle with several dots in it. We represent aspects of 
homework that we saw no evidence of existing with an empty circle.  

As shown in Figure2, all institutions incorporated a combination of procedural and 
conceptual problem solving in their assignments, and all provided some form of feedback to the 
students. However, the structure of the different homework components, whether it be written, 
online, or how in which they gave feedback, varied among the five selected institutions. Using 
Brousseau’s (1997) language, the homework system (structure, content, and feedback) functions 
as an important component of the milieu in which students interact with the mathematics. The 
homework system allows students to complete tasks, receive feedback, and avail themselves of 
certain resources to complete the tasks. For example, a homework system may create an 
environment where students can receive instant feedback by completing online homework and 
have access to resources such as hints provided by the online homework provider. Viewing the 
homework system as an important component of the milieu allows us to focus on the interactions 
between the homework system, the teacher, and the knowledge at stake for the course as well as 
the external environment that the interactions take place within. We attend to how the homework 
systems vary and the interactions that cause them to vary across the five selected institutions.  
 In terms of the instructional triangle (Herbst & Chazan, 2012), we view the teacher as 
anyone in a position to alter or create the homework system. This may include the course 
instructor, as well as recitation leader, or course coordinator. We view the knowledge at stake as 
the mathematical content covered within the course that is specified in the syllabus, textbook, or 
course objectives. In Herbst and Chazan’s (2012) elaboration of the instructional triangle, they 
characterize the milieu as a “counterpart environment that provides feedback to the student” and 
includes the goals students are working towards and the resources with which the students are 
operating (p. 607). We argue that the homework system (structure, content, feedback) is an 
especially important component of the milieu within the undergraduate mathematical 
environment, necessitated by the shifted didactical contract.  

Structure Content Feedback 
online written group procedural conceptual collect/

graded 
HW quiz 

Public Technical 
Institute (PTI) 

Large Private 
University (LPU) 

Private Technical 
University (PTU) 

Large Public 
University 1 
(LPU1) 

Large Public 
University 2 
(LPU2) 

Homework Component did not exist 

Homework Component is uniform across all sections 

Homework Component is at instructors’ discretion  
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Research Question 2: In the following we compare the responses from students or 
instructors at the selected institutions to those at the non-selected institutions along each of the 
three components of homework system: structure, content, and feedback.  
 Structure. Through the qualitative analyses, we attended to the mode of delivery of the 
homework as the key component of structure (online, written, and/or group). In the quantitative 
analyses, we also have reports of how often it was assigned and/or collected. As shown in Table 
1, there were significant differences between student reports of the structure of homework at 
selected versus non-selected institutions. Compared to students at non-selected institutions, (a) 
students at successful institutions report that assignments were assigned and collected more 
frequently, (b) that group projects were assigned more frequently, and (c) that online homework 
was more likely to be used to complete homework assignments.    
 

Table 1  Comparison of Structure of Assignments and Assessments 

Student reports  
Non-

Selected 
(n~1410) 

Selected 
(n~590) 

How often was homework collected (either hard copy 
or online)?* (1 = Never;  5 = Every class session) Mean 3.31 3.87 

 Std. Dev. 1.32 1.34 
How often did your instructor assign homework? ** (1 
= Never;  5 = Every class session) Mean 4.11 4.35 

 Std. Dev. 0.98 0.92 
Assignments completed outside of class time were 
submitted as a group project. *** (1 = Not at all;  6 = 
Very often) 

Mean 1.34 2.97 

 Std. Dev. 0.95 2.03 
Assignments completed outside of class time were 
completed and graded online. *** (1 = Not at all;  6 = 
Very often) 

Mean 3.56 4.81 

 Std. Dev. 2.30 1.90 
Note. * = p .10,  ** = p .05,  *** = p .001; n varied slightly based on the question. 

 
The combination of having multiple opportunities to interact with the material with supports 
available allows students to benefit from the extra time they are spending outside of class 
grappling with the homework content.  

Content. The content of the homework can be thought of as a source of potential 
knowledge for students to develop. The balance between procedures and concepts is often an 
issue for instructors, both in terms of what is valued and what one has time for (Johnson, Ellis, 
Rasmussen, 2014). At all five of the selected institutions assigned both procedural and 
conceptual questions on their homework. Interestingly, we do not find the same balance at non-
selected institutions. Table 2 shows that students at successful institutions reported having to 
explain their thinking more on homework problems and were assigned more word problems than 
students at less successful institutions. Table 2 also shows that instructors reported assigning 
more homework that focused on graphical interpretation, complex or unfamiliar word problems, 
and proof or justifications more than instructors at non-selected institutions.  

 

≤ ≤ ≤
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Table 2  Comparison of Content of Assignments and Assessments 
Student reports  Non-Selected 

(n~1410) 
Selected 
(n~590) 

How frequently did your instructor require 
you to explain your thinking on your 
homework?*** (1 = Not at all; 6 = Very 
often) 

Mean 3.01 3.62 

 Std. Dev. 1.77 1.73 
The assignments completed outside of 
class time required that I solve word 
problems *** (1 = Not at all; 6 = Very 
often) 

Mean 4.59 5.01 

 Std. Dev. 1.21 1.09 
Instructor reports  Non-Selected 

(n~158) 
Selected 
(n~46) 

End-of-term: On a typical assignment, 
what percentage of the problems focused 
on: 

   

skills and methods for carrying out 
computations (e.g., methods of determining 
derivatives and antiderivatives)?** 

Mean 51.08% 39.57% 

 Std. Dev. 19.21% 20.87% 
graphical interpretation of central 
ideas?*** 

Mean 21.44% 33.33% 

 Std. Dev. 11.26% 20.67% 
solving standard word problems? Mean 23.65% 26.44% 
 Std. Dev. 11.70% 16.26% 
solving complex or unfamiliar word 
problems?*** 

Mean 15.79% 28.22% 

 Std. Dev. 11.65% 23.77% 
proofs or justifications?** Mean 9.32% 14.42% 
 Std. Dev. 8.38% 18.30% 
Note. * = p .10,  ** = p .05,  *** = p .001; n varied slightly based on the question. 

 
 Table 2 also shows that instructors at both selected and non-selected institutions report 
that they assigned homework involving standard word problems. Although successful 
institutions still assigned standard problems, they were complemented by complex or unfamiliar 
word problems more so than non-selected institutions.  
 Feedback. Feedback on homework emerged as a salient feature of the homework 
systems at selected institutions, and from a theoretical perspective the feedback given on the 
homework is a critical way the teacher can interact with the student, through the milieu of the 
homework system. Students were asked to report on a number of aspects of the nature of the 
feedback on their homework, both written and online. As shown in Table 3, students from 
selected institutions and non-selected institutions report that their assignments are more 
frequently completed and graded online at the same frequency, but students from selected 
institutions reported that they are returned with helpful feedback/comments. These results 
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indicate that students from selected institutions receive more helpful feedback on both online and 
written homework than students at non-selected institutions.  
 

Table 3 Student reports of the nature of homework feedback. 
Assignments completed outside of class time were: 
(1 = Not at all;  6 = Very often) 

 Non-
Selected 
(n~1410) 

Selected 
(n~590) 

Completed and graded online. *** Mean 3.56 4.81 
 Std. Dev. 2.30 1.90 
Graded and returned to me.  Mean 4.25 4.25 
 Std. Dev. 2.02 1.98 
Returned with helpful feedback/comments. *** Mean 2.70 3.26 
 Std. Dev. 1.75 1.85 
Note. * = p .10,  ** = p .05,  *** = p .001; n varied slightly based on the question. 

 
 Because undergraduate students are expected to spend more time constructing knowledge 
outside of class compared to during high school, the nature of the homework must support them 
in doing so. One key component of this appears to be providing responsive feedback to students 
as they grapple with the material outside of the classroom, with or without their peers.   
 

Conclusion 
 Taken together, the above findings point to a significant shift in the didactical contract 
surrounding who is responsible for grappling with difficult material and where this takes place. 
The homework systems at selected institutions respond to this shift by providing multiple 
opportunities for students to interact with the content outside of class, provide feedback as a way 
for the teacher to interact with the student and the content while students work outside of class, 
and expect students to struggle with more complex content and explain their thinking related to 
this content. Perhaps these features are one reason why students at the selected institutions 
experienced an increase in their mathematical confidence, realizing that they are capable of 
succeeding with more difficult material.  
 These findings have both theoretical implications and practical implications. Our findings 
provide evidence for the applicability of the instructional triangle at the undergraduate level.. At 
the K-12 level, the majority of the interactions between student, teacher, and content occur 
within the classroom. However, at the undergraduate level, many of these interactions take place 
outside of the classroom. Thus, the homework system plays a heightened role in undergraduate 
mathematics because it acts as the milieu for these interactions to occur both inside and outside 
the classroom. Our findings also have direct implications for the classroom. As an undergraduate 
instructor, the homework system is an especially important resource for extending and furthering 
the learning that takes place during lecture. One must be purposeful about how to utilize online 
and/or written homework as a medium for students to practice skills and grapple with concepts, 
while providing feedback for the successful (and more enjoyable) development of both.  
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It’s about Time: How Instructors and Students Experience Time Constraints in Calculus I 
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The goal of this research is to better understand the relationship between how quickly or deeply 
Calculus material is covered and how this is related to students’ instructional experience and 
their persistence in a STEM major. To do so, we analyze data coming from a large national 
survey of Calculus I programs. Specifically, we first compare students’ views of pacing to their 
instructor’s views, resulting in four classifications of students. We then investigate various 
characteristics of these students, including: their institution type, their instructor type, their 
reported instruction, their mathematics beliefs, and their Calculus II intentions. Our findings 
suggest two important ways that pressure to cover material impacts Calculus I students and their 
instructors. First, when instructors feel pressure to cover material, student-centered teaching 
practices are often dropped. Second, feeling rushed to cover difficult material is a factor in 
losing STEM intending students.  
 
Keywords: Calculus, Coverage, Pacing, Quantitative, Didactical Contract 

The fact that calculus tends to be overstuffed with topics and taught in a manner that does 
not engage students is something that has been recognized by the broader mathematical 
community for decades. The calculus reform movement in the 1990’s argued for a “lean and 
lively” approach to calculus. With the support of the National Science Foundation, the 
mathematical community developed a number of innovative approaches to calculus, including 
technology rich approaches to teaching, application rich content, a focus on students working 
collaboratively and on long-term projects, and an emphasis on a geometric perspective in 
addition to an analytic and numeric perspective on calculus. Evidence of lasting or systematic 
impact of these efforts has been minimal (Ganter, 2001; Haver, 1998). 

The barriers that inhibit faculty from adopting leaner and livelier approaches to instruction 
are complex and involve the interplay of institutional, cultural, and cognitive factors. Student 
centered instructional approaches are often viewed as taking more time with less material being 
covered (Johnson, Caughman, Fredericks, & Lee, 2013). Faculty often cite concerns about 
coverage as reasons not to implement more student-centered instructional approaches (Christou 
et al., 2004; McDuffie & Graeber, 2003; Wagner, Speer, & Rossa, 2007). Research, however, 
continues to find that more active student instruction leads to deeper student understanding, 
longer retention of knowledge, more positive attitudes, and increased persistence in a STEM 
major (e.g., Freeman et al., 2014; Kogan & Laursen, 2013; Larsen, Johnson, & Bartlo, 2013; 
Rasmussen & Ellis, 2013; Rasmussen & Kwon, 2007). The previous overview points to a need to 
better understand the relationship between how quickly or deeply calculus material is covered 
and how this is related to students’ instructional experience and their persistence in a STEM 
major.  

We address this research need by analyzing data from a large national survey of Calculus I 
students and instructors. In our first stage of analysis, we examine the extent to which students 
and instructors report similar pressure regarding the speed at which material is covered in class. 
Specifically, our first research question is: How do students’ views of pacing compare to their 
instructor’s views? This comparison led to four classifications of students, which we leverage for 
the second research question: For each of the four classifications, what are the student and 
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instructor characteristics, including: their institution type, their instructor type, their reported 
instruction, their mathematics beliefs, and their Calculus II intentions? 

Theoretical Background 
Embedded in this work are issues regarding the expectations of students and faculty. These 

expectations relate to who is responsible for learning, where learning occurs, and how much 
material is reasonable to cover. Theoretically, we see these types of expectations as part of the 
didactical contract (Brousseau, 1997). The notion of didactical contract refers to the set of 
reciprocal expectations and obligations between the instructor and the students, most of which 
are implicitly formed through patterns of interaction. For example, at the secondary school level 
students do not expect to have to cover large amounts of material on their own at home. Much of 
learning therefore occurs in class and students and their teacher are mutually responsible for 
learning. At the university level, however, these expectations and obligations may shift - the 
material covered increases, instructors tend to lecture more compared to secondary school 
teachers, and instructors expect students to learn more on their own at home. Students are often 
left feeling that their calculus courses are overstuffed and taught in an uninspiring and 
unresponsive manner (Seymour & Hewitt, 1997). It is precisely these aspects of the didactical 
contract that we aim to unpack at institutions with more successful calculus programs. !

Methodology 
To answer our research questions, we drew on survey data collected during the 

Characteristics of Successful Programs in College Calculus (CSPCC) project. CSPCC is a 
national study designed to investigate Calculus I. We have complete data (related to all questions 
that we address in these analyses) for 3,743 students that initially intended to take Calculus II, 
which we use as a proxy for being STEM intending. Surveys were sent to a stratified random 
sample of students and their instructors at the beginning and the end of Calculus I.  

At the end of the term, both students and instructors were asked if they felt there was 
enough time for difficult ideas. Instructors were asked to respond to the prompt: When teaching 
my Calculus class, I had enough time during class to help students understand difficult ideas. 
Instructors were asked to provide a response ranging from 1 to 6 on a Likert scale, with 1 
meaning “not at all” and 6 meaning “very often”. Students were asked to respond to the prompt: 
My calculus instructor allowed time for me to understand difficult ideas. Students were asked to 
provide a response ranging from 1 to 6 on a Likert scale with 1, meaning “strongly disagree,” 
and 6, meaning “strongly agree.” Instructor and student responses were linked, so we could 
match students’ responses to their instructor’s responses. Matched responses to these prompts 
were analyzed for our first research question.  

To answer our second question, we investigated a number of aspects of students, including 
persistence, grade data, reported instructional experience, and reported beliefs. To examine their 
persistence, we used multiple questions across surveys to classify students into two categories: 
Persisters, and Switchers. Persisters are those students who initially intended to take more 
Calculus and did not change from this intention at the end of the term. Switchers, on the other 
hand, were those students that started Calculus I intending to take more calculus, but then by the 
end of the term changed their plans and opted not to continue with more calculus. We used 
instructors’ reports of students’ final grades as a measure of student achievement in the course.  

To understand the relationship between students’ instructional experience and student and 
instructor reports of time to develop difficult ideas, we analyzed instructional practices as 
reported by students. Students were asked to report the frequency of 9 instructional activities, 
that we identify as instructor centered, including (a) instructor lecturing and (b) showing students 
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how to work specific problems; student centered, including (c) having students give 
presentations; (d) having students work individually on problems or tasks; (e) asking students to 
explain their thinking; and (f) instructor asking questions; or interactive, including (g) having 
students work with one another; and (h) hold a whole-class discussion. Students were also asked 
to report how often their (i) prepared extra material to help students understand calculus concepts 
or procedures. Students were prompted to provide a response ranging from 1 to 6 on a Likert 
scale, with 1 meaning “not at all” and 6 meaning “very often”.  

To investigate the relationship between students’ mathematical beliefs and student and 
instructor reports of time to develop difficult ideas, we used two sets of questions, coming from 
both student start of term and student end of term surveys. The first set of questions are worded 
identically on both surveys, and asked students to rate the level to which they agree with the 
statement “I am confident in my mathematical abilities,” with 1 meaning strongly disagree and 6 
meaning strongly agree. Thus a positive change on this set of questions indicates that at the end 
of the term, the student gained mathematical confidence. The second sets of questions target the 
degree to which students agree that mathematics is about getting answers to specific problems. 
On both the start of term and the end of term survey, students were asked to rate the level to 
which they agree with the statement “Mathematics is about getting exact answers to specific 
problems,” with 1 meaning strongly disagree and 6 meaning strongly agree. Thus a positive 
change on this set of questions indicates that at the end of the term, the student agreed more 
reported that math is about getting exact answers (a more procedurally oriented perspective). 

Results  
To make the comparison between students’ views of pacing to their instructor’s views, we 

consider the four quadrants created by the two dimensions of student report and instructor 
reports. On one dimension, students either agree or disagree that there was enough time spent in 
class for them to understand difficult ideas. On the other dimension, instructors either agreed or 
disagreed to the same prompt. We computed a new value to indicate what quadrant the student 
would be in when graphing their response against their instructor’s response, as shown in Figure 
1. Throughout this paper, we use this classification to demarcate students and to understand the 
calculus persistence and instructional experience of students in each quadrant. 

Students in Quadrant I (QI) report having enough time to understand difficult ideas 
(answered 4-6) and their instructors agree (answered 4-6). Students in Quadrant II (QII) report 
not having enough time to understand difficult ideas (answered 1-3) but their instructors reported 
having enough time (answered 4-6). Students in Quadrant III (QIII) report not having enough 
time to understand difficult ideas (answered 1-3) and their instructors agree that there wasn’t 
enough time (answered 1-3). Students in Quadrant IV (QIV) report having enough time to 
understand difficult ideas (answered 4-6) though their instructors reported not having enough 
time (answered 1-3). From the lens of the didactical contract, students in QI and QIII share 
similar expectations as their instructors regarding the pace of the course. Students in QII and 
QIV have different expectations than their instructors regarding the pace of the course and 
different conceptions of the didactical contract within Calculus I.  

 As shown in Figure 1, almost 60% of students and their instructors agreed that there was 
enough time in class for them to understand difficult ideas, and around 6% of students and their 
instructors agreed that there was not enough time for them to understand difficult ideas. Nearly 
15% of students felt that there was not enough time while their instructors thought there was, and 
around 20% of students felt there was enough time while their instructor thought there was not 
enough time.  
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Figure 1. Classification of students based on agreement with instructor. 

 
 This data indicates that while the majority of students were in agreement with their 

instructors that there was enough class time to understand difficult ideas, there are many students 
that perceive the pacing of the class differently than their instructors, either as having more or 
less time than their instructors report. This finding allows us to examine various aspects of 
students from each of the four categories to gain a more holistic picture of their Calculus I 
experience. In the following sections, we present a summary of the multiple analyses conducted 
comparing students from each group along a number of dimensions to gain a profile of each 
group of students. As shown in Table 1, we compare: institution type; instructor type; reported 
instruction; and student success, specifically persistence onto Calculus II (as a proxy for STEM 
persistence), Calculus I grade, and mathematical beliefs.  

 
Table 1. Comparisons across four types of students. 
 QI QII QIII QIV 
Institution type 

(χ2 (15, N = 3743) = 401.059, p < .001) 

    

CC 159 34 3 17 
 7% 6% 1% 2% 

BA 263 49 21 70 
 12% 9% 9% 10% 

MA 128 21 12 43 
 6% 4% 5% 6% 

Small PhD 
(<20k students) 533 169 132 328 

 24% 31% 56% 44% 
Large PhD 

(>20k students) 627 171 70 279 

 28% 31% 29% 38% 

Service Academy 512 101 0 1 
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 23% 19% - 0% 

Instructor Type (χ2 (12, N = 3743) = 18.717, p < .001)     
Tenure track faculty 204 43 20 89 

 9% 8% 8% 12% 
Tenured faculty 516 129 120 288 

 23% 24% 50% 39% 
Other full time faculty 1205 296 60 264 

 54% 54% 25% 36% 
Other part time faculty 96 21 4 17 

 4% 4% 2% 2% 
Graduate teaching assistant 201 56 34 80 

 9% 10% 14% 11% 
Reported instruction     
How frequently did your instructor: (1=not at all; 6=very often)     

lecture? 4.8 4.9 5.5 5.4 
2215 545 238 738 
1.3 1.5 1.0 0.9 

show how to work specific problems? 5.18 4.49 4.34 5.09 
2218 543 237 738 
0.9 1.3 1.5 1.0 

have students give presentations? 2.1 1.5 1.2 1.6 
2207 544 238 737 
1.5 1.0 0.7 1.2 

have students work individually on problems or tasks? 4.0 3.2 3.2 3.8 
2213 544 236 737 
1.6 1.7 1.7 1.7 

ask students to explain their thinking? 4.3 2.9 2.3 3.7 
2215 545 237 737 
1.5 1.6 1.3 1.6 

ask questions? 4.9 3.8 3.6 4.7 
2211 542 238 737 
1.0 1.3 1.3 1.1 

have students work with one another? 3.7 2.8 2.2 2.9 
2211 545 237 737 
1.9 1.9 1.5 1.8 

hold a whole-class discussion? 3.9 2.7 2.2 3.3 
2214 543 238 738 
1.8 1.7 1.5 1.8 

prepare extra material to help students understand calculus concepts 
or procedures? 

4.2 2.8 2.9 4.2 
2169 530 232 718 
1.4 1.5 1.5 1.4 

Student Success     
Persisters 

(χ2 (3, N = 3743) = 26.401, p < .001) 
2005 469 191 645 
90% 86% 80% 87% 

Switchers 217 76 47 93 
10% 14% 20% 13% 

Expected grades 
(χ2 (15, N = 752) = 67.250, p < .001) 160 12 9 79 

A 160 12 9 79 
39% 15% 17% 39% 

B 126 23 21 70 
30% 28% 40% 35% 
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C 86 20 13 43 
21% 24% 25% 21% 

D 24 14 6 10 
6% 17% 12% 5% 

F 18 11 2 1 
4% 13% 4% 1% 

W 1 2 1 0 
0% 2% 2% 0% 

Beliefs about math     
Change in confidence 

(>0 means more confident) 
[F(2375, 3) = 42.456, p < .001] 

 

-0.3 -0.9 -0.9 -0.3 
1440 340 130 466 

1.0 1.3 1.2 1.0 

Change in “Math is about getting exact answers to specific problems” 
(>0 means more procedural) 

[F(2370, 3) = 6.900, p = .016] 

0.4 0.2 0.1 0.4 
1436 341 129 465 
1.4 1.5 1.5 1.4 

 
QI: Students and their instructors reported having enough time 

Compared to students in other quadrants, these students more often came from Community 
Colleges, Bachelors-granting institutions, and Service Academies and were more frequently 
taught by non-tenure-track full and part time faculty. These students reported relatively high 
frequencies of all instructional practices except lecture (which was reported at average 
frequency), indicating that there was a lot of diverse instruction occurring. This includes 
instructor-centered instruction, student-centered instruction, and interactive instruction. 
Additionally, students reported that their instructors frequently prepared extra material for them. 
These students switched their Calculus II intentions at the lowest levels (10% compared to the 
average 12%), received the highest percentage of A’s, and average percentage of B’s and C’s, 
and F’s, and relatively low percentage of D’s and W’s (Withdraws). Across all four quadrants, 
students’ reported confidence in mathematics decreased over their Calculus I term. The students 
in QI reported average levels of a decrease in confidence. When asked to what degree they 
agreed that “Mathematics is about getting exact answers to specific problems,” all students 
slightly increased in the amount they agreed, with average responses near 4, representing 
“slightly agree.” Students in QI increased in the amount they agreed more than students in other 
quadrants. 
QII: Students reported not having enough time but their instructors did 

Compared to students in other quadrants, these students more often came from Community 
Colleges and large PhD granting institutions and were more frequently taught by non-tenure-
track full-time and part-time faculty. These students reported relatively low-to-average 
frequencies of all instructional practices except having students explain their thinking and 
preparing extra materials, which were both reported at relatively low frequencies. These reports 
indicate that there wasn’t a high frequency of any particular instructional activity occurring, but 
rather medium levels of many instructional activities. These students switched their Calculus II 
intentions at relatively high levels (14% compared to 12%), received the lowest percentage of 
A’s compared to students in other quadrants, average percentage of B’s and C’s, and relatively 
high D’s, F’s, and W’s. The students in QII reported relatively high levels of a decrease in 
confidence. These students also slightly increased in the amount they agreed, “Mathematics is 
about getting exact answers to specific problems.”  
QIII: Students and their instructors reported there was not enough time 
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Compared to students in other quadrants, these students more often came from small and 
large PhD granting institutions and were more frequently taught by tenured faculty and Graduate 
student Teaching Assistants (GTAs). These students reported relatively high frequency of 
lecture, relatively medium frequency of showing students how to solve problems, having 
students work individually and the instructor asking questions, and low levels of everything else. 
This indicates that these classes were largely dominated by instructor-centered instruction, with 
some individually oriented student-centered instruction, but low levels of interactive instruction. 
These students switched their Calculus II intentions at the highest levels of the four groups 
(20%), received a low percentage of A’s compared to students in other quadrants, relatively high 
percentage of B’s and D’s, and relatively average C’s, F’s, and W’s. The students in QIII 
reported relatively high levels of a decrease in confidence. These students had the least amount 
of change in the amount they agreed, “Mathematics is about getting exact answers to specific 
problems.”  
QIV: Students reported enough time but their instructors did not 

Compared to students in other quadrants, these students more often came from small and 
large PhD granting institutions and were more frequently taught by tenure-track faculty. These 
students reported relatively high frequency of lecture, students working individually, the 
instructor asking questions, having a whole-class discussion, and the instructor preparing extra 
materials. All other instructional activities were reported at average frequencies. This indicates 
that there was a combination of instructor-centered instruction, student-centered instruction, and 
interactive instruction. These students switched their Calculus II intentions at relatively average 
levels (13%), received a high percentage of A’s compared to students in other quadrants, 
relatively average percentage of B’s and C’s, and relatively low D’s, F’s, and W’s. The students 
in QIV reported the relatively lowest levels of a decrease in confidence. These students had the 
most amount of change in the amount they agreed, “Mathematics is about getting exact answers 
to specific problems.”  

Discussion and Conclusions 
These analyses paint four very different classroom images depending on if the instructor 

feels that there is enough time. For instance, in QI, where instructors agree that there was enough 
time to understand difficult ideas, there are higher than average reported frequencies of all 
instructional activities except for lecture. This is contrasted with QIII and IV, where instructors 
did not feel there was enough time. In QIII students and their instructors agree that there was not 
enough time in class to understand difficult ideas. In these classes, students reported higher than 
average levels of lecture and lower than average levels of all other practice. This environment 
appears very traditional and is consistent with the literature indicating that when there is a 
pressure for time, student-centered practices are sacrificed. Similarly, in QIV there were higher 
than average reported frequencies of showing students how to work specific problems, having 
students work individually on problems, lecture, and asking questions, and lower than average or 
average on the other practices. This suggests that when instructors felt some pressure to cover 
material, student-centered teaching practices were jettisoned.  

In terms of students’ perception of time, these findings indicate that students who switch 
their Calculus II intention are most likely to come from classes where the students do not feel 
there is not enough time to understand difficult ideas and where their instructors agree. In QIII, 
we saw 1) very traditional instructional practices, with high levels of lectures and low levels of 
any other instructional practice and, 2) especially large rates of students who changed their plans 
and opted not to continue with more calculus. These results are contrasted with results from QI, 
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where students and their instructors both feel that they have enough time. In these classes, where 
there is a variety or traditional and student-centered instruction, students are more likely to 
continue with their intentions of taking further calculus courses.  

Interestingly, in both QI and QIII, the students and their instructors seem to be in agreement 
on aspects of the didactical contract regarding pacing. In QI, students and their instructors agree 
that the course is moving at a reasonable pace, where there is enough time to understand difficult 
ideas. In QIII, students and their instructors agree that the course is moving at an unreasonable 
pace to support understanding. One way to understand the instructors in QIII is by considering 
the didactical contract they have with the broader mathematics and STEM departments. In this 
way, the instructor/student didactical contract may be related to an aspect of the 
instructor/department contract, one that pertains to the amount of material that needs to be 
covered in a given course. For instance, if an instructor has internalized an expectation that large 
amounts of material needs to be covered (an aspect of the instructor/department contract) then 
they may expect students to learn more material on their own (as aspect of the instructor/student 
contract). Given our findings, it appears that when both students and instructors internalize this 
pressure, we are most likely to lose STEM intending students.  
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Creating opportunities for students to address misconceptions: Student engagement with 
a task from a reform-oriented calculus curriculum  
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Research shows that students learn best when working with their peers as this creates 
opportunities for students to challenge one another’s thinking, consequently building 
new knowledge.  We will share analysis of three groups of calculus students engaging 
with an activity from a new reform-oriented calculus curriculum, which developed out 
of the philosophy that students working together promotes increased learning.  
Inspired by Gresalfi’s engagement framework (2013), we developed an engagement 
coding scheme that differentiates between weak, procedural, and conceptual 
engagement.  Our analysis focuses on the opportunities that emerged for students to 
address misconceptions.  Findings show that how groups engaged with the same task 
varied significantly and, although opportunities to address misconceptions emerged in 
all groups, misconceptions were most effectively addressed in the group where 
conceptual engagement was prevalent.  We discuss the extent to which norms, 
learning dispositions, and the activity itself played a role in the outcomes we observed. 

Key words: Calculus, Engagement, Mathematical Tasks, Misconceptions 

Introduction 
Calculus has long been a gatekeeper for students entering STEM fields. Despite 

reform efforts to make calculus more accessible, high failure rates between 25%-40% 
persist (Bressoud et al, 2013; Burton, 1989). Even when students successfully pass 
calculus, research shows they often still have a poor grasp of many of the concepts and 
do not have the skills necessary for successful STEM careers (Selden, Selden, & Mason, 
1994). As part of a larger NSF-funded research study that continues systematic inquiry 
into both curriculum development and research on student thinking, this study examines 
student learning of calculus content and the social aspects of the classroom curriculum. 
Our analysis focuses on groups of students working on a second derivative activity from 
a newly developed calculus curriculum, Process-Oriented Guided Inquiry Learning 
(POGIL).  Our research question is: How does student engagement with the POGIL 
curriculum and with their peers in small groups afford opportunities for students to 
address misconceptions around the relationships between a function and its first and 
second derivative? 

Background and Theoretical Frameworks 
The research to date reveals that foundational calculus concepts are difficult for 

students and are often learned with significant misconceptions (Baker et al., 2000; 
Dreyfus & Eisenberg, 1981; Ferrini-Mundy & Graham, 1991; Tall & Vinner, 1981).  
Multiple studies have shown that students struggle with coordinating their understanding 
of first and second derivatives with that of the original function, particularly in a 
graphical context and that students often fail to recognize how the specific features of 
each of these graphs connect to one another (Berry & Nyman, 2003; Carlson et al, 2002; 
Christensen & Thompson, 2012; Orton, 1983).   
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We take the perspective that learning is a result of participation in a classroom 
community (see for example, Bowers, Cobb & MacClain, 1999; Greeno & Gresalfi, 
2008; Gresalfi, 2009). Specifically, we focus on a framework of affordances for students 
to engage with mathematical ideas (Gresalfi, 2013; Gresalfi & Barab, 2011). Gresalfi and 
Barab (2011) use four types of engagement in their work: procedural, conceptual, 
consequential, and critical. They define procedural engagement as “using procedures 
accurately” and conceptual engagement as “understanding why an equation works the 
way it does” (p. 302). Consequential engagement “involves recognizing the usefulness 
and impact of disciplinary content” and critical engagement “involves questioning the 
appropriateness of using particular disciplinary procedures for attaining desired ends” (p. 
302). They argue that the goal of curricular design and implementation is to foster 
consequential and critical engagement so that students use procedures and concepts as 
tools for investigating problems in meaningful ways. Their framework for engagement 
serves as a guiding lens for our analysis of the POGIL classroom observation data. 

The Philosophy and Instructional Strategy of POGIL 
POGIL was initially developed as a reform curriculum for chemistry. The POGIL 

curriculum is based upon the philosophy that students learn best when they are actively 
engaged with their peers and their instructor, discussing and exploring mathematical 
ideas.  The POGIL activities are designed around a three-part learning cycle of 
exploration (in which students answer questions related to a model such as a graph or a 
problem situation that leads them towards an understanding of the concept to be learned), 
concept formation, and application (Hanson, 2006).  The work presented here is part of a 
larger research project investigating the efficacy of the POGIL curriculum on student 
learning in calculus. The project is currently in its fourth year and data is still being 
collected. 

Methods 
The data used in this study was collected from two community colleges and one 

four-year University in the Pacific Northwest.  The work presented here is based on video 
and audio recordings of classroom observations during an activity focused on the second 
derivative.  Data from three groups are reported here – one from each school. During 
implementation of the POGIL activities, the classes were broken into groups of 3-4 
students.  Based upon a key strategy of the POGIL curriculum, each group member 
assumed a role such as recorder or spokesperson.  While the roles from one classroom to 
the next were somewhat varied, there was always a group member whose responsibility 
was to read each question aloud.  This role helped to ensure that the group members were 
all working on the same problem throughout the class time. 

Our analysis focuses on the first half of an activity designed to introduce the 
concept of the second derivative.  The activity is intended to guide students to recognize 
relationships between a function, its derivative, and its second derivative.  The Model 
(see figure 1) used in the exploration phase of this activity is the graphs of a function and 
its first and second derivative.  The activity prompts students to identify points and 
intervals on the graphs where the subsequent graphs were equal to zero and greater than 
or less than zero (respectively).  As part of the concept formation phase of the activity 
(not shown in figure 1), which focuses specifically on f ”(x), the activity prompts students 
to describe what happens to the original function and the first derivative when f ”(x) = 0, 
f ”(x) > 0, and f ”(x) < 0.  The goal of the activity is to help students recognize that the 
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original function is concave up when the second derivative is positive, concave down 
when the second derivative is negative, and has an inflection point where f ”(x) = 0.  The 
activity is also intended to solidify students’ understanding that a function increasing or 
decreasing occurs when its derivative is positive or negative, respectively. 

 
Figure 1. Beginning part of the second derivative activity. 

Analysis 
Building off of Gresalfi and Barab’s engagement framework (2011), we 

developed a coding scheme that broke down student engagement into weak, procedural, 
and conceptual engagement.  Within each of these three levels, we further classified the 
type of activity the students were engaged in (see table 1).  Note that, while consequential 
and critical engagement are not present in our coding scheme due to a general absence of 
these levels of engagement in the student discourse we observed, we made a note in our 
analyses when we felt that we observed these higher levels of engagement emerging from 
the discourse.  In addition, we did not see strong opportunities in the task itself for 
consequential or critical engagement.  
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This coding scheme was used within each problem of the second derivative task.  
We found that, as the groups worked through a problem, the level of engagement often 
shifted.  For example, a problem might open with W1 (Reading Task), followed by P1 
(task interpretation) as the group attempted to make sure they understood what the 
problem was asking them to do.  Then, some group members might share answers (W2) 
and this might be followed by a period of private think-time as the group members 
recorded their solutions (W4).  We used these codes within our data to analyze the trends 
and developments of the groups’ engagement with the task. 

Table 1. Engagement Coding Scheme 
                                    Weak Engagement 
Reading task (W1) Student reads task aloud 
Sharing Answers (W2) Students provide answers and the other group members accept it 

without further discussion. 

Correcting errors (W3) A student corrects another student’s incorrect answer by telling the 
correct answer without an effort to address underlying procedures or 
concepts. 

Private Think-Time (W4) Students are working on their own without sharing their thinking 
with the other group members 

                        Procedural Engagement 
Task Interpretation (P1) Students discuss or explain what a problem is asking them to do. 
Talking through Procedures 
(P2) 

Using previously learned procedures to solve a task.  Students are 
engaged in communicating the process. 

Addressing Errors (P3) Students are addressing errors by providing explanations that focus 
on the correct steps to be followed. 

Using an incorrect 
procedure (P4) 

Students are using a procedure incorrectly, that will lead to an 
incorrect solution. 

                       Conceptual Engagement 
Reasoning through the 
task (C1) 

The group does not have a clear solution or concept in mind, but is 
working towards making sense of the problem and generating 
possible reasons for their new thinking. 

Conceptual Explanations 
(C2) 

Providing conceptual explanations or justifications that are taken up 
by the group. 

Addressing 
Misconceptions (C3) 

Students help one another to work through a misconception by 
discussing the underlying concepts. 

Non-viable conceptual 
engagement (C4) 

The work either converges to a misconception, or does not converge 
to any concept. 

Results and Discussion 
Using our engagement codes to analyze the discourse that took place around the 

second derivative task within these three groups, we found that the levels of engagement 
for the three groups varied significantly.  One group demonstrated frequent episodes of 
conceptual engagement, another episodes of procedural engagement, and the third 
episodes of weak engagement.  We also found that, while these were the predominant 
levels of engagement for these groups, each group also demonstrated instances of higher 
levels of engagement, including some consequential engagement within the conceptual 
group.   

We argue that the learning dispositions (Gresalfi, 2009) of the group members 
were influential in these levels of engagement. We observed that participants of the group 
with frequent episodes of conceptual engagement demonstrated a community in which 
each member was free to contribute as equals in the group regardless of prior knowledge 
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or current level of understanding.  In contrast, the procedural group demonstrated a 
dynamic in which there was a primary speaker and primary beneficiary.  In this group, 
the primary speaker was committed to increasing understanding for his peers, but his 
explanations tended to be procedural in nature.  In the weak engagement group, students 
were generally responsible for their own learning and engagement mostly took the form 
of vocalizing solutions without explanation.  Despite the varying levels of engagement 
across the three groups, the POGIL activity afforded opportunities for students in all three 
groups to develop understanding of the relationship between a function and its first and 
second derivative, albeit the higher the level of engagement observed in the group, the 
deeper the level of understanding that was afforded. 

Cappetta and Zollman (2013) propose four agents of change in the classroom as 
initiators of reflective thinking.  These agents of change are the individual, their peers, 
the instructor, and the curriculum.  The four agents of change framework is useful for 
interpreting our findings on students’ engagement with the POGIL activity.  The ways in 
which these students engaged at both higher and lower levels of thinking than what we 
felt the task afforded suggests that the individual and their peers played a significant role 
in the opportunities that were afforded for higher levels of engagement. A deeper 
investigation of the individual and peer groups is needed to better understand how 
instruction can capitalize on these agents of change in positive ways in the classroom. In 
addition, while some of these opportunities to develop understanding were afforded as a 
result of the POGIL curriculum and POGIL’s teaching philosophies, we also recommend 
that the task could be modified to afford higher levels of engagement.  Finally, more 
research needs to be conducted to help us to better understand the added aspect of the role 
of the teacher in affording higher levels of engagement. 
 Questions  

During our presentation, we intend to pose the following questions to our 
audience: (1) Is our framework useful for capturing the varying levels of engagement of 
students working in small groups on mathematics tasks?  (2) Our framework does not 
include levels of engagement higher than conceptual.  Is it practical for us to include 
higher levels of engagement in our coding scheme?  If so, what might that look like at the 
task level? At the student level? At the teacher level? (3) What changes might be made to 
the second derivative activity to increase the level of affordances for conceptual, 
consequential, or even critical engagement? (4) What is the role of the curriculum and the 
instructor in supporting both the individual and peer group to achieve higher levels of 
engagement? 
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“What if we put this on the floor?”: Mathematical Play as a Mathematical Practice 
 

Abstract:  Mathematical play, as a mathematical practice, can be defined as the 
exploration of mathematical ideas in uninhibited and unconstrained ways, which could 
include engagement with physical devices, computer programs, imaginative acts, social 
interactions, and inscriptions.  In this preliminary report I will discuss mathematical play 
and the ways in which it transpired in an undergraduate Foundation of Geometry course 
in which students engaged in activities to develop an understanding of physical, 
synthetic and analytic aspects of projective geometry.  Additionally, I will discuss the 
ways in which mathematical play can be fostered through engagement in mathematically 
inspired art projects, as well as other artistic engagement.  
 

Key Words: mathematical practices, mathematical play, arts integration, projective geometry 
 
Introduction 
Coinciding with the shift of researchers’ perspectives on learning from those that place sole 
emphasis on the cognitive aspects of learning to those that embrace the local and broader 
contexts in which learning occurs (Brown, Collins, & Duguid, 1989; Cobb & Yackel, 1996; 
Lave & Wenger, 1991), a greater emphasis is now being placed on mathematical practices – in 
the sense of practices of students in the mathematics classroom (e.g. Boaler, 1999; Cobb, 
Wood, Yackel, & McNeal, 1992; Stephan & Rasmussen, 2002), practices of mathematicians 
(e.g. Burton, 1999; Moschkovich, 2013), and practices of everyday people (e.g. Hoyles, Noss, 
& Pozzi, 2001; Lave, 1998; Nunes, Schliemann, & Carraher, 1993).  This shift has resulted in 
an increased focus on the activities and practices in which students engage in the mathematics 
classroom.  This is reflected in both the National Council of Teachers of Mathematics (NCTM) 
Principles and Standards document (NCTM, 2000) and by the introduction of the Eight 
Mathematical Practices into the Common Core State Standards Initiative documents (CCSSI, 
2010).  While the practices included in these standards documents are considered to reflect the 
authentic activity of professional mathematicians, they are generally geared toward 
mathematical performance, rather than mathematical appreciation and curiosity, which are 
essential characteristics of professional mathematicians as evidenced by aspects of their 
mathematical activity.  

One activity that can promote mathematical appreciation and curiosity in students is 
that of mathematical play.  In early childhood studies, play is considered a valuable activity in 
which students should engage (Piaget, 1951; Singer, Golinkoff, & Hirsh-Pasek, 2006), 
including as it relates to mathematical development (De Houlton, Ahmed, Williams, & Hill 
2001 year; Ginsburg, 2006).  However, students are not often engaged in play activities 
throughout their schooling, and in particular as they pertain to mathematics.  

The notion of mathematical play is not new.  De Houlton et al. (2001) define 
mathematical play as “that part of the process used to solve mathematical problems, which 
involves both experimentation and creativity to generate ideas, and using the formal rules of 
mathematics to follow any ideas to some sort of conclusion.”  Within this characterization of 
mathematical play, the actor must follow through using mathematical rules to arrive at an 
answer to a problem.  Engaging in play however does not always require a problem to be 
solved - yet problem solving can lead to mathematical play.  Instead, the actor may simply be 
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exploring the range of possibilities within a mathematical idea, and so she is not necessarily 
looking to arrive at a conclusion.   

In these situations in which the actor is not attempting to solve a problem, mathematical 
play may purely be based on aesthetics, visual or otherwise, and can become a launching point 
for mathematical inquiry – in which case it may become a problem to solve.  As such, in this 
study, I define mathematical play as exploring mathematical ideas in uninhibited and 
unconstrained ways, which could include engagement with physical devices, computer 
programs, imaginative acts, social interactions, and inscriptions.  By uninhibited I mean the 
actor is freely exploring the mathematics at hand, without fear of judgment by others.  By 
unconstrained I mean the purpose of the mathematical play may or may not be goal-driven, and 
the play may include the use of any tools at hand.  Mathematical play often coincides with a 
mathematical disposition of curiosity, consistently asking “What if…” when considering 
mathematical ideas.  For example, students using dynamic geometry software to explore 
triangles might ask themselves, “What if we doubled the length of each side of the triangle?  
Then what would happen (to the area, to the angles, etc.)?”  Or similarly, “What if we add 1 to 
each side?”  
 
Theoretical perspective 
I approach this study from the perspective that all learning and knowing is situated (Brown, 
Collins, & Duguid, 1989; Greeno, 1998; Lave, 1988), and both socially and culturally 
mediated (Cobb & Yackel, 1996; Forman, 2003).  Learners develop understanding through 
participation in cultural practices (Brown, Collins, & Duguid, 1989; Lave & Wenger, 1991).  
Furthermore, the particular modes of participation in a culture and context are mediated by the 
discourse of social interaction, cultural artifacts and tools, bodily engagement, and symbols. 
Consistent with this notion of learning and knowing, I align with the characterization of 
mathematical practices described by Moschkovich (2007), in which she describes 
mathematical practices as normative culturally and socially, as well as historically situated.  In 
this framing, mathematical practices involve multiple resources, such as artifacts, tools, 
language, and other social aspects.  As such, mathematical practices are embedded within the 
context in which they occur, and are constituted by the goals and meanings of discourse and 
purposeful activity (Moschkovich, 2007, 2013).  Mathematical practices then can include 
discourse, behavior, and activity, in the context of the classroom community.  These might 
include practices such as imagining, justifying, entertaining alternate possibilities, and ways of 
using mathematical tools.  Mathematical play then, as a mathematical practice, can be 
composed of engagement with physical devices, computer programs, imaginative acts, social 
interactions, bodily engagement, and inscriptions.   
 
Methodology 
The setting for this study is a Foundations of Geometry course that took place during the fall 
semester of 2012 at a large Southwestern university.  Participants included 16 out of 29 
students enrolled in the course, and were primarily prospective secondary mathematics 
teachers. The focus of the course was projective geometry – a branch of geometry with roots in 
the formalization of the process by which artists can create a realistic drawing or painting of a 
three-dimensional object or scene.  Through the use of physical devices and dynamic geometry 
software, students in this course worked in groups of three or four on novel problems designed 
to lead students to develop an understanding of physical, synthetic, and analytic aspects of 

18th Annual Conference on Research in Undergraduate Mathematics Education 50218th Annual Conference on Research in Undergraduate Mathematics Education 502



projective geometry.  The groups engaged in the activities and then reported back to the whole 
class on their ideas.  As such, the mathematical ideas in the course were generally drawn out 
from the students, rather than explained by the instructor.  

Students began their exploration of projective geometry ideas through the use of a 
physical device called the Alberti’s Window, which consisted of a moveable eyepiece through 
which the students could view drawings or objects, and a 12x12-inch square piece of clear 
acrylic that stood perpendicular to a table (see Figure 1). Students sat facing the window, 
placed a drawing or object on the side of the window opposite themselves, looked through the 
eyepiece, and then traced on the window with a marker the drawing or object seen in front of 
them.  Class discussions and further activities worked to extend the Alberti’s Window activity 
to the geometric theory of projection, which included imagining the projection of points behind 
the eyepiece and between the eyepiece and the window.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
After exploration with the physical Alberti’s Window, students were introduced to a 

Geometer’s Sketchpad (GSP) (Jackiw, 1995) version of the Alberti’s Window, which allowed 
them to further explore the geometry of linear projection.  As a two-dimensional representation 
of the three-dimensional Alberti’s Window situation, the GSP sketch shows an overlaying of 
both the horizontal plane (the tabletop) and the vertical plane (the window).  This is obtained 
by rotating the horizontal plane 90 degrees about the intersection of the two planes.  Since this 
GSP Alberti’s Window represented two overlaying planes, objects in the sketch that were 
located on the horizontal plane (the tabletop) were colored green and objects located on the 
vertical plane (the window) were colored orange.  The sketch contained a line that represented 
the intersection of the two planes, a line that represented the distance of the eyepiece from the 
window, and a line that represented the height of the eyepiece from the tabletop (see Figure 2).  

In addition to exploring projective geometry through the use of the physical and GSP 
versions of the Alberti’s Window, students analyzed various paintings and, as a culminating 
project, created their own painting with airbrushing techniques.  Using the GSP version of 
Alberti’s Window, students created an artistic design in the form of a GSP sketch fitting within 
a 10-inch x 13-inch frame.  Students were required to use aspects of projective geometry 
discussed in the course to create their design, however not all aspect of the design needed to be 
projected objects. Stencils of each student’s design were cut and students utilized the stencil in 
conjunction with an airbrush to paint their design in any way they desired.  The intention of 

Figure 1: Students use the Alberti’s window by looking through the eyepiece and 
tracing onto the window with a marker the object they see in front of them.  
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this project was not for students to demonstrate their understanding of projective geometry, but 
rather for the students to use the ideas of projective geometry for the sake of art creation.  As 
such, the completed designs do not necessarily look like canonical images of projective 
geometry (see Figure 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

This purpose of this research is two-fold.  First, this research investigates the 
mathematical practices in which students engage during an activity-based Foundations of 
Geometry course with a focus on projective geometry.  Second, this research explores the ways 
in which artistic engagement can enrich students learning experiences in this undergraduate 
geometry course.  Analyses of classroom video data, individual student interviews, as well as 
students’ written and video reflections, using a grounded approach to data analysis (Strauss & 
Corbin, 1990, 1994), form the basis for this preliminary report 
 

Figure 2. Screen shot of GSP version of Alberti’s Window.  The 
green entities are those on the tabletop and the orange entities are 
those on the window. 

Figure 3. Left: The initial stencil design; Right: The completed painting. 
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Preliminary Results and Implications 
Preliminary analyses suggest that students in this Foundations of Geometry course frequently 
engaged in mathematical play – both during classroom activities, as well as during the creation 
of and reflection on their mathematically inspired art projects.  In particular, the design of the 
course, including the artistic engagement aspects, fostered mathematical play.  In this course, 
mathematical play seemed to suggest multiple implications for students’ development. 
Mathematical play appeared to help students develop their mathematical intuition and 
imagination, and served as a launching point for mathematical inquiry.  This suggests that 
engagement in mathematical play, both inside and outside the classroom, has the potential to 
lead students to mathematical discoveries, or mathematical situations, which they otherwise 
may not encounter.  As such, making space for mathematical play in the classroom should be 
considered.   
 
Questions for audience:  

1. What roles might mathematical play serve in developing mathematical understanding? 
2. What are ways in which we might engage students in mathematical play at various 

levels of education?  
 
References 
Boaler, J. (1998). Open and closed mathematics: Student experiences and understandings.  

Journal or Research in Mathematics Education, 29, 41-62. 
Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning.  

Educational Researcher, 18, 32-41) 
Burton, L. (1999). The practices of mathematicians: What do they tell us about coming to 

know mathematics?  Educational Studies in Mathematics, 37(2), 121-143. 
Cobb, P., Wood, T., Yackel, E., & McNeal, B. (1992). Characteristics of classroom 

mathematics traditions: An interactional analysis. American Educational Research 
Journal, 29(3), 573-604. 

Cobb, P., & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the 
context of developmental research. Educational Psychologist, 31, 175-190. 

Common Core State Standards Initiative (CCSSI). (2010). The standards: Mathematics. 
Retrieved from http://www.corestandards.org/the-standards/mathematics 

De Holton, D., Ahmed, A., Williams, H., & Hill, C. (2001). On the importance of 
mathematical play. International Journal of Mathematical Education in Science and 
Technology, 32(3), 401-415. 

Forman, E. (2003).  A sociocultural approach to mathematics reform: Speaking, inscribing, 
and doing mathematics within communities of practice.  In J. Kilpatrick, W. G. 
Martin, & D. Schifter (Eds.), A research companion to principles and standards for 
school mathematics (pp. 333-352). Reston, VA: National Council of Teachers of 
Mathematics.  

Ginsburg, H. P. (2006). Mathematical play and playful mathematics: A guide for early 
education. Singer et al., op. cit, 145-165. 

Greeno, J. (1998). The situativity of knowing, learning, and research. American Psychologist, 
53(1), 5-26. 

Hoyles, C., Noss, R., & Pozzi, S. (2001). Proportional reasoning in nursing practice. Journal 
for Research in Mathematics Education, 32, 4-27.  

18th Annual Conference on Research in Undergraduate Mathematics Education 50518th Annual Conference on Research in Undergraduate Mathematics Education 505



Jackiw, N. (1995). The Geometer’s Sketchpad. Berkeley, CA: Key Curriculum Press. 
Lave, J. E. (1988). Cognition in practice. Boston, MA: Cambridge.  
Lave, J. E., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation.  New 

York, NY: Cambridge University Press.  
Moschkovich, J. N. (2002). Chapter 1: An introduction to examining everyday and academic 

mathematical practices. In M. Brenner & J. Moschkovich (Eds.), Everyday and 
Academic Mathematics: Implications for the classroom.  Journal for Research in 
Mathematics Education, Monograph Vol 11, 1-11. 

Moschkovich, J. (2007). Examining mathematical discourse practices. For the Learning of 
Mathematics, 27(1), 24. 

Moschkovich, J. N. (2013). Issues Regarding the Concept of Mathematical Practices. In 
Proficiency and Beliefs in Learning and Teaching Mathematics (pp. 257-275). 
SensePublishers. 

National Council of Teachers of Mathematics (NCTM). (2000). Principles and Standards for 
School Mathematics. Reston, VA: Author. 

Nunes, T., Schliemann, A., & Carraher, D. (1993). Street mathematics and school 
mathematics. Cambridge: Cambridge University Press.  

Piaget, J. (1951). Play, Dreams and Imitation in Childhood. New York, NY: Newton.  
Singer, D. G., Golinkoff, R. M., & Hirsh-Pasek, K. (Eds.). (2006). Play= Learning: How play 

motivates and enhances children's cognitive and social-emotional growth. Oxford 
University Press. 

Stephan, M., & Rasmussen, C. (2002). Classroom mathematical practices in differential 
equations. The Journal of Mathematical Behavior, 21(4), 459-490.  

Strauss, A., & Corbin, J. (1990). Basics of Qualitative Research: Grounded Theory Procedures 
and Techniques. Newsbury Park, California: Sage Publications. 

Strauss, A., & Corbin, J. (1994) Grounded theory methodology: an overview.  In N.K. Denzin 
& Y.S. Lincoln (Eds.), Handbook of qualitative research.  

 

18th Annual Conference on Research in Undergraduate Mathematics Education 50618th Annual Conference on Research in Undergraduate Mathematics Education 506



 
 

INSTRUCTIONAL SEQUENCE FOR MULTIDIGIT MULTIPLICATION  
IN BASE FIVE 

 
In this poster I describe an instructional sequence for supporting the guided reinvention of 
multidigit multiplication in a preservice teacher content course.  I use design heuristics from 
Realistic Mathematics Education (Gravemeijer, 1998) to design, test, and modify an 
instructional sequence leveraging the non-routine context of base five. 
 
Key words: Multiplication, Alternate bases, Preservice teachers 
 

My poster presents research on a design experiment for teaching multidigit multiplication 
in a preservice teacher content course.  The design experiment resulted in an instructional 
sequence focused on an innovative way to approach the routine topic of multiplication of 
multidigit numbers using base five.  
Problem of practice: Motivating preservice teachers 

When working with preservice elementary teachers (PSTs), one of the biggest challenges 
is that PSTs tend to have procedural fluency with elementary mathematics but they may not have 
had the opportunity to explore the underlying mathematical concepts and structures.  Research 
shows that because they can solve elementary math problems with memorized algorithms, they 
may not be motivated to learn mathematics at a deeper level ((Philipp et al., 2007; Thanheiser, 
Philipp, Fasteen, Strand, & Mills, 2013).  This challenge has led me to leveraging alternate bases 
as a tool to help PSTs to build a conceptual understanding of place value structure and 
operations.  The instructional sequence (see Figure 1) was built with the design principles of 
guided reinvention, modeling, and didactic phenomenology from Realistic Mathematics 
Education (Gravemeijer, 1998). 
Results and Instructional sequence 
 My research focuses on the development of an instructional sequence which guides PSTs 
to reinvent a generalized algorithm for multidigit multiplication.   The PSTs begin with problems 
that are small enough to be solved with repeated addition (see Tasks 1 and 2 in Figure 1).  As the 
problems get larger (see Tasks 3 and 4), the context of area becomes both a model of 
multiplication and a tool for creating a general strategy for solving multidigit multiplication 
problems.  For the 4th task in the sequence, the PSTs are asked to create a general strategy which 
would allow them to find the area of any base five rectangle. 

 
Figure 1.  Instructional sequence for reinvention of multidigit multiplication.   
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 The initial strategies generated by PSTs become the subject of further discussions and 
explanations as those strategies are shared, tested, and revised.  As the PSTs engage in the 
construction of more and more efficient strategies, they are able to take ownership of their 
knowledge of multidigit multiplication and to reflect on their learning process.  The reinvention 
process not only helps PSTs to build a conceptual understanding of the mathematics, but also 
helps them to reimagine what it looks like to teach mathematics as a sense making subject rather 
than a series of predetermined procedures. 
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INTEGRATED MATHEMATICS AND SCIENCE KNOWLEDGE FOR TEACHING 
FRAMEWORK: KNOWLEDGE USED IN TEACHING APPLIED DERIVATIVE 

PROBLEMS 
     

Shawn Firouzian   Natasha Speer 
San Diego State University  University of Maine 

 
Previous studies have indicated that effective teaching relies on teachers’ knowledge of both 
student thinking and subject content. Very little is known about the integration (combination) of 
teachers’ mathematical knowledge and science knowledge for teaching important topics like 
applied derivative problems. Using Ball and colleagues’ framework for Mathematical 
Knowledge for Teaching (MKT), data were analyzed from interviews of eight calculus Graduate 
Teaching Assistants (GTAs) to examine the kind of knowledge used when talking about teaching 
applied derivative problems. Findings suggest that some of the domains of the existing MKT 
framework describe the kinds of knowledge GTAs draw on. However, not all elements of 
knowledge these GTAs used when discussing applied problems fit the MKT framework. 
Modifications to the framework are proposed to describe teachers’ Integrated Mathematics and 
Science Knowledge for Teaching. 
 
Keywords: Teacher Knowledge, Mathematical Knowledge for Teaching, Calculus, Applications 
in Calculus 

Introduction 
 
At elementary and secondary levels, the mathematics education and science education 

communities have independently witnessed that students’ achievement is influenced by teachers’ 
pedagogical content knowledge and subject matter knowledge of the science and mathematics 
they teach (Ball, Lubienski, & Mewborn, 2001; Carpenter & Fennema, 1988; Magnusson, 
Krajcik, & Borko, 1999). Researchers have documented that elementary and secondary school 
teachers with richer knowledge of typical student difficulties and strategies create richer learning 
opportunities for their students (e.g., Carpenter, Fennema, Peterson, Chiang, & Loef, 1989). In 
this study, drawing on existing research findings, we analyzed the kind of knowledge teachers of 
undergraduate mathematics draw on when talking about applied calculus topics, in particular, 
applied derivative problems. Knowing more about the knowledge needed in this teaching 
situation can inform the design of professional development for instructors so they can better 
assist their students as they learn applications of calculus. 
 
National Context and the Role of Calculus 

The 2012 report of the United States President’s Council of Advisors on Science and 
Technology (PCAST) issued an urgent need to produce one million additional college graduates 
with degrees in Science, Technology, Engineering, and Mathematics (STEM) fields. Concerns 
about student achievement in STEM have been prompted by assessments such as the National 
Assessment of Educational Progress (NAEP) and the Trends in International Mathematics and 
Science Study (TIMSS). The Congressional Research Service issued a report pointing out the 
areas of concern in STEM education including “U.S. student performance on international 
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mathematics and science tests… global STEM education attainment, U.S. STEM teacher quality, 
and the U.S. STEM labor supply” (Gonzalez & Kuenzi, 2012, p. 12). 

Calculus is considered a “gatekeeper” course for STEM fields (Moore, 2005). Several 
researchers have shown that students’ success or failure in STEM majors and careers correlates 
with their performance in calculus (Bundy, LeBold, & Bjedov, 1998; Burton, 1989; Thomasian, 
2011; Tyson, 2011). The importance of calculus can also be shown by its applications in 
different disciplines (Adler, 1997; Cullen, 1983; Goldstein, Lay, & Schneider, 2004). These 
applications not only provide students opportunities to develop their conceptual understanding of 
calculus but they also provide a context for deeper understanding of calculus ideas (Bressoud, 
1991; Brooks & Brooks, 1993; Schwalbach and Dosemage, 2000; White & Mitchelmore, 1996).   

Among topics covered in mainstream calculus classes, derivative and applications of the 
derivative are key ideas. Understanding these key ideas is fundamental for learning calculus. If 
students understand these important concepts, they are better prepared to learn future topics of 
calculus or calculus applications in other disciplines (National Council of Teachers of 
Mathematics, 2000).   

Students’ difficulties with applied derivative problems have been well documented 
(Çetin, 2009; Marrongelle, 2004; Moore & Carlson, 2012; White & Mitchelmore, 1996). They 
have issues with defining necessary variables for the unknown in the question, then they face 
difficulties constructing the necessary equation, and even if they get the equation correct, they 
have a hard time applying the necessary calculus. Finally, once they get the calculus correct, 
most of the time students cannot translate the answer back into the context of the question, using 
proper units, etc. 

 
The Role of Interdisciplinary Curricula and the Need for Research on Teachers’ Knowledge 

In order to overcome the challenges discussed above, the remedy proposed by PCAST 
and supported by the American Mathematical Society, was a powerful “collaborative coalition” 
between different disciplines in order to achieve the PCAST goals (Jackson, 2012). In addition, 
during the last decades of the twentieth century, there was increased development of 
interdisciplinary curricula (Berlin, 1990). These deliberate efforts to offer interdisciplinary 
courses and programs are aiming “to broaden local knowledge of the specific fields with the 
integration of knowledge and applications of the other fields” (Ferrini-Mundy & Güçler, 2009, p. 
64).  

Teachers play a central role in students’ success. At elementary and secondary levels, the 
mathematics education and science education communities have independently witnessed that 
students’ achievement depends on teachers’ pedagogical content knowledge and subject matter 
knowledge of the science and mathematics they teach (Ball, Lubienski, & Mewborn, 2001; 
Carpenter & Fennema, 1988; Davis & Smithey, 2009; Magnusson, Krajcik, & Borko, 1999; 
Shulman, 1986). Researchers have documented that elementary and secondary school teachers 
with richer knowledge of typical student difficulties and strategies create richer learning 
opportunities for their students (Carpenter, Fennema, Peterson, & Carey, 1988; Carpenter, 
Fennema, Peterson, Chiang, & Loef, 1989). It has been also been shown that a lack of adequate 
content knowledge can become a barrier to integrated approaches to instruction (Berlin & Lee, 
2005; Stinson, Harkness, Meyer, & Stallworth, 2009). 

It is contended that the findings at K-12 levels are “likely to be true at the collegiate level 
and that the practices of collegiate teachers are worthy and fruitful targets of research” (Speer, 
Smith, & Horvath, 2010). However, researchers have cautioned using models of K-12 teachers’ 
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mathematical knowledge for teaching to describe collegiate-level teachers’ knowledge without 
also, simultaneously, examining how well the models actually fit that population of teachers 
(Speer, King, & Howell, 2014).     

 
Research Questions 

If one approach to improving STEM education includes the use of more interdisciplinary 
curricula and if teaching effectiveness is influenced by teachers’ knowledge, then it stands to 
reason that the success of these interdisciplinary approaches will be influenced by what the 
mathematics education research community knows about the knowledge teachers use and need to 
use when using interdisciplinary tasks with their students. In addition, it will be valuable for the 
mathematics education community to examine the extent to which this kind of knowledge for 
teaching fits into existing models used to characterize knowledge needed for teaching given that 
these frameworks were developed primarily to describe knowledge needed for teaching non-
applied content. To that end, in this work we carry out an exploratory project to begin to address 
the following research questions: 

1. What kind of knowledge do instructors draw on when using applied derivative problems?  
2. Can the existing model of mathematical knowledge for teaching describe instructors’ 

knowledge for teaching applied derivative problems? 
3. If not, what should we do? Can we adapt/modify the MKT framework to accommodate 

such knowledge? 
We examined these questions by gathering data on knowledge used by college mathematics 
instructors as they discussed student thinking about applied derivative problems and trying to use 
an existing framework for MKT to characterize that knowledge. We identified knowledge that 
did and did not fit the definitions for knowledge categories in the MKT framework. We share our 
characterization of the knowledge that did not easily fit into the framework and share our 
thoughts on modifying or expanding the existing MKT framework in ways that would 
accommodate our findings.  

 Understanding more about the nature of knowledge teachers need to use applied 
derivative problems can inform the design of professional development for college teachers and 
this kind of exploration into the constraints and affordances of existing models for knowledge 
can strengthen the theory of mathematical knowledge for teaching. 

Existing Model of Teachers’ Mathematical Knowledge for Teaching 
 

Although the specific boundaries and names of categories vary across publications, in 
this research we use one of the most widely-cited frameworks for characterizing knowledge used 
in teaching mathematics. Ball, Thames, & Phelps’ (2008) model (see Figure 1) was produced by 
modifying the original categories defined by Shulman (1986) in order to more completely 
describe the knowledge teachers use in teaching. 
 
Figure 1. Ball and colleagues’ framework for Mathematical Knowledge for Teaching  
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As defined by Ball and colleagues, the mathematical knowledge known in common with 
others who know and use mathematics (in this case calculus) is called common content 
knowledge (CCK). For instance, if an instructor says “instantaneous rate of change” is a way of 
thinking about the derivative, this is the knowledge we would expect of a student in a calculus 
class. Therefore this knowledge is defined as part of instructor CCK.   

Ball and colleagues defined Knowledge of Content and Students (KCS) as the kind of 
knowledge teachers draw on when they need to know and predict what subjects or concepts 
students likely find interesting and motivating or to know their level of difficulties with those 
topics. Examples of KCS in the context of calculus include a teacher knowing that concepts 
related to limit are especially challenging for students, computations that make use of the Chain 
Rule can be difficult for some students, and Related Rates problems can pose many, complex 
issues for students. Knowledge of Content and Curriculum (KCC) relates to knowledge of the 
curriculum being taught in other classes or other subject areas. For instance, KCC in the context 
of calculus includes a teacher knowing about the concepts covered in other science classes 
(chemistry, physics, biology, etc.) that are applicable to the mathematics.  

The definition of Specialized Content Knowledge (SCK) provided by Ball and colleagues 
is the kind of knowledge used when looking for mathematical patterns in student errors, 
identifying and validating the mathematical correctness of student work, etc. For instance when 
“looking for patterns in student errors or in sizing up whether a nonstandard approach would 
work in general,” or identifying the mathematical corrections of students’ work, teachers do 
work that involves an “uncanny kind of unpacking of mathematics that is not needed – or even 
desirable– in settings other than teaching” (Ball et al., 2008, p. 400). For instance, calculus 
teachers utilize SCK when they examine (possibly unfamiliar-looking) written work on an exam 
to determine whether the method the student used to get the answer is mathematically valid.  

 
Research Design 

Participants and Setting 
Participants were eight graduate student teaching assistants (GTAs), all enrolled in a 

mathematics masters degree program in a university in the northeastern United States. As 
pseudonyms, Greek letters are used. The GTAs all were either currently teaching differential 
(first semester) calculus or had taught it in the past. The amount of teaching experience they had 
ranged from less than one semester to more than four semesters.  

Data Collection Methods 
Semi-structured, task-based clinical interviews (Hunting, 1997) were conducted. The 

interview tasks were based on previous and ongoing work on students’ difficulties and 
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understanding of applied derivative problems (Ferrini-Mundy & Graham, 1994; Firouzian, 2013; 
White & Mitchelmore, 1996; Zandieh, 2000). Using these tasks, we designed an interview 
protocol (modeled after Frank & Speer, 2012) to target possible domains of knowledge teachers 
may use for teaching derivative and applied derivative problems. Figure 2 shows one of the tasks 
used in the interviews.   
 
Cowboy Clint wants to build a dirt road from his ranch to the highway so that he can drive to the 
city in the shortest amount of time (Figure below). The perpendicular distance from the ranch to 
the highway is 3 km, and the city is located 9 km down the highway. Where should Clint join the 
dirt road to the highway if the speed limit is 80 kph on the dirt road and 100 kph on the 
highway?   

 
Figure 2. One of the tasks for which interviewees were asked to solve and discuss students’ ideas 
and difficulties (adapted from Rogawski, 2011). 
 

For each of several tasks presented during the interviews, GTAs were asked to solve the 
task, to discuss possible student difficulties with the task, and to examine samples of student 
work on the task that illustrated known difficulties students have with such tasks. Specific 
interview questions included: 

• Why would someone who is not a mathematics major care about the concept of 
derivative? Can you come up with specific applied derivative questions in other 
disciplines or in a real-world situation? How would you teach or present the concepts to 
students?  

• How would you solve the problems? 
• What do you think the students’ typical difficulties are with the above question?   
• [Given sample student work, not similar to the difficulties they mentioned already, they 

were then asked:] Please explain what the students are thinking based on their answers.  

Data Analysis Methods 
Interviews were transcribed and GTAs’ knowledge of students’ thinking and difficulties 

about applied derivative problems were compared to that found in existing research. To analyze 
the kind of knowledge the interviewees drew on, first existing domains of teachers’ knowledge 
for teaching (Figure 1) were used to categorize the knowledge. Grounded Theory (Strauss & 
Corbin, 1990) and the findings from existing research on students’ difficulties and thinking about 
applied derivative problems were used to identify themes in the kinds of knowledge displayed by 
GTAs (both within categories that fit the MKT framework and among instances where the 
knowledge displayed was not easily categorized with the MKT framework). 
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Findings 
 

We found that we could use the MKT framework to describe some of our data but there 
were several instances where the MKT categories did not seem to fit our data. In this section, 
first we discuss a few examples of when the MKT framework fit our data and then we discuss 
instances when we encountered difficulties utilizing the MKT framework to characterize the 
knowledge displayed by the GTAs. We provide fine-grained analysis of excerpts of interviews as 
support for our claims about the fit and lack-of-fit of our data to the MKT framework.  

Examples of Our Data Fitting the MKT Framework 
Based on our analysis, we found examples of knowledge displayed by the GTAs that fit 

the definitions of various MKT domains including the categories of common content knowledge, 
knowledge of content and students, and knowledge of content and curriculum.  

Common Content Knowledge. GTA Delta was asked how he would explain to someone 
what the derivative of a function means. He talked about “instantaneous rate of change” as a way 
of thinking about the derivative and incorporated that into his explanation. This is a description 
of the derivative that is routinely found in textbooks and other curricular materials. Therefore, it 
fits the definition of Common Content Knowledge as being the mathematical knowledge known 
in common with others who know and use mathematics.  

Knowledge of Content and Students. GTA Pi was asked to solve the optimization 
problem given in Figure 2. Once she was done, she was asked to describe potential difficulties 
students might have with this problem. She talked about students’ difficulties with optimization 
problems as two problems: “one is setting up the time and one is finding the min[imum]. If we 
don’t give the x they might have difficulty. They don’t know how to set up the variable.” This is 
an example of knowing what ideas are difficult for students and thus fits into the MKT 
framework category of Knowledge of Content and Students.   

Knowledge of Content and Curriculum. GTA Theta was asked why someone who is 
not a mathematics major would care about the concept of the derivative. He replied: 

If they are economics or business [majors] they are going to talk about marginal rate at 
which profit or GDP…if they are in engineering they are going to talk about position and 
velocity. If they are in biology they are going to talk about population and growth, in 
chemistry they are going to talk about heating and cooling and in chemical reactions, in 
physics they are going to talk about position and velocity…  

In this discussion GTA Theta is drawing on his knowledge of other subjects in the undergraduate 
curriculum to come up with applications of the derivative in fields outside of mathematics. The 
knowledge that Theta displayed of the curriculum being taught in other classes or other subject 
areas fits the definitions of Knowledge of Content and Curriculum as used in the MKT 
framework.  

We also identified examples of GTAs’ drawing on elements of Specialized Content 
Knowledge and Knowledge of Content and Teaching. However, there were also instances where 
our data did not appear to fit the MKT framework definitions for categories of knowledge. 
Several of these instances are discussed next. 

Examples of When Our Data Did Not Fit the MKT Framework 
There were multiple instances of knowledge displayed by the GTAs that did not clearly 

fit the definition of a category in the MKT framework. Here we focus in particular on instances 
where GTAs appeared to make use of knowledge of science content and/or knowledge of how 
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students think about science. Although it seems quite natural that these kinds of knowledge 
would be used in the teaching of calculus when the problems involve the application of calculus 
ideas to science, nonetheless, the categories in the MKT framework seem not to be defined in 
ways that can accommodate these kinds of knowledge. Here will illustrate this claim with a few 
examples.  

Example 1: Knowledge of Students’ Difficulties with Physics and Knowledge of 
Physics Content. GTA Theta had just solved the optimization problem shown in Figure 2 and 
was asked what he thought students’ typical difficulties might be with this problem. He talked 
about their difficulties with variables and setting up the equation. This knowledge fits well with 
the definition of Knowledge of Content and Students in the MKT framework. He was then asked 
to analyze a sample of student work (shown in Figure 3). 

 
Figure 3. Sample student work where the student set up an incorrect equation by using an 
incorrect velocity formula 

 
 As we can see in the Figure 3, this student struggled with the speed formula and this led 
him/her to construct an incorrect equation. While GTA Theta was trying to make sense of the 
student’s written work, the following conversation took place: 

Theta: It is not as simple, they parameterize x, they also don’t divide by the rate. They 
should have divided by the rate instead of multiplied. So instead of dividing they are 
still trying to minimize the distance when they should be trying to minimize the 
time…Yeah so that is the mistake. If they were trying to minimize the distance they 
did a great job.  

Interviewer: So their difficulty is coming from their understanding of the distance, time 
and the velocity? 

Theta: Yeah and that is just a set-up thing right? Like I said they should have had that 
process in mind where they set up a function, they differentiate the function and find 
the critical point.  

Interviewer: But they setup the function correctly in a way. 
Theta: They set up the function incorrectly for what they are looking for so they misread 

the model.  
Interviewer: Correct but they had the wrong equation because they didn’t know the math 

part of it or could it be with the physics? 
Theta: The physical application. They didn’t know that they were looking for time not 

distance. 
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 GTA Theta figured out that the student was having a hard time setting up the equation. 
This can be characterized as knowledge of a general difficulty because it involves defining 
variables and constructing the relationship between them and therefore fits the MKT category of 
Knowledge of Content and Students. For these elements of knowledge, the MKT framework 
worked well to analyze and characterize the kind of knowledge this GTA displayed.  
 The existing framework, however, does not easily accommodate the kind of knowledge 
this GTA displayed when narrowing down the student’s difficulty to a difficulty with the science 
concept of velocity or speed. The last few lines of the conversation above seem to show the 
GTA’s knowledge of the physics formula applied in the problem. We hypothesize that GTA 
Theta drew on his Knowledge of Content and Curriculum in order to figure out that the student’s 
knowledge of physics might be relevant to the problem. However, then GTA Theta states a 
particular difficulty with the ideas that could come from a student’s under-developed 
understanding of the relationships among distance, time and velocity. Recognizing that this may 
be a factor in the students thinking seems to demand both knowledge of the specific physics 
content and knowledge of particular difficulties students may have with physics.  
 Example 2: Knowledge of Students’ Difficulties with Physics and Knowledge of 
Physics Content. In another case, GTA Alpha was asked what she thought students’ typical 
difficulties would be with an applied problem similar to that shown in Figure 2. The following 
conversation took place: 

GTA Alpha: The first step. Finding the function.  
Interviewer: Which part of it is difficult though? 
GTA Alpha: Maybe they have a problem finding the length? 
Interviewer: What do you mean finding? Like calculating?  
GTA Alpha: Yes. Calculating the length, like using [the] Pythagorean [Theorem].  
 
The MKT framework fit this part of our data quite well. GTA Alpha drew on her 

Knowledge of Content and Students in order to list some typical difficulties such as using 
formulas for calculating values. What she said next about students’ difficulties with the problem 
shown in Figure 2 could not be categorized as easily: 

Sometimes they [students] would be confused about which part the speed is. Sometimes 
they say this part, the speed is 100 [pointing to the dirt road] and that side is 80 [referring 
to the highway]. So from my experience this part is the most difficult part…a few of 
them would have [a] problem finding the T’ but most of them can do the T’ correctly if 
they have the function. They have this function, they would do the T’ correctly. Another 
problem is when they set T’ equal to zero they need to solve for x and that is another 
problem, solving the equation. 

  The first few lines of the quote above show the GTA’s knowledge of students’ difficulties 
with the formula for speed as it is being applied in the calculus problem. We propose that GTA 
Alpha displayed both knowledge of the particular physics in the problem and knowledge of how 
students think about such ideas. She recognized that the relevant physics concept was speed and 
then stated that students might have an especially difficult time determining how speed is 
represented in the problem. This kind of analysis seems to demand both knowledge of science 
content and knowledge of students’ difficulties with science.  

Example 3: Science Common Content Knowledge. In another instance, GTA Gamma 
was asked to discuss the underlying ideas and concepts students need to know in order to solve 
applied derivative problems successfully. She had provided an example of an applied derivative 
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problem in physics so we asked her what she thought the underlying concepts and ideas are that 
students need to know related to those kinds of problems. The following conversation occurred: 

GTA Gamma: They need to know where the velocity is. 
Interviewer: Would that be a math thing or would that be a physics thing? 
GTA Gamma: It’d be a physics thing. For biology, it is not that they need to know the 
hard biology stuff. They just need to know that bacteria multiplies, creating more 
bacteria.  

The MKT framework did not seem to easily fit these data. GTA Gamma talked about the science 
concepts underlying the applied derivative problem and none of the domains of the MKT 
framework can be easily used to characterize the kind of knowledge GTA Gamma displayed. We 
hypothesize that she drew on her Knowledge of Content and Curriculum in order to identify the 
applications of calculus in other sciences. She then drew on her common content knowledge in 
physics or biology in order to describe the specific concepts where the derivative can be applied.   
Similar responses were witnessed in other interviews as well.  

Example 4: Horizon Content Knowledge in Science. GTA Alpha was asked why 
someone who is not a mathematics major would care about the concept of derivative or where 
she thought the concept of derivative might be used. GTA Alpha responded: “I always think 
biology has a lot of relationships with mathematics because like well, I don’t think they need to 
use any math when they are undergraduate but when they want to go to graduate school, math 
becomes very important for them.” The knowledge GTA Alpha displays in this statement does 
not fit easily into categories in the MKT framework. She spoke about the application of 
mathematics in other parts of undergraduate and graduate curricula, in biology in particular.  The 
fact that she was making connection between calculus and other sciences shows that she drew on 
her Knowledge of Content and Curriculum. However, the MKT framework falls short in 
explaining her knowledge of the biology undergraduate curriculum. We hypothesize that she 
drew on a type of knowledge that might be characterized as “horizon content knowledge in the 
sciences.”  

 
Discussion, Conclusions and Implications 

For the purposes of informing the design of professional development, and for theory-
building efforts, it seems important that the mathematics education research community continue 
to examine and refine frameworks used to characterize teacher knowledge. In an effort to 
contribute to those goals, we analyzed the knowledge displayed by instructors while they 
discussed problems that are part of the typical calculus curriculum but differ from the type at 
play most commonly in such research. In particular, we found that when asked to engage in 
teaching-related tasks such as examining student work, our GTA participants displayed 
knowledge of science content as well as knowledge of particular ways that students think about 
science content.  

Given the importance of interdisciplinary and applied problems in the STEM curriculum, 
it seems likely that the education community would benefit from having frameworks that 
characterized the knowledge needed in this kind of teaching. The findings raise the question of 
how best to proceed with theory development. One approach would be to augment the 
definitions of components of MKT so they also include the science-related knowledge relevant 
to the teaching of mathematics. Or we may need a different kind of framework to fully 
characterize this knowledge. Determining which approach is best-suited to the community’s 
needs will require additional research and theory-testing. In the next section, we share some 
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preliminary thoughts about theoretical constructs that may be useful as we and others work in 
this area.  

 
Potential Connections to Other Theoretical Constructs 

As we discussed in the findings, GTAs drew on multiple domains of their mathematical 
knowledge in order to discuss the applied derivative problems and students’ difficulties with 
them. Sherin (2002) described how connections and negotiations between different aspects of 
teachers’ knowledge enable them to deal with different components of teaching both in terms of 
knowledge and pedagogy. We witnessed similar connectivity and negotiation between GTAs’ 
domains of MKT. As shown in some of the instances discussed above, GTAs displayed 
knowledge from multiple domains of MKT while working to make sense of student work.  

Another theory-related idea that may turn out to be useful in this work is that of a 
“knowledge package.” Ma (1999) defined knowledge package as a collection of conceptual and 
procedural ideas related to the understanding and teaching of a topic. Perhaps one approach to 
characterizing the knowledge displayed by these instructors would by defining a knowledge 
package that contains elements of MKT and knowledge of science or student thinking about 
science. For example, in GTA Alpha’s responses to the interview questions, we saw evidence of 
her Knowledge of Content and Curriculum and perhaps that category could be reconceived as a 
knowledge package consisting of her knowledge of calculus application in other sciences and 
also her knowledge of undergraduate curriculum in biology. That would account for the elements 
of knowledge she appeared to draw on when doing this particular kind of teaching-related work 
in the context of applied calculus problems.  

The existing research in science PCK includes knowledge of students’ difficulties with 
science concepts (Magnusson, Krajcik, & Borko, 1999). We propose that teachers’ knowledge 
for teaching can perhaps include elements of MKT and science knowledge for teaching while 
teaching applied problems. Several researchers and practitioners defined integrated knowledge as 
a blending of science and mathematics content knowledge such that the separate parts are not 
discernible (Czermiak, Weber, Sandman, & Ahern, 1999; Lederman and Niess, 1997). Perhaps it 
is the case that GTAs such GTA Theta, draw on their integrated knowledge of mathematics and 
sciences in describing students’ difficulties with the applied problems or teaching those topics.  

Directions for Future Research and Implications for Instruction  
To explore the nature of science knowledge, instructors draw on when talking about 

teaching applied problem, additional studies are called for. One potentially useful approach for 
further exploration of theory would be to conduct interviews with science instructors as they 
consider problems that involve their particular science discipline. Then comparisons could be 
made of the knowledge they display with the knowledge displayed by the mathematics GTAs in 
our sample. Such comparisons and potential distinctions may help shed light into the nature of 
these kinds of integrated mathematical and science knowledge for teaching.  

We suggest incorporating applied problems into “examining student work” activities for 
instructor professional development. Providing novice (or experienced) instructors with 
opportunities to consider the kinds of problems and student thinking they will encounter as their 
students tackle applied problems could create opportunities for them to learn how students think 
about such ideas, what common difficulties are and what productive strategies they are apt to 
witness in their students’ work. It has also been shown that a lack of adequate content knowledge 
can become a barrier to integrated approaches to instruction (Berlin & Lee, 2005; Stinson & 
Harkness, 2009). Perhaps in professional development instructors could also have opportunities 
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to engage with content-specific activities that would create opportunities for them to refresh or 
deepen their knowledge of the non-mathematics content they may need when teaching applied 
calculus problems. Such learning opportunities might enhance instructors’ capacities to 
understand the curriculum and support their students learning  

Taken together, efforts to further document and characterize the knowledge needed when 
utilizing applied problems in instruction can help improve student learning of both mathematics 
and other STEM disciplines. Such improvements may, in turn, improve both student enjoyment 
of and persistence in STEM majors and careers.  
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Students’ conceptions of rational functions 
 

Nicholas Fortune    Derek Williams 
North Carolina State University  North Carolina State University 

 
Abstract 

Mathematics education research on dynamic technologies incorporated into learning 
environments indicates that they possess the ability to enrich students’ mathematical conceptual 
understanding. This study explores how three community college students conceptualize rational 
functions by classifying their mathematical thinking according to the APOS theory. This study 
highlighted students’ conceptualization of rational functions as actions (required sequences of 
observable external steps), processes (sequences with no need to externalize), and objects 
(thinking about rational functions as a single object or entity). 

Keywords: Rational functions; APOS; conceptions 
 

Purpose 
 A large percent of students at the university level begin their mathematics education with 
pre-calculus, a course that includes the study of complex functions. There is a lack of research 
about how students come to understand those complex functions; rational functions in particular. 
In this poster, the authors use dynamic software as a tool to help support and classify community 
college students’ conceptions of rational functions as actions, processes, and objects according to 
the APOS theory (see Breidenbach, Dubinsky, Hawks, & Nichols, 1992; Dubinsky & Harel, 
1992; Dubinsky, 1991). 

Theoretical Framework 
It is anticipated that students will display various stages of mathematical understanding of 

the construction and composition of rational functions. APOS theory, as defined by Dubinsky 
and colleagues, is appropriate to help researchers understand the students’ conception 
development in the form of action, process, objects, or schema (see Breidenbach, Dubinsky, 
Hawks, & Nichols, 1992; Dubinsky & Harel, 1992; Dubinsky, 1991). In this case, the authors 
have found that APOS theory may define students’ conceptualizations of rational functions as 
actions (required sequences of observable external steps), processes (sequences with no need to 
externalize), objects (internalizing rational functions as a single object or entity), or schema (full 
understanding and containment of all objectified forms of rational functions). 

Methodology 
 This mini-study is part of a larger unpublished study where one of the authors conducted 
research with three students from a local community college, two male and one female; all had 
little background in rational functions prior to the interviews. In that research, students were first 
introduced to GeoGebra (Hohenwarter, 2002) files and were provided information on how to use 
the software for their explorations. Within each exploration, students made conjectures about 
different parameters of rational functions. To end each session, students participated in an 
assessment game where they could test their knowledge obtained while investigating. Following 
the sessions students were given a summative post-test by the interviewer.  Further, some items 
on the post-test were used as tasks in clinical interviews.  The present study focuses on responses 
from one question on the post-test and the corresponding portion of the interviews. The 
particular question is as follows: 
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Give an example of a rational function that has a hole at ! = !−2, vertical asymptote at 
! = 3, and has zeros at ! = 1, 2,−5.  Explain how you know that these conditions have 
been met. 

This question was chosen for this mini-study for a variety of reasons. First, this is a summative 
question that includes topics from all of the sessions about the construction and composition of 
rational functions. Additionally, this is an open-ended question with a justification component 
and thus has the ability to illustrate students’ conceptions of rational functions as actions, 
processes, or objects.  

Results and Discussion 
 Results from this study indicate that not all students conceptualize rational functions the 
same. Each of the three student’s response to the interview question was coded differently as 
showing an action, process, or object conception of rational functions. The results presented will 
include examples of evidence discovered from this study, a brief summary of students’ 
conceptions of rational functions, and a claim for the need of a larger study of this nature to 
future develop implications for teaching rational functions at the collegiate level. 
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Public versus private mathematical activity as evaluated through the lens of examples 

Tim Fukawa-Connelly 
Drexel University 

 
Lecture has often been critiqued as obscuring the mathematical habits such as sense-making 
about abstract statements about mathematical concepts, the creation of conjectures about those 
concepts, and to the processes of proof-writing and exhibition of counter-examples. In all of 
these actions, a mathematician or student should be able to draw upon a rich store of examples 
in order to make meaningful progress and researchers have argued that it is via examples that 
they are best able to engage in such processes. Inquiry-based classes have, as part of their 
promise, making more visible the mathematical promises that lecture obscures behind the 
polished formalism. This preliminary report explores whether and how students in an inquiry-
based abstract algebra class engage in public example-based reasoning as a means to explore 
public versus private mathematizing. 
 
Keywords: example-based reasoning, public vs. private mathematizing, opportunity to learn, 
mathematical processes 
 

Many researchers argue that lecture-based mathematics instruction is intimidating and 
misleading to students about the nature of mathematics, especially in proof-based courses 
(Cuoco, 2001; Thurston, 1986). Some contend that it hides much of the process used in 
mathematical thinking and makes it difficult for students to develop an appreciation for the 
discipline (Dreyfus, 1991). One goal of ongoing efforts in mathematics education has been to 
develop interventions that change undergraduate teaching practices, and, there are a growing 
number of inquiry-based classes across the undergraduate spectrum.  Yet, only a few such 
courses have been described in the literature (c.f., Cook, 2014; Larsen, 2013; Dubinksky & 
Leron, 1997), and, those descriptions are more likely to focus on how students come to 
understand a particular piece of content than how they experience mathematical processes.  
Larsen and Zandieh’s (2008) piece is a notable exception, although, it was describing the results 
of a teaching experiment with only a pair of students, based on available literature it appears that 
students in Larsen’s (2013) curriculum have a similar experience creating the definition of group.  

The pedagogical importance of examples 
Examples are believed to be very important in developing conceptual understanding of 

mathematical ideas (Mason & Watson, 2008; Vinner, 1991).  Examples give insight into 
mathematical definitions, theorems and proofs, and can be used to create them, as well (Cuoco, 
Goldenberg and Mark, 1996; Lakatos, 1976). Several studies have focused on student 
exemplification and the use of examples to learn about concepts and proving (Alcock & Inglis, 
2008; Dahlberg & Housman, 1997; Mason & Watson, 2008). As yet, there are no studies of 
instructors’ teaching with examples in undergraduate proof-based mathematics courses. Studying 
teaching is by nature a difficult process and little empirical research has described and analyzed 
the practices of teachers of mathematics at the undergraduate level despite repeated calls for this 
type of study (Harel & Sowder, 2007; Harel & Fuller, 2009, Speer, et al. 2010).  As a result, this 
study addresses the following questions: 

• How do students in an IBL class engage in public mathematical-reasoning?  Here, public 
is taken to be whole-class discussion, while I call small-group-work semi-private. 
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• How do students reason with and about examples as tools for exploring and making 
evident mathematical processes? 

The theoretical orientation for this study is a version of social constructivism referred to as the 
emergent perspective (Cobb & Bauersfeld, 1995; Cobb & Yackel, 1996). Within this research 
tradition, the study draws upon ideas primarily from the social perspective. “The social 
perspective indicated is concerned with ways of acting, reasoning, and arguing that are 
normative in a classroom community” (Cobb, Stephan, McClain, & Gravemeijer, 2001, p. 118). 
Here, an individual’s reasoning is understood as the action of participating in the classroom 
normative activities. When the classroom is the focus of study, the norms and processes are 
understood to be emergent and under negotiation by the students and teacher throughout the 
course of a semester rather than understanding the students being inducted into the existing 
community of mathematicians (Cobb et al., 2001). Sociomathematical norms refer to classroom 
practices that are specific to the discipline of mathematics, such as what constitutes a proof or a 
good explanation (Rasmussen & Stephan, 2008; Stephan et al., 2003; Yackel & Cobb, 1996). 
Yackel and Cobb (1996) claimed that students develop beliefs and values, specific to 
mathematics. Further, the negotiation of some sociomathematical norms may lead students to act 
more autonomously when doing mathematics. 
 

Methodology 
 The setting was a first semester abstract algebra course at a PhD granting university in 
the US.  The instructor had previously taught abstract algebra and was committed to a non-
traditional pedagogy that he alternatively described as inquiry-based learning course.  The 
professor had collected some notes from other abstract algebra classes and had substantially 
modified them, these formed the basis of the students’ daily activities and consisted of 
expository text as well as exercises and problems for students to work. On a daily basis the 
students were seated in groups of four and in every class meeting there was time that they 
worked on mathematical tasks, presented at the board, and the professor lead whole-class 
discussions. The course met for 75 minutes three days per week and students were responsible 
for daily homework, only some of which was to be submitted for a grade. All class meetings 
were video recoded by a graduate student in mathematics education who took notes about the 
class.  In the first few days, some small-group data was lost due to issues with a microphone. 

Transana was used to code all incidents where an example or non-example was shown, 
constructed or analyzed in class.  We created an example log (including non-examples), similar 
to Stephan and Rasmussen’s (2008) argument log, characterizing each in four columns.   

• Column 1: each example or non-example of the particular construct (in this case, an 
algebraic group).   

• Column 2: counts the number of class meetings since the formal definition of a group (a 
written homework assignment was coded as occurring on the day that it was assigned).   

• Column 3: description of the qualities of the example or non-example.  In the case of 
examples, the third column described any additional qualities that the example possessed 
from a list that would be known to first semester algebra students by the midpoint of the 
semester (e.g., being a commutative group, a finite group, or a cyclic group).  In the case 
of non-examples we described any properties of the construct that were missing as well 
as additional properties that the non-example possessed from the list above.   

• Column 4: description of the manner in which the example or non-example was made 
part of the classroom discourse and what the students were doing with it. 
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Because the focus of this investigation is how students engage in public mathematical reasoning, 
rather than simply seeing the results of such reasoning, and how they use examples to do so, in 
my analysis I first focus on classifying how the examples were included in the class; describing 
whether students were analyzing them or using them as tools for reasoning. When students were 
using analyzing them, I described what they were attempting to come to understand (what 
concept they were analyzing them for).  When they were using examples as tools for 
mathematical reasoning, I coded what the students were attempting to do (or, asked to do).  
Finally, for each use of examples, I described them as semi-private or public, and, then 
aggregated across the examples of public mathematizing and described the range of activities. I 
draw some tentative conclusions about the types of mathematical activities most likely to be 
engaged in publically and, based on that, make some tentative conclusions about the opportunity 
to learn about mathematical activities that the students had.  I argue that the regularity of practice 
constitutes evidence of sociomathematical norms of practice, and, thus, what is appropriate 
mathematical practice to make public. 
 

Preliminary Data and Results 
 The first finding was that most examples discussed by the class were those assigned by 
the professor (via the class notes), and, generally, students were analyzing the examples to 
determine whether they were examples of a particular construct.  This conforms with Fukawa-
Connelly and Newton’s (2014) finding that almost all of the examples students encountered in a 
traditional class were used as examples of a concept or were to be tested to verify that they were.  
That is, most public and semi-private mathematizing via examples was simply about students 
developing understanding, such as the appropriate limits of variation (Fukawa-Connelly & 
Newton, 2014), of a concept that had already been defined, and, most such examples were 
provided by the notes.  There were a number of instances in which the students suggested their 
own candidates for examples of a concept. In all, this use of examples seems to not address the 
critiques of lecture in a meaningful way as it already appears to be common. 
 The students also used examples to make observations about regularities and propose 
new ideas.  There were three primary cases of this; subgroups, isomorphism, and ideals.  In the 
case of subgroups, the students had been analyzing the group !!, and, in doing so, had written 
the operation table on the board.  One student, during whole-class discussion, said, “that looks 
like a group inside the group.”  The professor asked if other students noticed the same thing, and, 
if the same phenomenon appeared in other Cayley tables of the dihedral groups. That is, the 
students appeared to publically move from reasoning about the example (that it, it was a model-
of a particular idea) to using !! as a model-for reasoning generally about mathematics, and, 
doing so in a way that they were reinterpreting a known concept in a new setting, thus, they 
could be seen as operating in the general phase of the reinvention process (Gravemeijer, 1998). 
 There is some, emerging evidence, of students using examples in support of proof-writing 
activities.  In some cases, these were prompted by the professor’s suggestion when he found the 
students struggling with an abstract proof, he suggested working with an example, and, the 
students to whom he suggested that did so attempt it.  The original coding did not always make 
clear how individual groups chose to begin working with an example though, and, there are a 
few points in the data that need to be re-coded, moreover, there is one class period in which the 
original coding of Column 4 is unclear about whether students included example-based 
reasoning in their presentation to the class.  In no instances, with one day left to re-code, were 
students observed to publically engage in mathematical exploration or example-based reasoning, 
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instead, when presenting proofs, they would present their attempt at an analytic proof.  That is, it 
appears that all uses of examples in support of proof-writing were semi-private. More coding is 
needed to explore whether examples are used as counter-examples for any assertions in student 
presentations, thus far, none have been found.  Which, again suggests that only polished proofs 
were presented, and mathematical reasoning was not publically displayed. While there is value in 
semi-private exploration, I argue that whole-class exploration and demonstration of in-progress 
mathematical reasoning has a different value in that it would communicate a different 
understanding of what it means to do mathematics; mathematics is about reasoning as opposed to 
being about results, meaning some of the promise of IBL was not realized. 
 

Questions for Discussion 
1) While we believe this a helpful way of thinking about making mathematical processes 

visible, we wonder if it is too narrow of a lens? 
2) Similarly, is it too time-intensive to be useable in a meaningful way? 
3) Besides glaringly obvious teaching suggestions like, “show more incomplete and 

incorrect reasoning and focus on the process” what potential does this have for affecting 
instruction of either lecture or Inquiry based teaching?  Further research? 

4) What more should we I doing? Look beyond examples?   
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Opportunity*to*learn*the*concept*of*group*in*a*first*class*meeting*on*abstract*algebra*
*

Tim*Fukawa9Connelly*
Drexel*University*

*
This%paper%is%a%case%study%of%the%teaching%of%an%undergraduate%abstract%algebra%
course;%in%particular,%it%examines%the%opportunity%that%the%students%had%during%the%first%
class%meeting%to%learn%about%the%concept%of%a%mathematical%group%and%how%much%
intellectual%responsibility%for%the%definition%they%were%given.%The%paper%offers%a%
description%of%the%classroom%teaching%and%discussion%an%inquiry=oriented%abstract%
algebra%course.%It%focuses%on%the%mathematical%tasks%that%the%professor%used%to%
introduce%the%concept%of%a%group,%the%student%solutions%and%classroom%presentation%of%
those%tasks,%and%the%professor's%activities.%It%analyzes%the%class%in%terms%of%providing%
students%the%opportunity%to%learn%the%concept%of%a%mathematical%group%and%about%the%
mathematical%process%of%defining.%It%also%analyzes%the%professor's%activities%in%terms%of%
devolving%intellectual%responsibility%for%writing%the%definition%of%a%group.%Finally,%the%
analysis%suggests%ways%that%the%professor's%actions%failed%to%devolve%mathematical%
authority%and%limited%opportunities%to%learn.%
*
Keywords:*abstract*algebra,*opportunity*to*learn,*inquiry9based*teaching*
*

The abstract algebra course is an important point in the education of 
undergraduate mathematics majors and secondary mathematics teachers (Committee on 
the Undergraduate Program in Mathematics (CUPM), 1971; Mathematical Association of 
America (MAA), 1990; Conference Board of the Mathematical Sciences (CBMS), 2001). 
In its current incarnation, the abstract algebra course should help students develop 
mastery of the content of groups, rings and fields.  Many researchers would argue that 
there is another (often implicit) content-related learning goal—that the students should be 
improving their algebraic thinking skills such as capturing patterns with symbols and 
(Cuoco, Goldenberg, & Mark, 1996; Smith, 2003). Mathematics education has shown 
that definitions (and thus, the idea of defining) is particularly critical for student’s 
mathematical proficiency (CITES).!Zazlavsky and Shir (2005) have described the 
concept of a mathematical definition via roles and features. They described the features 
as the list of qualities that a definition typically fulfills, including that it is non-
contradicting, unambiguous, invariant under changing representations (for example, from 
symbols to words), non-circular, and, they are commonly asked to be minimal.  They 
described the roles of definition in mathematics as including that they are to convey the 
characterizing properties and introduce the concept (Mariotti & Fischbein, 1997; 
Pimm, 1993), including “capturing the essence of a concept” (p. 317).  Mathematical 
definitions establish the basis for proving and other problem-solving activities (Moore, 
1994; Weber, 2002), and establish a community-wide agreement how to specific a 
concept, and thereby allow for more efficacious mathematical communication. Thus, the 
means by which a prospective course of instruction should be judged is via the success in 
conveying (or, at least giving students the opportunity to learn) the formal definition, the 
essence of the concept, and the ability to then operate on and with, and communicate 
about the concept, these are all known to be difficult for students.  !
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Research!questions:!
This*preliminary*report*will*investigate*the*OtL*about*(a)*groups,*and*(b)*
mathematical*processes*that*students*in*an*IBL*abstract*algebra*class*had.*
 
The Opportunity to Learn 

We align ourselves with Hiebert and Grouws’ (2007) claim that, at minimum, the 
opportunity to learn requires both time on task and topic coverage. By topic coverage, we 
mean the mathematical content that appears in the lecture (as interpreted by expert 
observers of the class).  In the account that follows, we refer to diagrams and 
explanations as “illustrations,” because we believe they illustrate particular aspects of the 
concept of equivalence class. In sum, we describe a collection of illustrations of the 
concept of equivalence class as well as our post-hoc interpretation of how each of the 
illustrations can be understood to indicate particular aspects of the concept of equivalence 
class, the meaning of this concept, and the mathematical content that is available for 
students to learn about this concept. Following Gresalfi, Barnes, and Cross (2011), this 
study takes the position that the opportunity to learn is best understood as “the 
interrelations between the affordances of the designed learning environment” (p. 2) and 
whether and how those affordances are acted upon (Barab et al., 1999; Shaw, Effken, 
Fajen, Garrett, & Morris, 1997). Affordances are the set of actions (including mental 
ones) that are made possible by a particular aspect of the class (Gresalfi, Barnes, & Cross, 
2011).  As Gresfaldi (2009) noted, it is impossible to describe student learning without 
describing the presentation of content students experience, and how teacher actions make 
it accessible. Coupled with the notion of content being ‘present’ is also the notion of 
intellectual responsibility.  
 
Methods!

The*setting*was*a*first*semester*abstract*algebra*course*at*a*PhD*granting*
university*in*the*US.**The*instructor*had*previously*taught*abstract*algebra*and*was*
committed*to*a*non9traditional*pedagogy*that*he*alternatively*described*as*inquiry9
based*learning*course.**On*a*daily*basis*the*students*were*seated*in*groups*of*four*
and*in*every*class*meeting*there*was*time*that*they*worked*on*mathematical*tasks,*
presented*at*the*board,*and*the*professor*lead*whole9class*discussions.*The*course*
met*for*75*minutes*three*days*per*week*and*students*were*responsible*for*daily*
homework,*only*some*of*which*was*to*be*submitted*for*a*grade.*The*particular*
course*meeting*presented*here*is*about*the*definition*and*examples*of*a*group.***

Every*class*meeting*was*video*recorded*and*a*graduate*student*in*
mathematics*education*observed*and*took*notes*about*each*class*meeting.*I*
transcribed*the*recorded*classroom*dialog*on*the*day*that*the*students*developed*
the*definition*of*group.**I*differentiated*between*whole9class*and*small9group*
discussions,*and*noted*everything*written*on*the*board*that*was*linked,*in*
appropriate*places,*to*the*transcript.*The*professor*both*participated*in*interviews*
throughout*the*semester*and*wrote*notes*describing*his*thinking*related*to*the*
content,*pedagogy*and*goals*for*the*class.*I*note*that*in*the*first*few*classes*we*
attempted*to*record*some*student*work*with*a*desktop*microphone*that*we*later*
learned*did*not*work,*and,*thus,*there*are*a*few*missing*pieces*in*the*transcript.***
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As*a*first*pass*through*the*data,*I*attempted*to*interpret*what*content*could*
be*learned*through*the*lecture*from*by*a*mathematically*enculturated*individual,*in*
this*case,*the*author*who*has*a*masters*degree*in*mathematics*and*researches*the*
teaching*and*learning*of*abstract*algebra.*I*first*watched*video*of*the*class,*then,*
created*the*transcript,*and,*finally,*read*the*transcript.**My*first*goal*in*coding*was*to*
indicate*any*places*where*I*thought*the*whole9class*discussion*was*conveying*ideas*
about*mathematics,*then,*described*what*idea*or*ideas*were*being*conveyed*and*
how.**Additionally,*to*confirm*his*observations,*the*author*asked*two*other*
mathematics*education*researchers*with*a*masters*degree*in*mathematics*to*read*
the*transcript*and*describe*the*content*that*students*have*the*opportunity*to*learn.*I*
subsequently*coded,*as*appropriate,*any*of*the*roles*of*definition*(Zazlavsky*&*Shir,*
2005)*that*were*covered*and*how*it*was*conveyed.*The*professors’*claims*were*
coded*similar*to*the*class,*focusing*on*the*roles*of*definition.**Generally,*the*
professor’s*claims*aligned*with*the*points*in*the*subsequent*analysis.*
*
Data!and!analysis!
Mathematical*prompts//The*definition*of*a*group!
The*class*in*which*the*students*had*the*first*opportunity*to*learn*the*definition*of*
group*began*with*the*instructor*noting*that*the*students*were*to*have*solved*some*
equations,*listed*in*the*notes,*overnight.**The*students*solved*the*equations*in*the*
noted*systems:*
*
Set:%Integers,%Operation:%
Addition%
*3*+*x*=*7*

Set:%2x2%invertible%
Matrices,%Operation:%
Multiplication%

€ 

A ⋅ x = B *

Set:**real%numbers,%
Operation:%
multiplication*

€ 

πx = 8 *
The*next*prompt*was:*

As*we’ve*seen*with*the*simple*equations*above,*there*is*interesting*work*to*
be*done*when*we*focus*on*one*set*and*operation*at*a*time.**For*right*now,*
let’s*continue*in*that*way;*simple*structures*(S,**)*consisting*of*a*set*of*
objects*on*which*one*binary*operation*is*defined.**Based*on*your*work*above,*
let’s*operate*on*elements*in*the*set*S*using*the*operation**.*

* * Carefully!Solve:!!a*x=b! !
The*notes*also*asked,*“What*properties*did*you*use?***Could*you*have*used*fewer?”**
*
The*class*period*described*here*is*the*third*meeting*of*the*class*and*began*with*
students*solving*linear*equations*that*the*instructor*provided.*In*subsequent*
sections*I*explore*the*ways*that*the*professor*and*students*interacted*and*how*the*
students*engaged*with*the*mathematical*content*as*a*means*of*describing*their*
opportunity*to*learn*and*intellectual*responsibility*for*the*definition*of*a*
mathematical*group.*Throughout*the*class,*especially*during*discussions*the*
professor*acted*as*an*arbiter*of*the*mathematical*norms*of*the*class.**For*example,*
to*open*discussion*about*the*third*equation*the*professor*prompted:*
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T:*So,*take*a*look*at*pi9x*=*8*there,*Dan*claims*that*he*used*the*multiplicative*
inverse*and*the*balance*beam*principle*but*no*other*properties.**Are*you*
willing*to*believe*him?*
S:*I*think*he*used*associativity*
B:*you*re9arranged*the*parenthesis*so*that*you’re*multiplying*pi9inverse*
times*pi*on*both*sides…*
D:*Is*that*necessary?*
T:*Well,*looking*at*what*you’ve*got,*there’s*two*things*in*a*parenthesis…***

Again,*the*professor*here*acted*as*an*arbiter*of*notation*and*whether*or*not*rules*
were*followed.**He*first*stated*the*properties*that*the*student*claimed*he*used,*
asked*for*comments,*and,*when*S2*claimed*that*S1*used*the*associative*property,*
the*professor*indicated*how*S1’s*notation*used*the*associative*property.*There*were*
at*least*8*instances*in*which*I*described*the*professor’s*role*in*the*interaction*as*
promoting*or*moderating*the*mathematical*norms.*In*describing*the*professor*as*
adjudicating*mathematical*norms,*it*is*important*to*note*that*the*norms*that*he*
promoted*and*enforced*were*about*the*whether*the*students*needed*to*list*all*used*
properties,*whether*they*were*using*properties*listed*in*the*notes,*and*whether*
they*were*in*agreement*about*the*terms.***
*
The!professor!presented!the!definition!of!a!group*
Following*the*discussion*of*the*fourth*equation,*the*professor*immediately*moved*
to*defining*a*group.*He*said:*

So,*looking*across*these*four*different*equations,*when*we*tried*to*solve*
equations,*in*each*case,*we*needed*closure,*associativity,*an*addit,*an*inverse*
property*of*whatever*it*was*and*an*identity.*Some*interesting*things*going*
on…*We*didn’t*need*commutativity.**You*have*to*be*a*little*bit*careful,*with*
your*matrices*because*they’re,*in*fact,*not*commutative.**You*can’t*claim*that*
A^91B*is*the*same*as*BA^91.**So,*here’s*a*cool*thing.**In*mathematics,*you*get*
to*make*up*definitions*of*new*things,*if*you*run*into*something*that*you’re*
going*to*want*to*keep*track*of*you*can*make*up*a*definition*that*says,*here’s*
this*new*cool*idea.**

In*these*comments,*which*are*similar,*to*the*final*prompt*in*the*notes,*the*professor*
makes*available*a*number*of*opportunities*to*learn*about*mathematical*processes*
and*the*role*of*definitions.**First,*he*explained*that*they*were*to*look*across*the*
solutions*of*the*four*equations,*meaning*that*they*were*to*look*for*repeated*
reasoning,*and,*served*to*remind*them,*again,*that*their*goal*had*been*to*solve*
equations,*which,*in*this*case,*can*be*understood*as*what*the*professor’s*words*and*
actions*conveyed,*and,*the*professor*specifically*indicated*that*this*was*his*goal*for*
student*understanding.*The*professor*then*reminded*the*students*of*the*four*
properties*that*they*had*used,*and,*that*they*did*not*use*the*commutative*property,*
and*could*be*certain*of*this*because*matrices*are*not*commutative.*In*terms*of*the*
process*of*defining,*the*professor*expressed*the*notion*that*mathematical*
definitions*are*created*by*people*to*respond*to*some*intellectual*need;*that*there*is*
an*idea*that*they*want*to*use*again.**

The*professor*continued*by*explaining*both*how*they*would*create*the*
definition,*and,*that*the*names*of*concepts*are,*essentially*arbitrary:*
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It*turns*out*that*we’re*going*to*take*your*4*properties*and*we’re*going*to*turn*
them*into*a*definition.**And,*here’s*what*we’re*going*to*do…**It’s*not*very*
complicated.**We’re*going*to*say,*given*a*set*S,*and*an*operation*on*the*
elements*of*that*set,*and*since*I*want*to*be*able*to*talk*about*all*kinds*of*
operations*I’m*going*to*call*it*star,*right.*If*the*set*and*operation*have*the*
following*properties…*It’s*all*we’ve*done*right?**We’ve*take*a*bunch*of*sets*
and*a*bunch*of*operations,*we*solved*some*equations*and*said,*“what*
properties*do*I*want?”*Well,*what*properties*do*I*want?**Where*do*we*start?*

Here,*the*professor*has*transitioned*to*describing*the*process*by*which*he*will*write*
the*definition*of*the*new*concept.**The*professor*described*the*goal*was*to*write*a*
definition*that*was*applicable*to*“a*bunch*of*cases”*which*we*believe*is*reasonably*
interpreted*as*all*cases,*which*the*professor*reinforces*by*saying,*“given*a*set*S,*and*
an*operation*on*the*elements*of*that*set.”*He*then*asked,*what*properties*a*set*and*
operation*require,*in*order*to*solve*an*equation.**
* The*students*took*his*question*as*an*opportunity*to*suggest*the*needed*
properties,*the*professor*used*this*as*an*opportunity*to*describe*the*logical*
relationship*between*the*properties:*

S:*closure!*
T:*Closure.**2!**What*order*should*I*go*in?**Order*might*matter?**What*do*you*
want*next?*
S:*inverses?*
T:*Could*have*inverse*next,*could*have*associativity*next,*or*could*have*
identity*next.**Question,*“can*you*have*inverses*without*having*an*identity?”***
Ss:*no*
T:*so,*we’re*going*to*put*inverses*below*identity*in*our*hierarchy.**And*now*
everybody’s*thinking,*“huh?”**So,*let’s*put*identity,*inverses,*and,*inverses*for*
all?**For*some?**For*one?*
S:*for*all*
T:*right,*because*if*I’m*going*to*solve*equations*I*need*inverses*for*all.**And,*I*
need*associativity.**…*Quick*pause,*this*is*not*quite*in*order,*but,*claim:*you*
can’t*have*inverses*without*an*identity.**I’m*going*to*write*it*down,*I’m*going*
to*leave*it*there,*and*let*it*hang*out*for*a*little*while.**If*S9star*obeys*these*
rules…***

The*students*know*the*four*properties*that*they*have*been*discussing,*thus,*listing*
them*can*serve*to*reinforce*them*and*help*students*associated*them*with*the*
concept.**By*asking*and*then*answering*the*question,*“can*you*have*inverses*
without*an*identity?”*I*assert*that*the*professor*offered*students*the*opportunity*to*
learn*that*there*is*a*logically*necessary*relationship*between*the*existence*of*
identity*and*inverses.*Moreover,*the*professor*and*a*student*have*both*asserted*the*
importance*of*all*elements*having*an*inverse.*Finally,*the*professor*made*claims*
about*the*conventions*of*naming*in*mathematics:*

Well,*here’s*the*cool*thing*about*writing*a*new*definition,*it*turns*out*that*
you*can*call*it*whatever*the*heck*you*want*to*call*it.**If*you*want*to*call*it*a*
bob,*you*could,*if*you’re*the*first*one*to*make*it*up.**Some*people,*in*fact,*
name*things*after*themselves,*and*it*turns*out*that*there’s*a*goodly*quantity*
of*stars*and*planets*named*after*people.**But,*it*turns*out*that*people*have*
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thought*this*up*before,*and,*so*while*in*this*class*we*could*call*it*a*Megan,*
we’re*going*to*call*this*a*group.**G9R9O9U9P.***

Here,*the*professor,*made*an*explicit*statement*about*the*naming*conventions*in*
mathematics,*and,*via*his*claim*that*it*is*possible*to*name*a*structure*after*one*of*the*
students*in*the*class,*he*conveyed*that*names*of*structures*might*be*arbitrary.*
Through*the*entirety*of*his*presentation*about*the*definition*of*a*group*the*
professor*conveyed*that*the*essence*of*the*concept*of*a*group*is*that*it’s*a*system*in*
which*is*possible*to*solve*equations,*that*name*of*the*concept*is*a*group*(allowing*
for*communication),*and*the*name*of*each*of*the*four*relevant*properties.**Thus,*at*
this*point*of*the*lesson,*while*the*students*had*the*opportunity*to*learn*many*
aspects*of*the*concept*of*group,*the*professor*did*not*here*give*a*formal*statement*
of*any*of*the*properties*here.**At*best,*the*students*could*refer*back*to*the*original*
statement*of*the*properties*in*their*notes,*but,*while*given*in*a*general*form,*they*
are*written*in*the*context*of*“numbers”*and*thus*the*students*do*not*have*an*
appropriate*formal*mathematical*statement*for*the*properties*of*identity*or*inverse,*
and,*even*closure*and*associativity*require*changing*the*operations*and*the*set*from*
which*the*elements*are*drawn.***
*
Summary*of*Opportunity*to*Learn*

By*the*end*of*the*first*day*of*class*the*students*had*the*opportunity*to*learn*
that*the*essence*of*the*concept*is*a*system*in*which*it*is*possible*to*solve*equations.**
They*saw,*via*solving*the*equations,*the*necessity*of*each*of*the*four*characteristic*
properties,*and,*via*their*work,*that*those*were*the*only*needed*properties.*Thus,*
they*had*the*opportunity*to*learn*that*the*four*properties*are*both*minimal*and*
completely*specify*the*essence*of*concept.**Moreover,*the*students,*in*their*
discussion,*explored*issues*of*abstraction*and*generality*with*the*properties,*
terminology*and*notation.*For*example,*through*the*discussion*of*the*solution*to*
a*x=b,*the*students*appeared*to*recognize*a*need*for*a*new*term,*rather*than*
‘multiply’*to*describe*the*action*of*an*abstract*operation,*and*the*need*for*new*
notation,*rather*than*“1”*to*denote*the*identity*element*when*working*with*an*
abstract*set*and*operation.*Moreover,*the*students*had*the*opportunity*to*learn*the*
statement*of*the*definition*of*a*group*from*the*notes,*including*the*symbolic*version,*
and,*it*had*all*of*the*essential*characteristics*of*a*definition.*I*argue*that*the*students*
had*the*opportunity*to*establish*a*community9wide*agreement*on*how*to*specify*
the*concept,*especially*that*a*group*does*not*need*to*be*commutative.**
*
Intellectual*responsibility*

In*terms*of*the*intellectual*responsibility*for*the*work*of*defining,*the*
professor*had*significant*responsibility*and*devolved*much*less*to*the*students*than*
in*Larsen’s*(2013)*curriculum*but*more*than*in*Leron*and*Dubinsky*(1997)*or*the*
traditional*curriculum*described*in*Fukawa9Connelly*and*Newton*(2014).*In*
particular,*the*instructor*established*that*the*essence*of*the*concept*of*a*group*is*a*
system*in*which*it*is*possible*to*solve*equations.*The*students*did*solve,*listing*the*
properties*the*minimal*set*of*properties*needed*to*solve,*and,*collectively*agreeing*
on*the*set*of*properties*used*to*solve*each*of*the*four*equations.**The*professor*then*
indicated*that*they*would*write*a*definition*that*captured*this*idea,*but,*he*is*the*
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one*that*wrote*the*idea,*and,*presented*the*students*with*a*formal*statement*of*the*
definition*that*he*had*pre9written*in*a*second*handout.**Thus,*the*students’*work*
formed*the*basis*for*the*professor’s*writing*of*the*definition,*and*therefor*I*suggest*
that*they*had*intellectual*responsibility*for*the*content*of*the*definition.**
*
Discussion!

The first conclusion of this study is that the professor’s notes, planning, and 
classroom activities made available significant opportunity to learn about the definition 
of a group and the example space for a group, and finally the process of writing a 
mathematical definition. The second conclusion relates to the intellectual responsibility 
that the students and the professor had for developing the definition of a mathematical 
group.  While the students had more intellectual responsibility than in a lecture class, and 
when compared with the responsibility offered by the Dubinsky and Leron (1994) 
curriculum, it was less than that of Larsen’s (2013) curriculum. These observations 
illustrate how well-intentioned instruction, even instruction that includes a lot of student 
participation, and intellectual responsibility, might provide students with less 
responsibility than is reflected by the text/notes. While the professor in this study wrote 
notes that allowed for significant responsibility, and, the amount of student 
argumentation and discussion is productive and valuable, some of his choices. However, 
the in-class questions were also limited, because they did not provide the students with 
opportunities to practice some important aspects of writing and revising a definition.  
*
*
*
*
*
Guzzetti, B. J., Snyder, T. E., Glass, G. V., & Gamas, W. S. (1993). Promoting conceptual 
change in science: A comparative meta-analysis of instructional interventions from reading 
education and science education.Reading Research Quarterly, 117-159. 
*
*
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Studying students’ preferences and performance in a cooperative mathematics 
classroom 

 
Sayonita Ghosh Hajra Natalie L.F. Hobson 

University of Utah University of Georgia 
 
In this study, we discuss our experience with cooperative learning in a mathematics 

content course. Twenty undergraduate students from a southern public university 
participated in this study. The instructional method used in the classroom was cooperative. 
We rely on previous research and literature to guide the implementation of cooperative 
learning in the class. The goal of our study is to investigate the relationship between 
students’ preferences and performance in a cooperative learning setting. We collected data 
through assessments, surveys, and observations. Results show no significant difference in the 
comparison of students’ preferences and performance. Based on this study, we provide 
suggestions in teaching mathematics content courses for prospective teachers in a 
cooperative learning setting. 

 
Keywords: cooperative learning, performance, prospective elementary teachers 
 

Many mathematics education researches emphasize the importance of mathematical 
reasoning in learning mathematics (Kramarski and Mevarech, 2003; National Council of 
Teachers of Mathematics, 1989, 2000). According to the Common Core State Standards 
(Common Core State Standards Initiative, 2010), mathematical understanding is the ability to 
justify why a particular statement is true. It is important for students to not only construct 
viable arguments but also critique the reasoning of others (Common Core State Standards 
Initiative, 2010). These components of learning are also elements of cooperative learning, 
which suggests students critique and learn from each other (Evans, Gatewood and Green, 
1993; Sheehy, 2004). 

The basis of a cooperative classroom is group success. It is a form of instruction where 
students work in groups, share common goals, and are accountable for their actions (Johnson 
& Johnson, 1994a). Various studies (Slavin, 1996; Webb, 1989; Webb & Farivar, 1994) 
suggest multiple benefits of cooperative instruction. According to Slavin (1996), peer 
collaboration can encourage creative thinking and helps generate new ideas. Many researches 
suggest that when instruction shifts from individual to group individual learning is enhanced 
(Marzano, Pickering, & Pollock, 2001; Slavin, 1996).  

According to Johnson and Johnson, the following are not features of cooperative learning: 
students sitting side by side at a table and talking while completing their own individual 
assignments, one large assignment given to a group of students where only one student 
contributes to the assignment and others take credit, students helping each other on individual 
assignments after finishing their own work (1994a, 1994b). Cooperative learning does 
involve students working together to complete a task in groups. Many researchers focus and 
identify different forms of cooperative learning. In our study, we focus on the learning 
together form of cooperative learning (Johnson and Johnson, 1975).  In the learning together 
form, all students work together on the same task sharing a common goal. According to 
Johnson and Johnson (1994b), characteristics of cooperative learning are group 
interdependence, individual accountability, group processing, and face-to-face interaction. 

In this study, our goal is to understand how students’ preferences and performance are 
related in a cooperative mathematics classroom. Students come in the classroom with their 
preferences—some like to work in groups and some do not like to work in groups. We study 
and explore how students’ preferences affect students’ individual performance in a 
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cooperative learning setting. In this exploration, we also learn about students’ opinions about 
group work after a cooperative mathematics experience. This gives us insight for future 
cooperative learning implementation. 

 
Methodology 

We collected three forms of data from study participants throughout the length of this 
study. These forms of data include a preliminary survey of students’ initial preferences for 
working in a group, students’ work on group assignments and corresponding individual 
assignments (see Appendix A), and students’ responses on an end-of-course survey (see 
Appendix B). 

At the time of this study one of the researchers was the instructor of an arithmetic content 
course for future elementary teachers at a public university in the southeastern United States. 
Study participants consisted of the twenty students enrolled in this course. The class consisted 
of females in their third year of undergraduate study. The textbook for the course was 
Beckmann (2011a, 2011b). These participants had all previously completed similar content 
courses for prospective elementary teachers in geometry, number, algebra, and statistics at 
the same university with different instructors from this same textbook.  

In order to make clear our focus of analysis we define two terms we use throughout our 
investigations.   

Preference refers to a student’s liking of group work. We classify preferences as like, 
like with a choice, and dislike. Like with a choice refers to a student’s liking of group work if 
allowed to choose her own group. 

Performance refers to a student’s scores on group and individual activities based on a 
rubric discussed in the following.  

We structured each class to incorporate a group activity and an individual activity related 
to the group activity. Each class period was 50 minutes in length. Each class was structured 
with 10 minutes of lecture, 20 minutes of group activity, 10 minutes of individual activity, 
and 10 minutes of class discussion.  Students worked in assigned groups of three. Groups 
were randomly reassigned each week with the condition of no two students remaining in the 
same group. Each group worked on one activity sheet to encourage cooperation between 
members.   

The activities covered the following content sections: adding and subtracting fractions, 
commutative property of multiplication, associative property of multiplication, distributive 
property of multiplication over addition, mental math, fraction multiplication, and the partial 
product algorithm.  

Before implementing cooperative learning in the classroom, the researchers gave students 
a preliminary survey asking for their preferences of working in groups. At the completion of 
the course, an end-of-course survey asked open-ended questions to students soliciting as 
many responses as possible to help us understand their opinions of and experiences in the 
group and individual settings.   

 
Data Analysis 

In the preliminary survey students generated and self identified with one of the following 
three categories coded as follows, like group work (L), like group work if given a choice of 
group members (C), and dislike working in a group (D). 

Researchers determined student performance on group and individual assignments using a 
general rubric (see Table 1). With this general framework, researchers created a specific 
rubric for each activity with specific details in order to determine the sufficiency level of 
responses. To ensure reliability of data analysis on performance, one of the two researchers 
wrote a rubric for each activity and assigned each student a performance number from this 
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rubric, the other researcher then used this same rubric to give each student a performance 
rating also. Researchers met to discuss any discrepancies in the scoring and legitimacy of the 
rubric.  For group assignments, the researchers assigned the same performance score to each 
student in the group. 

 
Table 1: General grading rubric. 
Score Meaning Description 
3 Sufficient with 

detail 
Correct, logical argument with extra detail (typically 
includes extra diagrams and images to support argument) 

2 Sufficient Correct, logical argument 
1 Almost sufficient Correct argument but lacks some justification 
0 Not sufficient Inaccurate or flawed argument 

 
Researchers coded students with the following three data points: initial preferences, 

average group performance, and average individual performance.  Researchers used t-test to 
quantitatively analyze the data to compare preferences with performance.   

The non-teacher researcher collected the end-of-course survey forms and only after 
turning in the grades, the teacher researcher was able to see the survey. Each researcher 
individually read all surveys and made a rubric to help categorize student responses after 
reading through what students had written. Researchers met to organize the rubric and layout 
a framework to understand students’ experiences in the classroom.  

 
Results 

We collected data from the six topic sections of the course as discussed above. We use 
two sample t-test assuming unequal variances to analyze our data.  

 
Quantitative Analysis 

 Among the 20 students, students self-identified their group preference as follows, 6 like, 
8 like with a choice, and 6 dislike. The group activity performance means for the like, like 
with a choice, and dislike students are 61.23, 59.10, and 56.44 respectively. We computed the 
observed p-value of the t-test for the categories of dislike and like with a choice, dislike and 
like, and like with a choice and like.  Respectively these values are 0.42, 0.129, and 0.407; 
each of which is greater than the level of significance, 0.05.  

Hence, we saw no significant difference in performance of group work between students 
with different group preference. In a similar manner, we performed the two sample t-test to 
compare the individual activity performance between students with the three different 
preferences. We saw no significant difference in the individual performance across students 
with different preferences. 

 
Student Opinions of the Cooperative Learning Experience 

The end-of-course survey solicited a variety of student responses on beliefs and opinions 
while participating in a cooperative learning classroom. These responses provide a 
categorical description of possible student beliefs about cooperative learning in mathematics. 
This helps to provide a framework to understand and gain awareness of student experiences 
in the cooperative learning environment and helps us learn how to improve this setting for 
students. 

The following (Table 2 and Table 3) gives an organization of responses and reflections on 
group and individual activities gathered from the end-of-course survey. 
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Table 2: Opinions of group activity experience. 
Overall Group Experience Reason 
x Beneficial for long term and increased 

understanding 
x Metacognitive aspect (i.e., why, what, 

and how) 
x Multiple ideas or approaches from 

group 
x Verbal expression of ideas 
x Clarify misconceptions 

x Beneficial for completing activity x Immediate input from other students 
x Not beneficial for completing activities x Contradictory group input 

x Multiple approaches distracting 
x Topic too elementary for group 

discussion 
x Dependence on others  

x Dislike x Unnecessary and excessive 
x Switching groups too often 

x Like x Social interaction 
x New way of learning (because 

beneficial) 
 
 
Table 3: Opinions of individual activity experience. 
Overall Individual Activity Experience Reasons 
x Dislike x Redundant, repetitive problems 

x Feels like memorization 
x Group activity made student feel 

unconfident 
x Like x Self-reflection and self-monitoring 

(e.g., what is done and what needs to 
be done) 

x More practice 
x Group activity made student feel 

confident 
x Assessment of knowledge 
x Fewer questions help to focus 

 
Conclusion 

From our study, we find that a student’s preference of working in groups does not 
necessarily determine the student’s performance in the group setting. Preferences may vary 
from student to student and performance relies on the understanding of the task. This 
understanding of the task may or may not develop in students through group activities 
regardless of the their initial preferences for group activities.  

 
Discussion and Future Implementations 

The results of this study provide several suggestions to help teachers teaching math 
content courses more successfully implement cooperative learning in their classrooms and 
improve the cooperative learning experience for their students. Specifically the student 
responses in the end-of-course survey and our observations in the classroom provide several 
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reasons why students feel the group activities implemented by the teacher researcher were not 
beneficial. As teachers, we can make aims to address such factors in order to help students 
feel the group activity is beneficial and to help students get a fulfilling experience from these 
activities.  We discuss these suggestions below. 

Teacher’s interaction during cooperative learning activity- In our study we observed 
situations in which a few of the students in a group convinced other students of inaccurate 
reasoning. As a teacher implementing cooperative learning it is important that the teacher 
maintain a very active role in the classroom by listening to students’ discussion and provide 
direction when students collectively engage in inaccurate reasoning or problem solving 
(Davidson, 1990). It is also important for teachers to help students who feel unheard in a 
group speak out and share ideas, especially when those ideas are beneficial for the entire 
group. Teachers must play an active role of engaging in small group discussions by listening 
to the group’s discussion and helping the group focus on insightful approaches.   

Suitable tasks- In a group activity, the cognitive demand of the task is very important.  
When there is not enough content for the students to discuss, students are not able to engage 
with each other and interact. If a concept does not require extensive investigation of the topic, 
the task might best be implemented during an individual activity rather than a group activity.  

Suitable questions- Additionally, our experience found that group tasks with direct 
questions of why and how provide more opportunity for students to discuss. For example, 
during group activities involving addition and multiplication of whole numbers, when we 
asked students to compute a solution, students quickly completed the assignment and did not 
have discussions. However, when we asked students to explain properties of an operation 
used in computation (e.g., associative or commutative) students engaged in discussion with 
each other in order to check the validity of each step involved in the calculation. With this 
type of question students had to discuss and debate strategies and reasonings. This 
encouraged group interaction and collaboration.      

In finale, we offer the above as suggestions for teachers implementing cooperative 
learning in a mathematics content course for pre-service elementary teachers. We also want 
to emphasize that teachers should not be discouraged if their students at first do not like 
working in groups. As our study shows, students generate many positive beliefs about group 
work after they have encountered a cooperative learning experience in a mathematics course.  
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Appendix A 
Example of a group activity and an individual activity 

 
Group Work:  
Student 1. 
Student 2. 
Student 3. 
 

1. Use the array to help you explain why 3X5 and 5X3 must be equal. In other words, explain 
why 3X5 = 5X3 (Beckmann, 2011b, p. 71) 
 
***** 
***** 
***** 
Solution:  
 
 

2. Why does the commutative property hold for numbers other than 3 and 5? In other words, 
why is it true that AxB = BxA, no matter what counting numbers A and B are?  To answer 
this question you may need to modify your explanation for why 3X5 is equal to 5X3 so that it 
is a general conceptual explanation, that is, one that doesn’t refer to the number 15 but refers 
only to 3 and 5 and to the underlying array (Beckmann, 2011b, p. 71) 
Solution:  
 
 
 
 
Individual work: 
Student Name: 
 
Problem 1: Here is Amy’s explanation for why the commutative property of multiplication is 
true for counting numbers: 

Whenever I take two counting numbers and multiply them, I always get the 
same answer as when I multiply them in the reverse order. For example, 6 X 8 = 48, 8 
X 6 = 48; 9 X 12 = 108, 12 X 9 = 108, 3 X 15 = 45, 15 X 3 = 45. 

It always works that way; no matter which numbers you multiply, you will get 
the same answer either way you multiply them. 

 
Explain why Amy’s discussion might not convince a skeptic that the commutative property 
should always be true for any pair of counting numbers. Then explain why the commutative 
property of multiplication is valid in another way (Beckmann, 2011a, p. 159). 
Solution:  
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Appendix B 
End-of-course Survey 

 
Please fill out the survey form clearly. 
Student Name: 

1. Describe your overall experience working in groups this semester in the following situations: 
a. Group Activities 
b. Final Project 

2. Describe your overall experience working on the individual activities this semester. 
3. Do you feel comfortable working in a group? (Yes/ No) 
4. Did working with a group help you to learn multiple ways to solve problems? (Yes/ No) 

Explain question 4. How did the group help/ not help?  
5. Would it have been beneficial for you if you had worked alone?  Explain. 
6. Has your confidence in explaining math in writing and/or orally increased? (Yes/ no). 

If yes, what percentages do you attribute to the following class components for your 
achievement of confidence increase (total should be 100%): 

Group activities: 
Individual assignments: 
Class discussions: 
Homework: 
Peer review: 

 If no, explain why not. 
7. What was your favorite class activity this semester?  (Class activities were: group 

assignments, paper ball activity, wall activity, reading pop quiz, etc.). Why? 
8. What class component helped most with your learning of mathematics? 
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A mathematician’s experience flipping a large lecture calculus course 
 

Erin Glover 
Oregon State University 

 
There is a growing body of literature that suggests students do better in classes that 
implement active-learning strategies (e.g., group work, problem solving). Flipping classroom 
instruction is becoming a popular innovation to support active learning in the classroom. 
This preliminary report highlights one instructor’s experiences when implementing ambitious 
teaching practices in a flipped large lecture Calculus I course. Data collection consists of 
email correspondence, open-ended interviews, and weekly questionnaires. Particular 
attention will be made to address how the instructors’ professional identity impacted 
instruction throughout the term.  

Keywords: flipped classroom, large lecture, ambitious teaching, calculus, professional 
identity 

The large-scale national study funded by the MAA and the NSF, Characteristics of 
Successful Programs in College Calculus (CSPCC) sought to describe the demographics of 
Calculus students and the characteristics of successful programs (Bressoud, Carlson, Mesa, & 
Rasmussen, 2013). Results from the study are still rolling in, but the overarching message is 
that factors contributing to a successful program are complex and Calculus instruction 
matters. The CSPCC student survey results found that students with instructors who engaged 
in ambitious teaching practices had a positive impact on students’ retention in the Calculus 
sequence (Rasmussen, Ellis, & Bressoud, 2013), but that it also had small negative impact in 
students’ confidence, enjoyment, and interest in mathematics (Sonnert, et al., 2013). 
Ambitious teaching practices include things like group work, group discussion, requiring 
students to explain their thinking, student presentations, challenging problems on exams, etc. 
In response to these mixed survey results, Larsen, Glover, & Melhuish (2014) provided a 
brief review of the literature related to ambitious teaching and a discussion of two substantial 
cases of ambitious teaching observed during the case study phase of the CSPCC project. 
They concluded that engaging in ambitious teaching is a complex activity that requires 
institutional support and a significant commitment on the part of the instructors. My study 
was very much inspired by the results from the CSPCC project. I encountered a professor 
faced with a 270-person large lecture Calculus I teaching assignment who was passionately 
(and very openly) opposed to large lecture instruction. Instead of teaching a traditional large 
lecture, he chose to implement various ambitious teaching practices supported by flipping his 
classroom. This preliminary report will describe the instructor’s experience, and more 
specifically, the relationship between his instruction and how he viewed himself as a teacher. 

Relation to research literature 
 A wealth of research in STEM indicates that students do better in classes that employ 
active-learning strategies (e.g., group problem solving, student presentations, clicker 
surveys). The physics discipline has sought to “transform” their large lectures by 
implementing researched-based instructional changes. One such study in a calculus-based 
physics course found that combining interactive engagement methods in lecture, tutorials, 
and homework had a positive effect on conceptual and attitudinal development” (Pollock, 
2006, p. 142). A meta-analysis of 225 STEM studies found that instruction that included at 
least some active-learning strategies (e.g., group problem solving, worksheets, tutorials, 
workshop) increased student performance on examinations and concept inventories 
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(Freeman, et al., p. 3). A popular innovation in the mathematics classroom to make time for 
these types of strategies is known as “flipping” (or inverting). This was described by Lage, 
Platt, and Tregalia (2000) as “events that have traditionally taken place inside the classroom 
takes place outside the classroom and vise versa.” Numerous studies have appeared in RUME 
proceedings in recent years, comparing various effects of instructional innovation including 
flipping instruction (Bagley, 2013, 2014; Bowers & Zaskis, 2012; Wasserman, 2013). Larsen, 
et al. (2014) presented a case study that was a robust example ambitious teaching. The 
calculus program’s success was facilitated by the combination of flipping, group work, and 
technologically supported innovations (e.g., use of iPads and clickers). This report adds to 
both the body of literature on large lecture instruction, flipped instruction, and literature on 
the implementation of ambitious teaching practices. This will also add to literature about the 
connection between instructor professional identity and instruction.  
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Theoretical perspective  
The analysis for this report will draw from the work of Remillard (2005) that suggests how 
teachers interact with novel curricular materials is directly influenced by their professional 
identity (p. 237). Spillane (2000) defined identity as “an individual's way of understanding 
and being in the world, in this case the world of work. Although identity includes what one 
knows and believes, it also encompasses dispositions, interests, sense of efficacy, locus of 
control, and orientations toward work and change” (p. 308). Initial interviews with the large 
lecture instructor indicated that his personal beliefs about himself as a teacher did not align 
with the teaching assignment he was given. At the outset of this project his professional 
identity can already be seen in shaping instruction, which is evidenced by his decision to flip 
the course. Given the proven utility of identity in explaining teachers experiences with 
curricular materials, I believe it is likely that the way instructors experience other teaching 
challenges (such as an extremely large class size) can be understood in terms of the 
instructor's professional identity. 

 
Research methodology 

This preliminary report is part of a larger study that will examine all of the participants’ 
experiences in one flipped large lecture Calculus I course at a large, public university. This 
report will focus on the large lecture instructor, Mark1. Data collected will consist of audio-
recorded open-ended interviews, email correspondence, and weekly online questionnaires. 
Initial interviews revealed that the Mark’s professional identity impacted how he dealt with 
his teaching assignment. The weekly online questionnaires are intended to track Mark’s 
instruction throughout the term and how it related to his professional identity. A subset of 
weekly questionnaires items include questions like (1) “What is something you did in class 
this week that is consistent with how you view yourself as a teacher?” and (2) What is 
something that happened that was inconsistent with the way you view yourself a teacher? 
Future interviews with Mark will focus in how his instruction changes and what promoted 
him to make the changes and whether or not these changes align with how he views himself 
as an instructor. All interviews will be analyzed and relevant sections transcribed. The 
analysis will look for specific examples of Mark’s professional identity that relate to his 
instruction. For example, broadly, his decision to flip the course could be explained by the 
fact that he identifies himself as a mathematician who supports mathematics education and 
engages in student-centered learning in his own classrooms. As the course unfolds, future 
interviews will be analyzed to find other examples of Mark’s professional identity impacting 
his instruction. 

A second part of this study focuses on the students in the large lecture course. The 
students will complete both the pre and post student surveys used in the CSPCC project. 
These surveys will highlight the demographics of the students, but also reveals various 
aspects of their experience in their Calculus course. In addition to the CSPCC survey data, 
students answer Clicker survey question related to the instructional innovation (e.g., group 
work, use of clickers, flipping) at various times throughout the term. This preliminary report 
will be limited to just the experiences of the lecture instructor.  

Preliminary Results 
The large lecture instructor, Mark, is a professor with experience teaching calculus. He is a 
mathematician and serves as the calculus coordinator. Mark also served as department chair 
in the past and now serves as a consultant on math education grants, serves on dissertation 
and exam committees for both the math education PhD programs and Math PhD programs. 

                                                
1 Pseudonym. 
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This is the first time Mark has tried to flip one of his courses, but was already quite familiar 
with the efforts of another instructor who did so. He wanted to flip his instruction to 
“minimize what we all know will be the negative impacts on student success and student 
learning.”  

To support his course set-up, Mark worked hard to coordinate resources because he 
suspected there was going to be little support from the department to implement his flipped 
large lecture. He responded to his teaching assignment by reaching out to current Calculus 
instructors to recruit high-quality undergraduate “peer mentors” (TA) to volunteer in his 270-
person large lecture because the “experience one would get in this environment will be 
helpful on [their] resume.”  

Mark also selected his recitation leaders; one had experience teaching calculus, the 
other who recently mentored with the Mark in Calculus, and the third was a new graduate 
teaching assistant (GTA). Mark intended to give extra support to the new GTA by placing a 
dedicated undergraduate TA in their recitation sections. He required recitation leaders to 
attend lecture “to engage students” and support the undergraduate peer mentors. Early 
communication with colleagues resulted in “a lot of people that [were] interested.”  This 
included a graduate student that was interested in “spending time in my class to get some 
experience” which would help in “applying for a [G]TA to push through to get his degree.”  

Simultaneously, he began to scour math education literature related to large lecture 
instruction, flipping, and other innovations. The research literature helped make his decision 
to flip his course, but it also helped frame the request for support he submitted to the math 
department. This contained references to the literature to justify these requests which 
included (1) recitation sections capped at 20, (2) Meeting times twice (to support longer 
meeting times for the large lecture) (3) undergraduate peer mentors, and (4) a one-time $3000 
grant to support course design and set-up. Mark reported, “I got nothing.” The math 
department did give Mark a course that met twice a week, but was told his lecture would be 
50 minutes shorter to make up for the time students spend in smaller recitation sections. He 
decided, “If students want to stay late for the last hour, they can. [The Hall] is open. They can 
work on problems if they want. That sort of gives me extra time I can use, although I’m not 
supposed to be there.” Mark does see the value of the GTA-led recitation sections attached to 
his course saying, “My theory is that those should be places to build community around the 
subject of calculus.” 

Discussion and further research 
My preliminary analysis is focused on what Mark did to support getting his course up 
and running. Future analysis will include Mark’s weekly online questionnaires and his final 
reflection of the course in addition to further interviews. Data from these interviews will 
detail whether Mark believes his ambitious teaching successfully addressed his concerns with 
large lecture instruction and how these might be connected to his professional identity. I 
suspect that his professional identity will have various impacts on his ambitious teaching as 
the term progresses. This might be seen in the level of group work, student presentations, or 
the use of clicker responses to balance the instructional goals any given week. It will be 
interesting to hear about how Mark views his instructional moves and to what level they 
aligned with how he views himself as a teacher. 
 
Questions for The Audience 
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1. Is there other literature that might help to inform this research? 
2. Are their other theoretical constructs that might help in making sense of the 

instructor’s experience? 
3. In this case, Mark was asked to do something he did not want to do (teach a very large 

section of calculus). How as a researcher can I best address this aspect of the study?  
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Understanding participants’ experiences in a flipped large lecture calculus course 
 

Erin Glover 
Oregon State University 

 

There is a growing body of literature that suggests students do better in classes that implement 
active-learning strategies (e.g., group work, problem solving). Flipping classroom instruction is 
becoming a popular innovation to support active learning in the classroom. The study reports on 
one large lecture calculus course where instruction was flipped in order to employ active-
learning strategies. This poster will highlight the experiences of the large lecture instructor, 
recitation leaders, and student focus groups.  
 

Keywords: flipped classroom, inverted classroom, instructional models, calculus 
 
 

Introduction and Relation of this Work to the Research Literature 
A wealth of research in STEM indicates that students do better in classes that employ active-
learning strategies (e.g., group problem solving, student presentations, clicker surveys). A 
popular innovation in the mathematics classroom to make time for these types of strategies is 
known as “flipping” or “inverting” (Lage, Platt, & Tregalia, 2000). This study details the 
experiences when a mathematics professor flipped his instruction to employ active-learning 
strategies into his large lecture calculus course. Numerous studies have appeared in RUME 
proceedings in recent years, comparing various effects of instructional innovation including 
flipping instruction (Bagley, 2014; Bagley 2013; Bowers & Zaskis, 2012; Wasserman, 2013). 
This goal of this presentation is to contribute to the body of literature on specific instructional 
models, like large lecture and flipped classrooms, and the literature on ambitious teaching 
practices. 

 

Theoretical Perspective and Research Methodology 
This poster presentation will highlight experiences of the various participants in a flipped large 
lecture Calculus I course. Data collected consists of audio-recorded semi-structured interviews 
with the department chair, large lecture instructor, recitation leaders, and student focus groups. 
The large lecture instructor also participated in additional weekly online reflection surveys 
intended to track his experiences in greater detail. Classroom observations were conducted in 
both the large lecture and recitation sections throughout the term. Students in the course also 
participated in a pre and post survey to identify student demographics and their success in the 
course. This survey was used in the MAA’s national NSF-funded grant Characteristics of 
Successful Program in College Calculus (Bressoud, Carlson, Mesa, & Rasmussen, 2013). A 
grounded theory approach is being used to identify themes that emerge from the interviews, 
surveys, and classroom observations (Charmaz & Belgrave, 2002; Corbin & Strauss 2008).   

 

Preliminary Results and Future Research 
Preliminary results indicate mixed feelings about the flipped large lecture/recitation (LLR) 
format from the participants’ perspectives. The large lecture instructor consistently believed that 
there was room for improvement during the course regarding instruction, organization of the 
course, and using technology-based innovations effectively. There were varied opinions about 
the effectiveness of technology-related instruction (e.g., clickers, online videos) that were 
intended to engage students inside out outside of class. Student focus group interviews suggested 
that, despite the amount of group work in the LLR, students felt disconnected from other 
students, in addition to their instructor and recitation leader. Students reported they believed in 
the value of group work, but wanted to have more lecture throughout the course. Recitation 
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leaders reported being cognizant of the students’ displeasure of the format of the course and 
attempted to modify their instruction in response to this. Future analysis will describe in greater 
detail what the participants believed to be successful and what parts of the course needed 
improvement.  
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Marginalizing, centralizing, and homogenizing: An examination of inductive-extending 
generalizing among preservice secondary educators 

 
Duane Graysay 

The Pennsylvania State University 
 
Policy and standards documents from recent decades emphasize the importance of attending to 
students’ development of ways of engaging in mathematical activities such as generalizing. 
Therefore, we need to be able to describe proficient generalizing and ways of explaining and 
predicting the strategies that individuals use to generalize. However, existing research has 
largely focused on examining generalizing at the K-12 level on a specific type of task. A broader 
understanding of mathematical generalizing is important for developing potential developmental 
trajectories. This report presents tentative findings from the preliminary analysis of data 
collected as part of the author’s dissertation research on generalizing among university students. 

 
Key words: Preservice Secondary Teachers, Generalizing, Mathematical Reasoning 

 
For at least the past several decades, standards and policy documents have been arguing 

that there is a fundamental limitation in the epistomological position that knowing mathematics 
includes only distinct concepts and procedures (NCTM, 1989, 2000; NGA/CCSSO, 2010; NRC, 
2001). These documents align with suggestions that a more sophisticated position is to also 
consider the ways that individuals engage in problem solving (Schoenfeld, 1989); their 
mathematical habits of mind (Cuoco, Goldenberg, & Mark, 1996); the mathematical practices in 
which they engage (NGA/CCSSO, 2010); their strategic competence, adaptive reasoning, and 
productive disposition (NRC, 2001); or the ways that they engage in mathematical processes 
(NCTM, 2000). Common across these notions is that knowing mathematics includes the ways 
that one engages in mathematical activity. 

One type of activity that is essential to mathematics -- though not uniquely mathematical-
- is the process of generalizing. To understand the importance of generalizing, one must only 
consider the typical conceptual and procedural content of school mathematics, which often 
consists of generalized procedures for responding to tasks (e.g., an algorithm for multidigit 
addition, or a procedure for identifying the derivative of a function based on the equation that 
describes the function) or of generalized claims about categories of objects (e.g., the Pythagorean 
Theorem or the Intermediate Value Theorem). Because of the central nature of generalizations in 
mathematics, it follows that the process of creating generalizations “lies at the very heart of 
mathematics” (Mason, 2008, p. 63). Consequently, if a robust mathematics education is one in 
which participants have opportunities to develop more sophisticated ways of engaging in 
mathematical activity, then such an education must be one in which participants have 
opportunities to develop as generalizers. 

One hypothesized mechanism for the development of generalizing is Vygotsky’s (1978) 
zone of proximal development, which suggests that a potential is created when a learner is 
engaged as an active collaborator in generalizing activity that is more sophisticated than the 
generalizing that he or she can engage in alone. Such activity would typically be led by the 
collaborators who are able to engage in the most sophisticated types of generalizing. It is the goal 
of college and university teacher education programs to prepare preservice teachers to shoulder 
the role of the more proficient members of the classroom community and to use their own 
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mathematical knowledge to lead their students’ mathematical development. It follows that the 
knowledge of mathematics teachers should include understanding of the generalizing process so 
that those mathematics teachers can create developmental trajectories that will help students 
develop into more capable and sophisticated generalizers. This raises a need for research to 
understand the nature of the generalizing process, particularly among mathematically proficient 
students.  

Unfortunately, there is little empirical research on the mathematical generalizing of 
students beyond early high school, and what little we know of generalizing among school 
students (i.e., students in K-12) has been gathered through research that relies heavily on a fairly 
narrow range of types of generalizing tasks. One strategy that has been used to study 
generalizing has been through tasks that present learners with a finite collection of geometric 
images, numbered in sequence (e.g., the ‘Christmas Trees’ problem, Stacey, 1989; see Figure 1).  

 
Figure 1: The Christmas Trees problem, Stacey, 1989 

Such tasks then ask the learner to make predictions regarding some quantifiable attribute 
of an image that would appear later in the sequence. To accomplish this task, learners must 
inductively characterize the given collection and then extend that characterization in order to 
predict the appearance and attributes of the projected example. Although such inductive-
extending tasks have allowed researchers to identify varied strategies that learners use (Stacey, 
1989) and to hypothesize the conditions under which such strategies appear (Lannin, Barker, & 
Townsend, 2006), such findings are necessarily limited to describing and predicting generalizing 
in similar inductive-extending tasks.  

In order to understand the nature of generalizing in its role as an essential mathematical 
activity, it is necessary to expand the existing body of research to examine the process in a 
broader range of types of generalizing tasks and among a more mathematically knowledgeable 
set of participants. The broad questions that frame this study are: 

1. What are the strategies that individuals use to respond to generalizing tasks? 
2. What explains or predicts the ways that individuals respond to a generalizing task?  
 

Method 
To broaden the scope of the empirical research on generalizing, I began by defining 

generalizing as activity that associates a set of mathematical objects with an ostensible generic 
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claim. I then designed a collection of generalizing tasks that avoided presenting instances as a 
sequence or that would engage participants in other forms of generalizing activity. The first set 
of tasks were inductive-extending tasks, in which an initial set of examples was presented to a 
participant without numerical labels, and with the instances drawn from an envelope at random 
by the participant. The second set of tasks were populating tasks, in which participants were 
provided with a mathematical claim and were asked to identify a collection of examples for 
which the claim would be true. The third set of tasks, reconstructing tasks, presented a 
generalization about a set of mathematical objects (e.g., any product of four consecutive whole 
numbers is divisible by 12), then asked the participant to rewrite the claim so that it would be 
true for a superset of the domain (e.g., for products of three or more consecutive whole 
numbers). 

To further broaden the scope of empirical research, I recruited participants from among 
preservice secondary mathematics teachers at a large mid-Atlantic University. Although much 
has been learned about the generalizing of elementary, middle, and early high school students, 
much less is known about the generalizing strategies of this target population. 

I conducted one-on-one task based interviews with five different participants from the 
target population. After transcribing each interview, I identified distinct data by looking for shifts 
in the participant’s activity. Each shift signified the end of one datum and the beginning of 
another. In particular, I looked for evidence of 1) a shift in the type of inscriptions that were used 
to represent examples, 2) changes in the specific examples that were being considered, 3) 
changes in the attributes that were being examined, or 4) a shift from one type of activity to 
another (e.g., from comparing two examples to each other to contrasting those examples against 
each other).  

After parsing each transcript, I then coded each datum using an open coding process and 
began to use those codes to develop 1) descriptions of the attributes of examples that seemed 
salient to participants, 2) characterizations of the activities that constituted generalizing for the 
participant within the context of the task, and 3) hypotheses that might explain the characteristics 
of generalizing and their relationships to the salient attributes of examples.  

 
Findings 

Although this research is still in its earliest stages of analysis, initial findings seem to 
cluster around three key points. First, participants tended to focus on inscription-level 
relationships within and among the examples that were presented to them. Second, one of the 
strategies that participants employed was to engage in activities that implied an assignment of 
status to each example as a representative of the entire collection. These activities resulted in a 
centralizing of some examples as a representative subset of the collection, while marginalizing 
other examples based on a perception of the marginalized examples as dissimilar to the 
centralized set. For example, when describing the collection shown in Figure 2, Alison 
characterized the collection based on attributes that she associated with Examples 2, 3, and 4, 
namely that the figures are all blue in color and that for each Example “you can outline the 
overall figure with a triangle” (Alison, Interview 1). She also marginalized Example 6 because 
“you kind of have to use your imagination to see a bigger triangle there” and Example 1 because 
it was “not a triangle”.  
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Figure 2: The collection for Alison’s inductive-extending task. 

A possible explanation for the marginalizing and centralizing phenomena is a desire on 
the part of the participant to establish homogeneity among the elements of the collection. For 
instance, while examining the examples from Figure 2, Alison rotated Example 5 to the position 
shown in Figure 3 because the rotation “gives the illusion of a . . . an equilateral triangle, even 
though [the orientation shown in Figure 2] has the same . . . organization of blocks, they’re just 
shifted to be a right triangle”.   

 
Figure 3: Alison's rotation of Example 5. 

Alison’s actions and statements suggest that the arrangement of geometric elements is, 
for her, a powerful attribute of the Examples and that her preference would be to establish 
homogeneity with respect to those arrangements. This preference for homogeneity may explain 
why Example 1 and Example 6 are relegated to a marginal status compared to the central 
collection consisting of Examples 2, 3, 4, and 5. 

 
Questions for Discussion 

1. Are there suitable theoretical frameworks that would help to make sense of 
participants’ actions when engaged in populating or reconstructing tasks? 

2. What suggestions might the audience have for focusing the coding scheme 
during subsequent phases of analysis? The open coding has yielded a 
proliferation of codes, and I am struggling to condense them. 
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Abstract 

Two important parts of mathematical proficiency are the individual’s understanding of 
mathematics and his or her self-efficacy beliefs with respect to mathematics. Understanding the 
nature of mathematics should include recognizing mathematics as a field of inquiry. However, it 
is not clear how changes in a student’s understanding of the nature of mathematics might affect 
the ways that the student perceives his or her mathematical abilities. We designed a 5-week 
course around inquiry projects in an attempt to promote a more robust understanding of the 
nature of mathematics. Using surveys and interviews, we gathered information about students’ 
perceptions of mathematics and about their own mathematical abilities. Our exploratory research 
suggests that engaging in an inquiry-based course experience helped students to recognize the 
roles of collaboration and communication in mathematics, but may also have led them to 
perceive mathematics as inherently more difficult and themselves as less able to communicate 
mathematically. 
 

Rationale 
A goal of mathematics instruction is to help students become mathematically proficient. 

Two components of proficiency are (a) ideas about what it means to do mathematics (which 
helps one to recognize situations in which mathematical knowledge can be used) and (b) 
mathematical self-efficacy beliefs. Students with low mathematical self-efficacy beliefs are less 
likely to persist when faced with challenges, and may be less likely to choose STEM-oriented 
careers (cf. strategic competence and productive disposition, National Research Council, 2001). 

Typical approaches to teaching lower-level mathematics classes involve demonstrating 
an application of some mathematical fact or procedure to an example, accompanied by students’ 
practice with similar examples. However, it is also important for students to experience 
mathematics as a field of inquiry, in which they learn to think and communicate mathematically 
by working collaboratively on novel problems (e.g., Goos, 2004). We consider how such an 
approach might affect both their understanding of mathematics and their perceptions of 
themselves. We designed and implemented this exploratory project to investigate two questions: 

How do exploratory projects designed to loosely mimic mathematical research practices 
impact students’ 

x understandings of mathematics, including mathematical research? 
x perceptions of themselves as mathematically able? 

 
Method 

We developed a 5-week class for pre-calculus high school students that consisted 
exclusively of projects designed to engage students in the kinds of practices that mathematicians 
use to solve problems. The goal was for students to learn that doing mathematics includes 
making sense of problems, posing partial solutions for public critique, collaborating with others 
to work toward a solution, and formalizing results in the form of a viable argument (cf. Common 
Core State Standards for Mathematical Practices, NGA Center & CCSSO, 2010). We used a 
survey instrument to examine students’ beliefs both before and after the course on (a) the 
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discipline itself, (b) learning mathematics, and (c) their personal abilities to learn the subject. We 
also interviewed students about their course experiences. 
 

Results 
The course experience seemed to correspond with moderate, productive changes in 

beliefs about the nature of mathematics and about the roles of collaboration in the doing of 
mathematics. Some students also seemed to develop more detailed descriptions of the work of 
mathematicians, and appeared to change their attribution of success from knowledge of 
mathematical facts and procedures to ways of thinking about mathematics. We also detected 
negative changes in students’ perceptions of the difficulty of mathematics for them and of their 
own abilities to explain their mathematical thinking to others. 
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A comparison of self-inquiry in the context of mathematical problem solving 
 

  Todd A Grundmeier          Dylan Retsek 
Cal Poly, San Luis Obispo Cal Poly, San Luis Obispo 

 
Dara Stepanek 

Central Coast New Tech High School 
 
Self-inquiry is the process of posing questions to oneself while solving a problem.  The self-
inquiry of thirteen undergraduate mathematics students and one mathematics professor was 
explored.  Student self-inquiry was explored via structured interviews requiring the solution of 
both mathematical and non-mathematical problems. The professor’s self-inquiry was explored 
through self-reporting of questions asked in an advanced problem-solving context.  Using 
transcripts of the student interviews, a coding scheme for questions posed was developed and all 
questions were coded. Data analysis of the posed questions suggests that the “good” 
mathematics students focus more questions on legitimizing their work and fewer questions on 
specification of the problem-solving task.  Data analysis of the professor’s self-inquiry is 
ongoing and will be compared and contrasted to that of the undergraduates. 
 
Key-Words: Problem Solving, Proof, Self-Inquiry, Logic, Questioning 
 

Experts in mathematics do things differently than the masses. It therefore makes sense to 
rigorously study exactly what characterizes expert mathematical thought, ultimately aiming to 
transfer this understanding to better educate undergraduates in mathematics. Indeed, much recent 
work in undergraduate mathematics education has explored this very idea. From how experts 
read proofs (Inglis & Alcock, 2012 ) and vet the work of their peers (Inglis, Meija-Ramos, 
Weber & Alcock, 2013) to how they make conjectures (Belnap & Parrott, 2013) and use 
metaphors/perceptuo-motor activity (Soto-Johnson, H., Oehrtman, M., Noblet, K., Roberson, L., 
& Rozner, S., 2012), a clearer picture of expert mathematical practices is beginning to emerge. In 
this preliminary report the authors begin to add expert “self-inquiry” to the canon. 
 Many teachers refuse to simply answer a student’s question; instead, these teachers insist 
on responding to the student’s misconceptions with other related questions that the student can 
answer, slowly scaffolding the student’s responses until the student has answered (knowingly or 
unknowingly) their own question.  This method, when done correctly, allows the student to 
recollect related knowledge, receive a confidence boost in their own knowledge of the subject, 
and receive a lesson in problem-solving strategies that could be utilized to solve future problems.   

This method of answering questions with other questions seems to work extremely well 
for student ownership of material, but the question remains as to why students don’t ask 
themselves some or all of these leading questions.  Since the student is capable of answering the 
posed questions that lead them to the solution, what is stopping the student from posing these 
questions themselves?  Is effective self-inquiry a mark of a “good” student?  What types of 
questions do these “good” students ask themselves while problem solving?  More importantly, 
how can we foster pedagogical knowledge from these “good” students’ questions so that teachers 
can guide all students toward productive self-inquiry?  
           A detailed initial exploration motivated by these questions (Grundmeier, Retsek & 
Stepanek, 2013) suggests marked differences between the questioning profiles of “strong”, 
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“average” and “weak” students. In order to shed further light on these questions, the authors 
designed and undertook a similar data collection process wherein a single “expert” recorded his 
own self-inquiry over an extended period of study on an advanced mathematical topic. 

The overarching goal of this study is to compare and contrast these expert questions to 
those of undergraduate students (Grundmeier et al., 2013). Following an identical coding 
scheme, ongoing analysis of expert questions posed during the problem solving process will shed 
further light on what makes for “good” self-inquiry, will test the adequacy and completeness of 
earlier question coding schemes, and will potentially generate further data collection tools.  The 
coding scheme is represented in the “question tree” below and will be explained in detail during 
the presentation. 
 

 
Figure 1:  The question tree 
 

While related research has been conducted in secondary education and reading 
comprehension (Kramarski & Dudai, 2009; King, 1989) and in general mathematical thinking 
(Schoenfeld, 1992), it seems that the self-inquiry of undergraduates in the process of 
mathematical problem solving, particularly in comparison to analogous expert self-inquiry, has 
not been explored. Therefore another goal of this project is to continue this line of inquiry and 
add to the current mathematics education research related to problem solving. 
 

Further Data Collection 
As the main activity in a quarter long sabbatical the participant worked through the 

majority of the first two chapters of the text Real Analysis: Modern Techniques and Their 
Applications (Folland, 1984).  This text was chosen because it is frequently used in graduate 
course work and would allow for a faculty mentor just in case mathematical questions needed to 
be referred to a colleague.  

The participants’ typical plan for working on the material was to carefully read each 
section of the text while noting questions that arose.  He then attempted the problems that had 
been assigned in a recent Real Analysis course.  While attempting to solve each problem the 
participant would document all questions that arose as well as the time between each question.  
Many problems required multiple attempts before a solution or proof was reached and questions 
during each attempt were recorded separately.  For example, in organizing the data many 
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headings such as “Section 2.3, Problem #22 attempt #2” appear.  The choice to record these 
questions separately was made for a number of reasons.   

First there was often a significant amount of time between attempts, as the participant 
might have tried another problem in between or needed to sleep on the strategy he was using.  
Second, the participant assumed there would be overlap between the questions asked which 
might be important to analyze and discuss.  Finally, it may be interesting to determine if the 
types of questions asked were different after some time subconsciously considering the problem. 
Working through this process for the first two chapters of the text led to the collection of 404 
questions.  
 

Further Analysis 
The newly generated data will be analyzed using the coding scheme developed and used 

by the authors (Grundmeier et al., 2013).  The goal of the analysis will be to compare the 
professor’s questioning to that of our previous research participants, to determine if our coding 
scheme needs to be refined, to create a detailed description of the participant as a problem solver, 
and to generate further data collection tools.  
 

Questions for the Audience 
1. Are there other potentially fruitful ways to analyze this data set and/or make comparisons 

of self-inquiry? 
2. What other data collection tools or research design options would help explore self-

inquiry? 
3. Is the refinement of the coding scheme a worthwhile research task? 
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Introduction 

Function is a critical concept for mathematics and related branches of sciences. Despite its 
centrality in K-12 and undergraduate mathematics, it is one of the most challenging topics to 
master in school learning due to the various notions associated with the concept (Eisenberg, 
1991). Existing research highlights many challenges students face as they learn about functions. 
Researchers argue that students often associate function with a single algebraic expression or 
rule (Vinner & Dreyfus, 1989) and have difficulties with piecewise functions (Sfard, 1992). 
Students also struggle with conceptualizing function both as a process and a mathematical object 
(Gray & Tall, 1994; Sfard, 1992) and moving flexibly across graphical, algebraic, tabular, and 
verbal representations of functions (Monk, 1994; Sierpinska, 1992; Tall, 1996). They have 
difficulties interpreting dynamic representations and information demonstrating the relationship 
between two variables (Carlson, 1998; Kaput, 1992; Monk, 1994). Given the multiplicity of 
notions and complexities inherent in the learning of functions, it is important for teachers to 
address their students’ difficulties in the classrooms. In order to this, teachers need to understand 
the content and the challenges it presents to students.  

Shulman (1986) identified pedagogical content knowledge (PCK) as a combination of 
content knowledge and pedagogy that is distinct to the teaching profession. Ball, Thames, and 
Phelps (2008) built on Shulman’s work and provided two distinct categories of PCK: (a) 
awareness of what makes mathematical topics difficult for students to learn, and (b) knowledge 
of strategies for helping students overcome their difficulties.  They pose an important question 
“whether and how different approaches to teacher development have different effects on 
particular aspects of teachers’ pedagogical content knowledge” (Ball, Thames, & Phelps, 2008, 
p. 405). The aim of this study is to present one such approach that uses a discursive lens in the 
context of a post-secondary classroom. The study addresses the following question: How does an 
instructional approach that promotes prospective and in-service high school teachers to reflect on 
their own discourses help them develop their thinking about student learning about functions?  

Theoretical Framework 
This work has theoretical assumptions based on Sfard’s (2008) communicational approach to 

cognition, which underlines the close relationship between thinking and communication. In this 
theory, thinking is conceptualized as an individual form of communication and mathematics is 
considered as a discourse that can be characterized by its word use, visual mediators, routines, 
and endorsed narratives. Word use refers to the ways in which participants use words in their 
mathematical discourse. Visual mediators refer to the visible objects created and operated upon 
for the sake of mathematical communication. Routines are the collection of meta-level rules 
characterizing the repetitive patterns in participants’ discourses. Endorsed narratives refer to the 
set of utterances describing mathematical objects and their relationships that the participants of 
the discourse consider as true. Sfard (2008) views learning as becoming a more fluent participant 
of mathematical discourse as participants change their previously existing discourses.  

There are various reasons why we used a discursive approach to help teachers develop their 
thinking of student learning on functions. First, it is important for teachers to elicit their students’ 
discourses in the classroom to be able to identify their difficulties and address them. Second, 
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teachers need to be aware of and attend to their own discourses to enhance classroom 
communication (Güçler, 2013, 2014). This requires that they explicitly discuss the different ways 
they use mathematical words, visual mediators, routines, and endorsed narratives about a concept 
for students to see how a concept can be viewed differently depending on the context. Third, in a 
content course or a professional development setting, it is critical to elicit teachers’ own 
discourses on mathematical concepts rather than directly exposing them to student difficulties 
about the concepts. Before responding to their students’ discourses, teachers need to be aware of 
their own mathematical discourses. These elements constitute the main principles of the teaching 
experiment we designed for this work.  

Methodology 
The main focus of the teaching experiment was to make teachers’ discourses on function 

explicit topics of reflection to help them realize their own thinking about the concept to then help 
them develop their thinking about student learning of the concept. In this work, teacher 
development was evidenced by the changes in teachers’ discourses in terms of how they talked 
about the student difficulties about function and the teaching strategies that can be used to 
address those difficulties. Consistent with the theoretical assumptions of this work, we aimed to 
elicit the student difficulties about functions through the teachers’ own discourses. In other 
words, we initially considered the teachers as learners to examine how they thought about 
functions. We then kept a record of all the difficulties the teachers faced when working on 
function-related problems and made those instances explicit topics of discussion in the classroom 
for teachers to reflect on their own discourses. Through these experiences, the teachers explicitly 
talked about how they used words, visual mediators, and routines to endorse particular narratives 
about functions. It was only after these experiences that the teachers were asked to think about 
possible student difficulties and how they would address those in their classrooms. The activities 
used in the classroom were developed in light of the research on student difficulties to enhance 
teachers’ thinking about different conceptualizations and representations of functions. The goal 
was to use those activities to bring forth and reflect on teachers’ discourses to support the 
development of their thinking on student learning about the concept.  

The participants were one pre-service and seven in-service high school teachers, hereon 
referred to as teachers, taking a content course on calculus to meet the criteria for their initial or 
professional licensure program. Except for the pre-service teacher, who had no prior teaching 
experience, the participants’ experiences ranged between 4 to 12 years. The researcher was the 
instructor of the course. Two graduate students assisted the researcher during data collection and 
analysis. Although the larger study explored teachers’ discourses on all calculus concepts over 
the course of 13 weeks, this paper focuses on functions. The study followed a teaching 
experiment methodology as outlined by Steffe and Thompson (2000). 

For functions, the data consisted of an initial survey given to the teachers, three video-taped 
classroom sessions (lasting 2.5 hours each), weekly homework assignments, weekly journal 
reflections collected from the teachers, and audio-taped interview sessions conducted at the end 
of the semester. The interview sessions and classroom discussions during which the teachers 
talked about functions were transcribed. The transcripts were independently and then collectively 
examined to identify how the teachers’ discourses on student thinking changed during the course 
in relation to their reflections on their own discourses on functions.   

Results 
In the initial survey, which was administered at the beginning of the first lesson on functions, 

the teachers were asked to define what a function is. Their definitions suggested that the majority 
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of the teachers viewed function as a process that takes any given input and produces one unique 
output. Two teachers endorsed mathematically incorrect narratives about function (e.g., it has to 
be continuous or one-to-one) and four teachers used phrases they associated with function (e.g., 
“for every input, there is only one output”, “passes vertical line test”) rather than defining what a 
function is. Two teachers considered function as the same thing as one of its representations by 
defining it as a graph or algebraic rule. These responses indicated that some of the student 
difficulties identified by the literature were present in the teachers’ discourses at the beginning of 
instruction. In the survey, the teachers were also asked to list some student difficulties about 
functions that they experienced or anticipated. Table 1 shows the written responses they provided 
for this question (the names used in the study are pseudonyms).  

 
Table 1: Survey responses to experienced/anticipated student difficulties with functions 

Teachers Survey Responses 
Carrie [1] Students have difficulties with trig functions and inverse trig functions 

because they are less familiar 
Fred [2] Inputs of non-integer values and how to conceptualize behavior of functions 

without reaching for graphing calculator 
Lea [3] Understanding of dependent variable vs. independent variable; graphs of 

different functions; evaluating functions 
Martin [4] Displaying and modeling 
Milo [5] ? 
Ron [6] Student interchange the input and outputs 
Sally [7] One to one and onto 
Steve [8] The closeness to an equation/what is really different about the two 

 
The responses in Table 1 demonstrate that, when thinking about student difficulties, the 

teachers often talked about particular actions to be performed on functions such as evaluating [2-
3], interchanging the input and output [6], and displaying and modeling [4] without explaining 
why those would be challenging for students. One teacher could not think of any student 
challenges as indicated by the question mark he provided in his response [5]. Some teachers 
mentioned students’ lack of familiarity with particular types of functions [1] and their problems 
with various characteristics of functions such as one-to-one and onto [7]. Despite the significant 
years of teaching experience of these participants, only a few responses touched on some of the 
conceptual challenges with functions as indicated by the literature such as struggles with 
conceptualizing the behavior of a function [2], lack of understanding of independent and 
dependent variable [3], and confusion about an equation and a function [8]. 

The activities in the classroom gave teachers ample opportunities to think about their 
discourses on function and how the narratives they endorsed about the concept were regulated by 
their word use, routines, and visual mediators. For example, there were activities during which 
the teachers reflected on their own definitions of function as well as the different definitions 
formulated by mathematicians over the course of the historical development. These experiences 
enhanced teachers’ awareness of the elements of their discourses on function and how different 
views of the concept are based on different utilizations of those elements. Through the classroom 
discussions, the teachers recognized that their initial endorsed narratives about a function as 
consisting of a process or graph were based on the routine of using the metaphor of continuous 
motion, which was supported by their use of graphs as visual mediators. They were able to 
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juxtapose these elements of their discourses with other endorsed narratives about function such 
as the Bourbaki definition, which views function as consisting of a set of ordered pairs through 
the routine of using the metaphor of discreteness, which was supported by the use of algebraic 
representations as visual mediators. Similar findings were observed when teachers worked on 
activities that were focused on the representations of functions. The foci when discussing the 
various representations of functions were to examine whether a function is the same thing as its 
representation (e.g., is a function a graph/an algebraic rule?) and to think about the similarities 
and differences across multiple representations of functions. The teachers had opportunities to 
think about the verbal, tabular, graphical, and algebraic representations of functions by modeling 
real-life problems and using dynamic geometry software. During these activities, the teachers 
had to work with atypical and piecewise functions and realized that they often considered 
functions as continuous, linear, and consisting of a single rule. They compared and contrasted the 
representations based on a static view of functions (e.g., tabular representations as a set of 
ordered pairs) with those that are based on a dynamic view (e.g., graphs).  All these instances 
helped the teachers (a) recognize their own difficulties about functions, (b) reflect on their own 
discourses on function, and (c) recognize the dynamic relationship among the different elements 
of their discourses and the importance of explication of those elements to enhance mathematical 
communication in the classrooms.  

Teachers’ weekly journals and responses to the interviews revealed that, they were able to 
identify many of the conceptual challenges associated with function at the end of their 
instruction. Some of their responses are presented in Table 2.  

 
Table 2: Responses to anticipated student difficulties with functions  
Teacher Response  Source  
Carrie [9] The idea of function as a single rule but it can be multiple rules. 

Piecewise functions would pose a big issue [for students] as well. 
Interview 

Fred [10] Linear functions cloud student perceptions about all functions. Journal entry 
Lea [11] They would struggle with seeing functions as coming in all 

shapes and forms and to recognize each of them as being about a 
function. Also looking at function as a process and not just as a 
number coming out as the output. Translations from the verbal to the 
graphical and algebraic representations would be useful.  

Interview 

Martin [12] Students have a tendency to assume continuity despite not being 
told or shown that a function is continuous. Students seem to get 
fixated on the notion of a single rule. 

Journal entry 

Milo [13] The elaborate [formal] definition of function wouldn’t mean 
anything to a lot of students unless it fits to their existing definitions.  

Interview 

Ron [14] Students have issues with functions with split domains because 
they have a hard time with the concept that a function can change in 
pattern. They have difficulties with constant functions...and can’t 
seem to understand a function doesn’t necessarily have to change.  

Journal entry 

Sally [15] Students consider a function just the equation or graph or table. Journal entry 
Steve [16] Just looking at the procedures, like the vertical line test, without 

understanding the definition of the concept.  
Interview 

 

18th Annual Conference on Research in Undergraduate Mathematics Education 56518th Annual Conference on Research in Undergraduate Mathematics Education 565



In Table 2, the teachers talked about the conceptual challenges with functions and the 
difficulties they identified were consistent with those in the literature, which contrasted sharply 
with the responses they provided in Table 1.  Table 2 indicates that, at the end of their instruction 
on functions, the teachers recognized the student difficulties related to piecewise functions and 
the view of function as a single rule ([9-10], [12], [14]); translations across different 
representations [11]; associating function with a given representation [15]; and the role of the 
definition ([13], [16]) when thinking about functions. They also highlighted student challenges 
regarding change and variation [14]; the use of the metaphor of continuous motion [12]; and the 
views of function as a process (e.g., mapping) and a mathematical object (e.g., a number) 
obtained at the result of that process [11]. The interview responses suggested that the teachers 
were able to provide explanations when asked to elaborate why those difficulties occurred. When 
asked how they knew about those difficulties, they often referred to their own struggles since 
many of them demonstrated the difficulties in Table 2 in the classroom.  

The responses in the weekly journals and interviews also indicated that many of the teachers 
considered the activities and discussions they engaged in the classroom as resources they would 
use to address their students’ difficulties. For example, Ron said he would use the classroom 
activity in which they examined each other’s definitions of functions in his classroom. Milo 
noted that he benefited from the examination of the historical development of function and 
wanted to use it as a resource to enhance his students’ thinking about definitions of functions. 
Sally considered working on different representations in the classroom as a useful way to teach 
functions to her students. Fred mentioned that he would now ask his students to keep journals.  

Discussion 
The results of the study indicate that making teachers’ discourses on function explicit topics 

of reflection in the classroom supported the development of their thinking about student learning. 
It also helped them think about possible teaching strategies for helping their students. These two 
aspects of the teachers’ development were in alignment with Ball, Thames, and Phelps’ (2008) 
notion of PCK that includes awareness of what makes mathematical topics challenging for 
students and strategies to address those. In addition, the pedagogical approach used in the study 
helped teachers realize their own struggles with the function concept, which is critical for 
enhancing their content knowledge. These findings indicate that teachers’ deep exploration of 
their own mathematical discourses can be a useful approach for them to think about their own 
knowledge, practice, and students.  

The teachers’ consideration of the activities and discussions they engaged in the classroom as 
useful resources for their own students suggests that they recognized the importance of 
discursive transparency in enhancing mathematical communication. For such transparency, the 
teachers do not only need to elicit their students’ mathematical discourses in the classroom but 
also explicitly attend to the elements of their own discourses. Otherwise, those elements could 
remain implicit in the classroom, leading to miscommunication. Indeed, the teachers in the study 
often mentioned that they never learned about the connections among the different elements of 
the discourse on functions in their prior education. Such tacitness was possibly one of the reasons 
why, despite their experience, they showed difficulties with various aspects of the concept.  

The discursive approach used in this study is certainly not the only one that can help teachers 
enhance their thinking about student learning. On the other hand, rather than treating teachers’ 
knowledge as static entities and focusing on the teachers’ limitations (e.g, lack of knowledge, 
insufficiency of cognitive schema), it characterizes teacher learning as a contextual, dynamic, 
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and ongoing process of developing particular types of discourses to enhance participation in 
mathematical discourse.  
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Students’ understanding of concavity and inflection points in real-world contexts: 
Graphical, symbolic, verbal, and physical representations 

Michael Gundlach      Steven R. Jones 
Brigham Young University     Brigham Young University 

Much of what we know about student understanding of concavity and inflection points comes 
incidentally from studies looking at the calculus activity of sketching the graphs of functions. 
However, since concavity and inflection points can be useful in conveying information in 
disciplines like physics, engineering, biology, and economics, it seems important to study how 
students understand these two concepts in these contexts. This study attempts to provide 
insight into this area. 

Key words: calculus, concavity, inflection point, applications, representations 

Concavity and inflection points are important characteristics of a function’s “behavior,” 
and are key elements in the calculus activity of sketching the graphs of functions (see Baker, 
Cooley, & Trigueros, 2000). In fact, most of the insight on student understanding and usage 
of concavity and inflection points comes incidentally from research on this particular activity 
(e.g., Baker et al., 2000; Berry & Nyman, 2003; Carlson, 1998). However, these two concepts 
have much potential usefulness in disciplines outside of mathematics, such as in physics, 
economics, biology, and engineering. It is important to know how science-bound calculus 
students might make meaning out of concavity and inflection points in these contexts. 

Carlson, Jacobs, Coe, Larsen, and Hsu (2002) discussed inflection points in real-world 
contexts by examining how students were able to model the height of water in a bottle over 
time and by having students reconstruct a temperature graph based on its rate of change 
graph. They noted that several students had difficulty conceptualizing a changing rate of 
change. The students who were more successful were able to use “covariational reasoning” in 
order to track these changes. Since it is important to connect mathematics education to real-
world contexts (President's Council of Advisors on Science and Technology, 2012), we 
propose to build on this work by examining students’ understanding of concavity and 
inflection points in a wider variety of applications. 

Four representations for concavity and inflection points 
Some studies have documented difficulties students have in working with concavity and 

inflection points (e.g., Baker et al., 2000; Carlson et al., 2002; Tsamir & Ovodenko, 2013), 
but each study has typically focused on only certain representations. For example, Tsamir and 
Ovodenko (2013) focused mostly on the symbolic and visual representations and noted that 
students struggled in applying logic to statements about inflection points. Carlson et al. 
(2002), on the other hand, focused on covariational reasoning and showed that is quite useful 
for making sense of concavity and inflection points. In order to talk about a variety of 
representations at once, and to have a common language for these various representations, we 
employ the names of four representations used in Zandieh (2000), which she laid out to 
discuss students’ understanding of the derivative. In particular, we use the categories of 
symbolic, graphical, verbal, and physical representations for concavity and inflection points.  
Graphical: In this representation, concavity and inflection points are considered in a 

purely visual manner, with the salient feature being the “shape” of a graph. This might be 
communicated through the use of familiar images, such as bowls, smiley faces, or parabolas. 
An inflection point may be seen graphically as the linking of two such images. 
Symbolic: Concavity and inflection points can both be represented abstractly through 

mathematical symbols. A student may consider whether the second derivative is positive or 
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negative, f ”(x) > 0 or f ”(x) < 0, to decide whether a function is said to be concave up or 
down. A change in the sign of the second derivative may indicate an inflection point. 
Verbal: In a way similar to Zandieh’s derivative framework (2000), we use verbal to 

indicate the interpretation of concavity as the “rate at which a rate of change changes.” This 
is essentially the same as Carlson et al.’s (2002) covariational reasoning, in which a student 
discusses a changing rate of change. By extension, the inflection point is the switching of this 
rate of change in the rate of change. 
Physical: It is possible to think about concavity in terms of familiar physical phenomena, 

such as acceleration, or something akin to force. Note that while this category is labeled 
“physical,” it does not necessarily mean that any time a student discusses concavity or 
inflection points in a real-world context that they are working within this representation. 
Rather, it requires the conception and usage of some well-known, intuitive real-world 
phenomenon that captures, for the student, the essence of the concavity or inflection point. 

In this paper, these four categories of representation are meant to capture different 
possible aspects of understanding concavity and inflection points, though they might not 
necessarily capture them all. Also, these categories are not mutually exclusive; it is quite 
possible (and even likely) that a student would draw on multiple representations in order to 
make sense of concavity. 

Methods 
For this study, a group of eight, randomly chosen students from a large-lecture, first-

semester calculus course at a major university in the United States were asked to participate 
in three 45-minute task-based interviews (Goldin, 1997) regarding calculus concepts. One of 
the interviews, which centered on concavity and inflection points, is used for this study. To 
focus on how students made sense of these two concepts in real-world contexts, the first four 
interview items were based on physics, economics, and biology examples. For the first item, 
we wished to elaborate on the temperature task given in Carlson et al. (2002), by providing an 
open ended prompt to the students that “there is an inflection point in air temperature.” By 
doing so, it takes the focus away from the activity of graphing and places it on students’ 
informal understanding. The second item asked the students to consider an inflection point in 
housing prices during the economic recession following the year 2008. The third item asked 
the student to describe the concavity of a person’s height over their life time. And the fourth 
item asked the students to describe the expansion of the universe based on information given 
symbolically about the second derivative of a function modeling the universe’s size. The fifth 
item was a traditional calculus graphing problem, given to the students in order to have a 
baseline reading of how they understood concavity and inflection points in a pure 
mathematics context. We analyzed the data by coding student statements based on the four 
different representations listed above. We then examined each of the four categories for 
patterns in how the students drew on them to make sense of the real-world contexts. 

Results 
In the following subsections, we describe the students’ usage of each of the four 

representations. We also provide results on typical difficulties that arose with certain 
representations. 
Graphing: All eight students, not surprisingly, drew heavily on the graphical 

representation and were often able to use it to effectively discuss concavity and inflection 
points. For example, three of the students used the image of an upward-facing bowl or an 
upside-down bowl to determine whether a graph was concave up or concave down (cf. Baker 
et al., 2000). We label these visual cues “image pairs,” since they always consisted of 
complementary images for concave up and concave down. Other image pairs the students 
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used in determining concavity included smiles and frowns, hills and valleys, a “U” and an 
“n,” and upward and downward facing parabolas. Note that even though a parabola 
potentially has other layers of meaning, the students in this study seemed to use “parabola” 
mostly for its “U-shape.” 

The students located inflection points often using the same visual cues as concavity. They 
typically looked for places where the complementary image pairs were “linked” together. 

 
Ryan: I’d look and try to figure out where, like, there are two parabolas coming together, so like I see this 

thing right here, and I see another bigger one right there, and I look, like, for where they intersect. 
 
While the graphical representation of concavity and inflection points was a comfortable 

context for the students to work in overall, the reliance on the familiar images of bowls, hills, 
smileys, and parabolas did occasionally lead students toward incorrect interpretations 
regarding the nature of concavity and inflection points. First, four of the eight students stated 
at least at one point in the interview that if a graph was concave up it would have to have a 
minimum and if it was concave down it would have to have a maximum. For example, while 
discussing an inflection point in the temperature, Doug said the following: 

 
Interviewer: So, in your opinion, would an inflection point always be associated with a max and a min on 

either side, or can you have an inflection point that doesn’t necessarily have maxes and mins on either 
side? 

Doug: I think in my opinion it would, it would be, it would need to be based on, like, a maximum or a 
minimum. At least, just to make sense in my mind, so that you can know something is concave up or 
concave down, because those always have a maximum or a minimum. 

 
This seems related to the fact that six of the eight students claimed at least once during 

the interview that an inflection point must be where the slope was the steepest, which is only 
true for certain types of inflection points. When an inflection did not occur at this location, 
the students were often more hesitant. As an example, Kylie generally seemed less confident 
about inflection points that were on the least steep part of the graph, often calling them less 
“defined” than inflection points that occurred on the steepest part of the graph. She said the 
following while thinking through the expansion of the universe over time. 

 
Kylie: If the concavity’s down, but it’s still increasing, then it’s going to be… [draws left half of the graph 

in Figure 1]. Now concavity’s changed to up, so the curve will look something like this [draws right 
half of the graph]. And this is an inflection point, not a very defined one [puts a dot on the graph]. 

 
Figure 1: Kylie’s “not very defined” inflection point 

 
Next, this reliance on familiar, curved shapes to depict concavity led some students to 

make assertions in conflict with common sense for certain real-world contexts. For example, 
Doug was using the idea of concavity to sketch a graph of a person’s height over their 
lifetime, and the “hill” image caused him to think that any concave down part of the graph 
would necessary have to decrease from a maximum before switching to concave up. 

 
Doug: I guess, in my mind, everybody either like, increases over time and then they reach like a certain 

peak in their life, and then they go back down. But I guess there are like, certain people where maybe 
they, maybe they reach a growth spurt in high school, shrink a little bit in college, maybe a little bit, 
maybe grow back in their twenties or so. And I guess maybe that would change the concavity of it. 
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Doug’s “hill” shape for concavity was strong enough that he forced reality to fit his picture of 
a concave down portion of a graph. This created the strange idea that people must shrink at 
various times in life in order to accommodate the concavity inherent in his mathematical 
model. Six of the eight students made some sort of unrealistic statement about a physical 
context in order to preserve their strong, familiar “U-shaped” images of concavity. This 
resonates with other studies that have discussed the potentially problematic nature of visual 
representations in student thinking (e.g., Aspinwall, Shaw, & Presmeg, 1997). 

In general, and not surprisingly, the graphical representation for concavity and inflection 
points was the most prominent in student thinking. Some students, when asked to think about 
inflection points using alternate representations, insisted that it would be best to just find a 
way to turn it into a graph and find the inflection points that way. One student adamantly 
exclaimed, “Why wouldn’t you make it into a graph?” Overall, while the visual 
representation can be powerfully useful in student thinking, it appears that, without care, it 
can also lead toward difficulties as well. 
Symbolic: The students in this study were largely comfortable working within the 

symbolic representation. Six of the eight students had no difficulty in determining concavity 
based solely on the sign of the second derivative and using the second derivative to make 
correct interpretations. However, for one student, the sign of the second derivative seemed 
automatically associated with either maximums and minimums, or the fastest or slowest 
growth—essentially bypassing concavity altogether. 

 
Nathan:  The second derivative is less than zero. That indicates that there’s going to be a maximum. And 

then, for, it’s greater than zero, then, it indicates there’s going to be a minimum. 
 

Nathan seems to have internalized the results of the “second derivative test” as becoming the 
actual meaning of the second derivative. This potential conflation of meaning suggests the 
need for students to carefully construct what the second derivative test is and why it works. 
Yet, despite these occasional difficulties, the students were generally successful in working 
within the symbolic representation. 
Verbal: In moving from the graphical and symbolic representations, we see a critical shift 

in the students’ ability to work within the verbal representation, in that they had difficulty in 
accurately describing the rate at which the rate of change changes (cf. Carlson et al., 2002). 
This difficulty became pronounced in the various real-world scenarios. In particular, students 
seemed much more prone to confuse inflection points with maximums and minimums in the 
real-world contexts than in the pure mathematics graphing item. For example, Gavin 
struggled to describe what an inflection point meant, saying at first it was a point where the 
graph “stops increasing at such a rate, and starts decreasing at such a rate.” In fact, when 
asked about an inflection point in the context of temperature, five of the eight students stated 
it would be a point where the temperature reached either a maximum or minimum. 

 
Ryan: That is, that’ll be where it, it changes from like, getting hot to getting cold. So if you’re looking at, if 

you’re looking at, like, the temperature, and it’s getting hotter, hotter, hotter [draws the left half of a 
“parabola” shape, see Figure 2], it’s not getting as hot anymore, and then it’ll start getting colder 
[draws the right half], this would be the inflection point [puts a dot at the maximum, see Figure 2]. 

 

 
Figure 2: Ryan’s “inflection point” at the maximum 

 
In another example, students were given an item describing the beginning of a sharp 

decline in housing prices in 2008 and were told that an economist claimed there was an 
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inflection point in housing prices in 2009. When asked to interpret what that inflection point 
in housing prices would mean, three of the eight students claimed that it would be a 
minimum. 

 
Interviewer: If you were living in 2009, what would tip you off that, okay, an inflection point just happened 

in the housing prices right there? 
Nathan: Um, realize the housing prices were up. That they would start to rise. The value of your house has 

started to rise. 
 

In general, this tendency to conflate inflection points with maximums and minimums was a 
recurring theme across the interview items involving real-world contexts. 
Physical: Little research has been done on how students draw on a physical 

representation of concavity and inflection points, so we relate some of the ways in which our 
students did so. Six of the eight students drew on some sort of physical representation during 
the interview, which was done most commonly by rendering concavity as the acceleration of 
the quantity in question. This includes the “acceleration” of temperature, the “slowing down” 
of a person’s height, or the “speeding up” of the universe’s expansion. Occasionally, a 
student would employ a distinctive physical metaphor to think about concavity, such as cold 
and warm winds (for the temperature item) or emotional optimism (for the economics item). 

 
Interviewer: If you were to describe [the inflection point], how would, what would sort of be your everyday 

language way of saying what’s going on? 
Ryan: I would say that the future is optimistic, I guess. Like, things have been bad, but now we think things 

are going to turn around and start getting better. 
 
Yet, like the verbal representation, there was increased difficulty for the students when 

drawing on the physical representation. In fact, once again, much like with the other three 
representations, the students at times mixed up inflection points with maximums and 
minimums when working within the physical representation. 

 
Interviewer: What would you be experiencing as far as temperature goes at that inflection point? 
Camille: It would be suddenly feeling a cold breeze and suddenly feeling, like, a warm breeze. 
Interviewer: Okay, so it would switch kind of from cold to hot, sort of a thing? 
Camille: Yeah. 
 
Overall, we observed that the physical representation was also difficult for students to 

think and reason with. In fact, it did not seem to be a major driver in any of the student’s 
thinking, but was mostly a way of embellishing a previously used graphical or symbolic 
representation. And while the acceleration notion was effectively drawn on at times, it 
appears that the students had not had the opportunity to create strong physically-based 
meanings for concavity and inflection points. 

Discussion 
The students in this study were able to draw on a variety of representations to think about 

concavity and inflection points in real-world contexts. Many students often drew on more 
than one at a time. Yet, one striking theme that appeared throughout all contexts and 
representations was that students tended to conflate concavity and inflection points with 
maximums and minimums when considering real-world scenarios. Students often thought of 
maximum temperatures or minimum housing prices when explaining inflection points. This 
result adds another piece of evidence in support of the need for students to develop strong 
covariational reasoning (Carlson et al., 2002). Not having this reasoning seemed to lead 
students toward mixing up what the “change” was that they were looking at. That is, it seems 
possible that they knew concavity and inflection points dealt with a “change” of some sort, 
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but without being able to think through a change in how the rate of change changes, these 
students may have confused “how the rate of change changes” with simply “how the rate 
changes.” If this is the case, it would explain why students tended to think of an inflection 
point as merely implying a switch from increasing to decreasing, or vice versa, instead of 
implying a change in how the rate of change is changing. 

In addition, the visual representation had a peculiar difficulty associated with it, in that it 
seemed to lead students to rely heavily on a full “bowl” shape, that must both decrease and 
increase. This led some students to make illogical conclusions regarding the real-world 
contexts they were discussing. It may be that the students were over-relying on this 
representation, since it is what is most commonly used during instruction (see Baker et al., 
2000). In either case, it appears that relying too much on a specific visual image may impact 
how students think about these important concepts (cf. Tsamir & Ovodenko, 2013). 

Overall, these students did not seem equipped to apply their knowledge of concavity and 
inflection points to real-world contexts. In order to support students’ usage of their calculus-
based knowledge in these contexts, our results suggest, along with Carlson et al. (2002), that 
we may need to increase classroom attention given to concavity and inflection points outside 
of the classical graph-sketching activity. In addition, we propose that including contexts 
outside of mathematics, such as physics, economics, or biology, may help students construct 
covariational reasoning in a way that enables them to think through these types of scenarios 
using the verbal or physical representations more successfully. In doing so, we believe 
students will be better able to use their knowledge of concavity and inflection points to 
understand the real-world phenomena they encounter outside of the calculus classroom. 
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1. Problem Statement 
 

The transition into university-level mathematics is a critical juncture in the education of 
future science, technology, engineering, and mathematics (STEM) professionals. As student 
retention in STEM _fields remains far too low, particularly amongst underrepresented groups 
such as women and people of color (PCAST, 2012), there is a need to improve student 
learning outcomes in the courses that often push students out of STEM _fields, particu- 
larly introductory calculus. That even high-performing calculus students demonstrate weak 
understandings of key calculus concepts (e.g., Carlson, 1998; Selden et al., 2000) further sug- 
gests that work needs to be done to foster more robust learning in undergraduate calculus. 
In addition, functions are fundamental objects of study in mathematics, and research has 
shown that strong understandings of functions support many kinds of mathematics learning. 
To date, not enough is known about students' knowledge of mathematical functions and how 
this may influence their learning of key concepts of introductory calculus such as limits and 
rates of change. This study helps address this research gap by examining beginning calculus 
students' ideas about functions, as well as their ideas about limit and rate of change. We 
will share selected examples of students' work to illustrate student thinking and will discuss 
the implications of the study results on teaching calculus at the undergraduate level. 
 

2. Theoretical Framework 
 

A widely accepted idea is that students should understand the conceptual basis of mathe- 
matics, rather than only knowing procedures (Hiebert & Carpenter, 1992). In other words, 
computational proficiency, while valuable, is not on its own a suficient goal of mathemat- 
ics education. Furthermore, computational proficiency often does not mean that students 
actually understand the mathematical concepts that underlie the procedures they use (e.g., 
Wearne & Hiebert, 1988), nor does it mean that students are able to determine in which 
novel situations procedures can be appropriately used (e.g., Lave, 1988; Stigler & Baranes, 
1988). Carlson (1998) and Selden et al. (2000) found that even high-performing under- 
graduate calculus students possess weak understandings of the key ideas of calculus such 
as limits and derivatives. However, calculus curricula in the United States (US) have not 
changed substantially since the 1950s (Bressoud et al., 2013). The focus of calculus instruc- 
tion, by and large, continues to be on developing procedural proficiency in computing limits, 
derivatives, and integrals, rather than fostering conceptual understanding of these ideas. 
This study draws specifically on existing work that provides a foundation for understanding 

student reasoning and the development of learning about functions (e.g., Carlson, 1998); 
!
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student performance in and perceptions of introductory calculus courses (e.g., Bressoud et
al., 2013); and development of student understanding of the structure of mathematics (e.g.,
Richland, Stigler, & Holyoak, 2012; Vergnaud, 1996). Core ideas from these frameworks
are that students hold varied and dynamic conceptions of mathematical phenomena (includ-
ing functions, limits, and rates of change) rather than unitary, static conceptions of such
phenomena; that the particular conception of a mathematical phenomenon that students
employ when solving a problem is likely dependent on the context of the problem (e.g.,
Wagner, 2006); and that the view of functions a student takes will likely have an impact
on how they reason about calculus problems that deal with functions, such as finding limits
and derivatives. These frameworks suggest that student learning of calculus concepts may
be strengthened by fostering strong and flexible conceptions of mathematical functions.

3. Methodology

The primary research question of this study is: How do beginning students’ abilities to work
with functions interact with their abilities to work with basic notions of limits and rates of
change? We report on first-semester undergraduate calculus students’ responses to: (a) a
written function assessment that asked them to reason about functions presented in varied
contexts and representations, (b) a question about rates of change on a homework assign-
ment, and (c) a final exam question focused on limits. In order to examine students’ ideas
about functions, we administered a 13-item written assessment to 23 of the 28 undergraduate
students enrolled in an introductory calculus course at a research university in the north-
eastern US. This assessment was o↵ered to all 28 enrolled students at the beginning of the
semester and asked students to reason about functions across di↵erent representations (e.g.,
algebraic formulae, graphs, natural language) and with di↵erent function types (e.g., linear,
polynomial, periodic). In order to examine students’ ideas about key calculus concepts, we
analyzed responses to selected homework and final exam questions from all 28 students en-
rolled in the course. The limit question from the final exam (Figure 1) required students not
only to compute a numerical response, but also to draw a graphical representation. The rate
of change homework problem (Figure 2) required students to reason about rate of change of
height of water in a bottle in the absence of an explicit formula.

(6) (12 pts) For each of the following, compute lim
x!a

f(x) and draw a picture of the

function y = f(x) near the location of the limit:

(a) lim
x!2

x

2 � 4

x � 2
(b) lim

x!1

3x2 � 4x + 1

4x2 � 3
(c) lim

x!3

1

(x � 3)2

Figure 1. Final exam limit question.

4. Results

Table 1 shows the distribution of scores on the function assessment from all 23 participating
students. Of the 13 items on this assessment, the mean number of items answered correctly
was 7.6, which is just under 59% of questions correct. The highest score was 12 (92% of
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Figure 2. Rate of change homework problem (adapted from Carlson et al., 2010).

questions correct) and the lowest was 5 (38% of questions correct). These data suggest
that students arrived to this introductory calculus course with varied understandings of
functions. The significant numbers of students (39% of respondents) who answered fewer
than six questions correctly (less than half of the questions on the assessment) suggests
that the function concept is challenging for many students, and that instructors should not
assume that students arrive to undergraduate calculus courses with strong understandings
of functions.

Table 1. Distribution of total scores on written function assessment.

Score (out of 13 possible points)* Number of students receiving this score (n = 23)

 4 0 (0%)
5 5 (22%)
6 4 (17%)
7 3 (13%)
8 3 (13%)
9 2 (9%)
10 4 (17%)
11 1 (4%)
12 1 (4%)
13 0 (0%)

* One point earned for each correct response to the 13 questions of the assessment.

Examining student responses to the limit question on the final exam (see Figure 1) gives
us an opportunity to compare students’ computational skills with their interpretation of
what limits mean in terms of a function’s behavior. In this question students were asked to
compute the limit and to draw a picture of the function. Table 2 shows the distribution of
correct responses to the computational and drawing components of this question.

It is striking that while the majority of students were able to compute the correct limit
(> 72% for each part), relatively few students were able to draw correct approximate behavior
of the function near that limit, especially for parts (a) (25% of students) and (c) (32%
of students). This suggests that students may be memorizing procedures for calculating
limits without understanding what the results of the procedures mean for the behavior of
the function. Figure 3 shows examples of typical incorrect student drawings. The typical
incorrect drawing for part (a) that includes 2 in the domain of the function suggests that
many students are not paying attention to the di↵erence between the limit and the function
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Table 2. Correct responses on final exam question about limits.

Question part Type of limit Students who com-
puted correct response
(n = 28)

Students who drew
correct behavior
(n = 28)

(a) removable discontinuity 20 (72%) 7 (25%)
(b) horizontal asymptote 22 (78%) 18 (64%)
(c) vertical asymptote 21 (75%) 9 (32%)

all parts 20 (72%) 4 (13%)

value itself. The typical incorrect response for part (c) indicates that many students may
interpret the limit not existing as the function itself not existing, or as impossible to draw.

Figure 3. Typical student responses to limit question (part (a) left and part (c) right).

Last, examining students’ responses to the bottle problem (see Figure 2) gives us insight into
their understandings of rates of change. This problem does not provide any explicit formula
for calculating height or volume and instead asks students to sketch the general shape of the
graph. This requires students to think conceptually about what is going on in the problem
context, as there are no numbers or formulae to manipulate in order to arrive at an answer.

Figure 4. Examples of student responses to the bottle problem in each category.
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Only five students (22%) drew graphs that could be considered correct for this problem (an
increasing concave down curve changing to concave up). The remaining students gave a
variety of responses, including graphs that were exclusively concave up, exclusively concave
down, concave down changing to concave up, constant, and unclassifiable (see Figure 4 for
examples of student responses). The explanations given for the responses also varied. As an
example, students who drew increasing graphs that were exclusively concave up or concave
down often provided explanations such as “as the volume goes up the height goes up too”
without considering how this relationship varies with the shape of the bottle.

We have conducted a preliminary analysis comparing students’ scores on the function as-
sessment with their responses on the limits question and the bottle problem (both described
above). The five students who answered the bottle question correctly also scored highly on
the function assessment; all scored 10 or above out of 13 possible points. These students also
did well on the limit question; each of them correctly computed all three limits and also drew
correct behavior for the functions for at least two of the three parts of the question. Fur-
thermore, of the six top-scoring students on the function assessment (scores of 10 or above),
five of them also correctly completed the bottle problem (one left that question blank), and
of the five of these six students who took the final exam (one top-scoring student on the
function assessment later dropped the course), all five correctly computed all limits and drew
correct function behavior for at least two of the three parts of the final exam problem. This
suggests a relationship between students’ understandings of functions and their abilities to
learn new calculus concepts such as limits and rate of change.

5. Implications

Students’ di�culties with learning the key ideas of introductory calculus have been well-
documented (e.g., Carlson, 1998; Selden et al., 2000) and a↵ect students from high school
through graduate school. Our results support these findings as the data show that students
may learn computational skills in calculus yet still struggle to develop understandings of
the key concepts that underlie those computations. In addition, these data suggest that
developing a strong concept of mathematical functions has the potential to enhance student
learning in calculus. More research is needed in this area, but this study provides a starting
point for researchers and instructors to engage with students’ ideas about functions, limits,
and rates of change and to further explore ways in which students’ varied ideas can be
leveraged to support learning of core calculus concepts in undergraduate classrooms.

6. Questions and Audience Discussion

The main questions to be posed for audience feedback and discussion in order to help further
this line of research are:

• What ideas do students have about functions that might be either productive or
problematic for their learning of key calculus concepts?

• What kinds of measures can instructors use to gauge students’ understanding of key
calculus concepts, as opposed to their ability to apply procedures accurately?
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• How important is it for students to develop strong understandings of functions before
understanding key calculus concepts? Could it be more productive to help them
develop understandings of functions and key calculus concepts concurrently rather
than one before the other?
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Linear algebra in the three worlds of mathematical thinking: The effect of permuting 

worlds on students’ performance 
 

John Hannah                              Sepideh Stewart                                 Michael O.J. Thomas                                
Canterbury University           Oklahoma University                               Auckland University                  

  
Linear algebra is a required course for STEM majors. Many undergraduate students struggle with 
the sudden exposure to abstraction which is almost an unavoidable feature of the course.  Although 
research on students’ conceptual understanding of linear algebra is going forward, no research 
has focused on how students react to the order in which the concepts are taught. In this study, we 
use Tall’s three-world model of mathematical thinking to examine students’ performance in a first 
year linear algebra course. The study examined two sections of a linear algebra course 
simultaneously while the instructor changed the order in which she taught the concepts in each 
class. The result of this investigation so far suggests no significant difference on students’ 
performance.  
 
Keywords: Reflections on Teaching, Linear Algebra, Three Worlds Model of Mathematical 
Thinking, Contingent teaching, Clickers 

Background  
Many STEM students take an introduction to linear algebra course after completing their 

calculus sequence requirement, hence by the time they study linear algebra they have some 
familiarity with university level mathematics. Despite this, many still struggle with grasping the 
more theoretical aspects of linear algebra. Research on students’ conceptual difficulties with 
linear algebra first made an appearance in the 90’s and early 2000’s (e.g. Dorier, 1990; Carlson, 
1997; Dorier & Sierpinska, 2001). Over the past decade, research on linear algebra has 
concentrated on the nature of these difficulties and students’ thought processes (e.g. Stewart & 
Thomas, 2009; Hanah, Stewart, & Thomas, 2013; Wawro, Sweeney, & Rabin, 2011; Wawro, 
Zandieh, Sweeney, Larson, & Rasmussen, 2011). 
    In this study we applied Tall’s (2004) three worlds of mathematical thinking to examine 
whether the order of the manner of presentation of linear algebra concepts had an effect on 
students’ performance in the course. In his theory, Tall introduced a framework based on three 
worlds of mathematical thinking: the conceptual embodiment, operational symbolism and 
axiomatic formalism. The world of conceptual embodiment is based on “our operation as 
biological creatures, with gestures that convey meaning, perception of objects that recognise 
properties and patterns...and other forms of figures and diagrams” (Tall, 2010, p. 22). 
Embodiment can also be perceived as the construction of complex ideas from sensory 
experiences, giving body to an abstract idea. The world of operational symbolism is the world of 
practising sequences of actions that can be achieved effortlessly and accurately. The world of 
axiomatic formalism “builds from lists of axioms expressed formally through sequences of 
theorems proved deductively with the intention of building a coherent formal knowledge 
structure” (p. 22). Tall (2013) suggested that: “Formal mathematics is more powerful than the 
mathematics of embodiment and symbolism, which are constrained by the context in which the 
mathematics is used” (p. 138).  
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    Tall observes that although learners often meet embodiment first, followed by symbolism and 
formalism, “when all three possibilities are available at university level, the framework says 
nothing about the sequence in which teaching should occur” (Tall, 2010, p. 22). 

 
 
 

Method 
This research project describes a case study in which a university mathematics instructor 

(second named author) examines Tall’s three-world model. The first phase of the project was 
conducted in the Fall of 2013 at The University of Oklahoma. The instructor was teaching two 
sections (004 & 001) of an introduction to linear algebra course.  

To investigate whether the order (ie Embodied (E), Symbolic (S) and Formal (F)) in which 
the material is presented has an impact on students’ learning and attitudes, each of the following 
possible combinations of teaching various concepts was used: ESF; EFS; SEF; SFE; FSE; FES 
as well as the two common ways of teaching with no embodied exposure at all: FS and SF. The 
aim was to try to establish whether the order of presentation influences understanding of a 
particular concept. For example, concept A was taught in the morning to class (004) in the ESF 
order, whereas in the afternoon class (001) was taught in the FSE order (see Figure 1). To expose 
students to as many orders as possible, concept B was taught using SFE in the morning and SEF 
in the afternoon section, and so on. Hence, each concept was taught in all three worlds of 
embodied, symbolic and formal mathematical thinking to each class, but in different orders. To 
try to gain some measure of students’ understanding the instructor incorporated clicker quiz 
questions into the presentation of the teaching material. The design of suitable quizzes, posed at 
the right moment, was a crucial part of the project. The students were also given clicker opinion 
questions throughout the lecture regarding their preference of the order of presentation, to gauge 
the reaction of the class and make sure everyone was following. These included questions such 
as: How would you like to be taught this particular concept? (a) by a definition, (b) an example, 
(c) a picture. Now that you have seen the examples, what would you prefer to see next? Students 
were also asked a number of True/False opinion questions regarding their understanding. (e.g. I 
fully understand this theorem. T/F). Data was collected from the student clicker quizzes to try to 
establish the effect of a particular order on student attitudes and learning. It was noticeable that 
this approach changed the class atmosphere and it appeared that students were more involved 
and engaged, started to respond better and embraced the lecture style. 

Other forms of data gathering occurred through the instructor’s daily journals for each 
lecture, homework assignments, tests, final examination questions and student interviews.  Of the 
82 students in the classes 68 (41 from 001 and 27 from 004) gave consent for their data and 
course material to be used. In addition, during the final two weeks of the course, 10 (7 from 001 
and 3 from 004) student volunteers from both sections were given semi-structured interviews by 
a colleague, using questions such as: Did you notice any difference in the way Dr. Stewart taught 
different concepts in her lessons this semester? If so, in what way were they different? If not, 
was her approach in teaching concepts always the same? If you prefer teaching to start with one 
particular approach, which one would it be? Can you explain why you prefer this approach? Do 
you think that step should always come first (second, third), or are there situations where you 
would prefer a different order? Which type of thinking do you prefer, or feel most comfortable 
with: embodied, symbolic or formal? Do you think any of these types of thinking is more 
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important than the others in mathematics? If so, which one? What do you think about clicker 
questions (quizzes and opinion)? 

The research question for this part of the study is as follows: Is there any influence of order 
of presentation on overall student performance? 

 
 Figure 1: Linear Algebra concepts and the order in which they were presented in each section. 

Results and Discussion 
       The initial results from students’ interviews showed that their preferred order included 
having the symbolic exposure to linear algebra first (Hannah, Stewart &Thomas, 2014). As the 
analysis of the rest of the data (homework questions, midterm tests and the final examination) 
continued, it was decided to try to ascertain whether there is a preferential order for a particular 
concept, and thus the following strategy was undertaken. 
    The argument: by taking each group as having Embodied (E) before Formal (F) for two 
concepts and Formal before Embodied for two concepts we searched for some evidence of which 
approach might be preferential, namely E followed by F or F followed by E. We compared the 
results as follows: Embodied first: Subspace 001; Span 001; Linear combination 004; Linear 
independence 004, versus Formal first: Subspace 004; Span 004; Linear combination 001; 
Linear independence 001, using questions from two homework assignments and the final exam 
(see Figure 2). The analysis of the data from question 1, in Assignment 5 revealed that a majority 
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of students from both sections scored 100%, making it difficult to distinguish any possible 
effects of the order in which the concepts were taught. It is noteworthy to mention that the 
instructor asked her grader to give full points (10 points) to any concept maps that students drew 
in Part c and not to punish them for any possible misconceptions.  
 

Assignment 5 Question 1: 

Assignment 6 Question 1: 

Exam Question 3(c):             

Figure 2. A selection of questions given to both sections during the course. 

        Further investigation of each concept and students’ performances in Question 1 from 
Assignment 5 showed that, 53% of students from section 004 copied the definitions form the text 
book, in comparison to only 10% in section 001.  It was noted that, 53% of students from section 
004 did not mention the properties of a subspace and only described the term as a subset of a 
vector space, whereas, 90% of students from section 001 gave a more compelling description of 
the term in their own words. Most students in both sections were able to draw pictures to 
illustrate each term well. These pictures were either from their notes (given to them in lectures) 
or from the text book. The results showed that at least two students (one from each section) drew 
different pictures of the concept subspace than the rest (see figure 3(a)).  Students’ concept maps 
(Question 1, part c) gave more insight into how students were thinking about the concepts and 
connecting the ideas together, with some drawing more well thought-out maps than others. A 
number of students from both sections raised their concern with regard to where they should 
place the concept of subspace (Question 1(c)) and a few did not connect this concept with any 
other concepts but left it on its own (see Figure 3(b)). 
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     Question1 from Assignment 6 was considered as a non-routine problem and most students 
from both sections struggled to express their understanding of the concepts well. The box plot of 
their grades (see Figure 4) shows that students in section 004 performed slightly better than 
students in section 001. 
 
 
 
 
 

 

 
(a)                                                                             (b) 

Figure 3: An illustration of a subspace (student 3, 004) and a concept map (student 32, 004).  

     However, when a similar question was posed in the final examination (Question 3(c)), 
students’ scores in both sections, increased significantly.   

 

Figure 4. Students’ grades for question 1 in Assignment 6. 

Final Remarks 
      The overall performance of students (the final grades) showed no significant difference 
between students’ performances in section 001 (79.19%) and their counterparts in section 004 
(77.45%). The more comprehensive qualitative analysis of each question mentioned in this study 
is beyond the scope of this proposal, however, the authors are in the process of making it 
available in the near future. As the search for finding a recommended order of teaching linear 
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algebra concepts continues, our future research will examine a fewer number of permutations of 
the worlds (Embodied, Symbolic and Formal) with more frequency of their occurrence, to 
narrow down the feasible tracking processes and to make the comparison between the groups 
more manageable.   
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Building Student Communities Through Academic Supports 
 

 Kady Hanson      Estrella Johnson     
 San Diego State University       Virginia Tech 

      
In this report, we draw on the Characteristics of Successful Programs in College Calculus 
(CSPCC) survey and interview data in order to better understand the student supports available 
for Calculus I students. We began by investigating possible differences in the availability of 
supports offered by institutions that were identified as having a successful Calculus I program. 
This quantitative analysis found no statistical differences in regards to tutoring centers at 
institutions that were identified as successful and tutoring centers at the other institutions in our 
study. We then analyzed student interview data in order to investigate how the supports offered 
at these institutions contribute to student success. This qualitative analysis identified several 
ways in which academic support systems (and tutoring centers in particular) can facilitate social 
and academic integration for Calculus I students.  
 
Key Words: Calculus, Student Support, Communities, Social integration  
 

Nationally there is tremendous need to retain more post secondary STEM intending students.  
As reported by the 2012 President’s Council of Advisors on Science and Technology, current 
approaches to educating STEM majors is insufficient to meet the demands of the workforce 
(PCAST, 2012). However, this shortage can be significantly alleviated with just a 10% increase 
in the retention of STEM intending students (Carnevale, Smith, & Melton, 2011; PCAST 2012). 
Retaining more STEM intending students, however, has been and continues to be problematic 
and the subject of much scholarly inquiry, including the work carried out by the Characteristics 
of Successful Programs in College Calculus (CPSCC) project.  

The CSPCC project is a large empirical study designed to investigate Calculus I across the 
United States. The primary focus of the CSPCC project is to identify factors that contribute to 
student success in Calculus I and to better understand how such factors actually contribute to 
student success. In this report, we draw on the CSPCC survey and interview data in order to 
better understand the different avenues of student support that are available for Calculus I 
students. He we will focus specifically on mathematics tutoring available to Calculus I students. 
We begin by investigating possible differences in tutoring services offered by institutions that 
were identified as having a successful Calculus I program and those offered at the rest of the 
institutions in our study. We then investigating how tutoring services offered at these institutions 
may contribute to student success. In particular, we will investigate the ways in which tutoring 
centers can facilitate social and academic integration for Calculus I students.  
 

Theoretical Background 
Higher education research has found that students are more likely to persist in college when they 
are integrated into both a social and an academic community (Tinto, 1997). The extent to which 
a student has integrated into a social community can be understood in terms of the richness in 
peer-to-peer interactions and faculty-student interactions, whereas indications that a student is 
integrated into an academic community include academic progress, satisfaction with intended 
major, and a clear understanding of the academic expectations at their institution (Kuh et al., 
2006). Such integration is particularly important in the first year of college when attrition is more 
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likely to happen, as “nearly half of all leavers depart before the start of the second year” (Tinto, 
1997, p. 167). Analogously, one would expect that students are more likely to persist in STEM 
related fields when they have strong academic and social connections in the STEM community. 
Further, because students’ first-years experience is to important to persistence on the whole, it 
follows that social and academic integration within students first-year STEM courses, such as 
Calculus I, is of particular importance for STEM intending students. Understanding how student 
support programs at successful institutions foster social and academic integration into Calculus I 
student communities is the focus of this work.  

 
Data and Methods 

In order to answer our research questions, we draw on data collected in the two phases of 
the CSPCC project. The first phase of the CSPCC study involved surveys sent to a stratified 
random sample of institutions. Course coordinators, instructors, and students were asked to 
complete surveys at the beginning of Calculus I. Instructor and students were also asked to 
complete a survey at the end of Calculus I. These surveys were designed to gain an overview of 
the various calculus programs nationwide, and to determine which institutions had more 
successful calculus programs. Here we define success based on a number of student variables, 
including: persistence in the calculus sequence; high pass rates; and positive affective changes, 
including enjoyment of math, confidence in mathematical ability, and interest to continue 
studying math. Based on these student variables, 18 institutions were selected for follow-up site 
visits. In this second phase of this project, we conducted three-day site visits at each of the 18 
selected institutions. During these site visits members of the CSPCC team: interviewed students, 
instructors, and administrators; observed classes; and collected exams, course materials, and 
homework.  

In order to identify possible differences in the tutoring supports at selected and non-
selected institutions, we analyzed course-coordinator and end-of-term student surveys. 
Specifically, we analyzed survey questions related to the availability of mathematics tutoring 
centers and how frequently students visited tutoring centers. Then, in order to determine how 
tutoring centers were contributing to student success, we analyzed transcripts from student focus 
groups. Here our focus was on social integrations. Specifically, we identified instances in which 
students described ways in which the available support programs facilitated either student-to-
student or student-to-faculty interactions.  
 

Results 
We will begin with some descriptive and comparative statistics about tutoring centers. Both 

course coordinators and students responded to survey questions regarding the availability and 
frequency of use of tutoring centers. We then present two examples from our selected institutions 
that highlight ways in which tutoring centers can facilitate social integration.   
 
Tutoring Centers – By the Numbers 
 

1) Selected institutions were not more likely to have a tutoring center than non-selected 
institutions. Course coordinators were asked: “Does your department, college, or 
university operate a mathematics tutoring center available to Calculus I students?” 
Course coordinators from 13 of the 18 selected institutions and 105 of the 150 not-
selected institutions answered this question. All 13 of selected institutions that answered 
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this question (100%) have a tutoring center that offered Calculus I assistance, compared 
to 102 of the 105 non-selected institutions that answered this question (97.1%) (p=.537).  

 
Table 1 Prevalence of tutoring centers among selected and non-selected 
institutions 
 
Does your department, college, or university operate a mathematics 
tutoring center available to Calculus I students?  
 
 # of institutions 

that answered the 
questions 

# of institutions 
that said “Yes” 

% of institutions 
with a Tutoring 

Center 
Selected 
 

13 13 100% 

Not Selected  105 102 97.1% 
 
 

2) At institutions where course coordinators indicated that they have tutoring centers, there 
is no difference in regards to the tutoring center staff at selected and non-selected 
institutions. The course coordinator survey provided 5 classifications for tutoring: 
tutoring by undergraduate students, tutoring by graduate students, tutoring by 
paraprofessional staff, tutoring by part-time math faculty, and tutoring by full-time math 
faculty. None of the intra-category comparisons were signification at the .1 level. The 
most common tutoring center staffing was by undergraduate students, with graduate 
students the next most prevalent.  
 
Table 2 Tutoring Center Staff  
 
What services are available to students in the Tutoring Center? 
 
 

tutoring by 
undergraduate 

students 

tutoring by 
graduate 
students 

tutoring by 
para-

professional 
staff 

tutoring by 
part-time 

math 
faculty 

tutoring by 
full time 

math 
faculty 

Selected  12  4  2  1  2  
92.3% 30.8% 15.4% 7.7% 15.4% 

Not 
Selected 

91  35  28  23  31  
86.7% 33.3% 26.7% 21.9% 29.5% 

 
 
3) At institutions where course coordinators indicated that they have tutoring centers, course 

coordinators at selected and non-selected institutes report similar student usage rates. 
When asked to respond to the statement “Students in Calculus I take advantage of the 
tutoring center”, 10 of the 13 (77%) course coordinators either ‘agreed” or “strongly 
agreed” with this statement, where 86 of the 102 (85%) courses coordinators from the 
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non-selected intuitions “agreed” or “strongly agreed”.  These differences were not 
statically significant at the .1 level.  

 
Table 3 Student Tutoring Center Usage as Reported by Course 
Coordinators 
 Students in Calculus I take advantage of the tutoring 

center  
(Strongly agree or agree)  

Selected  10 
77% 

Not Selected  86 
85% 

 
 
4) At institutions where course coordinators indicated that they have tutoring centers, 

student survey responses about tutoring center usage agreed with course coordinator 
responses and showed no differences between selected and non-selected institutions. At 
the end of the term students were asked “How often do you visit a tutor to assist with this 
course: Never, Once a month, A few times a month, Once a week, More than once a 
week?” (see Table 3). Again, none of the intra-category comparisons were significant to 
the .1 level.  
 

Table 4 Student reported frequency of tutoring  
 How often do you visit a tutor to assist with this course? 

never once/ month a few times/ month once/ week > once/ week 
Selected 
 
 
 
 
Not selected 

762 131 145 107 96 

61.4% 
 

10.6% 
 

11.7% 
 

8.6% 
 

7.7% 
 

2367 
57.8% 

487 
11.9% 

498 
12.2% 

399 
9.7% 

342 
8.4% 

 
When we translated these responses into a 1-5 scale (with 1 being “Never” and 5 being 
“More than once a week”) and averaged the numerical values. We found that the average 
responses from students at selected institutions was 1.91 and the average response from 
students at non-selected institutions was 1.99 (Table 4).  So, on average, students at both 
selected and non-selected institutions are visiting tutoring centers about once a month.  

 
Table 5 Student reported average tutor frequency  
 How often do you visit a tutor to 

assist with this course? 

Selected 
Mean 1.91 
N 1241 
(Std. Dev.) (1.328) 
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Not selected 
Mean 1.99 
N 4093 
(Std. Dev.) (1.357) 

 
 

In summary, we found no statistical differences in the number of institutions providing 
tutoring centers, the composition of tutor center personnel, or in the reported frequency of 
students visiting the tutoring centers. We now take a deeper look at how tutoring centers at our 
selected institutions went beyond merely offering mathematics assistance and were able to 
actually contribute to the development of a student community for Calculus I students.   
 
Two examples of support systems 
 Here we present two examples of tutoring centers at successful institutions that were able 
to foster social integration through providing opportunities for student-to-student interaction.  
 

Large Private PhD-Granting University (LPPU): At LPPU the math lab is divided by 
courses, therefore all students in Calculus I gather together in the same location to get tutoring 
assistance on homework and other assignments. If students are interested in drop in tutoring, they 
put their name on a sign-up list with the exact section and problem number with which they need 
help. The tutors then go to that list, call out the next name, and help them with their problem. 
Students often reported using the tutoring center as a place to do homework, even if they were 
not there specifically for tutoring services. As one student described:  

 
I can walk into the Math Lab, and I can sit down with someone from a different class, and 
I can do my homework with them.  And that really to me is really beneficial because it's 
like, 'I got stuck on this problem,' there's nobody from my class, I have a class of 250. 
Every time I go there's maybe 3 other people there, but then there's also going to be 4 
people from Barret's class, Franz's class and things like that. (Student, LPPU) 

 
In this way, the math center was able to create a working environment where students 

could go to get tutoring or just to meet other students in Calculus I that may be in different 
sections. Many students at LPPU explained that the tutoring center led them to start working 
with other students whether it was on homework, studying, or just practicing concepts. These 
students were able to find a group that was similar to them and had the same goals and 
motivation. These connections allowed students at LPPU to have an outlet to get guidance, 
discuss frustration, and to simply make friends that they can go through college with.  
 

Urban Public Associates-Granting University (UPAU): The math lab at UPAU is 
equipped with two large white boards, with about 50 to 75 chairs located throughout the room 
and can serve anywhere from 50 to 100 students per day. Students have two options for tutoring 
at the UPAU math lab: one-on-one tutoring and group review. If they want one-on-one tutoring 
the students must raise their hand and wait for a tutor to come and help them. Depending on how 
busy the center is, the tutors can help with multiple problems at one time, or only assist with one 
before moving onto the next student.  

In the group review, the groups of 3 or more students can make a reservation to have a 
tutor assist them with a review of a topic or an assignment.  
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Also in the math lab if you have three or more people and you can have someone there 
tutoring you in the study group as you go through on say a mini grade or problems from 
the book.  It’s extremely helpful because you have instead of going to math lab and 
having a tutor come up to you if you raise your hand, you get personal attention for about 
an hour or so. (Student, UPAU) 
 

By offering dedicated tutor support to groups of students, the math lab provides motivation for 
student to form groups. These groups contribute to strong student communities, as these students 
work on assignments together, study for exams together, and build relationships where they are 
not afraid to ask questions and admit they need help.   
 

Discussion and Conclusions 
When we only analyzed the CSPCC survey data, we were unable to identify any 

differences in selected and non-selected institutions. This made it impossible to make any claims 
about how tutoring centers contributed to student success. However, by analyzing the student 
focus group interviews, we were able to identify an important component of tutoring centers at 
successful institutions – fostering a student community for Calculus I students. By identifying 
these specific components and policies of tutoring centers at selected institutions, this work helps 
provides examples for how student support services can facilitate social integration. At LPPU, 
this student community was facilitated by common homework assignments, space for informal 
study groups, and tutors that only answered one question at a time – making it more time 
efficient to ask a student sitting next to you. At UPAU, the student community was fostered by 
the tutoring center by providing a common area for students to work together and rewarding 
students to work form groups by providing extended tutoring services to groups of three or more.  

.  
 

References 
 
Carnevale, A. P., Smith, N., & Melton, M. (2011). STEM: Science, technology, engineering, 

mathematics. Georgetown University, Center on Education and the Workforce. Retrieved 
from http://www9.georgetown.edu/grad/gppi/hpi/cew/pdfs/stem-complete.pdf 

 

Kuh, G., Kinzie, J., Buckley, J., & Hayek, J. (2006). What matters to student success: A review  
 of the literature (Executive summary). Commissioned report for the National Symposium  
 on Postsecondary Student Success. 
 
President’s Council of Advisors on Science and Technology (PCAST) (2012). Engage to excel: 
 Producing one million additional college graduates with Degrees in Science,  

Technology, Engineering, and Mathematics. Washington, DC: The White House. 
 
Tinto, V. (1997). Colleges as communities: Taking research on student persistence seriously. The 

 review of higher education, 21(2), 167-177. 
 

18th Annual Conference on Research in Undergraduate Mathematics Education 59218th Annual Conference on Research in Undergraduate Mathematics Education 592



Examining proficiency with operations on irrational numbers 
 

Sarah Hanusch   Sonalee Bhattacharyya 
Texas State University  Texas State University 

 
Introduction 

Undergraduate students need proficient knowledge of the real numbers, because the real 
numbers form the foundation for more advanced mathematical concepts.  To achieve numerical 
literacy, students must have some proficiency in the real number system (Fischbein, Jahiam, & 
Cohen, 1995; Guven, Cekmez, & Karatas, 2011). Studies have shown that the set of irrational 
numbers is difficult to grasp, because of challenges with the definitions of rational and irrational 
numbers (Fischbein et al., 1995), with the connection between irrational numbers and limits 
(Peled & Hershkovitz, 1999), and with moving between multiple representations of irrational 
numbers (Arcavi, Bruckheimer, & Ben-Zvi, 1987; Sirotic & Zazkis, 2007).  

In this study, we sought to see how students approached problems involving operations 
on irrational numbers.  We chose developmental mathematics students at a large university for 
the sample because rational and irrational numbers are included in the curriculum for the course.  
Few studies have focused on the mathematical knowledge of students at the developmental (non-
credit bearing) level (Givven, Stigler, & Thompson, 2011; Grubb & Cox, 2005; Stigler, Givven, 
& Thompson, 2010).  However, Stigler et al. (2010) and Givven et al. (2011) collected data from 
community college developmental mathematics students to conclude that most students at the 
developmental level suffer from “conceptual atrophy,” meaning the students are unable to 
connect “basic intuitive ideas about mathematics” (Stigler et al., 2010, p.15) with procedures and 
concepts.  

In this study, we consider an individual to be mathematically proficient if they 
demonstrate procedural fluency, conceptual understanding, adaptive reasoning, strategic 
competence and productive disposition, as described in Adding It Up (Kilpatrick, Swafford, & 
Findell, 2001). These five are titled the strands of proficiency, and they “are interwoven and 
interdependent in the development of proficiency in mathematics” (Kilpatrick et al., 2001, p. 
137). The interconnectedness of these strands emphasizes the importance of making connections 
between mathematical topics and skills. 

Our research questions for this study are: 
x Within each strand of proficiency, what are the developmental mathematics 

student’s ideas relating to the closure of operations on the irrational numbers? 
x In which strands of proficiency do the students demonstrate strengths and 

weaknesses with irrational numbers? 
x Do developmental mathematics students demonstrate overall proficiency 

regarding the closure of operations on the irrational numbers? 
 

 
Method 

The sample in this study is developmental mathematics students at a large university in 
the southwest of the United States.  This university offers two mathematics courses at the 
developmental level, meaning non-credit bearing courses, which serve as prerequisites for entry 
level courses, such as College Algebra.  Students placed into level one must successfully pass 
level one and level two before enrolling in credit bearing courses.   
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For this project, the population is the students enrolled in the level one course.  This 
course is organized with large lecture sections and smaller laboratory sections.  Each week, 
students spend one hour in a large lecture taught by the instructor of record, and three hours in 
smaller laboratory sections, taught by graduate assistants.  A majority of the instruction occurs in 
the laboratory sections with a standardized curriculum among all sections.  The weekly lecture is 
intended to review, expand, and elaborate on the topics discussed in lab. Although most 
assignments were assigned and collected in the laboratory, this semester the lecturer assigned 
weekly homework assignments that connected directly to the lecture. 

During the semester in which data was collected, 77 students were enrolled in all sections 
of the level one course.  The data collected was a portion of one lecture homework assignment. 
After the students turned the homework into their instructor, photocopies of the students’ 
responses and the consent form were given to the researchers for analysis.  Only 31 students 
provided consent for their homework to be analyzed.  This study includes responses from two 
questions: 

1. What can you conclude about the sum of two irrational numbers? Is it always 
irrational? Always rational? Sometime irrational and sometimes rational? Explain 
your reasoning. 

2. What can you conclude about the product of two irrational numbers? Is it always 
irrational? Always rational? Sometime irrational and sometimes rational? Explain 
your reasoning. 

The written homework assignments were analyzed for evidence of the five strands of 
proficiency outlined in Adding it Up (2001). An open coding scheme was developed within the 
lens of each strand of proficiency, in the style of Glaser and Strauss (1967). Within each strand, 
four categories were established, typically strong, moderate, weak and no evidence. A more 
detailed description of each category is found in the results section. 

 
Results 

In the results that follow in the following sections, all counts are per problem. This means 
that there are 62 responses, two for each student. We made this decision because in several 
instances an individual student performed differently on the two questions.  All names included 
are pseudonyms that reflect gender. 

Procedural Fluency.  To analyze procedural fluency we considered three criteria: 1) the 
response included the correct operation, 2) the response included correct computations, and 3) 
the response correctly identified numbers as rational or irrational.  A student demonstrated strong 
procedural fluency if they satisfied all three criteria, moderate if they failed one criterion and 
weak if they failed two or more.  Some responses did not include any procedures, and these were 
coded as no evidence. 

Twenty-two of the responses exhibited strong procedural fluency, 10 exhibited moderate, 
11 exhibited weak and 19 provided no evidence.  Only two of the responses contained incorrect 
computations, and both of those responses came from the same student.  One instance of a 
student whose response did not reference a specific operation is Olivia, who claims the sum of 
two irrational numbers “can be both, because an irrational number can be turned into a fraction 
which would be considered rational.”  Although Olivia does reference division, her explanation 
does not reference the relevant operation of addition. 

Conceptual Understanding.  To analyze conceptual understanding we considered either 
the definitions provided for rational and irrational numbers, or the examples provided.  
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Responses were classified into four categories: correct, small error, significant error and no 
evidence.  Twenty-four responses were classified as correct, meaning the student provided either 
a correct definition for rational or irrational numbers, or the students classified all numbers 
generated correctly as rational or irrational.   

Seven responses were nearly correct, but had small errors.  One instance in this category 
is Nathan who wrote “irrational # is any number that isn’t rational,” but then claims that zero is 
both a rational and irrational number.  The other responses in this category misclassified the 
square roots of perfect squares as irrational numbers.  In some instances, the students believed 
that the rationality depends on the representation of the number, i.e. √4 is irrational, but 2 is 
rational; see Carl’s response in figure 1. 

Ten responses were classified as having a significant error.  In six of these responses, the 
student classified rational numbers as irrational numbers, and integers as rational numbers.  In 
four other responses, the students indicated that all fractions are rational, not just those with 
integers.  For instance, Andy claimed that “if we put 1 under any number, it would be rational.”  
These students have misconceptions about rational numbers and fractions. 

The final category, no evidence, had 21 responses.  These responses did not provide 
sufficient information to infer the students’ understanding of the concepts.  For instance, Terese 
simply wrote “The sum can be irrational or rational" but offered no explanation or indication of 
her conceptual understanding.  Some of these students reached the correct conclusions to the 
problems, but many reached incorrect conclusions. 

Strategic Competence.  In this category, the students were classified by the strategy the 
used to approach the problem.  The first category, called correct with examples, a response had 
to indicate that both rational and irrational sums are possible, and they had to attempt to provide 
at least one example to support each of those situations. These examples were not always 
correctly identified.  The second category, called incomplete with examples, a response included 
examples to justify their responses, but only included a rational or irrational example.  The third 
category, called properties, the students attempted to use properties of irrational numbers to 

Figure 1 Carl's response to the sum problems where he classifies √𝟒 as irrational, and 𝟐 as 
rational. 
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justify their claims.  The final category is no evidence where the response includes no 
justification, or did not fit any other category. 

Sixteen responses included the correct strategy, although not all of these identified the 
rational and irrational numbers correctly.  Eighteen responses were classified as incomplete with 
examples.  An incomplete strategy took one of two forms: either the participants claimed that the 
sum or product was always rational or always irrational and only provided examples that 
supported their claim, or the participants claimed that the sum or product could be rational or 
irrational but only provided examples to show one of the cases.  Eleven responses attempted to 
use properties.  These responses were split between claiming the sum or product is always 
irrational and claiming the sum or product could be both.  None of these arguments produced 
valid results.  Of the remaining 17 responses in the no evidence category, one response was 
particularly unusual.  Heather attempted to use the variable 𝑥 to create a general argument. She 
frequently used 𝑥2, and while we suspect she meant to use √𝑥 there is no evidence to support 
that supposition.  However, she did recognize that a number plus its negative is zero, and then 
attempted to use that to help her argument. She claimed “If two numbers sum to a rational 
number, both must be rational or both must be irrational," but she did not justify this claim any 
further. 

Adaptive Reasoning.  To analyze the strand of adaptive reasoning, we initially separated 
the responses into three categories.  The categories were students who made a claim and 
provided complete justification, students who made a claim and had incomplete justification, and 
students who made a claim, but provided no justification, or students who did not make any 
claim at all. 

Sixteen responses made a claim and provide a complete justification.  Not every student 
in this category used correct definitions of rational and irrational, but they did include an 
example labeled as rational and another labeled as irrational as justification for their conclusion. 

The incomplete justification group contained 24 responses, and these responses were 
characterized by an attempt to justify a claim, but their reasoning erred at some point.  For 
instance, Victor made a claim that the sum of two irrational numbers is always irrational, but his 
justification was just a few examples. We infer that Victor's reasoning was limited by his small 
example space.  It is unclear whether or not Victor recognized that he could not prove a 
statement with examples. 

Figure 2 Betsy changed her claim after working examples 
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Two students had the correct claim, but only justified for the rational case of both 
questions.  It seems possible that these students assumed it was obvious that the sum or product 
of two irrationals could be irrational, but we have no evidence to support this supposition. 

Betsy is the only student to indicate indecision in a response, see Figure 2. She initially 
claimed that that the sum of two irrational numbers is sometimes rational and sometimes 
irrational, but then crossed out her response and changed it to say always rational.  It seems that 
she was only able to produce a rational example, and then made a new claim. 

In the final category, most of the students either left a blank page or only included a 
phrase indicating their claim. A few attempted some justification, but these showed severe 
limitations in reasoning ability. 

Productive Disposition. The data collected in this study is inadequate to provide deep 
insight into the productive disposition of the students in the sample. However, a few insights can 
be gleaned from this data. One fact that may indicate low productive disposition among this 
group of students is the fact that fewer than 50% of the students enrolled in the course 
participated in this study. While that number is not unusual in research studies, in this study data 
collection came from a single homework assignment. Anecdotally, we know that many students 
enrolled in this course do not participate in the lectures, and as such we suspect that many of the 
students did not turn in the assignment. 

A few additional responses also indicated a low productive disposition. One student, 
Peter, turned in a completely blank paper. Another student, Rachel, answered the question, but 
said “I'm not sure why, or I can't give you reasoning. Without really studying notes or referring 
back, it's just what I think.”  It seems that either she felt that she was not allowed to use 
references, or she simply chose not to make the effort. She also included a frown face figure on 
the second question, indicating discontentment with the finished product. 

Overall.  Looking at the various responses as a whole we observed that 42 of the 62 
responses stated the correct claim of sometimes rational and sometimes irrational, see Table 1. 
Of the 31 students, 19 made the correct claim about sums of irrational numbers and 23 made the 
claim about products. Some of the responses were difficult to categorize because the students 
wrote statements such as “the sum can be rational.” However, unless a response explicitly 
mentioned the sum or product can be irrational, then we classified the response as always 
rational. The analogous protocol was used for always irrational responses. 

Although the majority of the claims were correct, many of the justifications were not. The 
most frequent justification scheme, 27% of the responses, included both rational and irrational 
examples. Tied at the same level were the responses that made a claim but did not provide any 
justification for their response. Attempting to use properties was the justification scheme used in 
21% of the responses.  This scheme is admirable because it could have led to sophisticated 
arguments, but unfortunately nearly all of the properties that the students used were false 
statements. The remaining responses provided examples that were either just rational, or just 
irrational.  

Table 1 A table of the claims made on the responses and the nature of the justifications 

Claim    Justification   
Rational or Irrational 42 68%  Two Examples 17 27% 
Always Rational 8 13%  Rational Example 9 14% 
Always Irrational 9 14%  Irrational Example 6 10% 
    Properties or Other 13 21% 
No Claim 3 5%  No Justification 17 27% 
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Discussion 

The responses of several students indicate that they have insufficient examples of 
irrational numbers to be able to answer the questions posed. Leslie, George and David were the 
most egregious instances of insufficient example spaces since these students clearly could not 
correctly distinguish the definitions of rational and irrational numbers. Other students 
demonstrated subtler problems with their example space. For instance, Carl, Jill and Walter 
struggled with the classification of the square roots of perfect squares. 

Relating to the examples spaces of these students, nearly every student chose square roots 
of small positive integers for the irrational number examples. The only other irrational number 
chosen was 𝜋. This is consistent with the work of Sirotic and Zazkis (2007b), where they argue 
that a limited example space can lead to misconceptions of irrational numbers. Although some of 
the students mentioned a decimal representation of irrational numbers, none of the students chose 
irrational numbers in this representation. A few expressed the sum or product in such a 
representation, although this seems to be a reaction from using a calculator to compute. More 
students made the correct claim about the products than the sums, and we attribute this to the 
choice of radicals for the examples. The procedures for multiplying radicals are significantly 
easier than adding radicals, and may have contributed to this result. 

We support some changes to the instruction given to students on irrational numbers 
during grade school, and in developmental mathematics courses. Specifically, we support 
instruction that connects multiple representations of irrational numbers, including decimal 
expansions, radicals, other constants and placement on the number line.  Providing students 
questions that involve reasoning, such as “find an irrational number that lies between 32 and 53 on 
the number line,” can promote reasoning and translating between representations. Such a 
question also open a discussion about the abundance of irrational numbers without directly 
addressing the concepts related to the cardinality of sets. Clear understanding of representations 
of irrational numbers may aid students as they progress through algebra, especially with regards 
to identifying the x-intercepts of polynomials with irrational roots.   
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A study of mathematical behaviors 
Nadia Hardy 

Concordia University, Montreal, Canada 
 
!In#this#poster#presentation#we#bring#together#different#characterizations#of#mathematical#
thinking,#doing#and#behaving#that#researchers#have#brought#forward#over#the#last#three#decades,#
to#compose,#in#a#way#of#speaking,#a#collage!of#what#we#came#to#call#mathematical!behaviors.#In#
previous#work,#we#have#combined#some#of#these#characterizations#to#identify#opportunities#to#
engage#in#mathematical#behaviors#that#students#may#encounter#in#undergraduate#courses,#and#
to#design#and#analyze#tasks#that#may#foster#the#development#of#such#behaviors.#The#poster#
format#allows#us#to#play#with#a#pictorial#representation#that#reveals#the#relations#and#
complementarities#between#the#‘images’#of#the#collage.#We#hope#to#discuss#(a)#these#relations#and#
complementarities,#(b)#strategies#to#foster#the#development#of#mathematical#behaviors#in#
undergraduate#mathematics#students,#and#(c)#methods#that#may#allow#us,#as#researchers#or#as#
teachers,#to#compose#accounts#of#students’#mathematical#behaviors.#
 
Key#words:#Mathematical!thinking,!Mathematical!behaviors,!Undergraduate!mathematics!
 

In a 1972 paper, Seymour Papert begins by claiming that being a mathematician is no more 
definable as ‘knowing’ a set of mathematical facts than being a poet is definable as knowing a set of 
linguistic facts. (p. 249) Likely at the time of publication, and certainly today, most mathematicians 
will agree to this statement. Knowing about mathematics may be necessary but does not seem to be 
sufficient to do mathematics (as a mathematician does). Papert goes on to advocate for research to 
identify and name the concepts that enable mathematicians to think mathematically and to discuss 
their mathematical way of thinking in an articulate way. What is, the author asks, that something, 
other and more general than the specific content of particular mathematical topics, that one learns in 
becoming a mathematician? (p. 250) Since then, many researchers in mathematics education have 
characterized, in different ways and from different perspectives, certain aspects of mathematical 
thinking and doing, and have discussed and reflected on strategies to teach students of all levels to 
think mathematically and to do mathematics.  

In this poster presentation we bring together many of these characterizations to compose, in a 
way of speaking, a collage that provides an illustration of what we came to call mathematical 
behaviors. In particular, we consider the work of Schoenfeld (e.g., 1987, 1989), Sierpinska (2002), 
Mason (e.g., 2000; see also Mason et al., 1982), Cuoco et al. (1996; see also Lim and Selden, 2009), 
Selden and Selden (e.g., 2005, 2013), and Burton (e.g., 1999, 2001, 2004).  
In previous research, we have brought together some of these characterizations to identify 
opportunities that students may encounter in undergraduate mathematics courses to engage in 
mathematical behaviors, and to design and analyze tasks that can foster the development of such 
behaviors. (Hardy & Challita, 2012; Hardy et al., 2013) The poster format provides us with the 
opportunity to consider all these characterizations at once, and to actually play with a pictorial 
representation of the collage we have imagined.  
Our!interest!in!mathematical!behaviors!stems!from!(a)!the!work!of!mathematics!educators!

who!have!shown!several!instances!(and!of!different!natures)!of!students!unfamiliarity!with!
mathematical!thinking,!doing,!and!behaving;!and!from!(b)!conversations!with!colleagues!from!
mathematics!departments!who!refer!to!(or!perceive)!a!deteriorated!profile!of!graduating!
mathematics!students!–!students!arrive!to!graduate!programs!(masters,!doctoral!and!even!
post@doctoral),!it!is!often!claimed,!without!the!ability!to!do#mathematics.!Many!colleagues, 
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and even students, blame this on the lack of opportunities to engage in mathematical 
behaviors during undergraduate (and graduate) studies. Furthermore, some anecdotal data 
may suggest that graduating students do not choose to pursue graduate degrees or 
professional careers in mathematics out of disappointment of what they end up believing 
doing mathematics is all about. Our ultimate goal in inquiring into mathematical behaviors is 
to devise strategies to foster such behaviors in undergraduate mathematics students – to 
provide them with opportunities to experience doing mathematics, behaving mathematically.  

Presenting this poster has two main goals: one, to discuss the pertinence of the collage 
and its ‘images,’ and the way(s) in which these relate to, and complement, one another; and 
two, to inquire and reflect on methods that can help us, as researchers or as teachers, to report 
on students’ mathematical behaviors.       
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Elementary mathematics pre-service teachers’ consequential 
transitions from formal to early algebra 

Charles Hohensee  Siobahn Young 
University of Delaware University of Delaware 

Mathematics educators have long advocated for early algebra to be introduced into the 
elementary grades. However, little research is currently available to inform teacher preparation 
programs about the work of preparing undergraduate pre-service teachers for teaching early 
algebra. The research reported here examines the experiences of undergraduate pre-service 
teachers as they make consequential transitions from formal to early algebra. Preliminary 
results suggest that making this transition is far from trivial for undergraduates and that, to 
varying degrees, they face four kinds of conceptual challenges. 

Key words: early algebra, consequential transitions, pre-service teachers, elementary education 

Although the Common Core State Standards in Mathematics (CCSS-M, 2010) were intended 
for K-12 mathematics education, the standards impact undergraduate mathematics education. 
The specific impact addressed by the research reported here is the impact on the preparation of 
undergraduate pre-service teachers (PSTs). In particular, we examined the preparation of 
undergraduate elementary PSTs to teach early algebra. By early algebra, we mean an 
exploration of algebraic ideas that does not involve the symbols and equations that are normally 
associated with formal high school algebra (Carraher, Schliemann, & Schwartz, 2008). In other 
words, early algebra involves algebraic reasoning that elementary students would be able to 
understand. 

The CCSS-M emphasizes algebraic reasoning throughout the elementary grades. The goal is 
for students to “begin developing an algebraic perspective many years before they will use 
formal algebraic symbols and methods” (Common Core Standards Writing Team, 2011, p. 13). 
This emphasis in the standards is consistent with the call made for early algebra by many 
mathematics education scholars over at least the last two decades (e.g., Cai, Ng, & Moyer, 2011; 
Carpenter & Levi, 2000; Carraher, Schliemann, Brizuela, & Earnest, 2006; Kaput & Blanton, 
2000; Kieran, 1992; Nathan & Koellner, 2007; Radford, 2012).  

Needless to say, those charged with teaching early algebra will be elementary teachers. Thus, 
if teacher preparation programs are going to prepare elementary PSTs to address the CCSS-M in 
their future classrooms, then part of this work must involve preparing undergraduate PSTs to 
teach early algebra. Undergraduates, who typically come to teacher preparation programs with 
high school algebra experience, may not have had (or do not remember) the kinds of early 
algebra experiences that they will soon be expected to engage their future students in. This sets 
up the unusual situation in which undergraduates have significant experiences with more-
advanced mathematical ideas (i.e., formal algebra) and are then asked to learn less-advanced (but 
important) mathematical ideas (i.e., early algebra).  

Currently, the research on preparing PSTs to teach early algebra is limited (for an exception, 
see Stevens, 2008). However, what we have observed in the two semesters since beginning to 
study the teaching of early algebra to undergraduates is that this topic elicits greater-than-normal 
resistance. For example, PSTs often don’t understand why they need to learn about early algebra 
because they think it will be too difficult for children. We have thus come to the conclusion that 
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making the move from formal to early algebra is far from trivial for undergraduates, and that it 
may be similar to what Beach (1999) calls a consequential transition. 

Consequential transitions are defined as “the “developmental change in the relation between 
an individual and one or more social activities” (Beach, 1999, p. 114). Beach provides a number 
of illustrative examples, some of which reminded us of undergraduates preparing to teach early 
algebra. In one example, Beach describes the consequential transition that machinists went 
through when the trade moved from manual to computerized machining. Machinists with years 
of experience physically manipulating machines were suddenly faced with the challenge of 
switching to working with program codes. In particular, “[t]he shift in objects is difficult for 
highly skilled tool and die makers who may have spent 20 years on mechanical machines prior to 
learning computerized machining” (Beach, 1999, p. 123). Some machinists found computerized 
machining too great a departure from what they had been accustomed to doing and, as a result, 
accepted lower-tier jobs that allowed them to continue mechanical machining. 

The machinist example reminded us of undergraduate PSTs learning about early algebra. 
Like the machinists, undergraduates, who have prior knowledge about how to solve algebra 
problems using their knowledge of formal high school algebra, are being asked as PSTs to learn 
a new way to solve the same problems. Also, like the machinists, undergraduates tend to meet 
the transition with resistance. These similarities suggest that, similar to how Beach investigated 
machinists’ experiences, it could be illuminating to investigate undergraduates’ experiences as 
they learn about early algebra. Our ongoing research into the preparation of undergraduates to 
teach early algebra addresses the following two research questions: (a) What conceptual 
challenges do undergraduates encounter when learning about early algebra? (b) How do the 
relations between undergraduate PSTs and early algebra ideas and activities develop over time? 

Methods 
Participants and Setting 

Undergraduates enrolled in the third course in a sequence of three mathematics content 
courses that were required for an elementary and middle school teacher preparation program at a 
large mid-Atlantic American University were recruited to participate. The content course focused 
primarily on early algebra (i.e. 20 of 28 lessons were on early algebra). In particular, this course 
focused on “activities [that] can be engaged in without using the letter-symbolic, [but that] can 
be further elaborated at any time so as to encompass the letter-symbolic” (Kieran, 2004, p. 148, 
brackets added). This involved representing algebraic ideas with pictorial diagrams and story 
problems instead of with literal symbols (Cai et al., 2011; Carraher et al., 2008; Koedinger, & 
Nathan, 2004; Watanabe, 2011) and solving problems with quantitative reasoning instead of with 
symbolic manipulation of equations (Ellis, 2011; Kaput, 1995; Smith & Thompson, 2008; van 
Reeuwijk, 1995). Additionally, the early algebra portion of the course focused on three 
mathematical themes: (a) algebra as generalized arithmetic (Kaput, 1995; Nathan & Koedinger, 
2000), (b) algebra from a functions approach (Chazan, 1996; Ellis, 2011; Kieran, Boileau, & 
Garançon, 1996), and (c) algebra and meanings of the equal sign (Knuth, Alabali, McNeil, 
Weinberg, & Stephens, 2005; McNeil et al., 2006).  
Data Collection 

Data collection thus far has consisted of interviewing 13 undergraduate participants in groups 
of two and three at the end of the early algebra component of the course to discuss early algebra 
problems. These interviews addressed the first research question. The interviews were semi-
structured (Bernard, 1988) and had four parts. Participants were asked to (a) draw an informal 
diagram for a given story problem that involved an unknown; (b) explain a given functional 
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relationship between two variables in a way that fourth graders could understand; (c) create a 
story problem for a given equation in one variable (where the variable was present on both sides 
of the equal sign) and solve the problem in a way that did not involve symbolic manipulation; 
and (d) describe their experiences with the early algebra portion of the course. During the 
interviews, which were video recorded, the interviewer provided no feedback on correctness of 
responses. To address the second research question, additional interviews with PSTs before, 
during and after the early algebra unit, which examine the evolving nature of the relationship 
between the undergraduates and early algebra are currently being conducted. 
Data Analysis 

The video recordings of the interviews were transcribed and a descriptive account, with 
minimal inference, was created. To answer the first research question, the interviews were 
compared to each other to see if themes emerged in terms of conceptual challenges that the 
undergraduates were experiencing. Based on identified themes, a coding scheme was developed, 
using a priori codes found in the literature. Additional codes grounded in the data were added as 
needed (Strauss, 1987). Axial and selective coding was used to identify relationships between 
codes and to develop hierarchies among codes (Strauss, 1987). The constant comparison method 
was used to further refine codes and theory (Strauss & Corbin, 1994). Intercoder reliability was 
examined to assess the reliability and validity of the codes and 90% agreement was achieved. To 
answer the second research question, additional qualitative analysis will be conducted on the 
interviews currently being conducted. 

Results 
Analysis thus far has revealed that undergraduates who explore early algebra encounter four 

kinds of conceptual challenges. First, 11 of 13 undergraduate PSTs found it challenging to 
identify relationships in story problems that contained functional relationships. In particular, 
they were either unsure how many variables were related or which two variables were related. 
Second, all 13 PSTs found it challenging to distinguish between unknowns and variables. 
Specifically, they referred to variables as unknowns and vice versa, they referred to variables as 
quantities that needed to be solved for, and they created story problems that involved quantities 
that did not typically vary. Third, all 13 PSTs found it challenging to bracket their understanding 
of formal algebra. For example, PSTs were unable to draw informal diagrams about story 
problems without first writing a symbolic expression and/or were unable to explain solving an 
equation without referring to symbolic manipulation. Fourth, 5 of 13 PSTs found it challenging 
to draw informal diagrams of equations that involved subtraction of a constant from an 
unknown. For example, some PSTs were unsure if they should represent (x-2) as two less than 
some underspecified quantity (correct) or if they should add two onto some underspecified 
quantity and then remove two (incorrect). Analyses of the data currently being collected that 
examines the evolving relations between PSTs and early algebra will also be reported. 

Discussion 
Preliminary results from this study suggest that for undergraduates training to be elementary 

teachers, the transition from formal to early algebra can be challenging. Furthermore, it may be 
that the challenges that PSTs experience with early algebra prove to be related to the resistance 
that they tend to exhibit toward early algebra. It is our goal that the additional analysis currently 
being conducted will help to answer this question. 

Some of the identified challenges likely indicate weaknesses in the PSTs’ understanding of 
algebra in general (e.g., the confusion between unknowns and variables), which then impacted 
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their transition to early algebra. Other challenges were likely unique to transitioning to early 
algebra (e.g., bracketing one’s understanding of formal algebra). By gaining a better 
understanding about the kinds of challenges undergraduates face, as well as more generally about 
their experiences with transitioning to early algebra, research could inform teacher preparation 
programs on how to better prepare undergraduate PSTs for teaching early algebra effectively.  
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The role of examples in understanding quotient groups 
!

Carolyn McCaffrey James 
Portland State University 

 
This poster investigates two students’ use of examples in the transition to advanced 
mathematical thinking in the context of a teaching experiment focusing on quotient 
groups. Based upon the theoretical perspective of Edwards, Dubinsky, and McDonald 
(2008), this poster extends the construct of imperfect models to include instances of 
generic examples. This study found that students leveraged examples to construct 
conjectures, form justifications, clarify misconceptions, and provide analogies for further 
reasoning. However, attending to the specific features of particular examples also led to 
over-generalizations and invalid reasoning. 
 

Literature and Theoretical Framework 
Imperfect models are a means of representing some, but not all, of the characteristics 

of an abstract mathematical object (Edwards, Dubinsky and McDonald 2005). This poster 
extends the construct of imperfect models to include reasoning based in generic examples 
(Mason & Primm, 1984). Any specific example is necessarily imperfect: it is only a 
single representative of an entire class of objects. However, the specific example can 
provide a means for describing abstract mathematical properties that transcend the 
limitations of the specific case. This poster describes how specific examples can be 
leveraged to help students transition to advanced mathematical reasoning within the 
context of reinvention of cosets and quotient groups. 

Background and Methodology 
Data for this analysis is drawn from a larger design experiment whose goal was to 

create an instructional approach for supporting the guided reinvention of the quotient 
group concept. The instructional intervention used in this study follows the philosophy of 
guided reinvention as described by Freudenthal (1991): students create mathematics 
through authentic interaction with challenging problems. Two student participants 
participated in ten 60 to 90 minute videotaped sessions. In the first stage of analysis a 
team of three researchers independently identified instances in which examples were 
used. Next, the researchers compared instances and identified themes. Finally, the first 
author returned to the video data and triangulated content log analysis with video, video 
transcript, and student work to find evidence for or against these emergent themes. 

Results 
We identified four primary ways that the students used examples: generic examples 

as generative representatives, generic examples as justifications, examples clarifying 
misconceptions, and example-based over-generalizations. Examples served as generative 
representatives when students reasoned generally about a specific example to help create 
new insight or understanding. Similarly, students used generic examples to justify claims. 
The distinction between these lies in the use of generic examples: to inform or to prove.  
Examples and counterexamples were also used to clarify student misconceptions. Finally, 
we found that examples occasionally hindered student progress: students constructed 
faulty arguments based on an invalid generalization of a particular feature of a specific 
example. 
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Commognitive conflicts in the discourse of continuous functions 

Gaya Jayakody 
Simon Fraser University 

This paper reports on two commognitive conflicts that were identified in a larger research study 
conducted on university first year students’ discourse on continuous functions. The study looks at 
continuity related aspects under a participationist, discursive lens in contrast to previous studies 
on continuity that have used cognitive theories that hold an acquisitionist view on learning. The 
study adopts Sfard’s commognitive framework to analyze data. Among findings are different 
ways in which students use the word ‘domain’ and how they struggle with inconsistent 
‘realizations’ arising from different definitions presented in text books.  

Key words: Calculus, Continuous functions, Commognitive conflict, Realizations, Discourse 

Introduction 
Continuous functions has been a topic of interest for a number of researchers in Undergraduate 
Mathematics Education who have focussed on Calculus. Even though small in number, these 
studies have revealed some important findings around the understanding and learning of 
continuous functions by both students and teachers, a couple of which will be looked at in the 
forthcoming sections. However, they have not been able to move much forward past findings 
such as most common concept images of continuous functions. One reason for this stagnant 
nature might be the reliance of all these studies on theoretical frameworks that assumes an 
acquisitionist stance on concept formation. A few such most commonly used frameworks were 
Tall and Vinner’s ‘concept image and concept definition’ and Skemp’s ‘theory of knowledge 
acquisition’ along with his ‘two types of understandings- instrumental and relational’.  The 
current study strives to take a new look at the issues around the learning of continuous functions 
through a discursive lens. While the larger study uses Sfard’s commognitive framework to 
analyse university first year students’ discourse on continuous functions at large, this paper aims 
to report on a particular aspect of this discourse. This particular part of the study was guided by 
the following research question. 

What commognitive conflicts arise within university first year students’ discourse on continuous 
functions? 

Literature 
This section reviews the literature on continuous functions very briefly. Due to restriction of 
space, I only aim to point out the ‘common images’ of continuous functions held by both 
students and teachers as reported in previous studies. Many studies have found that a common 
reason thought by students for a function to be continuous was its graph being in one piece 
(Vinner, 1987; Tall & Vinner1981; Mastorides & Zachariages, 2004). The function being 
defined at a point and limit existing at a point were another two common conceptions found to be 
held by students to validate its continuity (Vinner, 1987; Bezuidenhout, 2010; Tall & Vinner, 
1981). In addition to these cognitive accounts, Jayakody (2014) reports on conflicts between 
different ways in which students communicate about continuous functions that has connections 
to what is presented in this paper.  
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A diversion: A discursive theoretical framework 
Deviating from the commonly used cognitive based frameworks on studies on continuity, this 
study adopts Sfard’s communicational approach to cognition to analyse data. While 
acquisitionists view communication as a mere window to ‘thinking’ and ‘mental schemas’, Sfard 
views communication as tantamount to thinking. The main premise in this framework is that 
thinking is an individualized version of interpersonal communication. The theory views 
Mathematics as an autopoietic system that creates objects of its study. Mathematical objects are 
hence discursive objects. Three further constructs are primarily used in this paper. They are 
signifiers, realizations and commognitive conflicts. A signifier is a string of words or symbols 
that function as a primary object in the mathematical discourse. A realization of a signifier is a 
“perceptually accessible thing so that every endorsed narrative1 about the signifier can be 
translated according to well defined rules into an endorsed narrative about the realization” 
(Sfard, 2008, pg.154).  In other words, a realization is a possible way of communicating about a 
signifier. When all the realizations of a signifier are organized in a hierarchical manner, it is 
called a realization tree. A commognitive conflict is when two narratives originate in 
incommensurable discourses (discourses that differ in their use of words etc.) which can be 
interpersonal or intrapersonal.  

Design of Study 
The larger study consists of administration of a questionnaire to 54 students and interviews with 
5 selected students from them. The students who took part in the study were first year 
undergraduate students who were taking a Calculus 1 course in a large university in Western 
Canada. A few days after the students learned the topic of continuity in their course, they were 
given a questionnaire in which they had to first describe and then define what a continuous 
function is and then to choose a set of functions given both in graphical and formula form as 
continuous or not giving reasons for their choices (See Appendix). Five students were then 
selected for interviews (semi-structured) based on their questionnaire responses. The interviews 
were transcribed and then realization trees were constructed for each of the five students for a 
continuous function and different features and patterns in their discourse were observed. 

In addition, as part of the study, various mathematical resources in introductory level Calculus 
and Analysis were examined to identify different ways in which continuity related concepts are 
defined. It was found that there are two definitions used for ‘continuity at a point’ and also for a 
‘continuous function’. Only two labels are used DeCon1 and DeCon2 since the four definitions 
could be grouped into just two that were consistent. These four definitions are given in Table 1. 

 

 Continuity at a point Continuous 
function 

DeCon1 A function f is said to be continuous at c if,  
1. ( )f x   is defined at  x c           

A function is 
continuous if it is 

                                                           
1 In mathematics, endorsed narratives are those that constitute mathematical theories. 

18th Annual Conference on Research in Undergraduate Mathematics Education 61218th Annual Conference on Research in Undergraduate Mathematics Education 612



2. lim
x→c

  ( )f x  exists. 

3. lim
x→c

  ( )f x   is equal to ( )f c  

f is discontinuous if any of the above conditions are not 
satisfied. 
(e.g., Tan, Menz & Ashlock 2011) 

continuous on all 
real numbers. 
(e.g., Anton, 
1995) 

DeCon2 A function f is said to be continuous at x c in its domain if, 

                  lim
x→c

  ( )f x =   ( )f c  

And f is discontinuous at x c in its domain if, 

                  lim
x→c

  ( )f x ≠   ( )f c  
(e.g., Stahl, 2011) 

A function is 
continuous if it is 
continuous on its 
domain. 
(e.g., Strang, 
1991) 
 

Table 1: Different definitions for continuity related concepts 

It is noted that if DeCon1 for a continuity at a point and DeCon2 for a continuous function is 
applied together, it can result in seemingly inconsistent narratives about the continuity of a 
function. For instance, a function that is not defined at a point has a point of discontinuity at that 
point according to DeCon1 (for continuity at a point) but is a continuous function according to 
DeCon2 (for a continuous function).  

The students in the study had only learnt the definition for continuity of a function at a point. 
And this definition was DeCon1. 

Results 
The interview data revealed two types of commognitive conflicts in students’ discourse on 
continuous functions. I draw on the interviews with the students Jane, Chirag and Geet to 
illustrate these commognitive conflicts. The first step of analysis was to construct realization 
trees for the signifier ‘continuous function’ for the five students that I conducted interviews with. 
In order to keep the length of the paper within limit, I do not present these realization trees here 
but refer to the realizations in the discussion on commognitive conflicts. Realizations of a 
signifier in the same level were labelled with italicized bold-faced capital letters starting with A. 
When these are further realized down to another level, numbering was started with A1 and 
continued as A2, A3 and so on. In the following illustrations, some of these realizations will be 
referred to.  

1. Commognitive conflict between the discourses of interviewer and interviewee on the 
same signifier ‘domain’ 

Certain ways Jane and Chirag talked about ‘domain’ indicated that there was a commognitive 
conflict between my discourse and their discourse on the signifier ‘domain’. We appeared to 
mean different things when we used the signifier ‘domain’ in certain parts of the conversation. 
By analyzing these utterances, this commognitive conflict could be suggested to have arisen due 
to the lack of the following signifier, realization pair, regarding domain.  
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G5 

5 -5 

 

   

 

 

 
Below are two different utterances by Jane and Chirag that exemplify their use of ‘domain’.  

Example 1- G5 was the fifth function represented in graphical form in the questionnaire (See 
Figure 1a). I drew a slight variation of G5 during the interview with Jane (See Figure 1b).  

 

 

 

 

 
a) Graph G5 in questionnaire                              b) Graph I drew similar to  G5 

Figure 1 

Referring to the graph that I drew during the interview, Jane said the following: 

Jane: If I was given this (pointing to Figure 1b) but the domain I was given that 
(pointing to [-5, 5] in Figure 1a), then that is not, it’s not continuous. But if I 
was given that (pointing to (-5, 5) that I had written before), I would assume 
that it was continuous 
 

Example 2 - Chirag referring to the sixth graph in the questionnaire, G6, (See Figure 2) said the 
following: 

 

 

 

Figure 2: G6  

Chirag: It’s continuous if x is greater than 0, but it’s not continuous if 0 is included in 
the domain, yeah 

 

Also Jane, Chirag and Geet failed to identify the domain of some functions where they did not 
identify a ‘hole’ in the graph (a point at which the function is not defined) as a point that is 
excluded from the domain of the function. Below are three utterances in which each of the 
students expressed the domain of the function represented by the second graph G2 (See Figure 3) 
as all real numbers. These examples show how these three students’ way of talking about 
‘domain’ is different from how the researcher (and the reader) would talk about it.  

 

5 -5  

Domain = [-5, 5] 

There is a ‘hole’ in the graph   
(A point at which the function is 
not defined)                     
 

The corresponding x is not in the 
domain of the function 

18th Annual Conference on Research in Undergraduate Mathematics Education 61418th Annual Conference on Research in Undergraduate Mathematics Education 614



 

 

Figure 3: G2  

Jane: All real numbers (Responding to what the domain of G2 is) 
Chirag: We don’t know, infinity, negative infinity to infinity? (Referring to the 

domain of G2) 
Geet: Because it is not continuous at this point (pointing to 3), this whole thing is 

the domain (Referring to G2) 
 

2. Commognitive conflict between the discourses arising from different realizations for the 
same individual 

In addition to the commognitive conflict that occurred between the discourses of the participants 
and mine, there was another kind of conflict that was observed in Jane, Chirag and Geet’s 
interviews. This conflict occurred within their own discourse and the conflict was between two 
realizations that they were using. For instance, Jane faced a tension between her realizations C 
and D (A detailed account of this can be found in Jayakody (2014)). Similar tensions were 
observed in Chirag’s discourse between his realizations B and C. And also Geet showed a 
tension when he was using his realizations B and A1. One interpretative elaboration is presented 
in this paper to illustrate the tension created. These conflicts seemed to arise out of the 
discordance between the two definitions DeCon1 and DeCon2 that the realizations were based 
on. The realizations between which Jane, Chirag and Geet had tensions and their accordance 
with the two definitions DeCon1 and DeCon2 are given in Table 2 below.   

 

 Realizations in accordance with 
DeCon1 

Realizations in accordance with 
DeCon2 

Jane D - Functions that look like  
these with holes and asymptotes are 
excluded from continuous functions 

 

C – For every point in its domain, 
 f(a)  is defined and  

 lim
x→a

  ( )f x = ( )f a  
 

Chirag B - No discontinuity according to 
DeCon1 
 

C - A function that is continuous on its 
domain 

Geet A1 - A function that is defined, that 
doesn’t have a hole, break or a jump 
 

B - Continuous on its domain 
 

Table 2: Consistency of realizations that created tension, with DeCon1 and DeCon2 

 

 

 

  

3 
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Table 3 gives an interpretative elaboration (a text that, utterance by utterance, elaborates on the 
text produced by the speakers) that presents and elaborates the tension created due to the conflict 
between Chirag’s realizations B and C. The episode refers to the graph G2 (See Figure 3) in the 
questionnaire. ‘N’ indicates the interviewer (the author) and ‘C’ indicates Chirag. 

 

Uttera-
nce no. 

Who 
said 

What is said What is 
done 

Interpretative elaboration 

C501 N Then what about this one? Points to G2 I invite Chirag to reconsider the 
continuity of G2 

C502 C It’s continuous except for, 
it’s a continuous function 
except that point x equals 3 

 In the questionnaire he has 
classified G2 as ‘not 
continuous’, but now identifies 
as ‘continuous except at 3’ 

C503 N Oh ok, what does that mean? 
It’s a continuous function 
except at point 3 means? 

 I want to see whether he can 
classify it as a ‘continuous 
function’ with a discontinuity at 
3. 

C504 C There’s a point of 
discontinuity at 3 

 Chirag rightly identifies 3 as a 
point of discontinuity according 
to realization C. 

C507 N But the function is 
continuous? 

  

C508 C Yeah, but I don’t know, yeah 
because we put that so 

 Chirag accepts that G2 is 
continuous but his ‘I don’t 
know’ reflects his uncertainty 
about it 

C509 N Yeah   
C510 C So we don’t really care what 

happens at 3. That’s what, 
that’s what I’m basing my 
thesis, do we really don’t 
care what happens at that x 
value and I don’t think we do 
so it’s continuous throughout 

 He reasons to himself why G2 
is continuous. He is using 
realization B. He is explicit 
about “the thesis he’s basing his 
conclusion on”.  

C513 N Does that bother you?  He looks bothered and I ask 
him about it. 

C514 C  Yeah Laughs He admits that it bothers him. 
C515 N It does?   
C516 C  Laughs  
C517 N There is a discontinuity but 

it’s a continuous function  
 I put forth the reason for the 

botheration: the two results 
from C and B explicitly;  
And Chirag agrees  

C518 

 
C 

 
Yeah but it’s a continuous 
function  
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Table 3: Interpretative elaboration for Chirag’s utterances from [C501] to [C518] that elaborates 
a tension between the realizations B and C for continuity 

Table 3 shows how Chirag faces tension having to accept that a function can be called as 
continuous when it has a discontinuity at a point. Note that a transcript lacks many components 
of communication and only shows the verbal utterances and “does it bother you?” in [C513] was 
deliberately asked to have a written record of Chirag’s tension expressed through facial 
expressions. Jane and Geet showed similar tensions throughout their interviews whenever they 
were trying to use the realizations that were based on DeCon1 and DeCon2. 

Discussion 

The paper illustrates two commognitive conflicts in the discourse of continuous functions; one 
interpersonal and one intrapersonal. The interpersonal commognitive conflict of using the term 
‘domain’ has not been identified in earlier studies under cognitive lenses in cognitive terms. This 
conflict bears information about how students might be thinking of functions and domain of 
functions in general and hence has implications for teaching.   

The second conflict which is intrapersonal, is the first to be recorded of the kind. In addition to 
being intrapersonal, this conflict highlights its origin. The conflict is between two realizations for 
the same signifier for the same individual. I have also attempted to frame these conflicting 
realizations as arising from nothing but the inconsistent definitions used for continuity; a concern 
that is seen to be present in textbooks, mathematical websites, or even arguably within classroom 
instruction and discourse. 
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Appendix 

Questionnaire 

Answer all questions. 

1. What do you understand by a ‘continuous function’? 
2. Give the definition of : 

a) ‘continuity of a function at a point 
b) ‘continuous function’ 

3. Below are the graphs of six functions. Determine whether the functions are continuous or 
not. Give reasons for your answer. If any, state the point/points of discontinuity. 
 
 
a)                                                                            b) 

 

 

 

 

c)                                                                                    d)                               
 
 
 
 
 
 
 
 
 
e)                                                                                    f) 

 

 

 

 

 

4. Below are six functions given by their formulae. Determine whether the functions are 
continuous or not. Give reasons for your answer. If any, state the point/points of 
discontinuity. 

3 

9 -3 -10 

Domain = (-f ,2) � (5,f ) 

5 -5 

Domain = [-5,5] 

5 2 

6 
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5. Place a tick in the correct box.  
 
Function Is a continuous function Is not a continuous function 
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Towards a Measure of Inquiry-Oriented Teaching 
 

Estrella Johnson 
Virginia Tech 

 
Abstract: Over the last decade, undergraduate mathematics researchers and curriculum 
developers have generated inquiry-oriented curriculum materials for courses from calculus 
through abstract algebra. These materials present a number of challenges for implementation, 
and as such, an instructional quality measure becomes a necessary requirement for making 
sense of student learning in these classrooms. The work here represents an initial attempt to 
define and map the domains of inquiry-oriented teaching. Specifically, classroom video data will 
be analyzed using a conjectured list of critical components of inquiry-oriented teaching. This 
analysis will be used to 1) refine/test the initial characterization of inquiry-oriented teaching, 
and 2) generate examples of how these critical components are actualized during instruction.  
 
Key Words: Instructional Measure, Teaching, Inquiry-oriented  
 

Researchers and curriculum developers have responded to the call for instructional 
improvements in undergraduate STEM education by developing numerous student-centered 
curricular innovations. In practice, student-centered instruction has been shown to support 
conceptual learning gains (e.g., Kogan & Laursen, 2013; Kwon, Rasmussen, & Allen, 2005; 
Larsen, Johnson, & Bartlo, 2013), diminish the achievement gap (e.g., Kogan & Laursen, 2013; 
Riordan & Noyce, 2001; Tarr et al., 2008), and improve STEM retention rates (e.g., Hutcheson, 
Pampaka, & Williams 2011; Rasmussen, Ellis, & Bressoud, 2013; Seymour & Hewitt 1997). 
While the research and development of student-centered curricular materials and the research 
showing positive student results are important, they miss a key component of undergraduate 
education – teacher practice. While undergraduate mathematics education researchers have 
produced only a small amount of research on the teaching practices of mathematicians (Speer, 
Smith, & Horvath, 2010), research at the K-12 level has provided significant evidence that 
instructional quality is a primary indicator of student achievement (e.g., Nye, Konstantopoulos, 
& Hedges, 2004; Ottmar, Rimm-Kaufman, Larsen, & Merritt, 2011). The lack of research into 
mathematicians’ teaching practices and the K-12 research indicating the importance of 
instructional quality implies a gap in research regarding instructional quality at the university 
level.  

Within the undergraduate mathematics community, the last decade has seen a sharp rise 
in inquiry-oriented, research based, instructional innovations. Inquiry-oriented teaching is a 
student-centered pedagogy being used in mathematics classes from calculus through abstract 
algebra. The limited research that does exist on mathematicians teaching practices has shown 
that these inquiry-oriented curricular materials present a number of challenges for 
implementation. Such challenges include: developing an understanding of student thinking, 
planning for and leading whole class discussions, and building on students’ solution strategies 
and contributions (Johnson & Larsen, 2012; Rasmussen & Marrongelle, 2006; Speer & Wagner, 
2009; Wagner, Speer, & Rossa, 2007). Given these challenges with the implementation of 
inquiry-oriented instructional materials, the need for a measure of instructional quality becomes 
a necessary requirement for making sense of student learning in these classrooms.  
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 Before such an instrument can be developed and used as a measure of inquiry-oriented 
teaching, the concept of “inquiry-oriented teaching” first needs to be operationalized in a way 
that can be observed, measured, and analyzed. The work here represents an initial attempt to 
define and map the domains of inquiry-oriented teaching. Specifically, classroom video data will 
be analyzed using a conjectured list of critical components of inquiry-oriented teaching. This 
analysis will be used to 1) refine/test the initial characterization of inquiry-oriented teaching, and 
2) generate examples of how these critical components are actualized during instruction. 
  

Theoretical Perspective on Inquiry-Oriented Teaching 
This study takes place in the classrooms of mathematicians implementing the Inquiry-

Oriented Linear Algebra (IOLA) curriculum. The design of the IOLA curriculum was guided by 
the instructional design theory of Realistic Mathematics Education (RME) design heuristic. In 
addition to informing the development of the IOLA curriculum, RME also heavily influences 
how the curriculum materials are intended to be implemented. As described by Wawro et al. 
(2012), the IOLA curriculum was developed to be consistent with the idea that mathematics is a 
human activity, as opposed to a collection of predetermined truths (Freudenthal, 1991). This 
perspective can have significant implications for the structure of a course utilizing the IOLA 
materials, and ideally induces a classroom environment in which 1) students “learn new 
mathematics through inquiry by engaging in mathematical discussions, posing and following up 
on conjectures, explaining and justifying their thinking, and solving novel problems”, and 2) 
“teachers routinely inquire into their students’ mathematical thinking and reasoning” 
(Rasmussen & Kwon, 2007, p. 190). This duality between student inquiry into the mathematics 
and teacher inquiry into student thinking helps to ensure that “the classroom participants 
(teachers and students) lay down a mathematical path as they go, rather than follow a well-
trodden trajectory” (Yackel, Stephan, Rasmussen & Underwood, 2003). Therefore, the goal of 
instructor inquiry into student thinking goes beyond merely assessing students, and seeks to 
reveal students’ intuitive and informal ways of reasoning, especially those that can serve as 
building blocks for more formal or conventional ways of reasoning. The instructor’s role is to 
guide and direct the mathematical activity of the students by listening to students and using their 
own reasoning to support the development of new conceptions.  

Data and Methods 
In order to investigate the different dimensions that comprise inquiry-oriented teaching, 

preliminary analysis was carried out on classroom video data of an instructors as she 
implemented an inquiry-oriented linear algebra (IOLA) unit in a freshman/sophomore level, 
introductory linear algebra course. Dr. Roberts, teaches at a small private university. This was 
her first implementation of the IOLA materials and she had 20 students. As Dr. Roberts 
implemented the IOLA instructional units, classroom video data was collected1. The camera was 
focused on the instructor, and both the instructor and the students are audible when the teachers 
pose tasks, lectures, and hold whole class discussions. These whole-class segments are the 
primary data source for this analysis.  

In order to begin to map the domains of inquiry-oriented teaching, the teachers’ activity and 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!This data was collected as part of the NSF funded grant, Collaborative Research: Developing 
Inquiry-Oriented Instructional Materials for Linear Algebra (DUE-1245673, 1245796, and 
1246083), M. Wawro (PI), M. Zandieh and C. Rasmussen (co-PIs). !
!
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practices were analyzed during these whole-class segments. An analytic framework informed by 
the research literature guided this analysis. Initially, by generalizing from the RME literature and 
from empirical studies of instructors implementing inquiry-oriented curricula materials, six 
critical components of inquiry-oriented teaching were generated:  

1. Teachers engage students in challenging tasks that encourage development of important 
mathematical ideas. 

2. Teachers actively inquire into students’ thinking. 
3. Teachers use student contributions to advance the mathematical agenda of the class.  
4. Teachers support students to engage in one another’s thinking.  
5. Students, instructors, and materials work together to build coherent understanding of 

important mathematical ideas. 
6. Instructors introduce a minimal amount of language and notation prior to students’ 

engagement with a task; language and notation is introduced only when a need for it has 
been established. 

The analysis of Dr. Roberts’ classroom video data focuses on if/how these components 
appeared in her implementation of the IOLA materials. This analysis will serve to test the 
conjecture that these components are in fact important aspects of IO teaching and to generate 
examples of how these components may (or may not) be actualized during instruction.  
 

Results of Preliminary Analysis 
An initial analysis showed some evidence of all six of our conjectured critical 

components. Below is segment of transcript from Dr. Roberts’ class in which a student is 
describing his group’s work on the first task of the IOLA materials to the rest of the class (figure 
1 shows the task and figure 2 shows the solution this group presented to the class).  
 

 
Figure 1. Task 1 of IOLA Materials 

18th Annual Conference on Research in Undergraduate Mathematics Education 62218th Annual Conference on Research in Undergraduate Mathematics Education 622



 

 
Figure 2. Group 1’s Work on Task 1 

 
Group 1 Representative: So with the hover board, we had to figure out how many hours he 

would go on the hover board, and then how many hours he would go on the magic carpet 
to get to the eventual 107 over 64.  

Instructor: Good, pause.  What represents the number of hours he spent on the hover board? 
Group 1 Representative: That is the x 
Instructor: Ah [points to the x on the paper] got it.  OK.  OK so I spend x hours here and y hours 

there, and then I need to… 
Group 1 Representative: Get there eventually. 
Instructor: end up here, OK.  We on the same page about that?  I saw this in a lot of places, so 

yeah, OK great, keep going. 
Group 1 Representative: So I wrote that they are scalars, so then I just um…made two different 

equations for the east and the north.  And so, that’s what those are.  And then I just solved 
for the x and the y, which were specifically the hover board and the magic carpet. 

Instructor: Uhh…they’re not the hover board and magic carpet themselves… 
Group 1 Representative: Er, the hours. 
Instructor: OK, terrific.  Yeah, very good.  Very good.  So, excellent start.  … this is called 

vector equation because it’s an equation involving these vectors.  Then we break it up 
into what’s called a system of linear equations; they are linear because the highest power 
in any of our variables is one, and we’re just putting scalars in front of them. So going 
from the vector equation to the system of equations…why are we allowed to do this?  
Like what suggests – yeah, Chris. 
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Chris: ‘Cause uh, both vectors have like x components and y components – you just break it 
up…and make an equation of all x components going together and all the y components.  

 
The students’ work on this task, and Dr. Roberts’ decision to have students present their 

work to the class, reflects component 1 and 4, respectively. Further, Dr. Roberts’ question “So 
going from the vector equation to the system of equations…why are we allowed to do this?” can 
be seen as evidence of components 2, 3, and 5. Finally, Dr. Roberts choosing to introduce the 
term “vector equation” in reference to student work reflects component 6.  

Future analysis will continue to investigate the extent to which these components are 
present in Dr. Roberts’ implementation of the IOLA materials. Analysis will also be carried out 
on other instructors’ implementations of the IOLA materials. This will allow for further 
refinements of the components and additional documentation of the various ways these 
components are enacted. Finally, analysis will turn to indications of how these components 
actually influence the student learning.   
 

Questions for Discussion 
1) How do these components of IO teaching overlap/related to other student-centered 

instructional approaches (e.g., Inquiry Based Learning)?   
2) Are there aspects of inquiry-oriented, student-centered, or lecture that should have been 

included? For instance, is “mathematical correctness” or “formality of definitions” something 
that should be included?  

3) Ideally, the measurement that is the ultimate goal of this work would be sensitive enough to 
differentiate between instruction in a “Modified Moore Method” course and an IO course.  
Do you expect there to be difference in these two pedagogical approaches given the list of 
critical components?  
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Undergraduate students’ experiences in a developmental mathematics classroom1 
 

Durrell A. Jones    Beth Herbel-Eisenmann 
Michigan State University   Michigan State University 

 
Understanding students’ perspectives about their mathematics classroom experience is 
important for supporting students’ learning. As part of a larger study, 15 students enrolled in 
enrichment sections of a developmental mathematics course were interviewed to explore 
students’ experiences and dispositions. We highlight areas that students described as helpful 
or not and the ways in which students’ framed themselves as having a “productive 
disposition” (National Research Council (NRC), 2001). Preliminary findings suggest 
students found activities most helpful when they thought that the activity might help them be 
successful on other activities and that they described themselves as having many 
characteristics of a productive disposition. A detailed analysis of these descriptions, however, 
uncovered narrow interpretations of “understanding” and “making sense” in mathematics.  

Key words: Productive Disposition, Developmental Mathematics, Students’ Experiences  

Background 
Many high school students in the U.S. continue to graduate lacking skills necessary to 

take credit-granting courses required for a college degree (Attewell, Lavin, Domina, & 
Levey, 2006).  Instead, these students are taking non-credit bearing developmental courses 
(Bahr, 2010). As many as one-third of post-secondary students require some sort of 
developmental2 course (Moore, 2003). Further, students are failing at alarming rates in these 
developmental courses—and the trend is worse in mathematics.  As Bahr (2010) pointed out, 
“less than one student in four (24.6%) completed a college-level math course successfully 
within six years of first enrollment.” (p. 220). To try to reduce this trend, some universities 
provide additional supports like enrichment courses, which is the focus of this paper. 

Even though this dilemma exists, there is literature mainly at the secondary level 
suggesting that focusing on students’ experiences in mathematics may provide some insight 
into this issue (Martin, 2007).  There is little research that points to students’ perspectives on 
these develomental courses (e.g., Grubb, 2001; Larnell, 2011). Yet, Waxman (1989) argued 
that researchers must recognize student perspectives on classroom instruction and learning 
environments because students ultimately respond to what they find to be important. Thus, 
we contribute to this literature by exploring students’ perspectives on their experiences in 
university enrichment courses.  By doing so, we can identify key elements students suggest 
contribute to the way they see their world and the world of mathematics. Such findings have 
implications for course design and pedagogy in order to meet the needs of students and 
potentially affect their success rate in developmental mathematics and enrichment courses.   

Although there are different ways researchers might frame students’ perspectives, our 
focus was to investigate what students found helpful and to account for how they describe 
their dispositions. In particular, we focus on whether students’ responses to our interview 
questions suggested characteristics of a “productive disposition” (ProDisp) or “the tendency 
to see sense in mathematics, to perceive it as both useful and worthwhile, to believe that 
steady effort in learning mathematics pays off, and to see oneself as an effective learner and 

                                                 
1 This material is based upon work supported by the National Science Foundation under Grant No. (NSF DUE-
1245402). Any opinions, findings, and conclusions or recommendations expressed in this material are those of 
the authors and do not necessarily reflect the views of the NSF. 
2 Although some authors call these “remedial” mathematics courses, we use the term “developmental” 
mathematics. 
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doer of mathematics” (NRC, 2001, p. 131 - 133).  By probing to see whether students align 
themselves with characteristics of a ProDisp, we can see whether they think they have a 
ProDisp, a perspective that has been shown to affect success in learning. 

 
Research Questions 
 As part of a larger study, we more broadly seek to explore the answer to the question: 
What do students’ descriptions of their enrichment class tell us about their experiences in that 
class?  Here we concentrate on the following related sub-questions:  RQ1) What do students 
describe as most and least helpful aspects of the course? RQ2) In what ways do their 
descriptions frame themselves as having a productive disposition? and RQ3) What 
differences exist in the accounts provided by students from an intervention enrichment 
section as opposed to students from non-intervention sections? 

 
Research Method 
 This qualitative research project features an analysis of semi-structured interviews with 
intervention and non-intervention students in order to address our research questions. Our 
interpretivist analysis used open coding (Esterberg, 2002), in the sense that we attended to 
patterns or themes across the set of interviews. We report on in-progress analyses, focusing 
on three of the questions students were asked in the interviews.   
 
Context 

Intermediate Algebra is a 3-credit online developmental mathematics course offered at a 
large university in the Midwest U.S. Students are placed into this course based on placement 
exams and students with the lowest scores are asked to enroll in the face-to-face “enrichment 
section” that meets twice a week for 2 hours each. The trend has been that 30% of the 
students in Intermediate Algebra do not complete the course or get a D or F. Over half the 
students in the enrichment section identify as African American. This paper focuses on one 
section of this enrichment course (the “intervention” section), drawing on a larger NSF-
funded study in which prospective secondary mathematics teachers (PSTs) use research 
based teaching methods and innovative materials to teach this course. The larger study 
investigates the learning and experiences of both PSTs and students in the enrichment course.  
 
Data Collection 
 In December 2013 and January 2014, we conducted 45-minute interviews with 15 
students from the intervention (n = 7; 2 male and 5 female) and non-intervention (n = 8; 1 
male and 7 female) sections of the enrichment course. A semi-structured interview protocol 
was designed to inquire about student’s background, learning disposition, and overall 
experiences in the enrichment course in order to understand students’ experiences and 
perspectives on different versions of the course.  This particular analysis focuses on three of 
the seven total questions from the interview. We chose these questions to begin our analysis 
because we thought they were the most salient for improving the course; they offered the 
greatest insight and immediate applicability of findings into the design, planning, and 
implementation of the enrichment class for the fall 2014 semester.   
 
Analysis 
 All interviews were transcribed and then students’ responses were entered into separate 
excel files to compile all responses to each question in order to analyze them for major 
themes.  To answer RQ1, we used open coding to identify themes and categories in the text, 
which led us to consider supports as structures in the classroom as described by Doyle & 
Carter (1984).  Like these authors, we use the term “activity” to refer to “how groups of 
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students are organized for working, e.g., seatwork, small group discussions, lectures, etc.” (p. 
131-132).  This category includes, for example, working on worksheets, taking attendance 
quizzes, and reviewing for exams.  The enrichment students’ interviews helped us to 
understand what they found helpful or unhelpful in supporting their learning. The first author 
created a set of themes and wrote an analytic memo, which was discussed by both authors 
and revised based on further examination of the data and a search for discrepant events. 
 To analyze student responses to questions that focused on ProDisp, we created a ‘scale of 
alignment’ to capture the many characteristics of ProDisp as students described having them 
or not. For example, when we asked them “Is mathematics something that makes sense to 
you? In what ways? (probe for: makes sense in and of itself; makes sense in relationship to 
real life)?” if they said it made sense and explained how it made sense to them, we coded 
them as having alignment with “mathematics makes sense”. If students disagreed or seemed 
unsure about their stance related to a particular characteristic of ProDisp, their response was 
coded as “not having alignment”.  
 We categorized students as having “high alignment” if they responded positively to all 
four aspects of ProDisp, “medium alignment” if they responded positively to 2-3 aspects and 
“low alignment” if they responded to 0-1 aspects. The first author then grouped the students’ 
responses based on level of alignment and we used open coding for each group to better 
understand the ways in which students explained that aspect of ProDisp. For example, we 
looked carefully at how students said mathematics “made sense” and saw that most students 
said it was because they said they could follow instructors’ procedures easily or because 
mathematics was something they used in life. Additionally, we looked for themes within and 
across the intervention section interviews and the non-intervention sections.  For instance, the 
themes that arose out of looking across the responses of how students viewed mathematics in 
terms of it being “useful & worthwhile” were:  1) Career Math (Math that is needed for 
careers), 2) World Math (Math that is needed to function in the everyday world outside of 
work), & 3) Classroom Math (Math that exists in traditional classrooms). 
 
Current Findings 
 Because analysis of data for each research question offered slightly different aspects of 
students’ perspectives, we share our findings about each. Related to what students found 
helpful (RQ1), we found that students described the in-class activities as most helpful for 
supporting their learning (see Table 1).  The table below showed us the extent to which 
students found the different aspects of the course helpful.  Knowing that most of the students, 
regardless which section they were in, responded favorably to “Class Activities” suggested 
exploring further how they experience the Intermediate Algebra class, which was delivered 
online. Additionally, none of the non-intervention students mentioned classroom routines as 
being helpful and, although some found this aspect helpful in the intervention section, more 
students said it was not helpful.  This is also an area that offers some room to investigate as 
we look at the pedagogy in the classrooms. Finally, we briefly note that the same percentage 
of students found the instructors helpful, about half the intervention students versus non-
intervention said the instructors were not helpful.   
 

Table 1 
Enrichment Students’ Descriptions of Helpful/Unhelpful 

Categories Helpful Unhelpful 
 Intervention 

(I) 
Non-Intervention 

(NI) 
Intervention 

(I) 
Non-Intervention 

(NI) 
Class Structure 7% 20% 13% 13% 
Class Routine 13% 0% 33% 13% 
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Class Activities 27% 40% 20% 33% 
External Resources 7% 13% 0% 13% 
Characteristics of 
Teacher/Instructor 

20% 20% 13% 20% 

ALEKs 0% 7% 0% 13% 
 
 The findings (see Table 2) related to questions about ProDisp suggest that students in 
general leave the enrichment course with medium alignment to a ProDisp; almost all students 
aligned themselves with two or more aspects (6 of 8 non-intervention & 5 of 7 intervention).  
We were able to uncover further nuances from students’ responses related to ProDisp.  For 
example, we noticed that non-intervention students responded to the “Steady Effort Pays Off” 
question about how one might improve in mathematics because they had observed someone 
else improving in mathematics. In contrast, the intervention section students were specific 
about how they themselves could improve and gave responses that connected to their own 
intrinsic motivation as the means of improvement. 
 

Table 2 
 Enrichment Students’ Alignment to Productive Disposition 

Alignment 
Scale (PDF) 

Number of 
Dimensions Present 

% of Alignment 
(Intervention) 

% of Alignment  
(Non-Intervention) 

Low 0 – 1 7% 0% 
Medium 2 – 3 43% 36% 

High 4 7% 7% 
  
 This research will continue with an analysis of remaining responses from the interview. 
We also plan to look at additional data sources like classroom observations in order to 
understand why students responded the ways they did.  Continuing the research will allow for 
greater insights about how students describe their experiences and an ability to compare and 
contrast views of students to look for further trends, especially in relationship to current 
literature on secondary students’ experiences and ProDisp.   
 
Presentation & Audience Engagement 

In our presentation, we will share common areas that students recognized as helpful or 
not and how the students described characteristics of ProDisp. We will allocate 10-20 
minutes for questions and feedback.  Questions we will pose include:  1) In addition to 
surveys and interviews, what other approaches have you used to address students' 
perspectives on developmental mathematics classes? 2) What aspects of less traditional 
pedagogy and tasks might be contributing to these findings and how might we better probe 
for those aspects of students’ experiences? and 3) (from a practical standpoint) How might 
we use what we have learned to improve the course? For example, if the less conventional 
pedagogy is contributing to these findings, how might we mitigate students’ experiences to 
help them understand why we are using these strategies?      
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Promoting students’ construction and activation of the multiplicatively-based 
summation conception of the definite integral 

Steven R. Jones 
Brigham Young University 

Prior research has shown how the multiplicatively-based summation conception (MBS) is 
important for making sense of definite integral expressions in science contexts. This study 
attempts to accomplish two goals. First, it describes introductory lessons on integration from 
two veteran calculus teachers as a way to possibly explain why so few students draw on the 
MBS conception when making sense of definite integrals. Second, it reports the results from a 
design experiment intended on promoting not only the construction of the MBS conception, 
but its priming for activation when students see and interpret definite integrals expressions. 

Key words: calculus, definite integral, summation, accumulation, design experiment 

The literature from undergraduate mathematics education and science education 
demonstrates that students are struggling to draw on and adequately apply their knowledge of 
integration to calculus-based coursework (Bajracharya & Thompson, 2014; Christensen & 
Thompson, 2010; Pollock, Thompson, & Mountcastle, 2007; Wemyss, Bajracharya, 
Thompson, & Wagner, 2011). In light of this difficulty, Jones (2014) subsequently analyzed 
three common conceptualizations of the definite integral in terms of how productive (i.e. 
useful or helpful) each conceptualization is for making sense of integral expressions and 
formulas. The results revealed that the familiar “area under a curve” and “anti-derivative” 
conceptions of the integral seem less productive for making sense of applied-science definite 
integrals, since they did not help the students see the relationships between the physical 
quantities involved in the integral expressions. By contrast, the “multiplicatively-based 
summation conception” (MBS conception), grounded in the notion of Riemann sums, seems 
highly productive, since it helped students understand what a given definite integral 
calculates and, more importantly, why. The MBS conception is defined as one that 
incorporates both the multiplicative relationship between the integrand and the differential 
and the summation or accumulation of the resulting quantity throughout the domain. 

In response to these results, Jones (under review) later investigated, through a sample of 
150 calculus students, how common the (a) area under a curve, (b) anti-derivative, and (c) 
MBS conceptions of the definite integral are in a general calculus student population. 
Unfortunately, the results showed that large percentages of students primarily interpreted the 
definite integral as an area under a curve (87.3%) or an anti-derivative (40.0%). Very few 
students (6.7%) interpreted the basic meaning of the definite integral through the MBS lens. 
While these results do not imply that students do not cognitively possess the MBS 
conception, they do demonstrate that students might not draw on the useful MBS conception 
in making sense of definite integrals. 

While several educators are looking into how students learn and think about Riemann 
sums (e.g., Bressoud, 2009; Sealey, 2014; Sealey & Engelke, 2012), it is possible that 
students separate the Riemann sum and the definite integral as related-but-distinct notions 
(Jones, 2013). Thus, it is important to study whether instruction regarding Riemann sums 
actually helps students not only construct the MBS conception, but to have it cognitively 
primed for activation when students attempt to make sense of integral expressions. This study 
seeks to shed light on how introductory lessons on integration support, or not, the activation 
of the MBS conception in making sense of definite integrals. 
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Focusing Framework 
In order to investigate the connections between introductory instruction on integration 

and how students construct and draw on their knowledge of integrals, I use two elements of 
the “focusing framework” as an analytic lens (Lobato, Rhodehamel, & Hohensee, 2012). 
First, centers of focus are features in the classroom that students may attend to, such as 
patterns, properties, or regularities. Second, these centers of focus are created through 
focusing interactions, which are discursive practices including speech, gestures, or visuals. 
By creating centers of focus, instructors directly influence what students may pay attention to 
or what they may perceive as useful or important as they construct their knowledge. 

Analyzing a lesson for the focusing interactions that create certain centers of focus allows 
for the opportunity to uncover what students might notice during that lesson, defined as “the 
selection of certain information in the presence of competing sources of information” (Lobato 
et al., 2012, p.438). Examining what students might notice during introductory lessons on 
integration may help explain the conceptions students choose to draw on when thinking about 
integrals. This framework is also used to assist in evaluating experimental lessons designed at 
helping students create and draw on the important ideas that make up the MBS conception. 

Methods  
This study contains two main parts. In the first, two veteran calculus teachers at a large, 

four-year university had their first five lessons on integration observed in order to analyze the 
lessons through the focusing framework. Each fifteen-second segment of the lesson was 
coded as to whether the discussion was related to “area,” “anti-derivatives,” or “Riemann 
sums” (potentially including more than one). Each lesson segment dealing with Riemann 
sums was then investigated for the focusing interactions present in that segment. These 
focusing interactions were then aggregated across each lesson in order to determine what 
centers of focus, and consequently what student noticing, were possibly occurring. 

In addition to the observations, at the end of the semester a survey was administered to a 
random selection of these two instructors’ students (n = 55). Interviews were also conducted 
with six of the instructors’ students, three from each instructor. The survey used in this study 
has been used previously (Jones, under review), and the reader is referred to that study for 
more detail regarding the survey questions. For brevity in this paper, only two of the survey 
questions are discussed. The first asked the students to explain the meaning of ( )

b

a
f x dx³  in 

as many ways as they could think of, and the second asked them to describe and explain the 
physics equation 

S
F P dA ³  (they were told in the survey item that force = pressure × area). 

The interviews focused on the students’ understanding of the definite integral and asked the 
students to discuss pure mathematics and applied physics integrals using expressions similar 
to those used on the survey. 

In the second part of this study, a design experiment (see Cobb, Confrey, diSessa, Lehrer, 
& Schauble, 2003) was conducted regarding a set of introductory lessons on integration with 
the goal of improving students’ creation and usage of the MBS conception. The lessons 
created for this experiment were modified and improved over several semesters of instruction 
and the last iteration was given to two separate classes taught by the author. The students in 
the experimental classes were given the same survey at the end of the semester as the students 
in the observed courses (n = 41). Four students from the experimental classes were 
interviewed using the same interview protocol as given to the other instructors’ students. 

The first experimental lesson centered on a series of activities dealing with water leaking 
out of a pipe, first at a constant rate and then at a non-constant rate (see Jones, 2013/14). The 
students were led through the construction of a Riemann sum for each step in the activity, 
including the eventual limit of Riemann sums, which was defined as the definite integral. 
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That is, “area under a curve” was explicitly not used as the primary motivator for the definite 
integral. The area under a curve was discussed later as an application of Riemann sums, in an 
attempt to place the central meaning of definite integrals within the Riemann sum, as opposed 
to the area under a curve as is usually done (see, for example, Stewart, 2012). 

Results from the Observed Instructors and Their Students 
The lessons from the two instructors contained a great deal of time spent on Riemann 

sums. In fact, one instructor spent 85.9% of the mathematical discussion in the first lesson 
and 65.7% of the mathematical discussion in the second lesson explicitly on Riemann sums. 
Similarly the other instructor spent 96.2% of the first lesson and 39.0% of the second lesson 
explicitly on Riemann sums. Given that both instructors focused so heavily on Riemann 
sums, it might be reasonable to expect that their students would show a greater tendency to 
draw on the MBS conception than was found in the general population. 

Unfortunately, it appears that the students from the two observed instructors also had a 
tendency to rely on the area under a curve and anti-derivative conceptions in their responses 
to the survey items, and to draw less on the MBS conception of the integral. The number of 
responses that fit into each category is shown in Table 1, with all blank responses or 
responses that did not fit into the three categories listed under “None/Other.” Note that 
students were encouraged to describe the integrals in the survey in as many ways as possible, 
meaning that the frequencies add up to more than the sample size. 

 
 Area Anti-derivative MBS None/Other 

( )
b

a
f x dx³  47 (85.5%) 14 (25.5%) 8 (14.5%) 7 (4.7%) 

S
F P dA ³  14 (25.5%) 7 (12.7%) 11 (20.0%) 31 (56.4%) 

Table 1: Frequencies of responses (n = 55) based on the (a) area under a curve, (b) anti-
derivative, (c) multiplicatively-based summation, or (d) “other/none” conceptions 

 
Only one-fifth of the students from these two instructors used the MBS conception to 

make sense of the physics integral, 
S

F P dA ³ . This is problematic in light of the fact that 

the MBS conception is important for making sense of physics and engineering integrals 
(Jones, 2014). The student interviews support the results from the survey and show that 
although the students all demonstrated cognitively possessing the Riemann sum conception, 
they did not see it as important in making sense of definite integrals. 

 
S1: I’m sure, back in the day, before they had integrals [the student used “integral” here to mean “anti-

derivative”] that Riemann sums were probably big. And that would just take a lot of time. Like I 
remember doing one problem that took like twenty minutes. It was terrible. Whereas doing integrals 
takes like, if the equation is easy, only a couple of minutes or less. 

 
This example is typical of how these students discussed the Riemann sum in the 

interviews. The student described it as essentially an “old-fashioned” method for calculating 
area under a curve, and indicated that anti-derivatives can replace Riemann sums in 
accomplishing this goal. In fact, this student used the word “integral” to mean, literally, an 
“anti-derivative.” In this way, it can be seen that the area under the curve and the anti-
derivative notions occupy the primary meanings for this student as to what an integral 
actually is. Many of these students said similar things, such as, “I feel like this [the Riemann 
sum] is the original way people did it and then they, like, found the shortcut.” Despite 
cognitively possessing the concept of the Riemann sum, and being able to discuss it when 
prompted, it is clear that the students did not conceive of Riemann sums as scaffolding the 
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underlying meaning of the definite integral. The Riemann sum is merely a calculational tool 
for getting at the real problem—calculating area under a curve. In this way, it is not 
surprising that only a relatively small percentage of students drew on the MBS conception to 
explain the meaning of the integral expressions in the survey items or interviews. 

When the observed lessons were analyzed through the focusing framework, certain 
features of the lessons stood out that might cue students into this type of thinking. In 
particular, I describe three specific focusing interactions that may have played a role in 
leading students toward this thinking. While these focusing interactions are evidenced in 
many places through the lessons, only single examples of them are provided here, for brevity. 
The following excerpts are typical of how both instructors discussed definite integrals during 
the introductory lessons. First, both instructors emphasized the area under a curve as the 
primary meaning for integrals. Additionally, despite spending a great deal of time discussing 
Riemann sums, they both couched Riemann sums as essentially just a calculational technique 
for the “real” task of finding area under a curve. 

 
I1: There are two main ideas in calculus… The integral can be thought of as area under a curve… We want 

to estimate that area, it’s hard to find that exact area, it’s hard to do that. So how can we estimate it by 
fitting in rectangles here? So think about this, if I broke that up into a set of rectangles, I could 
approximate the area there. 

 
Second, both instructors emphasized that integrals are, in essence, simply the reverse 

process of the derivative. 
 
I2: If you start with a function that gives you the amount of something and you take the derivative, that 

gives you the rate of change. If you take the integral of the rate of change, it takes you back to what 
you started with. So, derivatives and integrals are going to undo each other. 

 
Third, both instructors used the Fundamental Theorem of Calculus as a way of portraying 

the Riemann sum as an “outdated” technique that could be replaced with the more efficient 
anti-derivative technique. 

 
I1: This makes integrals so much easier. Remember when you were doing, a few class periods ago, and you 

were doing those Riemann sums? OK, and how much you, let me say the word, disliked them? OK, 
they were a pain to do?... This allows you to just bypass all that. It makes it so much easier… If you did 
all that really long stuff, the Riemann sum, and spent a half an hour on the problem… And if you do 
[the anti-derivative] all correctly, you’d get the same answer. 

 
Through these focusing interactions, the instructors have, perhaps inadvertently, set up 

students to notice the area and anti-derivative conceptions of the definite integral as being the 
most important and most useful. On the other hand, they may lead students to believe that 
Riemann sums are just a time consuming, even “painful” way to calculate area—a method 
that can and should be cognitively “demoted” once the anti-derivative method is established. 
While I acknowledge that other factors may be at play that would lead students to “demote” 
the Riemann sum, I claim that these focusing interactions do play a role. 

Results from the Design Experiment 
In contrast to these students, the students from the design experiment were much more 

likely to draw on the MBS conception to make sense of the integrals in the survey items (see 
Table 2). Here we can see that a majority of students drew on the MBS conception to make 
sense of both the mathematics and physics integral expressions, in addition to drawing on the 
area under a curve conception. 
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 Area Anti-derivative MBS None/Other 

( )
b

a
f x dx³  37 (90.2%) 12 (29.3%) 24 (58.5%) 10 (24.4%) 

S
F P dA ³  5 (12.2%) 1 (2.4%) 24 (58.5%) 15 (36.6%) 

Table 2: Frequencies of responses (n = 41) based on the (a) area under a curve, (b) anti-
derivative, (c) multiplicatively-based summation, or (d) “other/none” conceptions 

 
The student interviews reinforce these results to show that the students had a better idea 

of the multiplicative relationship between the integrand and the differential, and the 
summation or accumulation of the resulting quantity. 

 
S2: Yeah, you could split it up into tiny areas… so you find this, the force for that, for the small rectangle 

by multiplying whatever that small area is by the pressure in that small area… So, since the pressure is 
different throughout the balloon, or whatever it is, you can’t just do the balloon as a whole to find the 
force, you need to split it into the small increments… You can split it up into small increments and then 
just add them all up to get the total force. 

 
As similarly documented in Jones (2014), the MBS conception allowed this student to 

reason through this physics integral, preserving the scientific relationships between pressure, 
surface area, and force. It helped her know what the integral was calculating and why it was 
calculating it. In this way, she was able to understand the integral expression. This example is 
typical of the ways in which the students from the design experiment discussed the definite 
integral, both in pure mathematics contexts and in applied physics contexts. 

These results should not be too surprising given that the design experiment was 
purposefully crafted to achieve this outcome, by helping students notice two ideas: (a) the 
multiplicative relationship between the integrand and the differential and (b) the 
summation/accumulation of the resulting quantity throughout the domain (see also Thompson 
& Silverman, 2008). Yet, the focusing framework can help us identify why the students 
noticed the Riemann sum as a more central, inherent meaning for integrals. Space does not 
permit a full description of all centers of focus, but the following examples are typical of the 
types of centers of focus regarding the Riemann sum that were created in these lessons. 

The introductory activity from the first lesson used water leaking out of a pipe over time 
(see Figure 1) to initiate students into the notion of Riemann sums. The students used the fact 
that the rate of leakage multiplied by time produced an amount of water. Then, depending on 
the rate of leakage, the amount of water accumulated faster or slower. The final amount of 
water depended on the time over which the water was accumulating (i.e. the limits of 
integration). 

 
Water leakage recorded every 30 seconds: 

time (min): 0 0.5 1 1.5 2 2.5 3 3.5 4 
Rate (L/min): 0 5 9 12 11 10 8 5 2 

 
Figure 1: Center of focus regarding the multiplicative relationship between rate and time, 

as well as the accumulation of a total amount of water 

1
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Similarly, other centers of focus were created to promote the meaning of the differential–

and the multiplicative relationship between it and the integrand–without depending on a 
“rate” type problem, which can be conflated with derivatives. The students were shown a box 
with varying density and asked how they could estimate the mass of the box (they were told 
that density × volume = mass). The students worked through the idea of breaking the box into 
smaller pieces (ΔV) and finding the mass of each to come up with an estimate (see Figure 2). 

 

 
Figure 2: Center of focus regarding the differential and its multiplicative relationship with 

the integrand 
  
Throughout these activities, the definite integral was defined via the multiplicatively-

based summation perspective. Furthermore, the summation notation for the limit of Riemann 
sums, 

1
lim ( )n

k kkn
f x x

 of
'¦ , was explicitly connected to the notation for definite integrals, 

( )
b

a
f x dx³ , on many occasions during the lesson (see Figure 3). 

 

 
Figure 3: Center of focus regarding summation notation and definite integral notation 

Conclusion 
Through these types of activities, the experimental lessons appear to have helped the 

students develop a strong connection between the ideas present in the Riemann sum and the 
symbols of the definite integral expression. In particular, the students showed a much 
stronger tendency to draw on the multiplicative relationship between the integrand and 
differential to make sense of both the mathematics and physics integral expressions. The 
students also used the summation/accumulation notion to conceive of capturing the total 
amount of the resultant quantity. The experimental lessons were far from perfect, considering 
that around 40% of the students still did not draw on the MBS conception in the survey. 
However, they demonstrate a significant step in the right direction, and constitute lesson units 
that could be easily employed in any first-semester calculus classroom. 
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Students’ generalizations of single-variable conceptions of the definite integral to 
multivariate conceptions 

Steven R. Jones  Allison Dorko  
Brigham Young University    Oregon State University 

Prior research has documented several conceptualizations students have regarding the 
definite integral, though the conceptualizations are largely based off of single-variable 
integral expressions. No research to date has documented how students’ understanding of 
integration becomes generalized for multivariate contexts. This paper describes six 
conceptualizations of multivariate definite integrals and how they connect to students’ prior 
conceptions of single-variable definite integrals. 

Key words: calculus, definite integral, multivariate integration, generalization 

The undergraduate calculus series is a rich place for research in mathematics education. It 
takes core concepts, such as limits, derivatives, and integrals, and extends them from the 
single-variable context to the multivariate context to the more abstract context of real and 
complex analysis. This creates many instances in which students construct knowledge in 
first-semester calculus that is then increasingly generalized in subsequent courses. 

While the core concepts of limits, derivatives, and integrals are each worth studying, the 
definite integral is a particularly useful construct that is used frequently in pure mathematics 
(Brown & Churchill, 2008), physics (Serway & Jewett, 2008), engineering (Hibbeler, 2012), 
and other sciences (Salvatore, 2008). Since many applications in these areas of study deal 
with multivariate integration, it is important to know how students generalize their 
knowledge of single-variable integration to multivariate integration. Some studies have 
looked at students’ generalized knowledge of function (Kabael, 2011; Martinez-Planell & 
Trigueros-Gaisman, 2013; Weber & Thompson, 2014), domain and range (Dorko & Weber, 
2014; Martinez-Planell & Trigueros-Gaisman, 2012), and derivative (Martinez-Planell, 
Trigueros-Gaisman, & McGee, 2014; Yerushalmy, 1997), but as far as the authors are aware 
there is no research that has been done regarding students’ conceptions of multivariate 
definite integrals or how that knowledge is generalized from the single-variable context to the 
multivariate context. This study seeks to document and describe students’ conceptions of 
multivariate definite integrals and how they are related, or not, to conceptions of single-
variable definite integrals. 

Analytic Lenses 
In this study, we begin with a set of previously documented student conceptualizations of 

the definite integral in the single-variable context (Jones, 2013). Note that while some 
interview items from that study involve multivariate contexts, the documented 
conceptualizations are largely based on the single-variable definite integral structure. Three 
main conceptualizations of single-variable definite integrals are used in this study to organize 
our coding and frame our analysis of the student data: (1) perimeter and area, (2) function 
matching, and (3) adding up pieces. We focus on these three because they deal explicitly with 
the entire definite integral expression and this study is intended to capture large-grained ways 
in which students conceptualize the definite integral as a whole. A brief description of each of 
these conceptualizations is provided here. 

Perimeter and area: This conceptualization interprets each “box” in the integral 

expression, 
[]

[]
[] []d³ , as being one part of the perimeter of a shape in the (x-y) plane. The 

integrand forms a (usually curvy) top, the limits of integration create vertical lines for the 
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sides, and the differential dictates the variable that resides on the horizontal axis, which forms 
the bottom of the shape. The integral is the area of this newly created shape, which is taken as 
a fixed, undivided whole. 

Function matching: This conceptualization interprets the integrand as having come from 
some other “original function.” The original function became the integrand via a derivative, 
and the differential dictates the variable with respect to which the derivative was taken. The 
integral symbol is conceived of as an implicit instruction to find this original function. The 
limits of integration are values that are to be input into the original function. 

Adding up pieces: This conceptualization contains the idea of the domain being broken 
into infinitely-many, infinitesimally-small sections. Within a single piece, called a 
representative rectangle, the quantities represented by the integrand and the differential are 
multiplied to capture a tiny amount of the resulting quantity. This resulting quantity is then 
added up (or accumulated) throughout all the sections in the domain to get the total amount. 

These provide a lens for investigating how student conceptions of multivariate integrals 
may be generalized from them. In our analysis we adopt the framework of generalization 
described in Harel and Tall (1991). In particular, Harel and Tall describe (a) expansive 
generalization, as one where the applicability of an already existing schema is simply 
broadened, (b) reconstructive generalization, in which the existing schema is altered in order 
to broaden its applicability, and (c) disjunctive generalization, where a new schema is created 
for the new context, which remains disjoint from the previously existing schema. Using this 
framework enables us to explore the nature of the students’ generalizations of the definite 
integral by comparing the single-variable conceptions with the multivariate conceptions. 

Methods 
In order to capture how students think about and discuss multivariate definite integrals, 

we conducted two 45-minute, task-based interviews (see Goldin, 1997) with 12 students who 
were at various stages of their mathematical study, ranging from several students who had 
recently taken multivariate calculus to two graduate students. In the first interview, the 
students were given two tasks that asked them to discuss single-variable integrals. For the 
remainder of the two interviews, the students were given items that showed multivariate 

integral expressions, like ( , )
d b

c a
g x y dxdy³ ³ or 1

1
1 1... ( ,..., ) ...n

n

b b

n na a
g x x dx dx³ ³ , and asked them to 

discuss the meaning of the expressions, or how they could be used in applied situations. 
Since we already had baseline categories that could inform the coding and analysis, we 

drew on the “analytic-inductive” method (Knuth, 2002) to code the data. This method is 
comprised of “researcher-generated” categories, including extrapolations of the three 
conceptualizations listed above, and “data-grounded” categories, which come directly from 
the data. Based on the researcher-generated categories, we identified places in the data where 
students discussed ideas related to the three conceptualizations of single-variable integrals, 
such as the boundary of a shape, area or volume, anti-derivatives, rectangles, and multiplying 
quantities together. While reviewing the data with these conceptualizations in mind, we also 
looked for places that required the creation of new data-grounded codes. We then made a 
final pass through the data to ensure we had identified all places where the data fit into either 
the researcher-generated or data-grounded categories. Once the data were coded, each 
category was analyzed for the underlying student conceptualization. 

Results 
In total we identified six categories that represent student conceptualizations of the 

definite integral in multivariate contexts. While we in no way claim that these categories are 
an exhaustive list of all possible student conceptualizations, they do seem to capture most of 
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the ways in which these 12 students thought about multivariate integration. Four of the 
conceptualizations, which we name (1) boundary and volume, (2) adding up slices, (3) 
infinite strip, and (4) abstract space underneath, appear to be generalizations of the perimeter 
and area conceptualization. Boundary and volume and infinite strip are reconstructive 
generalizations, while adding up slices and abstract space underneath are expansive 
generalizations. The fifth conceptualization, which we name (5) building an expression of 
inputs, can be considered an expansive generalization of function mapping. Lastly, the sixth 
conceptualization, which we continue to call (6) adding up pieces is a reconstructive 
generalization of the previously documented adding up pieces. 

1. Boundary and volume: The boundary and volume conceptualization is largely a 
higher-dimensional extension of perimeter and area, though there are some important 
additional conceptual components. Consider student C’s description of the meaning of 

( , )
d b

c a
g x y dx dy³ ³  (see Figure 1). 

 
C: We make a rectangle, in the x-direction it will be from a to b and then in the y-direction it will be from c 

to d. And we find the volume between the x-y plane, this g(x,y), and the planes that are formed by our 
edges… [Draws a two-dimensional graph for g.] We’ll call the top of this g(x,y)… Here’s a, here’s b, 
here’s c, here’s d [marks them off on the x- and y-axes and creates straight lines extending them into 
the x-y plane]. We’re finding the volume in here [makes lots of dots underneath the graph]. 

… 
C: We have the analogy of, we could take the volume of water. So, between the x-y plane and the surface 

[i.e. the graph of g]. Fill that entirely with water within the rectangle that we described by our bounds, 
a, b, c, and d. 

 
Figure 1: Volume under the graph of g, bounded by vertical planes 
 
In this description we can see that, first, the (constant) limits of integration are thought of 

as marking off straight lines in the x-y plane, which intersect each other to create a region that 
constitutes the “bottom” of a three-dimensional shape. The variables represented by the 
differentials name the type of plane (i.e., x-y) that exists for the bottom. Second, vertical 
planes are conceived of as arising from this perimeter to create the lateral sides of the shape. 
These vertical planes make up an additional layer of meaning placed on the integral that goes 
beyond just the limits of integration, since there is no single symbol in the integral expression 
that seems to correspond with these vertical planes. Contrast this with perimeter and area, in 
which the vertical lines that create the sides of the shape are directly represented by the limits 
of integration. Lastly, the two-dimensional graph of g(x,y) forms the “lid” to this shape. As 
with perimeter and area, the volume seems to be considered a fixed, undivided whole. 
Student C used the analogy of the shape being a tank that holds a certain volume of water. 

2. Adding up slices: This conceptualization is a direct extension of the area under a curve 
notion. For example, student G had been drawing on the area under a curve idea when 
explaining single-variable integrals and then extended this thinking to his discussion 

regarding ( , )
d b

c a
g x y dx dy³ ³ . Note that he refers to g(x,y) by the symbol z. 
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G: We’re coming up with a slice at each y-value… So perhaps first we would integrate with respect to x, 
integrate this function, z equals whatever, with respect to x, which we would do the same way we did 
with the single variable [i.e. find the area under the curve]. But then we’d get kind of a slice of the 
whole volume. And we’d have to do that process for each slice, for each y-place [i.e. y-value]. And 
then we’d sum up all those slices. 

 
This conceptualization takes the familiar area under a curve notion and repeats it over and 

over (infinitely many times) at every single y-value to create the object represented by the 
integral. By taking infinitely many “sheets” of area and pasting them together, the volume 
under the graph is constructed. While this may appear to have surface features in common 
with adding up pieces, it seems mostly to be an expansive generalization of the area 
conception. Since it is focused on two-dimensional area and three-dimensional volume, it is 
unclear whether this specific conception has a higher dimensional analog or not. 

3. Infinite strip: This conceptualization also deals with boundary and volume ideas, yet it 
is distinct from adding up slices in how the volume is perceived to be constructed, leading to 
an important cognitive difference. Student D was explaining how the integral 

( , )
d b

c a
g x y dx dy³ ³  produced volume when she described the following (see Figure 2), 

 
D: So, some things I’m trying to think about are whether we’re just finding [volume] under the surface, for 

everything that would fall in between this a and b [Draws extended straight lines through x = a and x = 
b], like, for no matter, for all y-values [sweeps hands from her graph to off the table], like everywhere. 

Interviewer: So kind of like on forever in both directions [sweeps hands to both sides]? 
D: Right. So in that case we’d be finding the… volume for this whole section [places fingers on x = a and x 

= b and then slides them away in opposite directions]. And then when we do the next integral, we’re 
cutting it off here [places straightened hands on the lines representing y = c and y = d] and finding the 
volume under just this section here [shades in the rectangle bounded by x = a, x = b, y = c, and y = d]. 

 

 
Figure 2: An infinite strip after integrating with respect to x 
 
This student broke down the integral in an attempt to describe what was happening at 

each step. After completing the integral with respect to only one of the variables (in this case, 
x), she invoked the boundary and volume conception to conceive of an infinitely long strip 
between the straight lines x = a and x = b. In this way, if one stops the integration process 
part-way through, an interesting abstract picture emerges of an infinite volume under the 
graph that extends forever in both directions. It is only after the second step of the integration 
process occurs that the infinitely long section is “cut off” at the other boundary lines, y = a 
and y = b, to make the regular, finite shape with its accompanying volume. 

4. Abstract space underneath: Many of the students, when encountering the higher 
dimensional integral, 1

1
1 1... ( ,..., ) ...n

n

b b

n na a
g x x dx dx³ ³ , continued to draw on the “area underneath 

a curve” or “volume underneath a curve” idea, as exemplified by student F. 
 
F: So, you’re finding some kind of curve, up through the n-th variable, and you’re finding the area, or the 

volume, or the density, or something in space that we can’t even visualize, underneath that [the graph 
of g], on the boundaries between a and b from the sub-1 [i.e. a1 and b1] to the sub-n [i.e. an and bn]. 
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… 
F: [The integral] is going to represent, everything beneath, or all those variables integrated beneath that [the 

graph of g]… They stretch up in this weird n-space that you can’t actually draw!  
 

The central aspect of this conceptualization is that, even in higher dimensions, the notion of 
area or volume beneath a graph may remain a key part of students’ conceptualizations. That 
is, there is a curve somewhere “we can’t even visualize” that has something analogous to a 
higher-dimensional “volume” underneath it. 

5. Building an expression of inputs: As with single-variable integrals, many students 
interpreted the underlying meaning of multivariate integrals as being a process of anti-
differentiation, yet generalized by being repeated over and over. Unlike single-variable 
integrals, where the limits of integration are simply inserted at the end, inputs in the 
multivariate case are inserted along the way. In fact, some of the students seemed to be 
thinking of the multivariate integral as constructing an entire expression of inputs. 

 
D: So, we’d get a function, maybe I should say, take the anti-derivative in terms of x. I don’t remember how 

to write that in notation. Anti-derivative of b, y minus our anti-derivative in terms of x, of a, y [writes 

( , ) ( , )
d

c
G b y G a y dy�³ ]. Then we take the anti-derivative of our function now in terms of y, whatever 

that would be [laughs and writes a square capital G, “[G]”]… So this would be [G](b,d) minus [G](b,c), 
whatever this one is, [G](a,d) minus [G](a,c) [writes out: “[G](b,d) – [G](b,c) – [[G](a,d) – [G](a,c)]”]. 

 

 
Figure 3: The definite integral as building an expression of inputs 
 
We contend that this conceptualization includes both an object and a process (see Sfard, 

1991). While the process is the repeated anti-differentiation procedure, the object is the 
outcome of a newly constructed expression which has translated parts of the integral 
expression (the function g and the limits of integration a, b, c, and d) into a new formulation. 
An interesting note should be made here that, unlike the function matching conceptualization 
for single-variable integrals, the students in this study seemed to have dropped the notion of 
an “original function.” That is, the integrand is no longer thought of as having come from 
somewhere else. Instead, the integral seems to deal more with taking a self-existent integrand 
function and translating it into a new expression with inputs inserted into it. 

6. Adding up pieces: The final conceptualization of multivariate integration we discuss in 
this paper is essentially identical to the conceptualization described in Jones (2013), wherein 
infinitely many pieces are added together over the domain. Thus, the interested reader is 
referred there for a more detailed account of it and in this paper we only discuss a single key 
feature in the generalization of this conception. In Jones, the students were described as 
typically reasoning within a single piece, called a representative rectangle, in which the 
student identifies the relationship between the integrand and the differential and determines 
the resultant quantity. In the single-variable context, the use of the word rectangle is 
appropriate, since the differential can be thought of as small segments along the horizontal 
axis, and the multiplication between the integrand and the differential can be visually 
depicted as rectangles underneath the graph of the function. Yet, in the multivariate case, the 
pieces are no longer represented by rectangles, but rather by prisms, cubes, discs, or other 
three-dimensional (or, abstractly, higher-dimensional) shapes (see Figure 4). 

 
C: We could take rectangles of width dx, depth dy, and height g(x,y) [draws a thin prism]… Yeah, 

rectangular prism. And then add all those together in this rectangle from a to b, c to d [draws a 
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rectangle to represent the domain]. So we have a bunch of these dx by dy rectangles here [draws little 
squares inside the domain], and we’re measuring the rectangular prisms underneath the surface. 

 

 
 
Figure 4. Adding up pieces, with a representative rectangular prism 
 
This student clearly demonstrated the usage of a single representative prism in order to 

frame his understanding of the quantities dx, dy, and g(x,y), and how they relate to each other. 
Once their relationship was established, the student thought of this prism as being 
representative of all other prisms throughout the domain. That is, only a single prism is 
needed to make sense of the integration process, and the final step is to “add up” (or 
accumulate) the infinitely-many prisms over the domain to determine the total amount. In this 
way, we wish to rename the representative rectangle a “representative piece” in order to for 
it to apply to any definite integral context. 

Conclusion 
In this paper, we have documented several generalized student conceptualizations 

regarding multivariate integration. These conceptualizations are largely based off of the 
students’ single-variable conceptions, yet many important additional features are included in 
the students’ restructuring of their integration knowledge. Some conceptualizations, such as 
the boundary and volume, infinite strip, and adding up pieces are reconstructive 
generalizations in that the students have reorganized their knowledge in order to broaden it to 
the multivariate context. On the other hand, abstract space, adding up slices, and building an 
expression of inputs seem to be expansive generalizations in that the students simply extend 
their prior knowledge to the multivariate context. Interestingly, none of the 
conceptualizations documented in this paper seems to be disjunctive. That is, the students’ 
conceptualizations all seem rooted in and connected to prior understandings. 
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Bundles and associated intentions of expert and novice provers:  
The search for and use of counterexamples 

Shiv Smith Karunakaran 
Washington State University 

The argument for the importance of proving and of proof in the teaching and learning of 
mathematics has been repeatedly made by mathematics education researchers and by policy 
documents. There is also considerable research examining the existence of a gap in the 
proving and proof-constructing abilities of “novices” and “experts” in mathematics. 
However, considerably less research examines the nature of what constitutes expertise in 
proving mathematical statements, specifically with regard to the use of the individuals’ 
mathematical knowledge. This study uses grounded theory methods to examine “expert” and 
“novice” mathematicians in the process of proving mathematical statements. The result 
reported here focuses on the differences in the use of and search for counterexamples by the 
two populations. More specifically expert provers seem to value the unsuccessful searches for 
counterexamples, as well as the finding of valid counterexamples. 

Key words: Proving and proof, Counterexamples, Expert and novice mathematicians 

The importance of proof has long been emphasized by both mathematics teacher 
education organizations and groups formed by professional mathematics organizations (e.g., 
NCTM, 2000; CBMS, 2001). Moreover, the process of proving is indispensable to the act of 
doing mathematics. At the higher academic levels (graduate and professional mathematics), 
proving can be considered as the way in which the truth of a claim is established or realized 
(Hanna, 2000) and a way in which new knowledge may be created. However, the research on 
proof has routinely focused more on the production and evaluation of a finished and valid 
proof and less on the purposes or intentions behind the provers’ use of their demonstrated 
mathematical knowledge during the process of proving. This report focuses on the process of 
proving, particularly the use of and search for counterexamples. The finding presented in this 
report is part of a larger study (Karunakaran, 2014) that examined how and why provers used 
the mathematical knowledge they called on in the service of proving a mathematical 
statement. The primary research question guiding the larger study was: In what ways are 
expert and novice provers of mathematics similar and different in their use of the 
mathematical knowledge they call on during the process of proving a mathematical 
statement? 

Research has demonstrated that a gap may exist between a novice’s understanding of the 
proving process and an expert’s understanding of the proving process. Raman (2002) posits 
that a mere presentation of the statement of a theorem and the subsequent presentation of the 
proof of the theorem may not engender students’ understanding of the proving process. Also, 
Chin and Tall (2002) have stated that in mathematical textbooks “we can simply see the 
process of a mathematical proof [sic] as the development of a sequence of statements using 
only definitions and preceding results, such as deductions, axioms, or theorems” (p. 213). In 
fact, one mathematics professor quoted by Ayalon and Even (2008) expressed the view that a 
student “thinks about something, he draws a conclusion, which brings him to the next thing ... 
Logic is the procedural, algorithmic structure of things” (p. 240). This “systematic, step–by–
step manner” (Ayalon & Even, 2008) expressed in final written proofs does not reveal what 
led the mathematicians to produce these particular arguments or “steps.” This may, in turn, 
promote the memorization of the proofs by the students without understanding the proving 
process. Students may look at proof as a finished product generated by someone other than 
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himself or herself and not as a constructed argument that the students themselves could 
produce.  

In fact, Romberg (1992) suggested that mathematics should no longer be thought of as a 
finished product, but as a “process of inquiry and coming to know, a continually expanding 
field of human creation and invention” (p. 751). This revised view of mathematics focuses on 
the perspective that to know mathematics is to do mathematics. This, in turn, calls for more 
focus on mathematical work and activity of practicing mathematicians, and the mathematical 
activity of these mathematicians could subsequently serve as a model for students’ 
mathematical activity. Lampert (1990), Schoenfeld (1992), and Stylianou (2002) have called 
for one of the goals of mathematics instruction to better understand the practices of 
mathematicians. Harel and Sowder (2007) have unambiguously claimed that the one of the 
goals of mathematics instruction should be to “help students gradually develop an 
understanding of proof that is consistent with that shared and practiced in contemporary 
mathematics” (p.  807). Furthermore, Weber and Mejia–Ramos (2011) have also listed as one 
of the goals of mathematics instruction to be for students to behave more like mathematicians 
in proof–related activities or tasks. To work towards these goals, researchers (Blum & Kirsch, 
1991; Weber, 2001) have emphasized how teachers can help students better learn from and 
understand a mathematician’s work with proof by making the act or process of proving 
clearer to the students. The present study (a part of which is reported here) aimed to 
contribute new knowledge about the similarities and differences between the observed use of 
mathematical knowledge by expert provers and novice provers while proving a mathematical 
statement.  

Theoretical Perspective 
 Gaining expertise in the act of doing mathematics, and thus in the process of proving 

mathematical statements (which is a subset of doing mathematics), involves the use of the 
existing knowledge that the individual has accumulated. It is not merely the fact that 
individuals have assimilated this wealth of knowledge, but also how they call upon the 
various facets and parts of this knowledge that allows them to demonstrate expertise in the 
act of proving mathematical statements. To this end, it seems useful to examine portions of 
the mathematical knowledge that can be inferred as an individual proves a mathematical 
statement. These inferences about mathematical knowledge can be drawn from observations 
of the properties, objects, procedures, definitions, theorems, and so on, that an individual 
brings to bear in the service of proving a statement. The parts of mathematical knowledge 
that are called on during the process of proving is referred to as the resources to which the 
individual accesses during the act of doing mathematics. It is further posited that an 
individual’s mathematical knowledge is comprised of a connected network of such resources.  
This view of mathematical knowledge and of doing mathematics as using a network of 
relations is not novel within mathematics education research. Hiebert and Lefevre (1986) 
view mathematical knowledge (more specifically conceptual mathematical knowledge) as a 
“web of knowledge, a network in which the linking relationships are as prominent as the 
discrete pieces of information” (p. 3). 

Once the individual is observed calling on one or more resources, then he or she can be 
reasonably observed acting on these resources. That is, he or she may use the resources to 
perform certain actions such as asking a question based on the resource(s), constructing an 
example, searching for a counterexample, and using a form of reasoning. The terms “actions” 
and “resources” are adapted and expanded from the work of Wilkerson–Jerde and Wilensky  
(2011). Those researchers described how mathematicians use different resources of 
mathematical understanding and acts of mathematical understanding in order to read and 
understand a published, but unfamiliar mathematical paper about knot theory. Wilkerson–
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Jerde and Wilensky do not offer any definition of resources of mathematical understanding 
other than to equate them to “specific knowledge” (2011, p. 22) that the mathematicians used 
in order to understand the unfamiliar mathematics present in the paper. Although Wilkerson–
Jerde and Wilensky only focus on three acts of mathematical understanding (namely 
question, resolution, and explanation), the concept of acts of mathematical understanding has 
been expanded for the purposes of the present study to include a wider range of actions that 
the prover may utilize in the process of proving.  

However, simply identifying the resources and the actions an individual uses in the 
process of proving does not give sufficient insight into the individuals’ rationale underlying 
their use of the resources and actions. Skemp’s construct of relational understanding of 
mathematics (1976) involves knowing not just what to do when doing mathematics, but also 
why to do it. The assumption both Skemp and the authors of the present study make is that an 
individual makes intentional decisions to use what they know and how to use what they 
know. Skovsmose (2005) differentiates the notions of action and “blind activity” using this 
same assumption. Blind activity is characterized by automatic behavior and it assumes that 
there is no true rationale behind what an individual is doing. In contrast, an action 
presupposes some degree of choice and as such assumes that the individual has a purposeful 
intention behind performing said action. For the present study, the authors adopt 
Skovsmose’s notion that any action or set of actions identified during the process of proving 
a statement is associated with intention(s). That is, one cannot truly describe the actions of an 
individual without considering the intention behind the actions.  

Skovsmose (2005) hints towards going beyond merely identifying singular actions and 
the attached intentions. He seems to suggest that it is also important to identify activities (or 
actions grouped together, as defined by Skovsmose) and the intentions behind such activities. 
Thus, when analyzing an individual’s process of proving, the authors also went beyond 
identifying individual actions (and the resources involved) and identified groups of actions 
and resources that seemed to be tied together with a common intention or intentions. 
Analogous to Skovsmose’s notion of activities, the authors of this report defined these groups 
of actions and resources as bundles. More specifically, bundles are defined as subsections of 
the proving process that consist of groups of actions and resources that are clustered together 
by identifiable intentions. These identifiable intentions are nested within the assumed larger 
goal of proving the statement in question. 

The theoretical constructs of bundles, the associated intentions, and the constituent 
actions and resources were used to describe the use of an individual’s (either an expert or a 
novice) use of mathematical knowledge in their dynamic proving process. Specifically, the 
research questions that guided the larger study were: 

1. In what ways are expert provers’ bundles similar to or different from novice 
provers’ bundles during the process of proving mathematical statements? 

2. In what ways are the expert provers’ intentions associated with bundles during the 
process of proving mathematical statements similar to or different from novice 
provers’ intentions associated with the bundles during the process of proving? 

Methods 
The research questions described previously do not fall under the category of validating 

an existing theory of how individuals prove. Instead the study was about investigating the 
bundles (and the component resources and actions) and their associated intentions of different 
groups of individuals (expert and novice provers of mathematical statements) in the process 
of proving a mathematical statement. The focus of the study lent itself to the adoption of 
certain grounded theory methods to guide data collection and data analysis, specifically the 
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data analysis strategies of open coding, axial coding, selective coding, and constant 
comparative analysis (Charmaz, 2006; Strauss & Corbin, 2008). 

A group of novice provers of mathematics and a relatively more expert group were 
recruited. The novice group included five undergraduate students who had all successfully 
completed at least one proof–based course in real analysis. Placing such a requirement 
allowed the researchers to be confident that the members of the novice group (hereby referred 
to a Novice Prover or NP) had been exposed to an introduction to various mathematical proof 
strategies, such as proof by mathematical induction, proof by contradiction, and proof by first 
principles. The expert group included five doctoral students in mathematics, all of whom had 
successfully passed their department’s doctoral qualifying examinations. By requiring that 
the members of the expert group (hereby referred to an Expert Provers or EP) to have passed 
doctoral qualifying examinations ensured their experience with doing mathematics, and more 
specifically in proving and in the generation of proofs. 

All ten participants (NPs and EPs together) were each presented with five real analysis 
statements (see Figure 1) in an interview setting using a think–aloud protocol. As is shown in 
the figure, the directions for all five tasks were to “Validate or refute the following 
statement.” Presenting this as the direction, and not presenting the more traditional direction 
of “Prove that …”, ensured that the initial opinion of the participants about the truth of the 
mathematical statement was not merely due to the format of the directions of the task 
statement. Also, the statements of Tasks 1 and 4 are invalid as stated in Figure 1. If the 
provers came up with a valid proof of why the statements were invalid, then the statements 
were amended to make them valid and the provers were again asked to validate or refute the 
newly amended statement. 

 
Figure 1. The five tasks selected for the present study. 
 

The interviews were transcribed and then initially coded for instances of actions and 
resources (open coding phase), and then the actions and resources were organized into 
bundles and the associated intentions (axial coding phase). The intentions were either 
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explicitly stated by the participants or were inferred from the mathematical work of the 
participants. In final phase of coding (selective coding), the identified bundles and associated 
intentions were used to generate characterizations of how an individual (an EP or a NP) and 
subsequently how the groups (EP or NP) prove a mathematical statement.  

Results 
Only one of the claims generated by the findings of the larger study is reported here. This 

claim involves how the expert and novice provers are similar and different in their use of a 
counterexample and more specifically in their intentions behind searching for 
counterexamples. The authors found that if the prover deemed the resource of 
“counterexample” to be relevant to the task context, then he or she (whether an expert or a 
novice prover) brought the resource of “counterexample” to bear in the proving process. Both 
the expert and novice provers recognize the implication of finding a counterexample for the 
validity of the task statement. In other words, the statement in question is invalid if the prover 
successfully generated a counterexample. For instance, both Cassie1 (NP) and Yanni (EP) 
successfully generated counterexamples for the invalid statement of Task 1 (see statement of 
task in Figure 1). Cassie’s counterexample sequence !! = !,!!!! ∈ ℤ!,!and Yanni’s 
counterexample sequence !! = 5,!!!! ∈ ℤ! both satisfy the required condition (0 < !! ≤
!!! + !!!!!, ∀!! ∈ ℤ!&!! ≥ 1), but the respective series !!!

!!!  clearly diverges. Also, 
both Yanni and Cassie were convinced about the validity of their counterexamples and as a 
result were convinced that Task 1 as stated was false.  

Even though both the expert provers and the novice provers knew to search for 
counterexamples to possibly refute a given statement, the expert provers generated and 
examined successive counterexamples regardless of whether or not they believed a 
counterexample existed. They did this by varying conditions or constraints they placed on 
mathematical objects to initiate new searches to generate and test for counterexamples. The 
experts’ intentions behind searching for counterexamples seemed to be more than to succeed 
in finding a counterexample, and seemed to include gaining insight into why the task 
statement may or may not be valid. For instance, when asked why he was searching for 
counterexamples, James (EP) stated, “… the best–case scenario of being able to find a 
counterexample if [the statement of Task 4] was not true. … if I try a couple times and I find 
that I can’t find the counterexample, this might give me some sort of insight into why it is 
true let's say.” Similarly, Zander (EP) explained his thought process in looking for a 
counterexample for Task 1 by stating, “if I’m trying to formally show that this sequence is 
always gonna diverge, I can use something that I found in the [failed] search for a 
counterexample and that inability is actually um the key to why it always diverges.” In 
contrast, novice provers did not persevere in the search for a counterexample. Instead, they 
seemed to require a prior rationale for why the statement might be invalid. For example, 
when Derek (NP) was asked why he did not search for a counterexample in his work for Task 
4, he stated, “Before I think of a counterexample I usually try to think of why I’m picking 
that counterexample. And I couldn’t really think of any reason … Usually you have to have a 
reason why you want the counterexample. … I didn’t think of just like randomly searching 
for a counterexample. That’s usually not the most efficient way to do it.” 

To illustrate the point that expert provers use the unsuccessful searches for 
counterexamples, consider the work of Zander (EP) on Task 5 (see statement of task in 
Figure 1). For the sake of brevity, Figure 2 illustrates Zander’s process of repeatedly and 
unsuccessfully searching for a counterexample and what he subsequently learned from 
searching for counterexamples (CEs) that allowed him to generate an argument that validated 

                                                
1 All names used in this report are pseudonyms.  
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the statement of Task 5. Like Zander, other expert provers also used what they learned from 
unsuccessful searches for counterexamples to gain some insight about the conditions present 
in a given task statement that then allowed them to validate the statement.  

 
Figure 2. Zander’s process of trying to find counterexamples and then subsequently using 
what he learned from the process to validate the statement of Task 5.  

 

Significance 
The characterizations of expert proving behavior related to the use of and searches for 

counterexamples that were developed based on the results of the reported study can be used 
to further the ongoing conversation about why expert proving behavior is important to study. 
Previous research in the field has focused on the static product of proof and to a lesser extent, 
on the more dynamic process of proving. As such, previous research has produced useful 
schemes by which to describe and categorize the types of resources used in producing proofs 
(e.g., Peled & Zaslavsky’s (1997) scheme for categorizing counterexamples). However, the 
current study had a general focus on the proving process (as separate from the product of 
proof) and more specifically on the provers’ intentions behind the bundles involved in the 
proving process. The focus on bundles, including the intentions associated with the bundles, 
allowed for a refined look at the nature of the differences between expert and novice proving 
behavior. Specifically, the result reported here provides evidence for how superficial 
similarities between expert provers’ and novice provers’ use of counterexamples may belie 
deeper differences in their intentions behind the generation and use of these counterexamples.   

References 
Ayalon, M., & Even, R. (2008). Deductive reasoning: In the eye of the beholder. Educational 

Studies in Mathematics, 69, 235–247. 
Blum, W., & Kirsch, A. (1991). Preformal proving: Examples and reflections. Educational 

Studies in Mathematics, 22, 183–203. 
Charmaz, K. (2006). Constructing grounded theory: A practical guide through qualitative 

research. Thousand Oaks, CA: SAGE Publications. 
Chin, E.–T., & Tall, D. (2002). Proof as a formal procept in advanced mathematical thinking. 

In F.–L. Lin (Ed.), Proceedings of the International Conference on Mathematics: 
Understanding Proving and Proving to Understand (pp. 212–221). Taipei, Taiwan: 
National Taiwan Normal University. 

18th Annual Conference on Research in Undergraduate Mathematics Education 65118th Annual Conference on Research in Undergraduate Mathematics Education 651



Conference Board of the Mathematical Sciences. (2001). The mathematical education of 
teachers. Washington DC: American Mathematical Society. 

Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies in 
Mathematics, 44, 5–23. 

Harel, G., & Sowder, L. (2007). Towards a comprehensive perspective on proof. In F. Lester 
(Ed.), Second handbook of research on mathematical teaching and learning (pp. 805–
842). Washington, DC: NCTM. 

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An 
introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The 
case of mathematics (pp. 1–28). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc. 

Karunakaran, S. S. (2014). Comparing bundles and associated intentions of expert and 
novice provers during the process of proving (Unpublished doctoral dissertation). The 
Pennsylania State University, University Park, PA. 

Lampert, M. (1990). When the problem is not the question and the solution is not the answer: 
Mathematical knowing and teaching. American Educational Research Journal, 27, 29–
63. doi:10.2307/1163068 

National Council of Teachers of Mathematics. (2000). Principles and standards of school 
mathematics. Reston, VA: NCTM. 

Peled, J., & Zaslavsky, O. (1997). Counter–examples that (only) prove and counter–examples 
that (also) explain. Focus on Learning Problems in Mathematics, 19(3), 49–61. 

Raman, M. J. (2002). Proof and justification in collegiate calculus (Unpublished doctoral 
dissertation). University of California, Berkeley, Berkeley, CA. 

Romberg, T. A. (1992). Problematic features of the school mathematics curriculum. In P. W. 
Jackson (Ed.), Handbook of research on curriculum: A project of the American 
Educational Research Association. New York, NY: Macmillan. 

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, 
and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of research on 
mathematics teaching and leaning (pp. 334–370). New York, NY: Macmillan. 

Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics 
Teaching, 77, 20–26. 

Skovsmose, O. (2005). Meaning in mathematics education. In J. Kilpatrick, C. Hoyles, O. 
Skovsmose, & P. Valero (Eds.), Meaning in mathematics education (83–100). New York, 
NY: Springer. 

Strauss, J., & Corbin, A. (2008). Basics of qualitative research: Techniques and procedures 
for developing grounded theory (3rd ed.) [Kindle edition]. Los Angeles, CA: Sage 
Publications. 

Stylianou, D. A. (2002). On the interaction of visualization and analysis: The negotiation of a 
visual representation in expert problem solving. Journal of Mathematical Behavior, 21, 
303–317. doi:10.1016/S0732–3123(02)00131–1 

Weber, K. (2001). Student difficulty in constructing proof: The need for strategic knowledge. 
Educational Studies in Mathematics, 48, 101–119. 

Weber, K., & Mejia–Ramos, J. P. (2011). Why and how mathematicians read proofs: an 
exploratory study. Educational Studies in Mathematics, 76, 329–344. 

Wilkerson–Jerde, M. H., & Wilensky, U. J. (2011). How do mathematicians learn math?: 
Resources and acts for constructing and understanding mathematics. Educational Studies 
in Mathematics, 78, 21–43. doi:10.1007/s10649–011–9306–5 

18th Annual Conference on Research in Undergraduate Mathematics Education 65218th Annual Conference on Research in Undergraduate Mathematics Education 652



An Analysis of Sociomathematical Norms of Proof Schemes 

                              Brian Katz               Rebecca Post 
                        Augustana College                                Augustana College 

                              Milos Savic                    John Paul Cook 
                    University of Oklahoma           University of Science and Arts of Oklahoma 

We report on a case study aimed at researching the social interactions of a classroom 
focusing on the certainty of mathematical claims and justifications. Blending Harel and 
Sowder’s (1998) concept of “proof schemes” with Yackel and Cobb’s (1996) 
“sociomathematical norms,” we aim to expand on Fukawa-Connelly’s (2012) research 
on sociomathematical norms of proof presentations. Preliminary analysis of classroom 
interaction and student interview transcripts from a proof-based, axiomatic geometry 
course suggests the presence of sociomathematical norms related to argumentation that 
lie outside of proof validation that facilitate renegotiating proof schemes. 

Key words: emergent sociomathematical norms, proof schemes, axiomatic geometry 

Introduction 
In recent years, researchers have gained significant insight into the teaching and 

learning of mathematics by looking at patterns of social interactions in mathematics 
classrooms. By attending to ways that class time and attention are spent, patterns of 
engagement and responsibility are observed (Fukawa-Connelly, 2012); by attending to 
the ways that claims are supported and rejected, patterns of meaning-making and proof 
validation are observed (Yackel, Rasmussen, & King, 2000). This project aims to add to 
this growing list of observed patterns and our understanding of learning by investigating 
the ways that the classroom community evaluates the certainty of its collective 
knowledge and the associated approaches to justification by synthesizing research on 
beliefs about certainty, called proof schemes (Harel & Sowder, 1998), with research on 
classroom social patterns, called sociomathematical norms (Yackel & Cobb, 1996). 
 

Background and Theoretical Framework 
In their foundational work, Harel and Sowder (1998) introduce the concept of a proof 

scheme, which “consists of what constitutes ascertaining and persuading for that person” 
(p. 244). The researchers identified three types of proof schemes, which are separated by 
the kinds of evidence utilized: (i) external proof schemes rely on authority for evidence, 
(ii) empirical proof schemes on induction, and (iii) analytic proof schemes on deduction. 

The definition of proof schemes is “deliberately psychological and student-centered”, 
yet the researchers are careful to place it “in a given social context” (p. 244). Harel and 
Sowder (1998) conclude with a call for educational reforms that help students build 
axiomatic proof schemes, but they do not propose a mechanism for the social classroom 
to interact with the psychological schemes. For this connection, we turn to the emergent 
perspective (Cobb & Yackel, 1996) and the concept of sociomathematical norms (Yackel 
& Cobb, 1996). In the emergent perspective, there is a “reflexive relationship between the 
social constructs [norms] and their psychological correlates” (Yackel, Rasmussen, & 
King, 2000). Norms are defined as “normative interactions in the classroom” (Yackel, 
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Rasmussen, & King, 2000) and sociomathematical norms are the subset of norms that are 
specific to the discipline of mathematics.  

Research groups have operationalized the definitions of social and sociomathematical 
norms in divergent settings including Differential Equations (Yackel, Rasmussen & King, 
2000) and second grade mathematics (Yackel & Cobb, 1996), however, very little of the 
research on sociomathematical norms concerns upper-level proof-based courses. Fukawa-
Connelly (2012) studied norms in a student-centered course in Abstract Algebra. The 
class activity was conceptualized as “making believe” (Ball & Bass, 2000), meaning that 
the class community was collectively “coming to conviction” (Fukawa-Connelly, 2012), 
a term that blends proof validation and scheme. Two of the norms described, using only 
peer-validated knowledge and justifying new inferences based on previous ones, can be 
summarized as using an analytic proof scheme. The norm of convincing oneself is 
described as a personal kind of proof validation, and the student interviews explicitly 
contrasted this activity with memorizing or transcribing without understanding, indicating 
that the norm goes beyond validating and into ascertaining. The goal of this project is to 
push this connection further: can we see patterns from the classroom of the students 
renegotiating what should convince them and to what extent they are convinced? Our 
research questions are continuations of the questions of Fukawa-Connelly (2012). 
 

Research Questions 
·  What norms are enacted in an undergraduate advanced mathematics classroom that 
encourage and facilitate classroom discussions about the certainty of mathematical 
knowledge? 
·  What beliefs about their roles as learners of mathematics and the nature of mathematics 
do the students hold and enact that reflect these norms? 
·  How do the norms and beliefs support students to engage in appropriate activities for 
proof-writing or making sense of presented proofs? 
 

Methods 
The students participating in the study were enrolled in a junior-level inquiry-based 

course at a Midwestern small liberal arts college that explored Euclidean and hyperbolic 
geometries as well as philosophy of mathematics. The course met for 75 minutes, three 
times per week, for 10 weeks. There were 11 junior mathematics majors enrolled in the 
course, 8 of whom were mathematics education majors. Most classes consisted of cycles 
in which the students attempted to prove theorems in small groups of 2-3 at the board, 
followed by a presentation and group discussion of the arguments. 

Data for this preliminary report come from transcripts of video of small group and 
whole class discussions and audio of individual student interviews. The first phase of 
analysis followed Rasmussen & Stephan (2008), identifying episodes that discussed 
epistemological themes, were pivotal for student argumentation, or were cited across the 
course. Pattern definitions were articulated collaboratively, and the process was repeated 
until understanding of the episodes stabilized (Cobb et al., 2000). 
 

Results 
In addition to confirming many of the norms described by other researchers, we 

observed one new norm that we will call meta-argumentation: each member of the 
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community is responsible for evaluating approaches to justifying claims and using that 
evaluation to guide inquiry and communication. This norm is essentially social in the 
sense that it requires members of the community to participate in the evaluation; we 
observed four associated sociomathematical norms that describe appropriate participation 
in this mathematical context (See Table 1).  
 
Table 1: Four Associated Sociomathematical Norms 
N1 We describe the extent of our current knowledge and toolkit, including the holes in 

this collection. 
N2 We connect this description of our un/knowns with the demands of proving a claim 

to select an approach. 
N3 We compare and contrast the tools of various disciplines to select an approach. 
N4 We use aesthetic judgments to choose simpler and more general approaches. 

 
We will focus on a short episode from the fourth day of class containing enactments 

of norms N1 and N2. In the episode, the students had just constructed an angle bisector; 
the student presenters could not justify their claim, so the instructor asks the whole class 
how the argument must proceed (see Figure 1). 

 
Figure 1: Transcript of the Episode 
I: OK. Yep, they're congruent, but why? What results 
do we have whose conclusion is "therefore these 
angles are congruent"? 
BP: Congruent triangles. 
I: Which we call what? [DV]? 
DV: Congruent parts of congruent figures are 
congruent. 
I: That's the ONLY result we have so far that says 
"therefore two angles are congruent", right? So that 
HAS to be your second to last step. So? Do you know 
any angles are congruent already? 
All: (head shaking) 
I: You don't know anything about angles here, so what is our only other... and line 
segments, we're not going to get there just with line segments, right? We have three 
assumptions. We have Axioms 1, 2, and 3. Axiom 1 says segments are congruent if their 
lengths are, but that's never going to get us to figures being congruent, right? We have 
side-side-side and side-angle-side. What do you think, [GV]? 
GV: Side-side-side. 
I: Can you put those two angles inside triangles that are congruent by side-side-side? Can 
you see those two angles as inside two triangles that are congruent by side-side-side? 
EJ: Kind of. 
KG: Yeah. Because this line (BD) is shared by both the triangles so it's the same. 
 

This episode makes it clear how N2 relies on N1: in order for the students to match 
the demands with an approach, they need to call to mind all possible tools available to 
them. The argument being developed requires two observations, each of which is an 
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instance of N2 that is developed Socratically by the instructor and students. In the first 
instance, the group realizes that the argument must end with “[corresponding] parts of 
congruent figures are congruent” because “that’s the only result” with the correct 
conclusion. The same pairing of N1-N2 appears as the group realizes that they should 
attempt to develop a situation in which they can use the side-side-side axiom to get 
congruent figures. The instructor prompts the norms in this early episode, but the students 
do engage and will eventually enact them spontaneously as the course progresses. 
Moreover, by the end of the term, the students enact N1 by having quick and reliable 
access to over 150 statements, which they reference simply by number. 
 

Discussion and Questions 
As Harel and Sowder (1998) point out, “the proof schemes held by an individual are 

inseparable from her or his sense of what it means to do mathematics” (p. 235). This is 
precisely what is being negotiated by the norms we have described above. Moreover, 
these norms appear to focus the discussion and reflection to support development of 
axiomatic proof schemes. Norm N1 asks the students to hold a complete list of truths in 
their minds. In practice, this makes the students, rather than an external authority, 
responsible for this information; because this information is familiar from prior 
mathematics courses, the students must also consciously separate their beliefs from the 
accepted truths. The students demonstrated “concern for the origin of the truths” (p. 247) 
by tagging these truths in the discourse as assumptions (axioms), choices (definitions), 
and conclusions (theorems). In fact, in the interviews, one student commented that “we’re 
pushed to not accept that and actually have concrete evidence based on logic that things 
are, in fact, true or, in fact, un-provable, or false, or whatever”. 

Norm N2 encodes the “goal-oriented and intended generality” (Harel & Sowder, 
1998, p. 258) of arguments in early analytic proof schemes while making sure that “the 
focus of the study is on the structure itself, not on the axiom system” (p. 273) by asking 
students to step back and consider what they might be able to know and how. Moreover, 
this metacognitive stance provides the reflection needed to interiorize aspects of proof. In 
the interviews, one student claimed, “I always begin by kind of thinking about where I 
need to end up and how I'm gonna get there…[and] then try to say, ‘Oh! What do I 
know? What- what’d we learn before this? How can that help me?’” This process is a 
version of Selden and Selden’s (2013) formal-rhetorical part, which seems helpful for the 
generative habit of novel proof production (Marty, 1991). 

Norm N3 is the most obviously related to proof schemes: the most common 
enactment of this norm involved an explicit discussion of how mathematical certainty 
required deduction while tools like intuition, perception, measurement, and methods of 
science could only provide induction or were susceptible to hidden assumptions. Norm 
N4 often arises “when a [student] understands at least in principle a mathematical 
justification must have started originally from undefined terms and axioms” (Harel & 
Sowder, 1998, p. 273) and seeks to participate in these otherwise arbitrary choices. 
 
Questions: What other meta-proving sociomathematical norms are there? Could these 
norms be seen outside geometry, perhaps in intro-to-proof courses? What pedagogical 
ways can a sociomathematical norm of proving be inserted into the classroom? How can 
we leverage our data to understand the development of these norms? 
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Students’ generalizations from single to multivariable limits  
!
 

Sarah Kerrigan, Erin Glover, Eric Weber, and Allison Dorko!
Oregon State University!

!

Studies indicate that students struggle with generalizing across mathematical contexts, yet little 
research on generalization has been conducted in post secondary settings. This poster 
presentation reports on students’ generalization in the context of limits. Understanding limits is 
an essential part in understanding calculus. We conducted interviews in order to characterize 
students’ generalizations as they made sense of limits in single and multivariable settings.!
!

Keywords: generalizing, calculus, single variable calculus, multi-variable calculus, limit 
interview study !
!

Introduction and Relation to Literature!
Generalizing is important to mathematics learning because it can foster conjecturing and 

justification in the classroom (Lannin, 2005). Much of the existing body of research on 
generalization is related to algebra and function (e.g., Carraher, Schliemann, Brizuela, & Earnest, 
2006; Ellis, 2007; Ellis, 2011). These studies suggest that generalizing within these various 
mathematical contexts is challenging, yet little research on generalization has been conducted in 
post secondary settings. Findings from what research that does exist indicates that students have 
difficulty generalizing between their informal notions of functions in 2-space and functions in 3-
space (Dorko & Weber, 2014; Kabael, 2011; Trigueros and Martinez-Planell, 2010; Weber, 
2014; Yerushalmy, 1997). This poster presentation reports on students’ generalizations in the 
context of limit because understanding of limit (and the skills associated with limits) is an 
essential part of what it means to understand calculus (Sofronas, DeFranco, Vinsonhaler, 
Gorgievski, Schroeder, & Hamelin, 2011). This work originates from the NSF-funded the 
Generalizing Across Multiple Mathematical Areas (GAMMA) project the goal of which is 
uncovering generalizing in the context of advanced algebra, geometry, calculus, and 
combinatorics.!
!

Data Collection and Theoretical Perspective !
Participants for this study were recruited from multivariable calculus classes and 

compensated for the hour-long interview. The interview protocol asked questions to probe 
students’ understanding about generalizing their informal notions of limit to the formal definition 
of limit, and their generalization of limit from single variable to multivariable functions. The 
interviews were audio recorded, video recorded, and student written work was collected using 
Pencast’s Livescribe technology. All interviews will be transcribed and analyzed. The research 
team is guided Lobato’s (2012) actor-oriented transfer perspective in order characterize 
generalization based on what students see as similar across mathematical situations rather than 
conventional ideas about what counts as a correct generalization. The analysis will be conducted 
using Ellis’ (2007) generalizations framework, which describes specific the actions students 
engage in as they generalize.  !
!

Preliminary Results!
Early findings indicate that students have a difficult time generalizing informal ideas 

about limit from single variable to multi variable contexts. Furthermore, when presented with the 
formal definition of limit students, struggled to make sense of the notation. When prompted to 
find similarities and extend ideas between their student-generated representations (e.g., graphs, 
symbolic notation) to representations of a higher dimension, often the students’ ideas were often 
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unproductive as they were uncertain as to what they were measuring when using a notion of a 
limit. The results of this work will support uncovering what generalizations in calculus look like 
and how students’ ideas about single-variable limits might be leveraged in generalizing ideas 
from single variable to multivariable contexts.    ! !
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Investigating the effectiveness of an instructional video game for calculus: Mission prime 
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Introduction 

Effective educational video games have been both created and researched in the K-12 
literature (e.g., Riconscente, 2013), yet instructional games created for undergraduate mathematics and 
the relevant research in their effectiveness is scarce. As a team of researchers and game developers, we 
created an instructional video game, named Mission Prime, based on the concept of optimization in 
calculus. The game brings players into a visually complex and engaging world in which they perform 
tasks involving essential calculus content (in this case, optimization). We aimed to research the 
effectiveness of the game as compared to both homework and to no treatment and believe that, if given 
an environment that has visual-spatial manipulatives and no punishment for incorrectness, students 
could enhance their understanding of the mathematical content. 
 

Background/Framework 
Calculus and technology have been intertwined for the last 40 years to assist in students’ 

understanding (Tall, 2010). Technology allows affordances not necessarily easily visualized or written, 
such as multiple representations (Porzio, 1999), dynamic visual interactions (Tall, 2009), and 
computational relief (Meel, 1998). Mathematics education research in computer-assisted learning has 
shown that students can be successful due to the variety of visual representation (Kidron & Zehavi, 
2002; Thompson, Byerly, & Hatfield, 2013). Digital game-based learning, coupled with calculus 
concepts, can incorporate many of the affordances technology achieves. 

Digital game-based learning and educational games provide a space were learners can engage in 
authentic, interactive, adaptive environments that help promote learning in a number of ways. Video 
games allow players to be situated into particular “roles” in which they can solve complex problems in a 
low-risk environment that provides ample feedback on both an on-demand and just-in-time basis (Gee, 
2003; Squire, Barnett, Grant, & Higginbotham, 2004). In the gaming-ineducation literature, video games 
have been shown to be an effective means of teaching mathematics (Kebritchi, Hirumi, & Bai, 2010; 
Chen & Ren, 2013). Interactive engagement has been shown to improve performance in STEM courses 
over traditional methods (Hake, 1998). 

While developing technological tools for mathematics content, the pedagogical aspect needs to be 
considered. According to Drijvers, Boon, and Van Reeuwijk (2010), there are “three main didactical 
functionalities for digital technology: (1) the tool function for doing mathematics, which refers to 
outsourcing work that could also be done by hand, (2) the function of learning environment for 
practicing skills, and (3) the function of learning environment for fostering the development of 
conceptual understanding” (as cited in Drijvers, 2012, p. 486). Although there has been a significant 
amount of research on computer-based algebra systems (CAS) in undergraduate mathematics education 
(Thomas & Holton, 2003), video games might also be a way to achieve these three major functionalities. 
In fact, there have been calls for educational video games to be created to assist the development of 
students’ understanding of mathematics (Devlin, 2011); however, to our knowledge, no research has 
been done with video games designed'specifically'for'undergraduate'mathematics'education. 
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Research Questions 
Is playing Mission Prime more effective in promoting a) conceptual understanding, and b) 
calculation skills of optimization than in the traditional settings?  

Development of Mission Prime 
A cross-collaboration between the Department of Mathematics, the Digital Game-Based 

Learning group, and the Department of Communication at a large research university was 
established with funding from the Provost’s office to explore whether instructional games can 
enhance student learning in introductory STEM courses. The mathematics group consisted of 
one graduate student, two RUME researchers, and one mathematician. The Digital Game-Based 
Learning group consisted of a team from the education research and development center on 
campus including the program director, producer, lead developer, quality assurance lead, art 
director, system software engineer, and an instructional designer. The communication group 
consisted of a post-doctoral student and a communication researcher. The team was presented 
with the opportunity to develop an instructional video game on a calculus topic. The guidelines 
of the funding required the topic to be one in which students traditionally struggle and to be self-
contained enough to be completed in one hour of video game play. Therefore, the team designed 
a game on the concept of optimization in calculus. 

The game, Mission Prime, involves a settler setting up various aspects of a space colony 
using limited resources and working within the parameters of the planetary environment.  The 
game involves four sequential scenarios (entitled Fence, Box, Cone, and River) that can be 
solved using optimization. The player is given a tutorial that describes the game. The tutorial 
also guides players to visualization tools that can change the viewpoint from 3D to 2D, rotate the 
viewpoint, and change solution parameters so that the player can form conjectures about optimal 
solutions either before or during the problem-solving process. Once the tutorial is complete, the 
game begins. Throughout the game, both performance and formative feedback messages are 
given to help students keep track of their progress and adjust their strategies. A screenshot of the 
video game is located in Figure 1.  

Mission Prime is designed to allow players to focus on learning the optimization concepts 
without having to stop to perform complex calculations. The player is given a menu of formulas 
and selects the relevant choices to put onto a workspace. Next, the player can insert constraint 
values into the formulas and can combine the formulas to arrive at a function of a single variable.  
The player can select from operations to perform, including the key choices “take the derivative” 
and “find the root”. In attempting to maintain engagement in gameplay, the selected 
computations are done by the computer. When the player believes he/she has arrived at the 
solution, the player submits the answer. If the answer is correct, they move to the next scenario 
and if not, they are given feedback asking them to re-evaluate and try again. Feedback messages 
such as “This function is missing necessary information” or “The expression should contain only 
one variable” assist the player if their problem-solving strategy needs readjustment.  
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Figure 1: Screenshot of Mission Prime

Method 
The study used between-subject experimental design with two treatments and a third control 

group. This means that different groups of students received the two different treatments while 
the control group received no treatment.  The goal was to compare the effectiveness of the game 
against a more traditional mathematics learning activity such as doing practice problems. 
Participants were randomly assigned to one of the three condition groups to reduce the possible 
influence of extraneous factors. The game condition (G) involved playing the educational video 
game Mission Prime for sixty minutes or until all four scenarios have been completed. Students 
in the practice condition (P) were given a set of four optimization problems similar to those in 
the game (with diagrams provided as needed) and were allowed sixty minutes to complete the 
problems. Students in the control condition (C) had no treatment activity.  

In the testing phase, 132 students from Calculus II courses at a large Midwestern university 
were recruited using small amounts of extra credit offered by four professors, regardless of the 
condition assigned to the students. Of these, seven students did not complete their session and 
were removed from the study. The test was performed during scheduled ninety minute sessions 
in a testing computer lab. Of the 125 students who completed the study, there were 50 assigned 
to G, 38 to P, and 37 to C.  Through demographic data, 82.9% of the students were freshmen, 
65.8% were male, and the average age was 19.39.  

At the beginning of their session, participants were all given a preliminary survey about their 
background and demographic information, and also took an Attitudes Toward Mathematics 
Inventory (Tapia & Marsh, 2004). They were randomly assigned to one of the three conditions. 
After the activities, P and G groups took a post-test that included solving two optimization 
problems (the computation problems) and answering two questions about the concept of 
optimization and how it fits in with calculus (the conceptual problems) (See Table 1).   C 
subjects took the post-test survey and then played the game so their experimental session was the 
same length as the P and G groups. 
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Table 1: The four problems given to students after activities 

 
When solving the two computation problems, students showed their work on paper and 

entered the final answer into the computer.  This enabled the coding team, comprised of the three 
mathematicians and a graduate student, to assess both correctness of the answer and to assign a 
code to the quality of the written work.  The written work for computations and responses to the 
conceptual problems were coded using the rubric shown in Appendix 1. In both situations, the 
coding teams were blind to the condition for each response. An example of one student’s written 
work, which was scored a 2, on problem 3, is located in Figure 2.  
 

 
Figure 2: An example of student work on problem 3 

 
While the game group played the game, data was collected indicating their behaviors in the 

game including the frequency of different actions, the number of feedback messages they 
received, the duration of time on each action and scenario, whether they used the visual 
manipulation tools, and how long they spent manipulating the visual representations. The 
participants’ perceived immersion, enjoyment, and sense of control were measured with a subset 
of the cognitive absorption scale survey developed by Agarwal and Karahanna (2000). 

Results 

Conceptual expression 
Students’ conceptual understanding was measured using the two concept questions on the 

post-test, employing the coding scheme described in the Methodology section. Students in the G 
group scored significantly higher on the two conceptual problems than students in the other two 
conditions (P, C). To obtain this result, an ANOVA was run with conceptual understanding as 
the dependent variable and condition as the independent variable.  

The result showed that there was a significant difference between the three conditions in 
general, F(2, 113)=5.22, p=.007, eta squared = .08. The low value of p indicates that there is only 
a minute chance that these differences in sample group means are due to random chance rather 
than an actual difference in underlying group means.  Because our groups were large and 

Conceptual Problems Calculation Problems 
1. What do you think are the important concepts in 
optimization? 

2. Find the positive real numbers x and y that satisfy the 
equation 2x+4y = 24 and which have the largest possible 
product. 

4. Explain how and why we use derivatives to solve 
optimization problems. 

3. Find the dimensions of a box with a square base and 
open top that holds a volume of 36 cubic ft. and which 
requires the least amount of material to build the box. 
(An image of a cube with sides labeled was provided) 
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students were randomly assigned to the groups, we conclude that the differences are due to the 
treatments and the test is valid. Post-hoc comparison of means using Tukey’s test showed that G 
(M=2.10, SD=1.26) was significantly higher than P (M=1.57, SD=1.04) and C (M=1.32, 
SD=1.01).  P was not significantly different from C (p=.747) which means students in the P 
group did not do significantly better than those in the control group.   

Computational skills 
Students’ computational abilities were measured using the two computational questions on 

the post-test. The calculation score was created using the correctness of their answers (which 
were entered by the students in the computer) and the coded assessment of their written work, as 
described in the Methods section. The findings indicate that playing an hour of the game may not 
be more effective in improving the students’ calculation skills than doing practice problems or no 
treatment at all.  An ANOVA was conducted in which the experimental condition was entered as 
the independent variable, and the calculation score was used as the dependent variable.  

The result showed that there were no significant difference between the three conditions, F(2, 
113)=.20, p=.818. The larger value of p (greater than .05) suggests that G (M=1.30, SD=1.57) did 
not perform significantly better than P (M=1.39, SD=1.28) or C (M=1.18, SD=1.17) in terms of 
calculation skills.  

Discussion/Limitations/Future Research 
The results suggest that playing the game Mission Prime can benefit students’ conceptual 

understanding but not necessarily their computational skills. Since the game was designed to 
alleviate the need for student computation when posed with optimization scenarios, the results 
seem to agree with the design philosophy. The encouraging result is the significant gain in 
conceptual understanding. This study suggests that there is a potential for educational games to 
be useful at the undergraduate level. To our understanding, this is the first time that an 
educational game has been created for an undergraduate mathematics course, as well as studied, 
and we find that there are indicators suggesting its efficacy. 

However, there were certain limitations to the study. This game was a short game on a single 
self-contained topic, so there is no information of sustained conceptual understanding. The 
students in the study were from Calculus II sections in the latter portion of the semester. 
Optimization is usually described in Calculus I, so it is possible that students did not recall either 
conceptual or computational understandings.  Due to the randomized assignment of students to 
groups, however, this influence is expected to be the same across groups. 

During the study, we were interested in student usage of the visualization tools of the game. 
We tracked how often students used the visualization scrolling feature and how much time they 
spent using that tool. Every student used the visualization tool at least once. The visualization 
tool was used heavily in the first scenario as students became familiar with the game. After the 
first scenario, use of the visualization tool increased with increasing difficulty of the scenario. 
Although visualization was an important aspect in game development, we felt we did not fully 
have the appropriate information to come to a conclusion about the effectiveness of this 
manipulative. Hence, visualization is an area of future research. 

Due to an extension in funding, the calculus game will expand to cover more topics, 
including skills from algebra and pre-calculus. We conjecture that an instructional game would 
be most useful in the classroom when it is utilized often throughout the course. Instructional 
games allow students to do trial and error, respond to instant feedback, and to better visualize a 
concept or problem. A calculus course contains many topics (functions, limits, linear 
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approximation, related rates) in which we predict an expanded version of Mission Prime could 
provide a valuable complement to traditional instruction and homework. 

Future research may also involve students at other institutions playing the game, and 
examining the impact of the game on students who are concurrently learning the concept of 
optimization, in contrast to students who had learned optimization previously.  We also plan to 
investigate whether use of Mission Prime’s visualization tools increases students’ conceptual 
understanding by performing a more qualitative study in the near future 
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Appendix 1: Coding rubric for both conceptual and calculation student work 
 
Conceptual Problems Calculation Problems 
Question 1: 
0 – No relevance to problem solving or optimization 
1 – Problem solving of any type without reference to 
calculus or max/min 
2 – Derivatives 
3 – Maximum/minimum, “best/efficient,” and critical 
points 
4 – Combining both derivatives and critical points or 
maximum and minimum 

Question 2: 
0 – Irrelevant or no answer 
1 – Work that indicates minimal understanding (a 
picture or similar); trial and error; did not appear to use 
derivatives 
2 – Tried to differentiate a multivariable expression; 
requires P=xy or similar 
3 – Incorrect derivative (of a function of one variable), 
essentially correct solution with algebra errors 
4 – Correct and included all the steps necessary: 
product equation, plug in constraint, differentiate, find 
critical points. 

Question 4:  
0 – irrelevant; discussed general techniques of 
optimization but not related to derivatives 
1 – true statements about derivatives but irrelevant; 
apparent understanding of optimization but little or 
incorrect mention of derivatives; rates of change 
mentioned but applied incorrectly or incompletely  
2 – “to find minimum and maximum”; “find critical 
points” but doesn’t mention max/min 
3 – “to find critical points to find the min/max”; listing 
steps that were successful in the game without any 
indication of why; missing what a critical point is or 
how to find one 
4 – “zero derivative implies min/max”; “rate of change 
is 0 so the function is (maybe) max/min.”; requires 
explicit mention of slope or rate of change 
 

Question 3:  
0 - Nothing relevant; only formula with no 
manipulation 
1 – Volume formula with some manipulation (algebra 
or calculus) but no mention of surface area 
2 – Both an area and a volume function present; some 
attempt at combing the equations; might have 
incorrectly tried a derivative; a differentiation attempt 
is not necessary for a two 
3 – Derivative of an area function that is correct or 
nearly correct; missing the part where the derivative is 
set to 0 
4 – correct method and correct answer; correct method 
but small mistake produced a wrong answer; this might 
include an incorrect surface area equation but steps are 
otherwise correct 
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A mathematics teacher educator’s use of technology in a content course focused on 
covariational reasoning 

 
Kevin LaForest 

University of Georgia 

The actions of mathematics teacher educators (MTEs) are an underrepresented area of 
mathematics education research. Likewise, researchers have argued that a pressing area of 
need in mathematics education is investigating how to support students’ covariational 
reasoning. The purpose of this proposed study is to investigate an MTE’s use of technology to 
engender covariational reasoning in a content course designed for pre-service teachers. 
Through the lens of Carlson et al.’s (2002) covariation framework and related theories, I will 
analyze interview and observation data in order to provide insights into the ways in which an 
MTE conceptualizes the use of technology in his classroom as well as how he plans to 
implement it to engender covariational reasoning. Additionally, I will focus on the way in 
which the MTE implements the technology including how students in the classroom reason 
about quantities that vary through the instructor’s use of technology.  

Key words: Covariational Reasoning, Technology, Mathematics Teacher Educators 

 
Introduction 

A growing body of literature (e.g., Carlson et al., 2002; Smith & Thompson, 2008; Ellis, 
2011) identifies covariational reasoning – coordinating how two quantities vary in tandem – 
as critical for students’ success in secondary and undergraduate mathematics. However, 
covariational reasoning and, more generally, reasoning about relationships between quantities 
do not receive significant attention in United States curricula (Saldanha & Thompson, 1998). 
The fact that covariational and quantitative reasoning are not central to student and teacher 
meanings is not entirely surprising, as researchers (e.g., Oehrtman, Carlson, & Thompson, 
2008; Moore, 2010) have repeatedly and emphatically characterized US school mathematics 
as failing to develop meanings that stem from such reasoning, even in those students who are 
deemed successful. In light of the importance of covariational and quantitative reasoning for 
students’ success in mathematics in combination with the fact that students are experiencing 
instructional experiences mostly devoid of such reasoning, an important area of research is 
identifying how to engender students’ covariational and quantitative reasoning. 

I argue that one way to engender and support students’ covariational reasoning is through 
the use of technology. Over the past two decades, the proliferation of technology has been 
expansive and the use of technology in the classroom has been increasing as well (Kaput, 
1992; Zbiek et. al, 2007). This societal change raises several questions about how emerging 
technology can be implemented to support student learning. The study proposed here 
investigates a mathematics teacher educator’s (MTE) use of technology in a content course 
for pre-service teachers (PSTs). The primary research questions driving this study are: (a) 
according to an MTE, what role does technology play in the design of a PST content course?  
(b) How does the MTE implement technology in his classroom? (c) How does the use of 
technology in the content course support or inhibit PSTs’ covariational reasoning abilities? 

Technology and Covarying Quantities 
In writing the introduction to the “Technology in the Mathematics Curriculum” section of 

the Third International Handbook of Mathematics Education, Leung (2013) stated:  
In many cases, the use of technology to study mathematics has changed the very nature of 
the mathematics we are studying. So technology in the mathematics curriculum should 
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not be characterized by how the evolving technology will have an impact on the learning 
and teaching of mathematics from the curricula of previous eras. Rather, curriculum and 
teaching and learning methods will need to be regularly reconceptualized to take 
advantage of the power of modern technology to improve mathematics education in, 
possibly, spectacular ways. (p. 523) 

In other words, technology provides us a way to transform the content that we teach and the 
ways of thinking that students construct. Through the use of innovative software, a teacher 
can bring to life the changing of two covarying quantities dynamically. More generally, using 
technology enables one to take advantage of media that support dynamic imagery in a user.  

Kaput (1992) differentiates extensively between traditional and dynamic computer media 
and how they can affect cognition. Dynamic media offer a situation in which variation is easy 
to achieve. An example of this would be creating sketches in Geometer’s Sketchpad [GSP] 
(Jackiw, 2006). Using GSP, a user can drag vertices and sides around nearly instantaneously 
to see a variety of possibilities. This is not possible in a drawing of the situation, as that 
medium requires the user to draw each instantiation. Dynamic media make it easier for 
students to “see” such concepts as variation because instead of being constrained to static 
media intended to represent variation, they can experience variation in experiential time. 
Repeated experiences with such activities can help students construct variation cognitively.  

Thompson, Byerley, and Hatfield (2013) described that they used the software program 
Graphing Calculator (Avitzur, 2011) in their classroom and embedded it throughout all of 
their teaching. One example in which using the software program shaped their instruction 
involved implementation of a bottle problem: students were asked to imagine a graph of the 
volume of water in a bottle in relation to the water’s height as it fills. The authors used 
Graphing Calculator to create a setting in which the students could control and experiment 
with the bottle’s shape. Also, they could animate the applet to watch the bottle fill with water. 
A graphical representation of the relationship between height and volume can also be shown 
as the bottle fills. The authors’ intention was to engender their students’ covariational 
reasoning abilities by providing a dynamic environment where teachers can draw students’ 
attention to how height and volume vary in tandem. The students can, in a sense, enact and 
perceive the variation themselves with the click of a button. These activities can help the 
students re-present the situation in the future without needing the technological support.   

Theoretical Framework 
In explaining the various ways students think about covarying quantities, Carlson et al. 

(2002) detailed a framework for describing the mental actions involved in applying 
covariational reasoning. Their framework consists of five distinct but related mental actions 
(denoted MA1, MA2, MA3, MA4, and MA5) that they consider characteristic of 
covariational reasoning. These mental actions are described fully in Figure 1. One must be 
careful in classification, however; just because one exhibits a higher numbered action (e.g., 
MA5) does not mean he or she has also engaged in a lower numbered action (e.g., MA3). 

Researchers (e.g., Castillo-Garsow, Johnson, & Moore, 2013; Thompson, 2011) have 
recently extended the work on students’ covariational reasoning by identifying differences in 
the way students imagine two quantities covarying. They found that students think about 
variation in both chunky and smooth ways. In chunky thinking, measuring change is a result 
of counting the occurrences of equal-sized chunks representing completed change. On the 
other hand, in order to conceptualize smooth variation one must imagine a change in 
progress; that is, variables continuously take on different values in the flow of time (Castillo-
Garsow, Johnson, & Moore, 2013). Castillo-Garsow et al. argued that smooth thinking is a 
more powerful root for students’ change than chunky thinking. One reason for this could be 
because smooth thinking corresponds with our experiential reality. However, this is often 
overlooked in school mathematics. For instance, common curricula approaches to function  

18th Annual Conference on Research in Undergraduate Mathematics Education 66818th Annual Conference on Research in Undergraduate Mathematics Education 668



 

 
Figure 1. Carlson et al.’s (2002, p. 357) covariation framework. 
 
foreground chunky images of change, if they foreground variation at all. Castillo-Garsow 
(2012) finds that introduction of technology into classrooms can shift this trend. He writes, 

Computers are capable of displaying animations that occur within a student’s experiential 
time, helping them to imagine continuous change … By performing extremely rapid 
calculations, computers can create the illusion of constantly changing numbers helping 
students build an instantaneous process conception of measurement. (p. 68) 

These types of animations become objects that can create classroom conversations about the 
quantities involved, the relationships between quantities, and how quantities covary, while 
providing students an opportunity to perceive something changing smoothly. In addition to 
engendering students’ reasoning through visual representations, Castillo-Garsow believes that 
continuous quantitative reasoning will be aided through the touch screen capabilities of many 
tablets. The ability to build the animation yourself or adjust quantities with your own finger is 
very powerful. It can give students the feel of “smoothness” rather than of discrete quantities. 

Methods 
The subjects of this study will be an MTE and two PSTs at a large university in the 

southeast United States. The MTE has been chosen on a volunteer basis and is the instructor 
of the first content course in a secondary mathematics education program. The two PSTs will 
be chosen on a volunteer basis and are students in that same course.  

In order to model how the MTE conceptualizes the use of technology in his classroom to 
engender covariational reasoning, I will conduct semi-structured interviews (Roulston, 2010) 
with the MTE. To determine the ways in which the MTE implements technology, I will 
observe his actions in the classroom. Finally, to explore how the use of technology engenders 
and supports PSTs’ covariational reasoning, I will conduct task-based interviews (Goldin, 
2000) with the PSTs throughout the semester. All sessions will be videotaped and digitized.  

Results 
At the time of writing this proposal, data has not been collected or analyzed on the 

primary foci of this work. However, previous studies have involved data collection and 
analyses from the class described above to characterize students’ quantitative and 
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covariational reasoning (Moore, Paoletti, & Musgrave, 2013; Moore et al., 2013). We have 
often found that PSTs entering the program have difficulties conceptualizing covarying 
quantities. When providing PSTs with a drawing of a bottle and asking them to graph the 
relationship between the height of the water in the bottle and the volume of water in the 
bottle, several PSTs had difficulty imagining the bottle filling in ways that were productive to 
the task.  No technology was used in the task implementation, but hypothetically the use of 
technology could have supported the PSTs’ covariational reasoning as shown in Thompson, 
Byerley, and Hatfield (2013). The following is a classification of a hypothetical student going 
through the problem. 

Using a subset of Carlson et al.’s (2002) framework, a hypothetical PST exhibiting 
thinking in terms of MA1 on this problem would be able to see by using the program that the 
height changes with volume. The technology helps because rather than just being told the two 
quantities covary, PSTs can watch the animated bottle fill with liquid and identify these as 
two changing quantities. A PST exhibiting MA2 would explain that the volume increases as 
height increases. Also, watching the bottle fill might support the students imagining these two 
quantities covarying continuously and smoothly. Additionally, the students’ control over the 
change in height allows them to envision the change in volume in a way they would not have 
been able to do in a static environment. In order for a PST to exhibit MA3 on this problem, 
he or she would have to be able to distinguish the amount of change in volume there was for 
a change in the height. The technology affords the students an opportunity to virtually fill up 
the bottle and consider how the height or volume change, respectively. This, when combined 
with the smooth imagery supported at the MA2 level, might help students coordinate smooth 
and chunky images of change in ways compatible with what Thompson frames as continuous 
covariation (Thompson, 2011). One could argue that someone could bring in physical bottles 
and do the same thing, but, in general, you cannot easily adjust the shape of a physical bottle. 

Implications of the Study and Questions for the Audience 
The study, when completed, will have implications on the community of MTEs, a group 

of people that has been studied minimally compared to other populations in the mathematics 
education field. MTEs are responsible for preparing PSTs and thus determining how to 
provide them with experiences that focus on ways of thinking important to the teaching and 
learning of mathematics is a pressing area of need. The current study will contribute to this 
area by providing insights into technological supports that engender and grow students’ 
covariational reasoning. The insights will not only produce research knowledge in this area, 
but also instructional materials relevant to teachers in secondary and elementary mathematics 
as well as MTEs.  Another implication builds off of Castillo-Garsow’s (2012) comments 
about the impact of technology on students’ chunky and smooth images of variation. The 
work will provide insights into which technological tools support each image of variation and 
also perhaps more importantly, how these images may be coordinated as discussed by 
Thompson (2011). Similarly, the study will provide evidence for or against the claim that 
smooth thinking of covariation can grow through an MTE’s use of dynamic technology.  

Some questions for the audience to answer include: (a) What other data points, if any, do 
you feel would be interesting to investigate or would add to the credibility of the study? (b) 
What methods should I use to coordinate the different data collection foci? (c) What other 
implications stem from an investigation such as the one proposed here?  
 

References 
Avitzur, R. (2011). Graphing Calculator (Version 4.0). Berkeley, CA: Pacific Tech. 
Carlson, M. (1998). A cross-sectional investigation of the development of the function 

concept. In E. Dubinsky, A. H. Schoenfeld, & J. J. Kaput (Eds.), Research in collegiate 
mathematics education, III. Issues in Mathematics Education, 7, 115-162. 

18th Annual Conference on Research in Undergraduate Mathematics Education 67018th Annual Conference on Research in Undergraduate Mathematics Education 670



Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational 
reasoning while modeling dynamic events: A framework and a study. Journal for 
Research in Mathematics Education, 33(5), 352-378. 

Castillo-Garsow, C.C. (2012). Continuous quantitative reasoning. In Mayes, R., Bonillia, R., 
Hatfield, L. L., and Belbase, S. (Eds.), Quantitative reasoning and Mathematical 
modeling: A driver for STEM Integrated Education and Teaching in Context. WISDOMe 
Monographs, Volume 2 (pp. 55-73). Laramie, WY: University of Wyoming Press. 

Castillo-Garsow, C., Johnson, H. L., & Moore, K. C. (2013). Chunky and smooth images of 
change. For the Learning of Mathematics, 33(3), 31–37. 

Ellis, A. (2011). Middle school algebra from a functional perspective: A conceptual analysis 
of quadratic functions. In Wiest, L. R., & Lamberg, T. (Eds.). Proceedings of the 33rd 
Annual Meeting of the North American Chapter of the International Group for the 
Psychology of Mathematics Education. Reno, NV: University of Nevada, Reno. 

Goldin, G. A. (2000). A scientific perspective on structured, task-based interviews in 
mathematics education research. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of 
Research Design in Mathematics and Science Education (pp. 517–545). Mahwah, NJ: 
Lawrence Erlbaum Associates, Inc. 

Jackiw, N. (2006). The Geometer’s Sketchpad. Berkley, CA: Key Curriculum Press. 
Kaput, J. (1992). Technology and mathematics education. In D. A. Grouws (ed.), Handbook 

of research on mathematics teaching and learning (pp. 515-556). New York: Macmillan. 
Leung, F. (2013). Introduction to Section C: Technology in the mathematics curriculum. In 

Third International Handbook of Mathematics Education (pp. 517-524). Springer New 
York. 

Moore, K. C. (2010). The role of quantitative and covariational reasoning in developing 
precalculus students’ images of central concepts of trigonometry. Ph.D. Dissertation. 
Arizona State University: USA. 

Moore, K. C., Liss II, D. R., Silverman, J., Paoletti, T., LaForest, K. R., & Musgrave, S. 
(2013). Pre-service teachers’ meanings and non-canonical graphs. In Martinez, M. & 
Castro Superfine, A. (Eds.), Proceedings of the 35th annual meeting of the North 
American Chapter of the International Group for the Psychology of Mathematics 
Education (pp. 441-448). Chicago, IL: University of Illinois at Chicago. 

Moore, K. C., Paoletti, T., & Musgrave, S. (2013). Covariational reasoning and invariance 
among coordinate systems. The Journal of Mathematical Behavior, 32(3), 461-473. 

Oehrtman, M., Carlson, M., & Thompson, P. W. (2008). Foundational reasoning abilities that 
promote coherence in students' function understanding. In M. P. Carlson & C. Rasmussen 
(Eds.), Making the Connection: Research and Teaching in Undergraduate Mathematics 
Education (pp. 27-42). Washington, D.C.: MAA. 

Roulston, K. (2010). Reflective interviewing: A guide to theory and practice. London: 
Sage. 

Saldanha, L., & Thompson, P. W. (1998). Re-thinking co-variation from a quantitative 
perspective: Simultaneous continuous variation. In S. B. Berensen, K. R. Dawkins, M. 
Blanton, W. N. Coulombe, J. Kolb, K. Norwood, & L. Stiff (Eds.), Proceedings of the 
20th Annual Meeting of the North American Chapter of the International Group for the 
Psychology of Mathematics Education (Vol. 1, pp. 298–303). Columbus, OH: ERIC 
Clearinghouse for Science, Mathematics, and Environmental Education. 

Smith III, J., & Thompson, P. W. (2008). Quantitative reasoning and the development of 
algebraic reasoning. In J. J. Kaput, Carraher D.W. & Blanton M.L. (Eds.), Algebra in the 
early grades (pp. 95-132). New York, NY: Lawrence Erlbaum Associates. 

18th Annual Conference on Research in Undergraduate Mathematics Education 67118th Annual Conference on Research in Undergraduate Mathematics Education 671



Thompson, P. W. (2011). Quantitative reasoning and mathematical modeling. In L. L. 
Hatfield, S. Chamberlain & S. Belbase (Eds.), New perspectives and directions for 
collaborative research in mathematics education. WISDOMe Mongraphs (Vol. 1, pp. 33- 
57). Laramie, WY: University of Wyoming. 

Thompson, P. W., Byerley, C., & Hatfield, N. (2013). A conceptual approach to calculus 
made possible by technology. Computers in the Schools, 30, 124-147. 

Zbiek, R. M., Heid, M. K., Blume, G., & Dick, T. P. (2007). Research on technology in 
mathematics education: The perspective of constructs. In F. K. Lester (ed.) Second 
handbook of research on mathematics teaching and learning (pp. 1169-1207). Charlotte, 
NC: Information Age Publishing. 

 
 
 
 

18th Annual Conference on Research in Undergraduate Mathematics Education 67218th Annual Conference on Research in Undergraduate Mathematics Education 672



The influence of function and variable on students’ understanding of calculus optimization 
problems 
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For this study, we aim to answer the following questions: 1) What conceptual knowledge do 
students need to have to be able to correctly solve optimization problems? 2) What weaknesses 
do students demonstrate when solving optimization problems? 3) How can we address these 
weaknesses and improve the teaching of optimization problems in calculus?  In this paper, we 
discuss preliminary findings from this study, focusing on the responses of four first semester 
calculus students as they solve a basic optimization problem during a semi-structured interview. 
In particular, we observe how students’ understanding of function and variable influences their 
understanding of optimization problems. We believe we may be able to use APOS theory (Asiala 
et al, 1996) as a lens for studying how students understand optimization problems and begin to 
explore that in this paper. 
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Introduction 

The goal of our study is to better understand how students think about and understand 
optimization problems in calculus. In particular, what conceptual knowledge do students need to 
have to be able to correctly solve optimization problems? What weaknesses do students 
demonstrate when solving optimization problems? Additionally, how can we address these 
weaknesses and improve the teaching of optimization problems in calculus? This paper will 
begin to answer these questions. 

To solve an optimization problem, a student must use geometry and algebra skills to 
construct a function that represents the situation described in the problem. Often, there is more 
than one functional relationship involved and the student must make strategic decisions to find 
an appropriate single-variable function. Once the student has defined such a function, he or she 
will use calculus and algebra to find the absolute maximum(s) and/or minimum(s) of the 
function. Overall, the four students who took part in this study were very good at the algebraic 
manipulations, but all had trouble constructing the initial function. This is the focus of our paper. 
 

Background and Literature 
Functions and variables play a critical role in optimization problems, since the goal is to 

construct a function that models the given situation and then find the absolute maximum or 
minimum of that function. There is a large body of literature devoted to researching student 
understanding of functions (Breidenbach, Dubinsky, Hawks & Nichols, 1992; Monk, 1992; 
Carlson, 1998; Dubinsky & Harel, 1992; Vinner & Dreyfus, 1989), but the majority of this 
research is limited to situations in which the students have a function presented to them. 
Optimization problems provide interesting insight into students’ understandings of functions and 
variables because the students must construct the functions themselves, often using function 
composition and variables other than the standard choices of

€ 

x  and 

€ 

y . 
The APOS theory defined by Asiala et al (1996) is useful for analyzing students’ 

understanding of function, a key aspect of optimization problems. We believe APOS theory may 
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also provide a good lens for studying students’ understanding of optimization problems. Asiala et 
al (1996) define an action view of a transformation as one in which a student “can carry out the 
transformation only by reacting to external cues that give precise details on what steps to take” 
(1996, p. 9). Asiala et al (1996) define a process view as one in which students “can reflect on, 
describe, or even reverse the steps of the transformation without actually performing those steps” 
(p. 10). They further note, “a process is perceived by the individual as being internal, and under 
one’s control, rather than as something one does in response to external cues” (1996, p. 10). 

Research suggests that understanding the relationships between variables is difficult for 
many students (Trigeuros & Ursini, 2003; Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; White & 
Mitchelmore, 1996). Symbolizing a functional relationship based on information given in a 
problem – something that is clearly necessary for optimization problems – is often a source of 
difficulty for students (Trigueros & Ursini, 2003; White & Mitchelmore, 1996).  Understanding 
the covariational nature of the variables in an equation is challenging for many students (Carlson 
et al, 2002; Trigueros & Ursini, 2003). Trigueros and Urisini (2003) noted that students tend to 
have more difficulties when working with more than one variable in the same problem. 

 
Methods 

 We conducted interviews with seven first and second semester calculus students. The 
interviews were semi-structured interviews in which students solved optimization problems and 
answered questions about prerequisite material related to optimization problems. We asked the 
students to think aloud as much as possible as they solved the problems, and asked follow-up 
questions if more detail was necessary. We also asked probing questions such as, “Why did you 
decide to do this?” and “Why are you allowed to do that?” These interviews were video recorded 
and then transcribed for analysis. This paper will focus on the four first semester calculus 
students’ responses to the optimization problem given in Figure 1. Information that is key to the 
problem is also stated in Figure 1. All names (Adam, Rob, Jill, Joe) are pseudonyms. 
 
Problem 1: A rectangular garden of area 200 ft2 is to be fenced off against rabbits. Find the 
dimensions that will require the least amount of fencing if a barn already protects one side of the 
garden. 
 
Key information: 
 
Total amount of fencing for the garden: P = 2 x + y  
 

€ 

A = 200 ft 2  ⇒ 

€ 

xy = 200  ⇒ 

€ 

y =
200
x

 

€ 

P x( ) = 2x +
200
x

 is a single-variable function representing the perimeter in terms of x 

 
Figure 1: Optimization problem used in interview along with its key information 

 
Preliminary Results and Analysis 

The Equal Sign Dilemma 
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Three of the four students had difficulty writing complete equations with information on 
both sides of the equal signs. For two of these students, this presented enough of a stumbling 
block that they did not know how to proceed. 

When attempting to set up his function, Adam wrote, “

€ 

2x + y = ” with nothing written to 
the right of the equal sign. When asked about it, he said, “I don’t know what it’s equal to now. I 
think, uh...” and then he moved on to the next part of the problem. He was still able to complete 
the problem, but said later that he did not understand why he was doing certain steps. He said, “I 
know that’s how I did it, so it will be that way,” and “they’ve taught us that’s how it should be.” 
 Jill wrote “

€ 

minimize materials = 2y + x ” which seemed like a good first step, but then 
when it came time to find a function representing perimeter, she did not know what to do. She 
said, “I mean I have another formula involving y here, but I don’t know what it equals,” pointing 
at the above statement. Even after the interviewer suggested she use the letter M to represent 
“amount of material,” she remained hesitant, saying, “Even then I don’t think that’d help me. 
That’s just adding another variable.” At this point, she did not know what to do next, so the 

researcher pushed her harder to try using the variable M. As soon as she wrote 

€ 

M =
400
x

+ x , 

something changed and she was able to do the rest of the problem. 
Joe had similar problems when trying to come up with a function (see Figure 2). He 

began by writing 

€ 

per = 2x + y  and then wrote 

€ 

2x +
200
x

 without including an equal sign. He 

knew he needed to differentiate something associated with perimeter, so he wrote 

€ 

2 − 200
x 2

. 

Reflecting back on what he had written, he said, “that’s the equation for perimeter in terms of 

€ 

x” 

and then seemed to hesitate. When asked about his hesitation, he said 

€ 

2x +
200
x

 was “not an 

equation like that” and then scratched out the differentiated expression below it. At this point, he 
did not know how to proceed, and the researcher had to intervene to get him to continue. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  No equal sign                            Equal Sign                      Marks out “derivative” 
 
Figure 2: Joe’s initial attempts at constructing a function for perimeter 
 
The Function Notation Dilemma 
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Three of the four students also had difficulty using appropriate function notation when 
constructing their functions. Rob wrote 

€ 

P ft( )  for his perimeter function. When asked what 

€ 

P 2( ) = 204  meant, he said it meant the length of the rectangle was 204, even though the function 
was giving the perimeter of the rectangle in terms of its length (meaning the rectangle had a 
perimeter of 204 when its length was 2). 
 Joe also had difficulty with the function notation. He was still trying to figure out what to 
write on the other side of the equation containing the expression for perimeter, and the researcher 

suggested using the letter 

€ 

P . As a result, he started to write 

€ 

2x +
200
x

= f P( ) , but then realized 

that wouldn’t work because “that’s not the variables in there.” Then he said that maybe it would 
just be “

€ 

f  of something,” but wasn’t able to figure out what that something would be. 
 Adam also had trouble deciding how to express the perimeter as a function. He began to 
write 

€ 

2x + y = f x( ), but then claimed that this would not work because 

€ 

f x( )  equals just 

€ 

y , not 

€ 

2x + y . When asked to explain, he said, “We know 

€ 

f x( ) = y . That’s a common thing.” 
 

Discussion 
 Once the students overcame the obstacles related to constructing the optimizing function, 
all four were able to solve the rest of the problem easily. Constructing the function, however, 
proved to be very difficult for them. After they had completed the problem, it was clear that they 
still did not know why they had performed certain operations, emphasizing that a correct answer 
does not imply correct or complete understanding of the process. Both Rob and Adam stated they 
believed they had done the problem correctly, but did not understand everything they had done. 

We believe we can use APOS to analyze students’ understanding of optimization 
problems. A student might have learned specific steps to follow to solve the problem, but may 
not fully understand how those steps are related. We refer to this as an action view. A student 
with a process view is able to solve the problem using an intuitive understanding of the problem 
solving process, rather than relying on a series of memorized steps. Suppose the next step in the 
problem is to take the derivative of the function. A student with an action view might think, 
“after I come up with a function, the next step is to take the derivative,” while a student with a 
process view might think, “I came up with this function from the information in the problem, and 
if I want to find the absolute maximum or minimum of it, I can differentiate this function and use 
that to find the 

€ 

x − value where we have a horizontal tangent line.” The student with the process 
view has a broader, deeper understanding of the problem. 

 
Future Research and Implications for Teaching 

In the next phase of data collection, we plan to conduct another series of interviews with 
first semester calculus students, and this time we will also observe the class instruction on the 
days students learn optimization. The above students all had action views of optimization 
problems. We hypothesize that the examples presented in class are leading them to develop this 
action view, and we would like to see what, if anything, is being done to move them from an 
action to a process view. Instruction needs to focus on the “whys” of optimization, not just the 
“hows.” Taking time to have the students wrestle with the function construction process is 
worthwhile. 
 

Questions 
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• How could we connect the object and schema part of the APOS theory to optimization 
problems, or is there another theoretical perspective that might work better? 

• When comparing classroom instruction to students’ solutions to optimization problems, what 
should we look for? 
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THE TEXTBOOK, THE TEACHER, AND THE DERIVATIVE:  EXAMINING COLLEGE INSTRUCTORS’ USE OF THEIR 
TEXTBOOK AND DESCRIPTIONS OF DERIVATIVES IN A FIRST SEMESTER CALCULUS CLASS 

 
 
 
 

 
Initial qualitative work with five community college calculus instructors indicated that 

these teachers not only modified their textbook when introducing the concept of the derivative, 
but also formally and informally evaluated their text.  In addition, during classroom 
observations and interviews, these teachers did not distinguish clearly between the idea of the 
derivative as an object or an operator.  This preliminary report details these findings and 
proposes questions for further research. 
 
Keywords:  Calculus Teachers, Textbook Use, Derivative 
 

Of the 3,858,000 college students taking mathematics in 2010, 11% of them were 
enrolled in a first semester calculus course (Blair, Kirkman, & Maxwell, 2013).  It is the 
culmination of mathematics courses for some students and the beginning of more intensive math 
courses for others.  Calculus is often positioned as a gatekeeper course for students wishing to 
enter STEM fields (Treisman, 1992; Blair, Kirkman, & Maxwell, 2013).  In addition, there is a 
body of research on the teaching and learning of calculus (e.g. Ferrini-Mundy & Graham, 1994; 
Hallet, 2006; Siyepu, 2013; Bressoud, Carlson, Mesa & Rasmussen, 2013).   

Within calculus, the primary topics taught include limits, derivatives and integrals 
(Sofronas, et al, 2011).  Of these three, derivatives are introduced early and used throughout a 
typical calculus sequence.  Knowledge of derivatives is necessary to understand anti-derivatives 
and to evaluate integrals using anti-derivatives.  They are also used in defining Taylor series, 
which are in turn used to approximate functions. 

This study contributes to knowledge about post-secondary mathematics instructors’ use 
of their textbooks by asking the following research questions: 

1) How do the textbook and online supplemental materials support the teaching of 
derivatives in first semester calculus? 

2) How do faculty use these materials as a resource for the planning and teaching of 
derivatives in first semester calculus? 

3) How do teachers describe a derivative for themselves and for their students? 
 

Analytical Frameworks 
There is limited information about how post-secondary mathematics teachers use their 

textbooks during planning and teaching (Stark, 2000; Hora and Ferrare, 2012), and some 
information about both calculus textbooks (Mesa, 2010) and calculus teaching (Kaput 1997; Hsu, 
Murphy & Treisman 2008, Natarajan & Bennett, 2014), but very little is known specifically on 
calculus teachers’ uses of textbooks.    

Brown (2009) describes the interaction between teachers and the curriculum.  He also 
states that teachers’ interactions with curricular materials can be understood in terms of three 
different degrees of artifact appropriation:  Offloading, Adapting and Improvising.  See Table 1 
for a description and example of these codes. 
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Brown’s framework for teachers’ interaction with curriculum materials provided a 
framework that allowed me to examine the role of the textbook in both planning and in 
execution, around a single topic or for a semester.   

I identified two possible frameworks (Zandieh, 2000; Park, 2013) for analyzing how 
teachers describe a derivative.  Both frameworks enabled an examination of teachers’ 
conceptions and the textbook’s introduction of derivatives.  Michelle Zandieh (2000) developed 
a theoretical framework to analyze how students understood the concept of derivative.  As shown 
in Figure 1, she considers the conception of the derivative in two dimensions: the process-object 
layer and the contexts for the derivative.   

 
Figure 1:  Framework for the concept of derivative.  From Zandieh (2000) p. 106. 

 
The process-object layer refers to the concept of a derivative, based on the formal 

definition,    ( )         
 (    )  ( )

   , which can be seen as a ratio, a limit, and a function.  
Zandieh draws on work from Sfard (1992), to describe each of these layers as both an object—
something to be acted on, and a process - something to do.  For example, a ratio can be 
considered a fraction (object) or the process of division of the denominator into the numerator.  
The second dimension refers to how the derivative can be described in various contexts (e.g., 
slope, rate of change, velocity,…).   
 The second relevant framework for thinking about the conception of a derivative comes 
from work done by J. Park (2013).  She describes four developmental stages of thinking about 
the derivative as a function: a point-specific value (Stage 1), a collection of values at multiple 
points (Stage 2), a function (Stage 3), and an operator (Stage 4).  This framework differs 
significantly from Zandieh’s, in that Park focuses on the differences between conceptions of the 
derivative as an object and a process.  The object (stages 1-3) and process (stage 4) are not seen 
as a pair, but as separate developmental stages in the understanding of the derivative.  Park 
emphasizes the difference in understanding between the derivative at a point and the derivative 
as a function, something mentioned in other literature (Bezuidenhout, 1998), but not delved into 
by Zandieh.  According to Park, understanding the derivative as a function (and not just an 
object) is important and nontrivial for students. From these frameworks, I focused on the idea of 
derivative as limit, slope, rate or function, and then as a process or object. 
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Methods 
Five out of six teachers of first semester calculus at a Midwestern community college 

participated in this study.  I scheduled two observations for every teacher except one, (Charles, 
who taught on-line) when derivatives were being taught.  I collected all handouts and quizzes 
used in the lesson.  Four of the five participants required the same textbook. One teacher, 
Duncan, stated that he did not require any calculus textbook.  I interviewed each teacher 
immediately following my observations and then formally outside of class. 

The same textbook (Larson & Edwards, 2011) was recommended by the college for all 
participants.  All but Duncan required that students have a copy of the textbook, either physically 
or electronically.  I compared the textbook with what teachers said they did, and I analyzed the 
textbooks introduction to derivatives. 

Analysis and Findings 
The analysis of the data included coding field notes and transcripts of interviews along 

two dimensions, first for use of textbook and second for understanding of derivatives.  I used a 
combination of top-down and then bottom-up coding, after I realized that the analytical 
frameworks from the literature were not capturing all relevant information.  An example of 
coding for textbook use is shown in Table 1. 
 

Code descriptions for textbook use 
Code Description Example 
Offloading using the materials as written, 

without change (offload some 
of the work of planning and 
teaching onto the textbook) 

“Which, I mean, which is one of the 
wonderful things about a textbook is—
like I said before—is that bank of 
problems. I rely on those a lot.” (Charles, 
610 - 611) 
 

Adapting using the materials, but with 
some modification 

“I look at the examples in the textbook, but 
the main reason I look at them is I don’t 
want to use them… Because I just, I like 
students to have that as an alternative”   
(Bruce, 259-263).  In this case, Bruce is 
describing how his examples are 
deliberately different from those in the 
textbook.  Because his choice of examples 
depends on the examples in the textbook, it 
is coded as adapting. 

Improvising does not use the materials “the textbook gives a lot of practical 
applications, but there are some practical 
applications [like depreciation] that I just 
have to tell them about in the classroom.”  
(Arthur, 619 – 621)   

Table 1:  Initial Textbook Use Codes 
 
In addition to these three codes, there were multiple references to the textbook that did 

not fit this framework.  Initially I categorized uses that did not fit these three categories as 
other.  Table 2 shows the code frequencies for each teacher. 
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Table 2: Frequency of textbook codes by teacher 

 
The data align well with how teachers talked about their relationship with their textbook.  For 
example, Duncan said he did not use the textbook, and his highest code is “improvising”, with 
very few “offloading” codes.  On the other hand, Arthur said that he really liked the textbook.  
Accordingly, his data has a spike in offloading, where he uses the text as written.  Charles 
teaches an on-line class, so there were no observations to code, and fewer codes overall.  There 
were two main types of comments that were coded as “other textbook”. One group of comments 
referred to how teachers evaluated the textbook. The second group included speculations about 
how students do or should use their textbook.   

Derivative Conceptions 
I initially coded transcripts and field notes for mentions of the derivative as a limit, as a 

rate of change, or as the slope of a tangent line (adapted from Park, 2013 and Zandieh, 2000). I 
found that these codes were insufficient.  I added a code called “other derivative” to capture 
mentions of the derivative that did not fit this framework.  The analysis of the observation field 
notes on ‘other derivative’ revealed two conceptions of derivative—the derivative as an object 
that can be acted on, and the derivative as a process (Zandieh, 2000).    

Teachers often see ‘derivative’ as a process (e.g., differentiation) as well as an object. 
Arthur, Bruce, Charles, and Duncan say they expect students to give an example of differentiation 
(a process) when they are asked to define derivative (an object).   During Edward’s first 
observation, he described the derivative as “nothing more than a difference of functions and a 
limit”, implying an object.  Later in the same lesson he said: “the derivative is not distributive,” 
suggesting that the derivative is a process (field notes, Edward, observation 1).  Similarly, during 
Bruce’s first observation, he described      as “one huge derivative” (object) and then 
immediately instructs students to “take the derivative of both sides” (process) (field notes, Bruce, 
observation 1).   

Questions:   
 
1) After analyzing and interpreting the data, I propose extending Brown’s (2009) framework by 
adding two categories, evaluating and referencing.  The initial three categories of offloading, 
adapting and improvising remain as defined by Brown.  Evaluating would include instances 
where teachers discuss why or how they choose a textbook.  It would also include how teachers 
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evaluate a textbook both in terms of the process they use as well as the opinions they offer.  The 
final category, referencing, may include such things as deferring to the textbook for 
mathematical notation and referencing the textbook as a way to indicate upcoming topics.  The 
problem is that referencing is very similar to offloading.  What are some arguments for and 
against having referencing as a category by itself?   
 
2) Given that the concept of derivative is challenging, and the word “derivative” can be used for 
both a process and an object, what are some implications for textbook writing and teaching?  
How can we, as teachers of calculus and teachers of future calculus teachers, help our students 
make this distinction?   
 
3) How is the process/object distinction of derivative similar to - and different from - the 
distinction between the derivative at a point (usually a numeric value) and the derivative on an 
interval (a function)? 
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Prospective Secondary Mathematics Teachers’ (PSMTs’) Understanding of Abstract 
Mathematical Notions 

Younhee Lee 
The Pennsylvania State University 

Kilpatrick (1987) noted, “successful teaching, like successful communication, depends on 
having a good model of the other” (p. 17). Successful teaching of collegiate mathematics for 
PSMTs will necessitate understanding of what knowledge PSMTs may bring with them to the 
learning of collegiate mathematics and through what processes PSMTs construct their 
knowledge. Thus, in-depth analysis of PSMTs’ mathematics is of significant importance to 
our field for providing PSMTs with meaningful learning experiences in mathematics content 
courses. In this study, I intend to investigate how PSMTs construct their own knowledge of 
abstract mathematical notions (e.g., polynomial rings, irreducible polynomial, factorization, 
minimal polynomials) and, second, the difficulties that they encounter while constructing 
their knowledge of abstract mathematical notions. 

Key words: Teachers’ knowledge of collegiate mathematics, horizon knowledge of 
mathematics, abstract mathematical notions, polynomial rings 

Rationale and Perspectives 
An effective teacher education program ought to facilitate teachers’ ability to transform 

and connect advanced mathematical knowledge to teaching practices (Conference Board of 
the Mathematical Sciences, 2012). However, some research studies (Begle, 1979; Monk, 
1994; Zazkis & Leikin, 2010) suggest that PSMTs’ mathematical knowledge as constructed 
in their mathematics content courses may not be related to or useful for their future teaching 
practices. I view this problem is not because college mathematics is inherently disconnected 
from school mathematics but rather because the ways in which PSMTs construct their 
advanced mathematical knowledge may not necessarily broaden their horizon knowledge of 
mathematics – “an awareness of the large mathematical landscape in which the present 
experience and instruction is situated” (Ball & Bass, 2009). However, as Ball and Bass 
pointed out, “we do not know how horizon knowledge can be helpfully acquired and 
developed.” I believe this study can be an essential step toward addressing this gap in the 
field by investigating how PSMTs develop their horizon knowledge (specifically, in terms of 
polynomial rings). 

Plan for Methodology 
This research will employ ‘teaching interview’ (Hershkowitz, Schwarz & Dreyfus, 2001) 

as a way to understand how six individual PSMTs grow in their knowledge of abstract 
mathematical notions. Hershkowitz et al. define teaching interview as an interview in which 
the interviewer asks questions with didactic purposes: “(a) to cause [student] to explain what 
she was doing and why and (b) to induce her to reflect on what she was doing and thus 
possibly progress beyond the point she would have reached without the interviewer” (p. 204). 
Design of this study will be governed by a theoretical and methodological framework of 
‘Abstraction in Context’ (Dreyfus, Hershkowitz & Schwarz, 2015), the main premise of 
which is that the process of abstraction involves three observable epistemic actions 
‘recognizing, building-with, and constructing.’ Guiding the emergence of new constructs 
based on the context with which PSMTs might be familiar will be a central approach to 
designing the tasks for the teaching interviews (See Appendix for example).  
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Unconventional use of mathematical language in undergraduate students’ proof writing 
 
                                               Kristen Lew                Juan Pablo Mejia-Ramos 

Rutgers University 
 

Introduction 
There is a dearth of research on students’ use of mathematical language, particularly when writing 
proofs at the undergraduate level. In this exploratory study, we analyze written student exams (N=149) 
from an introductory proof course in order to identify different ways in which students’ use of written 
mathematical language differs from mathematicians’ writing in formal mathematical settings. 
 
Key words: proof writing, mathematical language, undergraduate mathematics education 
 

Researchers in mathematics education have found that students have difficulties with mathematical 
proofs at both the high school and undergraduate levels (Senk, 1985; Selden & Selden, 1987; Moore, 
1994; Bills & Tall, 1998; Weber, 2001). One of these difficulties is related to their inability to correctly 
employ mathematical language (Moore, 1994). Indeed, researchers (in both mathematics education and 
linguistics) have argued that the use of mathematical language poses serious challenges in the learning of 
mathematics in general (Ervynck, 1992; Kane, 1968; Pimm, 1987). With respect to the language used in 
university level mathematics, Selden and Selden (2014) discussed how mathematicians write proofs for 
publication. However, we are not aware of any studies considering the use of language in proof writing at 
the undergraduate level. As a result, we investigate the following research question in this study: What 
are some of the unconventional ways in which undergraduate students use mathematical language when 
writing proofs? 
 

Methods 
For this study, 149 written student exams (32 first exams, 63 second exams, and 54 final exams) 

were collected from four different instructors of an introductory proof course at a public, research 
university in the US. Exam tasks involving student proof writing were analyzed for use of mathematica 
language that the researcher believed to be unconventional according to the way that mathematicians 
communicate in formal writing settings. In this exploratory study, data were analyzed using open coding 
in the style of Strauss and Corbin (1998). 
 

Findings 
Fifteen categories of unconventional uses of mathematical language emerged from the data. A sample of 
these categories is listed with descriptions and examples in Table 1.  
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Mixing 
mathematical 
notation and text 

Using mathematical symbols in 
prose. 

The student uses mathematical symbols 
within prose, for example: 
“the product will be ≥ 0” or “since ! ⊆ ! 
and ⊆ !” 

Lay speak Using informal/non-mathematical 
words within a proof.   

The student uses informal language to 
describe mathematical phenomena, for 
example in a proof regarding the 
Pigeonhole Principle, a student writes: 
“So the worst case after 21 selections all of 
the bins will be full, the 22 selections it will 
go into a bin already filled.” 

Non-statements Sentences that lack meaning.   The student writes subordinate clauses or 
nonsensical statements, for example: 
“Let ∀! ∈ ℝ.” Or “If (! ∘ !)!!. " 

Stating definitions Providing entire definitions within a 
proof.   

The student includes entire definition 
statements within the text of a proof, for 
example including the following in a proof 
about increasing real functions: 
“If ! ! ≥ ! !  for all ! > !, where 
!, ! ∈ ℝ, then the function ! is said to be 
increasing.” 

Table 1.  Different categories of students’ unusual use of mathematical language. 
 
In Table 2, we list the number of exams in our sample containing each one of the 

categories listed in Table 1.  Table 2 also indicates the number of final exams exhibiting each 
one of those unusual ways of using mathematical language.  While these findings are purely 
exploratory and we do not know to what degree these unconventional uses of mathematical 
language are found in the proof writing of the larger population of undergraduate students, 
these findings suggest that some of these uses may be common and may persist throughout an 
introduction to proof course.    

 
Categories of Students Breaking 
Mathematical Norms 

All Exams 
(out of 149)  

Final Exams 
(out of 54) 

Unspecified variables 43 28.9% 
 

19 35.2% 
Overspecified variables 3 2.0% 

 
3 5.6% 

Using formal propositional logic 32 21.5% 
 

6 11.1% 
Mixing mathematical notation and text 8 5.4% 

 
3 5.6% 

Non-statements 7 4.7% 
 

2 3.7% 
Lay speak 42 28.2%  10 18.5% 
Stating definitions 33 22.1% 

 
6 11.1% 

Table 2.  Number of exams exhibiting categories of students’ unusual mathematical writing. 

Discussion and Future Research 
This study serves as a first step towards understanding undergraduate students’ use of 

mathematical language in proof writing, and opens avenues for further research. In particular, 
this study has led us to design studies to investigate how undergraduate students and 
mathematicians view these categories of mathematical language usage, the extent to which 
such usage is considered to be unconventional in expert mathematical practice, and the extent 
to which it affect how undergraduate students and mathematicians evaluate student 
constructed proofs.  
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Modeling outcomes in combinatorial problem solving: The case of combinations 
 

                  Elise Lockwood                 Craig A. Swinyard                    John S. Caughman 
                   Oregon State                  University of Portland                     Portland State  
                     University                                                                                University  
 
In an effort to understand ways to help students solve counting problems successfully, we 
conducted a paired teaching experiment in which two students reinvented four counting formulas 
by generalizing their work from an initial set of basic problems. Subsequent to reinventing these 
four formulas, they solved all but one counting problem correctly, regularly drawing upon 
outcomes and displaying a set-oriented perspective. In this paper, we report on the problem that 
they missed, which involved combinations (the Bits problem: How many 256-bit binary strings 
contain exactly 75 0’s?). We describe a key aspect of their activity that we refer to as 
combinatorial encoding of outcomes, and we use this language to analyze the student work. We 
discuss the importance of encoding as an informal way to articulate bijections, and we suggest 
avenues for future work and pedagogical implications.  
 
Keywords: Combinatorics, Modeling, Encoding, Discrete mathematics, Teaching experiment 
 

Introduction and Motivation 
Counting problems are easy to state and they provide rich opportunities to engage with deep 

mathematical reasoning. Researchers acknowledge the value of combinatorial tasks, noting that 
they often cannot be easily solved with rote or procedural reasoning (e.g., Kapur, 1970). Their 
non-algorithmic nature makes difficult to solve correctly, giving them the potential to foster deep 
mathematical thinking. Annin and Lai (2010) note that, “mathematics teachers are often asked, 
‘What is the most difficult topic for you to teach?’ Our answer is teaching students to count” (p. 
403). The overarching goal of our research is to understand how best to support students in 
solving counting problems. In a recent teaching experiment (reported in Author, Date), two 
students reinvented four counting formulas by generalizing their work from an initial set of basic 
problems. Subsequent to reinventing these four formulas, they solved all but one counting 
problem correctly. In this paper, we report on the problem that they missed involving 
combinations. We describe a key aspect of their activity that we refer to as combinatorial 
encoding of outcomes. Our work is guided by the following questions: What role does 
combinatorial encoding serve for students as they solve counting problems, and what 
explanatory power does it give researchers to describe students’ activity?  
 

Theoretical Perspective and Relevant Literature 
A number of researchers acknowledge student difficulties with counting, both characterizing 

specific errors and potentially difficult issues (e.g., Batanero, Navarro-Pelayo, & Godino, 1997; 
Hadar & Hadass, 1981) and reporting low success rates (typically lower than 50%) among 
students at a variety of levels (e.g., Author, Date; Eizenberg & Zaslavsky, 2004). Some 
researchers (e.g., English, 1991) have articulated strategies that they have observed among 
students and ways of thinking that seem productive for students (Author, Date; Halani, 2012). In 
recent work (Author, Date), we have suggested that sets of outcomes are key aspects of students’ 
counting, and that more explicit attention (by researchers, teachers, and students) should be paid 
to outcomes in considering combinatorial reasoning.  
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Counting as a modeling and encoding activity. “Mathematical modeling” is a familiar phrase 
in mathematics education, although definitions for what it entails vary widely. In English’s 
(2003) definition, a model “is used to describe, make sense of, explain or predict the behavior of 
some complex system.” (p. 229). In such work, students typically engage in real-life tasks that 
represent complex, real world situations. Some researchers have also studied how students model 
and interpret word problems (e.g., Wyndham & Saljo, 1997). Greer (1997) discusses the 
“peculiar nature of school word problems” (p. 294) and highlights the tendency of students to 
struggle with such problems because they focus on syntactic cues or oversimplify the situation. 
We find the language of modeling, especially as Greer uses it, to be helpful, because generally 
we consider counting to be an exercise in modeling. While these researchers have worked with 
school children solving problems involving a single operation, there are some parallels to be 
drawn with our work with undergraduates solving combinatorial tasks. Counting problems are 
typically situated in some context, and modeling requires some abstraction of the relevant details 
of the problem. Our students similarly must interpret the problem and determine what is being 
counted in order to enumerate the set of outcomes. We thus use the language of modeling, and 
particularly work by Greer (1997), in considering aspects of modeling specific word problems.  

Enumerating a set of outcomes also requires the student to make a decision about how to 
encode each outcome. Psychology researchers use the term encoding in a specific way – for 
example, Prather and Alibali, (2011) define it as, “the uptake of information from the 
environment into working memory” (p. 355). This is not how we take the encoding of outcomes. 
Rather, we take encoding outcomes to be a particular combinatorial activity of determining the 
nature of what is being counted. We propose that when a student models a particular outcome 
while solving a counting problem, there are two levels on which encoding occurs. First, there is 
the matter of writing down an appropriate representation for how to write and catalog an 
outcome. Second, there is the matter of appropriately determining what constitutes a desirable 
outcome. As an example, in solving the problem “How many ways are there to pick a committee 
of five people from 20 people?”, the first kind of encoding might involve representing the people 
as the numbers 1 through 20. Doing so is appropriate because numbers are distinguishable (as 
people are), and they can easily be written down and manipulated. An error with this aspect of 
encoding might involve modeling the people (who are distinguishable) as indistinguishable 
objects such as identical circles or x’s. The second aspect of encoding would involve students 
then using that representation to articulate what a desirable outcome is – in this case, recognizing 
that they want to count sets (and not sequences) of numbers. In other words, even once an 
appropriate representation is determined, it is not a given (and it is not always easy) for students 
to correctly articulate what they are trying to count. Hadar and Hadass (1981) note that in order 
to solve a counting problem correctly students must realize that a particular outcome is “not in 
the set of combinations to be considered” (p. 435). This aligns with our observation that properly 
encoding the nature of an outcome is a key step in the counting process. 

Notice that at the most sophisticated level, the two types of encoding together involve turning 
the problem at hand into another problem that the counter knows how to solve. In the above 
problem, the encoding fosters an abstraction to counting subsets of distinguishable objects, 
which is exactly what a binomial coefficient represents. Thus, modeling a counting problem 
involves formulating a given problem in terms of an isomorphic problem, creating a bijection 
between the stated problem and a given problem that one is able to count. Mamona-Downs and 
Downs (2004) targeted this technique, noting that the creation of such bijections is a key aspect 
of counting. We believe that successful counters encode outcomes so as to leverage a known 
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solution or technique by the informal establishment of a bijection. We want to build upon the 
work of Mamona-Downs and Downs by exploring how such bijections arise for students through 
the informal processes of modeling and encoding outcomes. 

A model of students’ combinatorial thinking. We also frame our work within a model of 
combinatorial thinking (Author, Date), which describes key components of students’ counting. 
The model presents the relationships between counting formulas, counting processes, and sets of 
outcomes. Prior work has extended the model and has emphasized the importance of the 
relationship between counting processes and sets of outcomes. In our presentation, and we will 
further extend of this model, particularly elaborating the component of counting processes.  

 
Methods 

This paper reports on phenomena that emerged during a paired teaching experiment (Steffe 
& Thompson, 2000), which was designed to have the two students (Thomas and Robin, 
pseudonyms) reinvent four basic counting formulas through engaging with a variety of counting 
tasks. The participants in this study were two above-average students who had recently 
completed an integral calculus course taught by the second author. They were chosen because 
they had no formal experience with combinatorics but had strong mathematical backgrounds, 
and because they had displayed a propensity for articulating their mathematical reasoning aloud. 

The teaching experiment consisted of ten 90-minute sessions and proceeded in two phases. 
During Phase 1 (Sessions 1-3) the students reasoned about and solved ten relatively elementary 
counting problems. During Phase 2 (Sessions 4-10), the students encountered more challenging 
tasks, both in sophistication and in terms of the size of the set of outcomes. The aim of Phase 2 
was for the students to reinvent each of the four basic counting formulas, which we report 
elsewhere (Author, Date). For this paper, we focus specifically on the only problem in the entire 
teaching experiment that they never ultimately answered correctly. Our analysis supports us in 
providing an explanation for why this problem was problematic and in shedding light on 
important aspects of combinatorial encoding in the process.  

The analysis of data occurred at multiple levels. As the teaching experiment proceeded, we 
conducted an ongoing analysis that included reviewing the videotape of each session and 
constructing a content log. For analysis pertaining to this paper, we paid particular attention to 
the episode involving the one problem the students solved incorrectly. We transcribed this 
episode, reviewed and discussed it at length as a research team, and refined our understandings 
and descriptions of key aspects of the students’ reasoning. We considered a number of possible 
ways to frame and explain this episode, ultimately deciding that the students’ choices about 
encoding and modeling were central to the phenomenon we observed. 

 
Results 

We have previously reported (Author, Date) that Thomas and Robin were very successful in 
their work. They solved 26 out of 27 (96%) problems correctly, which is remarkable, given 
typical success rates on counting problems (e.g., Eizenberg & Zaslavsky, 2004). This included 
solving ten initial problems correctly, eight more problems correctly during the reinvention 
phase, and then eight out of nine problems correctly when they were given new counting 
problems after they had reinvented the formulas. We laud their success, and we focus here on the 
one problem they could not answer because we feel that there are instructive insights to be 
gained by exploring why this one particular problem proved to be difficult for them.  
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The students successfully reinvented the formula for combinations (i.e., selecting r objects 
from n distinct objects), and their development of this formula was closely tied to their 
reinvention of the formula for permutations. The students recognized that combinations 
correspond to “groups” of arrangements that are actually identical to each other. For example, a 
combination containing a, b, and c corresponds to a “group” of six permutations: abc, acb, bac, 
bca, cab, cba. They saw the need for dividing out by the sizes of such groups, arriving at a 

derivation of the combination formula  from the permutation formula . As 

evidence that this was a fundamental aspect of their understanding of the combinations formula, 
they had the following exchange (Figure 1) when solving the Lollipops problem: There are eight 
children, and there are three identical lollipops to give to the children. How many ways could 
the lollipops be distributed if no child can have more than one lollipop?  

<Insert Figure 1 and Figure 2> 
Their awareness that outcome “123” is the same as “321” and that such outcomes are part of the 
same “group” was an important aspect of their ability to solve combination problems. They 
looked for this type of “groups” structure in other problems and routinely used their combination 
formula to correctly solve choosing problems in other contextual situations.  

The students’ work on the Bits problem. After their successful reinvention of the formulas, 
we gave the students nine additional problems to assess how they would employ the formulas 
they had reinvented. They solved a number of problems (including problems involving 
combinations) correctly using their newly reinvented formulas. However, despite working for 
over an hour, they were unable to solve the Bits problem: Consider binary strings that are 256 
bits long. How many 256-bit strings contain exactly 75 0’s? A person familiar with combinations 
may see the connection quickly; each such binary string uniquely corresponds with a subset 
consisting of 75 positions (chosen out of 256) that will contain 0’s, and the remaining 181 

positions will contain 1’s. Via this encoding, the answer is seen to be 
256
75
!

"
#

$

%
& . Our students did 

not approach the problem in this way. We briefly outline and then discuss their work to provide 
evidence for what we think happened.  

First, for many minutes the students tried to list some outcomes, but creating a smaller case 
was not trivial for them. They looked for patterns as they had in the past, and initially it was not 
clear that they even knew what they were counting. Over time they understood that they were 
looking for sequences with a particular number of zeros, and so they looked for patterns having 
exactly one zero or exactly two zeros in several small cases (such as in strings of length 2, 3, and 
4). Searching for patterns in the outcomes was consistent with their mathematical activity 
throughout the teaching experiment, though here it did not lead them down a productive path. 

The following episode sheds light on their encoding of outcomes. They had written out a 
number of small cases and were looking for patterns when they found that there were 1, 3, and 6 
strings that had exactly two zeros for strings of length 2, 3, and 4 respectively. By noticing an 
additive pattern, they guessed that there might be 10 strings of length 5 that had exactly two 
zeros, but they did not want to write out 32 total outcomes to test whether this would be true. We 
intervened and asked them if they could just write the ten outcomes that only had two zeros. We 
hoped that focusing on the positions of the zeros might alert them that the positions of the zeros 
are an important aspect of the problem. The following exchange occurred (Figure 3): 

<Insert Figures 3, 4a and 4b> 

n!
(n− r)!r!

n!
(n− r)!
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It is worth noting that the students did encode the outcomes correctly in some sense. (In Figure 
4a they wrote down what they were trying to count for a smaller case and correctly wrote down 
all ten 5-digit numbers with exactly two zeros. In Figure 4b they wrote out examples of actual 
outcomes). However, they did not encode the problem in a way that enabled them to use a tool 
they already possessed. Specifically, they did not see that this problem, too, could involve 
combinations, simply by choosing which positions contain zeros. They did not appear to use a 
key aspect of their understanding of “groups” problems (leveraging the phrase “123 is the same 
as 321” as they had in other problems) because they were thinking of sets of identical zeros, not 
as sets of distinguishable positions. As a result, they never answered the problem correctly. 

 
Discussion 

In terms of the model (Author, Date), this episode raises a number of points. For the Bits 
problem, the students could not see how the encoded outcomes related to a specific tool or 
technique to which they already had access (binomial coefficients). It is not uncommon to see 
this type of struggle among novices, and deeper insights could come about with more experience. 
Nonetheless, this analysis provides a way to talk about what happened for the students. There is a 
key issue related to their ability to see the problem at hand as being closely related to the 
combinations formula that they already had at their disposal. This is an encoding issue – not of 
correctly encoding the nature of the outcome (they were sufficient at that, even on this problem) 
– but of being able to encode the outcome in such a way as they could use it and apply tools to 
which they already had access.  

The language of encoding provides terminology for the informal process that students 
employ, and it reflects a more formal activity in which mathematicians commonly engage. 
Formally naming a bjection is an effective way of counting that characterizes how expert 
mathematicians typically count (Mamona-Downs & Downs, 2004) – they will formulate a one-
to-one, onto function between the set of outcomes in question and some set they know how to 
count. When encoding, students must interpret a contextualized problem and parse out a way to 
articulate and work with the outcomes. In an informal way, they are creating a bijection, and this 
modeling and encoding language describes such student activity.  

The Bits problem revealed an instance in which that encoding broke down. In this problem, 
we see it was not that they lacked a set-oriented perspective, but rather they did not have an 
encoding technique that would allow them to match up anything they knew how to count with 
the problem. What we believe is happening in the Bits problem is that the students did not 
recognize that they could use their formula for combinations to select something that was not 
explicitly stated in the problem – that they could pick locations as a stage in their counting 
process. In most other cases, they could directly use their encoding to determine the type of 
problem they on which they were working. Here, though, the nature of the outcome did not so 
clearly reveal a problem type, because the objects that were being chosen were not the numbers 
themselves, but rather the positions that were being chosen. This meant the students could not 
use what they had relied on previously in determining that it was a combinations problem, 
because they only saw that 0, 0, 0 is the same as 0, 0, 0, no matter where the zeros were placed. 
Had they thought to model the problem as picking something not explicitly stated in the problem 
(choosing locations), they might have recognized that having zeros in locations 1, 2, 3 was the 
same as having locations in 3, 2, 1, and so combinations would be an appropriate operation here. 

It is important to emphasize that typically there is no single correct way to encode or think 
about a counting problem. However, there are often more or less efficient ways to model and 
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encode counting problems. A key step in this is turning an outcome into something that is usable. 
The students’ encoding of binary numbers was not technically incorrect, but here, unfortunately, 
by literally encoding ones and zeros (and not encoding positions) they were not able to leverage 
their understanding of combinations to solve the problem correctly.  

 
Implications and Future Directions 

One takeaway from our study is that we have a better sense of what combinatorial content 
must be taught to students. We may teach students formulas (even through reinvention) and we 
can try to foster a set-oriented perspective (which helps resolve common counting issues), but 
there are a number of useful techniques of modeling and encoding that relate to building 
bijections, even informally. As researchers, we must continue to investigate effective 
pedagogical means by which to teach such techniques to students. Those who teach counting 
problems should also be aware that students may struggle with encoding. It may be useful to be 
explicit about the encoding process, and to have students articulate a bijection between the set in 
question and a set they are able to count. We also advise teachers to model their own formulation 
of bijections for students, although we acknowledge that more work must be undertaken to better 
understand effective ways to help students learn such ideas.  
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Figure 1 – The students’ exchange on the Lollipop problem 

 

 
Figure 2 – The Lollipop problem 

 

 
Figure 3 – The students’ exchange on the Bits problem 

 

  
Figure 4a and 4b – Writing outcomes in the Bits problem 
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Mathematicians’ views of mathematical practice 
 

      Elise Lockwood           Eric Weber 
Oregon State University Oregon State University 

 
Learning a mathematical practice, such as problem solving, is different from learning 
mathematical content. Realizing that mathematical practices are a fundamental aspect of 
engaging in mathematical activity, we seek to better understand the nature of mathematical 
practices, as well as how they are perceived by those who teach them. In this paper, we explore 
these issues with university mathematicians. In particular, we focus on explaining how 
mathematicians think about, learn, and teach mathematical practices. We consider 
mathematicians’ interpretations of various mathematical practices and consider how those 
interpretations may influence their goals for instruction perspectives on student thinking. 
Specifically we seek to know how mathematicians understand, think about, and practically 
address the teaching and learning of mathematical practice. 
 
Key Words: Mathematical practice, Problem solving, Mathematicians 

 
Background and Research Question 

What it means to do mathematics, or engage in mathematical practice, is ostensibly at the 
heart of many endeavors in mathematics education research and mathematics teaching. The 
desire to teach students to “think mathematically” is a major influence on how we train scientists 
across disciplines. What does it mean to think mathematically? There are numerous descriptions 
of it, but we draw on Schoenfeld (1992) who notes that it involves the “mathematical point of 
view” and “competence with tools of the trade” (1992, p. 337), which support the development 
of creative and systematic thinking which are valuable to many fields and situations beyond 
mathematics itself. The desire to engender this point of view and various competencies 
associated with it are often discussed using the term mathematical practice. For instance, the 
CCSSM (Common Core State Standards for Mathematics) reflects the importance of 
mathematical thinking in the form of eight mathematical practices, which “describe ways in 
which developing student practitioners of the discipline of mathematics increasingly ought to 
engage with the subject matter as they grow in mathematical maturity and expertise throughout 
the elementary, middle and high school years” (National Governors Association Center for Best 
Practices, 2010). These practices, then, serve as a guide toward helping students develop a 
mathematical point of view as they progress through school mathematics. In turn, these practices 
are designed to support the development of students’ mathematical thinking.  

As these eight standards for mathematical practice illustrate, there are many elements to 
thinking mathematically. However, in our experience with both schoolteachers and university 
instructors, these “practices” are often ambiguously defined and, as a result, are left open to 
interpretation of an individual. Given the subjective interpretations possible for words like 
modeling, problem solving and quantitative reasoning (all mathematical practices in the 
CCSSM), this is perhaps not surprising. Because practices are open to interpretation, it seems 
crucial to understand at a local level how these understandings of mathematical practice may 
translate into instruction, and subsequently, student learning.  

We explored these issues with university mathematicians, and we are interested in learning 
how mathematicians think about, learn, and teach mathematical practices. In this presentation, 
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we consider mathematicians’ interpretations of various mathematical practices and consider how 
those interpretations may influence their goals for instruction perspectives on student thinking. 
Specifically our research question is: How do mathematicians understand, think about, and 
practically address the teaching and learning of mathematical practice? 
 

Literature Review: Mathematical Thinking and Practice are Hard to Define 
According to the CCSSM (2010), “The Standards for Mathematical Practice describe 

varieties of expertise that mathematics educators at all levels should seek to develop in their 
students. These practices rest on important “processes and proficiencies” with longstanding 
importance in mathematics education” (p. 6). We are not aware of a clear definition of what 
constitutes mathematical practice, and this is perhaps not surprising. Describing what it means to 
be a member of a community is a complicated task, as Burton (1999a, 1999b, 2001) documented 
in studies of mathematician’s perceptions of knowing mathematics. Burton documented the 
various ways in which mathematicians identify themselves as part of different mathematical 
communities, and how that membership affected their perception of what it meant to know and 
learn mathematics. For instance, consider the case of mathematics and the variety of people who 
we might identify as mathematicians. Some practice pure mathematics, others focus on applied 
mathematics, and within these arenas, geometers, algebraists, analysts and others might engage 
with practices differently. It seems reasonable to conclude that there may be no general 
definition of mathematical practice. Instead, it is necessary to study certain types of actions or 
mental acts that are generally agreed upon as a mathematical practice, such as modeling, problem 
solving, or proving. However, breaking down mathematical practice to these levels still entails a 
degree of ambiguity.  

Indeed, as an example, there has been transformational work on mathematical problem 
solving and modeling, two of the core practices described by the CCSSM. Yet there is not a clear 
definition of what constitutes mathematical problem solving or mathematical modeling. For 
instance, Schoenfeld wrote that, “As the literature summary will make clear, problem solving has 
been used with multiple meanings that range from working rote exercises to doing mathematics 
as a professional” (Schoenfeld, 1992, p. 338). Many others have proposed characterizations of 
problem solving, including Carlson and Bloom (2005) who focus on it as a complicated web of 
mental actions that express themselves in behavior. Similarly, there are multiple meanings for 
mathematical modeling that emerge from only a cursory reading of the math education literature, 
which we do not have the space to discuss here (Doerr & English, 2003; Thompson, 2011).  

In light of such ambiguity, we must consider individuals’ interpretations of mathematical 
practice in order to begin to construct a model of mathematical practice at a general level. It is 
also important to consider in what ways these interpretations influence perceptions of how 
students develop the ability to think mathematically. We use the remainder of the paper to focus 
on individuals’ interpretations and their implications for teaching and learning mathematics.  
 

Theoretical Lens: Mathematical Practice and Mental Acts 
Throughout this paper we describe mathematical practice from the perspectives of various 

mathematicians. However, in a number of places we describe mathematical practice from our 
own perspective, and it is important to make clear our position on what mathematical practice 
entails. We view mathematical practice not as certain actions or behaviors that one carries out 
but rather as a set of cognitive processes that express themselves in certain types of behavior. 
Specifically, we think of mathematical practice as a mental act that expresses itself in consistent 
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types of behavior across problem solving scenarios. Our position largely aligns with Harel 
(2008), who articulated the notion of a mental act and its usefulness for thinking about 
mathematical practice. Harel noted that “Humans’ reasoning involves numerous mental acts such 
as interpreting, conjecturing, inferring, proving, explaining, structuring, generalizing, applying, 
predicting, classifying, searching, and problem solving.” (Harel, 2008, p. 3) He described mental 
acts as basic aspects of cognition, not specific to mathematics, that help us describe and 
characterize humans’ intellectual activity. We argued earlier that one’s conceptualization of a 
mathematical practice, like modeling or problem solving, likely influences instructional goals 
and students’ learning. In framing our study, this description of mathematical practice provides a 
mechanism to explain that influence. Specifically, a mathematical practice (similar to a mental 
act), influences the development of content knowledge across situations and within specific 
problem solving scenarios. Now, if instructors have an image of what is entailed in a specific 
mental act, their instruction will support the development of certain types of mathematical 
knowledge more than others. If multiple instructors have different images of what a mental act 
entails, then different types of mathematical knowledge might be supported.  
 

Method  
Seven mathematicians volunteered to participate in a single hour-long clinical interview 

(Clement, 2000; Goldin, 2000) and were compensated for their time. All of the mathematicians 
were currently employed by universities or colleges in the Western United States and had taught 
a variety of mathematics courses to undergraduates and graduate students. The interviews were 
each roughly an hour in length and were audio-recorded. Due to space, in this proposal we report 
on four of the mathematicians’ responses. 

Our interests in this study were to gain insight into how mathematicians understood, thought 
about, and practically addressed the teaching and learning of mathematical practice. In thinking 
about how to accomplish this, we felt that explicitly defining “mathematical practice” might be 
more difficult and imprecise than discussing specific practices. Instead, we opted to focus on 
three specific practices, and then at the end we could more broadly talk about practices since 
they had specific examples of practices. We chose three practices as specific examples: problem 
solving, justifying, and modeling, and here we report on problem solving and justifying. To be 
clear, we did not choose these practices because we wanted to learn about these practices in and 
of themselves. Rather, they served as a means to communicate about practices with the 
mathematicians and allowed us to paint a broader picture about the teaching and learning of 
mathematical practice. 

We designed the clinical interview questions to target our two primary research questions, 
listed in Figure 1 below. In many cases, we asked follow up questions to clarify the initial 
responses to the questions. In other cases, the mathematicians brought up their own questions 
that they considered over during the course of the interview.  

<Insert Figure 1 here> 
Throughout each interview, we recorded audio and written work from each of the interviews 

using a LiveScribe Pen, which provides a recording consisting of synced audio and written work. 
Each interview was transcribed, and both authors reviewed the transcripts, re-listened to audio 
excerpts, and summarized and synthesized themes from the data. We discussed the findings for 
each individual practice, and then looked across results from the practices to uncover common 
themes that characterized the mathematicians’ views of mathematical practice.  
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Results and Discussion 
Due to space we only provide results for problem solving for four of the mathematicians, 

although we summarize and draw broader conclusions from the entire data set. These results 
highlight common themes that emerged from mathematicians’ responses about problem solving. 

Problem Solving 
Problem Solving involves finding an answer to something not previously known. The 

mathematicians tended to define problem solving as involving finding an answer to something 
unknown or not seen before (see Figure 2). There were many similarities in the mathematicians’ 
responses to questions about problem solving, revealing some key themes about the value (and 
challenge) of developing the practice of problem solving.  

<Insert Figure 2 here> 
Problem solving is teachable, but it is difficult to teach. First, the mathematicians all seemed 

to acknowledge that problem solving was a teachable and learnable skill and is something that 
could be developed in students over time. The mathematicians suggested that heuristics (some 
called them guidelines) are a key aspect of problem solving. For example, M1 said, “ I do believe 
in heuristics, so there’s sort of a bunch of steps you can do that give you a concrete leg up to 
solve the problem, like break it down into smaller steps, like I said try examples, do 
experiments.” M2 agreed, explaining that problem solving techniques might include activities 
like “starting small, trying to carefully state the question that you’re trying to answer, trying to 
rephrase the question, trying to answer a slightly simpler question, taking note of what you know 
so far – I think there are lot of heuristics like that.” For some of the mathematicians these 
heuristics are very practical things, like “looking it up on the internet and write programs on your 
computer” (M1) or leveraging existing literature (M3).  

Although they indicated that problem solving is teachable and important, the mathematicians 
also talked about difficulty in teaching problem solving. For instance, while the mathematicians 
did see problem solving as involving heuristics, they suggest that students do not always seem to 
have those tools readily available for their use. M3 said that, “But one interesting thing that I find 
students don’t seem to have are the tools, like actual steps that are involved in problem 
solving…I feel like a lot of students just come into college not really having an idea of how to do 
that...So I think part of it is, in my opinion they need to be kind of given guidelines in some 
ways.” M1 also said on several occasions that he was unsure of how to teach problem solving 
effectively, saying “I don’t know that I’m confident enough as an educator to form opinions” and 
that “I don’t really understand the means by which students learn to do this.” 

When asked if they intentionally think about teaching problem solving as they prep their 
classes, the mathematicians said that they generally consider aspects of problem solving as they 
prep their classes, although this is not necessarily manifest as explicitly teaching PS to their 
students. M2’s response in Figure 3 shows how his beliefs about problem solving can shape, 
even implicitly, how he presents work in his classroom. 

<Insert Figure 3 here> 
Additionally, mathematicians did not seem sure about actually to incorporate some of these 

ideas practically in the classroom. M1 in particular was very transparent about not exactly 
knowing how to teach problem solving. He says, “I would do that if I knew how. I mean I don’t 
know if, the reason I don’t say ‘we’re going to spend today doing problem solving’ is because I 
don’t know what that lecture would look like and if I did, I’d be very happy to deliver it.” An 
underlying theme of their responses is that while mathematicians might not be sure exactly how 
learning problem solving happens for students, they agree they incorporate it somehow in their 
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preparation for teaching, often implicitly. They all indicate that they at least think about problem 
solving as they prepare to teach, but in practice, while guidelines are important, they do not 
know how best to go about explicitly teaching those heuristics. That is, they might model 
problem solving for the students or intentionally give problems that might require problem 
solving heuristics, but they might not be overtly explicit about teaching heuristics and problem 
solving guidelines explicitly in their teaching.  

A variety of experiences contributed to mathematicians’ development as problem solvers. In 
reflecting on their own experiences with problem solving, we gain some insight from the 
mathematicians about how problem solving might be developed. Some of them indicated the 
importance of having some success solving a problem, or having some formative experience of 
successfully working on and solving a problem. In developing such an experience, M1 
emphasized the importance of picking the right problem. “Sure, I mean well first of all you 
choose problems that you are liable to be able to solve… I would say one of your biggest, as a 
researcher, part of the goal, part of the most delicate part is knowing which problems to be 
thinking about” (M1). For others, developing the ability to problem solve was closely tied to 
experience with solving problems, even if it was through observing experts “However, I feel like 
I’ve learned a lot of problem solving just in the course of, just by experience: struggling with 
things, watching other people solve things, talking to other people, explaining things, and 
learning” (M2) or working closely with others “I would say a lot of it was on my own and with 
peers… we’re just kind of on our own, and we just banded together and figured out how to do 
the problems” (M4).  

In sum, the mathematicians felt that problem solving was important, they desired to 
incorporate it into their classrooms, but they did not always know how to do this. The influences 
that affected their own development as problem solvers were varied, and there did not seem to be 
one specific path for how the practice of problem solving is developed in students. While this is 
not surprising, it underscores the difficulty that mathematics teachers and learners (at a variety of 
levels) face in attempting to teach a practice like problem solving.  

Broader reflections on practices 
Although we only reported data on the problem solving portion of the interviews, these 

results are in line with the mathematicians’ responses to modeling and justifying. Some specific 
aspects of the respective practices differed (modeling was less consistently defined, for example, 
and the mathematicians seemed to feel that justifying was perhaps easier to teach). Overall, 
though, the mathematicians acknowledged that these are important practices but that it is not at 
all trivial to learn them and to become adept at them. In particular, the mathematicians 
emphasized the large amount of experience and practice time required to get a handle on such 
activities, which could take months, years, or longer. In light of this, a common theme was that 
the mathematicians were concerned about assessing these practices. They acknowledged that for 
themselves, determining whether or not someone has learned a practice like problem solving is 
much harder to gauge then whether or not particular content has been learned. Some of them 
suggested that alternative ways to assess would be ideal (such as oral examination) but 
acknowledged that an exam would not always be feasible. In general, the mathematicians valued 
the mathematical practices as much or more than the development of specific content knowledge, 
though they often argued the practices were grounded within content. They also seemed to 
perceive these practices as developing over longer spans of time and across more courses than 
content knowledge might.  
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Conclusion and Avenues for Further Research 
The mathematicians we interviewed spoke to the inherent importance of (and difficulty in) 

teaching and learning mathematical practices. They believed that both content and practices are 
important enough so as to warrant attention by teachers and students, and some of them 
suggested that they did not feel equipped to know how to teach practices effectively. In 
subsequent work we seek to understand more clearly how other populations view mathematical 
practices. We have conducted interviews with other sets of mathematics instructors, and we hope 
to compare and contrast the mathematicians’ responses with pre-service and in-service teachers, 
community college instructors, and mathematics education researchers. The overall aim is to 
better understand the nature and perceptions of mathematical practices so as ultimately to help 
improve their teaching and learning. 
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Figure 1 – Representative interview questions 

 
 

 
Figure 2: The mathematicians’ characterizations of problem solving 

 

 
Figure 3 – M2’s incorporation of problem solving into his classroom practice 
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Conceptualizing the notion of a task network 
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We develop a theoretical model for conceptualizing the restructuring of computational / 
numerical tasks, usually considered advanced, with a network of spatial visual 
representations designed to support geometric reasoning and conceptual development.  
Through our restructuring of the well-known “popcorn box problem,” we illustrate key 
developmental understandings related to optimization and rate of change, as well as the 
possible conceptual blends afforded by a networked spatial visual approach. 

Key words: Spatial Visual Reasoning; Task Network; Conceptual Development; Task Design 

This paper stems from research around how university mathematics departments may 
support and enhance the mathematical preparation of undergraduates and prospective 
teachers.  Current research has begun to focus on the relevance and benefits of spatial visual 
reasoning in advancing mathematical understanding at various stages in students’ 
development (e.g., Natsheh & Karshenty, 2014; Uttal et al., 2013).  Spatial visual approaches 
allow for wider accessibility of “advanced” mathematical concepts than typical mathematics 
investigations usually offer, both vertically across various courses and horizontally across the 
different strands and concepts within a particular course. As a context for our work, we 
restructure the familiar popcorn box problem to promote conceptual networks for 
optimization and rate of change, two topics required for calculus and many other fields.  We 
develop a model for conceptualizing the restructuring of tasks such that relevant spatial visual 
approaches can enrich algebraic ones while encouraging fluent ‘switching’ amongst the 
different representations. Our objectives were motivated by our broader research which has 
shown how prospective teachers were able to make sense of optimization and rate of change 
in more connected, conceptual ways when they engaged with representations that elicited a 
geometric, spatial visual approach. This present theoretical research considers the following 
question: How can we think about the design of tasks which foster and apply spatial visual 
reasoning so as to support conceptual development and understanding? 

We introduce and develop the construct of a task network, where we use the conception 
of “task” developed during the 22nd ICMI study on task design.  Specifically the term task is 
taken to mean a teacher designed purposeful ‘thing to do’ using tools for students in order to 
activate an interactive tool-based environment to produce mathematical experiences.  In 
developing this construct we found ourselves networking on multiple counts, including 
mathematical representations, theoretical perspectives, as well as our disparate experiences 
and expertise as mathematician, mathematics educator, and practicing school teacher. We 
offer the construct of a task network as a tool for thinking about and researching task design.   
At the undergraduate level, our network offers ways of incorporating spatial visual 
approaches to traditionally computation-heavy courses, such as calculus. For the 
mathematical preparation of prospective teachers, our construct offers a way to emphasize 
important connections across school curricula up to and including university mathematics. 

Background and Context 
The origins of this research began with a perceived need to foster relational understanding 

of rates of change and optimization. The popcorn box problem (Figure 1) is a long-standing 
favorite for introducing these, typically via computation and data display.  Such numeric-
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centered approaches were found to be disconnected from the key underlying conceptual 
structure of optimization problems, even amongst university graduates (Whiteley, 2012).  
Indeed, students have found rate of change and optimization especially challenging because 
of a lack of conceptual understanding of these topics (Herbert & Pierce, 2008; Swanagan, 
2012). While research has recommended utilizing spatial visual tools to increase relational 
understanding in calculus (e.g., Berry & Nyman, 2003; Tall, 2007), geometric contexts can 
pose difficulties for rate problems (Martin 2000). Considering these difficulties, researchers 
(e.g. Cuoco & Goldenberg, 1997; Tchoshanov et al. 2002) have recommended building the 
underlying conceptual understandings of rate of change and optimization early in school.  
This motivates the importance for undergraduate instruction to provide prospective teachers 
with experiences that may foster relational understanding in such ways as it may be applied 
both to their current learning, as well as their future teaching.  

Given a square sheet of material, cut equal squares from the corners 
and fold up the sides to make an open-top box. How large should the 

square cut-outs be to make the box contain maximum volume? 

 A B 
Figure 1:  The popcorn box problem 

We rely on Presmeg’s (2006) definition of spatial visual reasoning, which identifies it as 
the process of “constructing and transforming both visual mental imagery and all of the 
inscriptions of a spatial nature that may be implicated in doing mathematics” (p. 206).  
Reasoning in this way can help learners “see like a mathematician” (Whiteley, 2012). To 
recast this problem from a numeric activity to a spatial visual one, the concepts of 
optimization and change in volume may be represented by tactile models in order to invite 
spatial visual reasoning in the form of geometric transformations, physical movements, 
symmetry, and comparison of dimensions, which could give direct and convincing evidence 
as to whether the volume lost is smaller than the volume gained between two similar boxes – 
leading to locating the potential maximum.  In resonance with Sullivan and colleagues’ 
(2013) notion of a purposeful representational task, the recast problem uses a tactile model or 
representation to demonstrate a mathematical idea, which was then explored, along with a 
network of associated representations.  The key representations developed for this task 
included pairs of plastic boxes (Figure 2) cut out from identical rigid square pieces of plastic 
sheets, as per the description in the original task.  For a detailed discussion of the materials 
and their affordances for conceptual development, see Whiteley and Mamolo (2011, 2013). 
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A  B  
Figure 2 Models 

This exploration is constrained by the thickness of the foam and thus supports 
understanding of average rates of change, but not instantaneous rates of change.  One 
approach is to make the differences of the boxes very small – the thickness of Bristol board, 
for instance.  This provides a physical form of taking limits of changes in cut size by focusing 
attention on comparing surface areas.   A graphical representation using the Geometer’s 
Sketchpad (Figure 3) can highlight important connections between average rates of change 
and slopes of secant lines, and instantaneous rates of change and slope of tangent lines – 
notions which are made visible and a source of reasoning through the networking of 
geometric spatial visual and graphical representations.   

 
Figure 3: Graphical representations and instantaneous rates of change 

 
In what follows, we develop the construct of a task network by applying fundamental 

constructs in graph theory to integrate and connect theoretical perspectives that inform task 
design on three counts: how an individual may reason and ‘create’ new knowledge, what key 
concepts may require an ontological shift for understanding, and what supports (physical or 
otherwise) may foster such shifts and knowledge creation. 

Theoretical Underpinnings 
In considering mathematical content, we rely on Simon’s (2006) construct of key 

developmental understandings; conceptual blending as developed by Fauconnier and Turner 
(2002) sheds light on the processes used by learners to conceptualize new (for them) 
mathematics; and we integrate these to inform the construction of a task network. 

Simon (2006) introduces KDUs “to emphasize particular aspects of teaching for 
understanding and to offer a construct that could be used to frame the identification of 
conceptual learning goals in mathematics” (p.360).  The construct was developed through the 
coordination of social and cognitive perspectives on learning mathematics with the intent to 
shed new light on ways of thinking about understanding.  KDUs involve a change, or 
conceptual advance, in students’ mathematical reasoning that often cannot be acquired as the 
result of an explanation or demonstration.  It is an important advance in the development of a 
concept, and “identifies a qualitative shift in students’ ability to think about and perceive 
particular mathematical relationships” (p.363-4).  In particular, KDUs afford new ways to 
think about and perceive mathematical relationships, which otherwise might not be available. 
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In the context of spatial visual approaches to optimizing rates of change, we note that the 
ability to think about changes in volume as entities which may be compared, and that the 
result of the comparison reveals information necessary for obtaining the optimum volume, is 
an important KDU.  In the context of task design, we draw on KDUs to inform the provisions 
and representations included within the task that may be manipulated or acted upon by the 
learner so that he or she may develop the intended understanding.  In their work with 
teachers, Sinclair, et al., (2011) identify KDUs for spatial visual reasoning in tasks which 
incorporate multiple representations.  They highlight making connections between 3-D and 2-
D representations, and noticing mathematically significant details and ignoring “distractors” 
such as physical imperfections of 3-D models. Thus, we made deliberate choices in the 
representations of mathematical relationships in order to support thinking about change in 
volume as an entity.  We see a KDU as a new inference – a new piece of mathematical 
understanding – that is accessible to individuals through their negotiation of new learning 
experiences.  The theory of conceptual blending informs our understanding of how such an 
inference may develop, and thus also influences the choices in task design. 

Fauconnier and Turner (1998, 2002) offer a theory of conceptual blending to describe 
how new inferences can arise when two representations and associated ways of reasoning (or 
‘input spaces’) are brought together in a ‘blended concept’.  The blend can be thought of as a 
mapping which combines features of the input spaces and projects them onto a third (newly 
formed) mental space – the output space.  In a blending process, some features of the input 
spaces are mapped, while others are not, thus directing focus of attention and reducing the 
overall cognitive load for further reasoning.  Blends are used to conceptualize actual things 
such as computer viruses, fictional things such as talking bananas, and impossible things such 
as time travel.  Although sometimes bizarre, “the inferences generated inside [conceptual 
blends] are often useful and [can] lead to productive changes in the conceptualizer’s 
knowledge base” (Coulson & Oakley, 2005, p.1513).  Blending is not a metaphorical or 
analogical map, rather it is a specific way to combine and infer from and about information 
from two or more input spaces (Fauconnier & Turner, 2002). The partial representations from 
an individual’s perceptions and concepts that are contained in the prior mental spaces blend 
by “the establishment and exploitation of mappings, the activation of background knowledge, 
and frequently involve the use of mental imagery” (Coulson & Oakley, 2005, p.1513). 

An emergent blended space arises in three ways: “through composition of projections 
from the inputs, through completion based on independently recruited frames and scenarios, 
and through elaboration” (Fauconnier and Turner 2002 p. 48, emphasis as in original). 
Specifically, composition creates new relations not previously existent in the separate input 
spaces, while completion allows the composite structure in the blended space to be thought of 
as part of a larger structure in the blend, and elaboration, or ‘running the blend’ consists of 
cognitive work performed within the blend to exploit and elaborate upon the composite 
structure (Fauconnier, 1997, p.150-1). The blend continues to offer the individual ways to 
access each of the original representations, in a flexible manner.  

The means by which one theoretical perspective informed another is quite subtle and 
varied.  We share our approach in combining these perspectives, elaborating on the details in 
the context of our task network model in the following section.  Briefly, our design process 
included considerations of what different input spaces are, or could be, available for a learner 
to draw from, such that the experiences, images, and representations of those input spaces 
afford the composition of a conceptual blend that may yield a particular KDU.    

A Task Network: The Model 
An integral feature of our task network is the consideration of the interplay between the 

intended teaching of the task and the constructed learning of the student (Stein & Lane, 
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1996). In negotiating and articulating relationships amongst (intended) understanding to be 
developed, the cognitive processes by which such understanding may develop, and the 
pedagogical considerations and affordances that may support such processes inform our 
construct of a task network.  We borrow terminology from graph theory and illustrate the 
construct in a generic form in Figure 4.  Specifically, a task network includes: 

Nodes – these are the fundamental units from which graphs are formed.  In graph theory 
they may be treated as ‘featureless’ or they may have an internal structure, representing 
concepts or classes of objects.  The nodes in our model have structure and represent “learning 
centres” which are then networked.  This network of nodes is what we describe as our task 
network, and we illustrate it with examples below.  Zooming in, each node may also be 
represented by a network of KDUs, conceptual blending, and mathematical representations.  
That is, each node was designed around a particular representation and context, which were 
chosen to illuminate or support an intended KDU, and as such form external or physical input 
spaces which may be projected by the learner in the creation of a new conceptual blend.  
Zooming back out again, the intended KDUs for each node were chosen with the task 
network in mind – every new inference accessible to learners through their negotiation of a 
particular node was intended to support further inferences that could eventually lead into a 
conceptual understanding of optimising rates of change in a geometric context.   

Edges – these connect nodes and, in a mixed graph, may be either directed or undirected.  
A directed edge is one with orientation, it can be thought of as an edge that proceeds from 
one node to another.  An undirected edge has no orientation and links nodes without 
distinguishing one as a predecessor of the other.  In our model, we use edges to represent 
links between KDUs.  When the edge is directed it indicates that to acquire a particular KDU 
for our task, some previous key understanding must have been developed first.  The flow of 
these edges begins in each task network with the tail (in our case a paper folding activity) and 
ends at the head (the popcorn box investigation). This flow is scaffolded by the inclusion of 
‘intermediate’ nodes which are linked to and from the head and tail, as well as amongst 
themselves.  For the most part, these intermediate nodes are linked amongst themselves with 
undirected edges – i.e., the KDU developed in one node need not precede the KDU 
developed in another.  In our ongoing research, we explore implications for learning if these 
edges are treated as undirected versus directed. 

Arcs – this is another term for directed edge, yet we distinguish it for our purposes by 
applying the terminology to the blending process, rather than the progression of KDUs.   
These arcs may flow in the same direction as the directed (KDU) edges in our model, they 
may flow in the opposite direction, and they may loop around, revisiting some prior node to 
thicken understanding at the head.  In our model, when the arc aligns with the directed 
(KDU) edge, we do not distinguish (visually) between the two. Each node may serve as an 
input space for conceptual blending as it relates to the KDUs of any other node (in a sense 
forming ‘loops’ or ‘multi-edges’).  Thus, within a task network there are multiple possible 
trajectories a learner may follow to acquire the intended KDUs, and correspondingly, 
multiple possible blends afforded.   

 
Figure 4: A generic task network – nodes are depicted in blue, undirected edges in 

orange, directed edges in green, and arcs in purple 
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Task networks for spatial visual reasoning 
Table 1 presents some examples of task networks that have restructured the original 

popcorn box problem to promote conceptual understanding via spatial visual approaches.  We 
highlight some of the possible conceptual blends afforded by the task networks as they apply 
to undergraduate mathematics students and prospective teachers.  In each example, the head 
node is the popcorn box activity (PB) described above, and the tail node is a paper folding 
activity (PF) which involves predicting the shape of the optimal box, creating that box, and 
then refining the prediction via creating a second box.  The intermediate nodes include 
derivative computations (C), graphical representations such as those from Figure 3 (G), 
measurement explorations (M) and calculations (C�), and volume comparisons via filling 
(F). To reduce the complexity of presenting the models, we do not identify all of the arcs 
representing possible blending (depicted in purple), but one may imagine them there. 
 
Task Network Intended KDUs and Possible Blends 

 

KDU: changes in volume may be compared directly (as 
encapsulated entities of loss and gain), and the result of this 
comparison reveals the direction of change of cut of a given box 
necessary for moving towards the optimum volume 
Blends: compose - to explore change physically by starting with a 
pair of representative examples (e.g. boxes) and focus primarily on 
the change in volumes (ΔV for the secant in symbols); complete – 
to to focus on the sign of the change, with a simple physical 
comparison via foam inserts, to determine which changes will 
make the volume larger. 

 

KDU: negotiating physical constraints of 3-D models; switching 
between 2-D and 3-D representations (Sinclair et al., 2011) 
Blends: compose – to explore average rates of change (constrained 
by the thickness of the foam); complete – to consider sources of 
error – and minimize them via “thinner” foam or Bristol board (an 
informal invitation to a limit process, which is natural in the 
physical models, and illustrated by the graph) 

 

Blends: elaborate - to consider what boxes cannot be the optimum 
and why (rate of change is not zero in both the models and the 
symbols); elaborate and combine – to eliminate the boxes with 
non-zero rates of changes and determine the single box shape 
which remains as the optimum (in both the model and the symbols) 

 

KDUs (for mathematics-teaching): different representations afford 
different ways to understand content; spatial visual approaches can 
meaningfully scaffold advanced content for young learners 
Blends: compose – to explore connections amongst different 
representations across nodes; complete – to connect “advanced” 
representations with scaffolded ones relevant to school curriculum 

Table 1 

Concluding Remarks 
A blend is both an internal cognitive process and a cultural artefact. Once achieved by 

someone and shared, a new blend becomes a possible cognitive approach requiring less 
cognitive load for others who have the appropriate parts to develop their own internal blend.  
Our task network provides a construct for conceptualising the design of learning experiences 
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that could support for such transmission, as the external representations focus attention on 
key ideas listed above. The use of spatial visual representations further support shared 
conversations about the blended concept, the process and the reasoning.  For undergraduate 
students, our task networks afford blends where key processes are experienced multiple 
times, in various representations, supporting the development of both procedural steps and 
conceptual reasoning. Students can create an ‘immediate’ balanced blend which supports 
flexible approaches to solving problems (composition and completion).  For prospective 
teachers, the spatial visual paradigm available through our task networks can be blended with 
the prior formula-based procedural calculus knowledge, to re-infuse it with sense and visual 
estimation that grounds the algebraic solutions to geometric optimization (elaboration and 
completion). Blends and KDUs specific to the content knowledge relevant to teaching 
mathematics are also fostered through the explicit use and unpacking of a task network – 
shedding new light on how prospective teachers may view knowledge construction and 
understanding in mathematics. The specific task networks discussed also provide 
opportunities to un-pack the concepts of calculus, and they invite reflection to develop a more 
flexible and ‘thicker’ conceptual basis for the study of change and optimization (completing a 
blend). Individuals are creating (composing) a new blend between a sometimes fragile 
symbolic sense of the processes of calculus, and a novel spatial sense of optimizing and 
checking optima in geometric problems, which will strengthen both (elaboration). 

We suggest that our construct of a task network offers a novel lens through which to 
design learning experiences that are faithful to the mathematical thinking performed by 
mathematicians on two counts.  First, our emphasis is on the networking of ideas, content, 
and representations, rather than on sequences or trajectories as proposed by other models.  
This shifts attention away from discussions of what content or experiences “should come 
first, second, or third” towards consideration of how integrating content and experiences can 
support student learning.  Second, and relatedly, our task network supports and fosters fluent 
“switching” between and amongst representations.  This switching is described as essential 
for both problem solving and problem posing, and provides the individual with deeper insight 
into the underlying structural aspects of numerical/symbolic computations.  Our broader 
research attends to this notion of switching as it relates to mathematical thinking, learning, 
and communication.  We further suggest that via graphing, our spatial visual approach to 
networking theories of conceptual blending and key developmental understandings provided 
us with a new insight into how to interpret and foster conceptual development. The choice of 
looking at task design through multiple lenses was influenced by Simon (2009) who 
highlighted the advantages of considering a situation through different lenses, where “each 
lens affords a different view of the same situation” (p. 484).  In our case, the lens of KDUs 
and the lens of conceptual development are deeply related and through our own “switching” 
of representations (lenses) we were afforded a more in-depth appreciation of how (and 
which) different representations could foster understanding and connections for a variety of 
learners. We acknowledge that other lenses may provide alternative interpretations and 
insights by taking into account different constructs. 
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Lisa Mantini 
Oklahoma State University

Kitty DeBock 
Oklahoma State University

Barbara Trigalet 
Texas Academy of 

Biomedical Sciences 

Classroom teaching in multiple sections of Calculus I at a large comprehensive research 
university was observed and coded using the Teaching Dimensions Observation Protocol 
(TDOP). Within lecture-based methods, multiple teaching styles were identified ranging from 
low to moderate to high engagement, sometimes including desk work or group work. A 
sample population of students from all three engagement groups was followed for one year in 
order to analyze persistence rates into Calculus II and retention rates in a STEM major. No 
significant differences were found in the retention rates either at the University or in STEM 
majors across groups, with an average of 43% of STEM majors having switched out of STEM 
or having dropped out of the University after one year. However, the group experiencing 
higher engagement instruction in Calculus I was found to have significantly higher grades in 
Calculus I and also in Calculus II. 

Key words: [Calculus, classroom observations, student performance, student persistence, 
STEM student retention, teaching dimensions observation protocol] 

Introduction and Literature Review 
For mathematically intensive college majors, Calculus I is a difficult but fundamental 

course typically taken by freshmen (Speer, Smith, & Horvath, 2010). There is a large need 
for graduates in the United States in all of the STEM disciplines (Bressoud, 2011) and it is 
essential to successful completion of these degrees that students have a good understanding 
of the concepts taught in Calculus I (Bressoud, Carlson, Mesa, & Rasmussen, 2013). The 
2012 PCAST report projected a need for one million more STEM graduates in the US over 
the next several years. However, attrition rates are high, with only 38% of students who 
entered STEM majors in 1993 earning a STEM Bachelor’s degree within six years (“Degrees 
of Success”, 2010). By comparison, 73.5% of students who began in a non-STEM field in 
2004 completed a Bachelor’s degree. The goals of the PCAST report require a 34% increase 
in the rate of production of STEM graduates, but this could be accomplished by increasing 
persistence during the first year of college. 

Student attrition from STEM majors most often occurs in the first or second year of 
college (Seymour & Hewitt, 1997). Students most often leave STEM majors because of poor 
instruction in their mathematics and science courses, with calculus instruction and curriculum 
often cited as a primary reason for students’ discontinued STEM enrollment (Larsen et al., 
2013; Lichtenstein et al., 2007). Active-learning teaching strategies appear to have a positive 
impact on students’ ability to understand mathematics concepts (Rasmussen & Kwon, 2007; 
Schoenfeld, 2002). A study on the teaching of introductory physics courses found that high 
engagement teaching methods increased student understanding, confidence, and persistence 
(Crouch & Mazur, 2001).  A recent paper showed that a single introductory course that used 
high engagement teaching methods could have a long-term impact and help retain students in 
a physics major (Watkins & Mazur, 2013).  

 This study seeks to contribute to a growing body of research on actual classroom 
practice, as well as to determine the interaction between actual classroom practices and 
student achievement in Calculus I and Calculus II and retention in the STEM disciplines. 

Research Questions 
The research questions addressed by this study are: 
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1. Do the instructional practices observed in Calculus I affect student persistence in 
continuing on to Calculus II and student success in Calculus II? 

2. Do the instructional practices observed in Calculus I affect student persistence in a 
STEM major? 

Theoretical Perspective 
Constructivism refers to the idea that each person constructs meaning as he or she learns 

(Hein, 1991), that knowledge is of our own making, and that active experience is essential to 
learning (Kivinen & Ristela, 2003; Moll, 2004). In recent decades numerous criticisms of 
undergraduate educational practices have claimed that many faculty members fail to provide 
instruction which is adequately engaging and rigorous (Arum & Roksa, 2011; Bok, 2005; 
Boyer, 1990). Many efforts at reforming collegiate instruction attempt to engage students 
more effectively in learning through such techniques as peer learning (Mazur, 1997) and 
inquiry-based learning (Rasmussen, Kwon, Allen Marrongelle, & Burtch, 2006). Yet faculty 
members are slow to adopt these research-based teaching methods for many reasons (Hora & 
Ferrare, 2014). The Teaching Dimensions Observation Protocol (TDOP) is based on the 
instructional systems-of-practice framework which situates classroom behavior within 
networks of artifacts called systems of practice and within distinct disciplinary and 
organizational cultures (Hora & Ferrare, 2014). This instrument views teaching as a 
multidimensional practice affected by the discipline, the institution, and the practitioners 
themselves, and allows a finer grain of analysis of many of the facets of instructional 
practice. Several recent sources suggest that much more research is needed on college-level 
teaching practice in mathematics (Speer, Smith, & Horvath, 2010; Bressoud, 2012). While 
the instructional practices we observed all fit broadly into the category of lecture-based 
instruction, when viewed through the lens of the TDOP we are able to distinguish nuances of 
practice which appear to impact student outcomes significantly. 

Research Methodology 
In this section we describe the setting of the study, the data we collected, and our method 

of data analysis. 
Setting and Participants: This study was conducted at a large, comprehensive research 

university in the Midwest. At this institution, the Calculus I course covers basic one-variable 
differential calculus and the introduction of the integral. Calculus II then covers techniques of 
integration, applications of integration, and sequences and series. At the time of this study, 
Calculus I was a four-credit course taught in sections of 35-45 students each. During the 
semester in which study data was collected there were eleven instructors in Calculus I, with 
experience levels ranging from many decades of experience teaching Calculus to relatively 
new Ph.D.’s with a few years of experience to graduate teaching assistants. Two instructors 
were teaching their own section of Calculus I for the first time; all others had prior experience 
as an independent instructor in Calculus I. Most of the instructors volunteered as study 
participants and were observed for this study using the Teaching Dimensions Observation 
Protocol (TDOP).  

The TDOP coding instrument records classroom behaviors in five categories during each 
two-minute interval of a class period. These categories (Hora & Ferrare, 2010) include 
Instructional Methods such as lecture, discussion, and group work; Pedagogical Moves such 
as organizational comments, assessments, and emphasis; Instructor-Student Interactions; 
student Cognitive Engagement observed such as problem solving, verbal articulation of ideas, 
or real-world connections; and use of Instructional Technology including a chalk or white 
board or digital tablet such as a document camera. In this study many TDOP codes varied 
little among instructors, who all used lecture methods with hand-written visuals on a 
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chalkboard or whiteboard extensively. But several codes were significantly correlated with 
student performance on either the uniform final exam or with normalized gain on the 
Calculus Concepts Inventory (CCI), including Student Group Work (SGW), Desk Work 
(DW), verbal Articulation of ideas by students (ART), or Movement of the instructor around 
the room (MOV), mostly during times when students were performing desk work or group 
work. Interestingly, these codes are all indicating time intervals during which students were 
highly engaged, in agreement with numerous studies citing links of higher engagement 
instructional practices with improved student learning (Code, Kohler, Piccolo, & MacLean, 
2012; Crouch & Mazur, 2001; Epstein, 2007; Kivinen & Ristela, 2003; Moll, 2004).  

We decided to use these significant TDOP codes in combination in order to more 
effectively differentiate the type and level of student engagement we were observing among 
Calculus I instructors. The first new combination code introduced, SVB, indicates a time 
interval in which students were observed articulating ideas or responding to or asking 
questions; the TDOP codes included were articulation (ART), student novel question (SNQ), 
student comprehension question (SCQ), and student response (SR). The second combination 
code is SWK, indicating that students were observed either working individually or in small 
groups on problems at their desks; the TDOP codes included were desk work (DW) or 
student group work (SGW). The final new code SENG indicates that one or the other of SVB 
or SWK was observed. The proportion of two-minute intervals in which the combined SENG 
code was observed ranged from 20% to 90% of the time. Clusters of sections with similar 
proportions of the SENG code being observed were sorted into three groups for purposes of 
further analysis, the Low Engagement group (SENG from 20% to 40% of time intervals), 
Moderate Engagement group (SENG from 50%-60%), or High Engagement (SENG from 
80%-90%). No sections reported percentages outside of these ranges.  

For this study two representative sections from each of the engagement groups were 
selected for further analysis of the persistence data. The total number of students in this study 
is 245, with from 78 to 86 students in each engagement group.  Analysis of persistence data 
from the remaining sections is ongoing. 

 
Engagement 

Profile 
SENG* 
Values 

Number of 
Sections 

Observed 
Sections 

Selected for 
Further Study 

Number of 
Student 

Participants 
Low 20% - 40% 4 2 81 

Moderate 50% - 60 % 3 2 86 
High 80% - 90% 4 2 78 

 
Data Collection and Analysis: Additional data was gathered for the students in the 

selected sections including Calculus II grade (if any), entry test scores such as math ACT 
subscore and ALEKS placement test score, major at the time of enrollment in Calculus I, and 
major one year later. The ALEKS placement test is a commercial pre-calculus skill inventory 
taken by all entering freshmen designed to place students into either Calculus I or the 
appropriate pre-calculus course. The data were tabulated to show distribution of grades A-F 
and W for each section studied and grouped totals and averages for low, medium, and high 
engagement groups. The average grade point and DWF rates were calculated for each group. 
An ANOVA statistical test was run on SPSS software to test for significant differences in the 
three groups of engagement for the Calculus II grade point average. ANOVA was run again 
to test for significant difference in the ACT and ALEKS means for the three groups. 
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Research Results 
A prior analysis of all sections from the full data set (Mantini, Trigalet, & Davis, 2014) 

reported on the significant correlations found between code SENG, the overall section 
engagement level, and student performance on the uniform final exam in Calculus I, and also 
on the significant correlation between code SWK, students seen working during a class 
period, and the section’s Normalized Gain score on the Calculus Concepts Inventory. This 
study will report on an analysis for the reduced data set of the correlation of the overall 
student engagement level with course grades in Calculus I and student enrollment rates and 
grades earned in Calculus II. Analysis of the persistence data for the full data set is ongoing. 

First we compared the six sections in the study to see if there were significant differences 
across groups in the mathematical readiness of the students. We ran a one-way ANOVA test 
on the distribution of ACT Math subscores and ALEKS placement test scores by students in 
each group for whom scores were available, using SPSS software to determine if there were 
any significant differences between groups. The results indicated that there were no 
significant differences for the ACT Math subscores [F(2,207) = .413, n.s.] or for the ALEKS 
scores between groups [F(2, 168) = .790, n.s.] and so no post-hoc tests were needed. We 
conclude that our students in the three groups had similar mathematical preparation and 
readiness for Calculus I. 

 
 Engagement Group 
 Low Moderate High 
Number reporting ACT score 69 78 68 
Average Math ACT subscore 25.8 24.2 25.4 
Number reporting ALEKS score 62 62 47 
Average ALEKS score 62.9 62.4 64.5 

 
Calculus I Grades: The grades students may earn range from A (highest achievement), 

B, C, or D, to F (failure) or W (withdrawal from the class). We computed grade point 
averages in each group by assigning 4 points to grades of A, 3 points to B, and so on, with 0 
points earned by failing grades of F. We do not consider grades of W when computing grade 
point averages. We also computed DWF rates in each group, given by the proportion of 
students in the group earning D, F, or W. We found that the grade point average increased in 
Calculus I from low to moderate to high engagement groups while DWF rates decreased. 
Scores are summarized in the graph below.  
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Calculus II Results: There were 40, 30, and 33 students from the Low, Moderate, and 

High engagement groups, respectively, who attempted Calculus II within the next two 
semesters. Of these, the grade point averages were 1.9, 2.4, and 2.8 for students coming from 
low, moderate, and high engagement instruction in Calculus I, respectively, showing an 
increase in Calculus II grades earned as the engagement level of their Calculus I instruction 
increased. Correspondingly, the DWF rates in the low, moderate, and high engagement 
groups were 53%, 47%, and 21%, respectively, decreasing as the engagement level of the 
student’s Calculus I instruction increased.  

A one-way ANOVA indicated that the grade differences across the three groups were 
statistically significant, with F(2, 76) = 3.674, p = .03. Tukey post-hoc comparisons of the 
groups showed that the high engagement group (M= 2.7, 95% CI[1.36,2.31]) had a 
significantly higher grade point average than the low engagement group (M=1.84, 95% 
CI[2.31, 3.10]) with p = .025. Comparisons between the moderate engagement group (M = 
2.38, 95% CI [1.75, 3.02]) and either the high or low engagement groups indicated no 
statistically significant difference in grades at p < .05. 

 

 
 

Persistence in STEM Majors: We define the STEM majors to be majors which require 
at least Calculus I and II for their students. These include Mathematics, Physics, Chemistry, 
Geology, and Engineering. Other science majors which require Calculus I only, such as 
Biochemistry or Architecture, are grouped with non-STEM majors for purposes of this study. 
We found that initially there were 56, 50, and 43 STEM majors enrolled in the Low, 
Moderate, and High engagement groups, respectively.   One year later we found 34, 25, and 
27 of the students from the Low, Moderate, and High engagement groups still enrolled in a 
STEM major, giving persistence rates of 61%, 50%, and 63%, respectively. On average, 43% 
of the students in the study had switched out of a STEM major. In fact, 38 of the initial 245 
students in the study, or 15.5% of the initial population, had dropped out of the university 
entirely.   These numbers do not indicate a significant difference across the groups, but the 
numbers of switchers and the number of dropouts are very significant in human terms. The 
following table summarizes these results, with %P indicating the percentage of students who 
were Persisters, students who were still enrolled in a STEM major one year after Calculus I. 
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 Low Moderate High 
 2013 2014 % P 2013 2014 % P 2013 2014 % P 

STEM 56 34 61% 50 25 50% 43 27 63% 

Non-STEM 16 28  30 35  27 35  

Drop-out   10   20   8  

Total 72 72  80 80  70           70 

 
The following graph indicates students still enrolled in the University and still enrolled in 

a STEM major one year after Calculus I.  
 

 

Discussion 
With regard to our first research question, this study found no significant difference 

across engagement levels among observed sections of Calculus I in the rate at which students 
enrolled into Calculus II. However, we found a significant difference in the average grades 
earned in Calculus II, with students who experienced high engagement instruction in 
Calculus I earned significantly better grades in Calculus II. This is an interesting result given 
that the six observed sections in this study started with very similar students based on their 
mathematical readiness in terms of placement test and ACT scores, making it more likely that 
the observed grade differences are due to the instructional methods experienced. 
Furthermore, the differences of instructional practice might be considered modest by some in 
terms of current pedagogical literature since all instructors used lecture-based methods.  
However, our use of the TDOP instrument enabled us to observe finer nuances of teaching 
practices within lecture-based instruction, which enabled us to observe these statistically 
significant differences in student outcomes.  

With regard to our second research question, we were not able to observe significant 
differences in persistence either in students remaining enrolled at the University or in 
continuing to pursue STEM majors. More study, and a larger sample size, are clearly needed. 
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Gains from the incorporation of an approximation framework into calculus instruction 

Jason Martin 
University of Central Arkansas 

Michael Oehrtman 
Oklahoma State University 

We report on a research-based effort to make calculus conceptually accessible to more students 
while simultaneously increasing the coherence, rigor, and applicability of the content learned in 
the courses. Recent studies have indicated that an approximation and error analysis approach to 
curriculum and instructional design can support a productive and coherent conceptual 
foundation for students’ reasoning about concepts defined in terms of limit. In this study we 
explore the affects of such an approach to curriculum design systematically implemented in the 
form of 30 labs spread throughout the first two semesters of calculus. Data taken from pre-tests 
at the beginning of Calculus 1 and posttests near the end of Calculus 2 indicate conceptual gains 
above the gains previously observed from students taught without approximation curriculum. 

Key words: Calculus, Cooperative Learning, Approximation, Limit 

Recently, the President of the United States issued a call for colleges and universities to 
increase graduation rates for students earning STEM degrees by approximately 30% while 
simultaneously producing teachers with stronger skills for teaching STEM content (PCAST, 
2012; The White House, 2012). Unfortunately, recent studies have documented students 
dropping out of fundamental courses required by STEM fields or leaving STEM fields altogether 
(Bressoud, 2012; NCES, 2009; Thompson et al., 2007). For example, in one large institutional 
study, Thompson et al. (2007) found that 33% of students who earned a C or better in Calculus 1 
who’s major required Calculus 2 did not persist in Calculus 2. Similarly, 31% of students earning 
a C or better in Calculus 2 whose major required Calculus 3 did not persist in Calculus 3. 
Thompson found that many of these strong students were voluntarily leaving the STEM pipeline 
because they were unsatisfied with the classroom culture in these programs. Bressoud’s (2012) 
analysis of a survey of over 14,000 calculus students at all types of colleges and universities 
across the United States corroborated these findings, and he noted that “the single greatest factor 
counteracting this trend that is under the control of the instructor is the quality of teaching as 
viewed by the students.” Bressoud went on to state, “Most students are not engaged by [lecture] 
format.” For engineering, the PCAST report added that “students in traditional lecture courses 
were twice as likely to leave engineering and three times as likely to drop out of college entirely 
compared with students taught using techniques that engaged them actively in class” (p. 6). The 
National Research Council concurred identifying “designing in-class activities to actively engage 
students” and “[organizing] students in small groups” as the two strongest promising practices 
for improving STEM instruction (NRC, 2011, pp. 22-23). 

In response to these challenges, a comprehensive collection of labs to drive more coherent 
and engaging instruction in introductory calculus sequences has been created based on a unifying 
conceptual approximation and error analyses structure (Oehrtman, 2008, 2009). We ask the 
following: 

1) When instructors implement these labs throughout the first two semesters of calculus, are 
student conceptual gains observed? Are these gains greater than gains from more 
traditional classes? 
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2) Is there a shift toward students using approximation models, and if so, does this shift 
correlate to conceptual gains/or lack thereof?  

Criteria for Lab Design 
Limit concepts are at the core of mathematics curriculum for STEM majors, but 

unfortunately decades of research have revealed numerous misconceptions and barriers to 
students’ understanding. Building off of work by Williams (1991, 2001), Oehrtman (2009) 
identified several cognitive models employed by students that met criteria for emphasis across 
limit concepts and for sufficient depth to influence students’ reasoning. Williams noted that 
frequently students attempt to reason about limits using intuitive ideas associated with 
boundaries, motion, and approximation. Oehrtman found that, unlike most other cognitive 
models employed by students, the structure of students’ spontaneous reasoning about 
approximations shares significant parallels with the logic of formal limit definitions while being 
simultaneously conceptually accessible and supporting students’ productive exploration of 
concepts in calculus defined in terms of limits. With this in mind, we contend that a false 
dichotomy exists between a formally sound, structurally robust treatment of calculus on the one 
hand and a conceptually accessible and applicable approach on the other. By adopting an 
instructional framework utilizing approximation and error analyses, we designed labs based on 
criteria listed in Figure 1. 

Design Criteria 1.  Language, notation, and constructs used in the labs should be conceptually accessible to 
introductory calculus students. 

Design Criteria 2.  The structure of students’ activity should reflect rigorous limit definitions and arguments 
without the language and symbolism of formal �-� and �-N notation that is a barrier to most calculus 
students’ understanding. 

Design Criteria 3.  The labs should present a coherent approach across all concepts defined in terms of limits and 
effectively support students’ exploration into these concepts. 

Design Criteria 4.  The central quantities and relationships developed in all labs should be coherent across 
representational systems (especially contextual, graphical, algebraic, and numerical representations) 

Design Criteria 5.  All labs should foster quantitative reasoning and modeling skills required for STEM fields. 
Design Criteria 6.  The sequence of labs should establish a strong conceptual foundation for subsequent rigorous 

development of real analysis. 
Design Criteria 7.  All labs should be implemented following instructional techniques based on a constructivist 

theory of concept development. 
Figure 1. Design criteria for the labs. 

When left unguided, students’ applications of intuitive ideas about approximations are highly 
idiosyncratic (Martin & Oehrtman, 2010a, 2010b; Oehrtman, 2009). Components of a well-
developed approximation cognitive model include an unknown actual quantity and known 
approximations. In addition, for each approximation, there is an associated error, 

error = | actual value – approximation |. 
A bound on the error allows one to use an approximation to restrict the range of possibilities for 
the actual value. Approximations are judged to be accurate if the error is small, and a good 
approximation method allows one to improve the accuracy of the approximation until the error is 
as small as desired. To further systematize students’ reasoning concerning approximation ideas 
and support this accessible yet rigorous approach to calculus instruction, throughout the labs 
students are engaged in contextualized versions of the questions in Figure 2. These questions can 
help bring coherence between structural components, reveal operations performed on these 
components, and highlight relationships among these operations, all of which is foundational for 
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the generation of new understandings (e.g., Piaget, 1970; Glasersfeld, 1995; Ernest, 1998). 
 
Question 1.   Explain why the unknown quantity cannot be computed directly. 
Question 2.   Approximate the unknown quantity and determine, if possible, whether your approximation is an 

underestimate or overestimate 
Question 3.   Represent the error in your approximation and determine if there is a way to make the error smaller. 
Question 4.   Given an approximation, find a useful bound on the error. 
Question 5.  Given an error bound, find a sufficiently accurate approximation. 
Question 6.   Explain how to find an approximation within any predetermined bound. 
Figure 2. Approximation questions consistent across most labs. 

Method & Analysis 
Nine instructors piloted up to 30 labs in 14 different first and second semester calculus 

classrooms at seven different institutions. Instructors participated in a 3-day summer workshop 
and in weekly online meetings to maintain the fidelity of lab implementation consistent with 
design criteria. From these classes, 361 students participated in previously developed pre and 
posttest instruments. These instruments were the Calculus Concepts Assessment (CCA) to 
measure shifts in students’ understanding of the central concepts of calculus and the Limit 
Models Assessment (LMA) to measure shifts in the cognitive models employed by students to 
reason with these calculus concepts. The CCA is a 32-item assessment developed using the same 
techniques used in the development of the Precalculus Concept Assessment (Engelke, Oehrtman, 
& Carlson, 2005; Carlson, Oehrtman, & Engelke, 2010) to ensure answers and distractors were 
chosen based on specific identifiable reasoning patterns. The 8-item LMA was developed 
following Model Analysis Theory from physics education research where modeling the structure 
of student thinking is viewed as a mixture of previously identified cognitive models with varying 
probabilities of being activated (Bao & Reddish, 2001; Bao, Hogg, & Zollman, 2001). We 
computed normalized average gains on the CCA (the ratio of the actual average gain to the 
maximum possible average gain) for comparison with our database normalized average gains of 
0.2 on a prior version of the CCA. Our database consisted of 252 students from 15 Calculus 1 
classes feeding into 12 Calculus 2 classes. Our version of the CCA was slightly modified from 
the version used for the database to include more difficult items (which was further evidenced by 
a lower percentage of students getting items correct on our CCA pre-test). We also correlated 
students’ normalized average gains with the predominance of approximation models as assessed 
by the post-course LMA to determine if the development of approximation models was related to 
conceptual gains/or lack thereof. Additional analyses at the instructor and item levels are 
ongoing.!

Preliminary Results 
Tables 1 and 2 summarize preliminary aggregate assessment results for students that took 

both pre and posttests of the CCA and the LMA. 
Table 1 shows conceptual gains on the CCA of 3.5 points for Calculus 1 (14% normalized 

gain) and 2.0 points for Calculus 2 (10% normalized gain). Currently our gains from pre-
Calculus 1 to post Calculus 2 appear to be around 30%. Our previous database average for gains 
through Calculus 1 and 2 not using the lab materials is 20%, so the students in these pilot classes 
are still outperforming this baseline. 
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Table 1.  
Calculus Students Taking Both the Pretest and Posttest Calculus Concepts Assessment in the 
2013-2014 Academic Year 
Course Pretest CCA  Posttest CCA  

Calculus 1  
(n = 170) 

7 10.5 

Calculus 2 
(n = 106) 

11.9 13.9 

 
Table 2.  
Calculus Students Taking Both the Pretest and Posttest Limit Models Assessment in the  
2013-2014 Academic Year 
Course Pretest LMA Models Posttest LMA 

Calculus 1 
(n = 195) 

   

Calculus 2 
(n = 105) 

   

 
Table 2 shows a notable shift toward using approximation models when reasoning about 

limits, 29% to 36% for the class model during Calculus 1 and 37% to 42% for the class model 
during Calculus 2. All eigenvalues were 0.77 to 0.78 indicating the class models are a good 
representation of the mixed models employed by most students. Simultaneously students became 
less likely to select items that used the same terminology about approximations and limits 
without the appropriate conceptual structure. The only model that appeared consistently 
detrimental to students' understanding in Oehrtman (2009) was physical limitation, which 
decreased in frequency. Collapse and infinity as number metaphors were often productive for 
students, even if not entirely mathematically correct, and their prevalence remained roughly flat 
according to Table 2. !

Discussion & Questions 
Our original target for the end of the project was a 50% gain. Although we chose to give a 

harder version of the test than we originally planned, we still hope to improve the normalized 
gain to near 50% over the next two years of this study. To help meet this goal, we are currently 
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in the process of incorporating new resources for instructors and students, such as online applets 
to support students in conceiving of and relating relevant quantities from physical situations to 
the calculus modeling such situations. How might we best study and measure the effects of 
implementing such resources? 

The lowest CCA gains and smallest LMA shifts were in classes with the least experienced 
teachers. What are possible links between experience and effective implementation of research-
based curricula? 
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Formal logic and the production and validation of proof by university level students 
 

Sarah Mathieu-Soucy 
Université du Québec à Montréal 

 
The practical role and the contribution of formal logic in mathematics is not clear. Some, for 
example Poincaré (1905), consider that logic is essential to mathematics and others, for example 
Dieudonné (1987), consider that logic is not useful to mathematics. Mathematicians Thurston 
(1994) and Thom (1967) claim that their basic (intuitive and theoretical) knowledge of logic is 
sufficient for their work and that they use different techniques instead which comes, at least in 
part, from their experience. When it comes to university mathematics students, who don’t have 
as much experience, where do they get the knowledge necessary to do mathematics without 
making any logical error? Selden & Selden (1999) noted that concepts studied in most beginner 
courses in formal logic, like Venn diagrams or truth tables, aren’t that useful in the everyday 
mathematics students have to perform. Also, complex logical statements can often be written in 
multiple simple statements so that the person manipulating them doesn’t need to control all the 
more complex aspects of formal logic. However, among students, gaps in knowledge of formal 
logic are one of the causes of difficulties in validating and producing proofs (Selden & Selden, 
1995). In sum, assessing the usefulness and the necessity of logic in the production and 
validation of proofs is quite difficult. Hence, it appears worthwhile to address this question: how 
does knowledge of formal logic changes the way undergraduate mathematics students produce 
and validate proofs? 
 
To approach this question, we examine different aspects of mathematics that could help us 
characterize mathematical work, proofs in our case. First, we usually agree that in order to do 
mathematics, we need to combine intuition and rigor (which includes logic). But what is 
intuition? In our work, intuition is a feeling that imposes itself to an individual without being 
able to explain why. This knowledge arises subjectively to an individual as being true (Fischbein, 
1982, 1987). Also, it comes from the experiences of each individual and it can be mathematically 
incorrect. As far as how an individual constructs a proof, we take into consideration 2 different 
types of productions: a semantic or a syntactic production (Weber & Alcock, 2004). The former 
relates to a production where the individual uses his intuitive understanding of concepts and 
meaningful representations of objects. The latter relates to a production where the individual uses 
only definitions, relations and properties. Finally, regarding the use of logic in mathematical 
work, we recognize that logical considerations are absent or nearly so from the discourse of 
educators and textbooks at the beginning of university and consequently from the work of 
students (Durand-Guerrier & Arsac, 2003). Such considerations are replaced by contextualized 
reasoning rules, specific to a certain field of mathematics. Their use seems to be directed by the 
mathematical knowledge of the individual or his mathematical expertise. 

With these possible characterizations in mind, we developed a methodology in 2 phases 
involving university students from Quebec in the second half of a 3-year mathematics program 
(20-21 years old). First, we evaluated their level of knowledge in formal logic with a written test. 
Then, considering those results and their academic background in logic, we formed 4 different 
teams of 2 students to move to the second phase: “task based interviews” (Goldin, 1997). Our 
analysis of their work suggests that a course in logic changes the way students produce and 
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validate proofs more significantly than a higher level of knowledge in formal logic. Indeed, 
academic background in logic seems to increase the alertness to logical characteristics 
(unconscious noticing of logical specifications) and also to slow their progress in unfamiliar 
context problem. The poster will present more thoroughly the context, the tasked involved in the 
methodology and the main findings. 
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Mathematics majors’ example and diagram usage when writing calculus proofs 
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Introduction 

We report on a study in which we observed 73 mathematics majors completing seven proving tasks in 
calculus. We use these data to empirically address several hypotheses from the undergraduate proving 
literature. The key findings from this study include: (a) Nearly all participants introduced diagrams and 
examples on multiple tasks, (b) few students relied predominantly on either semantic reasoning or syntactic 
reasoning, and (c) there was little correlation between one’s propensity to use examples or diagrams and 
one’s mathematical achievement, either on the proof-writing tasks or on GPA in advanced mathematics 
courses. 
Each finding is inconsistent with claims from the mathematics education literature. These 
inconsistencies are discussed at the end of the paper. 
 
Key words: Examples, Diagrams, Visual Reasoning, Proof, Calculus. 
 

While proof is expected to play a central role in elementary and secondary classrooms (e.g., NCTM, 
2000, Schoenfeld, 1994), proof assumes even greater importance in advanced mathematics courses. In these 
courses, a primary goal of instruction is to increase students’ ability to write proofs about the course content, 
and assessments of students’ understanding of this content are largely composed of proving tasks. 

There is a large number of studies that suggest that mathematics majors have difficulty writing proofs, 
even after completing courses in advanced mathematics (e.g., Hart, 1994; Iannone & Inglis, 2010; Ko & 
Knuth, 2009; Moore, 1994; Author). In each study, students were asked to complete a set of proving tasks and 
their frequency of success was under 50%. In many studies, students’ performance was alarmingly poor. For 
instance, Ko and Knuth (2009) found that none of the 36 mathematics majors in their study could successfully 
complete any of the three assigned proving tasks in the study. 

To account for these difficulties, many researchers have investigated how the use of 
examples or diagrams may facilitate students’ proof-writing abilities (e.g., Gibson, 1998; Lockwood, Ellis, 
Dogan, Williams, & Knuth, 2013; Sandefur, Mason, Stylianides, & Watson, 2013; Author) and suggested that 
some students’ proving difficulties may be due to their reluctance to employ diagrams and examples (e.g., 
Moore, 1994; Raman, 2003; Author). However, as we will argue, claims about students’ propensity to employ 
this type of reasoning and their success at doing so are necessarily tentative due to the small sample sizes 
typically employed in studies of mathematics majors’ proof productions. In this paper, we 
seek to address these questions using a larger sample of students (73 mathematics majors) 
and a larger number of tasks (seven) than are used in most other studies on proving processes. 

 
Theoretical perspective 

In recent years, a number of researchers have remarked that a student might approach a proof 
construction task in two qualitatively different ways. Weber and Alcock (2004) distinguished between a 
student who writes a proof with a focus on formal deduction, logical manipulation, and calculation, and a 
student whose proof is based on inferences drawn from informal representations of mathematical concepts. 
They call the former a syntactic proof production and the latter a semantic proof production. Several authors 
have made similar theoretical distinctions (e.g., Burton, 2004; Garuti, Boero, & Lemut, 1998; Raman, 2003; 
Vinner, 1991). 

A commonality in each of these distinctions is an awareness that there is a difference between the 
process used to write a proof (which may be formal or informal) and the product obtained (where the proof 
must satisfy certain formal constraints, cf. Boero, 1999). Although one should not draw inferences from 
diagrams or generalize from specific examples in the 
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formal proof that one submits, such reasoning can be vital in the process of constructing this 
proof. Another shared feature amongst these constructs is that they distinguish, either 
explicitly or implicitly, between the types of representations that one uses to construct proofs, 
with the informal proof productions employing diagrams and considering specific examples 
and the formal productions relying on formal definitions and calculation. In this paper, we 
follow Weber and Alcock (2009), who defined syntactic reasoning (or formal reasoning) to 
be reasoning based on representations of concepts that would be permissible in a proof 
(definitions, formulas, mathematical assertions written with appropriate clarification in a 
verbal-symbolic mode) and semantic reasoning (or informal reasoning) to be based on 
representations of concepts that would not be permissible in a proof (including graphs, 
diagrams, and examples). 

Related literature 
The research literature on students’ proving processes, which typically consists of studies 

with small samples, has produced a number of theoretical contributions, including the 
generation of valuable constructs, explanations for why students have difficulty with proof, 
and suggestions for how students’ proof construction might be improved. However, because 
of the lack of studies with larger samples, it has been problematic to make claims about the 
proving behaviors of the larger population of mathematics majors. Instead, such contributions 
are typically framed as hypotheses that warrant further testing in studies with larger samples. 
The goal of the current paper is to investigate some of the hypotheses that pertain to semantic 
and syntactic reasoning with a larger study. In this section, we list the evidence for three such 
hypotheses and then pose research question that we aim to address. 

1. Mathematics majors are reluctant to engage in semantic reasoning when writing 
proofs. In several small-scale studies, Moore (1994), Author, and Weber and Alcock (2004) 
observed that most mathematics majors generally did not consider examples or diagrams 
when given a proof construction task and, indeed, attributed their lack of example usage as 
one reason why they struggled to write proofs. In another small-scale study, Raman (2003) 
reached a similar conclusion and postulated that students’ reluctance to engage in writing 
proofs based on key ideas was due to students’ epistemology. Raman (2003) conjectured that 
students believed that there was no link between conceptual/visual reasoning and the process 
of construction a proof. Consistent with this viewpoint, some researchers have suggested that 
students have overgeneralized the maxims “you cannot prove by pictures” (e.g., Author) and 
“you cannot prove by example” (e.g., Harel, 2001) to infer that diagrams and examples are 
not useful in the process of writing a proof.  

2. Most mathematics majors either show a strong propensity or a strong reluctance to 
engage in semantic reasoning. Some researchers have claimed that many mathematics majors 
have a “proving style”. That is, these students will either engage with semantic reasoning 
frequently on proving tasks, or alternatively, they will rarely do so and rely on syntactic 
reasoning instead. For instance, Alcock and Simpson (2004, 2005) and Pinto and Tall (1999) 
each conducted semester-long studies on students’ reasoning in a real analysis course. In both 
cases, the research teams observed that throughout the semester, roughly half of their sample 
continually showed multiple markers of visual reasoning on the tasks they were asked to 
complete (including proof-writing tasks) and the other half of the sample rarely or never did 
so. Alcock and Inglis (2008) contended that these findings suggest that most students can be 
classified as syntactic reasoners or semantic reasoners. For a more comprehensive review of 
this literature, see Author. 

3. There is a relationship between undergraduates’ diagram and examples usage and 
their success on proof-writing tasks. Several researchers have reported qualitative studies 
illustrating how mathematics majors used diagrams (e.g., Gibson, 1998) and examples (e.g., 
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Sandefur, Mason, Stylianides, & Watson, 2013) to successfully write proofs. These authors’ 
in-depth analysis showed how these students’ use of informal representations allowed them to 
make progress in proof construction tasks. Gibson (1998) makes this point clear by noting, 
“using diagrams helped students complete sub-tasks that they were not able to complete 
while working with verbal-symbolic representation systems alone” (p. 284). These findings, 
coupled with the findings of Author and Moore (1994) who blamed students’ failure to write 
proofs partially on a predominance of syntactic reasoning, suggest mathematics majors 
perform better on this type of tasks when they use diagrams and examples.  Furthermore, 
these findings are buttressed by studies in which mathematicians have been observed to 
effectively use examples and diagrams on proving tasks (e.g., Lockwood, Ellis, Dogan, 
Williams, & Knuth, 2013; Schoenfeld, 1985). On the other hand, this hypothesis is 
challenged by findings from researchers who reported seeing no link between students’ 
propensity to engage in semantic reasoning and their mathematical achievement (e.g., Alcock 
& Simpson, 2004, 2005; Author; Pinto & Tall, 1999). 

Research questions 
We use data from videotapes of 73 students writing proofs to address the following 

questions. 
(1) What is the distribution of students’ use of semantic reasoning? 

a. Do many students use semantic reasoning on few of the tasks that they are 
given, signifying a reluctance to use semantic reasoning? 

b. Do many students use semantic reasoning on all of the proving tasks they were 
assigned or none of the proving tasks that they were assigned, which would 
suggest that they have a strong propensity to rely on or not use semantic 
reasoning? 

(2) Is the frequency of students’ use of semantic reasoning correlated with their academic 
achievement (i.e., proof writing success and grades earned in proof-oriented 
mathematics courses)? 

Methods 
Participants. Participants were recruited from a large state university in the northeastern 

United States over the course of four semesters. After each semester, every mathematics 
major who completed a proof-based course in linear algebra was sent an e-mail inviting them 
to participate in this study in exchange for financial compensation, of which 73 students 
agreed to participate. This linear algebra course was typically taken by mathematics majors in 
their senior year and a transition-to-proof course was a prerequisite for taking this class. 

Procedure. In this study, participants were asked to “think aloud” as they completed 
seven calculus proof construction tasks (given in the Appendix). They were video-recorded 
as they completed these tasks and they were asked to write up their final proofs as if they 
were handing them in for the final exam of a course. Participants were given the seven 
calculus proving tasks, one at a time, in a randomized order. For each task, they had two 
resources available. First, they were permitted to use graphing calculator software on a 
computer, which permitted them to perform basic arithmetic operations and graph functions 
with a high degree of resolution. Second, they were given a packet that described the 
concepts referred to in the proving tasks. For each concept, the formal definition, an example, 
and when appropriate, a graphical interpretation of the concept were provided. For instance, 
for the concept of even function, the packed provided the formal definition (a function f(x) 
was even if f(x)=f(-x) for all real-values x), f(x)=x2 as an example of an even function, and the 
graphical interpretation that functions were even if their graphs were reflected across the y-
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axis. This was done to minimize the role that (a lack of) content knowledge would play in 
participants’ proof productions. 

Participants were given ten to fifteen minutes to complete each task. Participants were 
allowed to stop working on a task at any time they either felt that they had obtained a written 
solution for the problem, or felt that they could no longer make any productive progress on 
the task. After ten minutes had elapsed, and if the interviewer felt no productive progress was 
being made, the interviewer would suggest that the participant move on to the next problem. 
After fifteen minutes, the work on the problem was terminated. Participants generally stopped 
making progress before this point was reached. This timing is similar to students’ exams, 
where they are typically asked to write four or five proofs in a 50-minute period. 

Analysis. For the sake of brevity, we describe only a simplified subset of our analytical 
scheme here. The complete scheme, as well as its development and rationale, is provided in 
Author. 

Two individual coders each coded 60% of the dataset. To ensure inter-rater reliability, 
20% of the dataset (chosen at random) was coded by both coders. In the simplified coding 
scheme, the coders noted when participants generated an informal representation of a 
mathematical concept that could not be used in a chain of deductions in a formal proof (e.g. 
graphs, diagrams, and examples of the concept). Whenever this occurred we coded the 
corresponding proof attempt as a semantic proof attempt. In cases where this did not occur, 
the proof attempt was coded as a syntactic proof attempt. This simplified coding scheme was 
advocated by Alcock and Inglis (2009). One objection that we (and others) have raised is that 
this dichotomous scheme is too coarse for some analytical purposes (e.g., Sandefur, Mason, 
Stylianides, & Watson, 2013; Author). Therefore, we also created and used a more flexible 
and fine-grained scheme that is too lengthy to describe in this report. Happily, our results 
were consistent across the semantic-syntactic coding schemes that we used. The coders also 
scored each proof as being (a) completely correct, (b) mostly correct with minor and 
inconsequential errors, (c) an attempt with significant errors, but one in which substantial 
progress was made, and (d) an attempt in which no substantial progress was made. Proofs 
that were coded as (a) and (b) were labeled as “correct”, otherwise they were labeled as 
“incorrect”. Finally, participants in this study had all completed a transition-to-proof course, 
real analysis, and a second course in linear algebra. Their Math GPA score was their 
aggregate GPA in these three courses and was used as a measure of course achievement. 

Results  
A summary of the measures we used is presented in Table 1 and the distribution of 

students’ semantic proof productions is given in Table 2. 
 

Table 1. Summary of measures used in this study 
 

                Range               Standard   Inter-rater  
Measure               Min Max Mean Deviation  Reliability*  
Valid Proof 0 6 1.77 1.49  κ = .90 (96%)  
Math GPA 1.33 4.00 3.23 1.75  N/A   
Semantic Proofs 1 7 4.25 1.55  κ =.91 (96%) 
*- Inter-rater reliability was done on a per-item basis. Cohen’s kappa (κ) was used with absolute levels of 
agreement in parentheses. 
 

Table 2. Distribution of students’ productions 
 

Number of semantic   
proof productions  0 1 2 3 4 5 6 7  
Number of students 0 5 4 12 21 13 14 4 
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Table 2 is inconsistent with two hypotheses made in the literature. The first is that 
students are reluctant to use semantic reasoning on proof-writing tasks. All students used this 
on at least one task and 52 of the 73 students (71%) used semantic reasoning on the majority 
of the tasks. The second is that many students would be extreme in their use of semantic 
reasoning. The majority of the students-- 46 out of 73 (63%)-- used semantic reasoning on 3, 
4, or 5 of the tasks. This grouping in the middle is not what one would predict if students 
consistently engaged in semantic reasoning or consistently declined to do so.  

We found no strong relationship between students’ use of semantic reasoning and their 
mathematical achievement. The correlation between the number of students’ semantic proof 
productions and correct proofs was weak (r=.013) as was the correlation between the 
students’ semantic score and Math GPA (r=.119). We considered the possibility that perhaps 
that extreme use of semantic reasoning was deleterious by conducting curvilinear regressions 
using the students’ semantic score as the independent value and correct proofs and Math GPA 
as independent variables but found no significant correlation (R2=.002 and R2=.012 
respectively). Finally, we separated semantic usage by diagrams and formulas (for specific 
example objects) but still found no positive relationship between these factors and 
mathematical achievement (r <.12 in all cases). 

As a final note, we conducted similar analyses using several continuous measures for 
students’ semantic-syntactic scores based on the amount of semantic reasoning that students 
used in their proof attempts and obtained similar results. 

Discussion 
The results of this study are inconsistent with several hypotheses about students’ proof-

writing behavior that are posed in the literature. First, students in our study did not appear to 
be reluctant to use semantic reasoning in their proof writing. We note that two of the studies 
in which this reluctance was observed were situated in the domains of group theory (Author) 
and elementary logic (Moore, 1994). It might be the case that what these researchers 
observed was not reluctance per se, but rather students lacking access to useful informal 
representations of the concepts they were studying, an account we advanced to explain one 
students’ behavior in Author. 

Second, the fact that students did not exhibit “proving styles”, or show a strong 
consistency with their semantic reasoning usage (or lack thereof), contradicts some claims in 
the mathematics education literature. However, this would not be surprising to some 
educational psychologists. In summaries of the literature, Coffield et al. (2004) and Kirschner 
and Marrienboer (2013) noted that both teachers and researchers often classified students as 
having a particular cognitive style on insufficient evidence and these narratives can skew the 
researcher or teacher’s perceptions of these students. In particular, judgments about students’ 
cognitive styles are frequently made based on students’ self-reports, or on their behavior on a 
small number of tasks (sometimes a single task), both of which are considered to be 
unreliable sources of evidence (Coffield et al, 2004).  In Author, we reported that many 
studies claiming to document a consistency in one’s propensity to use semantic reasoning 
suffered from the limitations that Coffield et al. described. 

The most significant result from this study is the limited relationship between students’ 
use of semantic reasoning and their mathematical achievement. This result challenges the 
calls of many to give more emphasis to example-based or diagrammatic reasoning when 
proof-writing (Garuti, Boero, & Lemut, 1999; Gibson, 1998; Sandefur, Mason, Stylianides, & 
Watson, 2013; Raman, 2003; Zaslavsky, 2014). 

Of course, the current study is not without its limitations-- most notably, the tasks in this 
study were in only one domain (calculus) and it is possible that different results might have 
been obtained in other domains such as number theory or topology. To avoid 
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misinterpretation, we do not wish to claim that we have conclusively answered the question 
on the relationship between semantic reasoning and mathematical achievement. Nonetheless, 
we can offer a conjecture for why our results appear to contradict much of the literature. The 
papers cited above each consisted of showing qualitative studies on how examples and 
diagrams can be effective. We think the theoretical claims of these studies are correct-- both 
examples and diagrams offer affordances for proof-writing that the formal-symbolic notation 
of mathematics does not, and students can sometimes take advantage of these affordances. 
However, there are also studies showing how the use of examples and diagrams can cause 
students difficulties and can inhibit proof productions (e.g, Author; Pedemonte, 2007). When 
we ask the question of whether using examples or diagrams correlates with mathematical 
achievement, we are no longer just asking if these results can help students write proofs (they 
can), but whether the benefits of using examples and diagrams offset the challenges that are 
associated with using them. Our data suggest that they do not. Of course this does not mean 
that the suggestion for mathematics majors to use examples and diagrams in their proof 
writing is wrong; it only implies the suggestion needs to be more nuanced. Students must 
learn how to use these effectively which we believe involves first obtaining a more fine-
grained understanding of how mathematicians use examples and diagrams, and the 
difficulties that students face when they try to use them. 
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Appendix 
C1: Suppose f (0) = !f (0) =1. Suppose  !!f (x)> 0  for all positive x. Prove that f (2)> 2 . 
 
C2: Prove that the only real solution to the equation x3 + 5x = 3x2 + sin x is x=0. 
 
C3: Suppose f (x)  is a differentiable even function. Prove that f '(x)  is an odd function. 
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C4: Prove that a
2 + ab+b2 ≥ 0  for all real numbers a and b. 

 
C5: Suppose f ''(x) > 0  for all real numbers x. Suppose a and b are real numbers with a < b . 

Define g(x)  as the line through the points (a, f (a))  and (b, f (b)) . Prove that for all 
x ∈ [a,b] , f (x) ≤ g(x) . 

 

C6: Prove that 
sin3(x)dx

−a

a
∫ = 0

 for any real number a. 
 

C7: Let f  be differentiable on 0,1[ ] , and suppose that f (0) = 0  and !f  is increasing on 

0,1[ ] .  Prove that 
g(x) = f (x)

x  is increasing on 0,1( ) . 
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Determining What To Assess: A Methodology For Concept Domain Analysis As 
Applied To Group Theory 

Kathleen Melhuish 
Portland State University 

With the rise of concept inventory style student assessment, focus has been placed on 
research-based refinement of assessment questions. Of equal importance is how one arrives 
at the tasks meant to reflect a given construct. This report will consider how this might be 
done in a research-based manner. The creation of a Group Concept Inventory (with 
particular attention to isomorphism) will be utilized to illustrate the approach. The 
methodology attempts to add rigor to vague suggestions of using textbooks, consulting 
experts, and referencing literature when developing assessment tasks. Various aspects of 
understanding concepts and attention to which concepts are essential to group (at an 
introductory level) will be discussed. The methodology and accompanying example will detail 
a Delphi process for expert consensus, a narrative and exercise textbook analysis and a 
thorough literature exploration. 

Key words: Assessment, Abstract Algebra, Concepts, Textbook Analysis 

Accurately assessing student understanding remains of primary concern in education 
fields. Often in mathematics, assessing procedures becomes the focus to the detriment of 
assessing conceptual understanding. This is unsurprising for two reasons: 1.) An emphasis on 
conceptual understanding is relatively new (especially at the tertiary level). 2.) Traditional 
summative assessment methods are rarely targeting these understandings. To illustrate this 
point, consider the introductory calculus course. There has been a huge push for reform and 
conceptual assessment, and yet a recent analysis of exams indicated nearly all tasks were 
procedural in nature (Tallman & Carlson, 2012).  

In advanced mathematics courses (such as abstract algebra and analysis), there has not 
that degree of a push towards conceptual understanding. These courses tend to focus on the 
formal proof. While assessing students based on formal proofs is certainly vital for their 
growth as mathematicians, we do a disservice if it is to the neglect of concept understanding. 
In fact, the abstract algebra literature shows that students often lack complete and accurate 
understandings of many group theory topics (Dubinsky, 1997; Hazzan, 1999; Leron, Hazzan, 
& Zazkis, 1995). Having robust understandings of these topics should be an essential goal in 
an introductory course. Further, research has shown the vital role understanding of concepts 
can play within the formal proving activity (see Moore, 1994; Weber & Alcock, 2004).  

One successful model for shifting the focus to concepts comes in the form of the 
Force Concept Inventory (Hestenes, Wells, & Swackhamer, 1992) from physics education. 
The inventory is a multiple-choice assessment whose goal was to determine if students’ had a 
“coherent conceptual system” (p. 14) underlying their understanding of Newtonian physics. 
The Force Concept Inventory is credited with helping to instigate the reform movement 
(Savinainen & Scott, 2002) due to its conceptual focus, ease of use and widespread adoption. 
In mathematics, several concept assessments have been modeled after the inventory, notably 
calculus (Epstein, 2007) and precalculus (Carlson, Oehrtman, & Engelke, 2010). 

Such an instrument in advanced mathematics courses does not exist. Recently, Larsen, 
Bartlo and Johnson (2014) called for the “creation of validated assessment instruments” (p. 
709) in group theory for evaluating instructional innovations. A concept-driven multiple 
choice instrument could allow for the scaling up of explorations of student understandings of 
concepts, provide a tool for instructors to quickly have information about their students’ 
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understanding, provide a way to assess programs, and optimistically, bring awareness to this 
conversation we are often not having in mathematics departments.  

With the neglect of concepts in traditional assessment, developing this type of 
instrument requires a method for determining what is relevant to the concept at hand (that of 
groups at an introductory level) and what is representative. It is impossible to make an 
instrument that tests every facet and so important decisions are made at the beginning of this 
process. Methodologies for these assessments often begin in earnest when discussing the 
creation of questions leaving the earlier decisions of what types of content and tasks to 
include vague. This report will provide a more rigorous methodology for domain analysis 
(prior to task creation) utilizing expert opinion, textbook analysis and research literature to 
provide a well-rounded view of concepts essential to group at the introductory level.  

Assessments and Domain Analysis 
Lindell, Peark, and Foster’s (2007) meta-analysis of concept inventories provided a 

list of typical steps during concept inventory creation (see Table 1). While these steps existed, 
many were not explained in rigorous fashion. The designs focus largely on the latter steps 
where student interviews are used to provide arguments that student thinking is being 
reflected in the tasks and answer selections (see Carlson, Oehrtman & Engelke (2010) for a 
detailed methodology for steps 4-9). Lindell, Peark and Foster identified content validity 
defined as, “the degree to which an inventory measures the content covered in the content 
domain” (p. 15) as often incomplete or vaguely addressed. 

Of particular importance and neglect is step 2. Lindell, Peark and Foster found many 
researchers relying on their own expertise to determine the concept domain. Typically, if 
addressed at all, concept inventories referenced utilizing textbooks, experts or literature as 
ways to determine the concept domain. In Messick’s (1995) discussion of validity, he 
referred to this process as domain analysis. The analysis involves identifying foundational 
concepts, essential task, and established areas of difficulty. Mislevy, Steinberg, and Almond 
(2004) describe domain analysis as: 

…marshaling substantive information about the domain—bringing together 
knowledge from any number of sources and the beginning to organize beliefs, 
theories, research, subject-matter expertise, instructional materials, exemplars from 
other assessments and so on (p. 7).  

Because student understanding in abstract algebra is not a well-explored domain, determining 
the concept domain requires a triangulation of sources to establish validity. This work aims to 
describe an explicit methodology for step 2. 
Table 1 

Steps for Concept Inventory Development 

1. Identify a purpose 
2. Determine the concept domain 
3. Prepare test specifications 
4. Construct initial pool of items 
5. Have items reviewed- revise as necessary 
6. Hold preliminary field testing of items – revise as necessary 
7. Field test on large sample representation of the examinee population 
8. Determine statistical properties of item scores- eliminate inappropriate items 
9. Design and conduct reliability and validity studies (Lindell et al., 2007, p. 15) 
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Conceptual Understanding in Advanced Mathematics 
As noted by Lindell et al. (2007), the precursor to domain analysis, is identifying a 

purpose.  For the case presented here, the goal is to capture a measure of conceptual 
understanding in group theory. I will be adopting Star’s (2005) approach where conceptual 
knowledge includes both Hiebert and Lefvre’s (1986) knowledge rich in relationships and 
“knowledge of concepts” (p. 408). Concepts in advanced mathematics have often been 
discussed in terms of objects. Understanding of objects can arise in various ways including 
compressing of processes, abstracting structure from experience, and working from a formal 
definition (see Tall’s (2004) three worlds of mathematics for a thorough discussion.) 
Knowledge needs to be compressed into thinkable concepts in order to “build a coherent 
connected mental structure to put significant ideas together” (Tall, 2007, p. 153).  
 Tall and Vinner’s (1981) seminal work on concept image and definition unveiled that 
student understanding of concepts extends far beyond their knowledge of definition and 
includes “all mental pictures and associate properties and processes” (p. 152). Further, 
concept images do not require coherence and often only portions are evoked at a given time. 
Concept inventories aim to capture coherence. Savinainen and Viiri (2008) introduced a 
framework to reflect conceptual coherence as found in the Force Concept Inventory which 
included three dimensions: relating different concepts, being able to apply knowledge in 
appropriate contexts and being able to move between representations. This framework is 
similar to Biehler’s (2005) meanings of mathematical concepts where he identified the 
domain of application, relations to other concepts and representations available for working 
with the concept. Attending to understanding of concepts is a multi-faceted exploration. 

The Methodology for Domain Analysis 
 This methodology will include three phases for domain analysis: expert consensus, 
analyzing textbooks, and scouring literature.  
The Delphi Technique 

The Delphi Technique is a process for reaching a conclusion for ill-defined problem 
via expert consensus. In subjective areas, experts can play an essential role when building 
consensus. The Delphi technique is unique in its ability to allow for experts to reflect on each 
other’s opinions while mitigating for perceived hierarchy in opinion which can occur in 
round-table discussions (Streveler, Olds, Miller, & Nelson, 2003). The technique typically 
consists of four rounds were opinions are shared and rankings compiled. My rounds were as 
follows: 

Pass 1: Experts were asked to compile a list of concepts they think are essential in 
introductory group theory. 
Pass 2: A list was compiled of all concepts mentioned by at least two experts. The 
experts then ranked each topic on a scale from 1-10 for difficulty and importance.  
Pass 3: The experts were provided with the 25, 50, and 75 percentile scores from both 
categories and asked to rank, again. During this pass, the experts provided 
justifications for any ranking outside of the 25-75 percent range. 
Pass 4: Experts were provided with the same numerical information as well as the 
new justifications and asked to provide a final ranking. 

It is essential to choose a heterogeneous panel to best capture a multitude of experience. Of 
the 13 panelists who participated all had taught this type of course (ranging from 2.5 to 25 
times). The panel had 4 algebra textbook authors; 5 mathematics education researchers who 
have published related to abstract algebra; 8 mathematician instructors (with research focuses 
ranging from math history and analysis to group theory specialists.) A measure of center is 
used to make the final decision on inclusion. For this panel, any topic that had a mean of at 
least a 9 in importance was identified to be part of further analysis.  
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Textbook Analysis 
 The textbook analysis consisted of first establishing which textbooks are currently in 
use via a random sample. Of the 1,244 schools with a mathematics major, a random sample 
of 294 institutions were surveyed regarding textbook usage (95% CI with interval of +/- 5%) 
In schools where the textbook is not uniform, the textbook most recently utilized was 
included. Any textbook used by at least 20 schools was included for analysis. (This number 
was eventually lowered to include the 4th most popular textbook.) 

 Each of the representative texts was analyzed based on the list of concepts identified 
by the expert panel. The analysis was driven by the identified components of conceptual 
understanding discussed above. The narrative was analyzed with attention to examples and 
informal/formal definitions. Each example was coded for representation, purpose, and topic. 
The representation codes were adapted from Mesa’s (2004) functions including tables, 
symbolic and verbal, but were elaborated and refined through the coding process to more 
accurately reflect representations in group theory (see Table 2). Both groups and mappings 
were coded by representation type. The examples’ purposes were coded initially based on 
Fukawa-Connelly and Newton’s (2014) group example analysis and similarly evolved based 
on the textbooks (see Table 3). 
Table 3 
 
Example Purposes 
Example motivating a definition  (EMD) 
Example of concept following definition  (EFD) 
Example illustrating a specific property a concept does or does not have (EP) 
Example illustrating how to calculate or determine something (EC) 
Example illustrating a proving technique (ET) 
Example motivating a theorem (EMT) 
Example illustrating a theorem (EIT) 
Example using a theorem (EUT)  
Example illustrating a notation (EIN) 

The relevant exercises were then coded using the same representation codes with the 
addition of expected student activity. These codes evolved to particularly reflect the purpose 
of finding activities associated with concepts. The codes included: using a definition to prove 
a direct consequence, showing an example is an instance (or non-instance) of a concept, 
evaluating if an example is an instance of a concept, and switching representations.  
 Each example and exercise were coded by the author. To establish reliability, a 
second coder (a mathematics education PhD student) coded a subset of sections. She coded 
one complete section for each book with varying topics to best capture a variety of codes. 
Each example and exercise was given a percentage of agreement. (Calculated via number of 

Table 2 
 
Representation Codes 
Group - Verbal Description Map – Symbolic Rule 
Group - Symbolic Name Map – Defined Element-Wise 
Group - Table Map – Function Diagram 
Group – Elements and operation  Map -  Defined on Generating Set 
Group – Set Builder Notation Map – Verbal Description 
Group – Cayley Digraph Map – Visual Other 
Group – Geometric Representation  
Group – Defined by generating set  
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agreed upon codes divided by total number of codes from either coder.) The total agreement 
amongst exercise codes was 83.4% and examples was  81.4%.  
Literature Review 
 Each identified concept was then searched for in mathematics education literature to 
identify known sources of difficulty. This was done with three parts in order to maximize 
literature found: 
 1. A full text search for each concept (ex: isomorphism) in each of the 35 journals 
identified by SIGMAA on RUME as research-based and relevant to undergraduate 
mathematics (RUMEonline!, 2011). 
 2. Title search within conference proceedings available from major mathematics 
education conferences including PME, RUME, DELTA, CERME and ICME. 
 3. Search for “Group Theory” and “Abstract Algebra” in ERIC database. 
From these results, a list of documented student conceptions for each topic was compiled 
along with corresponding tasks.  
 Each of these components was developed with consideration to the purpose of the 
instrument (the many facets of conceptual understanding of group) and domain analysis goals 
of identifying what tasks are valued, typical and where known areas of difficulty may exist.  

Results  
 Topics for inclusion as identified by the Delphi process are: binary operation, 
associativity, identity, inverse, group, modular groups, abelian groups, cyclic groups, order 
of a group, order of an element, subgroup, isomorphism, homomorphism, cosets, normal 
subgroups, quotient groups, Lagrange’s Theorem, and the Fundamental Homomorphism 
Theorem. For brevity’s sake, the results will include discussion of one full example: 
isomorphism as well as short general notes. 
 The textbook surveying indicated that 32% of schools use Gallian (2009), 15% use 
Fraleigh (2003), 8% use Gilbert and Gilbert (2008), and 6% use Hungerford (2012). No other 
textbooks were above 3%. (Although, 5% of schools did not use a textbook for their course.) 

Formal and Informal Definitions - Isomorphism: Isomorphism formalizes an idea 
essential to an advanced understanding of groups: What makes two groups the same? As 
discussed in Leron, Hazzan, & Zazkis (1995), isomorphism has both a naive and formal 
definition. Students could conceive as an isomorphism as a relabeling of the same group 
or/and attend to isomorphism being a bijective homomorphism. This duality was reflected in 
the narratives of all four textbooks (see Table 4).  
Table 4  
 
Informal Characterization of Isomorphism 

Textbook Excerpt 

Gilbert & Gilbert 
(2008) 

“They are algebraically the same, although details such as the appearance 
of elements or the rule defining the operation may vary.” 

Hungerford 
(2012) 

“At first glance, these groups don’t seem the same. But we claim that 
they are ‘essentially the same’, except for labels on the elements.” 

Gallian (2009) “...the same group is described with different terminology.” 

Fraleigh (2003) “These four tables differ only in the names (or symbols) for their 
elements and in the order that those elements are listed as heads in the 
tables.” 
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General Trends:  Isomorphism was unique in having both formal and informal 
descriptions. No other concept identified had an informal description found across textbooks. 
Typically, informal descriptions were lacking or alternately, the informal description was 
merely what we called a translation of the formal language. 

Examples – Isomorphisms. The examples across all textbooks predominately served 
the purpose to provide an instantiation after a definition. Each book also contained at least 
one motivating example. In three of texts, this motivating example used the idea of language 
providing an isomorphism (saying the numbers in French or using Roman Numerals does not 
alter the structure of the number system.) The fourth text began by utilizing group examples 
from earlier in the book. Fraleigh (2003), and Hungerford (2012) included non-examples 
which utilized structural properties to show groups were not isomorphic. Gallian (2009) 
included a non-example of a particular map that did not meet the onto requirement. Gilbert 
and Gilbert (2008) included no non-examples.  

General Trends: The isomorphism section more frequently had motivating examples 
than other sections. However, the purpose of most examples to just instantiate a definition 
was consistent across sections and books. Occasionally, non-examples were included 
(especially in the case of a group), but were far scarcer.  

Isomorphism Representations: Three of the four textbooks used tables to highlight the 
“relabeling” aspect of isomorphism in the narrative. The map representation was more 
typically a symbolic assignment rule or an explicit list of where each element was mapped. 
The symbolic rule dominated isomorphism sections (92% of representations). Alternate 
representations (such as a function diagram) were not found in the isomorphism section.  
 General Trends: Mapping representations were predominately symbolic throughout 
the narrative and exercises of the texts. Groups were predominately represented by a symbol 
or name (with a small minority of verbal descriptions.) While alternate representations (such 
as tables or function diagrams) were occasionally introduced in narrative, they were rarely 
used within exercises.  
  Isomorphism Activity: The expected activities associated with isomorphism reflect 
some of the dualities from the literature. Some texts emphasized showing (or determining if) 
a map is an isomorphism whereas others emphasized showing two groups were isomorphic 
(see table 5). All texts had some number of problems showing two groups are not isomorphic 
with three of the four texts having a significant amount of exercises of this nature. 

Table 5 
 
Expected Student Activity 

Activity Fraleigh 
(2003) 

Gallian 
(2009) 

Gilbert & 
Gilbert (2008) 

Hungerford 
(2012) 

Show a given map is an 
isomorphism  

5% 25% 10% 16% 

Show two groups are 
isomorphic 

8% 19.5% 20% 29% 

Show two groups are not 
isomorphic 

2.5% 19.5% 20% 29% 

Evaluate if a map is an 
isomorphism 

38.5% 0% 0% 0% 
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Evaluate if two groups are 
isomorphic 

0% 0% 10% 3% 

Show isomorphism 
preserves a property 

13% 5.5% 13% 3% 

Find an isomorphism 
between two groups 

20% 3% 30% 0% 

Other 13% 28% 17% 19% 

General Trends: The most frequent activity was showing that some example fulfilled 
the requirements to be a concept. Next was showing an instance was a non-example and 
evaluating if an instance was an example of a given concept. Secondary was the use of the 
definition or theorem (in the case of Lagrange’s Theorem and the Fundamental 
Homomorphism) to arrive at an immediate consequence.  

In the Literature: Several papers have addressed isomorphism in the literature. 
Studies have found students often will determine if groups are isomorphic by considering if 
they are equi-numerous (Dubinsky, Dautermann, Leron, & Zazkis, 1994; Leron, Hazzan, & 
Zazkis, 1995; Weber, 2001) Leron, Hazzan and Zazkis further identified that students will 
use order of elements to determine that two groups are isomorphic and want a unique map.  

At this point, the research body is primarily case studies ranging from single students 
to single classes. These studies have only begun to unravel student conceptions. For example, 
homomorphism, a concept identified as essential, has largely been unstudied. Its exploration 
exists guised in its relationships to isomorphism and the Fundamental Homomorphism 
Theorem. Weber (2001) found undergraduates were not aware of the utility of the theorem in 
proofs. While Nardi (2001) showed a case of students struggling to untangle the various maps 
in the theorems. Beyond these connections (and the relationship to isomorphism above), 
homomorphism remains relatively unknown. 

Discussion and Direction of Future Research 
 The preceding domain analysis provides some tools for mapping the concept domain 
associated with groups. Representations, activities, examples, formal and informal definitions 
and documented student conceptions all play an essential role when deciding what tasks to 
include in an assessment. Domain analysis is an often ignored, but important step towards 
determining what tasks are representative, reflective and valued. 
 At this point, tasks can be created. In the isomorphism example, such tasks might 
include determining if groups are isomorphic aligning with textbook activities. Further, 
groups that are equi-numerous provide fruitful ground for probing understanding base on the 
literature search. Tasks can then be evaluated for importance and potential insight into 
student understanding by returning to the expert panel. Only at this point would a subset of 
tasks be tested as open-ended survey questions with students.  
 The above analysis also provides some discussion points for how we currently teach 
the course as reflected in textbooks. For example, while representations are considered 
essential to meaning and heavily emphasized in some content areas, texts rarely utilized some 
of the more visual options available such as tables and diagrams. Further, informal definitions 
are minimal to non-existent for many of the essential topics identified in group theory. These 
aspects may reflect the larger issue that conceptual understanding is often not prioritized in 
these courses. A concept-based assessment could challenge the predominating assumption 
that formal proofs are sufficient evidence of student understanding.  
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Lampert et al. (2010) define ambitious teaching as teaching designed to achieve the 
ambitious goals of conceptual understanding, procedural fluency, strategic competence, 
adaptive reasoning, and productive dispositions. They argue that this kind of teaching 
necessarily involves actively engaging students. Yet, lecture continues to dominate 
introductory college calculus courses throughout the country. In this poster, we draw on data 
from an national project  (Characteristics of Successful Calculus Programs) to explore both 
national trends regarding ambitious teaching practices in calculus and present two case 
studies that give some important insights into how department-wide ambitious teaching can 
be instituted and sustained.  

Key words: Calculus, Ambitious teaching, Active Learning 

Lampert et al. (2010) define ambitious teaching as teaching designed to achieve the 
ambitious goals of conceptual understanding, procedural fluency, strategic competence, 
adaptive reasoning, and productive dispositions. They argue that this kind of teaching 
necessarily involves active learning in which students interact with their instructor and 
classmates. In fact, Freeman et al. (2014) argued that active learning should be the preferred 
teaching practice based on a meta-analysis of 225 studies. Yet, lecture continues to dominate 
introductory college calculus courses throughout the country. In this poster, we will present 
data both on national trends regarding ambitious teaching practices in calculus, as well as 
present two case study institutions that have embraced ambitious pedagogy in calculus with a 
continued push towards innovation. 

Background and National Trends 
 This exploration into ambitious teaching is part of a larger project aimed to identify 
features of college calculus programs that make them successful (Bressoud, Carlson, Mesa, & 
Rasmussen, 2013). Calculus instructors and students across the country were surveyed with 
the aim of identifying successful schools based on student outcome variables including 
persistence, grades, interest, confidence and enjoyment. Eighteen institutions of varying types 
were then selected as case study schools. Site visits to these institutions featured classroom 
observations as well as interviews with instructors, students, administrators, and others who 
were involved with the calculus programs. In total, over 5,500 students completed a survey at 
the end of their Calculus 1 course. This survey included questions about the types of 
pedagogical activities in the class. As seen in Figure 1, lecturing was a frequent activity both 
nationally and within the selected schools. However, Figure 2 illustrates a distinct difference: 
the selected school more frequently had students working together. 
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Figure 1. Frequency of lectures from national sample vs. selected institutions. 

 
Figure 2. Frequency of students working together from national sample vs. selected institutions. 

Case Study Results 
 We will present two cases of substantial ambitious teaching we observed on our site 
visits. The first is a case of sustained ambitious teaching (PhD 3) while the second is a case 
of technology-supported ambitious teaching (BA 1.) At PhD 3, a large research university, 
administrators, instructors, and students all described group work, an emphasis on conceptual 
understanding, and a consistent requirement for students to explain mathematics and their 
own thinking. This ambitious pedagogy was supported in several ways including a graduate 
student instructor training program that clearly articulated the conceptual and pedagogical 
goals of the course. This institution also used the Calculus Concept Inventory (Epstein, 2007) 
to monitor student conceptual understanding resulting in evidence that the instructional 
approach was successful. This resulted in administrative pressure to move to a more 
economically efficient approach.  
 At BA 1, a private university, instructors and administrators have a history of 
embracing innovation, particularly technological innovation. Currently, the institution is 
flipping their calculus classes with the primary goal of increasing student engagement. 
Technology usage goes beyond flipping and includes the usage of clickers and ipads. 
Instructors and students commented on the usage of technology to provide deeper exploration 
of problems and applications, and to share student strategies and facilitate whole-class 
discussion. Both the instructors and administration have actively pursued changes that would 
increase access to mathematics for all student learners. 
 The two cases provide evidence that it is possible to institutionalize ambitious 
pedagogy in introductory calculus. The flipped classes at BA 1, and the small-group learning 
model at PhD 3 provide two models for systematically incorporating ambitious teaching. 
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The purpose of calculus I labs: Instructor, TA, and student beliefs and practices 
 

Yuliya Melnikova 
Texas State University 

 
Currently, political and economic demand for students graduating with Science Technology 
Engineering and Mathematics (STEM) degrees is high, but unfortunately, a large percentage of 
students switch to non-STEM majors in the first year of study. Roadblock courses, such as 
Calculus I, can contribute to poor retention rates due to classroom environment and instructor 
practices. Current research suggests recitation sessions (or labs) led by teaching assistants 
(TAs) can positively impact student retention rates. 

This study investigates the role of labs in Calculus I instruction. Through classroom observation 
the researcher investigated the practices of TAs and through interviews the researcher explored 
how beliefs about the purpose of Calculus I labs by the lead instructor, TA, and students 
compared to one another as well as to the practices observed.  Preliminary findings on the 
alignment of participant views and classroom practices will be presented, and implications for 
increasing student retention rates will be discussed.  

Key words: [Calculus, Recitation Sessions, Teaching Assistant (TA), STEM retention] 
 

Introduction/Literature Review 
Engage to Excel, published by the President’s Council of Advisors on Science and 

Technology (PCAST, 2012) called for one million more college graduates with degrees in 
science, technology, engineering, and mathematics (STEM) in the next decade. Similarly, 
businesses are advocating for more STEM graduates in order to have a skilled workforce (BHEF, 
2010; TAP, 2008). While there is a growing demand for STEM majors, the number of STEM 
degrees awarded is not increasing proportionately to the overall number of degrees in the United 
States (BHEF, 2010). A little over half of students entering a STEM major complete their degree 
(NCES, 2009) with a large percentage switching to non-STEM majors in the first year or two 
(Hilton & Lee, 1988; Seymour & Hewitt, 1997).  

Calculus, as part of undergraduate mathematics, has been a topic of conversation and reform 
since the 1980s and was viewed as a filter to the STEM pipeline, which blocks access to STEM 
careers (Steen, 1987; Tucker, 2013). Based on a MAA study of Calculus I in 2010, 72 percent of 
students enrolled in Calculus I have STEM career goals, and 50 percent earned an ‘A’ or ‘B’, 
which would indicate a likelihood of success in further mathematics courses (Bressoud, Carlson, 
Mesa, & Rasmussen, 2013). As seen with this data, only half of students are performing well in 
Calculus I courses, so calculus remains as a roadblock or a filter to the STEM pipeline for the 
other half.  

Studies have addressed why students leave STEM majors and have found that students who 
stay in STEM as well as switch out of STEM majors report the “cold” classroom environment, 
dull lectures, and indifferent instructors to be main issues of concern (Seymour & Hewitt, 1997; 
Strenta, Elliot, Adiar, Matier, & Scott, 1994; Tobias, 1990). Furthermore, the students who 
switch and students who persist in STEM study do not differ academically or behaviorally, 
which challenges the notion that introductory STEM courses “weed out” unprepared or 
academically challenged students (Seymour & Hewitt, 1997). Research by Tresiman (1992) 
supports similar conclusions.  
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To increase STEM student retention rates, the structure of classrooms needs to be changed by 
trying to actively engage students (Daempfle, 2002). If faculty will not or are not able change the 
classroom structure, Seymour (2002) suggests a middle path where faculty “use recitation 
sessions run by teaching assistants as a way to insert more active learning, and formative 
assessment, into an otherwise unchanged lecture and lab pedagogy” (p. 87).  

Approximately, a quarter of Calculus I courses have recitation sessions (labs) led by a 
teaching assistant (TA)  (Bressoud, 2011). Those run by TAs have been shown to incorporate 
more active learning and to increase student satisfaction and retention (Muzaka, 2009; O’Neal, 
Wright, Cook, Perorazio & Purkiss, 2007). If students perceive the TA as approachable and able 
to provide a comfortable learning environment, then a lab component might improve the “chilly 
classroom” issue described in Seymour and Hewitt (1997). Thus, a lab run by a TA might 
provide a way to remediate the issues cited by students who switched out of STEM majors. 
Further research is needed to investigate how the lab environment can be best suited to the needs 
of the students.  

Using a case study of Calculus I at a large, four-year university in central Texas, the 
following study investigated the current state of lab instruction and classroom environment of a 
single mathematics department. By selecting one section of Calculus I, an embedded case study 
examined how the lab portion (recitation session or workshop) is viewed by its participants 
(which include the instructor, the TA, and students) and how those views align between the 
participants and the practices in the lab. The study aimed to answer the following research 
questions 

1. What is the state of Calculus I labs at a single university? 
2. What purpose does the lab serve according to instructor, TA, and student? 

� How are the views of the purpose aligned or misaligned? 
� How are the views aligned or misaligned with the classroom practices? 

Theoretical Framework 
Taylor and Newton (2013) found that when implementing institutional change at a 

university, alignment of goals in the stakeholders (administrators, instructors, students) was key 
for integrating blended learning. Senior leadership served as a principal facilitator, while lack of 
a concise definition of the goal was a barrier. This research considers the classroom as the unit of 
change and therefore the key stakeholders are presumed to be the faculty in charge, the TA, and 
the students. For that reason, these groups were interviewed to better understand their goals as 
well how those goals align. The goals were then compared with observations of classroom 
instruction and environment to better understand whether current practices aligned with factors 
supported by research from the literature which may lead to student satisfaction and possible 
retention in STEM.  

Methodology 
To answer the research questions, a qualitative case study design was utilized, and data was 

collected using observations and interviews. A large, public four-year university in central Texas 
was selected to serve as a case study since it represented a bounded system (Merriam, 2009). The 
structure of a Calculus I course at this university has a lecture component lead by a faculty 
member (lecturer or professor) and a lab component directed by a TA (graduate or undergraduate 
student) with a maximum enrollment of 48 students. Six out of seven sections of Calculus I 
offered in the spring semester were observed in order to create an observation protocol to assist 
with data collection and to describe the state of labs. Using a single Calculus I section as an 
embedded case study, the instructor, the TA, and three students were interviewed to investigate 
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what is the perceived purpose of the lab component and to see how their views align. 
Observations were then conducted using the protocol on the embedded case to see how the 
participants’ views aligned with the practices in the lab. 

Existing observation protocols (RTOP, ITC, QMI) were considered, but did not suit the 
needs of the present study. In order to construct an observation protocol, each lab section was 
observed by the researcher. The classrooms were observed one month into the semester to allow 
time for the TA and students to establish classroom norms in order to observe a “typical” lab. 
The researcher took open field notes in order to document as many different aspects of the 
calculus lab as possible. The field notes were then analyzed using open and axial coding 
(Merriam, 2009) from which three themes emerged: content, interaction, and participation. 
Content aims to observe which topics were covered and who selects the material to be presented. 
Interaction describes how the students and the TA interact with each other, and participation 
refers to the level of engagement of the students in the classroom. From these themes, the 
observation protocol was created to facilitate future observations and allow the researcher to 
count instances of events that occurred. The observation protocol was then piloted by observing 
each TA’s lab again near the end of the semester. Through five rounds of use, the protocol was 
able to serve as a useful tool to aide in data collection. 

One section was selected to serve as an embedded case study. Semi-structured interviews 
were conducted with the instructor, the TA, and three students to elicit their views on the purpose 
of the lab component. The interviews were then transcribed and coded to look for themes. 
Qualitative analysis of the interviews found four themes; assessment, recitation, comfortable 
learning environment, and communication. The lab serves as a time for assessment through 
quizzes and a way for the students to prepare for exams. Recitation is also a significant 
component of the lab with more time and more exposure to different calculus problems. Since 
the lab is led by a TA, who is also a (graduate) student, the students are able to communicate 
more comfortably with the TA. This creates a comfortable learning environment in which the 
students are able to ask questions and work together. The interview themes were then compared 
with the observations of the classroom. 

Results 
The researcher found the labs to be TA-centered, with the TA selecting and working out the 

problems on the board and reviewing lecture material. If given an opportunity to work on a 
problem on their own, the students worked independently with little evidence of group work or 
collaboration. Within the multiple sections of Calculus I, there was a large variation in the 
amount of instances of students asking questions during a single class (1-7 instances) and 
interacting one-on-one with the TAs (0-16 instances). The level of student engagement also 
varied across the lab sections. In some labs the students took notes and appeared to be actively 
listening, while in others, the students socialized with classmates or used cell phones.   

From the interviews, the views held by the instructor, the TA, and the students were aligned 
in two of the four themes; recitation and communication. All of the participants viewed working 
problems (recitation) as part of the purpose or structure of lab, and the TA was viewed as 
someone with who the students could easily communicate. The other two themes, assessment 
and comfortable learning environment, had some misalignment. The instructor and the TA 
perceived the daily quizzes as formative assessment and as a way for students to self-assess. 
However, the students viewed the quizzes as part of the daily routine and a way to enforce 
attendance. While all of the participants viewed the lab as a comfortable learning environment 
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where students can ask questions, the instructor viewed the lab as a time for group work, but this 
view was not explicitly shared by the TA or the students.  

The observations of the embedded case study (one instructor, one TA, and three students) 
compared with the interview results revealed differences between the stated purpose of lab and 
the observed routine of the lab. Even though all of the interviewed students mentioned the 
comfortable atmosphere and the ability to ask questions, almost no students actually utilized the 
opportunity. During the observed lab, only one student asked a question. The TA frequently gave 
the students the opportunity to work on a problem before working it out on the board. When 
prompted to work on the problem, the students worked silently and independently, which is 
contrary to the instructor’s view that the lab should utilize group work, and nor was it evident in 
observations.  

Conclusion 
The results of the study show a variation in the practices of the lab, a misaligned of views 

shared by the instructor, TA, and students, and differences in the stated views and observed 
practices. While some views may be aligned with research, there is much room for improvement 
especially within the practices of the classroom. Since the classroom environment and interaction 
with TAs have shown to aid with STEM retention, enhancing the lab component of Calculus I 
would be beneficial to all students.  

Audience Questions 
1. Are there any suggestions on the causes of misalignment between instructors, TAs, and 

students? 
2. Are there any suggestions for future research? 

References 
Bressoud, D. M. (2011). The calculus I instructor. Launchings. Retrieved from  

http://www.maa.org/columns/launchings/launchings_06_11.html 
Bressoud, D., Carlson, M., Mesa, V., & Rasmussen, C. (2013). The calculus student: Insights 

from the MAA national study. International Journal of Mathematical Education in 
Science and Technology, 44 (5), 685 – 698. 

Business Higher Education Forum (2010). Increasing the number of STEM graduates: Insights 
from the U.S. STEM education & modeling project. Retrieve from 
http://www.bhef.com/sites/g/files/g829556/f/report_2010_increasing_the_number_of_ste
m_grads.pdf 

Daempfle, P. A. (2002). An analysis of the high attrition rates among first year college science, 
math and engineering majors. U.S. Dept. of Education, Office of Educational Research 
and Improvement, Educational Resources Information Center (ERIC).  

Fausett, L.V. & Knoll, C. (1991). Effective use of teaching assistants in first year calculus. 
PRIMUS, 1(4), 407-414. 

Feder, M. (2012, December 18). One decade, one million more STEM graduates [Blog post]. 
Retrieved from http://www.whitehouse.gov/blog/2012/12/18/one-decade-one-million-
more-stem-graduates 

Hilton, T. L., & Lee, V. E. (1988). Student interest and persistence in science: Changes in the 
educational pipeline in the last decade. Journal of Higher Education, 59(5), 510–526. 

Merriam, S. B. (2009). Qualitative research: A guide to design and implementation. San 
Fransico, CA: Jossey-Bass.  

Muzaka, V. (2009). The niche of graduate teaching assistant (GTAs): Perceptions and 
challenges.  Teaching in Higher Education, 41(1), 1-12.  

18th Annual Conference on Research in Undergraduate Mathematics Education 75118th Annual Conference on Research in Undergraduate Mathematics Education 751



National Center for Education Statistics. (2009). NCES 2009-161. Students who study Science, 
Technology, Engineering, and Mathematics (STEM) in postsecondary education. 
Washington, DC: U.S Department of Education, Institute for Education Sciences. 
Retrieved from http://nces.ed.gov/pubs2009/2009161.pdf 

O’Neal, C., Wright, M., Cook, C., Perorazio, T., & Purkiss, J. (2007). The impact of teaching 
assistant on student retention in the sciences. Journal of College Science Teaching, 36(5), 
24-29. 

President’s Council of Advisors on Science and Technology. (2012). Engage to excel: Producing 
one million additional college graduates with degrees in science, technology, 
engineering, and mathematics [Report to President]. Retrieved from 
http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-engage-to-excel-
final_feb.pdf 

Seymour, E. (2002). Tracking the processes of change in US undergraduate education in science, 
mathematics, engineering, and technology. Science Education, 86(1), 79-105. 

Seymour, E. & Hewitt, N. (1997). Talking about leaving: Why undergraduates leave the 
sciences. Boulder, CO: Westview Press.  

Steen, L. (1987). Calculus for a new century: A pump not a filter. Washington, D.C.: 
Mathematical Association of America.  

Strenta, C., Elliot, R., Russell, A., Matier, M., & Scott, J. (1994). Choosing and leaving science 
in highly selective institutions. Research in Higher Education, 35(5), 513-537.  

Tapping Americas Potential. (2008, July 15). Business leaders call for progress in advancing 
U.S. innovation by strengthening Science, Technology, Engineering and Math [Press 
release]. Retrieved from http://tapcoalition.org/news/pdf/tap_progress_press_release.pdf 

Taylor, J.A. & Newton, D. (2013). Beyond blended learning: A case study of institutional change 
at an Australian regional university. Internet and Higher Education, 18, 54-60. 

Tobias, S. (1990). They’re not dumb: They’re different: A new “tier of talent” for science. 
Change, 22(4), 10-30.  

Treisman, U. (1992). Studying students studying calculus: A look at the lives of minority 
mathematics students in college. The College Mathematics Journal, 23(5), 362-372.  

Tucker, A. (2013). The history of the undergraduate program in mathematics in the United 
States. American Mathematical Monthly, 120(8). Retrieved from: 
http://www.maa.org/sites/default/files/pdf/CUPM/pdf/MAAUndergradHistory.pdf 

 
 

18th Annual Conference on Research in Undergraduate Mathematics Education 75218th Annual Conference on Research in Undergraduate Mathematics Education 752



Implementing inquiry-oriented instructional materials: A comparison of two 
classrooms 

 
Hayley Milbourne 

San Diego State University 

Prior research in linear algebra education has focused on documenting and understanding 
the difficulties students have with specific topics. In more recent years, the research has 
started to shift towards developing instructional methods to address these issues. In this 
study, I explore the ways in which two instructors implement inquiry-oriented materials 
focused on span and linear (in)dependence. One of the instructors had prior experience with 
these materials and the other did not. Through an analysis of video recordings of these 
classes, I use the Inquiry-Oriented Discourse Moves framework to analyze how each 
instructor conducts whole-class discussion and the affordances these discussions provide 
their students. 

Key words: Linear Algebra, Opportunities to Learn, Inquiry-Oriented Instruction 

Over the past decade, educational research in linear algebra has been focused on student 
understanding in linear algebra (e.g. Britton & Henderson, 2009; Lapp, Melvin, & Berry, 
2010; Stewart & Thomas, 2009; Wawro, Sweeney, & Rabin, 2011). Several different 
theoretical perspectives have been used for analyzing student understanding on a variety of 
topics, the most common one being APOS (Action Process Object Schema; Dubinsky & 
McDonald, 2001). However, the overarching theme within these studies has been that 
students struggle with linear algebra mostly because it is the first time they are expected to 
understand new definitions of abstract concepts and use them to construct proofs (Britton & 
Henderson, 2009). To address this, several groups of researchers have begun studying 
different curricula aimed at helping smooth student difficulties with the subject (e.g. 
Gueudet-Chartier, 2006; Love, Hodge, Grandgenett, & Swift, 2014; Trigueros, Possani, 
Lozano, & Sandoval, 2009). 

The work presented in this paper is from a larger project, which is developing a sequence 
of tasks for central topics in linear algebra, including span and linear (in)dependence, 
transformations, systems of equations, and eigentheory. Currently, the task sequence for span 
and linear (in)dependence has been used at several different institutions and has shown 
promise for promoting student understanding (Wawro, Rasmussen, Zandieh, Sweeney, & 
Larson, 2012). A great deal of the success of these units, however, relies on fidelity of 
implementation. To provide support in the implementation of the units, this project is creating 
instructional materials based on the model suggested by Lockwood, Johnson, and Larsen 
(2013). The instructor support materials provide, among other things, suggestions on leading 
whole class discussion to allow for students to engage in argumentation. The phrase 
“discursive moves” is use to capture the ways in which an instructor’s utterances prompt or 
curtail student argumentation.  

In this study I examine how different instructors use the instructional materials in the 
implementation of the unit on linear (in)dependence. Specifically, I am interested in 
understanding the different opportunities afforded to the students to engage in the materials 
by instructors with different levels of experience with the implementation of the unit. The 
research questions that are guiding this work are: 

1. What different discursive moves do these two teachers use and what differing 
opportunities do these discursive moves afford learners?  
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2. How can the differences between the two classrooms inform ways in which to 
support instructors utilizing an inquiry-oriented instructional approach for the first 
time? 

Literature 
Inquiry-oriented instruction has been shown to increase student conceptual understanding 

and produce equivalent performance on computational tasks, as well provide students with a 
stronger foundation for subsequent coursework (Freeman et al., 2014; Kogan & Laursen, 
2014; Rasmussen, Kwon, Allen, Marrongelle, & Burtch, 2006). The level of cognitive 
demand is critical to such success. For example, Stein and Lane (1996) found greater learning 
gains when students are given cognitively demanding tasks that have multiple solution 
methods. However, simply providing instructors with the materials for an inquiry-oriented 
approach does not ensure these aforementioned gains. Research has shown that teachers with 
little experience with the inquiry-oriented style struggle with its implementation (Wagner, 
Speer, & Rossa, 2007).  

A central premise of this study is that the classroom learning environment both enables 
and constrains student learning (Cobb & Yackel, 1996). A classroom that provides students 
with more opportunities to participate in classroom activities provide students with more 
opportunities to learn (Bagley, 2014). Gresalfi, Barnes, and Cross (2012) conceptualize 
opportunities for learning as affordances (Gibson, 1979). Gibson discussed the variety of 
actions made possible by an object as the affordances of that object, such as a chair affords 
sitting but a door does not. In a similar way, the tasks used in a classroom and the teaching 
strategies implemented offer different affordances for student engagement with the material. 
However, simply having an affordance does not necessitate that the student will take it up.  
To understand the discursive affordances offered by the teacher and whether or not they are 
taken up by the student, I use a coding scheme known as the Inquiry-Oriented Discursive 
Moves (IODM) (Rasmussen, Kwon, & Marrongelle, 2009). 

This particular coding scheme focuses on the utterances of the instructor in whole class 
discussions. Each code is based on the types of discursive moves made by the teacher and 
therefore offers insight into what types of opportunities the teacher is providing the students 
to participate in argumentation. Moreover, the way each utterance by the instructor is coded 
is influenced by how the students respond. The way the students interpret the utterance is the 
way it influences the classroom discourse so in this way, whether or not the students take up 
the affordance offered by the instructor through their discursive move is considered. Table 1 
provides an explanation of a few of the different codes used in the IODM coding scheme. 
Specifically, these codes are from the discursive move of Questioning. The complete 
framework consists of four main categories of discursive moves, each with four 
subcategories. 

Inquiry-oriented Instructional Materials 
As stated previously, this study is part of a larger project focused on designing and 

disseminating an inquiry-oriented curriculum for linear algebra, including instructional 
support materials for the implementation of the units. The creation of these units was inspired 
by the instructional design theory of Realistic Mathematics Education (RME). A main tenet 
of RME is that mathematics is first and foremost a human activity (Freudenthal, 1971). 
Furthermore, the use of experientially-real problems provides students with anchoring points 
with which to participate in the reinvention of the mathematics (Gravemeijer & Doorman, 
1999). A guiding RME design heuristic is  “emergent models.” According to Zandieh and 
Rasmussen (2010), “the intention of the emergent model heuristic is to create a sequence of 
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tasks in which students first develop models-of their mathematical activity, which later 
become models-for more sophisticated mathematical reasoning” (p. 58).  

In an inquiry-oriented classroom, the instructor leads classroom discussions in ways that 
help the students engage in argumentation and mathematization. To this end, the instructional 
materials were written to include the rational for each unit, ideas for implementing the 
materials, and insight into possible student responses.  

 
Table 1 
 
IODM Coding Scheme: Questioning 

Code Description 
Q1: Evaluating The intention is to check for understanding against what the teacher 

sees as an expected response. 
Q2a: Clarifying – 
speaker 

Purpose of the request is to seek clarification of detail (either for the 
teacher or for others) what a students is saying. Request for clarification 
is directed to the speaker. 

Q2b: Clarifying – 
other 

Purpose of the request is to seek clarification of detail (either for the 
teacher or for others) what a students is saying. Request for clarification 
is directed to someone other than the speaker. 

Q3a: Explaining 
– own 

Intention is for student(s) to share ideas (however tentative). Could be 
in question or request form. Requests to explain your thinking or the 
thinking of your group. 

Q3b: Explaining - 
other 

Intention is for student(s) to share ideas (however tentative). Could be 
in question or request form. Requests to explain or comment on another 
student's or group's thinking. 

 

Participants & Data Sources 
This study involved two instructors (HM and NS) at two different institutions. Each 

instructor was paired with a member of the research team that was involved in the 
development of the materials to provide support in their implementation. Interviews were 
conducted before, during, and after the implementation of each of the units and each class 
was videotaped. The data used in the project described here is from the classroom videos in 
Fall 2013. NS used the materials in previous years and taught Linear Algebra three times 
prior. HM had not used the materials before but was familiar with the first unit from 
discussions with researchers involved in the creation of the materials. At the time of the data 
collection, she was teaching Linear Algebra for the second time. These two instructors were 
chosen based on their varying levels of experience with the materials and similar amount of 
experience teaching the course. The videos of their classrooms during the implementation of 
the first unit, the Magic Carpet Ride (MCR), were transcribed for analysis. Consistent with 
the research questions that focus on the class as a whole, only the whole class discussions 
were analyzed. 

Methods of Analysis and Initial Results 
Each classroom transcript was coded using the IODM coding scheme by two researchers 

and checked for consistency. This process enabled me to identify what discursive moves are 
used by each instructor and in turn provides information on what types of opportunities are 
afforded the students in each classroom. Differences noted between the two will help inform 
future revisions of the instructor materials for the unit. 
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Coding is currently in progress and thus only initial findings are discussed. The two 
classrooms under analysis were quite different from one another in format. In the classroom 
taught by NS, the instructor more experienced with the materials, the lecture portion of the 
class usually lasted about 3 to 5 minutes at a time and occurred two to three times during the 
class. During whole class discussions, NS typically had the students describe their results and 
compare their methods with those around them. In contrast, the class taught by HM followed 
a more IRE (initiation, response, examination) pattern throughout the lecture portion. 
Students also worked in groups but usually for a shorter amount of time compared to NS.  

As an example of the discursive differences between the two classrooms, consider the 
types of questions asked by each instructor during the second day of implementing the 
materials. Table 2 shows the codes used for describing the types of questions asked by each 
instructor as well as their frequency in the second day of the course. A description of the 
codes is given in Table 1.  

 
Table 2 
 
IODM Coding Scheme: Frequency of Questioning 

Code NS HM 
Q1: Evaluating 5 12 
Q2a: Clarifying – speaker 6 8 
Q2b: Clarifying – other 1 5 
Q3a: Explaining – own 13 6 
Q3b: Explaining – other  0 0 

 
Both teachers asked many questions during whole class discussions but the type of 

questions asked was quite different. Each of these different questions provided students with 
different opportunities to learn and participate in argumentation. For example, consider the 
following discursive move by NS: “OK, so what does that entail? What did you do, what was 
your first step?” Within the classroom context, the students were presenting their solutions to 
the first task in the MCR sequence. NS requested the group to explain their solution method 
to the class. For this reason, this utterance was coded as a Q3a, which covers questions or 
requests to explain their own thinking. The students in the group requested to explain are 
provided an opportunity to participate in argumentation and share their ideas. Moreover, the 
class is now given the opportunity to see a different solution method. 

As a contrasting example, consider the following discursive move by HM: “What do you 
think? So we have negative time when we’re not starting at the origin. Right? Or we have 
negative direction. Yeah?” Within the classroom context, the students were trying to decide 
what a negative scalar meant when it multiplied a direction vector in the MCR sequence. This 
utterance was coded as a Q1 as the instructor was searching for a specific answer from the 
students. After this utterance, students began to give explanations for negative time but the 
instructor continued to ask about negative direction. While this does provide the students with 
the opportunity to argue their point of view, since the instructor continued to prompt for 
negative direction, the students were not able to necessarily make the distinction for 
themselves. 

Questions for Audience Discussion 
• One of the main goals is to find ways in which the instructional materials can support 

instructors who are implementing these units, and possible utilizing the inquiry-oriented 
instructional approach for the first time. What other factors that could affect how these 
materials are implemented in the classroom have not yet been considered here? 
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• What supports can we provide to instructors implementing these inquiry-oriented 
materials that encourage the use of discursive moves affording opportunities to learn? 
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Students’ understanding of composition of functions using model analysis  
 
David Miller           Nicole Engelke-Infante   Solomon Adu 
West Virginia University        West Virginia University  West Virginia University 

Abstract: Model analysis is a quantitative research method used in physics education 
research to analyze and interpret the meaning of students’ incorrect responses on a well-
designed research-based multiple-choice test. We have adapted this method to study students’ 
understanding of function composition when functions are represented graphical. Model 
analysis accounts for the fact that students may hold more than one idea or conception at a 
time, and may use different ideas and concepts in response to different situations. It is 
uniquely suited to study students’ understanding of function composition, as students often 
hold multiple, sometimes conflicting misconceptions on function composition, which they may 
use at different times. Model analysis can capture information on self-consistency of a 
student’s responses. We collected data from a calculus class before and after the class 
reviewed composition of functions. We find that model analysis offers insights not offered by 
traditional statistics. 

Key words: Model Analysis, Function Composition, Pre-calculus, Traditional Statistics, and 
Consistency 

One of the most fundamental courses for science and engineering is calculus (Bressoud, 
Carlson, Mesa, & Rasmussen, 2013). To be adequately prepared for calculus, one needs to 
have a strong understanding of algebra and trigonometry (i.e. pre-calculus). It has been noted 
that students bring knowledge from their life experiences and instruction in prior classes (Bao 
& Redish, 2006). These prior experiences and knowledge have an effect on how they 
interpret what they are taught in mathematics. Bao and Redish points out in physics, which 
can be transferred over to mathematics, that “student knowledge may be locally coherent” 
where “different contexts can activate different bits of knowledge.” These bits of knowledge 
are usually limited in earlier learning stages for students and they only have a few (usually 
two or three) alternative conceptions for any particular mathematics topic. In this article, we 
will use the definition of mental model from Boa and Redish (2006) that states it is “a robust 
and coherent knowledge element or strongly associated set of knowledge elements” (p.3).  

Students’ prior knowledge does not always line up to what is being taught in a 
mathematics class. Students have misconceptions that are developed by a partial or naïve 
understanding of a particular mathematics topic. These misconceptions may cause students to 
answer questions that are similar, from an expert viewpoint, in an inconsistent manner. 
Instructors might not be able to reveal, when examining performance, whether a student is 
consistent or inconsistent in answering questions that are similar. Furthermore, instructors 
would usually not glean from traditional statistics whether the majority of the students answer 
these similar questions in the same way, if there are groups of students that answer it in the 
same way, or if there are groups of students that answer in the same way but in some 
circumstances they answer one way and in other circumstances they answer another way. 
Traditional statistics would not allow for such detail information to be revealed and this study 
will use model analysis to reveal the consistencies, inconsistencies and the prominent model 
states for the pre-calculus topic of function composition. 

Literature Review 
Functions are one of the central mathematical concepts that play an important role in higher-
level mathematics. The concept of function has been the focus of numerous studies (Carlson, 
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1998; Breidenbach et al., 1992; Dreyfus & Eisenberg, 1982, Leinhardt et al., 1990, Selden & 
Selden, 1992; Sierpinska, 1992; Vinner & Dreyfus, 1989; Monk, 1992; Monk, 1989; 
Dubinsky & Harel, 1992, Cooney & Wilson, 1993; Ferrini-Mundy & Graham, 1991). There 
have been few studies that focused on composition of functions. These studies have focused 
on students difficulty with function composition with explicit formulas (Sfard ,1992), 
functions represented by words (Bowling, 2009), and their relation to students’ understanding 
of the chain rule (Cotrill, 1999). Also Carlson et al. (2010) stressed that a process view of a 
function (see next section) is important in understanding function composition and Vidakovic 
(1996) claimed that subjects with schemas for function composition and inverse functions are 
able coordinate them to obtain a new process.  

Engelke et al. (2005) investigated students’ understanding of function composition 
based on an analysis of a subset of questions from the PCA (Carlson et al., 2010). Their study 
focused on functions that were represented by formulas, tables, graphs, and words. Table 1 
shows the percentages of students that answered the function composition questions correctly 
when presented different function representations on two different versions of the PCA 
(Carlson et al., 2010a). The high percentage of students that answered the function 
composition question when given a formula showed that students had a solid action view of 
functions (see next section). However, the declining performance on the remaining questions 
showed that students did not have the process view of functions that was needed to be 
successful with function composition (Engelke, 2005).  

 

Precalculus Data  Composition (% Correct)  
Version  N  Algebraic 

Formula  
Graph  Table  Square 

Context  
Circle 
Context  

G  379  91%  45%  50%  20%  9%  
H  652  94%  43%  41%  25%  17%  

Table 1: Data from PCA (Engelke et al., 2005) 

Theoretical Framework 
A mental model is a robust and coherent knowledge element or strongly associated set of 
knowledge elements. Mental models may be correct or incorrect and are sometimes simple 
while other times complex. When given a sequence of questions over a particular 
mathematical topic, an expert will use a single, coherent mental model while a student 
(novice) may use one or more incorrect mental models. The incorrect mental models are 
activated for a variety of reasons. There are a variety of model situations that can happen 
when students are asked a question. Sometimes one single model is activated which could be 
correct or incorrect, while other times multiple models are activated and a student has to 
make a decision on which model will be used to determine their answer. It is in this 
circumstance where they have to make a decision and is where the student can become 
confused and use different mental models at different times.  

Model analysis is a quantitative research method that can be used to measure 
student’s understanding and interpretation of concepts they learn in the classroom.  When 
using model analysis, researchers take into account the previously obtained knowledge of the 
students and how this may affect the way in which students answer questions. We will apply 
the theory developed by Bao & Redish (2006) to the models in each of the categories 
explained in the methodology section. For simplicity, we will discuss the model analysis with 
respect to the models of category B – function composition for functions given by a graph. 
The five steps of model analysis (Bao & Redish, 2006) are: 
I. Identify common student models. This occurs through in-depth interviews. 
II. Design a multiple-choice instrument. We will use a modified version of the Pre-

Calculus Assessment (PCA) (Carlson, Oehrtman, & Engelke, 2010). 
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III. Characterize a student's responses with a vector in a linear “model space.” Since 
there are five models (MS0, MS1, MS2, MS3, MS4) (see data section for the models in 
Category B) we will state each student response as a vector with five components. 

IV. Create a “density matrix.” We create a matrix for each student response by taking the 
outer product of the vector in III and its’ transpose. The matrices for all questions for a 
particular student are combined to get a density matrix for each student. All density 
matrices are combined to get a class model density matrix.  

V. Analyze eigenvalues and eigenvectors. The eigenvalues and eigenvectors will reveal the 
prominent model states in the class. When one eigenvalue is larger than 0.65, then there is 
a significant prominent model state. When there are two relative large eigenvalues 
compared to the other eigenvalues and the corresponding eigenvectors are orthogonal, 
then there are two prominent  model states. 

For more details on these three steps, refer to (Bao & Redish, 2006). This paper will 
concentrate on analyzing the results of IV and V.   

APOS Theory (Asiala, Brown, DeVries, Dubinsky, and Mathews, 1997) provides 
another part of the framework for this study and refers to the concepts of Action, Process, 
Objects, and Schema. An Action is a transformation of objects using a series of steps (or 
cues) that an individual has to externally refer to (or be aware of). A Process is an action that 
is not directed by external stimuli (it is internalized). Asiala et al. (1997) state “an individual 
who has a process conception of a transformation can reflect on, describe, or even reverse the 
steps of the transformation without actually performing those steps” (p. 7). One can think that 
when a process is perceived as an entity upon which actions and processes can be made, it 
becomes an Object. Finally, a collection of interconnected processes and objects organized in 
a structured manner form a Schema.        

Research Questions 
1) What additional information does model analysis give us, if any, over the traditional 

statistical information about composition of function stated in Engelke et al. (2005)? 
2) What does this additional information tell us about students’ understanding of 

composition of functions?  

Methodology 
Participants and Setting 
In the spring 2014 semester, students in first semester calculus that incorporates pre-calculus 
enrolled at a large public northeast research university, were asked complete a modified 
version of the PCA (Carlson et. al., 2010a) that focused on composition of functions. This 
version of the PCA consisted of 18 questions on function composition broken up into five 
categories:  Category A - formulas, Category B - graphs, Category C - tables, Category E – 
words, and Category D. Category D consisted of information about the composite function 
and either outer or inner function and asked to find the inner or outer function, respectively, 
at a point.  There were 4 questions in Category A, B, and C, and 3 questions in Category D 
and E. Our instrument was given to 93 students prior to reviewing function composition in 
class (pre-test) and 83 students after they had reviewed function composition in class (post-
test). This resulted in 50 students who took both pre-test and post-test that we will use as data 
points for the model analysis. 

Since the PCA is a valid and reliable instrument, we modified (in collaboration with 
the second author) the instrument to include more questions across each of the function 
representation forms. In order for us to identify the different kinds of mental models students 
used in answering one additional composition of function question, we video recorded 
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interviews with10 students on 3 new function composition questions. After analysis, we were 
able to determine five common models students used in answering this question and we used 
these models as multiple choice questions for Category D. 

Data 
We present the data for one of the four categories investigated by model analysis – functions 
given by graphs. The other three categories will be presented in an expanded paper. We 
present Category B since it is similar to Category C (functions given by tables) and the results 
show there is some inconsistency, along with two prominent model states.  

Figure 1 below shows the student model states for Category B. The question for 
category B is to use the graphical representation of two functions 𝑓(𝑥) and 𝑔(𝑥) to evaluate 
either 𝑓(𝑔(𝑥)) or 𝑔(𝑓(𝑥)). The incorrect models are the reverse, ignoring input function, 
and ignoring outside function models. Students that use the reverse model, calculate 
𝑔(𝑓(𝑥)) instead of 𝑓(𝑔(𝑥)) or vice versa. Students that use the ignoring input function 
model treat 𝑓(𝑔(𝑥)) as 𝑓(𝑥) by ignoring the input function. Students that use ignoring 
outside function model evaluate 𝑓(𝑔(𝑥)) as 𝑔(𝑥) by ignoring the outside function 𝑓. 

 
Figure 1 Student Models for Function of Composition Given by Graphs 

Table 2 below, presents the class density matrix, eigenvalues and eigenvectors derived from 
model analysis for the Pre-Test. From the diagonal entries in the density matrix table, 8% of 
the students answered the questions using Null Model (MS0), 42% used the Correct Model 
(MS1), 7% used the Reverse Model (MS2), 22% used the Ignoring Input Function Model 
(MS3) and 21% used the Ignoring Outside Function Model (MS4) (Diagonal entries of the 
table give the percentages of students that chose each model). Consistency can be examined 
by looking at the off-diagonal entries relative to the diagonal entries. Boa and Redish (2006) 
state that “large off-diagonal elements indicate low consistency (large mixing) for individual 
students in their model use” (p.9). The model statistic is 𝑝 = 𝑂𝐷𝑀𝑆𝑋,𝑀𝑆𝑌

√𝐷𝑀𝑆 𝑋𝐷𝑀𝑆 𝑌
 and when it is larger 

than 0.5 there is a significant mixing between model state X and model state Y, where OD 
and, 𝐷𝑀𝑆𝑋 and 𝐷𝑀𝑆𝑌  stands for off-diagonal entry in the 𝑎𝑋𝑌 entry of the matrix and the 
diagonal entries corresponding to row X and Y, respectively. For the pre-test, the only 
significant mixing occurs between MS3 and MS4. The eigenvalues of 0.29 & 0.49 are both 
smaller than 0.65, are much larger than all other eigenvalues, and hence tell us the 
corresponding orthogonal eigenvectors, where its entries are squared, are the prominent 
model states for the class (Bao & Redish, 2006). The two prominent class model states are 
shown in figure 2.  

𝑣𝑝𝑟𝑒 𝐵1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =

(

 
 
0.0064
0.3249
0.0121
0.3721
0.2809)

 
    &    𝑣𝑝𝑟𝑒 𝐵2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =

(

 
 
0.0144
0.6724
0.0225
0.1296
0.16 )

 
 

 

Figure 2: Prominent Model States for the Pre-test 
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The second of these vectors, associated with 0.49 eigenvalue, shows that a group of the 
students in the class are in the model state where they have a probability of 0.67 that they will 
choose the correct answer and a probability of 0.32 that they choose the other alternative 
(incorrect) models.  The first of these vectors, associated with 0.29 eigenvalue, indicates that 
another group of students have a probability of 0.32 that they choose the correct answer and a 
probability of 0.68 that they choose the other alternative (incorrect) models. There are other 
groups of students that have other model states in which they do not choose the correct 
answer with a high probability, however, these groups are relative small compared to the 
other two groups. That is, the first two eigenvalues are much bigger than all other eigenvalues 
and therefore there corresponding orthogonal eigenvectors are two prominent groups.  

Density Matrix MS 0 MS 1 MS 2 MS 3 MS 4 
MS 0 (null model) 0.08 0.03 0.01 0.02 0.04 
MS 1 (correct model) 0.03 0.42 0.04 0.05 0.07 
MS 2 (reverse model) 0.01 0.04 0.07 0.04 0.04 
MS 3 (ignore input function model) 0.02 0.05 0.04 0.22 0.12 
MS 4 (ignore output function model) 0.04 0.07 0.04 0.12 0.21 

      Eigenvalue 0.06 0.07 0.10 0.29 0.49 
      Eigenvector 0.02 -0.89 -0.44 0.08 0.12 

 
0.07 0.02 0.07 -0.57 0.82 

 
-0.98 0.00 0.01 0.11 0.15 

 
0.13 -0.21 0.66 0.61 0.36 

 
0.12 0.41 -0.61 0.53 0.40 

Table 2 Common Pre-Test Category B 

Table 3 below, present the class density matrix, eigenvalues and eigenvectors derived from 
model analysis for Post-Test. The diagonal entries in the density matrix table shows that, 8% 
of the students answered the questions using Null Model (MS0), 48% used the Correct 
Model (MS1), 6% used the Reverse Model (MS2), 21% used the Multiplication Model 
(MS3) and 18% used the Square or Reverse Square Model (MS4). Examining the off-
diagonals entries to the diagonal entries, the only significant mixing again occurs between 
MS3 and MS4. The eigenvalues of 0.30 & 0.53 are both smaller than 0.65 and hence tells us 
the corresponding orthogonal eigenvectors, where its entries are squared, are the prominent 
model states for the class. The prominent class model states are shown in figure 3. 

𝑣𝑝𝑜𝑠𝑡 𝐵1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =

(

 
 
0.0016
0.1764
0.0121
0.3969
0.4096)

 
  𝑎𝑛𝑑 𝑣𝑝𝑜𝑠𝑡 𝐵2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =

(

 
 
0.0121
0.81
0.01
0.1225
0.0529)

 
 .                                  

Figure 3: Prominent Model States for the  Post-Test 

The second of these vectors, associated with the 0.53 eigenvalue, shows that a group of the 
students in the class are in this model state where they have the probability of 0.81 to choose 
the correct answer and a probability of 0.19 that they choose the other alternative (incorrect) 
models.  The first of these vectors, associated with the 0.30 eigenvalue, indicates that another 
group of students have the probability of  0.17  that they choose the correct answer and a 
probability of 0.83 that they choose the other alternative (incorrect) models.  

Density Matrix MS 0 MS 1 MS 2 MS 3 MS 4 
MS 0 (null model) 0.08 0.04 0.01 0.02 0.02 
MS 1 (correct model) 0.04 0.48 0.03 0.08 0.03 
MS 2 (reverse model) 0.01 0.03 0.06 0.03 0.03 
MS 3 (ignore input function model) 0.02 0.08 0.03 0.21 0.14 
MS 4 (ignore output function model) 0.02 0.03 0.03 0.14 0.18 
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Table 3 Common Post-Test Category B 

Results and Discussion 
Engelke et al. (2005) reported that 45% of the 379 students that took version G of the PCA 
and 43% of the 652 students that took version H of the PCA could correctly answer the 
composition of functions given a graph question. Our data shows that if we look at all the 
students that took both the pre and post-test modified PCA, 42% of the students on the pre-
test could correctly answer the composition of functions graph problem. Engelke (2005) 
states the percentages for the incorrect models on version H and our data is very similar for 
the correct, reverse, and ignore input models. There was some difference in the ignore output 
function (10% for PCA while 21% for our data) and null model (13% for PCA while 7% for 
our data), but they are still somewhat similar. Although our data supports Engelke et al. 
(2005) results, it adds a little more information on the consistency that students choose the 
same model within all questions on Category B, most but not all the time. In terms of pre-test, 
the only inconsistency between two models occurred between MS 3 and MS 4 where the p-
value (𝒑 = 𝟎. 𝟓𝟓𝟖𝟑 > 𝟎. 𝟓) was significant (Boa & Redish, 2006). This says that some 
students that chose the answers corresponding with the incorrect model MS3 and while other 
times chose the answer that corresponding with the incorrect model MS4. The data in 
Engelke (2005) did not reveal this inconsistency.  
 For the post-test for category B, we have very similar results. For our data, 48% of 
the students answered the composition of functions given a graph correct. This is slightly 
higher (6%) than for the pre-test and slightly higher (4.26%) than the weighted average 
(43.74%) of version G and H for Engelke et al.’s (2005) study. There is consistency in 
student’s model states except when considering model state 3 and 4 where the p-value was 
p=0.72 > 0.5. When we examine the eigenvalue and corresponding eigenvectors, we gain 
even more information. Figure 4 shows the prominent model state for the pre and post-test. 

𝑣𝑝𝑟𝑒 𝐵1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =

(

 
 
0.0064
0.3249
0.0121
0.3721
0.2809)

 
  , 𝑣𝑝𝑟𝑒 𝐵2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =

(

 
 
0.0144
0.6724
0.0225
0.1296
0.16 )

 
 , 𝑎𝑛𝑑                  

 

𝑣𝑝𝑜𝑠𝑡 𝐵1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =

(

 
 
0.0016
0.1764
0.0121
0.3969
0.4096)

 
  , 𝑣𝑝𝑜𝑠𝑡 𝐵2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =

(

 
 
0.0121
0.81
0.01
0.1225
0.0529)

 
 .                                

Figure 4: Prominent Model States for the Pre and Post-Test 

When comparing the pre and post for the second of these two groups, we have a larger group 
of students (not necessarily the same students or the same size) that had a probability of 
choosing the correct model state (0.67-pre vs. 0.81-post) after they have reviewed 
composition of functions given by graph in class, while fewer students had the probability of 
choosing model states 2, 3 or 4 (0.31 vs. 0.19, respectively). For the first of these two groups, 
we have a smaller group of students that had a probability of choosing the correct model state 
(0.32 vs. 0.18) and a probability of  choosing model state 3 or 4 (0.65 vs. 0.81, respectively). 

      Eigenvalue 0.05 0.05 0.08 0.30 0.53 
      Eigenvector 0.01 0.28 0.95 0.04 0.11 

 
-0.09 -0.04 -0.07 -0.42 0.90 

 
0.64 -0.73 0.19 0.11 0.10 

 
0.45 0.48 -0.21 0.63 0.35 

 
-0.61 -0.40 0.07 0.64 0.23 
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The probability of choosing MS2 was about the same.  Therefore we have two groups whose 
model state vectors are quite different. We also see that there is very little inconsistency other 
than a mixed model state for MS3 and MS4. 

Conclusion 
This study adds additional data to the study by Engelke et al. (2005). It shows that model 
analysis yields much information beyond that of traditional statistics. We gain information 
about students’ consistencies/inconsistencies and the prominent model state vector for the 
class which give us a view of what students’ understand with regard to function composition.  

First of all for function composition given by a graph, students’ model state vectors 
are in the mixed region for both the pre and post-test. That is, as a class, they sometimes 
answer correctly while other times answer incorrectly. However, model analysis tells us there 
is a mixing between incorrect model states 3 and 4 where students sometimes answer one 
way while other time answer another way when answer function composition questions 
involving graphs. In addition, there were two prominent model states that developed from the 
data. On the pre-test, one of these groups (the larger one) had a probability of around two-
thirds that they would answer correctly, but had misconceptions where they ignored the input 
function or ignored the outside function with a probability of 0.30.  On the post-test the larger 
group choose the correct answer with a probability of 0.81, the misconception on ignoring the 
outside function was reduced (from a probability of 0.16 to 0.053), and the misconception of 
ignoring the input  function remained at the same probability level. It was a different story for 
the other of the two prominent groups. On the pre-test, this group had a probability of about 
one-third that they would answer correctly, but had misconceptions where they ignored the 
input function or ignored the outside function with a probability of 0.65. On the post-test this 
group choose the correct answer with probability 0.18 and they had a stronger misconception 
of ignored the input function or ignored the outside function with a probability of almost 
0.80.  

In summary, we see that model analysis can reveal information about the consistency 
and inconsistency of how students answer questions and can illuminate the model states for 
prominent groups of students in the class. This information can be used in teaching, not only 
to know what the misconceptions are, but information on to what extent. This could lead to 
teaching interventions (in class or outside of class) to dispel the misconceptions in order to 
solidify the students’ knowledge of a fundamental concept in mathematics. 
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The Effects of Using Spreadsheets in Business Calculus on Student Attitudes 
 

Melissa Mills 
Oklahoma State University 

This study investigates the effects of using spreadsheets in Business Calculus. Both the 
computer and non-computer sections were taught using reformed curricula that focused on 
business applications, the use of realistic data sets, and conceptual understanding. This study 
compares student attitudes towards mathematics in both spreadsheet and non-spreadsheet 
sections as measured by pre- and post- surveys, student interviews, and examination data. 

Key words: business calculus, student attitudes, spreadsheets 

Literature Review 
A significant body of research has examined Calculus for STEM students (e.g. Asiala, 

Cottrill, Dubinsky & Schwingendorf, 1997; Bressoud, Carlson, Mesa & Rasmussen, 2013; 
Carlson, Jacobs, Coe, Larsen & Hsu, 2002; Gonzalez-Martin & Camacho, 2004; Gravemeijer 
& Doorman, 1999; Oehrtman, 2009; Thompson, 1994; Zandieh, 2000). However, the 
research on Applied Calculus and Business Calculus in particular is far less extensive (e.g. 
Garner & Garner, 2001; Liang & Martin, 2008). Before calculus reform, applied calculus was 
typically a watered-down version of theoretical calculus, consisting mostly of problems 
devoid of any application context (Garner & Garner, 2001).  

Early efforts to incorporate technology in Applied Calculus provided evidence that 
students can understand calculus concepts before mastering procedural skills (e.g. Heid, 
1988; Judson, 1990). The use of technology shifts the instructional emphasis from 
computation to analysis, which is significant because students in Applied Calculus often have 
weak algebraic skills. The emphasis on conceptual skills afforded by the use of technology 
was shown to give students more confidence and flexibility when speaking about the 
concepts of Calculus, though it did not show any measurable gains on the written 
examinations (Heid, 1988).  

These findings led to a call for re-sequencing the material so that the concepts are 
presented via application problems before the computational techniques are presented. The 
Calculus Consortium produced the Hughes-Hallett text (Hughes-Hallett, 1996), which 
increases the use of applications and modeling with realistic data, and presents conceptual 
ideas before computational techniques. The MAA’s CRAFTY report for Business and 
Management (Lamoreux, 2004) recommends an emphasis on modeling and application 
problems in Business Calculus, along with the use of standard business technology 
(spreadsheets). The Hughes-Hallett text meets many of these recommendations and is 
considered a “reformed” text (Garner & Garner, 2001), though it does not incorporate the use 
of spreadsheets.   

Although there have been a few efforts to incorporate spreadsheets into the Business 
Calculus curriculum (Felkel & Richardson, 2009; Lamoreux & Thompson, 2003; Liang & 
Martin, 2008), the trend is not widespread, and there has been little research into the 
effectiveness of incorporating spreadsheets in particular.  

Studies investigating the effectiveness of calculus courses often focus on student attitudes 
towards mathematics, students’ conceptual understanding, and students’ ability to perform on 
examinations (Depaolo & Mclaren, 2006; Bressoud, et. al., 2013; Heid, 1988; Garner & 
Garner, 2001). Student performance in a reformed Business Calculus course (using the 
Hughes-Hallett, 1996 text) showed an increase in their ability to correctly answer conceptual 
questions and showed more confidence when explaining calculus concepts (Garner & Garner, 
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2001). It has been shown that attitudes towards mathematics got worse after taking Calculus 
I. The study showed a decrease in confidence, decrease in enjoyment, and a decrease in desire 
to continue in mathematics (Bressoud et. al., 2013). However, it has been shown that student 
attitudes towards business calculus can improve after doing a unit on Calculus in a 
quantitative analysis course taught by Business faculty (Depaolo & Mclaren, 2006).  

This study investigates the impact of using spreadsheets in a reformed Business Calculus 
course. In particular, the study compares two sections of a reformed Business Calculus course 
taught using spreadsheets with two sections of a reformed Business Calculus course using 
graphing calculators. The analysis focuses on student attitudes and their performance on 
comparable exam items.  

Research Questions 
1. Does using spreadsheets in Business Calculus have an effect on student attitudes 

towards mathematics?  
2. How does using spreadsheets contribute to students’ opinions of the usefulness of a 

Business Calculus course? 
Methods 

The data were collected at a large comprehensive research university in the Midwest 
during the summer 2014 semester. Four sections of Business Calculus were offered during 
the summer session. Two of these sections used a reform curriculum (Hughes-Hallett, 2010) 
and the other two used a different reform curriculum that is structured around the use of 
spreadsheets (May & Bart, 2012).  All four sections covered differential calculus and its 
applications to business (optimization, marginal analysis, elasticity, and linear 
approximation). The instructors of the four sections agreed to teach the chapter on 
multivariable functions (including partial derivatives and optimization) in lieu of the chapter 
on integration.  

One of the computer sections was taught by the author and the other was taught by a 
graduate student. Because of the use of spreadsheets, it is possible to routinely construct 
mathematical models from data. The text attempts to use examples that students should view 
as relevant to business and notation that is consistent with their other business classes. 
Because many of the students are not familiar with using spreadsheets to do computations, 
the text also covers the necessary spreadsheet skills to do the problems in each section. In 
class, the instructor would lecture, going back and forth between working examples in 
spreadsheets and presenting concepts on the chalkboard or projector. The students took notes 
and followed along with the spreadsheet examples on their own laptops.  Because of the 
small size of the sections (no more than 28 students each), the instructors were able to help 
troubleshoot students’ technical problems and occasionally hold whole-class discussions. 
Students turned in both paper homework assignments and spreadsheet assignments. They 
were allowed to use spreadsheets on most quizzes, and their exams were divided into a 
“computer portion” and a “non-computer portion.”  

Both non-computer sections were taught by graduate students that had previous 
experience teaching the course using the Hughes-Hallett (2010) text. The Hughes-Hallett text 
is a reform text that focuses on real applications and conceptual understanding of the calculus 
content. The text has a balance between skills and concepts, and uses the “rule of four,” 
which encourages students to think about functions in different ways (graphically, 
numerically, symbolically, and verbally). The text is technologically agnostic, although in 
these particular sections the instructors used graphing calculators occasionally. The 
instructors presented the material via lecture, providing prepared notes for students to print 
off and fill in during class. The instructors used graphing calculators in class, and permitted 
students to use graphing calculators on all quizzes and examinations.  
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The data collected for this study include pre and post surveys of student attitudes, written 
exams, and post-course student interviews. All students enrolled in Business Calculus were 
asked to participate in the study. The participants included 46 students from the computer 
sections and 38 students from non-computer sections. 

Three students from the computer sections and three from the non-computer sections 
volunteered to participate in 15-minute interviews. The interview addressed the students’ 
perceptions of the usefulness of the course as a whole, asked that they comment about 
different aspects of the course, and addressed their understanding of the concept of 
derivative. The interviews took place in the three days prior to the final examination.  

To measure student attitudes towards mathematics, I used the attitudes portion of the 
CSPCC instrument (Bressoud, et. al., 2013). The specific questions used in this analysis can 
be found in the Appendix. 

Results 
Preliminary data analysis concentrated on the interview data and four items on the 

questionnaire. The four questionnaire items addressed: perceived ability to succeed, 
confidence, perceived understanding, and enjoyment were all measured on a six-point Likert 
scale.  

Business Calculus students are often described as “math phobic” (Lamoreux, 2004), 
while students who take Calculus 1 have chosen more math-intensive majors. The data show 
that Business Calculus students, in general, have less enjoyment in mathematics than do 
Calculus 1 students (see Bressoud, et. al, 2014). The participants have a high level of 
confidence in their knowledge and abilities.  The passing rate (grade C or better) for all 
sections in the summer semester was 83.7%. Note that many of the students who failed or 
withdrew were not available to take the post-survey.  

 
Table 1. Student attitudes from pre- and post-survey. Percentage agreeing with each of the 
statements. 
 Non-computer 

Pre-survey 
(n=36) 

Non-computer 
Post-Survey 

(n=32 ) 

Computer 
Pre-survey 

(n=44) 

Computer 
Post-Survey 

(n=43) 
1. I believe that I have the 
knowledge and abilities to 
succeed in this course. 

92% 100% 89% 95% 

2. I am confident in my 
mathematical abilities. 

72% 84% 91% 88% 

3. I understand the 
mathematics that I have 
studied. 

81% 94% 98% 88% 

4. I enjoy doing mathematics. 58% 71% 61% 67% 
 

 The percentage change was computed for students for whom pre-and post-surveys can 
be matched. The items were on a six point Likert scale, so the change was computed by 
taking their post-response minus their pre-response and dividing by six as presented in Table 
2. There is positive change for both sections on all of the items except for item 3 in the 
computer section. Interview data from six participants suggests that the students perceive that 
they understand the mathematics more when they write it on paper. This could be a possible 
explanation for why students in the computer section did not see a gain in their perceived 
understanding.  
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Table 2. Average percentage change for students for whom pre- and post- surveys can be 
matched  
 Non-Computer Computer 
1. I believe that I have the knowledge and 
abilities to succeed in this course. 

2.69% 5.69% 

2. I am confident in my mathematical 
abilities. 

1.08% 0.40% 

3. I understand the mathematics that I 
have studied. 

3.76% -1.98% 

4. I enjoy doing mathematics. 3.33% 6.35% 
 
The interviews focused on the students’ perception of the course as a whole and the 

usefulness of the course in their business classes and future careers. The small number of 
interviews suggest that students view learning the mathematics with spreadsheets as directly 
applicable to their future careers, while students who did not use spreadsheets were not as 
certain that they would use the material in the future.  

The three students from the computer sections all agreed that they would use the 
spreadsheet knowledge that they gained in the course. One student said, that “the course was 
really beneficial, as far as getting something out of it. Especially learning spreadsheets. I 
mean, that is, I can’t stress how important that is when you get out of here. That’s what 
everything is. Everything is done with spreadsheets.” Another student said, “in the business 
world, you do a lot with Excel. I feel like learning it in this class has upped my confidence of 
how to do spreadsheets” 

The three students in the non-computer course were not certain that they would use the 
concepts taught in the course. When asked if taking this course would help him in his future 
job, one student said “I’m not sure it will.” Another student said, “Um, to an extent. I’m not 
100% sure… [but] it was really fun to learn all of those things, even if I’m not going to use 
them.” The third student said, “I have a genuine interest in math, so I think I can kind of tie it 
in to what I might be using [in the future].” 

Continuing analysis focuses on the remainder of the questionnaire data and a comparison 
of the examination data from both computer and non-computer sections.  

 
Questions 

1.  This study had a relatively small number of interviews. What are some suggestions for 
interview questions that can be asked when I do this study on a larger scale? 
2. Examination data was also collected from students in both sections. What differences 
should I attend to when comparing student work from both sections? 
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Appendix 

 
 Please select the most appropriate answer. 
 Strongly 

Disagree 
 

 
Disagree 

 

Slightly 
Disagree 

Slightly 
Agree 

 
Agree 

Strongly 
Agree 

I believe I have the knowledge and abilities to succeed 
in this course. 

Ο Ο Ο Ο Ο Ο 

I am confident in my mathematical abilities. Ο Ο Ο Ο Ο Ο 
I understand the mathematics that I have studied. Ο Ο Ο Ο Ο Ο 
I enjoy doing mathematics. Ο Ο Ο Ο Ο Ο 
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Students’ Reasoning about Marginal Change in an Economic Context 

Thembinkosi Mkhatshwa and Helen Doerr 

Syracuse University 

This study reports on how ten undergraduate students enrolled in business calculus reasoned 
about marginal change (marginal cost, marginal revenue, and marginal profit) while 
engaged in a task-based interview followed by a semi-structured interview. The study had 
two major findings: (1) students had difficulty distinguishing between marginal cost and 
approximate marginal cost and (2) students conflated marginal cost and marginal revenue 
with total cost and total revenue respectively. For future research, we might consider 
investigating how students’ understanding of marginal change impacts their ability to solve 
optimization problems situated in the context of cost, revenue, and profit. 

Key words: Marginal Change, Business Calculus, Rates of Change 

Literature Review 
Students’ understanding of rates of change (average and instantaneous rate of change) in a 
motion context is well documented in the research literature (Bery & Nyman, 2003; 
Beichner, 1994; Carslon, Jacobs, Coe, Larsen, & Hsu, 2002; Cetin, 2009; Monk, 1992). 
Research also exists on students’ understanding of rates of change in non-motion contexts 
such as fluid flow and temperature change (Carslon et al., 2002), light intensity and voltage 
drop in a discharging capacitor (Doerr, Ärlebäck, & O’Neil, 2013), and banking (Wilhelm & 
Confrey, 2003). However, research on students’ understanding of rates of change, and in 
particular marginal change, in an economic context is scarce, a gap that this study attempted 
to address through the following research questions: 

1.  What do students’ responses to marginal economic analysis (cost, revenue, and profit) 
problems reveal about their understanding of marginal change and rates of change? 

2.  What does students’ reasoning about marginal change reveal about their understanding 
of the derivative? 
 

Theoretical Framework 
This study used a multiple representation’s framework (Davis, 2007) that served as a lens 
through which we were able to analyze students’ reasoning about marginal change in the 
real-world context of cost, revenue, and profit in three representations: (1) graph, (2) table, 
and (3) text.  
 
Research Methodology 
The study followed a qualitative research design. Data were collected using task-based 
interviews (Goldin, 2000) and semi-structured interviews. Open coding and Davis’s (2007) 
framework were used to code the data. 
 
Results of the Research 
There were three major results in the study: (1) nearly all the students conflated marginal cost 
with total cost and marginal revenue with total revenue (2) students had difficulty explaining 
approximate marginal cost let alone distinguishing it from marginal cost, a result that can be 
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attributed to a limited understanding of the concept of the derivative, and (3) nearly all the 
students reasoned correctly about marginal change information rooted in a task about a major 
airline within the immediate context of the task while about half of them reasoned correctly 
beyond the immediate context of the task. 
 
Discussion and Conclusions 
Most of the students demonstrated an understanding of marginal change as an amount of 
change and not as a rate of change which is problematic since one of the major goals of a 
business calculus course is to help students understand marginal change as a rate of change. 
It would be important to investigate the effectiveness of integrating a modeling perspective 
(Lesh & Zawojewski, 2007) in the teaching of business calculus in helping students develop 
an understanding of marginal change as a rate of change. It would be important for future 
research to investigate how students’ understanding of marginal change impact 
(enhance/limits) their ability to solve optimization problems that are situated in an economic 
context.  
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Bidirectionality and covariational reasoning 
 

Kevin C. Moore      Teo Paoletti 
University of Georgia     University of Georgia 

 
Students’ thinking about quantities that vary in tandem remains an important area of mathematics education 
research due to its implications for student success in mathematics. In this paper, we expand on a way of 
thinking about covarying quantities, called bidirectional reasoning, in ways not detailed in prior research. A 
student thinking bidirectionally understands two quantities varying so that the conceived relationship does 
not have an inherent dependency; the student understands and anticipates that quantities exist and covary 
simultaneously. After describing bidirectional reasoning and connecting to informing theories, we draw from 
our work with undergraduate students to illustrate a student reasoning bidirectionally. Because this paper 
serves as a (re)introduction to bidirectional reasoning and relationships, we close with potential 
implications of students’ bidirectional reasoning, and we hypothesize productive lines of future research. 
 
Key words: Covariational reasoning; Quantitative reasoning; Function; Cognitive Research 
 

Students’ covariational reasoning–thinking about how quantities change in tandem–is 
critical to their developing sophisticated ways of thinking about numerous important mathematical ideas 
including rate of change, function, and accumulation (Castillo-Garsow, 2012; Ellis, 2007; Johnson, 2012; 
Moore, 2014a; P. W. Thompson, 1994). Despite the importance of covariational reasoning for students’ 
learning, even top-performing students encounter difficulties thinking covariationally (Carlson, Jacobs, Coe, 
Larsen, & Hsu, 2002). Moreover, numerous researchers have argued there is much to learn about students’ 
covariational reasoning including identifying productive ways of thinking covariationally (Castillo-Garsow, 
Johnson, & Moore, 2013; P. W. Thompson, 2011). We respond to this call by expanding on a way of 
thinking about quantities and their relationships termed bidirectional reasoning (A. G. Thompson & 
Thompson, 1996). We first describe theories that inform our detailing of bidirectional reasoning. After 
explaining bidirectional reasoning in terms of its entailed mental actions, and drawing from our work to 
better understand students’ and teachers’ covariational reasoning, we provide an example of student activity 
that suggests her reasoning bidirectionally. Because our main purpose is to reintroduce bidirectional 
reasoning into the conversation on students’ covariational reasoning, we close with ideas for future research 
and the possible implications of students’ bidirectional reasoning. 
 

Theoretical Background 
Over the past two decades, an increasing number of researchers have made contributions 
to the literature base on students’ covariational reasoning (Carlson et al., 2002; Castillo- Garsow, 2012; 
Confrey & Smith, 1995; Ellis, 2007; Johnson, 2012; Oehrtman, Carlson, & Thompson, 2008), both with 
respect to students’ understandings of various topical areas (e.g., functions, rate of change, and the 
fundamental theorem of calculus) and their enactment of important mental processes (e.g., generalization, 
modeling, and problem solving). Despite these researchers’ common intention of understanding students’ 
covariational reasoning, their treatments of covariation are varied. For instance, Confrey and Smith (1994, 
1995) approached covariation in terms of students’ reasoning about discrete numerical values, finding 
patterns in these values, and interpolating patterns between them. In contrast, Thompson and Saldanha 
(Saldanha & Thompson, 1998; P. W. Thompson, 2011) described students’ covariation in ways that entail 
continuous images of change that are magnitude based, and thus not constrained to the availability of 
numerical data (e.g., specified values). 
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Carlson et al. (2002) extended the body of literature on covariational reasoning by providing 
a framework of mental actions (relevant to numerical patterns and magnitudes) that describe 
specific ways that students reason about and coordinate quantities that vary in tandem. 

We interpret our work to align with Thompson, Saldanha, and Carlson et al., as well as 
other researchers who have built on these researchers’ explication of covariation (see: 
Castillo-Garsow (2012); Johnson (2012)). We focus on covariation in terms of the ways 
students reason with (continuous) magnitudes because we have found it valuable when 
characterizing students’ covariational reasoning, as well as in articulating productive ways of 
thinking covariationally (Moore, Paoletti, & Musgrave, 2013; Moore & Thompson, 
submitted). Despite our focus on covariation in terms of imagining varying magnitudes, we 
emphasize that the different covariation foci complement each other in numerous ways. For 
instance, researchers have argued that students’ capacity to imagine quantities as 
continuously changing magnitudes has significant implications for the sophistication of their 
thinking discretely and numerically. A detailed description of the complementary nature of 
these frameworks is found elsewhere (Castillo-Garsow, 2010; Castillo-Garsow et al., 2013). 

To illustrate an image of covariation based in magnitudes, consider an individual 
boarding a Ferris wheel ride at the bottom and taking a ride. One can envision that as the 
amount the rider rotates increases, that individual’s distance from the ground simultaneously 
increases (MA2: Carlson et al. (2002)). As the ride begins, one can also reason that for 
successive equal changes in the amount the individual has rotated on the ride, the individual’s 
distance from the ground will increase by less for each equal change in rotation (Figure 1) 
(MA3: Carlson et al. (2002)). As this example illustrates, an individual need not reason about 
numerical values to conceptualize how quantities covary; in fact, Figure 1 does not include 
labeled numerical values. Instead, an individual envisions covarying magnitudes while 
understanding the magnitudes as measureable at all instantiations of the covariation. Because 
such reasoning is not constrained to numerical values, students who think in this way develop 
productive conceptions of function (Moore, 2014a). Namely, students who think about 
magnitudes are able to move past action views of function (Dubinsky & Harel, 1992) because 
they are not constrained to calculating specific input-output values or determining an analytic 
rule that relates numerical values. 

 
Figure 1. A quantity increasing by less for each equal change in rotation. 

Bidirectional Reasoning 
Saldanha and Thompson (1998) defined simultaneous (continuous) covariation as 

someone maintaining a sustained image of two quantities changing in tandem so, “one tracks 
either quantity’s value with the immediate, explicit, and persistent realization that, at every 
moment, the other quantity also has a value” (p. 298). Describing a teaching experiment on 
speed with a student named Ann, A. G. Thompson and Thompson (1996) explained: 
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Pat aimed to have Ann see increases in Rabbit’s amount of distance and amount of 
time as happening simultaneously. His intention is depicted in [Figure 2]. The bi-
directional relationship which constitutes covariation entails thinking of both 
quantities varying simultaneously without a necessary dependency. Rather, if one 
focuses first on distance, one can determine time; if one focuses first on time, one can 
determine distance. (p. 8) 

 
Figure 2. Motion as entailing a bidirectional relationship between distance and time (A. G. 

Thompson & Thompson, 1996, p. 8). 
We interpret Saldanha and Thompson’s (1998) phrasing of “either [emphasis added] 

quantity’s value” to be inline with A. G. Thompson and Thompson’s (1996) description of 
bidirectional reasoning as an image of “quantities varying simultaneously without a necessary 
dependency.” In our work, and like Thompson and Thompson inferred when working with 
Ann, we have found that students tend to conceive relationships in ways that entail an 
inherent dependency. Students also think about changes in one quantity asynchronously 
producing or causing changes in the other quantity (Figure 3a). Due to the implications of 
thinking about relationships in this way, which we allude to below, we highlight that a 
student who conceives a bidirectional relationship does not imagine change asynchronously 
or entailing inherent input-output quantities. Rather, students’ bidirectional reasoning entails 
constructing and re-constructing images of covarying quantities so that they anticipate 
quantities existing and covarying simultaneously (Saldanha & Thompson, 1998) (Figure 3b). 

Due to understanding covariation as occurring simultaneously, a student who has a 
bidirectional relationship in mind understands that the same covariational relationship exists 
regardless of the order in which one considers the quantities. Returning to the Ferris wheel 
example, a student understands that the relationship between the rider’s angle of rotation and 
distance from the ground is not influenced by the order in which they consider the covarying 
quantities. More generally, when imagining quantity Q_A changing by some magnitude 
∆||Q_A||2,1, they anticipate quantity Q_B simultaneously changing by some magnitude 
∆||Q_B||2,1 (sequence 1 in Figure 3b). At the same time, the student understands that they 
could have first imagined Q_B changing by the magnitude ∆||Q_B||2,1 while anticipating and 
understanding Q_A changing by that same magnitude ∆||Q_A||2,1.  

 

18th Annual Conference on Research in Undergraduate Mathematics Education 77618th Annual Conference on Research in Undergraduate Mathematics Education 776



Figure 3. A (a) unidirectional and (b) bidirectional relationship.1 

Bidirectional Reasoning and Cartesian Graphs 
The Cartesian coordinate system (CCS) is based on the projection of two quantities 

(directed lengths). Hence, students’ bidirectional reasoning is relevant to their 
conceptualization of graphs in the CCS. A student thinking bidirectionally understands a 
graph in the CCS as constituted by points representing projected quantities that covary 
simultaneously. The student is not constrained to thinking about the graph in a way that 
entails an inherent input-output dependency or orientation.  

In our work with students, particularly at the undergraduate level, we have found their 
reasoning about relationships in the CCS to be unidirectional; inherent to their ways of 
thinking is understanding the quantity represented along the vertical axis as dependent on the 
quantity represented along the horizontal axis (Moore, Silverman, Paoletti, & LaForest, 
2014). Denoting the horizontal axis as the independent/input quantity is a convention 
common to the teaching of mathematics, but it is often not a convention with respect to 
students’ understanding of the CCS. Instead, students understand it as a necessary part of 
graphs. Although we have predominantly observed undergraduate students constrained to this 
way of thinking, by engaging them in repeated and frequent opportunities to reason about 
graphs without emphasizing a dependency between quantities, we have been able to support 
them reasoning about the CCS bidirectionally. That is, they come to understand the 
convention of input on the horizontal axis as exactly that: a convention or a choice, with the 
opposite choice just as mathematically viable. Choosing an axis to be the input quantity is not 
necessary to graph a relationship between simultaneously covarying quantities. The same 
relationship exists regardless of the chosen input-output quantities or axes orientation.  

Bidirectional Reasoning and Events 
When investigating students’ covariational reasoning in the context of problem solving, 

modeling, and graphing, we have found their bidirectional reasoning to be germane to 
characterizing how they conceive an event (e.g., a Ferris wheel rotating or two runners 
racing) in terms of quantities and their relationships. Moreover, we have found undergraduate 
students are more prone to construct images of events (versus graphs in the CCS) that entail 
bidirectional relationships. Corroborating Saldanha and Thompson’s (1998) description of 
covariation as developmental, we have found it is through students repeated engagement 
coordinating two quantities in strategic (but arbitrary with respect to dependency) ways that 
they come to understand an event as entailing quantities that vary bidirectionally. 

As an example, a student modeling the motion of a Ferris wheel rider might first take note 
of various ‘landmark’ distances of the rider from the ground (e.g., maximum or minimum 
distances), how the distance increases or decreases between these landmarks, and then 
determine corresponding changes in the angle of rotation. Subsequently, the student might 
seek to understand the rate at which the rider’s distance from the ground changes by 
considering equal changes in the rider’s angle of rotation. With equal changes in the rider’s 
angle of rotation constructed, the student compares how the rider’s distance changes over a 
particular interval of the trip (Figure 1). Over the course of her or his activity, the student 
alternates the order in which she considers each quantity’s variation, all the while holding in 
mind that a change in one quantity’s magnitude necessitates an associated, simultaneous 
change in the other quantity’s magnitude. 

                                                
1 We note that changes in quantities’ magnitudes (the sequences in Figure 3) might be 
imagined continuously (smoothly) or discretely (chunky) (Castillo-Garsow et al., 2013). 
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An Example of Student Work 
Our work developing second-order models of students’ and teachers’ covariational 

reasoning (Moore, 2014a, 2014b; Moore et al., 2013; Moore et al., 2014) informs our 
descriptions above. Our focus on students’ bidirectional reasoning is partially motivated by 
this work, and specifically our observations that students who have a greater propensity and 
capacity to reason bidirectionally with respect to both a coordinate system and an event seem 
to form more productive ways of thinking about important mathematical concepts including 
rate of change, function, and graphing. Supporting the claims by Carlson, Larsen, and Lesh 
(2003), these students also have more success modeling dynamic events due to their tendency 
to maintain a sustained focus on reasoning with quantities in flexible ways. 

To illustrate, consider Arya, an undergraduate mathematics education student, explaining 
how she created a graph by coordinating the volume and height of water in a bottle as the 
bottle fills. She initially marked the picture of the bottle where the shape of the bottle began 
to change (Figure 4) and described how height and volume covary between these marks. For 
instance, Arya stated, “From here to here [pointing to second tick mark from the bottom to the 
third] again for equal changes in height our volume is increasing. But increasing this time at 
an increasing rate cause the bottle is getting bigger [using her hands to indicate the bottle is 
getting wider] so it can hold more water for equal changes in height” (MA3: Carlson et al. 
(2002)). To represent this relationship on her graph, Arya drew dashed vertical segments 
representing volume and solid vertical segments indicating amounts of change (Figure 4).  

After describing each section of the graph in relation to the bottle as above, Arya 
spontaneously described how the height of the bottle would change for equal changes in 
volume. For example, using blue and red markers, she shaded areas indicating equal amounts 
of volume (Figure 5), stating, “It was like pushed in [using her hands to indicate the bottle 
gets thinner], for equal, if I put in the same amount it’s taking up more height of the glass… 
So it got bigger. That’s bigger [shading next area in green]… That’s equal the volume but 
it’s taking up more height. Equal changes of volume, our height is increasing at an increasing 
rate.” Then denoting this relationship on the graph, Arya marked equal changes along the 
vertical axis and signified the increasing changes of height with blue segments (Figure 5) 
(MA3: Carlson et al. (2002)).  

Over the course of her activity, and both in the context of the graph and a diagram of the 
situation, Arya alternated the order in which she imagined the quantities covarying. 
Throughout her descriptions, she described both quantities varying; to Arya, discussing one 
quantity varying necessitated discussing the other quantity varying because the quantities 
covaried simultaneously. Thus, we take Arya’s activity to suggest her reasoning 
bidirectionally with respect to both the event of filling a bottle with water and in creating a 
CCS graph. 

 
Figure 4. Arya considers how the volume changes for equal changes of height. 
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Figure 5. Arya considers how the height changes for equal changes of volume. 

Implications and Moving Forward 
We envision that future investigations into students’ bidirectional reasoning will have 

wide-ranging implications, the most obvious of which is related to students’ ways of thinking 
about function. Function remains a content strand in which students’ difficulties impact their 
success in mathematics and other STEM fields (Oehrtman et al., 2008). Complicating the 
matter, students often construct ways of thinking about function that do not entail generalized 
or invertible processes (Oehrtman et al., 2008). We hypothesize that students who are 
supported in thinking bidirectionally will construct more productive ways of thinking about 
function than those who are not. A student who has the opportunity to repeatedly coordinate 
covarying quantities so that he or she comes to understand quantities as varying 
simultaneously as Saldanha and Thompson (1998) described essentially establishes a 
relationship that entails both a function and its inverse. Additionally, if these opportunities 
include reasoning bidirectionally about a coordinate system, the student can conceptualize a 
graph as representing a function and its inverse relationship (or inverse function if the 
relationship is strictly monotonic) simultaneously (Moore et al., 2014). For instance, Arya 
constituted both the event of filling up a bottle and the corresponding graph in terms of 
covariation that entailed understanding the height as dependent on volume, as well as volume 
as dependent on height. 

Although we have focused exclusively on graphical representations thus far, when 
working with students like Arya we have also noted that their reasoning bidirectionally 
appears to support them in conceiving analytic forms (e.g., equations) in productive ways. 
With a bidirectional relationship in mind, the student understands associated analytic forms 
as writing a statement about simultaneous covariation; to write an equation is to write a 
relationship between quantities’ values that remains true as the quantities covary 
simultaneously (Izsák, 2003). Furthermore, if the analytic form implies dependency (e.g., y = 
some expression in x), a student thinking bidirectionally understands that the relationship can 
be thought of with respect to the other dependency and anticipate rewriting the analytic form 
to imply this dependency (e.g., x = some expression in y). With respect to both graphical and 
analytic forms, ‘inverse function’ is not an action that must be carried out (e.g., reflecting a 
graph or switching/solving for another variable), but instead is entailed in the 
conceptualization of a relationship with multiple choices of dependency. 

In addition to investigating relationships between students’ bidirectional reasoning and 
their ways of thinking about function, we envision productive future lines of inquiry to be: 

How does students’ reasoning bidirectionally influence their ability to model dynamic 
events? Arya’s activity suggests that a students’ bidirectional reasoning can support their 
alternating between a dynamic event and a graph modeling the event while holding in mind 
an invariant relationship. We imagine a different outcome if a student was constrained to 
reasoning about a relationship or coordinate system with a particular dependency. As Carlson 
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et al. (2003) illustrated, students conceive situations in idiosyncratic ways and their ability to 
model situations is likely to improve if they can think about relationships in flexible ways. 

What connections exist between students’ bidirectional reasoning and related research on 
students’ operational or reversible thinking? In investigating students’ multiplicative 
reasoning, Hackenberg (2010) drew on Piagetian notions of operations and mental actions to 
characterize the students’ reasoning with reversible relationships. Hackenberg noted that 
some students were able to anticipate their activity, while other students were constrained to 
“carry out some activity, review its results, and then carry out more activity” (pg. 383). We 
find these differences to be related to the above discussion on inverse function (e.g., inverse 
as anticipating a change of dependency versus inverse as carrying out an action), and thus 
hypothesize that connections exist between students’ reasoning about reversible 
multiplicative relationships and students’ bidirectional reasoning. 

What situations or opportunities support students’ bidirectional reasoning? We have 
found traditional function approaches to foreground unidirectional relationships and instill 
particular conventions in ways that inhibit students’ bidirectional reasoning. Hence, 
determining situations that afford and promote bidirectional reasoning is a pressing need. One 
potential approach is using events in which quantities ‘naturally’ covary simultaneously (e.g., 
a Ferris wheel ride or a filling a bottle) while repeatedly and frequently prompting students to 
consider variation in both directions with respect to the event and mathematical 
representations, as opposed to emphasizing unidirectional functional relationships.  

How might students’ bidirectional reasoning influence their longitudinal mathematical 
development? Students’ bidirectional reasoning likely has implications for students’ ways of 
thinking for implicit differentiation, implicit functions, and differential equations, as each 
require reasoning about quantities taking on multiple or ill-defined dependency roles. Also, 
we conjecture that students’ bidirectional reasoning is related to their longitudinal 
development of coordinate systems. For instance, we hypothesize that coming to understand a 
three-dimensional graph as an emergent record of varying quantities (see Weber and 
Thompson (2014)) entails bidirectional reasoning as it requires coordinating variables in 
different orders while holding in mind that the three quantities vary simultaneously (e.g., 
fixing z and conceiving how x and y vary simultaneously while anticipating that for any x-y 
pair, one could fix x or y and consider how z varies simultaneously with y or x, respectively). 
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Shape thinking and students’ graphing activity 

Kevin C. Moore Patrick W. Thompson 
University of Georgia Arizona State University 

We describe a construct called shape thinking that characterizes individuals’ ways of 
thinking about graphs. We introduce shape thinking in two forms–static and emergent–that 
have materialized in our work with students and teachers over the past two decades. Static 
shape thinking entails thinking of a graph as an object in and of itself, and as having 
properties that the student associates with learned facts. Emergent shape thinking entails 
envisioning a graph in terms of what is made (a trace) and how it is made (covarying 
quantities). We provide illustrations of the shape thinking forms using examples from data 
that we have gathered with secondary students, teachers, and undergraduate students. We 
close with future research and teaching directions with respect to students’ shape thinking. 

Key words: Graphing; Function; Covariational reasoning; Quantitative reasoning 

Students’ and teachers’ graphing activity remains a critical focal area in mathematics 
education, as their difficulties with graphs have short- and long-term consequences for their 
success in mathematics and other STEM fields (Oehrtman, Carlson, & Thompson, 2008). 
Despite their difficulties, students do construct stable and organized ways of thinking over the 
course of their schooling. Numerous researchers (including ourselves) have claimed that 
students develop ways of thinking about functions and their graphs that often lack a basis in 
reasoning about generalized relationships or processes between quantities’ values (Dubinsky 
& Wilson, 2013; Lobato & Siebert, 2002; Oehrtman et al., 2008; Thompson, 1994b, 1994c). 
If graphs are intended to be representations of related quantities under a coordinate system 
(with a coordinate system itself being an organization of quantities), then we must ask:  

1. If students do not see a graph representing a relationship between quantities, then 
what do they think it represents?  

2. What do we intend students to understand that a graph represents?  
3. What ways of thinking are involved in understanding a graph as representing a 

relationship between quantities’ values?  
We elaborate on a construct, called shape thinking, that we and others (Weber, 2012) 

have found useful in addressing each of these questions, both clarifying different ways of 
thinking students hold for graphs and characterizing a productive way of thinking about 
graphs as emergent relationships between quantities. We discuss shape thinking in two 
forms–static and emergent–that clarify important differences among students’ understandings 
of graphs. In detailing the two forms of shape thinking, we draw illustrations of shape 
thinking from prior studies over the past two decades. For this reason, our purpose is not to 
report a single study, nor to report on the development or progress of a particular set of 
individuals. Instead, our purpose is to address the important questions above by describing 
distinguishable ways of thinking that students and teachers have for graphs. 

Two Vignettes 
We introduce the forms of shape thinking with two vignettes from clinical interviews 

(Goldin, 2000) of undergraduate students. Each vignette is a response to the prompt: A 
middle-school student graphed the relation defined by y = 3x as shown in Figure 1. How 
might he/she have been thinking when producing the graph?  
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Figure 1. The middle-school student’s graph. 

Vignette 1 
Student 1: He’s thinking like this [turning paper 90 degrees counter clockwise]. But that’s 

still not right because this is now a negative slope [tracing the line]. 
Int.: What if the student said, “Here’s [rotating back to Figure 1] how I’m thinking”? 
Student 1: The only way I can think of it is like this [turning paper 90 degrees counter 

clockwise] and it’s still wrong because after I turn it, this [laying the marker on the 
line sloping downward left to right] is now a negative slope. When I was in 
middle school we learned a trick to remember positive, negative, no slope, and 
zero [making hand motions to indicate directions]. It’s stuck with me so it’s 
important to know which direction the slopes are going, where the slopes are. 

Vignette 2 
Student 2: He’s thinking the rate of change is three, so the change in y is three times the 

change in x. He put the horizontal axis as y, so whatever he increased by in x, he 
increased by three times that in y [tracing her pen to the right three and up one 
from the origin, then right three and up one from that point]. He’s right. 

Int: So what if I do this [turning paper 90 degrees counter clockwise]? 
Student 2: Well, the relationship is the same because the graph rotated with the axes, so it’s 

still y equals three x. Change in x, change in y [indicating an arbitrary change in x 
and a corresponding change in y]. Change in y is three times change in x. 

Student 1 and Student 2 each understood the graph, but their understandings were quite 
different–they assimilated the graph to different schemes. Student 1 drew on ways of thinking 
for slope (or rate of change) that were based in perceptual cues, such as thinking a line falling 
downward left-to-right unquestionably means negative slope. Because Student 1 associated 
properties of slope with a line’s direction and location (e.g., “where the slopes were”), he 
concluded that rotating the graph changed the slope and, in his understanding, changed the 
represented relationship. Student 2 examined the graph in terms of how quantities varied in 
tandem within the axes orientation as given. By examining the graph in terms of covarying 
quantities, she understood that changing the axes’ orientation or rotating the sheet of paper 
does not change the represented relationship. We consider Student 1’s actions, which focused 
on perceptual cues and global properties of shape, to be indicative of static shape thinking. 
We consider Student 2’s actions, which focused on the graph as an emergent object 
constituted by images of covarying quantities, to be indicative of emergent shape thinking. 
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Theoretical Framing 
Our interest is to characterize persons’ meanings and ways of thinking. To do so, we draw 

on Thompson and Harel’s (Thompson, Carlson, Byerley, & Hatfield, 2014) description of 
understanding, meaning, and ways of thinking, which has roots in Piaget’s (2001) notions of 
action, operation, scheme, and image. Understanding is an in-the-moment state of 
equilibrium, which may occur from assimilation to a scheme or from a functional 
accommodation specific to that moment in time. A Meaning is the space of implications that 
the moment of understanding brings forth—actions that the current understanding implies. 
Ways of thinking are “when a person has developed a pattern for utilizing specific 
meanings…in reasoning about particular ideas” (Thompson et al., 2014, p. 12). Returning to 
Student 1 and 2, each student’s activity suggests that they had constructed specific meanings 
and ways of thinking about graphs in terms of slope or rate of change.  

Data Sources and Motivation 
The shape thinking construct originated during the second author’s work with middle 

grade to post-secondary students and teachers. This work included clinical interviews 
(Goldin, 2000), teaching experiments (Steffe & Thompson, 2000), and professional 
development, during which he noted students and teachers holding particular dispositions 
toward understanding graphs. As our research moved forward, differences in students’ and 
teachers’ dispositions toward graphing became more apparent during studies in which we 
explored supporting students’ and teachers’ covariational and quantitative reasoning (Moore, 
2014; Moore, Paoletti, & Musgrave, 2013; Thompson, 1994b, 2013). We often found 
students’ and teachers’ ways of thinking about graphs to have little connection to images of 
covariation, leading us to elaborate on the shape thinking construct. For instance, Weber 
(2012) introduced notions of expert and novice shape thinking when characterizing students’ 
reasoning about rate of change in the context of multi-variable functions. Most relevant to the 
work here, the term static shape thinking emerged as a way to reference a student interpreting 
a graph statically and giving it meaning by way of association with learned facts, and 
emergent shape thinking emerged as a way to reference a student interpreting a graph through 
schemes and images of quantitative and covariational reasoning.1 

Our motivation for introducing shape thinking and its forms also stems from our asking 
what a graph represents to a student. As mathematics teachers, our instruction on functions 
and relationships became more productive for student learning once we developed an ear for 
whether students were thinking about a graph as a static image and object in and of itself or 
as a trace of quantities having covaried. In what follows, we describe and illustrate both 
forms of shape thinking. Our illustrations originate from ongoing and retrospective 
conceptual analyses (Thompson, 2008; von Glasersfeld, 1995) of these clinical interviews, 
teaching experiments, and professional development.  

Static Shape Thinking 
Static shape thinking involves operating on a graph as an object in and of itself, 

essentially treating a graph as a piece of wire (graph-as-wire). Static shape thinking entails 
assimilations and actions based on perceptual cues and the perceptual shape of a graph. 
Because static shape thinking entails thinking of the graph as an object, meanings associated 
with static shape thinking treat mathematical attributes as properties of the graph-as-wire. For 
instance, in his moment of understanding, Student 1 (Vignette 1) assimilated slope (or rate of 

                                                
1 See (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Smith III & Thompson, 2008; Thompson, 
1994a, 2011) for more extensive treatments of quantitative and covariational reasoning. 
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change) more as a property of the graph-as-wire as he perceived it (e.g., the wire rising or 
falling left to right) than as a measure of how one quantity changes with respect to another. 

Another example of static shape thinking is when students treat equations, names, or 
analytic rules as facts of shape regardless of its coordinate system or orientation. For instance, 
Excerpts 1 and 2 show responses by two mathematics education undergraduate students to 
the prompt that a secondary student named Ralph thought that the graph in Figure 2 displays 
the inverse sine function because, “…we are graphing the inverse of the sine function, we just 
think about x as the output and y as the input”. We designed the task so that Ralph’s claim 
captured the understanding that y = sin(x) implies x = arcsin(y) with the appropriate 
restriction on x. More generally, Ralph’s claim rests on the fact that a graphical representation 
of a single-valued function can be thought of as simultaneously representing the function and 
its inverse relation (or its inverse function if the original function is strictly monotonic). 

 
Figure 2. Graph and prompt posed to the PSTs. 

Excerpt 1: Sansa’s response to Ralph’s statement. 
Sansa: You can't just label it like that…I feel like he’s missing the whole concept of a 

graph…I know you can call whatever axis you know if you are doing time and 
weight or volume or whatever. You can flip-flop those and be OK. But not 
necessarily with the sine graph. A sine graph’s…a graph everyone knows about. 

Excerpt 2: Brienne’s response to Ralph’s statement. 
Brienne: I’m thinking this just kind of looks like…the plain sine graph (laughs). Which is 

going to be different. So, no… I guess what I’m like thinking, like struggling with 
thinking is that like, like I don’t know if, or like an inverse function, like the graph 
of an inverse function, like, can’t be the same as the original graph. 

To Sansa, the given graph was “a sine graph…everyone knows about.” We understood 
her to mean that the graph was a shape all mathematics students should know exclusively as 
“the sine graph”. Brienne anticipated that a graph of the inverse sine function should appear, 
in shape, different than that of the given shape because a different function is being graphed. 
Both students’ ways of thinking involved associating a shape with a named function such that 
no other function could name that shape; the students understood a function’s name as a fact 
of shape (e.g., graph-as-wire). 

Emergent Shape Thinking 
Emergent shape thinking involves understanding a graph simultaneously as what is made 

(a trace) and how it is made (covariation). As opposed to assimilating a graph as a static 
object, emergent shape thinking entails assimilating a graph as a trace in progress (or 
envisioning an already produced graph in terms of replaying its emergence), with the trace 
being a record of the relationship between covarying quantities. Because we are limited to a 
static medium in this paper and cannot convey a trace in progress, we convey this way of 
thinking through snapshots of an emergent trace (Figure 3). Emergent shape thinking is more 
complex than depicted because it entails imagining what happened between snapshots. 
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Figure 3. Instantiations of emergent shape thinking. 

Because emergent shape thinking entails understanding a graph as an emergent trace of 
covarying quantities, meanings associated with emergent shape thinking treat mathematical 
attributes as properties of covariation. To Student 2 (Vignette 2), rate of change was a 
property of how x and y change together regardless of the graph’s orientation. As another 
example, Shae, a mathematics education undergraduate, said that the graph in Figure 2 
represents both y = sin(x) and sin-1(x) = y. The interviewer then asked Shae how the given 
graph related to a conventional graph of the arcsine function (e.g., input on the horizontal 
axis). He asked this question to determine whether presenting Shae with a different shape but 
the same stated function could perturb her enough that she evoke static shape thinking. Shae 
went on to describe that both graphs represent “the same thing” (Excerpt 3). 
Excerpt 3: Shae compares nonstandard and standard graphs of arcsine. 
Shae: You could just like disregard the y and x for a minute, and just look at, like, angle 

measures. So it’s like here [referring to graph of sin-1(x) = y], with equal changes 
of angle measures [denoting equal changes along the vertical axis] my vertical 
distance is increasing at a decreasing rate [tracing graph]. And then show them 
here [referring to graph of sin-1(y) = x] it’s doing the exact same thing. With equal 
changes of angle measures [denoting equal changes along the horizontal axis] my 
vertical distance is increasing at a decreasing rate [tracing graph]. So even though 
the curves, like, this one looks like it’s concave up [referring to graph of sin-1(x) = 
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y from 0 < x < 1] and this one concave down [referring to graph of sin-1(y) = x 
from 0 < x < π/2], it’s still showing the same thing. [Shae denotes equivalent 
changes on each graph as shown in Figure 4] 

 
Figure 4. Two graphs that represent one relationship. 

Shae reasoned that both graphs convey that some quantity increases at a decreasing rate 
as another quantity increases in successive equal amounts, while at the same time 
representing the respective quantities on her graphs (Figure 4). By conceiving each graph as 
an equivalent emergent relationship, Shae understood that a “concave up” trace conveys the 
same information as a “concave down” trace if the axes are switched. In contrast to Sansa and 
Brienne’s understandings, Shae understood the traces she perceived as representing both the 
(restricted) sine and inverse sine functions. The function names were not names of a shape; 
they named a covariational relationship. 

Reasoning about or with Quantities 
A notable feature of students’ static shape thinking is that images of covariation and 

points as projected quantities represented along the axes are absent from their in-the-moment 
thinking. In fact, coordinate axes and their representation of quantities are not critical to static 
shape thinking except in their labeling and orientation–static shape thinking’s basis in 
observables and shape necessitates the labeling and orientations in which the students’ 
abstracted their ways of thinking. In making the claim that images of covariation are absent 
from their in-the-moment thinking, we do not mean that students engaging in static shape 
thinking cannot or will not think about quantities and their relationships. Static shape thinking 
can entail drawing inferences about quantities and their relationships, where these inferences 
are drawn from a graph’s appearance or shape. Hence, static shape thinking does not exclude 
reasoning about quantities, but the type of reasoning is indexical: a particular shape or 
property of shape implies something about quantities. Said another way, information about 
quantities and their relationships are implications of assimilation. To illustrate, students 
exhibiting actions like Student 1 (Vignette 1) can describe slope in terms of covarying 
quantities, but this is done after drawing inferences about the slope of the line from 
perceptual cues (e.g., using that a line falls left to right line to infer a negative slope and 
conclude y decreases in some manner as x increases). 

Students who are limited to thinking about graphs in terms of static shapes can learn to 
associate information about quantities and their relationships with particular shapes. Students 
thinking statically are limited to making empirical abstractions from their activity. Students 
who are capable of thinking about graphs emergently gain insight into relationships between 
quantities that are more organic to the quantities and relationships. Also, students thinking 
about graphs emergently are positioned to reflect on their reasoning to form abstractions and 
generalizations from their reasoning. Hence, unlike associations abstracted through static 

18th Annual Conference on Research in Undergraduate Mathematics Education 78718th Annual Conference on Research in Undergraduate Mathematics Education 787



shape thinking, relationships abstracted through emergent shape thinking are not constrained 
to a particular labeling and orientation. When changing coordinate conventions and systems, 
the shape associated with a particular relationship changes in a visual sense. But, the mental 
operations involved in emergent shape thinking enable constituting a trace in any coordinate 
system as representative of the same covariational relationship given that the student 
understands the coordinate system’s quantitative structure. 

Future Directions for Shape Thinking 
Students’ shape thinking raises a number of new directions for mathematics education 

research and teaching. First, researching students’ capabilities and constraints when limited to 
static shape thinking or capable of emergent shape thinking will form a productive line of 
inquiry. We consider this line of inquiry to offer a new perspective on multiple 
representations by enabling researchers to be clearer about what a graph represents to a 
student, and thus what students understand multiple representations to be representations of. 
We find that emergent shape thinking enables students to move among representations while 
maintaining a subjective sense of invariance in the form of covarying quantities (see Excerpt 
3 and Moore et al. (2013)), thus supporting them in conceiving the ‘something’ that multiple 
representations are to represent. Second, because static shape thinking can entail inferences 
about quantities and their relationships, meanings associated with static shape thinking might 
stem from abstractions partly involving emergent shape thinking. A student who is capable 
and prone to think about graphs emergently might come to know a family of graphs so well 
that that thinking statically about a graph implies what they know about its emergence. 
Understanding these relationships between students’ static and emergent thinking will entail 
exploring the ways that students’ static and emergent thinking do or do not complement each 
other. Such explorations will provide insights into how students’ ways of thinking about 
graphs develop and will contribute additional clarity to the notions that Weber (2012) 
identified as expert and novice shape thinking. Lastly, we see our work providing a lens to 
organize and frame curricular approaches more carefully with respect to intended student 
ways of thinking for graphs and their functions. For instance, we hypothesize that supporting 
students in thinking emergently will better position them to envision functions as mappings 
once they can envision completed covariation as having produced all possible pairs of values 
associated with a mapping. On the other hand, we hypothesize that an approach to function 
that introduces a parent shape and treats other functions as translations of the parent shape is 
more likely to promote students thinking of graphs as objects in and of themselves. We find it 
difficult to envision students making sense of translations as more than moving a graph-as-
wire to different locations in the plane according to learned rules without a robust 
understanding of graphs as having emerged through covariation.  
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When Mathematicians Grade Students’ Proofs, Why Don’t the Scores Agree? 

Robert C. Moore 

Andrews University 

Abstract:  This poster reports on a study of practices that mathematics professors use to grade 
proofs.  In an initial study, four mathematicians evaluated and scored six proofs of elementary 
theorems written by students in a discrete mathematics or geometry course.  The results 
indicated that, while the professors generally agreed in their overall evaluations of the proofs, 
the scores varied substantially.  A follow-up study delved more deeply into the reasons for the 
spread in the scores.  This poster presents four reasons why the professors did not always agree 
in their scoring of the proofs:  (a) performance errors, (b) disposition toward grading, (c) 
judgments about the student’s level of understanding and the seriousness of errors, and (d) 
contextual factors. 

 
Key words:  Proof Evaluation, Proof Grading, Teaching Proof 
 

To teach undergraduate mathematics majors how to write proofs that meet an acceptable 
level of rigor and clarity, mathematics professors require students to write proofs for homework 
and tests.  The professors then grade the proofs by writing marks and comments on them, 
assigning a score to each proof, and returning the papers to the students.  This grading process 
involves judgments about validity, judgments about the seriousness of the errors, and evaluation 
of surface features such as the proper use of mathematical language and notation.  Thus, grading 
students’ proofs is a complex and important teaching practice.  Despite its pervasive role in 
undergraduate mathematics teaching, proof grading has received little research attention (Speer, 
N. M., Smith III, J. P., & Horvath, A., 2010). 

   
Related Research 

An essential part of grading a proof is checking that it is logically correct, or valid, and 
another part is evaluating it for clarity and readability.  Yet recent studies have shown that 
mathematicians differ on what constitutes a valid proof (Inglis, Mejía-Ramos, Weber, and 
Alcock, 2013) and that they often agree, but occasionally disagree to a remarkable extent, on 
whether specific revisions of a proof improve its clarity for pedagogical purposes (Lai, Weber, 
and Mejía-Ramos, 2012).  These studies lead us to expect that mathematicians will differ in their 
grading of students’ proofs.   

Brown & Michel (2010) developed a rubric based on readability, validity, and fluency (RVF) 
for grading proofs and other mathematical writing.  We may ask if other mathematicians agree 
with this rubric and, if they use it to grade students’ proofs, do they arrive at consistent scores? 

 
Methodology and Results 

An initial study addressed the following question:  Do mathematics professors agree in their 
evaluation and scoring of students’ proofs?  In individual interviews that lasted about an hour, 
four mathematicians evaluated and scored five or six proofs written by students.  An open coding 
system (grounded theory) was used to analyze the interview data.  The results showed much 
agreement on the characteristics of a well-written proof, but the scores they assigned to the 
proofs varied considerably (Table 1). 
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A follow-up study was designed to delve more deeply into the reasons for the variation in the 
scores and answer the following questions:  (a) Why did the scores vary? and (b) Were there 
performance errors, i.e., errors due to overlooking flaws in the proofs?  The four professors 
regraded three of the original six proofs after seeing the other professors’ comments and 
corrections, but not their scores, and also graded a new proof, Proof 7 (Figure 1), which had a 
logical flaw, namely, it proved the converse of the statement.  The overall scores for Proof 7 
were quite consistent, but the validity scores varied greatly (Table 2).  The analysis of the data 
identified four main reasons the scores varied:  (a) performance errors, (b) disposition toward 
grading, (c) judgments about the student’s level of understanding and the seriousness of errors, 
and (d) contextual factors.  The poster will further explain these four reasons. 

 
Implications 

This study calls attention to proof grading as an important teaching practice, and it raises 
again the question posed by Inglis et al. (2013) as to whether students are receiving a consistent 
message about the nature of validity as well as other aspects of well-written proofs.  A question 
for further research is how differences in professors’ grading practices affect students’ progress 
in mathematics? 
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Table 1 
Scores Assigned to the Proofs by the Professors 

Professor Proof 1 Proof 2 Proof 3 Proof 4 Proof 5 Proof 6 
A 10 9.8 9.5 10 9.5 9.5 
B 10 5 6 7 7 5 
C 8 8 9 8 8 — 
D 9 9 8 7 7 8 

Mean 9.25 7.95 8.13 8.00 7.88 7.50 
Range 2.0 4.8 3.5 3.0 2.5 4.0 

 

Table 2 
Scores Assigned to Proof 7 by the Professors 

Professor Validity 
0-5 

Clarity 
0-5 

Fluency 
0-5 

Understanding 
0-5 

Overall 
score 
0-10 

A 3 5 5 5 7 
B 1 4 4 3 6 
C 2 4 5 3 7 
D 4 3 3 3 6 

 

   

Figure 1. Task 7 and Proof 7 
 

18th Annual Conference on Research in Undergraduate Mathematics Education 79218th Annual Conference on Research in Undergraduate Mathematics Education 792



Cluster analysis of STEM gender differences.
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Abstract: In this project, we form, describe, and study groups (or clusters) of students based
on their academic history prior to their first semester in college. These clusters allow us to examine
the effect of gender on a student’s academic career decisions, such as course and major selection,
while controlling for the level of preparation. We begin with an overview of standard hierarchical
clustering and discuss the pitfalls of a straightforward application with our data. We then describe
how to adjust the technique in order to form stable clusters. Using these clusters, we find that
course selection and STEM retention are related to a student’s gender, with female students more
likely to leave STEM early than male students with the same level of preparation and college
grades.

Keywords: Clustering, STEM Retention, Gender, Academic Background

Introduction
The national concern to produce more qualified professionals in the STEM fields is ongoing
(Seymour & Hewitt, 1997; Daempfle, 2003; Olson & Riordan, 2012). The push for more gradu-
ates in Science, Engineering, and Math has resulted in more students choosing to major in STEM
as they enter college (Huang, Taddese, & Walter, 2000; Seymour, 2002). However, 40% of these
students change majors or drop out of college completely (Astin & Astin, 1992).

Some of this attrition is due to students being unprepared and earning low grades in their
preparatory math courses (Strenta, Elliott, Adair, Matier, & Scott, 1994); but even students who
perform well leave because of the perceived poor instruction (Seymour & Hewitt, 1997; Brainard
& Carlin, 1997). The introductory mathematics and statistics courses therefore play an important
role in the retention of students through their first and second years.

Female students in STEM majors
In addition, disproportionally few female students choose to go into the STEM fields. The reasons
most often cited for this disparity are the lack of preparation of female students, lack of confidence
and cultural bias. Women take fewer math courses in high school than men. However, once the
measures of developed abilities were taken into account, gender added little to the prediction of
choice (to go into STEM) (Strenta et al., 1994). Zafar (2013) and Heilbronner (2009) found that
the gender gap is due to gender differences in preferences and taste.

Strenta et al. (1994) noted that the most significant factor predicting losses of STEM majors
are low grades earned in science courses during their first two years of study. With grades held
equal, gender was not a significant predictor of persistence in engineering and biology but was
such in a category that included the physical sciences and mathematics. These results can hide
a possible gender bias. Compared to male students with the same entering math ability, female
students perform substantially less well in their intro math and science courses (Carrell, Page, &
West, 2009). Female in STEM suffer a loss of self-confidence and lower career aspiration (Rogers,
1993) and classroom experience can be much different for women (Henes, 1994). For example,
the study of Carrell et al. (2009) suggests that while the gender of the professor has only limited
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impact on male students, it has a powerful effect on the performance of female students in math
and science classes. Female students also leave earlier than other populations (Min, Zhang, Long,
Anderson, & Ohland, 2011).

Research questions
1. How can we efficiently describe a student’s academic background?

2. How does academic history influence a student’s academic decisions?

3. How do students with the same academic history differ in terms of academic decisions and
outcomes by gender?

Creating clusters based on academic history
In order to include a student’s academic background in a meaningful way, we would like to pro-
duce clusters that group students with similar academic backgrounds together instead of using
the variables directly. This has to do with the features of the variables traditionally available to
researchers.

Student academic background variables
The data provided to us includes several details that give a summary description of the students
academic background. Primarily, we will be using the total number of science credits taken by a
student in high school (credits in biology, chemistry, physics), the student’s scores on standard-
ized tests (at the moment limited to ACT math and English subscores and the ACT composite
score), and the student’s high school rank (a percentile score with higher scores representing better
position in the class).

Complications in these variables
Although these variables have the potential to sketch an academic history for a student, individually
they may be less useful. For instance, a student’s percentile rank is a result not just of their own
academic ability but of the academic ability of their classmates and the academic rigor of their
school (and considering that this could misrepresent poor students at poor schools as well as gifted
students at advanced schools, rank has a very complicated interpretation). Less complicated is the
student’s score on the ACT sections. ACT scores are ordinal variables and high scores indicate
higher performance. Still, the numeric score may be problematic when used in a model. Although
comparisons between individual students may be unambiguous, more complicated comparisons
are less clear. For example, is the difference in ability between a student with a 25 and a student
with a 29 as meaningful as the difference in ability between a student with a 29 and a student with
a 33? Surely not - and hoping that it would be is an abuse of what is plainly the arbitrary nature of
the values assigned to the determined levels of performance.

Complications among these variables
Adding to the complication, we gain valuable information from the variety of ways these vague
values work together. For instance, we know that some students excel in math and science while
performing poorly in subject areas such as history or English. Similarly, some students have a
difficult time with the routine of school (for a variety of reasons, sympathetic or not) and have poor
class ranks but are able to imbibe enough information to perform well on standardized exams.
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However, not all combinations of these variables may identify distinct groups. By clustering, we
hope to work through these combinations to find justifiable groups.

Traditional clustering
The first steps in many clustering techniques, as described by, for instance, Hastie et al. (2009)
consist of selecting the variables that will be used to define the clusters, choosing a clustering
algorithm (hierarchical cluster with complete linkage, for example), and applying statistical tests
(or ad hoc methods) in order to determine the number of clusters.

This simple approach does not work in our specific situation (and many others in which the
variables chosen for clustering have ordinal response values) because of a few complications.

Ties and their effect on cluster creation
One important feature of our dataset that prevents a straight-forward analysis is the structure of
many of our variables. One of the complications of using ordinal data is that several times during
the clustering process, ties occur when attempting to determine which clusters should be merged
together.

How a tie is decided changes the membership of clusters and can change the future mergers.
Most statistical software determines ties based on the order of the data. This can lead to dramatic
changes in cluster membership from one permutation of the rows of the dataset to another, which
can be seen as evidence in favor of a different clustering mechanism (either a different number of
clusters to be selected or a different method of creating clusters).

This is illustrated in Figure 1, which shows the changes in the cluster to which incoming stu-
dents are assigned for 10 permutations. All the students depicted were initially grouped into the
same cluster, but reordering the data rows caused the structure of the clusters to change going from
one permutation to the next. In most permutations, the students that initially were grouped together
are seen to form three clusters.

While some indicators suggest that a five-cluster arrangement could be valid, these indicators
are deceptive. There are strong differences resulting from nothing more than ties making any five
cluster model suspect. The resulting clusters lack stability and inclusion in them is based more on
chance than on consistency with the other members of the clusters.

For this reason, the resulting clusters are not valid and would inevitably lead to poor results.

Finding stable and valid clusters
The reality is, as can be seen above, that there are more than five clusters. There are multiple stu-
dents that are consistently being clustered together meaning that although a five clustering structure
is unstable, there could be a stable clustering structure that is not strongly affected by ties, one that
consistently identifies the clusters that seem visible in the graph above.

We can determine the stable clustering structure by examining the behavior of a few statistics
which measure the order (or equivalently disorder) within the clusters created by each permutation
of the data observations with various cluster numbers. Figure 2 shows the cubic clustering criterion
(CCC), pseudo F statistics, and the pseudo t2 statistics for structure with one to twelve clusters
calculated over 10 possible permutations of the data.
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Figure 1: Permuting data and its influence on clustering. Cluster membership can be determined
by tie-breakers, which are settled using the order of the rows of the dataset. Shown are cluster
assignment (the y-axis) of students (represented by the lines) as the permutation of the rows of the
dataset is changed for students who were initially assigned to the same cluster. Going left to right,
we see that as the permutation changes, what was once a single cluster splits to form what might
more readily be identified as three clusters.
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Figure 2: Illustration of the method used to find the number of clusters that is resistant to issues
relating to ties. The students have been divided into two groups, those who have had calculus (on
the left) and those who have not had calculus (on the right). For each permutation of the data
the identified statistics are calculated for one to twelve cluster arrangements of the data. There is
evidence in favor of five clusters within the calculus student population (the pseudo t2) and another
five clusters within the non-Calculus students (as seen in the local maximum for the CCC graph).
This indicates a stable 10 cluster split structure.

Once the split 10 cluster model was determined to be stable, 1000 permutations were created
to give 1000 cluster assignments for each observation. One of the permutations was randomly
selected and used as the final clustering assignment.

Describing the clusters
The clusters can be described in terms of the variables used to create them:
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Figure 3: Clustering by variable. The organization of students into clusters based on ACT scores,
class rank and science credits. In this case, boxplots are filled by whether or not the students in that
cluster took calculus in high school (blue) or did not (red). Clusters are identified by both color
and the ID on the x-axis.

The clusters can be described (ordered by increasing high school rank) as follows:

Cluster Description
9 Poor students, no calculus, excellent test takers, overall less science
8 Bad students, no calculus, worst test takers, overall less science
5 Bad students, calculus, better test takers, overall less science credits
10 Good students, no calculus, fair test takers, fewest science credits
1 Good students, calculus, fair test takers, overall less science
6 Good students, no calculus, fair test takers, overall more science
7 Great students, no calculus, good at math and english, overall more science
4 Great students, calculus, good at math but bad at english, most science credits
2 Top students, calculus, good test takers, overall more science
3 Top students, calculus, poor test takers, overall more science

With a stable clustering structure we can begin to examine the effect of gender on outcome
while accounting for students with the same academic background.

Models using the split 10 clustering structure and conclusions
This clustering structure can be used to model STEM retention rates.

Taking all students entering Iowa State University for the first time in Fall 2012 declaring
a STEM major and enrolling in Calculus I, we can model their persistence in STEM into their
second, third, and fourth semester can be modeled using a multinomial logistic model (where the
timing of dropping out is the response and the baseline group are male students in cluster 2).
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The simplest model considers only two possible outcomes: the student is still a STEM major
at the start of the second semester or they are not. The parameter estimates of this model are found
in Table 1 (non significant interactions and effects have been ignored).

In this case, we see that female students are more likely than male students to leave STEM
fields during their first semester (about 34% more likely), even when accounting for preparation
(cluster) and performance (PFX, where passing the course is the baseline, F is for failing the course,
and X for dropping the course).

Analysis of Maximum Likelihood Estimates
(Comparing the second semester to the baseline)

Parameter Estimate Std. Error Chi-Sq Pr < ChiSq
Intercept -1.4244 0.1514 88.54 < 0.0001
Gender F 0.2930 0.1368 4.59 0.0322
Cluster 7 -0.6743 0.3089 4.77 0.0290
PFX F 0.4284 0.1690 6.43 0.0112

X 0.6250 0.2031 9.47 0.0021

This implies that early female STEM retention problems are not the result of preparedness.
Extending this model to include multiple possible outcomes we see that female students are still
more likely than male students to leave STEM early (about 27% more likely than similarly prepared
and equally successful male students), but much less likely to leave STEM during the second
semester, implying that female students have a tendency to stay in STEM if they can survive the
early semesters (about 29% more likely to stay).

Next steps
At this point, we have a model that uses cluster, gender, and grade. The clusters and gender are
known prior to the first semester, but we only know the grade at the end of the semester. For
that reason, we would like to build a model that uses predicted grades instead of the actual earned
grades. We have a proposed model for that, including how to code the responses (Pass, Fail, Drop
as distinct categories) and the inputs (cluster, number of semester credit hours, and factor scores
from the a self-efficacy survey). This would use the clustering variables twice, once to predict
grade and once to predict STEM retention.

We also know that the clusters change slightly from permutation to permutation. We have
suggested running the model for several clustering schemes related to the analysis. One issue we
are having is that we do not have enough data. We are just using students who started in Fall 2012
and took calculus. This means that we can not use a clogits type model in our analysis, even
though dropping out in the first semester is clearly worse than dropping out in the second semester,
i.e., the response we are modeling is ordered. We are planning to avoid this by fitting one model for
students dropping out in the first semester and one model for students dropping out in the first year.
Simplifying the model response should give us the ability to fit a simple (instead of multinomial)
logistic model and possibly include interactions.
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Teachers’ meanings for the substitution principle 

Stacy Musgrave Neil Hatfield Patrick Thompson 
Arizona State University Arizona State University Arizona State University 

Structure sense is foundational to mathematical thinking. This report explores high school 
math teachers’ meanings for the substitution principle, a sub-category of structure sense that 
research previously identified as sources of difficulty for students. A focus on meanings 
reflects our belief that teachers’ meanings directly impact the mathematical meanings 
students develop. We suggest ways of thinking that could lead to various response types as a 
resource for teacher educators to design professional development targeting improved 
structure sense for teachers. 

Keywords: Structure Sense, Representational Equivalence, High School Math Teacher, 
Substitution Principle, Mathematical Meanings 

Structure is a foundational component of mathematics; one could (over) simplify the 
work of a mathematician as the study of the structure of objects and relationships between 
those objects. As such, developing structure sense is fundamental to the experience of math 
students. One powerful component of structure is representational equivalence, which splits 
into two categories: transformational equivalence and substitution equivalence. 
Transformational equivalence refers to the equivalence-preserving transformations one may 
perform on a mathematical object. For instance, while solving an equation, one ought to 
perform actions on the equation that do not alter the original relationship (e.g. multiply both 
sides of an equation by the same non-zero value). Substitution equivalence, called the 
substitution principle by other authors, points to the underlying structural “sameness” that 
holds when substituting a compound term for a variable or a variable for a compound term 
(Novotná & Hoch, 2008). For example, one might substitute u for  in the equation

to highlight its quadratic nature. In this report, we discuss potential 
difficulties in applying the substitution principle in an abstract setting to manipulate an 
expression, as well as implications for this in teaching and learning mathematics.  

While the focus of this report centers on the substitution principle, it hints at a broader 
issue of structure sense. The term “structure sense”, coined by Linchevski and Livneh (1999) 
to signify the use of arithmetic structures in the transition to algebra, and broadened by Hoch 
(2003), references the “ability to recognize algebraic structure and to use the appropriate 
features of that structure in the given context as a guide for choosing which operations to 
perform ” (p. 2). Note that the ability to recognize and utilize structure refers to actions that 
apply across all contexts of school mathematics. Hoch and Dreyfus (2006) demonstrated 
what this ability might look like in specific contexts, grounding this general definition in a 
way that could be useful for guiding student learning and curriculum design. The blanket 
term, however, captures the fact that the notion of structure is broad and spans every level of 
mathematics. Students conceive relationships between concepts, objects and techniques as 
they transition from course to course. Their development of these relationships supports 
students’ awareness of structure (Mason, Stephens, & Watson, 2009). 

Extant literature reveals that many students do not develop structure sense (Hoch, 2003; 
Hoch & Dreyfus, 2006; Linchevski & Livneh, 1999; Novotná & Hoch, 2008; Novotná, 
Stehlikova, & Hoch, 2006; Tall & Thomas, 1991). Student performance, documented at 
various stages of mathematical experience in the aforementioned studies, points to a lack of 
attention to and ability to employ structural qualities of mathematical objects. We suggest one 
explanation for this missing piece of students’ mathematical development: teachers might not 

5x −1
(5x −1)2 − 3(5x −1) = −2
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provide experiences that allow students to develop structure sense. We further suspect that 
this is not a conscious decision on the part of teachers, but rather a result of the fact they 
themselves do not possess robust structure sense.  

This conjecture is problematic in light of the Common Core State Standards’ call for 
students to identify structure, meaning a student must be aware that structure is something to 
look for in representations of mathematical objects, and for students to act in accordance with 
that structure. These are subtle, yet key, distinctions that teachers must be able to make. More 
often than not, student behavior leans towards acting rather than reflecting on actions. For 
instance, order of operations is frequently taught in the context of calculating values of 
expressions rather than identifying implicit structure. This compounds the difficulty 
Thompson and Thompson (1987) identified with regard to students’ work with algebraic 
expressions. Expressions can be “structured explicitly by the use of parentheses, [or] 
implicitly by assuming conventions for the order in which we perform arithmetic operations” 
(p. 248). The standard practice of relying on order of operations to imply the structure of an 
expression means that students must first be aware that structure is something to which they 
should attend. Only then can they use their internalized conventions to determine the 
expression’s structure. Tall and Thomas (1991) describe another student obstacle in 
determining structure as the process-product obstacle. The obstacle is that students must 
simultaneously view an algebraic expression as representing the process of a computation and 
the product of that process. Many students’ difficulties stem from focusing on expressions as 
representing the process of computing rather than the reflecting on the expression as 
representing the result of computing. 

In this report, we provide evidence that many in-service teachers have difficulty with 
structure sense. We focus specifically on the substitution principle (i.e. taking a complex 
expression as one object), a subcategory of structure sense that research points to as a 
common area of struggle for students (Hoch & Dreyfus, 2006; Novotná & Hoch, 2008). We 
believe that teachers cannot support students in developing richer meanings than the ones the 
teachers possess, making it imperative to understand the nature of teachers’ mathematical 
meanings. With this understanding, teacher educators can devise ways to help teachers 
improve both their structure sense and their awareness of its importance for students’ 
mathematical learning. By describing teachers’ struggles with the substitution principle and 
possible sources of difficulty, we hope to identify not only task-specific difficulties, but also 
identify ways of thinking that lead to teachers’ difficulties. Investigating teachers’ meanings 
regarding structure will also allow us to identify potential sources of students’ difficulties, 
thus giving a more comprehensive perspective on the issue of students’ development of 
structure sense.  

Theoretical Framework 
We view an individual’s meanings as her means to organize her experiences and, once 

formed, as organizers of her experience. Through repeated reasoning and reconstruction, an 
individual constructs schemes to organize experiences in an internally consistent way (Piaget 
& Garcia, 1991; Thompson, 2013; Thompson, Carlson, Byerley, & Hatfield, 2013). For 
example, part of an individual’s meaning for a mathematical expression is how she sees its 
structure. One person might see “x/2y” as (x/2)y while another might see it as x/(2y). These 
two people hold different meanings for the given expression, and the consequences for such 
differences can be profound.  

We take as given, subject to future investigation, that a teacher’s meanings can be more 
or less productive in classroom instruction, with productive meanings supporting students’ 
development of coherent mathematical meanings and ways of thinking. Investigations of 
teachers’ mathematical meanings can inform professional development efforts to help 
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teachers promote productive meanings and coherence in mathematics instruction (Musgrave 
& Thompson, 2014; Simon & Blume, 1994; Thompson, 2013).  

Methodology 
Our team of mathematics educators and mathematicians created a diagnostic tool called 

the Mathematical Meanings for Teaching Secondary Mathematics (MMTsm) in order to 
address this issue of investigating teachers’ meanings. The MMTsm consists of tasks that 
provide teachers the opportunity to interpret the given scenario and respond according to their 
meanings. Our team designed, tested, interviewed, and refined items for approximately two 
years prior to giving these tasks in the summer of 2013. In this report, we concentrate on one 
item for which the substitution principle is foundational to reasoning about the problem.   

We scored teachers’ responses to each item in accordance to a scoring rubric. After 
collecting data in summer 2013 we developed an open coding scheme based on roughly 140 
teachers’ responses to categorize ways of thinking. We supplemented the coding process with 
teacher interviews during the yearlong process of developing scoring rubrics. We drew upon 
both the data and prior research related to how students and teachers understand the various 
ideas items were designed to tap. Once identified, we organized themes and ways of thinking 
into levels according to productivity for student learning to form an initial rubric. A group of 
10 people from two institutions scored 10 responses to each item and discussed possible 
improvements to the rubric; we iterated the scoring-refining process until reaching a 
consensus. At this point, we tested the inter-rater reliability of each rubric with an external 
group and made adjustments to each rubric until we reached 100% agreement. The team then 
held a two-day scorer-training workshop on using the rubrics. Upon submission of scores, a 
team member verified each score for compliance to the appropriate rubric for each item. Any 
adjustments made followed the specifications of the rubrics. A more detailed description of 
the method for creating tasks and rubrics attentive to mathematical meanings can be found in 
Thompson (in press). 

We administered the MMTsm to high school mathematics teachers involved in 
professional development programs from two states in the United States. Eighty-four (84) 
teachers took a version of the MMTsm containing the item discussed below. The teachers had 
varying backgrounds with regard to a number of demographic variables. Table 1 shows the 
distribution of teachers’ highest degree obtained along with their major of study. Teachers 
under “STE” majored in science, technology or engineering. The “Other” major category 
includes all other majors, such as Business Administration and elementary education. 
Approximately two-thirds of the teachers majored in mathematics or mathematics education; 
with another 11% being other STEM related majors.  
 
Table 1. Teachers' Highest Degree Obtained vs. Major. 

 Math MathEd STE Other Total 
Bachelor’s 9 11 4 8 32 
Master’s 16 21 5 10 52 
Total 25 32 9 18 84 

The Task 
Thompson and Thompson (1987) describe a common student difficulty in viewing a sub-

expression as a single object. In their study, students used a computer program to manipulate 
expressions into equivalent forms (e.g. transform (z – q)*u into z*u – q*u by selecting and 
applying appropriate identities and transformations). Several tasks requiring students to view 
a sub-expression as a unit proved challenging for students, likely because that particular 
mental activity requires students to focus on the structure of an expression by mentally 

18th Annual Conference on Research in Undergraduate Mathematics Education 80318th Annual Conference on Research in Undergraduate Mathematics Education 803



grouping parts of it as one object. Our research team adapted an item from Thompson and 
Thompson’s 1987 study (Figure 1) for use on the MMTsm. 

 

∆ is an operation with the following property 
For all real numbers, a, b, and c, (a ∆ b) ∆ c = a ∆ (b ∆ c). 

Let u, v, w, and z be real numbers. Can this property of ∆ be 
applied to the expression below? If yes, demonstrate. If no, 
explain. 

(u ∆ v) ∆ (w ∆ z) 
Figure 1. Associative Property Task. © 2014 Arizona Board of Regents. Used with 
permission. 

Teachers could use tasks similar to the one in Figure 1 to guide classroom conversations 
about expressions, particularly focusing students’ attention on structure while discussing how 
to view the expression in multiple equivalent ways. We thus administered the task in Figure 1 
to teachers to gain insight on how they might respond in a situation necessitating the 
grouping of compound terms as one object. The task defines a property for an operation ∆ in 
terms of three variables and asks if the property can be applied to an expression with four 
variables. In order to reason that the stated property of ∆ applies to the expression, one must 
reason that w∆z can be viewed as one object while viewing u∆v as an operation on two 
objects, or similarly, view u∆v as one object while considering w∆z as an operation on two 
objects. We categorized teachers’ responses according to a scoring rubric, which we will 
describe further in the next section. 

Results and Discussion 
Table 2 shows our classification of teachers’ responses to Figure 1. Responses 

categorized in the top two levels include those that attend to structure in a way that shows 
that the property applies. The distinguishing trait between the top two levels is the quality of 
demonstration. Namely, responses at the highest level (Level 3) explicitly show how a sub-
expression is treated as one object. We put at Level 2 responses that correctly applied the 
property without explicitly showing groupings (Type 1) because we believe that simply 
providing the answer without showing how it is achieved would be less supportive of 
students who are still developing the skill of identifying compound terms as one object. We 
also put at Level 2 any response that would have been put at Level 3, but which then showed 
further work that introduced ambiguity (Type 2). Level 1 captures two types of responses. 
The first is that the teacher claimed the property does not apply (13 of the 25 teachers at 
Level 1). The second contains responses that suggested that the teacher thought that the 
property meant they could move parentheses any way one wishes. Level 0 also captures a 
variety of responses. Specifically, if a teacher changed the order of the variables in the 
expression, stated the need to know the definition of ∆, claimed that ∆ stood for addition or 
multiplication, substituted numbers for any of the variables, or wrote a final expression not 
containing exactly 3 “∆” symbols, his or her response was scored at Level 0. 

The Associative Property Task was atypical among items in our assessment with regard 
to results varying based on undergraduate major. Table 3 shows the distribution of teachers’ 
responses by level and by undergraduate major. The distribution of responses by teachers 
with degrees in math, math education, and STE are similar distributions across levels. 
However, the distribution of responses by teachers with “Other” majors is noticeably 
different, with a disproportionately large number of teachers holding degrees in the “Other” 
category providing low-level responses. We suspect that the ways of thinking required to 
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provide a high-level response are not regularly practiced outside of STEM fields. While 
teachers with “Other” majors have likely practiced grouping objects mentally, they may not 
have repeated experiences doing so in an abstract setting using symbolic manipulation.   
 
Table 2. Associative Property Task Sample Responses by Level 

Response 
Level Sample Responses 

Number of 
Responses 

Level 3  

 

 

14 

Level 2  

Type 1: Correctly applied property without demonstrating how the 
property applies. 

 
 

15 

Type 2: Contains elements of Level 3 response, but final answer 
does not serve the purpose of demonstrating how the property 
applies. 

 

Level 1  

Type 1: Teacher said property does not apply 

 25 
Type 2: Placement of parentheses is inconsistent with the given 
property 

 

Level 0  

Substituting numbers or replacing ∆ with a 
known arithmetic operation:  

 
 

Changing order of 
variables and 
omitting ∆:

 28 
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Table 3. Responses to Associative Property Task by Major 

 Math Math Ed STE Other Total 
Level 3 5 6 2 1 14 
Level 2 5 6 2 2 15 
Level 1 7 13 1 4 25 
Level 0 6 7 4 11 28 
No Response 2 0 0 0 2 
Total 25 32 9 18 84 

 
Our data suggests two common sources of struggle on this item. The first is the abstract 

nature of the problem itself; ∆ is an unknown operator and variables are used instead of 
numbers. Indeed, 21 of the 28 Level 0 responses suggested the need to use numbers, or 
expressed a need to know what operation ∆ represents, like multiplication or addition (see 
Table 2, Level 0, first response). The second source identified in the data is the difficulty in 
viewing similar structures u∆v and w∆z in two different ways simultaneously—one as two 
objects and the other as one object. In fact, some teachers responded in a way that showed 
they only saw two objects or that they saw four objects (Figure 2).  
 

 
Figure 2. Sample Teacher Responses Demonstrating Conceiving Only of an Even 
Number of Terms. All teachers have a degree in Math Education.   

Conclusions 
In this report, we categorized teachers’ responses on a task designed to reveal meanings 

for the substitution principle in the context of structuring an expression. We take teachers’ 
responses as samples of their in-the-moment meanings in the given context with the hope of 
revealing ways of thinking that might be addressed profitably in professional development. In 
particular, by identifying teachers’ ways of thinking and possible areas of difficulty, we are 
able to identify how teachers are positioned to support students develop meanings for 
structure sense. We warn the reader, however, that even if a teacher provided a high-level 
response, this does not mean the teacher will consciously support the development of 
structure sense in his or her students. As Novotná and Hoch (2008) and Mason et al. (2009) 
stated, it is not enough for teachers to just possess well-developed structure sense. They must 
also be reflectively aware of their structure sense, and make it a goal to foster its development 
in their students. Only then can teachers begin to make decisions about classroom activities 
and conversation that could support the development of structure sense in students. 

The data shared here, along with data on five additional structure tasks from the MMTsm, 
suggest that low-level structure sense among teachers is commonplace. Such a statement is 
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relatively unsurprising and extremely unhelpful, however. What is useful is that our data 
suggests that most teachers’ responses appear to be driven by context rather than structural 
reasoning. Compartmentalized meanings could be part of the triggers that Hoch (2003) 
described as playing a role in how an individual classifies objects and properties into 
structures. Likewise, our findings support Novotná and Hoch’s (2008) warning that “this lack 
of awareness [of structure sense among students] may return with [them as] teachers back to 
schools” (p. 102). Our research suggests that teachers operate on tasks based predominantly 
on contextual cues rather than structural awareness. We suggest future research explore how 
teachers rely on context instead of structure sense to approach problems. With such 
information, researchers and professional development professionals could begin creating 
tasks that would support teachers in developing structural awareness. In particular, future 
research needs to investigate how to generate attention to structure as something that is 
important and useful within the teaching community. Teachers with this belief will be better 
poised to support students in using the various facets of structure sense to guide decision-
making processes in the act of solving problems.  

Admittedly, our study is limited by the fact that our assessment was designed to explore 
teachers’ meanings for a variety of content areas, so we only have six structure items to draw 
upon for analysis—and only one of which we shared here. Future research should extend the 
exploration of teachers’ structure sense in a more focused fashion. For instance, one might 
use tasks designed specifically to distinguish between context specific reasoning and 
structural awareness, and conduct follow-up interviews of teachers aimed at eliciting their 
thinking. With insight into ways of thinking from such studies, researchers could then 
develop pedagogical items to be used in professional development and explore the effect of 
drawing teachers’ attention to structure on those teachers’ activity in their classrooms.   

Our assessment and the corresponding analyses of responses aim to support professional 
developers in gauging the mathematical meanings by which teachers operate. We propose 
that classifying common ways of thinking, both productive and less productive in the 
normative sense, gives necessary information that professional developers need to support 
teachers in developing richer meanings and ways of thinking. We hope this approach of 
working with teachers’ meanings for the substitution principle will increase the field’s 
awareness of structure sense, thereby positioning mathematics educators to help teachers to 
better support students’ development of structure sense.   
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Calculus students’ meanings for difference 

Stacy Musgrave Neil Hatfield Patrick Thompson 
Arizona State University Arizona State University Arizona State University 

Students learn the mathematical operation of subtraction beginning in elementary school, along 
with key vocabulary to talk about that operation. However, the meanings that students develop 
for the word “difference” continue to play a role well into students’ study of undergraduate 
mathematics. In particular, a meaning for “difference” as representing a change in a quantity is 
essential to understanding and communicating about foundational ideas in Calculus. In this 
preliminary report, we consider meanings about the word “difference” held by calculus students 
as revealed on a pre-test in an on-going study designed to explore Calculus students’ structure 
sense. We further propose potential consequences for those meanings and describe methods to 
be used in data collection for the remainder of the Fall 2014 semester.  

Keywords: Calculus Students, Mathematical Meanings, Difference 

Students learn about the mathematical operation of subtraction beginning in elementary 
school. Along with learning to perform subtraction to calculate values of expressions, students 
learn vocabulary words, such as “difference”, “minuend” and “subtrahend” to refer to the 
structure of expressions involving subtraction, the quantity from which another is to be 
subtracted, and the quantity to be subtracted, respectively. Such words and attention to structure, 
however, often fall to the wayside in classroom conversation. Students also learn the other 
arithmetic operations of addition, multiplication and division, then proceed to learn the Order of 
Operations. Treatment of all these topics traditionally falls in the context of computing values of 
expressions, rather than identifying the structure of such expressions. For instance, when a 
student is given an expression like 3 – 5 + 6, more often than not, he is asked to simplify. If he 
follows the Order of Operations, he will first compute 3 – 5 to get -2 and write a new expression 
-2 + 6. Notice that as soon as he replaces 3 – 5 with -2, he loses the structural information of 
where the -2 came from. Likewise, when the student adds -2 and 6 to get 4, all information about 
where the value 4 came from is lost. Note that as this student engages in this type of 
computational activity repeatedly, he is likely to develop a meaning for the Order of Operations 
and the operations themselves that they are a call to do something. Exclusive engagement in 
computational activities will hinder the students’ development of meanings for Order of 
Operations as a means to describe the structure of the expression (e.g. the above expression is a 
sum in which the first addend is the difference 3 – 5 and the second addend is 6).  

The act of describing the structure of an expression can be thought of in terms of a larger area 
of study: students’ structure sense. Extant literature shows that students have weak structure 
sense, both before and after completing coursework at the university level (Hoch & Dreyfus, 
2006; Novotná & Hoch, 2008). We suspect that weak structure sense, particularly the awareness 
of and ability to identify structure of expressions, is a major contributor to the common struggle 
of Calculus students in applying appropriate techniques of differentiation and integration. After 
all, it is common to hear a student say, “I have memorized all the rules of differentiation, but 
when you give me those crazy functions, I don’t know which one to use.” 

The broader purpose of our on-going study is to explore Calculus students’ structure sense, 
particularly with regard to whether or not they attend to the structure of functions. Namely, when 
given a function, do students recognize the structure of the function rule as a sum, difference, 
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product, or quotient? How do students’ meanings for Order of Operations play a role in 
identifying structure? What activities can a teacher engage in to draw students’ attention to 
structure? Does attention to structure alleviate typical student struggles with applying rules of 
differentiation and integration techniques? 

In this report, we focus specifically on students’ meanings for “difference” as revealed on a 
pre-test. We describe consequences for these meanings in the teaching and learning of Calculus 
ideas.   

Theoretical Framework 
We consider the meanings an individual develops as his means to organize his experiences, 

and once developed, those meanings serve as organizers of new experiences. Creating meanings 
entails constructing a scheme through repeated reasoning and reconstruction to organize 
experiences in a way that is internally consistent (Piaget & Garcia, 1991; Thompson, 2013; 
Thompson, Carlson, Byerley, & Hatfield, 2013). For instance, an individual’s meaning for Order 
of Operations might be entirely situated in the context of computing the value of an expression 
and entail recollecting the acronym PEMDAS (Parentheses, Exponents, Multiplication, Division, 
Addition, Subtraction). Such a meaning might inhibit that individual’s ability to make sense of 
the structure of an expression containing both numbers and variables.  

Methods 
At the time of writing this report, we are in the initial stages of data collection for a study that 

will conclude at the end of the Fall 2014 semester. We have collected data from 201 Calculus I 
students at a large research university in the southwestern United States. The design of the 
Calculus course is distinct from a conventional introductory Calculus course in that the 
curriculum is research-based and designed with the explicit intent of supporting students in 
developing rich meanings for the foundational ideas of calculus.  

Participants. There are two sections of the specially designed Calculus I course. One section 
has 52 students and is taught by the lead author. The other section has 149 students and is taught 
by a senior instructor who has 3 semesters of experience teaching this particular course, and 
played an integral role in creating the student materials for the course. The students were 
unaware of the unique design and goals of the course when they registered for the class.  

Data Collection. The students completed an 11-item pre-test that investigates their meanings 
for Order of Operations. Selected tasks from this pre-test and some preliminary results are 
discussed in the Preliminary Results section. During the remainder of the Fall 2014 semester, 
data will primarily be gathered from the 52-student section. The instructor of this section will 
record her lectures (capturing audio and the screen projected for students to see), which will be 
tailored to explicitly draw students’ attention to structural qualities of expressions and functions. 
She will select 6 students from the pool of volunteers to conduct interviews to probe their 
thinking further and pilot tasks to be used during whole-class instruction. Student work on 
assignments related to supporting structure sense will be scanned as a reference to gauge 
students’ tendency to employ structural awareness in their work. At the end of the semester, 
students from both sections will complete a post-test aimed to reassess students’ meanings for 
order of operations and to see if there is a connection between those meanings and performance 
on differentiation and integration tasks. Data from interviews and the post-test will be presented 
in the event that this proposal is accepted.   
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Preliminary Results 
In the discussion that follows, we describe 2 tasks on the pre-test that explicitly investigate 

students’ meanings for difference and discuss preliminary results from 83 students’ responses.  
Task 1: What does it mean to say an expression is a difference? 

We first asked students to answer the question, “What does it mean to say an expression is a 
difference?” Of the 83 responses coded so far, only 18 did not include the words “subtract” or 
“subtraction”. For 6 students, “subtraction” or “to subtract” was the entire response. Formally, 
however, three pieces comprise a difference: a minuend, a minus sign and a subtrahend. In the 
context of Calculus, the minuend and subtrahend have significance; they represent values for 
measures of given quantities. For instance, one might be given a function f that describes the 
number of feet traveled by a rocket relative to the number of seconds elapsed since being 
launched. With the given information, one might symbolically represent the distance traveled by 
the rocket during the first 10 seconds of the launch by writing the difference f(10) – f(0). It is 
necessary to imagine two quantities to produce this expression. We did not expect students to use 
language like “quantity” or “minuend”, in their responses, but even after relaxing our criteria to 
determine how many objects (e.g. “numbers”, “expressions”, “something”) mentioned in their 
response, 26% of responses contained a reference to fewer than 2 objects (Table 1).  

Table 1. Number of objects described in a difference 

Number of objects mentioned in describing a difference Number of Responses 
(out of 83) 

None 20 (24%)  
Exactly 1 2 (2%) 
“One or more” or “more than one” (as signaled by the use 
of pluralized words like “numbers”, “expressions”) 19 (23%) 

Exactly 2  31 (37%) 
“Two or more” 10 (12%) 
Unclear 1 (1%) 

 
Task 2: Identifying differences in a mathematical sentence 

In order to see how students operationalize the meaning they have for difference in the 
context of identifying structure, we asked students to identify differences in a mathematical 
sentence (Figure 1). We anticipated that students would at least rely on the number of subtraction  

List each difference that you see in the mathematical sentence given below.  

d(x)= f (x+h)− f (x)
(x+h)− x

+ e7−x − 3cos(2+ x)  

Figure 1. Identifying Differences Task 

symbols (4) to determine the number of differences they should list. However, 33% of students 
(27 of 83) only listed 3 differences. Most of these students listed (with some variation on which 
parts of the differences they identified, as discussed below) f (x+h)− f (x) , (x+h)− x  and 
e7−x − 3cos(2+ x) . Eight people did not respond or otherwise gave responses we could not 
interpret, four people listed more than 4 differences and 41 students listed exactly 4 differences. 
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Only 5 students listed the four differences we identified, namely: f (x+h)− f (x) , (x+h)− x , 

  7 − x , and f (x+h)− f (x)
(x+h)− x

+ e7−x
"

#
$

%

&
'− 3cos(2+ x) .   

Table 2. Types of responses to Identifying Differences Task 

Characteristic of Response Number of Responses 
(out of 83) 

Listed 4 differences 41 (49%) 
Listed 3 differences 27 (33%) 
Listed more than 4 differences 4 (5%) 
Wrote e7−x instead of 7 – x 14 (17%) 
Wrote an expression containing only the minus sign and 
the subtrahend (e.g. – x instead of 7 – x)  

12 (14%) 

Pointed to or circled the minus signs 11 (13%) 
No response/Researchers could not interpret response 8 (10%) 
Note: students’ responses may be listed in multiple categories; the counts 
(percentages) will not add to 83 (100%). 

 
Table 2 summarizes a few interesting points regarding students’ responses. Eleven of 83 

students only pointed to, or circled, the subtraction symbols. For these 11 students, the 
subtraction symbol is the difference, rather than the whole expression comprised of the minuend, 
minus sign and subtrahend. Another 12 students wrote the minus symbol and the subtrahend 
without the minuend when listing the differences they identified. We suspect students in these 
two groups may struggle to make meaning of discussions held in class regarding changes in 
quantities. In particular, for a student who only circled the minus signs in Figure 1, thinking 
about a difference does not entail imagining a quantity, two values of that quantity and a 
comparison of those values. Yet holding all these things in mind is essential to reasoning about 
changes in quantities in Calculus, one of the foundational components to the idea of rate of 
change and, hence, the Fundamental Theorem of Calculus.  
Cross-task Comparisons 

An emphasis on the operation subtraction while discussing “differences” may explain the 11 
students’ responses that reference only the minus sign. Further, a meaning for subtraction as 
“take away” could explain the other 12 students’ writing only the minus sign and the subtrahend. 
Table 3 on the next page shows several of these students’ responses. We plan to conduct follow-
up interviews to further probe these students’ thinking.  

Questions for the Audience 
In Table 3, it appears that Emily used a dash as a bullet point to list differences. Other 

students did this as well. Ought we consider Brett’s and Cindy’s responses to also reflect using a 
dash as a bullet instead of a minus sign? Does this change the consequences for meanings?  

While we only focused on the meaning for difference in this report, we also have data related 
to students’ meanings for the other arithmetic operations and the Order of Operations. Many 
students tended to rearrange symbols to “show” structure via spatial arrangement. For instance, 
when presented with a single-line expression x + 3 / 7 * y, the student would rewrite the 
expression as a stacked fraction. Does this constrain students’ meanings? Or is a reliance on 
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visual cues an acceptable activity for students, since writing expressions on one line is typically 
reserved for typing mathematics (an activity most students never do)?  
 

Table 3. Student responses to both tasks 

Student  Response to Task 1 Response to Task 2 
Ally  

 

 

 
 

Brett  

 
 

 

 

 
 

 

Cindy  

 

 

 

 
 

Danny  

 

 

 

 

 
 

Emily  

 

 

 

 
 

Note: All names are pseudonyms. 
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An investigation of beginning mathematics graduate teaching assistants’ teaching 
philosophies 

 
Kedar Nepal 

Mercer University 

This qualitative study is an investigation of the teaching philosophies of beginning 
mathematics graduate teaching assistants (MGTAs). The study considered the cases of two 
domestic and two international MGTAs. Three teaching philosophy statements from each of 
the participants were collected at three different stages of a semester-long teaching assistant 
preparation program (pre-service phase). Three one-on-one interviews were conducted with 
each participant in the following four semesters (in-service phase) after the conclusion of the 
pre-service preparation program course. These audio-recorded interviews were transcribed 
and analyzed using the constant comparative method. Beginning teaching philosophies of 
these participants and how their philosophies changed over time, during both the pre-service 
and the in-service phases, will be briefly discussed. The factors that influenced their teaching 
philosophies in both phases will also be discussed. 

Key words: [Mathematics Graduate Teaching Assistants, TA Preparation, Teaching 
Philosophy, Undergraduate Mathematics Instruction] 

Introduction 
Mathematics Graduate Teaching Assistants (MGTAs) in many US universities play 

significant roles in undergraduate mathematics instruction (Belnap, 2005; Speer, Gutmann & 
Murphy, 2005). The MGTA population consists of both domestic and international students. 
International MGTAs now make up a sizable portion of graduate students in mathematics. 
Regardless of where these MGTAs come from, they have tremendous influence on 
undergraduate students’ experiences with mathematics (Speer, Gutmann, & Murphy, 2005). 

Research shows that MGTAs’ beliefs and philosophy about teaching and learning have a 
significant impact on their classroom practices and decisions (Kim, 2011; Speer, 2008; 
Thompson, 1992). Since MGTAs come from a diverse background, they bring their own 
experiences, perspectives, beliefs, and philosophies about teaching mathematics and student 
learning with them. Unlike other instructors, they are mathematics instructors who are also 
fulltime graduate students. Since teachers’ philosophies of teaching change over time, a 
careful examination of beginning and evolving teaching philosophies may provide insight 
into the support structures necessary to facilitate effective classroom instruction (Simmons et 
al., 1999). This study attempts to describe the beginning and changing philosophies of 
teaching of a few purposefully selected MGTAs at a large public university in the midwestern 
US. The study was guided by the context-based adult learning theory, an extension of 
Vygotsky’s sociocultural learning theory. Participants’ learning about teaching and learning 
mathematics was considered within the cognitive apprenticeship model. 

The goals of the study were to answer the following research questions: What are the 
teaching philosophies of beginning MGTAs? How do their philosophies evolve during the 
pre-service phase? How do their evolving philosophies of teaching change during the 
transitional in-service phase? What are the major contributing factors that affect MGTAs and 
their teaching philosophies during the pre-service and in-service phases?  
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Methods 
The researcher observed all sessions of a semester-long MGTA preparation course during 

the fall 2012 semester. Four MGTA participants, David, Andrew, Rebecca and Jennifer (all 
pseudonyms), were selected using a purposeful sampling method. See Appendices A and B 
for a short description of the course and the participants. Two participants were domestic and 
two were international, and each category included one male and a female participant.  

Three teaching philosophy statements (TPSs) were collected from each participant at 
three different stages: at the beginning, middle, and end of the semester. These TPSs were 
course assignments, required by the instructor, who also discussed the writing prompts for 
these TPSs  (see Appendix C) with the researcher. They were directed to revise their earlier 
TPSs based on their learning from the course and also from their reflection of practicum 
experiences. Following the conclusion of this course, they taught lower division mathematics 
courses, either as instructors with full responsibility or as recitation leaders. Three one-one-
one audio-taped interviews were conducted with each participant in the following three 
semesters. The pre-service TPSs and the transcribed interviews were analyzed using the 
constant-comparative method (Strauss & Corbin, 1990) using open coding techniques. The 
data from each interview were analyzed before conducting the subsequent interviews.  

Results and Discussion    
The participants expressed varying opinions in both the pre-service and the in-service 

phases. In addition, their teaching philosophies evolved differently over time during both 
phases. This is a case study, and because of the subjective nature of the participants’ 
opinions, it would not be appropriate to generalize and draw conclusions about what novice 
MGTAs believe. However, some of the themes found in the participants’ TPSs were shared 
by all of them. Below is a summary of the results obtained from data analysis. Because of 
space constraints, it was not possible to describe all the identified themes in detail. 

Pre-service phase. As found in studies involving pre-service and beginning teachers 
(Stuart & Thurlow, 2000), these MGTAs also had simplistic views of teaching and did not 
seem to realize what it takes to be an effective teacher. For example, summarizing his TPS I, 
David wrote: “One can be an effective or a successful teacher if he prepares well on the 
subject matter before going to the class, develops positive attitudes, has high expectations 
(for students), and employs fairness in his teaching.” The beginning TPSs of the participants 
had a few elements in common, such as giving importance to conceptual understanding and 
creating a good learning environment. They reiterated these beliefs even during the in-service 
phase. However, they wrote very little that was specific to mathematics teaching. 

All participants wrote in TPS I that creating an effective learning environment is 
essential, although they had varying opinions about what constitutes such an environment. 
Andrew, Rebecca, and Jennifer wrote that they could motivate students to learn mathematics 
by relating concepts to other fields. David also expressed this belief later, during the in-
service phase. The domestic students, Andrew and Rebecca, wrote that instructors should 
engage students in the learning and problem solving processes. An interesting element found 
from the analysis was that both international students wrote that treating students equally 
would help to create the desired learning environment. Rebecca was the only MGTA who 
stated that employing student-centered instruction would enhance the learning environment. 

David, Andrew, and Rebecca wrote that teachers should have high expectations for 
students. Based on the teaching they experienced as students, they expressed that they had 
been pushed to work harder and succeed because their professors used challenging problems 
for assignments and exams. Only two participants, David and Andrew, wrote about the 
importance of being prepared before going into the classroom. But David only emphasized 
content preparation, while Andrew underscored the importance of developing lesson plans 
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and creating challenging homework and exams, although he realized that his other 
obligations as a graduate student might make that impossible. Jennifer also wrote that the 
instructors should have enough knowledge of mathematical content but neither of the 
domestic students wrote anything about this topic. All the participants except David wrote 
that providing out-of-class support was an essential supplement to classroom teaching. Later 
during the in-service phase, David also stated that providing such support is important. 

MGTAs mostly described the teaching behaviors of their past teachers (role model or 
“ineffective”) instead of writing their own opinions, beliefs, and plans in their initial teaching 
statements. Although some aspects of these beginning MGTAs’ teaching philosophies 
mirrored existing research about the beliefs of pre-service teachers, some of the themes were 
not at all common in the existing literature. The elements that were not common were their 
belief in having high expectations for students, the international MGTAs’ belief in equal 
treatment of students, and Andrew’s belief in the importance of “coping with” institutional 
culture. 

Data analysis showed that the philosophies of these participants changed very little during 
this period, from TPS I to TPS III. At the point of TPS II, they generally made only minor 
revisions and added a few more beliefs to what they had described in TPS I. Jennifer, for 
example, added only that instructors should smile at students to make them feel comfortable. 
Rebecca acknowledged the importance of being prepared, a change that she attributed to the 
observation of her mentor’s classes. David wrote that instructors should also prepare teaching 
materials and employ “effective teaching techniques,” in addition to preparing mathematical 
content they are going to teach. Both of them added that instructors should be well-organized, 
both in and out of the classroom. David and Andrew added that active classroom interaction 
contributes to a good learning environment, and that instructors should have a positive 
attitude. David added that instructors should be caring, but still maintain the role of an 
authority figure. He also wrote that teachers should be able to explain mathematical concepts 
clearly to the students. All of these changes were relatively minor, with all participants’ major 
beliefs remaining unchanged. All four participants’ belief in creating a comfortable learning 
environment had actually been strengthened during this period. 

At the point of TPS III, near the end of the pre-service phase, all the participants except 
Andrew developed or reinforced their belief that they should be well prepared before 
teaching. Jennifer attributed this change to her teaching presentation experience. Both male 
participants, David and Andrew, said that they would grow as effective teachers as they gain 
more experience. David realized that people should have a passion for teaching if they want 
to succeed in the profession. Andrew added that he would reflect on his own teaching and try 
to improve. Andrew and Rebecca added that instructors should share their passion for 
mathematics if they want to motivate students and create an effective learning environment. 
They wrote that they would encourage their students to seek out-of-class support during 
office hours, but Andrew’s earlier belief in employing a tough-love attitude did not change. 

In summary, small changes were detected in the TPSs of these participants during the pre-
service preparation program. For example, Jennifer only added in TPS II and TPS III that she 
needed to make eye contact and smile at students to make them feel comfortable. Her 
situation was unique in that she was a pre-service college instructor in the US, but she already 
had five years of college teaching experience in her home country. However, she attributed 
her philosophical changes to her observation of undergraduate classes taught by her faculty 
mentor during the pre-service preparation program. There are few interesting observations 
worth noting here. First, if she had five years of college teaching experience in her home 
country, why was this the first time that she realized the need to make eye contact with her 
students and smile at them? Second, if it was, was that all she learned from a semester long 
seminar and practicum experiences in the course? She noted in TPS III that she needed to be 
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a little more prepared, which she attributed to her teaching presentation experience in the 
course. But she could have already realized the need to be prepared from her five years of 
teaching experience. 

In-service phase. Many common themes were detected in the teaching philosophies of all 
four participants as they entered into the in-service phase and started to teach. They all 
considered creating an effective learning environment, being prepared, and providing out-of-
class support as fundamental components of their teaching philosophies. 

All four participants felt strongly that they would develop as better teachers as they 
gained more experience. They said that the best way to learn about teaching is to experience 
teaching as a real classroom instructor. When asked to express their opinions on the 
importance of professional development activities, they said that these might have little 
impact in their future teaching. Even though they said (during the interviews) that they 
learned many things from the pre-service preparation course, they did not attribute their 
philosophical changes much to that course. They said that the course mostly contributed to 
alleviating their anxiety and increasing their confidence as beginning teachers. This finding is 
consistent with findings from earlier research with MGTAs (Belnap, 2005; Harris, Froman, & 
Surles, 2009). They said that the math department did a good job in helping them during the 
first semester, but interestingly, they all felt that they would need little further support. This is 
not consistent with previous research that found TAs believed that their preparation program 
did not adequately prepare them for classroom teaching (Moore, 1991). It is, however, 
consistent with previous findings that MGTAs do not see the importance of pre-service 
preparation and any other professional development programs, because they believe that the 
only way to learn about teaching is by experience (Chae, Lim, & Fisher, 2009; Harris, 
Froman, & Surles, 2009). It is also possible that many MGTAs might have not been 
consciously aware of how their pre-service preparation programs affected them (Belnap, 
2005). 

The participants said that they changed some of their perspectives about teaching because 
of their teaching experience during the in-service phase, especially because of the students 
they taught. Jennifer said that the students are the best source from which to learn, and that 
teaching evaluations would help her to improve her future teaching. They all expressed that 
teachers’ efforts alone are insufficient, and that students should also put effort into their 
learning. For example, Andrew said during interview III that students should “bust their butt” 
in order to succeed. Without being asked, Andrew said that we are trying to replace hard 
work by “pampering students”. He said that some concepts are difficult to learn because they 
are difficult, and the students should work hard. All of them said that they want to learn from 
their own experience and mistakes. Even though they would like to have help when needed, 
they said that they want to teach their way and become the kind of instructor they aspire to 
be. They did not seem to like teaching recitation sections, or coordinated courses with similar 
pacing across all sections, and following the instructions of the course coordinators. 

One significant change detected in the teaching philosophies of David, Andrew, and 
Rebecca was that they would like to become more authoritative, to prevent students from 
treating them as peers because of their small age difference. As all participants (except 
Andrew) became more experienced teachers during the in-service phase, they gradually 
reinforced their earlier belief that they need to be prepared for class. Andrew said he would 
only focus on reviewing the content before going to teach. He said that he does not do lesson 
plans or any other preparation, and needs only to know the relevant mathematical content, 
and be able to provide examples “on the fly”. 

Andrew and Rebecca said that they realized the importance of using technology but rarely 
had enough time to use it in the classroom, a finding that matched previous studies with 
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beginning K-12 teachers (Schuck, Aubusson, Buchanan, & Russel, 2012). None of the four 
participants had discussed the use of technology in any of their pre-service TPSs. 

There was some variation in participants’ expressed beliefs about creating an effective 
learning environment. All the participants said, in some or all the interviews, that students 
can be motivated by showing applications of mathematical concepts to other fields. They said 
that use of humor could contribute to a fun learning environment, and mentioned that 
instructors should try to change students’ mindset that ‘math is hard’. Andrew, David, and 
Rebecca said that sharing their passion for mathematics would positively impact how the 
students respond to them. Being caring, inspiring, and encouraging were other ways they all 
thought they could create a good learning environment. 

The participants expressed that interaction, student engagement, and collaborative 
learning all contribute to a good learning environment. Jennifer, Rebecca, and David said that 
their course coordinators encouraged them to employ collaborative learning, and supported 
their attempts to do so, but Andrew said that he learned from his own teaching experience. 
Other researchers had also found that the participants from a multi-day workshop identified a 
change in their teaching philosophies from teacher-centered to student-centered instruction 
(Schussler et al., 2011; White et al., 2012). But the participants in the existing research 
attributed such change to their learning of educational theory in addition to the feedback from 
experienced faculty (Schussler et al., 2011). David, Jennifer and Rebecca confirmed their 
learning from their course coordinators but none of the participants attributed their newfound 
appreciation for collaborative learning to any of several reading assignments from the 
preparation course. 

International MGTAs, David and Jennifer, carried over a philosophy of treating students 
equally from the pre-service phase. They had developed this belief from the teaching they 
had experienced as students in their respective home countries. They perceived that they 
would have been much better instructors if they were more proficient in English, and had a 
stronger understanding of American culture. They stated that American students seemed 
unwilling to interact with them, because of cultural differences and their (self-perceived) 
inadequate proficiency in English. These challenges of international MGTAs due to cultural 
differences were also identified by Chae, Lim, and Fisher (2009). Research on international 
teaching assistants has also suggested that differences in communication styles and behaviors 
may contribute to the negative interactions and misunderstandings with their students, and 
hence their perceived decreased effectiveness (Liu, Sellnow, & Venette, 2006; McCroskey, 
2003). However, the cultural differences and their inadequate English language proficiency 
may not be the only cause of the development of the belief about the importance of 
interacting with the students. Even the two domestic MGTAs in this study realized the 
importance of frequent student-teacher interaction because they said that their students rarely 
visited them during their office hours. 

All participants but Jennifer expressed at all three stages of the in-service phase that 
having high expectations for students would force them to work harder, a belief they carried 
over from the pre-service phase. Andrew even said that his philosophy was to employ a 
tough-love attitude to force students to realize their responsibility and to put effort into their 
education. Rebecca, however, started to feel less strongly about this belief as she gained more 
teaching experience. For example, she said that she does not like to intimidate her students by 
giving very challenging problems at first, but would start by assigning easier problems, then 
slowly build up students’ confidence to solve more difficult problems. Andrew also seemed 
to have softened somewhat, as he underscored the need to be patient and show compassion 
for students’ difficulties. However, he also said that he would become tougher with students 
who do not work but keep complaining about the level of effort needed to successfully learn 
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mathematics. The participants said that they developed the belief of having high expectation 
for students from the impressions of their role model teachers from the past. 

Factors. The foundation of MGTAs’ initial teaching philosophies stemmed primarily 
from their past experience as students, especially by their role model teachers. However, their 
in-service teaching philosophies were influenced mostly by their teaching experience. Other 
influencing factors included observation of their faculty mentors’ classes, their own 
undergraduate students, MGTA peers, and course coordinators. MGTAs said that the 
preparation program had little impact in their teaching philosophies. 

The data used in this study is only an approximation of what these participants believe or 
think. What they have in mind might not have been written in the TPSs or expressed during 
the interviews. Therefore, it is not appropriate to conclude what they really think or believe 
based on this data set alone. Also, the changes detected might not have been caused solely by 
their learning during the pre-service or in-service phases. Their TPSs could have been 
different if they had been given different writing prompts, or instructed to draft new 
statements instead of revising their old ones. Similarly, what they reported during interviews 
might have changed with different interview protocols or a different interviewer. Also, beliefs 
that were first detected in the in-service interviews might also have been held during the pre-
service phase but not reported, as it would have been impossible to report all one’s beliefs 
about teaching in the 1-2 page TPSs.  Moreover, there is no guarantee that the novice 
instructors’ classroom practices are always consistent with the expressed beliefs. However, 
understanding their perspectives could inform restructuring of some of the professional 
development activities in the existing pre-service MGTA preparation programs. 
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Appendix A. Seminar and Practicum in Teaching College Mathematics 
Seminar and Practicum in Teaching College Mathematics (SPTCM) was a mandatory 

semester-long preparation program for beginning MGTAs during the first semester of their 
graduate program. They did not have any teaching or grading assignments during the 
semester but they were required to participate in this professional development program. 
MGTAs learned pedagogical knowledge and other classroom management skills through a 
combination of weekly seminar discussions and classroom practicum experiences.  

MGTAs were expected to complete all out of class assignments such as written 
assignments (syllabi, lessons, exams, papers, etc.) and retain them as part of their course 
portfolios. They were placed with experienced instructors who served as their mentors. They 
were required to observe their mentors’ classes and visit their offices for completing assigned 
activities and asking any questions. Mentors submitted an evaluation of their MGTAs’ 
performance at the end of the semester. MGTAs prepared and delivered actual classroom 
presentations under the direct supervision of their mentors. They were required to write 
reflections of their own presentations, discuss these reflections with peer MGTAs (who also 
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wrote reflective comments related to their observations of the presenter), and revisit their 
presented lessons. 

Almost every weekly seminar began with a repertoire of student issues related to 
decision-making and classroom management initiated by the instructor or MGTAs. They 
were encouraged to express their opinion about how they would respond or act to such 
student issues. MGTAs were required to learn routine activities such as preparing syllabi, 
writing exams, using technology, maintaining grade book, and posting student grades from 
their mentors. During the discussions, they were encouraged to share their learning from the 
mentors, and share their observations, questions, and reflections they had noted from class 
observations. MGTAs were involved in activities such as grading actual student homework 
and exams. In the following week, they are required to present and justify their grading 
algorithm. This activity provided them an opportunity to learn how others see things 
differently and also to reflect on their own decisions.  

Besides several other reading and writing assignments, MGTAs were assigned a 
particularly introspective assignment related to ‘Developing Your Philosophy of Teaching’.  

Appendix B. Description of the Participants 
David. David was a 23-year-old first year Master’s degree student during the fall 2012 

semester. He was an international student who came from a south Asian country. He 
completed high school in his home country before pursuing a bachelor’s degree in a medium-
sized university in the mid-western US. He planned to pursue a Ph.D. degree in applied 
mathematics and his career goal was to become a mathematics professor. He was fluent in 
spoken English, but with a noticeable accent.  

Andrew. Andrew was a 28-year-old domestic graduate student who was working on a 
Ph.D. in pure mathematics. He grew up in the southwestern US, where he was home schooled 
during the last three years of high school. He then went to a nearby junior college, before 
transferring to a university, where he finished his undergraduate degree. He said that he had a 
lengthy undergraduate experience because he switched his major a couple of times.  

Rebecca. Rebecca was a 23-year-old masters’ student in applied mathematics and did not 
have a plan to purse her Ph.D. She completed her undergraduate degree in mathematics and 
information technology at a small Catholic University in the mid-western US. She also 
graduated with a minor in accounting. Her career goal was to work in the private sector, but 
said that she would return to teaching if she did not enjoy the private sector.  

Jennifer. Jennifer was a 30-year-old international student who completed her high school, 
undergraduate, and masters’ degrees in a northeast Asian country. She was a Ph.D. student in 
pure mathematics, and her career choice was to become a mathematics professor. She was not 
fluent in spoken English and therefore had difficulty expressing her opinions. She said that 
she taught mostly upper division college mathematics courses in her home country for five 
years but no other participants had any classroom teaching experience. 

Appendix C. Prompt for Teaching Philosophy Statement I 
Write a short paper of about 2-3 pages discussing what you have learned about effective 

and ineffective teaching from being a student. Describe the teaching of someone who was, in 
your experience, a particularly effective teacher, and analyze why you think this person 
succeeded as a teacher.  This is just the beginning on your journey to develop your own 
philosophy of teaching, a philosophy that will probably change several times during your 
teaching career. The conclusion of your paper should be a thoughtful initial statement of your 
emerging philosophy of teaching.  Be sure to include your thoughts on what you believe now. 
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The effectiveness of clickers in large-enrollment calculus
Xuan Hien Nguyen Heather Bolles Adrian Jenkins Elgin Johnston
Iowa State University Iowa State University Iowa State University Iowa State University

Abstract: We report the results of a two-year study of the effect of clickers in the large-lecture
format through a variety of metrics. These metrics include specific quiz scores (including both
conceptual and applicational questions), as well as pass rates (both for the general student body
as well as for males and females specifically). We include statistical basis for our findings.

Keywords: Calculus, Clickers, Peer Instruction, Classroom Research, Large Classes

Introduction
Following the well-publicized report of the successful use of audience response technology

(clickers) on the improved learning of students in a large-enrollment physics class (Deslauriers,
Schelew, & Wieman, 2011), this study sought to determine if similar effects on students’ learning
occurred in large-enrollment first semester engineering calculus. Many studies have reported the
benefits of using clickers in the classroom including boosted attendance (Mollborn & Hoekstra,
2010; Preszler, Dawe, Shuster, & Shuster, 2007) increased student participation (Lucas, 2009), and
students’ enjoyment in using the technology in the classroom (Bode, Drane, Kolikant, & Schuller,
2009). Continued, however, is the need for controlled studies which remove the instructor influence
and indicate the impact of clicker use on student learning. For example, results of clicker studies
show mixed results when considering gender differences. King and Joshi (2008) found that males
who actively participated in the clicker questions scored 10 points higher on their final grades than
non-active males. The female counterparts, however, only scored about 5 points higher than the
non-active females. Hoekstra (2008) indicated that women tend to cooperate together, whereas if
someone worked individually during the clicker-prompted interaction phase of class, more often
the individual was male.

The following study builds on the generative learning theory which emphasizes the priming
of cognitive processes during instruction through questioning. In general, “when students answer
questions during learning they are encouraged to select relevant information, mentally organize the
material, and integrate it with their prior knowledge” (Mayer et al., 2009, p.53).

Research questions
Despite the many advantages of clickers, it is still unclear if clickers improve student learning.

Although a higher enjoyment is a marked advantage in itself, we sought to determine whether
students are more successful in classes with clickers. The research questions that guided the design
of this study were:
1. What is the effect of clickers on students’ understanding of limits and integration? Does the use
of clickers with peer discussion help students retain the information presented in the lectures?
2. Are underrepresented (female or minority) students more likely to benefit from the use of
clickers in the classroom?
3. Do students in clicker lectures earn better grades than their counterpart in nonclicker lectures,
with the level of preparedness held constant? In particular, does the use of clickers influence the
passing rate of students in Calculus 1?
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Methods
To account for the instructor effect, three instructors each taught a large-enrollment class of

Calculus I in Fall 2012 and again in Fall 2013 at Iowa State University. Two of the instructors used
clickers during the Fall 2012 session but the third one did not. The clicker usage was reversed in
Fall 2013. Instructors taught at the same times of the same days of the week in Fall 2013 as in Fall
2012.

Clicker vs. nonclicker sections. When teaching the clicker sections, each instructor followed
the same protocol as informed by the literature (Miller, Santana-Vega, & Terrell, 2006; Mazur,
1997; Crouch & Mazur, 2001; Cline, 2006). Students were asked on average three questions during
each 50-minute class session. The questions emphasized calculus concepts, skills, or applications
focused on key ideas of calculus with a goal of promoting interaction amongst students. For each
clicker question, students were given time to solve the problem individually before submitting
their answer via the clicker. Without viewing response results, students then consulted with their
classmates to discuss their reasoning and findings. After submitting their answer again, students
were shown the results of both polls. Finally, the instructor led discussion of how to solve the
problem, highlighting calculus concepts, techniques, and common pitfalls when solving related
problems. The total number of points earned on clicker questions accounted for 5% of the overall
course grade.

In the nonclicker sections, the same clicker questions were used as examples incorporated dur-
ing lectures. Students were encouraged to work on the problems, compare their results with class-
mates, and answer the questions, though no polls were conducted. As in the clicker sections, the
instructor highlighted how to solve the problem and emphasized key calculus concepts, techniques,
and common pitfalls when solving related problems. No points were awarded for answering any
individual question.

Data. Student performance on three quizzes was compared to test for existence of an effect
of clickers on student learning. The quizzes addressed concepts related to limits, applications
of the derivative, and the First Fundamental Theorem of Calculus and were identical in both fall
semesters. The three instructors discussed a grading rubric for each quiz, and each instructor
graded the quizzes for his/her own students. In addition to all the grades on quizzes, exams, and
overall letter grade for the course given by the instructors, the researchers obtained demographic
information, academic grade and ability measure (ACT composite, English, and math, number of
high school calculus credits) for each student from the Registrar’s office (see Table 1).

The population for the study included all students enrolled in one of the six lectures taught by
the three instructors (N = 1142). The gender distribution is 22.48% female and 77.52% male.

Results
The preliminary results from the quiz scores are mixed. For one instructor, students in the

clicker section outperformed students in the nonclicker section on each of the three quizzes, though
not all of the results are statistically significant. For another instructor, students in the nonclicker
section performed better on the quizzes than those in the clicker section, though not all were sta-
tistically significant. For the third instructor, students in the clicker section outperformed students
in the nonclicker section on two of the three quizzes (see Table 2).

For the third instructor, C, the higher mean on the second quiz may be due to the fact that
students in the nonclicker lectures have more high school preparation. When we divide instructor
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nonclicker clicker t-test
Instructor Variable N Mean SD N Mean SD p-value
A Total number of students 194 192

ACT composite score 172 26.35 3.23 182 26.98 3.06 0.063
ACT english score 172 25.15 4.24 181 26.04 4.40 0.054
ACT math score 172 27.69 3.56 181 27.51 3.26 0.625
High School Calc Credit 186 1.27 1.15 188 1.40 1.05 0.254

B Total number of students 200 201
ACT composite score 167 26.25 3.63 178 26.22 3.70 0.947
ACT english score 166 25.19 4.51 178 25.00 4.68 0.698
ACT math score 166 26.87 3.70 178 27.07 3.74 0.618
High School Calc Credit 178 1.44 1.16 186 1.22 1.18 0.070

C Total number of students 195 203
ACT composite score 164 26.95 3.52 169 26.03 3.40 0.016
ACT english score 164 25.71 4.33 168 25.02 4.73 0.167
ACT math score 164 27.66 3.52 168 27.09 3.59 0.146
High School Calc Credit 174 1.54 1.07 186 1.08 1.11 <0.001

Table 1: ACT scores and HS credits by lecture

C’s students into two groups, we see that the nonclicker students with 2 or more high school
calculus credits outperform the clicker students on quiz 2. There is no significant difference for
students with less than 2 high school calculus credits.

As other studies have shown across various subject areas (Lantz, 2010; Yourstone, Kraye, &
Albaum, 2008), preliminary evidence in this study shows that the use of clickers may have little
overall effect in advancing student learning. One noticeable impact, however, was that student
attendance to the class sessions was higher in the clicker sections than in the nonclicker sections.
Late into the semester, attendance continued to reach 80-85% of the enrollment for the class.
Each instructor experienced this. While no method of taking attendance was implemented in the
nonclicker sections, each instructor agrees that noticeably fewer students regularly attended class
in the nonclicker sections. The increased engagement of the clicker students is also reflected in the

Instructor q1 q2 q3
A nonclicker 9.91* 12.64 9.30
A clicker 6.89 13.30 8.50
A t-test p-value <0.001 0.305 0.135
B nonclicker 6.76 12.99 8.41
B clicker 7.58 15.48* 8.87
B t-test p-value 0.110 <0.001 0.343
C nonclicker 6.38 13.72* 9.77
C clicker 7.31* 11.70 10.14
C t-test p-value 0.050 <0.001 0.383

Table 2: Averages for the quiz scores. The t-test compares the clicker and nonclicker lectures.
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student evaluations, with higher numbers for the clicker lectures.
Students in clicker sections pass at a higher rate than in nonclicker sections (see Table 3).

Here, we define passing as a grade of C- or higher, which is the prerequisite grade for going on to
Calculus 2. A students does not pass if he/she gets a D, an F, or drops the course. The effect is
more pronounced for female students, although it is not statistically significant.

female male
all all pass nonpass pass rate all pass nonpass pass rate

nonclicker 568 110 67 43 60.91% 458 293 165 63.97%
clicker 574 144 99 45 68.75% 430 278 152 64.65%

Table 3: Frequency table of the numbers of students who passed and students who did not pass by
gender.

The median ACT composite score for our group of 1032 students is 27 (we do not have ACT
scores for all the students). When we split the students into two groups, one with high ACT (� 27)
and the other one with low ACT score (< 27), the passing rate for male students in the high ACT
group are comparable (see Table 4). For female students, a Pearson’s chi-squared test comparing

female male
all all pass npass pass rate all pass npass pass rate

nonclicker 264 53 40 13 75.47% 211 165 46 78.20%
clicker 261 61 54 7 88.52% 200 155 45 77.50%

Table 4: Frequency table for students with ACT � 27.

the 2x2 table composed of the pass and nonpass columns shows that the higher passing rate for the
clicker lectures is significant with 90% confidence (�2 = 3.34 with one degree of freedom; p-value
= 0.06761).

We now look at similar data for the low ACT group. Table 5 shows that the passing rate is
5% higher for the clicker lectures (and 10% for female students). The results are not statistically
significant. One of the reasons is the low number of female students. A Pearson’s chi-squared test

all female male
all pass fail drop all pass rate all pass rate

nonclicker 239 117 80 42 45 44.44% 194 50.00%
clicker 268 145 62 61 73 54.79% 195 53.85%

Table 5: Frequency table for students with ACT < 27.

on the fail and drop columns give us a �

2 = 5.783 and a p-value = 0.01619 which shows that, with
the use of clickers, the students who did not pass the course are more likely to drop the course than
fail.

Future work and questions
One of the problems we encountered during the study was the switch of the calculus textbook

between Fall 2012 and Fall 2013. In order to obtain more consistent data, the three instructors are
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teaching Calculus 1 again in the Fall 2014, reverting to the same setting as in the Fall 2012.
Question 1. Is there another direction or result to consider when analyzing the data? We have

ethnicity data, ACT scores, the admission term of the students, as well as the semester they took
calculus 2 (if they took it at all). With the higher number of participants, we hope to have signif-
icant results as to the effect of clickers on female students as well as be able to look at different
ethnic groups.

Question 2. Originally, we had hoped to judge students’ ability in calculus 1 by their perfor-
mance on the same three quizzes given each year. Even though a lot of effort was made to grade
the quizzes consistently, the wide range of scores lent too much variability. It was not possible to
identify a model for the quiz scores. This is the reason why we started looking at passing and not
passing numbers. What are some suggestions on statistical modeling? What should we take as a
measure of success?
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Differentiating instances of knowledge of content and students (KCT): Responding to student 
conjecture 

 
Authors 

Affiliation 
 

This study investigates the nature of preservice elementary teachers’ knowledge of content and 
teaching (KCT) through responses to hypothetical student scenarios. Participants demonstrated two 
types of KCT: (1) specific KCT, which drew from the specific mathematics of the student scenario 
and most resembles the construct described by Ball, Thames, & Phelps (2008); and (2) general KCT, 
which presented itself as “canned” mathematical pedagogy. Examples and influences upon each type 
of KCT are explored to promote discussion on the differentiation of 
 KCT and for further refinement of the concept of general KCT. 
 
Key words: Pedagogical Content Knowledge (PCK), Knowledge of Content and Teaching 
(KCT), Preservice Elementary Teachers 
 

The research suggests that pedagogical content knowledge (PCK) is important for teaching (e.g., 
Ball, Thames, & Phelps, 2008; Campbell, Nishio, & Smith et al., 2014; Shulman, 1986). To better 
inform the research community on mathematics PCK, Ball and colleagues have developed a model 
for teachers’ Mathematical Knowledge for Teaching (MKT). However, much is still unknown about 
the constructs of MKT and the various educational influences on teachers’ development of MKT. 
Part of a larger case study, this report explores the nature of preservice elementary teachers’ 
knowledge of content and teaching (KCT), a construct of MKT, as well as any influences on their 
KCT. 
 

Background 
The research suggests that a teacher’s mathematical PCK impacts teacher effectiveness (e.g., 

Campbell, Nishio, & Smith et al., 2014; Hill, Rowan, & Ball, 2005). Drawing from Shulman’s 
(1986) original definition of PCK, Ball, Thames, and Phelps (2008) and Hill, Ball, and Schilling 
(2008) have conceptualized three components of mathematical PCK in their model of MKT: 
knowledge of content and students (KCS), knowledge of content and teachers (KCT), and knowledge 
of curriculum. According to Ball, Thames, & Phelps, KCT “combines knowing about teaching and 
knowing about mathematics, … [such as] sequenc[ing] particular content for instruction… 
evaluat[ing] the instructional advantages and disadvantages of representations used to teach a 
specific idea and identify[ing] what different methods and procedures afford instructionally. Each of 
these tasks requires an interaction between specific mathematical understanding and an 
understanding of pedagogical issues that affect student learning… Each of these decisions requires 
coordination between the mathematics at stake and the instructional purposes at play” (p. 401).  

The emergent perspective (Cobb & Yackel, 1996) served as the lens for collecting and analyzing 
data. I primarily used the psychological lens since the bulk of the data represent individual 
conceptions. On the other hand, via the social lens I explored the classroom norms, expectations, and 
experiences that framed participants’ perspectives on mathematics teaching and learning. I also drew 
from Ball and colleagues’ conceptualization of mathematical PCK (e.g., Ball, Thames, & Phelps, 
2008; Hill, Ball, & Schilling, 2008) in designing my interview tasks to elicit PCK and again to 
analyze responses. 

Methodology 
This interpretive case study (Merriam, 1998) centered on preservice elementary teachers who were 
seeking a mathematics concentration and enrolled in a number theory course. The majority 
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of class time in this course was spent working on problem sets collaboratively (which were 
occasionally geared towards elementary school applications of number theory), and the instructor 
encouraged basic explanations or picture proofs. Otherwise, there was no overt connection made 
to elementary teaching. Three out of six of the interview participants had previously taken a 
number and operations course where collaborative, inquiry-based learning was the norm. The 
other three interview participants had taken a mathematics education course designed for 
elementary education majors with a mathematics concentration; it also focused on number and 
operations content using collaborative, inquiry-based learning methods. As part of the course, 
these three participants served as peer tutors in the number and operations course.  

Data for this study came from multiple sources: classroom observational notes, student 
coursework, as well as responses from two sets of one-on-one task-based interviews, which 
served as the focus of the data analysis. Many of the tasks posed hypothetical student scenarios, 
designed to elicit PCK in number theory. To elicit KCT specifically, I would ask participants 
how they would respond to the students in the scenarios. I would also ask participants to reflect 
on why they responded in that way. While some might argue that teachers may only demonstrate 
true KCT in the classroom, others suggest that demonstrations of KCT in a clinical interview 
may be a sort of pre-knowledge or a subset of the knowledge they could demonstrate in the 
classroom (Hauk, Jackson, & Noblet, 2010). Even Hill (2010), a contributor of MKT, developed 
and implemented PCK test items that proposed to elicit KCT. Constant-comparative coding 
(Corbin & Strauss, 2008) was used as part of the coding process. Among my efforts to ensure 
trustworthiness, I used member checking during the interviews and data triangulation afterwards. 

Results: Responding to Students 
Many of the interview tasks posing hypothetical student scenarios were four-fold. 

Participants were asked to: (1) validate the student’s reasoning; (2) determine what the student 
did and did not understand about the concept/task at hand, as well as reasons why this might be 
the case; (3) respond to the student in a way that would further her/his understand; (4) explain 
their reasoning for their responses to the student. While the first and second facets of the task 
elicit specialized content knowledge (SCK) and KCS, respectively, the third and fourth facets 
were meant to elicit KCT and insight into that KCT. While I anticipated to see both stronger and 
weaker instances of KCT, I was more intrigued by the emergent categories of responses to 
students. I present evidence for these partitions here to promote discussion about one category in 
particular during the RUME presentation. 
General Pedagogical Knowledge 

Most of the student scenario tasks required participants to address the mathematical 
underpinnings of the student claim or conjecture. I presumed that participants’ responses to the 
student in each scenario would draw heavily from that. However, participants occasionally 
demonstrated general pedagogical knowledge in their responses. In one such task, hypothetical 
students Talisa and Tom each factored 540 in different ways, each proclaiming that their way 
was correct. When asked how they would respond to Talisa and Tom, all of the participants in 
part suggested that they would have the students resolve the conflict by explaining their 
reasoning to each other.  

General pedagogical knowledge consists of “strategies of classroom management and 
organization that appear to transcend subject matter” (Shulman, 1987, p. 8). According to 
Morine-Dershimer & Kent (1999), there are three areas contributing to general PK: classroom 
organization and management, instructional models and strategies, and classroom 
communication and discourse. Participants’ responses to these two tasks certainly qualify as 
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classroom discourse that transcends subject matter, as having students explain their reasoning to 
their classmates can be an important pedagogical tool in many subject areas.  

When asked why they responded to Talisa and Tom in this way, most of the participants 
explained that they learn better that way. For example, Cara said “by having them explain to 
each other, they'll have a better understanding of what they're doing, and they also get to see 
another method.” Isla said “instead of me being the boss of the classroom … have them work 
together. And it always seems more having it come from another classmate.”  
Specific KCT 

After identifying the general pedagogical responses to students, the rest of the responses were 
instances of KCT. However, some of these responses specifically pertained to the content at 
hand, while others appeared to be more canned, i.e., applicable to many student claims or 
conjectures across many math content areas. What I classified as “specific KCT” most closely 
resembled examples posed by Ball and colleagues. For example, when hypothetical student 
Shayna claims that 1 is a prime number, because its only factors are 1 and itself, Gwen’s 
response was: “I'd just try to tell her that prime factors have 2 different numbers, they don't have 
just the 1.” When asked why she responded in this way, Gwen replied that this is what Shayna 
didn’t understand, and that it was important for her to understand that prime numbers have 
exactly two factor to “help [her] conceptualize a little bit better.” Instances of specific KCT drew 
on the participants’ specialized content knowledge and KCS. 
General KCT 

In response to quite a few of the hypothetical student conjectures, participants usually 
responded with “I would give her/him a counterexample” or “I would guide her/him to recognize 
a counterexample”. For example, hypothetical student Mark claimed that the product of any two 
numbers was also their least common multiple, and all six participants suggested that they would 
respond to Mark with a counterexample strategy. When asked how she knew to respond to Mark 
in this way, Lucy said “it seems like students… if you just say ‘no, that's wrong’ they're 
obviously going to question why. And you want to be able to show them.” This appeared to be a 
canned response for what to do if a student has an incorrect conjecture. It is so general that it 
transcends mathematics content areas, much like pedagogical knowledge transcends subject 
matter areas. Thus, I categorized this type of response as “general KCT”, or general mathematics 
pedagogy. 

Another less frequent example of general KCT was suggesting that students model the 
concept using manipulatives. For example, in addition to her suggestion that Lucy would use a 
counterexample with Mark, she suggested that Mark could explore the idea with manipulatives 
because “it’s often times best for them to see it for themselves… manipulative help with a 
variety of learners.” While this may be more specific to general mathematics pedagogy at the 
elementary or middle school level, it is still a rather canned response that does not address the 
specific mathematics of Mark’s conjecture.  

Discussion 
The structure of the student scenario tasks used to elicit KCT certainly limits the types of 

KCT responses that participants provided. However, there appears to be a clear partition between 
the instances of specific KCT versus general KCT. In some ways, general KCT had more in 
common with general pedagogical knowledge than with specific KCT. Participants’ beliefs on 
how students best learn was most influential on their instances of pedagogical knowledge and 
participants’ beliefs on how students best learn math were most influential on their instances of 
general KCT. In other words, participants’ epistemological perspectives greatly affected their 
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pedagogical knowledge and general KCT. In contrast, participants’ specialized content 
knowledge and KCS were the strongest influences on specific KCT. The existence of such a 
partition in KCT suggests that teacher educators may need different strategies in aiding the 
development these types of knowledge. At RUME, I plan to present on my observations about 
the different types of KCT, including evidence and influences, as well as pose the following 
questions to the audience: 

Is it reasonable to suggest this partition in the construct of KCT, and how might I gather 
additional evidence in support for or against it? 

How can I improve my conceptualization of General KCT to make it more useful, and useful 
for what? 
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Neural correlates for action-object theories 
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Research from an action-object perspective is well positioned to benefit from the emerging field 
of mathematics educational neuroscience. In this theoretical paper, we review some relevant 
findings from neuroscience studies and interpret them from an action-object perspective. This 
interpretation demonstrates a strong alignment of action-object theories and neuroscience 
findings, thus affirming many aspects of action-object perspectives on mathematical 
development. Neuroscience also serves to further elaborate and generalize reflective 
abstraction—the basis for action-object theories—as a mechanism for mathematical 
development. Specifically, we can begin to understand the changes in neural functioning 
associated with the objectification of action. This understanding helps explain some of the 
limitations teachers experience when attempting to provoke and support students’ constructions 
of actions and objects. 
 
Key Words: APOS Theory, Neuroscience, Reflective Abstraction, Reification 
 
“Mathematics is the science of actions without objects, and for that, of objects we can define 
through action.” Paul Valéry (1973, p. 811). 
 

Action-object theories have played a prominent role in research on undergraduate 
mathematics education (e.g., Dubinsky & McDonald, 2001; Leron, Hazzan, & Zazkis, 1995; 
Sfard, 1992). We can trace the origins of APOS and reification, in particular, to a pursuit of a 
neo-Piagetian theory that would accommodate models of thinking and learning in advanced 
mathematics (Dubinski, 1991; Sfard, 1991). In general, action-object theories have sought to 
elaborate on reflective abstraction (Piaget, 1970) by explaining how mathematical objects arise 
through students’ activity, at all stages of development (Tall, Thomas, Davis, Gray, & Simpson, 
2000). At the same time, the fields of mathematics education and cognitive neuroscience have 
been brought closer through advancements in neuroimaging technology and the efforts of 
interdisciplinary researchers (Campbell, 2006; Fischer, 2009).  

Mathematics educational neuroscience is a quickly emerging interdisciplinary field that 
promises mathematics educators new methods for testing and refining theories of learning. 
Although most studies focus on basic computation, the field includes far-reaching findings that 
address numerous domains of mathematics. For example, a recent study using functional 
magnetic resonance imaging (fMRI) with college mathematics students indicates that 
determining the equivalency of two algebraic equations recruits the same neural and cognitive 
resources as translating between algebraic equations and their graphs (Thomas, 
Wilson,Corballis, Lim, & Yoon, 2010). 

The purpose of this theoretical paper is to examine neural correlates of mathematical 
activity from an action-object perspective in order to better understand the neural and cognitive 
mechanisms that might undergird the objectification of action. At that same time, we can 
consider how well action-object theories explain neural phenomena. Related questions include 
the following: 
• How might mathematical actions and objects be associated with neural functioning?!
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• What can neuroscience tell us about the process of interiorization, condensation, and 
reification of action?  

• Does neuroscience provide clues for how mathematics educators might support students’ 
construction of new mathematical objects? 

 
Action-Object Theories 

Piaget’s (1970) epistemology distinguishes logic and mathematics from all other forms of 
knowledge. The basis for this distinction is that the objects of mathematics are comprised of 
actions that, as objects, can be acted upon. Figure 1 illustrates the idea by indicating (1) a process 
by which actions become objectified (top arrow) and (2) further action on previously constructed 
objects (bottom arrow). Piaget referred to the process of objectification as reflective abstraction, 
as elaborated by action-object theories such as APOS theory and reification. 
 

 
Figure 1. Actions and object. 

 
APOS Theory 

Dubinsky and colleagues (e.g., Dubinsky & Lewin, 1986) developed APOS theory as a 
means of applying Piaget’s (1970) constructivist epistemology to research on undergraduate 
mathematics education. In particular, they demonstrate how mathematical actions may become 
reflectively abstracted as advanced mathematical objects. Their central tenet is that 
“mathematical knowledge consists in an individual’s tendency to deal with perceived 
mathematical problem situations by constructing mental actions, processes, and objects and 
organizing them into schemas to make sense of the situations and solve the problems” (Dubinsky 
& McDonald, 2001, p. 2). In this framework, actions are defined as transformations of tangible 
objects (including diagrams and written symbols). Reflecting on such actions allows the 
individual to internalize them as mental processes that the individual can imagine performing, 
without the need for tangible objects. The process becomes an object for an individual when he 
or she can symbolize it and purposefully act upon it. “Finally, a schema for a particular 
mathematical concept is an individual’s collection of actions, processes, objects, and other 
schemas which are linked by some general principles to form a framework in the individual’s 
mind” (p. 3). 
Reification 

Sfard (1991; 1992) further elaborated on Piaget’s (1970) notion of reflective abstraction by 
prescribing three stages through which students progress from engaging in mathematical 
processes to producing mathematical objects. To illustrate, Sfard provided an extended example 
from the historical development of number: from natural numbers, to positive rational numbers, 
to positive real numbers, to real numbers, and finally to complex numbers. She argued that each 
step-wise development has depended upon stages of interiorization, condensation, and 
reification (Sfard, 1992). In the production of rational numbers, processes involving the division 
of natural numbers become interiorized so that they “can be carried out in mental representation” 
(p. 18, from Piaget, 1970). Then they are condensed so that they can be combined with other 
processes, such as measurement. Finally, they are reified, or objectified, as a static structure on 
which to perform further processes, as in the development of positive real numbers.  
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Mathematics Educational Neuroscience 

Neural activity associated with mathematics is generally localized to the frontal and parietal 
lobes within the neocortex—the outer region of the human brain. As illustrated in Figure 2, the 
frontal lobe (orange and red) covers the front half of the brain and meets the parietal lobe (blue 
and green) at the sensory-motor cortex (red and blue). The motor cortex (red) initiates all 
voluntary body movement; the somatosensory cortex (blue) receives nervous signals back from 
the rest of the body, regarding tactile or kinesthetic experience. Within the parietal lobe, there is 
an inferior lobule and a superior lobule, separated by the intraparietal sulcus (purple segment). 
Neuroscience findings regarding each of these areas have implications for mathematical learning 
and development. Here, we briefly review three of these findings: neural activity associated with 
observing actions on physical objects; the role of the intraparietal sulcus in mathematical 
activity; and frontal-parietal coherence associated with cognitively demanding tasks. 
 

 
Figure 2. Frontal and parietal lobes. 

  
Actions and Objects 

One of the most relevant studies for action-object theory did not involve mathematical tasks 
at all (Buccino et al, 2001). Rather, the researchers asked 12 young adults to observe another 
adult performing physical actions with his foot, hand, or mouth. In some of the situations, the 
observed subject simply moved those body parts, and in others he acted on an object (e.g., 
kicking a ball). Meanwhile, the researchers conducted fMRI scans of the observer. They found 
that observation activated the specific area of the premotor cortex (the area of the parietal lobe 
directly in front of the motor cortex) corresponding to moving the respective body part, as if the 
observer were planning to move that same part of the body. Moreover, if the observed subject 
was acting on a physical object, areas of the observer’s parietal lobe were activated as well—just 
behind the area of the somatosensory cortex corresponding to the moving body part. Figure 3 
indicates the activated areas of the fontal and parietal lobes for the foot (blue), hand (orange), 
and mouth (red). 
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Figure 3. Actions and objects in the brain. 

 
Digits 

Note that acting on an object with the mouth (e.g., biting an apple) is associated with neural 
activity in the inferior parietal lobule, and acting on an object with the foot is associated with 
neural activity in the superior parietal lobule. The hand is associated with the valley that 
separates those two lobules—the intraparietal sulcus. This area of the brain has been implicated 
repeatedly in studies of counting, arithmetic computations, and size comparisons (e.g., Dehaene, 
1997; Rosenberg-Lee, Lovett, & Anderson, 2009). The common association between acting on 
an object with one’s hands and mathematical activity should come as no surprise: children learn 
to count with their fingers; historically, cultures have adopted a base-10 system because of the 
number of fingers humans typically have; and providing opportunities for students to manipulate 
objects with their hands is the pedagogical basis for many learning tools used in mathematics 
education (Raje, Krach, & Kaplan, 2013). 
Frontal-Parietal Coherence 

Neuroscience studies of participants performing mathematical activities consistently 
demonstrate the recruitment of additional cognitive resources when solving more challenging 
tasks (Ischebeck, Schocke, & Delazer, 2009; Thomas, Wilson, Corballis, Lim, & Yoon, 2010). 
For example, Ansari and Dhital (2006) found age-related differences between children and adults 
when asked to determine the cardinality of a collection of dots. Neural activity in the intraparietal 
sulcus was associated with cognitive activity among both groups, but the children’s cognitive 
activity was associated with more neural activity in the frontal lobe, especially the anterior 
cingulate gyrus (associated with resolving conflict) and the prefrontal lobe (associated with 
working memory). These findings align with studies of frontal-parietal coherence, which indicate 
that resources in the frontal and parietal lobes work in concert when during tasks with higher 
cognitive demand, as those tasks require greater use of working memory and executive function 
(Sauseng, Klimesch, Schabus, & Doppelmayr, 2005). 
 
Discussion 

Action-object theories describe a theoretical process through which students construct 
mathematics. Such theories have been used to model mathematical development within multiple 
domains of undergraduate mathematics, including function (Sfard, 1992) and abstract algebra 
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(Asiala, Dubinsky, Mathews, Morics, & Oktac, 1997). Theoretical models need not correspond 
with any ontological reality—their only criterion being usefulness in explaining and predicting 
behavior (von Glasersfeld & Steffe, 1991). However, correspondence between action-object 
theories and models of neurological activity could provide clues about the process of reflective 
abstraction on which action-object theories seek to elaborate. 

We have reviewed three relevant findings from neuroscience studies related to mathematics. 
The first of these findings implicates the role of the parietal lobe in imagined activity on physical 
objects (Buccino et al., 2001). “It is generally accepted that the fundamental role of the parietal 
lobe is to describe objects for action” (p. 404). With regard to action-object theories, Buccino 
and colleagues contribute further by suggesting that observed or imagined actions recruit the 
same areas of the parietal lobe as they would in physically performing the action themselves. 
This corresponds to the idea that the first stage of objectification—the interiorization of the 
action (Sfard, 1992) or the formation of a process from the action (Dubinski & McDonald, 
2001)—relies upon students’ experience in performing the action themselves, and not simply 
observing it. Otherwise, there will be no neurological referent for making sense of the observed 
action. Attempts to teach students a new action through demonstration or visualization will likely 
fail unless the students have already learned to perform the action themselves. 

The second and third findings take the first finding further by suggesting that later stages of 
objectification (or reification) may release actions from associated imagined activity. 
Specifically, neuroscience studies have consistently demonstrated an association between 
mathematical activity (especially number and magnitude) and neural activity in the intraparietal 
sulcus. The intraparietal sulcus aligns with the area of the somatosensory cortex associated with 
the hand (see Figure 3); however, the area of the premotor cortex associated with the hand is not 
activated during experts’ mathematical activity (Ansari & Dhital, 2006). Together, these findings 
indicate a frontal to parietal shift in neurological activity associated with objectifying objects. 

Children learn to count using their fingers—the nearly ubiquitous manipulative on which 
most number systems were developed (Burton, 2007). At later stages of development, children 
no longer need to count and can use the results of counting for further activity (Steffe, 911). For 
example, they can consider the quantity formed by subtracting 8 from 13 using a variety of 
strategies that do not involve motor or premotor activity, but still involve activity in the 
intraparietal sulcus (Chochon, Cohen, Van De Moortele, & Dehaene, 1999). In other words, as 
students approach the stage at which they can treat numbers like 8 and 13 as objects to act upon, 
premotor (frontal) activity associated with the hand dissipates but the activity in the associated 
parietal area (the intraparietal sulcus) remains. Additional frontal resources are not needed until 
new cognitive demands arise.  

If processes or interiorized actions correspond to activity in the premotor cortex and objects 
correspond to activity in the parietal lobe, reification (or objectification of action in general) 
corresponds with a functional or structural reorganization in the parietal lobe induced by 
coherent activity across the frontal and parietal lobes. Indeed, when children engage in 
cognitively demanding tasks in which they must act on existing objects (e.g., numbers) in new 
ways, we find increased frontal lobe activity (Ischebeck, Schocke, Delazer, 2009). This neural 
activity should dissipate as the new imagined activity is condensed (Sfard, 1992), until the object 
of activity is transformed or a new object is constructed. With this correspondence in mind, we 
now turn to its pedagogical implications.  

 
Implications for Undergraduate Mathematics Education 
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Researchers approaching undergraduate mathematics education from an action-object 
perspective have sought to identify actions and objects within particular domains. Within 
abstract algebra, researchers have identified set and function as prerequisite objects for further 
activity, such as forming groups, isomorphisms, cosets, and quotient groups (Dubinsky, 
Dautermann, Leron, & Zazkis, 1994; Leron, Hazzan, & Zazkis, 1995). In a study with high 
school teachers, Dubinsky, Dautermann, Leron, and Zazkis (1994) noted that the teachers tended 
to begin by treating groups as sets on which to act and only later considered the role of a binary 
operator (function) in defining groups as objects. They further noted the need for a concept of 
isomorphism in order to construct “group as an equivalence class of isomorphic pairs [of sets and 
functions]” (Dubinsky et al., 1994, p. 290). The teachers were generally not successful in 
constructing quotient groups, which the researchers attribute to difficulty in objectifying the 
process of forming cosets—a prerequisite construction for treating cosets as elements of a group.  

In light of neuroscience findings, we should expect an extended period of development 
following the construction of one mathematical object before an action applied to that object can 
itself become objectified. On the other hand, students can begin acting on an object as soon as it 
is objectified. These claims are included as findings in the study cited above, but neuroscience 
provides a basis for generalizing them to all of mathematics. Furthermore, if the new 
mathematical activity is not already available to the student, they need to physically engage in it 
until they can perform it in imagination. Only at that point can visual representations call the 
action to mind. This claim, too, aligns with previous research in the domain of abstract algebra 
(Asiala et al., 1997).  
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Partial unpacking and the use of truth tables in an inquiry-based 
transition-to-proofs course  

 
                           Jeffrey D. Pair                                      Sarah K. Bleiler 

                 Middle Tennessee State University                    Middle Tennessee State University 

During our research into an inquiry-based-transition to proofs course we observed that several 
students used truth tables in unique ways. Typically the students translated mathematical 
statements into propositional logic formalism and used the truth tables as tools in their 
mathematical activity. Student activity varied from using truth tables to show that a statement 
was a tautology, to obtain conviction in the truth of the statement, to demonstrate equivalence, or 
to formulate a conjecture. We hypothesize that the unique use of truth tables emerged because it 
was the classroom community’s responsibility to socially negotiate what counted as a proof. We 
intend to present some of our preliminary findings, and inquire as to what further research into 
these cases might be worthy of pursuit.  

Key words: Transition to Proof; Truth Tables; Inquiry-Based Learning; Logic 

Instruction in formal logic is frequently included in the curriculum of undergraduate 
transition-to-proof courses. However, in the field, there is no consensus as to whether such 
instruction is central to students’ learning of proof (Epp, 2003). Some authors have begun to 
explore the role of formal logic in the teaching and learning of proof (Durand-Guerrier, Boero, 
Douek, Epp, Tanguay, 2012), in particular with respect to truth tables.  For example, Epp (2003) 
discussed some limited roles of truth tables for the teaching of proof, but primarily emphasized 
that she required students to accompany the use of truth tables with explanations to support 
conceptual understanding and guard against the mechanistic use of formal logic. Hawthorne 
(2014) found that some of the undergraduate students he interviewed exhibited a 
compartmentalized focus on one or two lines of a truth table.  He noted that those students who 
held a holistic understanding of truth tables could productively use a truth table as an 
organizational tool. Overall, few studies have examined how truth tables may or may not support 
student learning of proof. Further insight into how students use formal logic and truth tables to 
understand mathematical proof could aid the field in moving toward a comprehensive framework 
for proving (Durand-Guerrier et al., 2012). 

Conceptual Framework 
Building on the work of Selden and Selden (1995) and Harel and Sowder (2007), Brown 

(2013) introduced the construct of partial unpacking to describe a unique way students utilized 
propositional logic to make sense of indirect proof. She observed students employing a symbolic 
proof scheme (Harel and Sowder, 2007) as they translated mathematical statements into 
propositional logic statements and compared their truth values. The process of translating the 
statements into propositional logic was similar to the process of unpacking described by Selden 
and Selden (1995) in which an informal statement is translated into an equivalent statement using 
predicate logic. Brown (2013) described a partial unpacking as the process by which a student 
translates a mathematical statement into propositional logic symbolism (devoid of quantifiers) in 
order to understand the logical structure of the statement. Brown argued that the students’ use of 
partial unpacking to determine statement equivalence aided in understanding indirect proof and 
was a possible benefit of the symbolic proof scheme. In our research, we have identified what we 

18th Annual Conference on Research in Undergraduate Mathematics Education 84018th Annual Conference on Research in Undergraduate Mathematics Education 840



believe to be students’ use of partial unpacking with the use of truth tables during proof 
construction. 

Methodology 
As part of an internal grant project at a large Southeastern University, we collected data from 

a transition-to-proofs course with the intent of answering the following question: What are the 
opportunities for learning about proof that occur in an inquiry-based learning (IBL) proofs 
course? Thirteen students from the course participated in the study. Nine were mathematics 
majors and four were mathematics minors.  Data collected included video of each class session, 
student work, exit tickets, and an end of the semester assignment related to roles of proof (de 
Villiers, 1990). Students typically worked individually outside of class to complete their problem 
sets (modified from Taylor, 2007) and then worked collaboratively during class either critiquing 
the arguments of their classmates, or sharing arguments and creating a group proof.  As the 
instructor rarely lectured, and the course problem sets rarely contained a model of a completed 
proof, students were required to socially negotiate what counted as proof. Many of the course 
activities supported students in this negotiation.  Early in the course the students engaged in an 
activity which resulted in their creation of a class rubric which was used throughout the semester 
as a tool for both students and instructor to assess proofs (Bleiler, Ko, Boyle, & Yee, in press). 
Also the collaborative nature of the classroom allowed the students to justify their thinking and 
refine their arguments as they critiqued each other’s work.  

As part of their final exam grade, students in the course were expected to read de Villiers’s 
(1990) paper describing five roles of proof (verification, explanation, systematization, discovery, 
communication) and write a reflection describing a time during the semester when they recalled 
engaging in each of these five roles.  As we analyzed students’ written reflections for the larger 
research project, we noted that five of the thirteen students wrote about experiences involving 
truth tables. Additionally, video and student-work data reveal that at least two additional students 
used truth tables to aid in their construction of proofs. This repeated focus on truth tables in 
student reflections was somewhat surprising because most of the reflections referred to instances 
when students used truth tables outside of the weeks of instruction dedicated to formal logic.  In 
this regard, students seemed to transfer what they had learned about truth tables, and use truth 
tables as a tool within other mathematical contexts. In this preliminary report, we investigate the 
cases where students referred to a use of truth tables in this course. How did the students use the 
truth tables in the construction of proofs? Did the students consider that truth tables were proofs? 

Preliminary Findings 
Our data reveal that students in the IBL course considered truth tables an important tool for 

interpreting mathematical statements and in constructing mathematical proofs. It appears that all 
eight of these students engaged in what Brown (2013) referred to as a partial unpacking. We 
have identified three cases of the use of partial unpacking and truth tables that we would like to 
highlight and share with participants in this session.  Our goal is twofold: (1) to foster a 
discussion about the potential ways that students may use formal logic and truth tables as a tool 
for meaningful learning of proof, and (2) to seek participant feedback on productive means of 
moving forward in this line of research. 

The first case is a classroom episode in which students used a partial unpacking and truth 
table in their attempt to prove the transitivity of the subset relation. Although David and his 
partner Krissy had developed a narrative argument using the definition of subset, they were not 
satisfied with their argument and attempted to strengthen it by creating a truth table. The video 
captures David’s excitement when he finds that the last column of his truth table consists entirely 
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of “True” entries (demonstrating that his compound statement was a tautology). This use of the 
truth table was also meaningful for other students in the class as evidenced by Solomon’s 
comments on his end of course assignment:  

The transitivity of implications was something I had a strong conviction on. Suppose A 
implies B, and B implies C. A must imply C. It almost seems impossible to be wrong. But I 
never remember having formally proved that statement to myself. I didn’t even know that 
such a thing could be proven. But it was extremely interesting to see that the statement could 
simply be proved using a truth table. When [David] and [Krissy] showed that table on the 
[document camera] screen, I thought that was something I had never thought of and 
immediately applauded. 
In their end of the semester assignments, two students recalled a case in which a truth table 

was used to formulate a conjecture. Susan used partial unpacking and a truth table in her original 
proof of the following statement: If ! and ! are odd integers, then so is !". At the bottom of her 
solution, she wrote, “data also suggest biconditional equivalence”.  The video data reveal that 
after considering her classmate’s arguments, Susan did not believe her original approach was 
correct or valuable. However, the teacher asked her group members to further consider her 
argument. The subsequent whole-class discussion resulted in the formulation of “Susan’s 
Conjecture”: !" is odd if and only if ! and ! are odd. The students were required to prove the 
conjecture or find a counterexample for homework. Solutions were discussed in the next class 
period. 

Another student, Millie, frequently used truth tables to support her arguments that she turned 
in for homework. Initial examination reveals that the method of partial unpacking and 
construction of a truth table was used to aid Millie in her construction of proofs of theorems from 
set theory and number theory. These truth tables typically appeared at the end of her written 
argument, after she had produced a more standard conversational proof. In a reflection paragraph 
that accompanied Millie’s revisions to a homework assignment, she mentioned the use of truth 
tables as a key strategy that she used throughout the semester when she needed help approaching 
a proof. She wrote that,  

Every so often, I would get stuck on a problem, and I would not know how to continue or 
finish the proof, but if I just broke everything down into their definitions, did an example, or 
created a truth table, I could figure out where I wanted the proof to go and how to get it there. 
... It was nice to know that even with set equality, power sets, and functions, the same 
methods and structures for writing proofs that we learned in the beginning of the semester 
were still applicable.  

Audience Engagement 
We will share videos and student work with session participants to provide insight into the 

ways students used truth tables during the course. We will then ask the audience to discuss our 
preliminary findings, and provide suggestions for further work. We will pose the following 
questions for discussion: 

1) How do these cases relate to your experiences with students’ use of truth tables in 
undergraduate mathematics courses? 

2) From a mathematician’s perspective, is there a situation in which it would be appropriate 
to use truth tables in a mathematical proof? 

3) When we teach this class again, we’d like to further investigate how the use of formal 
logic and truth tables influence students’ learning of proof.  What suggestions do you 
have for investigating this topic in greater depth? 
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4) Is there additional literature or frameworks that we should consider as we progress in this 
research?   

Conclusion 
In our preliminary analysis we have identified cases in which students used partial unpacking 

and the creation of truth tables during proof construction. Our data seem to suggest that formal 
logic provided a means of conviction in classroom situations where the mathematical authority 
had been shifted from the teacher to the students. An in-depth analysis of these cases may 
contribute to our understanding of the proving process and have important implications for proof 
instruction. 
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Students’ reasoning when constructing quantitatively rich situations 
 

 

Researchers continue to emphasize the importance of examining students’ reasoning when 
constructing situations involving numerous quantities and relationships (e.g., quantitatively 
rich situations). To explore student reasoning in such situations, I conducted a semester-long 
teaching experiment with two mathematics education undergraduate students. The teaching 
experiment sessions were focused on providing the students repeated opportunities to 
conceptualize quantitatively rich situations. In this proposal, I explore a few themes that 
emerged through analyses of their activity, characterizing their thinking during their 
construction of such situations. For instance, the order in which a student coordinated two 
quantities (e.g., coordinating a change in quantity A then a corresponding change in quantity 
B versus coordinating a change in quantity B then a corresponding change in quantity A) 
emerged as critical to their images and their representations of the situation. This and other 
findings provide important insights into ways students’ reason quantitatively and 
covariationally.  

Key words: Quantitative reasoning; Covariational Reasoning; Cognitive Research; Teaching 
Experiment 

From rate of change and linearity (Ellis, 2007; Johnson, 2012) to major calculus concepts 
(Carlson, Jacobs, Coe, Larsen, & Hsu, 2002), researchers’ examinations of students’ 
quantitative (Thompson, 2011) and covariational reasoning (Carlson et al., 2002) have 
provided important insights into students’ learning of various mathematical concepts. 
Additionally, researchers have indicated that students’ quantitative and covariational 
reasoning play a major role when the students engage in problem solving and generalizing 
(Ellis, 2007; Moore & Carlson, 2012). Researchers have also suggested that students are 
capable of constructing meanings for various mathematical ideas via quantitative and 
covariational reasoning that provide a foundation for their developing more formal or abstract 
mathematical understandings (Ellis, Ozgur, Kulow, Williams, & Amidon, 2012; Johnson, 
2012). These results have led to numerous researchers calling for increased attention to 
students’ quantitative and covariational reasoning, including exploring students’ activity as 
they engage in situations where they conceive of multiple quantities covarying (Castillo-
Garsow, Johnson, & Moore, 2013; Thompson, 2011). Responding to this call, I conducted a 
semester-long teaching experiment (Steffe & Thompson, 2000) with two undergraduate 
students in which I engaged them in tasks designed to afford their engaging in quantitatively 
rich situations (Moore, Silverman, Paoletti, & LaForest, 2014; Thompson, 1993). I define 
quantitatively rich situations to be situations that afford students a natural opportunity to 
construct quantitative and covariational relationships between numerous quantities 
(Thompson, 1993). In this report, I describe a few themes that arose as the pair worked to 
model relationships between covarying quantities. The students’ activity and understandings 
inform the research on quantitative and covariational reasoning by providing information 
about the complexity of students’ reasoning when constructing (and continually re-
constructing) quantitatively rich situations.   

Theoretical Perspective  
A quantity is a conceptual entity which an individual constructs as an attribute of an 

object or phenomena that permits a measurement process (Thompson, 2011). Thompson 

Teo Paoletti 
University of Georgia 
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(2011) asserted that quantification is the process of deciding what it means to measure an 
attribute of an object or phenomena (e.g. the quantity) and what this measurement means. It is 
often through an individual's continued attempts to determine how to measure a quantity that 
quantification occurs (Moore, 2013; Thompson, 2011). When an individual creates 
relationships between quantities and a network of these quantitative relationships, she creates 
a quantitative structure. An individual engages in quantitative reasoning when she analyzes 
the quantitative structures she constructed (Thompson, 1994). Covariational reasoning is 
defined as an individual’s cognitive activities involved in imagining and coordinating two 
quantities as they change or vary in relation to each other (Carlson et al., 2002; Saldanha & 
Thompson, 1998). Researchers have argued that an individual’s quantitative structures and 
her images of covariation are emergent; an individual initially constructs images of a 
situation that lack a well-developed quantitative structure. With respect to covariational 
reasoning, by imaging one quantity changing, then the other, then back to the first, and so on, 
an individual can create a refined quantitative structure which may include images that enable 
her to envision the two quantities changing in tandem (Saldanha & Thompson, 1998). 
Through this iterative process, an individual constructs more sophisticated quantitative and 
covariational relationships with respect to the quantities that these relationships entail 
(Carlson et al., 2002; Thompson, 1994).  

For the purposes of this work, it is important to note quantitative and covariational 
reasoning can involve both numerical and non-numerical reasoning (Johnson, 2012). While 
an individual may use specific numbers when engaging in quantitative and covariational 
reasoning, these numbers are often unnecessary or understood as arbitrary (e.g., measures in 
any unit could be used). The essence of quantitative reasoning is non-numerical, having more 
to do with the comprehension of the quantities in a situation and how they relate to each other 
in ways that are not inherently tied to specified measures (Smith III & Thompson, 2008).  

Methodology 
To explore students’ quantitative and covariational reasoning when constructing 

quantitatively rich situations, I conducted a semester-long teaching experiment (Steffe & 
Thompson, 2000) with two undergraduate students, Arya and Katlyn1. The students were 
enrolled in a secondary education mathematics program at a large state institution in the 
southern United States. Both were juniors (in credit hours taken) who had successfully 
completed a calculus sequence and at least two additional courses beyond calculus. 

Providing a way to apply the radical constructivist epistemology in research (von 
Glasersfeld, 1995), I conducted a teaching experiment in order to explore students’ 
mathematical activity and build models of the students’ mathematics (Steffe & Thompson, 
2000). Teaching experiments serve as an exploratory tool, giving a researcher ‘firsthand’ 
experiences with students’ mathematics, allowing him to explore the mathematical progress 
students make over an extended period of time. The researcher’s experiences gives him 
insights into the inherently unknowable bodies of understanding the students have, which is 
referred to as the students’ mathematics (Steffe & Thompson, 2000). The models of the 
students’ mathematics the researcher constructs using his interpretations and insights are then 
referred to as the mathematics of students. In order to analyze the data, I conducted a 
conceptual analysis to develop and refine models of the students’ mathematics. As Thompson 
(2008) described, one purpose of a conceptual analysis is “building models of what students 
actually know at some specific time and what they comprehend in specific situations” (p. 60). 
With this goal in mind, I analyzed the recordings from the teaching experiment using an open 
(generative) and axial (convergent) coding approach (Clement, 2000; Strauss & Corbin, 

                                                
1 Gender preserving pseudonyms. 
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1998). Initially, I analyzed the videos identifying episodes of the students’ behaviors and 
actions that provided insights into each student’s understandings. Such instances aided in 
generating tentative models of the students’ mathematics that I could test by searching for 
confirming or contradicting instances in their activity. When evidence contradicted my 
constructed models, new hypotheses were made to explain the novel way of operating as well 
as all prior observations. Using this technique, the data analyses consisted of an iterative 
process of continually creating, refining, and adjusting hypotheses.  

  
Results 

For brevity’s sake, I provide data from one teaching session that exemplifies a few 
themes that emerged from my analyses. The session began with Arya and Katlyn watching a 
video of an amusement park ride, the Power Tower (Figure 1a), shooting riders up a vertical 
tower, allowing the riders to drop back towards the ground before shooting them back up, 
repeating this up-and-down process twice more (for more on this activity see Moore et al. 
(2014)). While the video played on a loop, we tasked the pair with graphing a rider’s total 
distance traveled (heretofore referred to as distance) and the rider’s distance from the ground 
(referred to as height), with height represented on the vertical axis (for a correct sketch see 
Figure 1b). The pair first asked if they were given a value for the maximum height of the 
tower, but decided it sufficed to label a tick mark on the vertical axis as ‘top’ to represent the 
maximum height of the rider. After labeling their axes, the pair worked by identifying 
landmark moments where the ride changed directions with Arya initially stating, “They go all 
the way to the top (pointing to the tick mark labeled ‘top’ on the vertical axis) and then that's 
where (pointing to the location on the horizontal axis equally far from the origin as the point 
labeled ‘top’), how far they traveled first (moving her finger horizontally from the origin to 
location on the horizontal axis she previously pointed to).” Katlyn then used her fingers to 
measure the length from the origin to the tick mark labeled ‘top’ along the vertical axis and 
attempted to measure this same length from the origin along the horizontal axis (Figure 2a). 

 

 
(a) 

 
(b) 

Figure 1: (a) The Power Tower (b) a correct representation of a rider’s total distance and 
vertical distance 

Continuing, the pair marked a point on the vertical axis to represent the rider’s height 
where the first drop ended. Katlyn measured the length along the vertical axis from ‘top’ to 
this new point and translated this length to the horizontal axis starting at the previous point 
they had marked to signify the end of the first length they measured (Figure 2b). They 
continued this process of estimating minimum and maximum heights of the rider by placing 
points on the vertical axis and measuring the length between consecutive points on this axis. 
The pair would then coordinate this change in height to an equivalent change in distance by 
translating the length measured as the change in height to the horizontal axis starting at the 
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last point on this axis. The pair understood that a change in height corresponded to an equal 
change in distance (in magnitude). Their resultant graph can be seen in in Figure 2c.  

 

  
(a) 

  
(b) 

 
 

(c) 
Figure 2: Arya and Katlyn's (a)-(b) activity coordinating changes in distance from the ground 

to changes in total distance travelled and (c) the resultant graph. 

Having points labeled on their graph, with these points stemming from their coordinating 
the rider’s height then distance, the pair sought to determine how to connect the points. As 
they did so, they re-watched the video and focused on the physical motion of the rider, using 
words like “fast”, “slower”, and “shoots up.” They then drew a concave down curve from the 
origin to the first point corresponding to the rider’s maximum height. Arya stated, “Okay, so 
if we think of this as our total distance (pointing to the label ‘total distance’ on the horizontal 
axis)…We're covering distance pretty quickly here (pointing to the beginning of the curve) or 
we're covering height here, so this is at a pretty fast rate (motioning her finger from the origin 
over the beginning of their curve). And then as we get close to the top, right here near the top 
(motioning over the part of the curve near the first peak) we start to slow.”  

 

 
Figure 3: The pairs completed graph 

I infer from this statement, and from their activity moving forward, that the pair used the 
rider’s speed to create a graph composed of smooth curves (Figure 3). In fact, although Arya 
initially referred to the quantity on the horizontal axis as “total distance,” neither student 
explicitly referred to the quantity represented on the horizontal axis during the next three 
minutes of creating and justifying their graph. Instead, they (knowingly or unknowingly) used 
time as the quantity on the horizontal axis, and thus (tacitly) coordinated changes in time with 
the rider’s height. This hypothesis is supported by the fact that their graph (Figure 3) 
accurately represents the relationship between time and the rider’s height. 

After the pair constructed the smooth graph, a teacher-researcher asked them to re-explain 
how they plotted their initial points in order to determine if the pair realized the inconsistency 
he perceived in their two explanations. When posed with this, the pair returned to reasoning 
that focused on coordinating height and distance over completed intervals of the journey 
(e.g., a trip up, a trip down, etc.), mimicking their activity represented in Figure 2a-b. Again 
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both Arya and Katlyn first coordinated changes in height then coordinated how that change 
corresponded to an equal change in distance, representing distance on the horizontal axis. 
While from the researchers’ perspective the pair continued to conflate distance and time, the 
pair did not notice this as they returned to working with completed intervals of height and 
distance (e.g., when coordinating completed intervals of height and distance they were not 
concerned with how height and distance were covarying within the interval).  

In the above interaction, the pair again accurately described the points by coordinating 
changes in height first, but did not see any problem with the curvature of their graph. Because 
of this, the teacher-researcher decided to refocus the students in a way that might lead them to 
notice their conflation of quantities with respect to their graph. He asked Arya and Katlyn, 
“So talk to me about this first trip, you said things are speeding up slowing down, can you 
break it up in terms of amounts of change?” Arya stated “For equal changes in total distance 
(Katlyn taps along the horizontal axis indicating equal changes). The change in distance 
from the ground (Arya points to the ‘distance from the ground’ label on the vertical axis) is 
decreasing (Katlyn taps locations along the curve).” Katlyn provided a similar explanation, 
with both of their explanations accurately describing their created graph. However, from the 
researcher’s perspective they provided an incorrect statement about the physical relationship 
between distances as portrayed in the video.  

Shortly after this, the teacher-researcher asked the pair to explain how they were 
interpreting speed. Arya identified speed as “rate of change” to which the interviewer asked, 
“Like what's the quantities between?” Katlyn responded that speed is a coordination of 
“distance over time.” Immediately after this, Arya began to question their graph. 
 
Arya:  Do we have to do distance over time? Like this graph (pointing to their graph) doesn't 1 

have to include time necessarily so. 2 
Katlyn: It's like one [complete ride]. Like it's not, it doesn't really, does it really matter?  3 
Arya:  But it kind of does because the way you changed the rate that the distance changes is 4 

over, distance changes by time.  5 
Katlyn: But I mean even if you said this was like t equals zero (pointing to origin) and t 6 

equals (pointing to where the graph intersects the horizontal axis again), like if it 7 
takes it thirty seconds for them to reach, I don't know. Does it really matter when 8 
we're talking about total distance?  9 

Arya:  Does time matter?  10 
Katlyn: Yeah.  11 
Arya:  Yea but that's how we figured this out (pointing to the graph). What I was  thinking is 12 

like how else could you do (motioning along the first curve of the graph), is there 13 
another way?  14 

Katlyn: To get less steep is that what you mean?  15 
Arya:  Yeah, like or (pause) could you, is there a different relationship? 16 
 
From the above interaction I infer that, until this point, both Katlyn and Arya did not 
distinguish between time and distance when coordinating changes of the quantity represented 
along the horizontal axis (e.g., they used the horizontal axis to represent time when drawing 
the smooth curve) (Lines 6-9, 12). During this interaction, Arya realized that their graph did 
not (directly) represent time (Lines 1-2) and began to question whether they accurately 
represented the relationship between height and distance (Line 16). Shortly after this 
interaction when coordinating changes along the horizontal axis the pair explicitly worked 
with distance, coordinating that, in intervals during which the ride did not change direction, 
for any change in distance there was an equal change in height (in magnitude). This 
maintained the relationship they had constructed when first coordinating changes in height. 
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Conclusions  

This study adds to this body of literature on quantitative and covariational reasoning by 
providing an example of the ways in which students construct quantitatively rich situations. 
The pair exhibited productive quantitative and covariational reasoning throughout the 
episode; they constructed numerous quantities and coordinated these quantities as they 
covaried. Further, the pair’s reasoning was non-numerical, instead focusing on measurable 
magnitudes, which is the essence of quantitative reasoning (Smith III & Thompson, 2008).  

Corroborating previous research that has emphasized an increased focus on students’ 
images of problem situations (Moore & Carlson, 2012), the students’ images of the situation 
and their coordination of the quantities were reflexive throughout the episode. Initially, the 
students found points using their images of the situation and later they described the situation 
based on their graphical representation. Specifically, when initially plotting points the pair 
considered height and changes in height. They likened the vertical axis to the tower and used 
this image to find locations on this axis to represent heights where the rider changed 
direction. They used these points to indicate changes of directional variation of height as well 
as to consider specified changes in height and the corresponding changes in distance. Using 
this method, they found points on the graph representing the rider’s height and distance at 
each maximum and minimum height of the rider through one complete ride. 

When Arya and Kaleigh moved to connecting these points a complexity arose as they 
reasoned about the graph and its relationship to the situation. In this instance they coordinated 
height with respect to (tacit) time by imagining the situation in terms of the rider’s speed. 
This led them to draw smooth curves between their points. Further, when describing the 
relationship between height and distance using their created graph, they made statements that 
accurately described the relationship between these quantities as defined by their created 
graph. That is, when using the graph to describe ‘distance’ and ‘height’, their reasoning 
focused on the graph in ways that did not attend to an image of the physical situation.  

A related explanation for their activity rests with the students’ images of covariation, 
specifically their imagining chunky and smooth images of change (Castillo-Garsow et al., 
2013; Thompson, 2011). Their initial reasoning was chunky with their activity focused on 
coordinating completed intervals of change (e.g., changes between maximum and minimum 
heights). It was when they attempted to unpack these chunks that they changed from 
coordinating two distances to coordinating a distance with respect to (tacit) time. This 
suggests that initially neither their graph, nor their images of the situation, entailed smooth 
images of change with respect to the posed quantities of distance and height. 

These finding have important implications for the use of quantitatively rich situations in 
the teaching and learning of mathematics. First, it is important that we take students’ 
conceptions of both relationships and graphs seriously, meaning that we consider their graphs 
as viable from their perspective regardless of our intentions. In this study the pair consistently 
described and created quantitatively correct relationships and graphs, though they were not 
always the relationships the researcher intended. Further, the pair fluctuated between 
different conceptions of the situation (and relationships) while working with the same 
coordinate axes and graph. While other researchers have emphasized the importance of 
students’ mental images of a situation when problem solving (Moore & Carlson, 2012; 
Thompson, 2011), they have not reported on such conflations that can arise when students 
use multiple images that rely on different quantities when representing a situation.  

Future Research 
While providing novel insights into the quantitative and covariational reasoning literature, 

these findings raise questions as well. Quantitatively rich situations give students the 
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opportunity to grapple with multiple quantities and relationships. In order to construct a 
robust understanding of these situations, students must construct and consider all of the 
quantities involved. Therefore, it is not surprising when students conflate these quantities. In 
this case the pair’s incorporation of time resulted in them drawing smooth curves. One 
possible explanation of this conflation is related to the pairs’ prior school experiences. Other 
researchers have noted that common graphing conventions can influence students’ meanings 
for graphs (Moore et al., 2013). If Arya and Katlyn consistently experienced graphing 
situations in which time was represented along the horizontal axis, it is possible their 
meanings for graphs tacitly include time on the horizontal axis (e.g., when creating or 
interpreting a graph, assume the horizontal axis represents time). This study suggests 
continuing to explore how students’ reasoning differs in situations that do and do not include 
time could be a productive line of inquiry. 
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Researchers have indicated that pre-service teachers (along with in-service teachers and 
college students) typically do not develop productive meanings for function and function 
inverse. In order to explore pre-service teachers’ inverse function meanings further, we 
conducted clinical interviews with 25 pre-service teachers. In this paper, we include a 
summary of previous research concerning individuals’ inverse function meanings as well as 
a description of the methodology and theoretical framework we used when making sense of 
the pre-service teachers’ activities. We present and interpret data highlighting the techniques 
the pre-service teachers used during the tasks. We present our interpretation of these results 
in relation to common curricular approaches to inverse function. We conclude with 
implications from our findings and areas for future research. 

Keywords: Function; Inverse Function; Pre-service Secondary Teachers; Meanings 

Inverse function is important in secondary and post-secondary mathematics, 
particularly in the study of Calculus, Analysis, and Differential Equations. Inverse function 
also falls under the function content strand in the Common Core State Standards of 
Mathematics (National Governors Association Center for Best Practices, 2010), thus setting 
the expectation that secondary mathematics teachers support their students in constructing 
productive function inverse meanings. It follows from such an expectation that pre-service 
teachers should construct and operationalize inverse function meanings that are productive 
for their future teaching experiences. By supporting their students in constructing productive 
understanding of inverse function, teachers can prepare their students to develop many ideas 
in post-secondary mathematics including families of functions (e.g., logarithmic and inverse 
trigonometric functions) and calculus topics (e.g., implicit differentiation).  

Although several researchers have investigated students’ function meanings (e.g., 
Breidenback, Dubinsky, Hawks, and Nichols (1992), Leinhardt, Zaslavsky, and Stein (1990), 
Oehrtman, Carlson, and Thompson (2008), Thompson (1994)), fewer researchers have 
explicitly focused on students’ inverse function meanings. Researchers who have 
investigated students’ inverse function meanings have argued that college students, pre-
service teachers, and in-service teachers have difficulty constructing productive inverse 
function meanings (Brown & Reynolds, 2007; Carlson & Oehrtman, 2005; Engelke, 
Oehrtman, & Carlson, 2005; Kimani & Masingila, 2006; Lucus, 2005; Vidakovic, 1996). Our 
goal is to build on the current body of research by gaining insights into pre-service teachers’ 
(heretofore referred to as students) meanings for inverse function based on their activities 
during clinical interviews. First, we provide relevant background research and our theoretical 
perspective. Then, we describe our methods, including an explanation of our task design and 
its relation to our research goals. We present selected results describing students’ activities 
and techniques when finding, using, or describing inverse functions. We describe the 
implications that stem from our findings including implications related to common curricular 
approaches to inverse function. We conclude with limitations of the study and areas for 
future research.  
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Background 
Vidakovic (1996) presented a genetic decomposition of inverse function (i.e., a 

description of how students might learn the concept, including possible construction methods 
for their schemas). Vidakovic’s (1996) genetic decomposition closely resembles the formal 
mathematical definition of inverse function as a property of a set under the operation of 
function composition; she described a hierarchy that involved students developing schemas 
in the following order: function, composition of functions, and then inverse function. 
Students exhibiting the highest level of her hierarchy would be able to coordinate the three 
aforementioned schemas and to work with inverse functions through this coordination.  

Whether implicitly or explicitly, many researchers (Brown & Reynolds, 2007; Kimani 
& Masingila, 2006; Lucus, 2005; Vidakovic, 1997) who have investigated students’ inverse 
function meanings have maintained Vidakovic’s (1996, 1997) focus on function composition 
as critical to students’ development of productive inverse function meanings. However, in 
practice, it remains to be seen if students develop meanings for inverse function that entail 
reasoning about the composition of functions. For example, in an attempt to use her proposed 
genetic decomposition in an instructional sequence, Vidakovic (1997) noted some students 
“were able to define (in terms of switching x and y) and find (by switching x and y, or by trial 
and error) the inverse function without understanding the concept of the composition of two 
functions” (p. 191). We take these results and the results of others (Brown & Reynolds, 2007; 
Kimani & Masingila, 2006) to indicate that although students were able to determine an 
analytic representation of the inverse function, they did not use the idea of composition of 
functions to do this, nor did they relate their products to the notion of function composition. 
As part of our examination of students’ inverse function meanings, we were interested to 
discover if the students drew on meanings related to the composition of functions. Further, 
given these previous research findings, we also were interested in characterizing the students’ 
meanings in the event that they did not draw on meanings related to function composition. 

Most researchers examining students’ inverse function meanings have investigated 
these meanings without reference to contextualized applications of inverse functions. As 
such, there has been little research examining how students make sense of the inverse of a 
contextualized function. Further, those who have used contextualized functions have reported 
on the added complexities of such situations (Wilson, Adamson, Cox, & O'Bryan, 2011). For 
instance, when examining an undergraduate mathematic major’s conception of function, 
Philips (2015) noted that when the undergraduate, Britney, was determining the inverse of a 
given function that related the number of people who enter a theme park (input) to the 
income made if each person pays $7 (output), she claimed the inverse function did not exist. 
She stated, “Common sense-wise it’s not invertible. Logically it’s not invertible.” We take 
Britney’s activity to indicate she understood that a function that inputted income and 
outputted the number of people who entered the park was not viable as this was not how the 
situation worked (i.e., income was based on the number of people and not vice versa). 
Britney’s case illustrates one potential added complexity that can arise in student thinking 
when interpreting the inverse of a contextualized function. 

More generally, researchers have shown that students and teachers often hold 
compartmentalized meanings for inverse function dependent on the function class and/or 
representation (Brown & Reynolds, 2007; Carlson & Oehrtman, 2005; Engelke et al., 2005; 
Kimani & Masingila, 2006; Lucus, 2005; Vidakovic, 1996). These same researchers have 
argued that students’ meanings are restricted to carrying out actions particular to analytic or 
graphical situations. For example, Engelke et al. (2005) reported 652 pre-calculus students’ 
responses to questions on a research based assessment (Carlson, Oehrtman, & Engelke, 2010) 
that the authors perceived as relating to inverse function. They reported that when given a 
graph of a function f, 35% of the students were able to find x such that f (x) = 3. On the three 
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questions that included inverse function notation, no more than 20% of students in total 
responded correctly to any given problem and only 1% of the students answered all three of 
these tasks correctly. We infer from these results that few students in their study maintained 
inverse function meanings that supported them in correctly addressing all of the tasks. 

 
Theoretical Perspective 

Incorporating the tenets of radical constructivism, we approach knowledge as actively 
built up by an individual in ways idiosyncratic to that individual (von Glasersfeld, 1995). 
Thus, students’ knowledge is fundamentally unknowable to us as researchers; we can only 
make inferences about their meanings based on our interpretations of their words and actions. 
When making such inferences, which Steffe and Thompson (2000) referred to as the 
mathematics of students, we rely on definitions that Thompson, Carlson, Byerley, and 
Hatfield (2014) attributed to Thompson and Harel (in preparation). Specifically, Thompson 
and Harel defined understanding to be a cognitive state of equilibrium that results from 
assimilation. Whereas understanding refers to a cognitive state, meaning refers to the 
scheme(s) associated with an understanding including the scheme’s space of implications 
(Thompson et al., 2014). The students involved in our study likely had multiple instructional 
experiences prior to the study in which they established meanings for function and inverse 
function. Our interest was to gain insights into these established meanings and the space of 
implications associated with their meanings (e.g., did they draw on various schemes that were 
a connected and coherent part of what the students conceived of as ‘inverse function’ or draw 
on meanings that appeared disconnected from our (and possibly their) perspective). 

In this paper, we use the term technique to describe a student’s activity as he or she 
addressed a single task. We did not make inferences about a student’s inverse function 
meanings based solely on his or her technique for finding an inverse function in one task or 
representational system. Instead, and as we describe below, we analyzed students’ activities 
both within certain representations or types of tasks as well as across the different 
representations and tasks types. By designing tasks (see Task Design) requesting students to 
determine, use, and interpret inverse functions in a variety of representations and settings, we 
conjectured we would be able to build models of the students’ inverse function meanings that 
viably explained the techniques they used when engaging in inverse function tasks. For 
instance, and consistent with Thompson and Harel’s (in preparation) description of knowing, 
we hoped to characterize the extent that students used techniques in various tasks, 
representational systems, or settings while holding in mind some meaning that enabled them 
to see these techniques as connected and invariant. We also hoped to characterize when 
students used different techniques in isolated and disconnected ways too see if students’ 
meanings for inverse function consisted of techniques isolated to the students’ associations 
with representational systems or contexts.   
  

Methods  
 In this section, we first describe the subjects and settings of this study. Then, we 
present our task design, including an explanation of how our task design reflected our goals 
in relation to our theoretical perspective. Then, we describe our data analysis efforts.  
 
Subjects and Setting 

In order to explore undergraduate students’ inverse function meanings, we conducted 
semi-structured clinical interviews (Clement, 2000) with 25 students (18 female, 7 male) over 
the course of three semesters. The students were enrolled in their first content course as part 
of the secondary mathematics teacher education program at a university in the southeast 
United States. Each student had completed a full calculus sequence and two additional 
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mathematics courses (e.g., linear algebra, differential equations, etc.) with a minimum grade 
of a C in each course prior to enrolling in the aforementioned content course. We conducted 
the interviews, each lasting between sixty and ninety minutes, before the students started 
their first pair of courses (content and pedagogy) in their teacher education preparation 
program.  

The interviews were semi-structured task-based clinical interviews (Clement, 2000; 
Goldin, 2000; Hunting, 1997) consisting of a series of questions that examined their function 
and inverse function meanings. These interviews consisted of an individual subject working 
on preplanned tasks while interacting with a researcher (Goldin, 2000). Clinical interviews 
give a researcher insight into students’ meanings without intending to create shifts in their 
meanings. We note that although we did not intend to promote shifts in students’ thinking, 
unintended shifts may have occurred as tasks perturbed the students’ meanings.  

 
Task Design  

The interview tasks included decontextualized and contextualized tasks in analytic 
(equation rule) and graphical representations. These variations enabled us to explore the 
techniques and meanings students drew on in each of these situations as well as to analyze 
the students’ activities across representations. As an example, we asked students to graph the 
inverse functions of (decontextualized) graphed functions. These tasks, (recreated in Figure 1 
for readability) involved both linear (a and d) and non-linear (b and c) curves as well as 
graphs with square (a and b), rectangular (d), and unlabeled (c) axes. By using linear and 
non-linear curves, we intended to examine if students would use different techniques 
depending on the curve. By providing square, rectangular, and unlabeled axes, we intended to 
delineate between students who engaged in activity regardless of the axes labeling versus 
those who engaged in activity attentive to the quantity labels and axes scaling.  

 

  
(a)    (b)   (c)   (d) 

Figure 1: Four Decontextualized Graphical Tasks 

Other tasks consisted of decontextualized functions represented analytically. These 
tasks included identifying if two functions represented analytically are inverses of each other, 
evaluating f -1 (6) after using a given rule for f to determine f (2) = 6, and determining x when 
given f (x) = 1 and an analytic rule for f -1 (x). By asking the students to determine if two 
functions were inverses of each other as well as to work with functions and their inverses for 
specific values, we intended to explore if (and if so the extent to which) the students’ inverse 
function meanings were tied to carrying out particular techniques. For instance, consider the 
task, “Suppose that f (x) is a one-to-one function whose inverse is f -1 (x) = (x + 1)3 – 5x2 + 2. 
Find a value of x so that f (x) = 1.” We designed this task so that determining a rule for f (x) 
by switching the variables and solving would be unmanageable. As such, we conjectured this 
task would help us delineate between students with different inverse function meanings. A 
student who understands inverse functions in relation to function composition might 
understand that f -1 (f (x)) = x and leverage this to find x by evaluating f -1 (1). In contrast, a 
student whose inverse function meanings are restricted to switching the variables and solving 
might be unable to find the rule for f, leaving them unable to successfully obtain a value for x.  
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In addition to exploring students’ activities in decontextualized tasks, we posed tasks 
that asked students to determine the inverse of a given graph and analytic rule that defined 
the relationship between degrees Fahrenheit and degrees Celsius. In this case, we were 
interested in examining if the students used a technique similar to one used to determine 
decontextualized inverse functions. Further, we were interested in exploring if (and, if so, 
how) the students made sense of a contextual meaning for their constructed inverse function.  

Finally, we asked students to graph the inverse sine function given a graph of the sine 
function. The reason we chose the sine function is that there is not an explicit, finite sequence 
of calculations that relate the input and output values of trigonometric functions. In the 
absence of an explicit rule, a strategy like switching and solving would not help students 
graph the function (i.e., y = sin(x) becomes x = sin(y) or y = sin-1(x)) without a calculator to 
provide specific output values for given input values. In all, Table 1 provides a count of how 
many contextualized, decontextualized, and trigonometric function tasks in which we asked 
the students to work with inverse functions in both graphical and analytical representations.  

 
Table 1: Inverse Function Task Types  

 Graphical Analytical 
Decontextualized 4 3 
Contextualized 1 1 
Trigonometric 1 0 

 
Lastly, we strategically did not ask the students to define “inverse function” at the 

onset of the interview because we were concerned that they might rely on their constructed 
definition throughout all of their activity. Instead, we intended to observe the techniques 
students used in the moment of making sense of tasks involving (from our perspective) 
inverse functions. We also intended to gain insights into the extent that the students’ 
techniques were suggestive of a connected system of meanings for inverse functions. For 
instance, we were interested to determine if the students spontaneously identified some 
meaning for inverse function that connected her or his activity both within and across 
representations, contexts, and function types.   
  
Analysis 

Each interview was video-taped and transcribed with all of the students’ written work 
digitized. To analyze the data, we used open and axial techniques (Clement, 2000; Strauss & 
Corbin, 1998) as well as conceptual analyses (Thompson, 2008). Each member of the team 
analyzed a set of students individually by noting each student’s techniques for working with 
inverse functions in various representations. Afterwards, we met to discuss our observations, 
looking for common techniques among the students on specific tasks or types of tasks. As 
patterns developed, we created codes to identify the techniques we observed. Codes were 
revised or created in order to capture the similar or different techniques we observed both 
within similar tasks and across varying tasks. When a researcher was unsure how to code a 
particular instance, we watched this instance collectively and reached an agreement regarding 
the coding of that student’s technique, possibly leading to the refinement of a code or 
creation of a new code. Through this iterative process, we developed a final set of codes to 
represent students’ techniques, which we describe in this paper.  

In addition to creating codes to describe the students’ techniques on individual tasks, 
we looked across tasks to explore if the students exhibited, from our perspective, consistent 
techniques across representations, contexts, and/or function classes. For instance, if a student 
defined an inverse function by using the reciprocal in all analytically defined functions, then 
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we classified that student as having a consistent technique when working with inverse 
functions of analytically defined functions. However, if that same student reflected over the 
x-axis when asked to graph the inverse of a linear function represented graphically, but then 
reflected over the line y = x when producing the inverse graph of a non-linear function 
represented graphically, we classified the student as not having a consistent technique for 
constructing graphical inverse functions. By describing the students’ activities in these 
various settings and comparing and contrasting their activity in this way, we hoped to gain 
insights into students’ meanings for inverse functions. 

 
Results 

In this section, we describe the results from analyzing the students’ activities in 
decontextualized tasks, contextualized tasks, and the trigonometric task. We begin each 
section with examples of individual student work that exemplify specific techniques. We 
conclude each section with a summary across all students with respect to the task type.  
 
Results from the Decontextualized Analytical and Graphical Tasks 

Caroline is an example of a student who exhibited a consistent technique across the 
decontextualized graphical tasks (see Figure 2). When addressing these tasks, Caroline relied 
on switching coordinate values (i.e., the point (a, b) in the original curve became the point (b, 
a)). When she could not identify coordinate values (bottom-left graph), Caroline reflected the 
curve over the line y = x, and expressed that this reflection produced the same outcome as 
switching coordinate values. Caroline was one of 11 students who consistently exhibited the 
technique of switching coordinate values (or reflecting over the line they perceived as y = x) 
for graphing the inverse function of a given graphed function. In total, 19 of the 25 students 
(see Table 2) exhibited consistent techniques when asked to graph the inverse function of a 
decontextualized function represented graphically.  

 

 
Figure 2: Caroline's solutions to the four decontextualized graphical tasks 

In contrast to Caroline, Alyssa is an example of a student who did not use what we 
perceived to be a consistent technique across the decontextualized graphical tasks. Alyssa 
first (Figure 3a) attempted to find the slope of the line representing the original function and 
calculate “one over” this slope to determine what she anticipated to be the slope of the line 
representing the inverse function. After having difficulty obtaining a graph by executing this 
technique, she negated the x-values of the initial curve (i.e., the point (a, b) became the point 
(-a, b) in Figure 3a). Then, in Figure 3b (and for the curve on the graph with unlabeled axes), 
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Alyssa negated both values of a point on the curve (i.e., the point (a, b) in the original 
became the point (-a, -b)). Yet, for Figure 3c, she calculated the slope of the line representing 
the original function, and then she negated the slope to determine the slope of the inverse 
function while maintaining the same y-intercept. Due to the variety of her techniques, we 
characterized Alyssa as a student who did not exhibit consistent techniques across 
decontextualized graphical tasks.1 In total, six students used inconsistent techniques across 
decontextualized graphical tasks (see Table 2).   
 

 
(a)  (b)   (c) 

Figure 3: Alyssa's solutions to the decontextualized graphing tasks 

All but one student (24 of 25) exhibited consistent activity across the 
decontextualized analytical inverse task types. This one student used a function composition 
to check if two functions represented analytically were inverses of each other. However, the 
student did not have a technique for determining the analytic representation of an inverse 
function, thus leaving her unable to solve the tasks that requested she determine an inverse 
function or interpret inverse function notation in some way.  

 
Table 2. Categorizations of Students’ Meanings in Decontextualized Tasks (where # denotes 
the number of students out of 25 who consistently exhibited the corresponding activity) 

Graphical Technique # Analytical Technique #  

Switched x and y values or reflected over the 
line y = x 

11 Switched x and y (with or without 
solving for the switched y variable) 

15* 

Reflected a graph over an axis or a line 
other than y = x 

3 Used the reciprocal (e.g., f -1(x) =  
1/f (x)) 

8 

Determined an analytic function then solved 
for x or switched x and y and solved y 

3
  

Solved for x in the original function 1 

Created the inverse graph by transforming 
each point (x, y) to (x, 1/y)  

1   

Negated slope, and/or reflected concavity 1   

                                                
1 It could be argued that her techniques were consistent in that each involved ‘switching’ 
something or performing a transformation of some sort, but Alyssa showed no awareness 
during her activity that each technique might have some form of underlying invariance. 
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* Three of the 15 students consistently used a composition of functions method to verify if one function was the 
inverse of another function and consistently used a ‘switch-and-solve’ method in the other decontextualized 
analytical tasks (i.e., determining the analytic representation of an inverse function or computing values). 
 

Table 2 provides a summary of the techniques used by the students who exhibited a 
consistent technique across the decontextualized graphical or analytical tasks. We highlight 
that a majority of the students used a technique for finding inverse functions that involved 
“switching” x and y, a common technique reported in previous research (Kimani & 
Masingila, 2006; Vidakovic, 1997). In total, eight of the 25 students consistently used a 
“switching” technique in both the decontextualized graphical and the analytical tasks. An 
additional 10 students used a “switching” technique in one representation (7 students in 
analytical, 3 students in graphical) but not in the other representation. 

We found the students’ responses to the decontextualized analytical task “Suppose 
that f (x) is a one-to-one function whose inverse is f -1 (x) = (x + 1)3 – 5x2 + 2. Find a value of 
x so that f (x) =1” especially interesting. Only six students successfully determined the value 
of x to be 5. Two of these six students, both of whom used function composition to check if 
two functions were inverses of each other, immediately recognized they could input one for x 
in the inverse rule to determine x in f (x). The other four students changed notation (i.e., 
wrote y for f -1 (x)), switched the variables x and y obtaining x = (y + 1)3 – 5y2 + 2), and 
eventually realized they could substitute one for y in their new rule to determine x.  
 
Results from the Contextualized Inverse Function Tasks 

To explore the students’ activities in contextualized situations, we provided the 
students with two tasks, one graphical (a graph with degrees Fahrenheit on the vertical axis 
and degrees Celsius on the horizontal axis) and one analytical (the rule C(F) = (9/5)F + 32)). 
We asked the students to determine the inverse of each function. Recall that our goals were to 
determine whether a student used the same technique in the contextualized and 
decontextualized tasks, and to determine if the student made sense of a contextualized 
meaning for the inverse function.  

We present Kate’s activity as one example of a student’s activity on these tasks (see 
Figure 4 for Kate’s work). Kate was one of the eight students who used a switching technique 
in both graphical and analytical decontextualized task types. She continued to use these 
techniques on both Celsius-Fahrenheit tasks. However, Kate was perturbed as to how to 
interpret her constructed inverse functions. In the graphical task, after describing that the 
point (10, 50) on the given line meant that 10 degrees Celsius corresponded to 50 degrees 
Fahrenheit, the interviewer asked Kate to explain what the point (50, 10) on her line 
representing the inverse function represented in context. Kate responded, “That’s a good 
question. If I start at, if I have 50 degrees Celsius, then I have 10 degrees Fahrenheit. That 
doesn’t make sense.” After a long pause, Kate pointed to the line representing her inverse 
function (in red in Figure 4) and said, “I can’t wrap my mind around what that means.”  

Similarly, Kate was unsure how to interpret the analytically represented inverse 
function she determined ((5/9)F + 32 = C -1 (F) in red in Figure 4). As she attempted to 
interpret the rule, she conjectured if the given function had an input of degrees Fahrenheit, 
then the inverse function would have an input of degrees Celsius. However, she quickly 
noted, “I’m thinking you can [find degrees Fahrenheit from degrees Celsius] if you don’t take 
the inverse,” indicating she understood that she did not need to switch the variables or 
construct a different analytic rule to determine Fahrenheit values if given Celsius values. This 
left Kate unsure of the contextual meaning of her determined inverse function. Hence, 
although Kate exhibited a consistent technique for determining inverses in both graphical and 
analytical tasks, she remained perturbed when trying to make sense of the contextualized 
graph and formula of the inverse functions she obtained using this technique. 
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Figure 4: Kate’s solutions to the Celsius/Fahrenheit tasks 

 
Figure 5 represents the number of students who (1) maintained a consistent technique 

across decontextualized (graphical or analytical) tasks, (2) maintained this same technique in 
the contextualized task, and (3) interpreted their inverse function as continuing to represent 
the given relationship between degrees Celsius and degrees Fahrenheit. Including Kate, 17 of 
the 19 students who exhibited a consistent technique in decontextualized graphical tasks used 
this same technique when given a contextualized graph. In order to make sense of their 
created graph so that it represented what they considered to be a correct relationship, 10 of 
these 17 students concluded that the quantity represented on each axes switched (i.e., the 
Fahrenheit axis became the Celsius axis). Six (including Kate) of the remaining seven 
students maintained the quantity represented by each axis and had difficulty interpreting their 
created graph.2 For example, one of these six students claimed, “I don’t know what the point 
of having the inverse function of a graph like this… Because you’re not gonna, it’s not gonna 
give you any useful information, I don’t feel like.” Collectively, these six students were 
unable to relate their constructed inverse function to the context.  

We interpret the results presented in Figure 5 to imply that students experienced more 
difficulty when attempting to make sense of their constructed analytically defined inverse 
function. In this case, 21 of the 24 students used the same technique they had used on the 
decontextualized analytic tasks. Only five of these students made sense of their inverse 
function in terms of the context, and the other 16 students remained unsure what their inverse 
function was meant to represent with respect to the context or concluded that their inverse 
function was not meant to represent the same relationship as the original function. This is not 
surprising, however, considering 15 of these 21 students continued to use a switching 
technique that, once applied, no longer maintained the relationship between the temperature 
measures unless the student simultaneously coordinated different variable referents 
depending on the analytic representation under consideration (i.e., in the original function F = 
degrees Fahrenheit and C = degrees Celsius and in the inverse function F = degrees Celsius 
and C = degrees Fahrenheit). 

 

                                                
2 The other student turned her focus to determining and working with analytic functions and 
did not address context in this task.  
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Figure 5: Students' graphical (left) and analytical (right) consistency across decontextualized 
and contextualized tasks  

Results from the Trigonometric Inverse Function Task 
We provide one example of a student’s activity that is germane to many students’ 

activities when constructing a graph of the inverse sine function given a graph of the sine 
function; Caroline recalled memorized shapes. Prior to this task, Caroline consistently 
switched x and y values or reflected over the line y = x in decontextualized graphical tasks 
(see Figure 2). When addressing this task, she attempted to recall a graph of the inverse sine 
function that included ‘U-shapes’, claiming, “[I] never could memorize whether, when it was 
up and when it was down,” and drawing Figure 6a (without identified asymptotes). In order 
to determine the location of one ‘U-shape’ in the plane, she recalled and plotted two points 
she associated with sine inverse ((0,0) and (π/2,1)) and created a ‘U- shape’. Caroline 
continued to refine her graph by adding asymptotes at locations where she identified that   
sin-1(x) “does not exist”. Caroline then suddenly recalled and drew two other learned shapes 
(shown in Figure 6b), although she was still unsure which shape was in the correct 
orientation. After drawing the curves shown in Figure 6(a)-(b), Caroline said, “I don’t even 
remember sine inverses… I have like these two graphs [pointing to graphs shown in Figure 
6(a)-(b)] that I remember seeing and associating with them inverses and sine. And honestly, I 
think I used to graph it in my calculator and then justify it to myself, and then I’d be good 
with it for like however long I needed it.” Hence, when asked to find the inverse of a 
trigonometric function, Caroline abandoned her previously consistent technique in 
decontextualized graphical situations and instead shifted her focus to recalling memorized 
shapes. Caroline could not recall which shape corresponded to the inverse sine function and 
was left perturbed as to how to graph the inverse sine function. 

 

    
(a)                 (b) 

Figure 6: Caroline's work on the inverse sine task 

Of the 19 students who we classified as exhibiting consistent techniques in 
decontextualized graphical tasks, only six used the same technique when graphing the inverse 
sine function. Eight of the other 13 students (including Caroline) attempted to recall a learned 
graph (i.e., shape) and were unsuccessful (from the researchers’ perspective) in creating a 
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graph that accurately represented the inverse sine function. The other five of the 13 students 
either made no attempt to graph the inverse sine function (one student), graphed 1/sin(x) (one 
student), or reflected over a single axis (three students).  

  
Conclusions and Discussion 

In this section we summarize our results and discuss how these results relate to other 
researchers’ findings. Then, we describe how we interpret this data in relation to the students’ 
inverse function meanings more generally and relate our results to our experiences teaching 
inverse function at the secondary and postsecondary levels.  

 
Students’ techniques when working with inverses functions 

With respect to the students’ activities when responding to the decontextualized tasks, 
our findings are consistent with those of previous researchers (Brown & Reynolds, 2007; 
Engelke et al., 2005; Lucus, 2005; Vidakovic, 1997); many of our students used techniques to 
determine or work with inverse functions that were reliant on a particular representation or 
function class. Further, compatible with Vidakovic’s (1997) observations, a majority of the 
students (21 of the 25) did not use composition of functions when determining if two 
analytically defined functions were inverses of each other. Although the formal mathematical 
definition of inverse function depends on the composition of functions, this definition was of 
little use (to the students) when constructing inverse functions from given functions.  

In this study, we contribute findings related to students’ activities and reasoning about 
the contextual meaning of an inverse function for a given contextualized function (i.e., the 
function that relates degrees Celsius and degrees Fahrenheit). Only five of the 25 students 
interpreted their constructed inverse function in both the analytical and graphical 
representations as maintaining the relationship between degrees Fahrenheit and degrees 
Celsius. An additional five students interpreted the graphically represented inverse function 
as maintaining this relationship by switching the quantity represented on each axis, but these 
same five students did not conceive of their analytically defined inverse function, obtained by 
switching-and-solving, as representing the given relationship between degrees Fahrenheit and 
degrees Celsius. These students’ techniques for constructing an analytic inverse required 
switching variables, but the students did not conceive such switching to include changing the 
quantitative referents of the variables, leaving them unsure how to interpret their analytically 
defined inverse function. These results provide evidence supporting Wilson et al. (2011), 
who argued that the switching-and-solving procedure commonly taught in school 
mathematics can convolute the meaning of inverse function in contextualized situations. 
Although students in our study had techniques for determining an inverse function in a 
contextualized situation, a majority of the students struggled when interpreting their inverse 
functions in context. 

This study also adds to the body of literature on students’ understandings of 
trigonometric functions (Akkoc, 2008; Hertel & Cullen, 2011; Moore & LaForest, 2014; 
Weber, 2005). Our results indicate that although a majority of students exhibited consistent 
techniques when graphing decontextualized inverse functions, most of these students did not 
draw on these techniques when working with decontextualized trigonometric functions. 
Instead, many students reverted to recalling learned shapes for these functions. One 
explanation for this is that trigonometric functions require more sophisticated ways of 
thinking about function than a majority of the function families students encounter in K-12 
mathematics (Moore, 2014; Weber, 2005). For instance, the analytic representation of 
trigonometric functions does not entail an explicit sequence of calculations or operations. 
Instead, understanding trigonometric functions is contingent on conceiving them as 
quantitative relationships. However, researchers (e.g., Akkoc (2008); Hertel and Cullen 
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(2011)) have shown that students’ understandings do not support them in thinking of 
trigonometric functions as a relationship between quantities. Another, possibly related, 
explanation is that students’ meanings for inverse functions consist of a collection of 
techniques to execute, and thus, the students understood trigonometric functions as having 
their own set of rules (e.g., memorizing shape-analytic rule pairs). 

 
Students’ Inverse Function Meanings 

Our results indicate a majority of the students in our study left their K-14 school 
experiences having constructed stable inverse function meanings, or what Harel and 
Thompson might call ways of thinking (Thompson et al., 2014). We infer that the students’ 
meanings, or ways of thinking (and the implications of which), were predominantly 
constrained to carrying out techniques tied to the various representations, contexts, or 
function classes. In essence, carrying out the techniques in order to obtain a new equation or 
graph was nearly the entirety of many students’ meanings for inverse function in that 
representation or context. If the students encountered difficulty carrying out their technique 
and obtaining a new graph or equation, the students were often unable to determine an 
alternative technique or relevant way of thinking about inverse function. One way to frame 
this outcome is that a majority of the students’ inverse function meanings were the result of 
pseudo-empirical abstractions (von Glasersfeld, 1995), or generalizations tied to the product 
of activity and the particulars of that activity.   

This idea of students maintaining meanings based in pseudo-empirical abstractions 
explains why many students exhibited techniques that were inconsistent from the researchers’ 
perspective (and often from the students’ perspective). For example, only nine students 
exhibited techniques when working with decontextualized graphical and analytical tasks that 
would result in compatible inverse functions. As another example, five students interpreted 
their constructed inverse graph of the relationship between degrees Celsius and degrees 
Fahrenheit as maintaining the relationship between temperatures, but did not do so when 
interpreting their constructed inverse function of the analytical representation. During the 
study, these students exhibited two inverse function meanings; one meaning involved 
switching-and-solving to determine the inverse rule of an analytically defined function and 
the other meaning involved an inverse function maintaining the relationship between 
quantities represented by the original function. It was not until the students addressed the 
Celsius/Fahrenheit problems that some students became aware of these two meanings and 
perceived them as being inconsistent with one another, often leaving the students in a state of 
perturbation as to what their inverse function represented. We note only one student 
addressed all of the inverse function tasks in a way that we took to indicate she maintained 
inverse function meanings that supported her in addressing all of the tasks (e.g., she was 
consistent across all tasks and also made sense of the contextualized tasks). 
 
Considering results in relationship to curricular approaches to inverse function 

As we reflected on our experiences teaching inverse function at the secondary and 
postsecondary level using curricular materials which cover inverse function, we began to 
consider these results as far from surprising. Pre-calculus textbooks (e.g., Dugopolski (2009); 
Larson, Hostetler, and Edwards (2001); Stewart, Redlin, and Watson (2012); Swokowski and 
Cole (2012)) often have one section dedicated to inverse function. In the texts listed in the 
previous sentence, each contains an inverse function section that includes a definition for 
one-to-one functions and introduces the horizontal line test. Each text states the property that 
f (f -1 (x)) = x and f -1 (f (x)) = x either as a definition, theorem, or property of inverse 
functions. Each text includes multiple examples with techniques students can use to find 
inverse functions, including special boxes describing the switch-and-solve method for 
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determining an analytic inverse rule and a graph showing a function and its inverse as a 
reflection over the line y = x. But, these texts do not always provide explicit connections 
between these different techniques for finding inverses. Hence, it is not surprising students 
develop techniques for finding inverse functions that lack connections across representations.  

Furthermore, only one of these texts (Dugopolski (2009)) references a contextualized 
example in their inverse function narrative, yet each expects students to interpret the meaning 
of inverse functions in contextualized situations in the problems they pose at the end of the 
section. Also, we note that it is common to omit inverse trigonometric functions in the initial 
treatment of inverse functions, instead including these functions in a unit specifically 
addressing trigonometric functions. Additionally, the treatment of inverse trigonometric 
functions does not include the same techniques found earlier in the text. It should not surprise 
us if a student exhibits activity to indicate he or she understands inverse trigonometric 
functions as being distinct from other inverse functions in the even that a student experiences 
such a curriculum. 

As we consider these curricular approaches to teaching inverse function in relation to 
the students’ activities in this study, we are not surprised that the students often performed 
techniques without having an underlying meaning that connected these techniques. Similar to 
the complexities students encounter as they attempt to make sense of the function concept 
described by Carlson (1998), students are often expected to develop powerful meanings 
without being given sufficient time or experiences to construct such meanings. In the case of 
inverse functions, we as educators expect students to learn how to determine if a function has 
an inverse. We expect students to make sense of inverse function notation (which is 
strikingly similar to the notation used for exponents). We also expect students to be able to 
use the definition of inverse function to determine if two functions are inverses of each other 
via function composition, and to construct inverse functions in a variety of representations. 
We expect students’ to understand that these techniques for constructing inverse functions 
differ in contextualized and decontextualized analytically defined functions. Further, we 
expect students to recall all of these ideas when learning about inverse trigonometric (and 
logarithmic) functions well after the initial treatment of inverse function. We contend that if 
we expect students to develop powerful inverse function meanings in which they conceive of 
connections between these techniques and activities in the various representations, we must 
give them ample opportunities and experiences in which these connections and understanding 
are meaningful. 

Limitations and Future Research 
Although our study builds on and supports previous research on students’ inverse 

function meanings, it also raises many questions. A reliance on a procedure creates a 
predicament for some students attempting to make sense of inverse functions in context. 
Hence, and following up on the suggestions of Wilson et al. (2011), future researchers may 
be interested to explore ways to support students in constructing meanings for function and 
inverse function that are productive in both contextualized and decontextualized situations. 
Additionally, a productive line of inquiry might be to pursue the use of contextualized 
situations to support students in constructing productive function and inverse function 
meanings.  

Our data only came from one interview. Thus, our inferences about the students’ 
meanings were limited to that one interaction. Although we were surprised by the students’ 
activities on the inverse sine task, this was the only task in which we asked the students to 
work an inverse trigonometric function. Because of this, it is difficult for us to conclude why 
most of the students did not use the same technique used in previous in graphical situations. 
From our perspective, it would seem that if the students maintained meanings that were 
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consistent in graphing and/or analytic situations, then these meanings would carry into their 
activity in trigonometric functions. Future researchers may be interested to explore how 
students’ inverse function meanings differ between function classes.  
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The introductory linear algebra course provides unique challenges to many undergraduate 
students. The abstract nature of the course and immense amount of vocabulary offers a stark 
contrast to the procedural mathematics encountered in calculus and high school mathematics 
courses (Carlson, 1993; Dorier & Sierpinska, 2001). Many concepts in linear algebra are 
inherently connected. These connections can be made explicit by the use of a unifying and 
generalizing concept, defined by Dorier (1995). Examples of a unifying concept include the 
Invertible Matrix Theorem as presented by Lay (1994). In my study, I considered two potential 
unifying concepts, pivots and solution sets of matrix equations and asked how these concepts 
influenced student understanding of linear algebra. 
 My research and teaching throughout this process were informed by the constructivist 
perspective. As a teacher, I designed my lectures and assignments in an attempt to perturb my 
students’ cognitive structures. To aid in the description of these cognitive structures, I refer to 
Tall and Vinner’s concept image and concept definition. Further, I adapted a classification 
system for linear algebraic concept images of span and linear independence from one developed 
by Wawro and Plaxco (2013). Based on my presentation of the material in my class, two of the 
concept images described by Wawro and Plaxco were of particular interest to me. The vector 
algebraic concept image consists of interpretations of span or linear independence in the context 
of vector addition, scalar multiplication, and linear combinations. The matrix algebraic concept 
image consists of interpretations of these terms in the context of properties of matrices and 
procedures on matrices. Through my research, I describe an additional concept image, one I shall 
refer to as the linear systematic concept image. This concept image involves interpretations of 
span and linear independence in the context of a linear system. Key words associated with this 
concept image are system, variables, basic variables, free variables, equation, solution, and 
consistency. 
 After a series of observations and data collection in other instructors’ classrooms, I 
conducted a study in my own class. I offered all of my students the chance to participate in the 
study; of my 105 students, 28 agreed to participate. Throughout the course, I frequently 
illustrated connections between concepts by referring to pivots and solution sets of matrix 
equations. I collected data from student responses on worksheets on span and linear 
independence, a review worksheet, the midterm, and from interviews with two of my 
participants. I categorized different student responses as evoking a vector algebraic, matrix 
algebraic, or linear systematic concept image.  
 Many students displayed vector algebraic and matrix algebraic concept images in their 
responses. However, several students who referred to pivots as a unifying concept consistently 
displayed only matrix algebraic concept images. That is, they were unable to think of span or 
linear independence without referring to pivots. Other students who were not as reliant on pivots 
were more able to describe span and linear independence multiple ways and showed cognitive 
flexibility with regard to their evoked concept images. Further, illustrating connections between 
concepts from the context of solution sets of matrix equations yielded more responses indicative 
of linear systematic thinking than illustrating the same connections from the context of pivots. 
Thus, while pivots can be an incredibly useful tool, an emphasis on them as a unifying concept 
may restrict students to developing concept images that involve little beyond the matrix 
algebraic. Considering solution sets of matrix equations as a unifying concept seems to allow 
more cognitive flexibility and serves as a useful reminder of the connection between the matrix 
and a linear system. 
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Silence: A Case Study 
Matthew Petersen 

Portland State University 
 

Silence has been important to many disparate traditions, notably, Zen Buddhism, and Taoism. 
But it has received relatively little treatment in the mathematics education literature. This paper 
attempts to begin a conversation on silence, its good and bad uses, and raises the question of 
whether silence may be an important aspect of mathematics activity. In order begin an answer to 
that question, it analyzes the contribution that a particular group member's silence produced for 
the group, leading both to a correct solution, and to a valuation of her group-mate's arguments. 

  
“We must cultivate the courage to stay silent for a while among the people with whom we live, so 

that when we do speak our voice will have become theirs.” –Eugen Rosenstock-Huessy (1966, p. 180). 
 
Silence is given a central location in many disparate spiritual traditions. The Rule of St. 

Benedict claims “The spirit of silence is so important, permission to speak should rarely be 
granted, even to perfect disciples.” Sri Guru Granth Sahib, the Sihk sacred text, exhorts us to 
“Make silence your ear-rings.” Siddhartha, who was to become the Buddha, achieved 
enlightenment while meditating under the Bodhi tree, in silence. The Dao de Jing says “Those 
who know do not speak; those who speak do not know.” Zen Buddhist monk Tich Nhat Hanh 
exhorts us that “being is non-action”, and “don’t just do something, sit there” (2014 p. 20-1).  

Modern psychology and sociology, especially ecological psychology ethnomethodology, 
have also begun to appreciate that stillness and silence, is not simply a lack of motion, the default 
state of a system without stimulus, but is in fact, a particular form of motion. Thus from an 
ecological perspective, both Marratto (2012) and Reed (1996) argue that perception is not 
inherently passive, but is an active taking up the world. A position which would seem to imply 
that silence is not a “default” position, but requires a particular form of discipline and, in a sense, 
activity. 

More directly, Conversation Analysis (Liddicoat, 2011; Heritage 1984) has long been 
attentive to the silences inherent in the rhythms of conversation, and their necessity for 
communication. For instance, conversations show what Conversation Analysts call a  
“preference structure”, in which responses that maintain solidarity—for instance, accepting an 
invitation—usually occur without delay, and are made explicit at the beginning of the turn to 
speak, whereas responses that break solidarity, “dispreferred actions”—e.g. declining an 
invitation—usually begin with pauses, and the dispreferred response is often implicit, or delayed 
till the end of the turn. Indeed, a delayed response to an invitation is able to be heard as a 
rejection of the invitation, whereas a quick prompt “no” may be taken as rude (Heritage, 1984). 

In contemporary discourse, silence often has a negative connotation, particularly in calls for 
justice for silenced peoples—and rightly so. As Bakhtin (1986), drawing on Thomas Mann notes, 
one of the greatest terrors of the Concentration Camps was “an absolute lack of being heard”, 
since “there is nothing more terrible than a lack of response” (p. 146-7, emphasis in the original): 
That is, than pure and absolute silence. When we silence various groups, refusing to hear them, 
and especially, their calls for justice, we do them one of the greatest wrongs imaginable—
perhaps, as Martin Luther King Jr. noted, in his “Letter from Birmingham Jail”, worse even than 
those who explicitly commit the injustice. But yet, as Tich Nhat Hanh (2014) notes, our actions 
in defense of the wronged must be preceded by an inner stillness and peace, cultivated through 
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silent meditation. And, again as he noted, mindful non-action is not nothing, but something (p. 
20)—and can even be something subversive (p. 44-5). 

In the mathematics education literature, setting aside the social justice literature for the 
reasons enumerated in the above paragraph, silence, per se, has not received much discussion. 
Some people writing from an embodied perspective have attended to silence(s), (Radford, 
Bardini & Sabena, 2007; Bautista & Roth, 2012). A few papers have implicitly argued that 
something like silence can be important for doing mathematics, thus, for instance, Savic (2012) 
showed that mathematicians often resolve an impasse in their work by going for a walk, or out to 
lunch, or about department business, and not thinking about the mathematics. From a different 
perspective Gal, Lin & Ying (2007) argued that hidden in the high performance of many East 
Asian mathematics classrooms is a negative silence of the underachieving.1 And in a 
Conversation Analysis journal, Ingram & Elliott, (2014) have shown the rhythms and pauses—
and, explicitly, silences—of everyday speech, are an important part of the mathematics 
classroom. Nevertheless, that silence is given relatively short shrift is shown, if nowhere else, by 
the usual transcription conventions which pass over silence in silence. 

This paper attempts to begin to ask whether silence can be a positive good in the classroom, 
and whether it is perhaps an important aspect of mathematical activity that as researchers we 
should attend to. 

Regarding silence as potentially a good to be cultivated in the classroom: Lang (1985) claims 
that one of the chief reasons mathematicians do mathematics aesthetic: Mathematics is beautiful, 
proofs particularly so. There is small body of literature which draw attention to the beauty of 
mathematics (Sinclair, 2006; Mamolo & Zazkis, 2012), especially Winston (2010). Perhaps 
reflection on the beauty of mathematics could be aided by times of positive silence.  

Regarding silence as an aspect of mathematical activity: Daoists and Zen Buddhists (and 
perhaps Sikhs) have argued that silence—or what is referred to as no-self (Heisig, 2013)—is an 
important prerequisite for true action (Hanh, 2014). This leads to the research question in this 
paper: Is (or “how is”) silence a positive aspect of undergraduate mathematics activity? 

Methodology 
This episode was part of a study of student group work in calculus. As part of the study, 

groups of students were interviewed, and the group dynamics observed. In order to facilitate 
video recording, the students were asked to work on a white board. In this interview, three 
students, two male and one female, at a community college in the Pacific Northwest, were asked 
to graphically identify three unlabeled functions as the position, velocity, and acceleration 
functions of a car (figure 1). The students were mostly allowed to work on their own. 

                                                           
1 This silence is, I believe, somewhat akin to the negative silence the social justice literature seeks to address. And 
while one of the theses of this paper is that we should attend to silence as potentially important; I do not at all 
intend to minimize the evil of negative silence.  
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The interview was then transcribed and analyzed using Conversation Analysis (Heritage, 
1984, Liddicoat, 2011). Conversation Analysis (CA) is a branch of ethnomethodology which 
attempts to describe the intersubjective nature of communication: How conversations are co-
constructed by the participants precisely through the public enactment of an understanding of the 
social engagement, an enactment which both shapes the character of preceding dialogue, and 
which projects future responses.2 Because of this focus on the structure of the conversation itself, 
CA does not seek to use a interview to discover hidden variables like internal conceptions, 
rather, it is the conversation itself that is interesting, and, as in all ethnomethodology (Heritage, 
1984) the public means that social actors use to co-construct their interaction. 

Furthermore, it is precisely this public character of conversation that allows social 
researchers to “eavesdrop”, and, through careful attention to the prosodic character of utterances, 
their pitch contour, their rhythms, etc. and the structure of the turns at talk, to discover the 
internal structure of a conversation. 

CA has been used in mathematics education by Roth & Radford (2011) as a tool for 
describing a classroom episode in detail, with particular sensitivity (in their case) to what they 
call the cultural-historical nature of mathematics activity.  

Results 
At the beginning of this sequence, Jason and Katherine have been debating interpretations of 

the graph. Katherine has been extremely proactive in making her point, several times cutting 
Andy off to restate her argument, and immediately, and negatively responding to Jason’s 
argument. Her insistence on her argument is seen clearly in the following passage: 

Jas: When there’s an apex (.) when there’s a max here and a min 
     here (.) that should be zeros on the derivative of that= 
Kat: =No zeros would be (.) the zeros would be ah um (.2) 
     inflection point? 

Note that since this is a negative response, and so dispreferred, it is particularly strong: She 
begins her turn immediately after Jason had finished his, with no pause, and leads with a 
disagreement, “no”. 

In spite of this determination that her argument be heard, the final solution was first offered 
by Katherine, and notably, not in her own voice, but in Jason’s. The passage is worth quoting at 

                                                           
2 As an example of how a response shapes a preceding action, consider the exchange (from Heritage, 1985, p. 255): 
A: “Why don’t you come see me sometimes.” B: “Sorry (.) ok; I’ve been busy recently.” B’s response treats the 
original question as an accusation. And if A intended it as an invitation, A will have to treat it as “heard as an 
accusation”, and address that hearing. 

Figure 1. The figure above shows the graphs of three 
functions. One is the position function of a car, one is 
the velocity of the car, and one is its acceleration. 
Identify each curve (from Stewart, 2012). 

18th Annual Conference on Research in Undergraduate Mathematics Education 87318th Annual Conference on Research in Undergraduate Mathematics Education 873



length. At this point the group had noticed that graph a was the derivative of graph b, and had 
interpreted that to mean that graph b was the position function and graph a, the velocity (and by 
default, graph c, acceleration). Katherine was arguing that this reading is plausible, since graph c 
seems to be second derivative of b, whereas Jason was arguing that something doesn’t fit, since 
graph c cannot be the derivative of graph a.3 
1. Jas: You’re right that b is all concave down. Um= 
2. Kat: So there’s no points of inflection on b so therefore c 
3.      should never cross (.) the x-axis; 
4. Jas: But c’s the second derivative of (   ) 
5. Kat: No c’s the second derivative (.) 
6. Jas: of b but c is still ⁰just the derivative of a right⁰ 
7. (2.0) 
8. Kat: right 
9. → ((1 minute 45 seconds during which Katherine is silent, omitted)) 
10. And: What do you think of that. ((to Kat)) 
11. Kat: Well (2.0) so (2.0) does anybody disagree that we’ve labeled  
12.      these as the position and the velocity and the acceleration; 
13.       ((as she says this, she points to the labels “position” and  
14.      “velocity” they had written earlier))  
15. And: [(      )] 
16. Jas: [(      )] Here’s what I’ll agree with (.) a is 
17. And: I believe 
18. Jas: definitely >the derivative of b< (.) a is definitely the  
19.      derivative of b (.) And tch, (cocks head to left) 
20.→ Kat: So do you believe c is the position function; this ((b)) 
21.      is velocity and this ((a)) is (.2) acceleration; 
22. Jas: I think I think >↑b ↑is ↑the ↑derivative ↑of ↑c<. 

At the beginning of this passage, Jason and Katherine acknowledge the other’s point (l. 1 and 
8), and their argument pauses (l. 7). However, both remain physically tense, with their attention 
oriented to the mathematics on the board, not to each other or Andy.4 Though Jason is initially 
silent like Katherine, Andy draws him into a conversation about the physical significance of the 
graphs, e.g. negative velocity. 

Throughout their discussion, however, Katherine is physically withdrawn from the group and 
does not, even with her gestures, respond to the Andy and Jason’s work. But her body remains 
tense, oriented to the mathematics. Her response to Andy in line 11 may seem odd—the labels 
were written on the board—but Jason (l. 17, 18-19) responds to her question by returning the 
discussion to where it had been in l. 5: They have agreed that a is the derivative of b, but, as 
Jason’s unfinished statement, exhale, and cocking his head to the left indicate, they had had not 
been able to make sense of graph c, plausibly arguing that it was, and was not the acceleration 
function. Katherine responds to Jason by suggesting the correct solution, notably, for the first 
time in the interview. 

Jason agrees with her suggestion (l. 22), increasing both the pitch and the speed of his 
speech—which seems to suggest that he had not thought of that option before, and was excited at 
                                                           
3 Complete transcription conventions are included in an appendix. 
4 Shifting their gaze to each other or to Andy would be an invitation for further speech (Liddicoat, 2011, p. 160). 
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hearing it. Jason will immediately explain this solution, and the group agrees the solution is 
correct and conclusive—treating it as conclusive by beginning to go on to the next problem. 

Katherine’s reentry into the conversation almost immediately led to a solution, and it seems 
clear that it was the period of silence that was fruitful. At the beginning, she and Jason were both 
confused about the correct solution, and when she speaks again, she almost immediately suggests 
it. But the social character of her solution is perhaps as important as the fact of the solution. 

Katherine does not merely suggest that c is the position function, but like in the opening 
quote, she does this in Jason’s voice, leaving aside her, plausible, but erroneous, claim that c 
could be the second derivative of b, and attributing the solution to Jason (“you” in l. 20), as if 
this is what his arguments had implied. And Jason agrees not only with the suggested solution, 
but, by using the first person, that this solution was what he was implicitly suggesting and 
grasping for, but, as his excitement indicates, couldn’t quite reach. 

This ability to speak as, it were, with Jason’s voice is in marked contrast to her activity prior 
to her silence, where she was (admirably) insistent on making sure her argument is heard, cutting 
off Andy to restate her argument, and emphatically responding to Jason’s arguments. Thus in the 
silence, she was able not only to arrive at a correct solution, but to transcend the agonism, and 
give voice to her interlocutor, helped the group reach the solution in union. 

Conclusion 
In this episode, Katherine’s nearly two minutes of silence seems to have played an important 

role in the group solution. In silence, she reached a solution to the problem; whereas the noisy 
business of Jason and Andy only reached a dead-end. Perhaps more importantly, though, after 
her silence, she had overcome the agonistic conflict, and offered a solution that gave voice to, 
and affirmed the contribution of her group mate. 

This leads to the following three questions: 
Are there other sources on silence I missed, or did not consider? 
How can we distinguish between good and bad silences? 
Does it make sense to research silence, and treat it as a positive aspect of mathematical 

activity? 

 
Appendix. Transcription Key 

 [ ]  Overlapping talk (transcript is in courier so overlap can be accurately transcribed) 
(0.5)  Length of silence measured to the tenths of a second  
(.)  Micro-pause 
.  Falling intonation 
?  Strong rising intonation 
; Slight, terminal rising intonation 
, Continuing intonation, slightly rising  
=  Contiguous utterances, no pause or gap 
 _  (Underline) emphasis  
(( ))  Transcriber’s description  
()  Speech which is unclear or in doubt in the transcript  
:  Prolongation of immediately prior sound 
⁰ Noticeably quieter talk 
> < Fast talk 
↑ Raised pitch 
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Domain, co-domain and causation: A study of Britney’s conception of function  
 

Authors 
Affiliation 

 
Abstract: Function has been shown to be an important, but difficult concept for students to master (Carlson, 
Oehrtman & Engelke, 2010; Dubinsky & Harel, 1992). Through a clinical interview with a preservice 
mathematics teacher, I characterize the ways in which her function definition is able to account for novel 
relationships between quantities. Utilizing APOS theory, I find that though she is able to exhibit a process 
view of function, the student struggles to reconcile her definition of function with her intuitions about 
domain/co-domain and causation. The research is part of a larger study examining the ways in which 
preservice teachers define function affect their ability to accommodate novel contexts and representations. 
 
Key words: [function, preservice teacher, domain, inverse] 
 

A student’s understanding of the concept of function is an integral part of undergraduate mathematics 
curriculum (Carlson, 1998; Carlson, Oehrtman & Engelke, 2010; Jones, 2006). As important as function is, it 
is also seems to be that students largely struggle with developing a robust understanding of function 
(Breidenbach, Dubinsky, Hall, & Nichols, 1992; Dubinsky & Harel, 1992; Dubinsky & Wilson, 2013; Even, 
1988; Sfard, 1987; Trigueros, Ursini, & Reyes, 1996). In an APOS perspective of student understanding of 
function, a student with a process view is able to interiorize their mental actions in such a way that the 
totality of their actions can take place entirely in the mind or be imagined as taking place (Dubinsky, 1991). 
In the analysis I will focus on how a preservice teacher’s process level identification of function and inverse 
was dependent on the domain/co-domain and context of the problem situation. 

This study focuses on a single senior undergraduate mathematics major, Britney, who was a part of a 
preservice teacher program at a large state school in southwestern Virginia. This study is part of a larger 
study on three preservice teachers’ understanding of function. The students engaged in a group card sorting 
activity introduced by Hillen & Malik, focusing on students’ categorization of functions (2013). The research 
team then conducted clinical interviews, emphasizing inquiry into students understanding of function, 
inverse, domain and co-domain. 

 
Britney’s initial task was to evaluate the relationships in Figures 1 & 2, to determine if the inverse graph was 
also a function. For both Figures 1 & 2, Britney uses a definition of function as a process where “you plug in 
one input and you get a output, a uni, a unique output.” Her statement indicates a point-wise comparison of 
the domain to the co-domain; generalizing the function action. This comparison of “input” to “output” is also 
used when Britney is determining whether an inverse is a function in a tabular representation. 
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A theme park has an admission cost of $7 per person. How could you determine the 
income from admission? 

Figure 3 
When evaluating Figure 3, Britney initially had trouble determining that the domain and co-

domain of the task were discrete, {1,2,3, …} and {7,14,21, …} respectively. Once aware of this, 
she no longer believes that a mapping between them is a function, saying “[i]t’s not a function in 
the first place because it’s just a set of dots.” Britney’s definition of function competes with her 
intuitions about discontinuous mappings. For her a function is a relation of a single input to a 
single output. As such, she has trouble arguing against the inclusion of the mapping as a 
function: “If you plug in something from the limited domain of natural numbers you’re going to 
get some output no matter what…. so uh, I guess it would be considered a function” She remains 
uncertain of whether the mapping is a function, but concedes that is. We later find that this is a 
limited, and possibly temporary, accommodation of her function concept, as she claims that the 
mapping of the domain to the co-domain in Figure 4 is not a function. 

 
Figure 4 

For both Figure 3 and Figure 4, Britney claims that the inverse mapping does not exist. 
“Common sense-wise, it’s not invertible. Logically it’s not invertible”. She claims that there is 
no reverse causal relationship between income and number of persons or number of vehicles, 
implying no mathematical relationship. Britney’s use of “input” and “output” in her function 
definition seems to imply for her a close connection between causation and function/mapping.   

In the study, Britney had interiorized the concept of function as a transformation of the 
elements of a set mapping to the elements of another set. This activity did not need to be made 
explicit, characterizing this student as having at least a process view of the function concept. 
Despite this, there were still two significant barriers to Britney’s ability to determine whether a 
mapping is a function and whether it has an inverse: discrete domains/co-domains and causation. 
Her inability to fully reconcile her definition of function with her strong intuitions against 
discrete domains/co-domains and for causation seemed to be evident in the other students of the 
larger study. The coordination of the students’ function definition and these intuitions is a topic 
for further research. 

 
References 

 
Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992). Development of the Process 

Conception of Function. Educational Studies in Mathematics , 247-285. 
 

18th Annual Conference on Research in Undergraduate Mathematics Education 87918th Annual Conference on Research in Undergraduate Mathematics Education 879



!

Carlson, M. (1998). A Cross-Sectional Investigation of the Development of the Function 
Concept. CBMS Issues in Mathematics Education , 114-144. 

 
Carlson, M., Oehrtman, M., & Engelke, N. (2010). The Precalculus Concept Assessment: A tool 

for assessing students' reasoning abilities and understandings. Cognition & Instruction , 
113-145. 

 
Dubinsky, E., & Harel, G. (1992). The nature of the process conception of function. In The 

Concept of Function: Aspects of Epistemology and Pedagogy (pp. 85-106). Mathematical 
Association of America. 

 
Dubinsky, E., & Wilson, R. (2013). High school students' understanding of the function concept. 

Journal of Mathematical Behavior , 83-101. 
 
Even, R. (1988). Pre-service teacher's conceptions of the relationship between functions and 

equations. Proceedings of the Twelfth International Conference for the Psychology of 
Mathematics Education, (pp. 304-311). Veszprem. 

 
Jones, M. (2006). Demystifying Functions: The Historical and Pedagogical Difficulties of the 

Concept of Function. 
 
Trigueros, M., Ursini, S., & Reyes, A. (1996). College students' conception of variable. In L. 

Puig, & A. Gutierrez (Ed.). 
 
Sfard, A. (1987). Two conceptions of mathematical notions: Operational and structural. 

Proceedings of the Eleventh International Conference for the Psychology of Mathematics 
Education, (pp. 162-169). Montreal. 

 
 

18th Annual Conference on Research in Undergraduate Mathematics Education 88018th Annual Conference on Research in Undergraduate Mathematics Education 880



Exploring practices and beliefs that shape the teaching of mathematical ways of 
thinking and doing at university 

Alon Pinto 
Weizmann Institute of Science, Israel 

This study examined two lessons taught in parallel in a real analysis course by two different 
teaching assistants. The lessons were based on a single lesson-plan but decisions the 
instructors made prior to and during class took the lessons in substantially different 
directions. In this paper we focus on one instructor and describe some of the ingenious ways 
by which he adapted the written curriculum and introduced mathematical practices and ways 
of thinking in his lesson. We apply Schoenfeld's resources, orientations and goals framework 
to highlight relationships between the instructors' beliefs and practices, and to propose 
explanations as to why this instructor implemented the written curriculum and addressed the 
mathematics the way he did. On the basis of this analysis we suggest a new perspective on 
the nature of the process by which university instructors make sense of the curriculum, derive 
and prioritize goals and form their lesson-images.  

Key words: Teacher Practice, Teacher Beliefs, Real Analysis, Curriculum Enactment 

Introduction 
The lessons students learn about mathematics extend far beyond the scope of definitions, 

procedures, theorems and proofs that are taught and discussed explicitly in classrooms. There 
is extensive literature (e.g. Ball, 1988; Schoenfeld, 1988, 1992; Yackel & Cobb, 1996) 
describing how students at K-12 pickup mathematical habits, practices, beliefs and norms 
through instruction regardless of what is explicitly taught, and how these mathematical ways 
of thinking and doing are often undesirable. This problem is even more apparent at 
university, where students are required to unlearn school mathematics and adopt mathematics 
as practiced by mathematicians. Studies of the secondary-tertiary transition have documented 
various ways by which students fail to make sense and acquire the practices, norms and 
language of the professional mathematics community (Dreyfus, 1999; Gueudet, 2008; Jones, 
2000; Lim & Selden, 2009). Nevertheless, these tacit ways of thinking and doing are only 
rarely discussed explicitly in classrooms, as teachers and instructors often consider them 
beyond the scope of their responsibility, if at all teachable (Selden & Selden, 2005).  

The study described in this paper is part of an ongoing research that explores the teaching 
and learning of mathematical ways of thinking and doing at the collegiate level. This study 
compared lessons of different instructors teaching the same explicit content, and explored 
how specific beliefs and practices shaped the mathematics addressed, explicitly or implicitly, 
in the lessons. In this paper we examine the teaching of one real-analysis instructor, a young 
graduate student, who adapted the written curriculum in his lessons in ingenious ways that 
often introduced new mathematical ways of thinking and doing. We examine the instructor's 
preparation for the first lesson of the semester, describe his practices as he made sense of the 
mathematics in the curriculum and formed a lesson image, and discuss how his beliefs shaped 
and guided this process and their consequent impact on the mathematics in the lesson.  

Literature Review and Theoretical Framework 
Studies that explored the connections between curriculum and student achievement at K-

12, have highlighted the central and crucial role of the teacher as the enactor of the 
curriculum (Remillard & Bryans, 2004), and the deep and profound transition that the 
curriculum often undergoes from his original written form to its intended form, the teacher's 
image of the lesson, and to the enacted form, the curriculum that is actually taught at the 
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classroom (Stein, Remillard, & Smith, 2007). While this work has not been extended yet to 
the university level, a preliminary study, partly reported in (Pinto, 2013), that compared 
lessons of different instructors enacting the same written curriculum, indicated that the 
picture at university might be quite different. The lectures that were examined in this study 
often represented quite faithfully the intended curriculum as inferred from discussions with 
the instructors and from their lecture notes. This finding highlighted the particularly 
important role that lesson images (Schoenfeld, 2000, p. 250) play at the university. This study 
examined and compared the practices and beliefs of different university mathematics 
instructors as they prepare for lectures and form their lesson images.  

After an extensive review of research literature, Speer, Smith and Horvath (2010) 
concluded that empirical research on the actual teaching practices at the university level is 
virtually nonexistent, and that very little is known about what university math instructors 
think and do on a daily basis as they perform their teaching work. In their review, Speer et al. 
called in particular for studies that compare the teaching practices of instructors teaching the 
same curriculum. Even after this call, empirical studies that compare the practices of different 
instructors are rare (e.g Nardi, Jaworski, & Hegedus, 2005; Speer, 2005; Viirman, 2014) and 
most of these studies were not conducted under controlled conditions. One notable exception 
is a study of different enactments of an innovative inquiry-orientated curriculum by two 
mathematicians (Wagner & Keene, 2014). This study distinguishes itself by comparing the 
teaching practices of different instructors enacting in parallel the same curriculum in the same 
course. Furthermore, whereas the studies reviewed above made some references to the 
mathematics addressed in the classrooms, their focus was on the teaching approaches and 
methods. This study investigates practices not only in light of how mathematics is taught, but 
also what mathematics is taught, and why. 

The analysis in this study is based on Schoenfeld's (2011) resources-orientations-goals 
(ROG) model of goal-oriented decision making. The ROG is an evolving theory that was 
developed as a tool for explaining how and why teachers make the decisions they make as 
they teach in terms of their knowledge and other resources, their orientations (e.g. beliefs, 
views and attitudes) and their goals - the conscious or unconscious aims the teachers are 
trying to achieve. According to the ROG model, orientations invoke goals and shape their 
prioritization, and activate and shape the prioritization of relevant resources in the service of 
these goals. Although relatively new, substantial empirical data has been subsumed under the 
ROG umbrella (e.g. Hannah et al., 2011; Paterson et al., 2011; Pinto, 2013; Thomas & Yoon, 
2013; Törner et al., 2010) and it has proven its usefulness in uncovering connections between 
particular beliefs and specific instructional practices, inside and outside of the classroom.  

Settings and Methods 
Data for this study were collected from the lessons of two teaching assistants (TAs) in a 

real analysis course at a major university in Israel. The students in the course were mostly 
first year mathematics and computer science undergraduates. This paper focuses on the first 
lesson of the semester of Amit, one of these TAs. Amit was at the time of the study a math 
graduate student with 4 years of experience as a TA in various courses, but only once in this 
specific course, 3 years earlier. The lesson-plan for the lessons was prepared by another TA. 
The TAs were generally expected to follow this plan, and the students were told they could 
attend any one of the TA-lessons since they were all "roughly the same". However, the TAs 
did not have to report on what they actually did in their lessons, and many considered the 
lesson-plan no more than a recommendation. Thus, it was not unusual for a TA to take 
liberties and make considerable adaptations to the lesson-plan. 

Data collection and analysis in this study were performed in an iterative manner. The 
author attended the TA-lessons throughout the semester as a non-participant observer, audio 
taped them and took notes. The first lessons of each TA were transcribed, compared and 
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contrasted with the lesson-plan to highlight ways in which each TA adapted the lesson-plan. 
These adaptations served as the focal points of discussions during clinical interviews with the 
TAs that aimed at eliciting the knowledge, beliefs and goals underlying the instructors' 
practices. The interviews were transcribed and analyzed according to Schoenfeld's ROG 
framework, and recurring themes were identified. Data from the lessons were analyzed again 
in search of connections between the TAs' beliefs and goals and the particular mathematical 
aspects of the lesson-plan addressed, both explicitly and implicitly, in the lessons. Due to 
limitations of space, we restrict the analysis in this paper to Amit's lesson. 

Analysis 
We start the analysis with three examples illustrating ways in which Amit introduced in his 
lessons mathematical ways of thinking and doing that were not specified in the lesson-plan. 
We then proceed to discuss how and why Amit adapted the lesson and addressed particular 
mathematical aspects the way he did.  
Case 1 – Making sense of a new concept 

The lesson-plan suggested several examples of applications of the definition of the 
derivative, the first of which was example (A):  

Find the derivative of ( ) 4 3f x x= −  at 0 3x =  (see figure 1 in the next page for details) 

 Amit decided to skip example (A) altogether. At the beginning of his lesson, after writing 
the definition of the derivative on the board, Amit said to the students: 

Before getting into examples, I would like us to gain some intuition … we are going to 
unpack this definition and make a drawing of it, to see what it really means.  

 Amit then initiated a teaching sequence that he designed, where he unpacked the 
definition in terms of epsilon and delta, and after a series of algebraic manipulations 

concluded that if  f '(p)=c  then for every 0ε >  there exists some neighborhood of p where 

( ) ( )( ) ( ) ( ( )( )f p c x p f x f p c x pε ε+ − − < < + + −  for every x. He then drew Drawing1 on 

the board and explained to the students:  
What we see here is that if f is differentiable at p then for any given epsilon f is bounded, 

in some neighborhood of p, from above and from below by two lines with slopes c ε+  and 
c ε−  crossing each other at the point (p,f(p)). 

Case 2 – Comparing and contrasting mathematical concepts  
After introducing the geometric interpretation of the derivative, Amit turned to discuss 

differentiability and continuity, inferring from Drawing1:  
We see that differentiability implies continuity. When I get closer to 0 (Amit's finger 

slides on the parabola towards the origin) the graph of the function gets closer and closer to 
f(0) … it must! I'm not giving here a full formal proof but I think that the fact that 
differentiability implies continuity is very clear from this drawing. 

At this point Amit made an in-the-moment decision to explore deeper the relationship 
between differentiability and continuity. He suggested to the students that the geometric 
interpretation they just learned can be used to gain intuition as to why differentiability is 
stronger the continuity. He drew Drawing2 and Drawing3 and argued orally in geometrical 
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terms, using both drawings as visual aids, that absolute value function is continues but not 
differentiable at 0. He concluded: 

Of course, this is not formal mathematics, but these drawings can help us understand how 
differentiability is stronger than continuity.  
Case 3 – Recognizing mathematical structures and patterns  

After the discussion on the absolute value function, Amit continued to example (B) of the 

lesson-plan (see figure 1): Define :f →! !  by ( )f x x x= ⋅ . Show that f is differentiable at 

every point and find all its derivatives.  
After writing the task on the board, Amit paused and then said to the students: 
When we saw that the absolute value is continuous but not differentiable, we actually saw 

that in some sense we can paste together two functions, each one very simple, even linear, 
and in particular differentiable, such that the new function is continuous but not 
differentiable […] I claim that if I am careful enough I can paste differentiable functions so 
that the new function is not only continuous but even differentiable. Let's see an example. 

Amit continued to explaining the notion of pasting functions together, which was new to 
the students, and not part of the course's syllabus. He then suggested that the solution he is 
about to present can be generalized to a whole class of pasted functions. 

 
Explaining Amit's decisions  

The three cases above demonstrate various mathematical ways of thinking and doing. In 
case 1, Amit made a conscious and deliberate decision prior to the lesson to model for his 
students how a mathematician makes sense of a new definition by playing with it, unpacking 

Example A: Let ( ) 4 3f x x= −  then we find '(3)f . 

3

4 3 3 4 3 3 4 3 3 4 12 4
lim

3 3 4 3 3 ( 3)( 4 3 3) 4 3 3x

x x x x

x x x x x x→

− − − − − + −
= ⋅ = =

− − − + − − + − +
 

The function 4 3x−  is continuous at every point, and the function y  is continuous at 

every 0y ≥  and therefore 4 3x− is continuous at every 3 / 4x ≥ and in particular at 3.  It 

follows (arithmetic of finite limits) that
3

4 4
'(3) lim

64 3 3x
f

x→
= =

− +
. 

Example B: define :f →! !  by ( )f x x x= ⋅ . We will show that f is differentiable at 

every point and find it derivatives. First, if 0 0x >  then ( )f x  agrees with the function 
2( )g x x=  in a neighborhood of 0x , and therefore 0 0 0'( ) '( ) 2f x g x x= =  (because for every 

x in the neighborhood of 0x we have 0 0

0 0

( ) ( ) ( ) ( )f x f x g x g x

x x x x

− −
=

− −
 and thus the limits are 

equal). Similarly, if 0 0x < , then then ( )f x  agrees with the function 2x−  in a 

neighborhood of 0x , and therefore 0 0'( ) 2f x x= − . Assume then that 0 0x = , then we need 

to find the limit  
0

0

0
0

( ) ( ) ( )
lim lim
x x x

f x f x f x

x x x→ →

−
=

−
 . Since

2

0 0 0

( )
lim lim lim 0
x x x

f x x
x

x x+ + +→ → →
= = = , and 

2

0 0 0

( )
lim lim lim 0
x x x

f x x
x

x x− + +→ → →

−
= = − =  it follows that 

0

( )
'(0) lim 0

x

f x
f

x→
= =  (since both one-

sided limits exists and are equal).  We conclude that '( ) 2f x x=  
 

 
Figure 1- Examples (A) and (B) as they appeared in the lesson-plan 
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it and drawings pictures. In case 2, Amit made an in-the-moment decision to interrupt his 
plan for the lesson and explore the relationship between two concepts by comparing and 
contrasting their geometric interpretations in a special case. In case 3, Amit recognized and 
highlighted a hidden pattern between two different topics in the lesson by introducing a 
notion from the mathematical horizon of the students, suggesting that a straight-forward 
solution can in fact serve as a first step in an exploration of an interesting phenomena towards 
a general theorem.  

In what follows we discuss the nature of the process through which Amit interpreted, 
evaluated and adapted topics in the lesson-plan, and suggest a model that explains his 
decisions in the three examples above as well as in other cases not discussed in this paper.   

Recurrent themes in the discussions with Amit on his decisions and practices indicated 
that Amit approached topics in the lesson-plan already having in mind a well-formed image 
of what his lesson would look like, a generic TA-lesson shaped by orientations that were not 
related to the specific lesson, content or students, but rather to math teaching and learning in 
more broad contexts, at the university, in TA-lessons and in calculus courses.  Thus, Amit 
adaptations can be explained in terms of attempting to fit topics to the particular features of 
this generic TA-lesson image.  

For example, Amit repeatedly expressed an orientation that TA-lessons should provide 
students with an experience that is different from the rigorous and coherent experience 
provided in the lectures; a direct interaction with the mathematical content that cannot be 
mediated through a notebook. Thus, when going over a topic in the lesson-plan, Amit sought 
mathematical ideas that call for intuitive reasoning that can serve as the basis for informal 
discussions about the content. This image of the TA-lessons was supported by Amit's 
understanding of his role and responsibilities as an instructor who, compared to his students, 
is an experienced mathematician. Amit repeatedly pointed out that he believes that as 
someone who has a broad perspective and deep understanding of the content, he should help 
students see beyond what is taught in lectures, to get a glimpse of mathematical horizons or 
depths, even if they cannot be fully explained to the students at this stage. Thus, Amit was 
drawn towards mathematical aspects of the content that the students are not likely to get a 
sense of just by reading the lecture notes and textbooks. Amit also repeatedly explained that 
as an experienced mathematician he feels obliged to provide his students with opportunities 
to see how he himself approaches new mathematical ideas, how he thinks and acts to make 
sense of them and gain intuition. This goal was also evident in his reflection on his practices 
of preparing for lessons: 

I try to pass on to the students the way I think. The way I do it is to take the task from the 
lesson-plan and try solving it on my own and then reflecting on what I did. I sometimes polish 
the answer a bit, but I try to maintain its authenticity. Students often see mathematics as a 
polished diamond and I try giving them something else, working knowledge.  

What emerges from Amit's reflection is that he relies on his own introspection as a main 
resource for while evaluating topics in the lesson-plan and forming and prioritizing goals:  

While preparing for the lesson I usually encounter something which makes me pause. […] 
I often end up taking this something to class, thinking that if I found it interesting or if it got 
me confused then it would probably do the same for the students.  

To summarize, Amit had in mind an image of a lesson in which the students undergo a 
profound mathematical experience, the teacher displays his practices and ways of thinking, 
and the mathematics is informal, intuitive and inspiring. While preparing for the lesson, Amit 
was reflecting on the way he himself approached the content, and looked for an added value 
that he could provide as an experienced mathematician - interesting subtle points he can 
highlight, or mathematical practices and ways of thinking he can model for his students.  
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We can now return to case (1) and explain Amit's decision to teach the geometric 
interpretation of the derivative instead of example (A) in terms of measuring both options 
against Amit’s generic TA-lesson image. In his interview, Amit reflected on this decision:  

I don't think students benefit much from seeing me just performing algebraic 
manipulations in front of them; it seems like a waste of time. […] If a student encounters 
some difficulty while doing the algebra he can just turn to the handed-out solutions and work 
it out on his own [...] Seeing me working out this example in class may provide some benefit 
for the students, but only little.  

The reason I opened the lesson with the geometric interpretation is that it is not standard. 
It is a good example of the things I’m drawn to. It is not just textual and it requires a great 
amount of explanation. It is not something a student would get just by reading the lecture 
notes. 

As it turns out, from Amit’s inner perspective, solving example (A) entailed nothing more 
than algebraic manipulations, which he found not particularly interesting or challenging. He 
did not sense mathematical practices or ways of thinking worth modeling, no mathematical 
depths or horizons to highlight, and no intuition to be gained by working out this example. In 
contrast, the geometric interpretation of the derivative fitted perfectly in Amit's image of a 
TA-lesson. It involved drawings and required a great amount of explanation; it was a 
perspective of the derivative that the students were not likely to find on their own; and it 
represented an authentic mathematical practice that he could model for the students, since he 
himself reached this interpretation in the course of make sense of the definition.  

We conclude this analysis by returning to case (3) and illustrating how generic TA-lesson 
images can highlight mathematical ways of thinking and doing that remained implicit in the 
lessons. The context in which Amit presents example (B) has little to do with the solution he 
ended up presenting to the students, which followed the solution outlined in the lesson-plan. 
Thus, the reasons for introducing this notion remained quite implicit. The question what led 
Amit to introduce this task in this particular way, highlighting content which is not part of the 
course's syllabus, becomes clearer when we consider this decision in terms of adapting the 
task to Amit's generic TA-lesson. This adaptation elevated the task from the level of a routine 
and straight forward application of the definition, to the level of investigating an interesting 
phenomenon – the differentiability of pasted functions. Instead of "just" doing algebraic 
manipulations on the board, Amit raised a conjecture, refuted it and refined it towards a 
general theorem, modelling the true work of a mathematician. This introduction also opened 
the door for an informal and intuitive discussion of a notion from the mathematical horizon of 
the students – pasting functions – which they were not likely to sense on their own. Pasting 
function is a very useful tool for generating counter examples, which is a practice which Amit 
wanted his students to learn. All this, even though it remained implicit in the lesson, made the 
topic compatible with Amit's generic TA-lesson image and thus worthwhile from his 
perspective.  

Summary 
We examined three lesson episodes illustrating different ways by which Amit adapted the 

lesson-plan and introduced new mathematical practices and ways of thinking. We discussed 
how Amit's decisions to highlight particular aspects of the content were based on orientations 
regarding mathematics learning and teaching in very broad contexts, beyond the scope of the 
specific lesson, the mathematical content or his actual students. We suggested modelling 
Amit's decisions as adapting the curriculum to a generic lesson image, making it easier to 
explain how and why certain orientations came to play and how they functioned together in 
the context of specific teaching practices and decisions. We also discussed how this model 
can help uncovering and highlighting mathematics that was left implicit in the lessons.  
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There is extensive research in K-12 levels showing that teacher beliefs have significant 
influence on teacher practice, curriculum enactment, and opportunities for learning. However, 
the impact of teacher beliefs on teaching and learning at the university level, particularly in 
the context of mathematical ways of thinking and doing, is not as well understood or 
documented, and can only be surmised. The study reported here is part of a long-term 
research project who seeks to explain how math teaching at the university shapes the 
mathematical ways of thinking and doing that students develop. Exploring the complex 
relationships between teacher beliefs and the mathematical ways of thinking and doing 
addressed explicitly and implicitly in the lessons is a first small step in that direction.  
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John’s lemma: How one student’s proof activity informed his understanding of inverse 
!

David!Plaxco!
Virginia!Tech!

Recent discussions in the field have explored proofs’ explanatory power. Such research, 
however, focuses on how a written proof might convey explanation. I present a conjecture that 
individual proof activity (the development of proofs) might, itself, have explanatory power. I then 
discuss one student’s (John’s) activity related to proving that the centralizer for a fixed element 
in a group (the set of elements that commute with the given element) is a subgroup and how this 
activity informed his understanding of inverse. During an individual interview, John developed a 
lemma claiming that the left- and right- inverses of an element are the same element, his proof of 
which contradicted his previous ways of thinking about inverse. I analyzed John’s proof activity 
using Aberdein’s (2006) extension of Toulmin’s (1979) model for argumentation in order to 
better organize his activity, providing an example of how proof activity might itself be 
explanatory.  

Key words: Proof, Abstract Algebra, Inverse, Toulmin model 

Educational researchers have clearly established the importance of exploring and discussing 
students’ engagement in and understanding of mathematical proof (Hanna, 2000; Weber, 2010). 
Indeed, according to Harel and Sowder (2007), “No one questions the importance of proof in 
mathematics, and in school mathematics” (p. 806). This presentation contributes to this body of 
work by investigating successful proof activity adopted by one student. The data used in this 
article are drawn from a larger study of undergraduate students’ proof activity and understanding 
in an abstract algebra context. This research focuses on modeling students’ proof activity and 
conceptual understanding of inverse and identity, investigating relationships between the two. I 
chose the case presented here to give insight into how proof activity might inform understanding 
of the concepts used in the proof. This research outlines how one student’s (John’s) proof 
activity fostered meaningful change in his understanding of inverse in a group theory context. 

Literature 
Bell (1976) contends that mathematical proof should provide a sense of “illumination, in that 

a good proof is expected to convey an insight into why the proposition is true” (p. 24). Similarly, 
Almeida (2000) and de Villiers (1999) each claim that proofs should explain. These descriptions 
suggest that these researchers regard proofs as being inherently explanatory. This notion aligns 
with several other researchers (Hanna 1990; Mancosu, 2001; Steiner, 1978). Weber (2010) 
discussed a perspective regarding the notion of an explanatory proof that situates a proof’s 
explanatory power relative to the proof reader. In his discussion, Weber describes “a proof that 
explains as a proof that enables the reader of the proof … to translate the formal argument that he 
or she is reading to a less formal argument in a separate semantic representation system” (2010, 
p. 34). This perspective is most clear in his critique of Steiner’s discussion of mathematical 
proof, when he says, “Steiner treats an explanatory proof as a property inherent in the text of the 
proof rather than an interaction between the proof and its reader” (p. 34). Weber uses this point 
to draw distinctions between two representational systems that are used in the proof process: 
formal and informal. Formal representational systems are the signs, notation, and operations that 
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one carries out in abstract thought, whereas informal representational systems largely rely on 
specific instantiations of concepts used as exemplars.  

Considering this discussion, I see value in Weber’s (2010) assertion that a proof conveys 
explanation only to the degree to which an individual is able to glean explanation from a written 
proof. The focus in the literature, however, is on individuals’ understanding of the mathematical 
arguments in others’ written proofs. This discussion neglects the individual’s process of proving 
(developing proofs) which could provide an alternative perspective into proofs’ explanatory 
power. The current investigation seeks to gain insight into the explanatory power of the proofs 
that one constructs, rather than the proofs that one might read.  

Abstract Algebra curricula provide rich opportunities to explore students’ proof activity due 
to their emphasis on student-generated proof. Early concepts, such as identity and inverse remain 
pervasive throughout the curriculum as more advanced concepts are defined using inverse and 
identity. Researchers have suggested that students’ understanding of inverse in Abstract Algebra 
often build on their notions of multiplicative and additive inverse (Brown, et al., 1997; Hazzan, 
1999) Novotna & Hoch, 1998) and in the context of symmetry groups (Almeida, 1999; Larsen, 
2009, 2013). Larsen (2009, 2013) builds students’ understanding in his Inquiry-Oriented 
Abstract Algebra curriculum (TAAFU) through students’ experiences with symmetries of a 
triangle. Using both additive and multiplicative notation to relate the symmetries of the triangle, 
the students develop the group axioms from their exploration of triangular symmetries. Larsen 
(2009) describes the inverse and identity axioms as the most difficult “rules” for students to 
generate. By having students engage in the development of the group axioms via their work in 
S3, Larsen provides a unique insight into students’ generalizations from a specific case. 
Undoubtedly, students’ experiences with inverses in other areas of mathematics inform their 
conceptions of inverse and identity in novel Abstract Algebra situations. It is interesting, then, 
that the inverse axiom is one of the two most difficult axioms for the students to develop from 
the Cayley table in Larsen’s research. What aspects, then, of conceptual understanding of inverse 
would explain this difficulty? This question highlights a need to investigate students’ developing 
notions of inverse and identity, specifically as they relate to the TAAFU curriculum. In this 
presentation, I focus on John’s understanding of inverse.  

In order to explore John’s activity proving about inverse, I will use Toulmin’s (1979) model 
of argumentation. Several researchers have adopted Toulmin models to document proof 
(Fukawa-Connelly, 2013; Pedemonte, 2007; Weber, Maher, Powell, Lee, 2008). This analytical 
tool organizes arguments based on the general structure of claim, warrant, and backing. In this 
structure, the claim is the general statement about which the individual argues. Data is a general 
rule or principle that supports the claim and a warrant justifies the use of the data to support the 
claim. More complicated arguments may use backing, which supports the warrant; rebuttal, 
which accounts for exceptions to the claim; and qualifier, which states the resulting force of the 
argument (Aberdein, 2006). This structure is typically organized into a diagram similar to a 
directed graph, with each part of the argument constituting a node and directed edges emanating 
from the node to the part of the argument that it supports (Figure 1). 

 
Figure 1: Visual representation of (a) Toulmin model, (b) Linked Toulmin model, and 

(c) Embedded Toulmin model (Aberdein, 2006, p. 211, 214) 
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Aberdein (2006) provides a discussion of how Toulmin models might be used to organize 
proofs, including several examples relating the logical structure of an argument to a Toulmin 
model. Aberdein includes a set of principles he to coordinate more complicated mathematical 
arguments in a process he calls combining layouts: “(1) treat data and claim as the nodes in a 
graph or network, (2) allow nodes to contain multiple propositions, (3) any node may function as 
the data or claim of a new layout, (4) the whole network may be treated as data in a new layout” 
(p. 213). Figure 1 shows two proposed combined layouts, Linked (Figure 1, b) and Embedded 
(Figure 1, c), that I are used in the current research. These combined layouts provide for multiple 
Data (Linked) and Data (Embedded) that are, themselves, claims in another argument.  

 
Theoretical Perspective 

As stated, this presentation makes use of data from a larger research project. The broader 
framing of this work draws on Cobb and Yackel’s (1996) interpretive framework for the 
Emergent Perspective, focusing on connections between sociomathematical norms (for proof) in 
the classroom community and individuals’ mathematical conceptions and activity, connections 
between classroom mathematical practices and individuals’ mathematical conceptions and 
activity, and relationships between individual mathematical conceptions and activity. This 
presentation focuses on relationships of the latter type, specifically, exploring proof activity that 
fosters change in conceptual understanding. Accordingly, the goal of this research is modeling 
John’s proving activity in an Abstract Algebra setting and identifying ways in which this activity 
informs his understanding of inverse in group theory. It should be noted, however, that John’s 
proving activity took place in an interview setting, which constitutes a community of practice 
distinct from, although informed by, the practices in the Abstract Algebra classroom of which 
John was a member. This view is consistent with Cobb and Yackel’s (1996) contention that,  

“…it is important to view the students' activity as being socially situated even in 
settings such as interviews, which are typically associated with psychological 
paradigms. The psychological analysis would then be conducted against the 
background of a social analysis that documents the interactively constituted 
situation in which the student is acting.” (p. 185) 

The Emergent Perspective thus helps frame the current research as focused on an individual’s 
mathematical understanding and activity situated in an interview setting. 

 
Data Collection and Methods 

Data were collected in a Junior-level Inquiry-Oriented Modern Algebra course (Introductory 
Abstract Algebra). The course met twice a week, for 75 minutes per meeting, over fifteen weeks. 
The course instructor was an assistant professor in a mathematics department and taught using 
the Teaching Abstract Algebra for Understanding curriculum (TAAFU; Larsen, 2013). I 
conducted three (beginning, middle, and end of the semester, respectively), semi-structured 
individual interviews (forty-five to ninety minutes each) with seven participants. Each interview 
began by prompting the student to both generally and formally define identity and inverse. The 
interview protocol then sought to engage each participant in specific mathematical activity aimed 
to elicit engagement in proof or proof related activity. Throughout the interviews I kept field 
notes documenting participants’ responses to each interview task. I also audio and video 
recorded each of the interviews.  

The data explored here come from John’s second (midsemester) interview. Specifically, I 
focused on John’s response to Question 7 of the protocol (Figure 2). This Question asked the 
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participants to prove or disprove whether a defined subset H of a group G was subgroup of G. 
During the interview, it became clear that John was thinking about inverse in a specific way and 
that this way of thinking changed for John. I iteratively analyzed John’s response to question 7, 
attending to his argumentation related to the proof as well as his use of, notation of, and 
statements about inverse. In the first iteration of analysis I selectively transcribed sections of 
John’s proof that developed his argument about whether H was a subgroup of G. These 
transcriptions were then used to generate a broad Toulmin model of his proof, outlining the 
major claim, data, and warrants used in his argument. A second iteration focused on each of the 
data in the larger argument, parsing out selected sub-arguments related to inverse that were used 
to validate each of the data in the larger argument. Two such sub-arguments emerged as focal 
points in the proof. The overarching Toulmin model was then modified to include these sub-
arguments. Throughout the second iteration, specific aspects of how John thought about and used 
inverse emerged as important aspects of these sub-arguments. This prompted a subsequent 
iteration of analysis in which I characterized the various ways he talked about, used, and 
represented inverse throughout these parts of the proof. Finally, I coordinated one part of the 
Toulmin model with his ways of thinking about inverses, situating this coordination within the 
interaction between John and the interviewer. 

“Prove or disprove the following: for a group G under operation * and a fixed 
element h ∈G, the set H = {g ∈ G : g*h*g-1 = h} is a subgroup of G.” 

Figure 2: Interview 2, Question 7 asks participants to prove about the normalizer of h 
 

Results 
In this section, I first briefly detail aspects of John’s conceptual understanding that inform an 

analysis of his proving activity. I then provide a general Toulmin model of John’s proof to 
situate two specific parts of the broader proof: the first to highlight aspects of John’s proof 
activity and understanding of inverse and also to provide an example of how Aberdein’s (2006) 
extension of Toulmin models might be used to organize students’ proof activity, the second to 
demonstrate how John’s proof activity informed his understanding of inverse. I support each 
episode with excerpts of John’s interview and a Toulmin model in order to convey a clearer 
understanding of John’s thinking and proof activity throughout the proof. Finally, I will discuss 
the results and implications of this work for future research. 

Throughout the interview, John worked with specific instantiations of groups as well as more 
abstracted representations of groups and their elements. For instance, John was very comfortable 
working with real numbers under addition and the group of symmetries of a triangle, evidenced 
by his frequent use of these groups when describing examples of concepts. John also referred to, 
proved about, or alluded to multiplication of real numbers, addition of real numbers, addition and 
multiplication of matrices, integers under addition, and the symmetries of a square. John defined 
identity and inverse using abstract, more general notation and completed two proofs using 
abstract notion. John described and used several specific ways of thinking about inverses. These 
included the cancellation law, self-inverses (elements of order 2 and the identity), the inverse of 
two elements when operated together ((ab)-1 = b-1a-1), that an inverse’s inverse is the original 
element ((a-1)-1 = a), and that the identity is its own inverse. Early in the interview, when asked 
more generally about inverses, John alluded to situations in which a left-inverse and right-inverse 
might not be the same element. In written instances when an element was concatenated with or 
operated with its inverse, John either replaced the two elements with a representation of the 
identity or rewrote the entire statement and omitted the two elements. 
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John’s approach to the proof in Question 7 began with a declaration that he would attempt to 
prove that H is a subgroup of G (Claim; C). He stated that it is typically easier to try to prove that 
something is a group and discover that it is not, rather than trying to prove that something is not a 
group. He had described his general approach for proving that a subset is a subgroup by 
determining that it satisfied each of the group axioms: H contains an identity (Data 1; D1), H 
contains the inverse of each element in H (Data 2; D2), H satisfies closure under the operation 
(Data 3; D3), and H satisfies associativity (Data 4; D4). From his discussion, the general Linked 
Toulmin model follows the format in Figure 3. John provided warrant for the broad proof by 
acknowledging that H satisfied the four group axioms (Warrant; W).  

 
Figure 3: Linked Toulmin model for John’s entire proof of Question 7 

First, I focus on John’s work related to D1 in order to provide a better sense of how John 
proves with abstract representations of group elements. In order to verify that the set H contained 
an identity, John began his 45-second argument by “pretending” that the element g is the identity 
element. He then quickly said, “Then it really works. I know the identity exists.” This is John’s 
first statement of the claim that the identity element (of G) is an element of H (“the identity is in 
there (pointing at the letter H)”.  He then wrote the line “Let g, h ∈ G, um, and let g be the 
identity of G” followed by the equation “g*h*g-1 = h.” On the next line, John rewrote the 
equation, substituting the letter e for g and g-1 and crossing through each e that he had written. As 
he wrote this, John stated, “and since the inverse of the identity is the identity and this (points to 
paper) is the identity, you get h equals h. Definition of identity. So we know the identity exists in 
the set.” This sequence of statements is diagrammed in the Toulmin model in Figure 4.  

 
Figure 4: Embedded Toulmin model for D1, showing an identity exists in H 

Notice that John’s proof begins with two assumptions, that g and h are elements of G and that 
g is the identity element of G. Following this, John assumes that g satisfies the relationship 
necessary for inclusion in H. He then conveys a chain of reasoning that results in the reflexive 
equation h = h. While each step in the sequence follows from the previous step and cites reason 
for the new statement, John fails to recognize that he has begun his line of reasoning with the 
statement he intends to prove, rather than beginning with the reflexive relation h = h and 
deducing that the relation g*h*g-1 = h holds. While this can be viewed as a problematic aspect of 
John’s proof, consider the insight into John’s ways of thinking about inverse that this excerpt 
provides. First, notice that John identified the inverse of the identity as the identity. Given the 
quickness with which he used this fact in the interview, one may infer that John is comfortable 
with thinking about inverse in this way. Notice also that John quickly rewrote the equation e*h*e 
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= h as h = h. This implies that John readily thinks of a composition of an element and the identity 
as merely just the element, while still citing the definition of the identity in his reasoning. 

Next, consider John’s development of a lemma used in developing D2. While beginning his 
argument for D2, John manipulated various elements in S3 and seemed to come to a consensus 
that inverse elements were contained in H, saying, “Oh! I can do something with this.” He then 
stopped and said, “Oh! That was assum- I can’t do that, because that’s assuming that left and 
right inverses are the same. I don’t know.” This prompted a discussion in which John described 
how he thought about g-1 as a left inverse and stated that he didn’t know how to use g-1 if it’s not 
on the left. The interviewer then asked John what would happen if left inverses were the same as 
right inverses. John replied, “Is that always true? That could be a thing that’s always true.” At 
this point in the interview, John left for a class, and returned later in the day to finish the proof. 
Upon his return, John announced that he had proved that left and right inverses were indeed the 
same element. Asked to explain his proof, John wrote out two equations, a*b = e and b*c = e, 
concurrently stating that a is the left inverse of b and c is the right inverse of b. He then 
concatenated a*b*c and grouped the concatenation as a*(b*c) and (a*b)*c. From this, John 
wrote two lines: a = a*(b*c) and (a*b)*c = c followed by the line (a*b)*c = a*(b*c), stating that 
this was true because groups are associative. Figure 5 provides a Toulmin model of this proof. 

 
Figure 5: Toulmin model of John’s Lemma 

Discussion 
John’s lemma development was roused by his activity with examples in S3 and his inability 

to progress in showing that the set H contained inverses of its elements. As he pointed out, he 
had assumed that left- and right- inverses were the same element, which he had previously stated 
to not always be the case. Prompted by the interviewer, John questioned whether this aspect of 
his understanding of inverse was valid and, following his proof of the lemma, declared that his 
new way of thinking about left- and right- inverses was valid. It is important to question whether 
John would have developed this lemma without prompting from the interviewer. This aspect of 
the situated interaction cannot be overlooked and must be accounted for. Similarly, the task 
setting itself prompted John to consider situations that he likely had not considered before (e.g., 
the definition of the centralizer of an element). Importantly, though, John attributed his changing 
notions of inverse to his validation of the lemma. This shows how the interview setting and 
John’s willingness to question his own ways of thinking combined to afford an opportunity for 
him to inform his own understanding of the very concept he was proving about. From this, future 
research may be carried out exploring and classifying the different types of proof activities and 
interactions that afford similar opportunities. This work has contributed to the broader research 
literature by providing an extension of Aberdein’s (2006) adaptation of the Toulmin model. To 
date, only one other research article (Wawro, 2011) has used Aberdein’s Toulmin models to 
analyze students’ arguments. The insight that these models lent in parsing out John’s proofs 
warrants additional research in using Aberdein’s adaptations. 
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Examining individual and collective level mathematical progress 
 

Chris Rasmussen Megan Wawro Michelle Zandieh 
San Diego State University Virginia Tech Arizona State University 

 
A challenge in mathematics education research is to coordinate different analyses to develop a 
more comprehensive account of teaching and learning. We contribute to these efforts by 
expanding the constructs in Cobb and Yackel’s (1996) interpretive framework that allow for 
coordinating social and individual perspectives. This expansion involves four different 
constructs: disciplinary practices, classroom mathematical practices, individual participation in 
mathematical activity, and mathematical conceptions that individuals bring to bear in their 
mathematical work. We illustrate these four constructs for making sense of students’ 
mathematical progress using data from an undergraduate mathematics course in linear algebra.  
 
Key words: Individual, Collective, Emergent Perspective, Linear Algebra 
 

Recent work in mathematics education research has sought to integrate different theoretical 
perspectives to develop a more comprehensive account of teaching and learning (Bikner-
Ahsbahs & Prediger, in press; Cobb, 2007; Hershkowitz, Tabach, Rasmussen, & Dreyfus, 2014; 
Prediger, Bikner-Ahsbahs, & Arzarello, 2008; Saxe et al., 2009). An early effort at integrating 
different theoretical perspectives is Cobb and Yackel’s (1996) emergent perspective and 
accompanying interpretive framework. In this paper we expand the interpretive framework for 
coordinating social and individual perspectives by offering a set of constructs to examine the 
mathematical progress of both the collective and the individual. We illustrate these constructs by 
conducting four parallel analyses and make initial steps toward coordinating across the analyses. 

The emergent perspective is a version of social constructivism that coordinates the individual 
cognitive perspective of constructivism (von Glasersfeld, 1995) and the sociocultural perspective 
based on symbolic interactionism (Blumer, 1969). A primary assumption from this point of view 
is that mathematical development is a process of active individual construction and a process of 
mathematical enculturation (Cobb & Yackel, 1996). The interpretive framework, shown in 
Figure 1, lays out the constructs in the emergent perspective. The significance of accounting for 
both individual and collective activity is highlighted by Saxe (2002), who points out that, 
“individual and collective activities are reciprocally related. Individual activities are constitutive 
of collective practices. At the same time, the joint activity of the collective gives shape and 
purpose to individuals’ goal-directed activities” (p. 276-277).  

Our prior work with the interpretative framework (e.g., Rasmussen, Zandieh, & Wawro, 
2009; Yackel & Rasmussen, 2002; Yackel, Rasmussen, & King, 2000) has raised our awareness 
of the opportunity (and need) to go beyond the constructs in the interpretative framework. In 
particular, we expand the ways we can analyze individual and collective mathematical progress. 
We use the phrase “mathematical progress” as an umbrella term that admits analyses of 
collective practices and individual conceptions and activity.  
 

Social Perspective Individual Perspective 
Classroom social norms Beliefs about own role, others’ roles, and the general 

nature of mathematical activity 
Sociomathematical norms Mathematical beliefs and values 

Classroom mathematical practices Mathematical conceptions and activity 
Figure 1. The interpretive framework 
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On the bottom left hand side of the interpretive framework (Figure 1), the construct of 
classroom mathematical practices is a way to conceptualize the collective mathematical progress 
of the local classroom community. In particular, such an analysis answers the question: What are 
the normative ways of reasoning that emerge in a particular classroom? Such normative ways of 
reasoning are said to be reflexively related to individual students’ mathematical conceptions and 
activity. In prior work that has used the interpretive framework, individual conceptions and 
activity has been treated as a single construct that frames the ways that individual students 
participate in classroom mathematical practices (e.g., Bowers, Cobb, & McClain, 1999; Cobb, 
1999; Stephan, Cobb, & Gravemeijer, 2003). Such a framing of the individual is, in our view, 
compatible with what Sfard (1998) refers to as the “participation metaphor” for learning.  

In an effort to be more inclusive of a cognitive framing that would posit particular ways that 
students think about an idea, we split the bottom right hand cell into two constructs, one for 
individual participation in mathematical activity and one for mathematical conceptions that 
individual students bring to bear in their mathematical work. With these two constructs for 
individual progress we now can ask the following two questions: How do individual students 
contribute to mathematical progress that occurs across small group and whole class settings? 
And what conceptions do individual students bring to bear in their mathematical work?  

Our prior work at the undergraduate level has also highlighted the fact that, in comparison to 
K-12 students, university mathematics and science majors are more intensely and explicitly 
participating in the discipline of mathematics. However, the notion of a classroom mathematical 
practice was never intended to capture the ways in which the emergent, normative ways of 
reasoning relate to various disciplinary practices (Stephan & Cobb, 2003). In order to more fully 
account for what often occurs at the undergraduate level, we therefore expand the interpretive 
framework to explicate how the classroom collective activity reflects and constitutes more 
general disciplinary practices. Thus we add an additional cell to the bottom left row of the 
interpretive framework, disciplinary practices. We can now answer two different questions about 
collective mathematical progress, one related to disciplinary practices (What is the mathematical 
progress of the classroom community in terms of the disciplinary practices of mathematics?) and 
one for classroom mathematical practices (What are the normative ways of reasoning that 
emerge in a particular classroom?).    

To summarize, Figure 2 shows our expansion of the bottom row of the interpretive 
framework, which now entails four different constructs: disciplinary practices, classroom 
mathematical practices, individual participation in mathematical activity, and mathematical 
conceptions.  

 
Social Perspective Individual Perspective 

Classroom social norms Beliefs about own role, others’ roles, and the general 
nature of mathematical activity 

Sociomathematical norms Mathematical beliefs and values 
Disciplinary practices Classroom 

mathematical practices 
Participation in 

mathematical activity 
Mathematical 
conceptions 

Figure 2. Expanded interpretive framework 
 

The left hand side of the bottom row comprises two different constructs for examining the 
mathematical progress of the classroom community, while the right hand side comprises two 
different constructs for examining the mathematical progress of individual students. The 
contribution that this expansion makes is in providing researchers with a more comprehensive 
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means of bringing together analyses from social and individual perspectives. In particular, the 
expanded interpretive framework enables a researcher to answer the questions listed in Figure 3. 

 
Disciplinary 

practices 
Classroom 

mathematical practices 
Participation in 

mathematical activity 
Mathematical 
conceptions 

What is the mathematical 
progress of the classroom 
community in terms of 
the disciplinary practices 
of mathematics? 

What are the normative 
ways of reasoning that 
emerge in a particular 
classroom? 

How do individual students 
contribute to mathematical 
progress that occurs across 
small group and whole class 
settings?  

What conceptions do 
individual students 
bring to bear in their 
mathematical work? 

Figure 3. Four constructs for analyzing mathematical progress and respective research questions 
 

Setting and Participants 
We illustrate the four constructs and address the respective research questions using data 

from a semester-long classroom teaching experiment (Cobb, 2000) in linear algebra conducted at 
a large public university. The teaching experiment was part of a larger design research project 
that explored ways of building on students’ current ways of reasoning to develop more formal 
and conventional ways of reasoning (Wawro, Rasmussen, Zandieh, & Larson, 2013). We 
selected data from this teaching experiment based on its potential to illustrate all four constructs.  

The majority of students in the class had completed at least two semesters of calculus, with 
some having completed Calculus III or a discrete mathematics course. Most students were in 
their second or third year of university and had chosen engineering, mathematics, or computer 
science as their major course of study. We collected data for analysis by videotaping each class 
session, collecting student written work, and conducting interviews with students throughout the 
semester. In addition to videorecording whole class discussions, three of the eight small groups 
were videorecorded; we present analysis here of one of the groups (henceforth referred to as the 
focus group) and its individual members. We chose to analyze data from this group because the 
members were particularly open to sharing their thinking and willing to challenge others’ ideas, 
which gave us access to their mathematical thinking without having to rely on interview data.  

 
Theoretical and Methodological Background  

Classroom mathematical practices.  Classroom mathematical practices refer to the normative 
ways of reasoning that emerge as learners solve problems, explain their thinking, represent their 
ideas, etc. By normative we mean that there is empirical evidence that an idea or way of 
reasoning functions as if it is a mathematical truth in the classroom. This means that particular 
ideas or ways of reasoning are functioning in classroom discourse as if everyone has similar 
understandings, even though individual differences in understanding may exist. The empirical 
evidence needed to document normative ways of reasoning is garnered using the approach 
developed by Rasmussen and Stephan (2008). This approach applies Toulmin’s (1958) 
argumentation scheme to document the mathematical progress using two well-developed criteria.  

Disciplinary practices. Disciplinary practices refer to the ways in which mathematicians 
typically go about their profession. The following disciplinary practices are among those core to 
the activity of professional mathematicians: defining, algorithmatizing, symbolizing, and 
theoremizing (Rasmussen, Zandieh, King, & Teppo, 2005). Not all classroom mathematical 
practices are easily or sensibly characterized in terms of a disciplinary practice. This is because 
classroom mathematical practices capture the emergent and potentially idiosyncratic collective 
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mathematical progress, whereas a disciplinary practice analysis seeks to analyze collective 
progress as reflecting and embodying core disciplinary practices. In this report we focus on 
theoremizing, which encompasses both conjecturing and justifying. Our method for documenting 
theoremizing builds on the work of Rasmussen, Zandieh, King, and Teppo (2005) and Zandieh 
and Rasmussen (2010), who analyzed the disciplinary practices of algorithmatizing, 
symbolizing, and defining.   

Mathematical conceptions. As students solve problems, explain their thinking, represent their 
ideas, and make sense of others’ ideas, they necessarily bring forth various conceptions of the 
ideas being discussed and potentially modify their conceptions. Our analysis of individual 
student conceptions makes use of analyses from prior work that have characterized different 
ways that students think about mathematical ideas (e.g., Harel, 1997; Hillel, 2000; Larson & 
Zandieh, 2013; Selinski, Rasmussen, Wawro, & Zandieh, 2014; Sierpinska, 2000; Stewart & 
Thomas, 2009; Trigueros & Possani, 2013; Wawro & Plaxco, 2013).  

Participation in mathematical activity. This analysis draws on recent work by Krummheuer 
(2007, 2011), who characterizes individual learning as participation within a mathematics 
classroom using the constructs of production design and recipient design. In production design, 
individual speakers take on various roles, which are dependent on the originality of the content 
and form of the utterance. The title of author is given when a speaker is responsible for both the 
content and formulation of an utterance. The title of relayer is assigned when a speaker is not 
responsible for the originality of either the content nor the formulation of an utterance. A ghostee 
takes part of the content of a previous utterance and attempts to express a new idea, and a 
spokesman is one who attempts to express the content of a previous utterance in his/her own 
words. Within the recipient design of learning-as-participation, Krummheuer (2011) defines four 
roles: conversation partner, co-hearer, over-hearer, and eavesdropper. A conversation partner is 
the listener to whom the speaker seems to allocate the subsequent talking turn. Listeners who are 
also directly addressed but do not seem to be treated as the next speaker are called co-hearers. 
Those who seem tolerated by the speaker but do not participate in the conversation are over-
hearers, and listeners deliberately excluded by the speaker from conversation are eavesdroppers.  

 
Selected Results 

The data we use come from three episodes on days 4-6 of the linear algebra class, beginning 
with the focus group work from day 4 followed by whole class discussions on days 5 and 6. In 
the full paper we provide more detail on the analyses with each of the four constructs of the 
expanded interpretive framework. Here we point to a few selected findings, followed by selected 
analyses that coordinate across constructs. Due to space constraints in this proposal we omit the 
transcript and simply refer to participant turns with a number.  

Selected parallel analyses. In the classroom mathematical practice analysis we identified two 
normative ways of reasoning that emerged on days 5 and 6. The first was that a set of vectors 
being linearly dependent means the same thing as being able to return to your original position. 
We show that this idea was normative because on an earlier class session this idea needed 
justification (i.e., data and warrants) but in a subsequent discussion the idea was beyond 
justification (that is, data and warrant dropped off, which is criterion one in our classroom 
mathematical practice methodology). The second idea that was normative was that having more 
vectors than dimensions implies the vectors are linearly dependent. Evidence that this was 
normative comes from criterion two, namely that on day 6 this claim needed to be justified and 
then on days 9 and 20 we see that this statement idea functions as data for new claims.  
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For the individual conception analysis, we framed student thinking in terms of ways of 
thinking about span and linear independence identified in Wawro and Plaxco (2013). These ways 
of reasoning included travel, geometric, vector algebraic, and matrix algebraic conceptions. By 
Episode 1 the students had already spent three days of class developing notions of span and 
linear independence and dependence in a way that cultivated different conceptions. As an 
example, consider Justin’s statements in (1-5). He argued that three vectors in R2 would be 
dependent “no matter what … they don’t have to be multiples.” The reference to multiples 
indicates a vector algebraic conception in that it refers to the operation of scalar multiplication as 
a way to compare vectors.  He went on to discuss what happens if two vectors are “not on the 
same line,” invoking a geometric conception. He then concluded with language indicating a 
travel conception, “we can always get to a point where we can get back on the third vector.”  
Other students in the focus group also exhibited travel and vector algebraic conceptions in 
Episode 1. 

Moving to the individual participation analysis, we highlight the small group work detailed in 
Episode 1. In this episode Justin was the author of both the claim and a justification for any three 
vectors in R2 being a linearly dependent set. In line 1 he initially stated his claim. Aziz, who was 
the one writing the group’s ideas on their white board that day, asked Justin for clarification (2). 
This statement positioned Aziz as a relayer of Justin’s idea in (1); furthermore, Justin was Aziz’s 
conversation partner for that statement, whereas the other members of the focus group were co-
hearers. For the first portion of (3), in which Justin clarified his claim by saying, “For dependent, 
as long as you have three vectors,” Aziz was his conversation partner. For the remainder of (3) 
and all of (5), though, when Justin clarified his claim from (1) and added justification for the 
claim (thus extending his role as an author), all other members of the focus group served as 
conversation partners.  

Lastly, our analysis of the discipline practice of theoremizing reveals the following aspects of 
students’ mathematical work: engaging in a mathematical setting, observing relationships, 
clarifying and refining stated relationships, arguing for (or against) claims, generalizing, and 
justifying generalizations. Taken as a whole, these various activities progress from work with 
particular examples in a particular setting to creating and justifying generalized statements and 
hence characterizes the mathematical progress of the classroom community in terms of the 
disciplinary practice of theoremizing. For example, to initiate theoremizing, students engaged in 
a problem situation in which they constructed examples or struggled to construct examples of 
sets of vectors with certain properties. As students began to realize under what conditions these 
examples are or are not possible, they made initial conjectures that eventually led to theorem-like 
statements and justifications for these statements. 

Selected coordinated analysis. To illustrate the coordination of analyses, we consider a 
portion of the transcript from Episode 3 and discuss how that same data was analyzed with each 
of the four constructs. In (38) the teacher drew attention to a generalization that had been 
developed as a conjecture during small group work the previous day. The creation of this 
generalization is an example of the disciplinary practice of theoremizing because the students 
were observing mathematical relationships and creating conjectures regarding those 
relationships. As the teacher asked students to unpack the meaning of this generalization, Justin 
(39) offered, “If you have more vectors than dimensions, you'll always be able to return to your 
original position”, and Nate (43) agreed. Within the classroom mathematical practice analysis, 
the first normative way of reasoning detailed was, “A set of vectors being linearly dependent 
means the same thing as being able to return to your original position.” When noticing the two 
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collective-level analyses in conjunction with each other, we see that as students engaged in the 
mathematical work of justifying a generalization (one aspect of what constitutes theoremizing), a 
previously established normative way of reasoning (that linear dependence means being able to 
get back to your original position) was employed in the service of that justifying activity.  From 
the individual mathematical conception construct, Justin’s rewording (39) of the generalization 
as “being able to return to your original position” was consistent with the travel conception of 
linear dependence because it captured notions of “getting to” or “moving to” locations in the 
vector space. Within the construct of individual participation, we saw that the teacher’s question 
in (38) positioned Justin to be a spokesman (39), and her request to have Nate comment (40) 
positioned him as a conversation partner.  

Conclusion 
In addition to using various combinations of the four constructs to more fully interpret 

students’ mathematical progress, there exist multiple ways in which coordination across the four 
constructs is possible. For instance, one could choose an individual student within the classroom 
community and trace his/her utterances for the ways in which they contributed to the emergence 
of various normative ways of reasoning and/or disciplinary practices. Alternatively, when 
considering a normative way of reasoning, a researcher could investigate who the various 
individual students are that are offering the claims, data, warrants, and backing in the Toulmin 
analysis used to document normative ways of reasoning. How do those contributions coordinate 
with those students’ production design roles within the individual participation construct? For 
instance, does a student ever utilize an utterance that a different student authored as data for a 
new claim that he is authoring, and in what ways may that capture or be distinct from other 
students’ individual mathematical conceptions? We also imagine ways to coordinate across the 
two individual constructs as well as across the two collective constructs. For example, how do 
patterns over time in how student participation in class sessions relate to growth in their 
mathematical conceptions? Are different participation patterns correlated with different 
mathematical growth trajectories? In what ways are particular classroom mathematical practices 
consistent (or even inconsistent) with various disciplinary practices? Finally, future research 
could take up more directly the role of the teacher in relation to the four constructs.  

We anticipate that future work will more carefully delineate methodological steps needed to 
carry out the various ways in which analyses using the different combinations of the four 
constructs can be coordinated. Indeed, we view this report as a first step in developing a more 
robust theoretical-methodological approach to analyzing individual and collective mathematical 
progress.  
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Analyzing Data from Student Learning 
 

Bernard P. Ricca 
St. John Fisher College 

 

Kris H. Green 
St. John Fisher College 

A full examination of learning or developing systems requires data analysis approaches 
beyond the commonplace pre-/post-testing. Drawing on graph theory, three particular 
approaches to the analysis of data – based on adjacency matrices, affiliation networks, and 
edit distances – can provide additional insight into data. Data analysis methods based on 
adjacency matrices demonstrate that learning is not unidimensional, and that learning 
progressions do not always progress monotonically toward desired understandings and also 
provide insight into the connection between instruction and student learning. The use of 
affiliation networks provides insight into how students’ prior knowledge relates to topics 
being studied. Careful use of edit distances indicates a likely overestimate of effect sizes in 
many studies, and also provides evidence that concepts are often created in an ad hoc 
manner. All of these have implications for curriculum and instruction, and indicate some 
directions for further inquiry. 
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Analyzing Data from Student Learning 
Learning often involves learning a process of categorization: students must learn to make 

choices about the method of integration to use, or what approach to proof will be attempted, 
and so on. Hence, a fuller understanding of learning requires methods to examine student 
categorization data. Furthermore, during learning, student classification schemes will likely 
change over time, and so the data involved in such classification schemes are longitudinal. 
Although some methods do already exist for studying classifications, such as card sort tasks 
(Diebel, Anderson, & Anderson, 2005), they are not up to the task of working with 
longitudinal data. Hence, the issue of what additional methods can be developed to look at 
learning, and what novel insight into situations of development those methods yield is an 
important one. This poster presents some novel data analysis methods, based in graph theory, 
and examines their usefulness in some areas of mathematics learning. 

Limitations of Existing Approaches 
Although pre-/post-test methods can be useful in identifying the existence of changes 

across an intervention, such methods do not yield much insight into the processes of that 
change. Longitudinal methods, collecting data at more than two times, can provide some 
insight (Koopmans, 2014), but many such methods yield information only about the rate of 
the changes and not always the processes.  The use of edit distances (Diebel, Anderson, & 
Anderson, 2005) can be helpful but neither the relationship of edit distance to learning nor the 
use of edit distances longitudinally has been previously pursued. These methodological 
deficiencies are particularly limiting when examining learning, where a detailed 
understanding of the learning process could provide useful feedback to an instructor. 

New Approaches to Data Collection and Analysis 
One approach to collecting data on learning is an extension of Vygotsky’s (1986) method 

of double stimulation, which Vygotsky used to examine concept development in adolescents. 
This method probes the development of a learner’s classification schemes in response to 
feedback, and while Vygotsky used qualitative approaches to analyze the data, it is possible 
to use more quantitative approaches, based in graph theory, to understand the process of 
learning. In particular, three longitudinal approaches – an examination of changes in edit 
distances, the use of affiliation networks (which include student-identified category names 
rather than pre-set categories; see Figure 1), and an examination of correctly and incorrectly 
grouped items – have been developed to provide new insight into learning (Author & Author, 
in press). 

 
Figure 1. Affiliation network of students’ groupings of 20 integration problems 
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Findings and Implications 
In the context of learning techniques of integration in a second semester Calculus course, 

these new methods provided three insights into learning and raised additional questions about 
educational research. First, while students overall progressed in their understanding, none of 
them monotonically improved the number of correctly grouped items while simultaneously 
reducing the number of incorrectly grouped items, instead seeming to focus on one or the 
other depending upon the feedback given to the students. (See Figure 2.) Second, the 
existence of prior concepts that are only a surface feature of the new idea can prove 
problematic to students, indicating that curriculum sometimes does not attend sufficiently to 
the limitations of concepts. Third, it appears that students, rather than deriving new 
understandings directly from existing understandings, instead coordinate components of 
previous understanding into new ideas on the fly, much as in locomotion hopping is a 
coordination of the same underlying muscle movements as walking, but is not derived from 
walking (Thelen & Smith, 1994). In addition to these insights, it appears that commonplace 
approaches to data collection and analysis may greatly underestimate the variability in the 
data, and hence overestimate both significance and effect size. 

 
Figure 2. Progression of one student’s groupings across five rounds 
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Digging in deep: From instrumental to logical understanding in calculus 
 
   Douglas Riley    Maria Stadnik 
  Birmingham-Southern College Birmingham-Southern College 

Calculus is a foundational sequence in mathematics and many client disciplines, such as 
physics and engineering.  For student success both in mathematics and in these client 
disciplines, the mathematical background provided must go beyond simple instrumental or 
procedural skills to a deeper level.  For success in higher-level mathematics, students must 
delve to the level of logical understanding, being able to articulate logical connections 
between two mathematical concepts.  In this study we analyze students’ abilities to explain 
the connection between the limit definitions of derivative and definite integral, and their 
common geometric interpretations involving slope and area.  We also determine whether a 
group exercise early in the term which reinforces the connection between the derivative and 
slope enhances students’ written responses concerning the connection on the final exam.      

Key words: Calculus, Writing, Classroom Research 

Skemp (1976; 1979) describes three categories of understanding that students can 
achieve.  The lowest level, “instrumental understanding” or rote memorization, is 
understanding the rules without comprehending the reasoning behind the rules (Skemp, 
1976).   Skemp points out that mathematics taught at the level of instrumental understanding 
is typically easier for a student to comprehend, offers immediate and obvious rewards to the 
student, and allows the student to obtain answers quickly and reliably.  Hiebert and Lefevre 
(1986)  have also used the term “procedural knowledge” for this type of understanding.  They 
describe this as the ability to apply rules, algorithms, or procedures to a formal mathematical 
language (Hiebert & Lefevre, 1986), typically in a linear manner. 

A second, deeper type of understanding Skemp coins “relational understanding” can be 
viewed as “knowing both what to do and why” (1976).  Skemp (1976) points out that 
relational understanding of a topic has the benefits of making the topic more adaptable to new 
tasks and easier to remember. Moreover, once students begin to learn at this deeper level, 
they may find personal satisfaction from obtaining relational knowledge and some may 
pursue further relational knowledge of other material (Skemp, 1976).  Hiebert and Lefevre 
(1986)  have used the term “conceptual knowledge” for this type of understanding, and they 
point out that students can possess procedural knowledge without truly understanding the 
underlying concepts, but that they must understand the meaning of the underlying ideas to 
obtain conceptual knowledge (Porter & Masingila, 2000).  This type of understanding is not 
linear but rather a web or network of knowledge with many kinds of relationships between 
the ideas. 

Skemp (1979) adds a third and still deeper type of understanding, “logical 
understanding.” This can be thought of as understanding a topic well enough to be able to 
explain it to others (Idris, 2009).  Students demonstrate logical understanding when they are 
able to supply a logical string of inferences as evidence of their understanding (Thomas, 
2002). In other words, students are able to communicate a concept by using information 
given to them along with an appropriate chain of ideas or axioms and arrive at a logical 
conclusion.  Students with logical understanding can prove mathematical statements and 
influence the understanding of their peers (Idris, 2009).  

Several researchers have proposed writing activities as one method to help students to 
develop deeper levels of understanding in mathematics courses.   These writing activities 
encourage students to develop their own ideas and add to or create meaning from the 
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concepts.  The National Council of Teachers of Mathematics (NCTM) has encouraged 
communication in school-level mathematics since the 1980s (McIntosh & Draper, 2001).  In 
2000, the NCTM released “Principles and Standards for School Mathematics”, which 
encouraged school teachers to include writing in mathematics courses in an effort to enhance 
their mathematical thinking (Stonewater, 2002) as well as their communication skills 
(McIntosh & Draper, 2001).   The Common Core States Standards initiative also includes 
standards related to constructing “viable arguments” and to justify conclusions and 
communicate them to others (Common Core, 2010).  Barmby, Harries, Higgins & Suggate, 
(2007) explains, “If we ask students to explain what they are doing in mathematical tasks, 
then we can try and infer the links that they have made between different mental 
representations.”  Pugalee (1997) adds, “Writing helps build thinking skills for mathematics 
students as they become accustomed to reflecting and synthesizing as parts of a normal 
sequence involved in communicating about mathematics.”  

This writing theme has also become popular in college calculus courses (Ferrini-Mundy 
& Graham, 1991) and several studies have been conducted concerning the effects of writing 
in the college classroom.  Qualitative research techniques such as teaching experiments, 
clinical interviews, and analysis of student errors have been used in areas such as arithmetic, 
algebra, geometry, and physics, but most research in calculus classrooms is of the large-scale, 
quantitative variety (Ferrini-Mundy & Graham, 1991).  The disadvantage of these large-scale 
studies is that they do not offer a glimpse into the student learning process.  Small-scale 
classroom research studies in calculus classrooms have been conducted with various 
interesting results (Stonewater, 2002; Idris, 2009; Porter & Masingila, 2000).   

This project continues this theme using writing as a vehicle to help students delve to a 
deeper level of mathematical understanding, and it also assesses that understanding.  We 
conducted a “classroom research” endeavor (Cross & Steadman, 1996) in entry-level 
Calculus courses at a small liberal arts college.   In particular we ask whether a writing 
project can enhance students’ logical understanding in calculus.  This mirrors a similar query 
by Porter and Masingila (2000), although they take a different approach to study that 
question.  

Description of the Project 
We implemented a classroom research study within the framework of a small, residential, 

liberal arts college.  All students at the institution who took and completed the introductory 
calculus course in the Spring of 2013 or Fall 2013 are included in the study, a total of 178 
students over eight classes (four each term).   The same two instructors (the authors) taught 
all eight sections, and they collaborated on homework, schedule, and tests.  The course 
content from Spring 2013 to Fall 2013 changed little, although the cohort was of course 
different.  The one significant course content change from Spring to Fall was changing the 
course project from a standard applied optimization project (which was designed to enhance 
relational understanding) to one involving a comparison of the standard definition of the 
derivative to a close cousin (which was designed to enhance logical understanding).  Our 
research question was to see whether this change in course content would enhance students’ 
ability to articulate the connection between the limit definition of the derivative and its 
geometric interpretation as the slope of the curve on the final exam. 

The definition project used in the Fall of 2013 occurred during the first third of the term 
and was a collaborative group project started in-class and finished outside of class.  The 
product was a group paper which, among other things, required each group of two to three 
students to explain how the limit definition produced slope for a smooth function.  The 
exercise was designed to be formative, with ample opportunity for peer discussion, small 
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group querying by the instructor, and time for students to investigate verbal explanations of 
these connections. 

The assessment of students’ logical understanding of the connection between the 
definition of the derivative and the slope of the curve occurred on the final exam in an essay 
format.  The specific statement of the essay question was given in advance for both the  
Spring and Fall terms.  Additionally, students were tasked with explaining the connection 
between the limit definition of the definite integral and its geometric connection to area, 
again in an essay format provided in advance.  The instructors for the course kept the 
presentation of the material concerning the limit definition of the definite integral and its 
connection to area as similar as possible from term to term.  The assignments from Spring to 
Fall terms on this topic remained unchanged.  The scores on these essays would be used to 
control for outside differences between cohorts between the Spring and Fall terms. 

After the completion of the Fall 2013 term, essays from the final exam from both Spring 
and Fall terms were copied, randomly numbered, and then mixed by section, instructor and 
term before being assessed. To each essay we applied a four-point scale rubric along four 
dimensions: the student’s discussion of slope (area), discussion of limits, use of a picture, and 
demonstration of technical writing.  Each author assigned scores along each dimension which 
essentially followed Skemp’s scale of understanding from none demonstrated to instrumental 
to relational to logical. Each author completed a full assessment and the scores were 
compared.  Of the 712 scores on slope essays (four dimensions times 178 essays), on fewer 
than twenty did the two authors disagree by two or more levels.  These few were reassessed 
and a consensus score was recorded.  There were 220 scores where the authors varied by one 
level.  In this case we essentially “rounded up” to the next level of understanding.  So, in 
particular, if one of the two authors determined an essay demonstrated understanding at the 
deepest level, then that essay was counted as demonstrating logical understanding. 

Results 
The authors hoped that the addition of the definition comparison written project in the 

Fall term would result in the demonstration of a deeper level of logical understanding among 
these calculus students.  Alas the results were not so clean.  In fact, one could argue that the 
addition of the project seems to have reduced the level of performance on this task on the 
final exam.  Along all dimensions the percentage of scores at the logical level of 
understanding decreased from Spring to Fall term. 
 

Spring 2013 Derivative Essay Data 
Level of Understanding Slope Limit Picture Writing 
None demonstrated 19% 37% 1% 10% 
Instrumental 14% 20% 37% 40% 
Relational 30% 23% 15% 40% 
Logical 38% 20% 47% 11% 
 

Fall 2013 Derivative Essay Data 
Level of Understanding Slope Limit Picture Writing 
None demonstrated 12% 31% 2% 7% 
Instrumental 29% 27% 29% 49% 
Relational 23% 31% 41% 34% 
Logical 36% 11% 28% 9% 
 

One possible explanation of the decrease in the scores is the differences in the groups of 
students.  In order to try and correct for these differences, a sample of the definite integral 
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essays (approximately one third of the essays) was scored using a similar rubric.  The results 
were mixed, but seem to indicate that the Spring cohort was weaker than the Fall. 
 

Spring 2013 Definite Integral Essay Data (Sample) 
Level of Understanding Area Limit Picture Writing 
None demonstrated 9% 41% 3% 9% 
Instrumental 41% 28% 44% 63% 
Relational 28% 22% 47% 19% 
Logical 22% 9% 6% 9% 
 

Fall 2013 Definite Integral Essay Data (Sample) 
Level of Understanding Area Limit Picture Writing 
None demonstrated 6% 18% 3% 9% 
Instrumental 29% 24% 35% 38% 
Relational 44% 35% 35% 35% 
Logical 21% 24% 26% 18% 
 

It may be worth noting that the understanding demonstrated along the limit dimension of 
the definite integral essays was significantly higher in the Fall than the Spring term.  

We are forced to conclude that the addition of the writing assignment early in the term did 
not enhance students’ ability to articulate the connection between the limit definition and 
geometric interpretation in any meaningful way on the final exams.  This confirms a similar 
conclusion drawn by Porter and Masingila (2000). 

Discussion 
Thomas (2002) and others argue that understanding at the relational level or deeper 

enhances long-term retention of ideas.  Ideally instructors of calculus can provide 
opportunities for their students to form these long-lasting connections.  After the completion 
of this project, the authors were left with a myriad of questions: 

1. Can one expect a group project given early in the term to influence scores on the 
final exam? 

2. Does the effect of giving the essay questions in advance (as was done both terms) 
and encouraging students to study together swamp any meaningful analysis of the 
data? 

3. Will the skills developed/encouraged by the project translate into higher 
performance on related tasks?  Is the increase in understanding along the limit 
dimension of the definite integral rubric evidence of this? 

 
Porter and Masingila (2000) suggest that writing tasks did not have a different effect than 

non-writing activities on students’ “procedural ability” and ultimately on their “conceptual 
understanding.”   Our results seem to affirm these findings, but more work must be done to 
verify that the instrument used to measure students’ logical understanding is a true measure.  
Yet the current results do suggest that a group writing project has little long-term effect on 
learning in the calculus classroom.  If validated, this would have implications for the type of 
effective assignments utilized in our calculus classrooms and potentially at other small liberal 
arts institutions.  
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The purpose of this study is to explore students’ activities while they construct existence proofs. 
We focus on three undergraduate students who completed a transition-to-proof course, and 
analyze their constructions of existence proofs. The results indicate that students’ activities for 
existence proofs were associated with their interpretations of a given statement, strategic 
knowledge for their proofs, and proving frames recruited. In addition, we discuss how the 
students’ conceptions of proof also play a role in their construction of existence proofs. 

Key words: Existence Proof, strategic knowledge for proof, proving frame, conception of 
proof, algebra of inequalities 

Introduction 
Existence proof comprises a very important portion of mathematics and it often makes 

mathematics distinct from other scientific inquiries. For instance, when asked to find a solution 
to a problem, one might immediately search for a solution without questioning about its 
existence. However, if the problem does not have a solution, is it meaningful to look for a 
solution?  Indeed, the existence of a solution needs to be considered prior to finding a solution. 
On the other hand, existence proof is often significant in mathematics even in the case that we 
cannot formulate explicitly a way to construct a solution to the problem. Proofs of the mean 
value theorem, the intermediate value theorem, and the minimum-maximum value theorem are 
such examples in calculus. Although student conceptions of proof and student difficulties with 
proof in general have been discussed (e.g., Moore, 1994; Harel & Sowder, 1998; Selden & 
Selden, 2008), there are little empirical studies about students’ construction of existence proofs 
(cf., Barkai et al., 2002; Epp, 2009). In this paper we address the following research question: 
How do students construct a proof for existence and what are the challenges or difficulties that 
they encounter to existence proofs? We present our findings collected by observation of three 
undergraduate students’ activities while they were proving the statement (*): There exists a 
real number a such that for all b with b>a, (3b+1)/(b+5)>2.  

Theoretical Framework and Background Literature 
Our theoretical perspective to explore students’ existence proofs is aligned with radical 

constructivism (von Glasersfeld, 1995). From this perspective, we assume that each student 
would have actively built up his or her own knowledge on existence proof which might differ 
from others. In particular, our analysis centers on the following three aspects of individual 
students’ knowledge associated with existence proofs: (1) Interpretations of the given statement; 
(2) strategic knowledge for proof; and (3) proving frames recruited.  

A student would prove or disprove a given statement based on his or her interpretation of 
a given statement about existence. However, students’ interpretations of a statement are often 
different from those of mathematicians (e.g., Dawkins & Roh, 2011; Dubinsky & Yiparaki, 
2000; Roh & Lee, 2011; Selden & Selden, 1995). In line with the standpoint, we consider a 
student’s interpretation of a given statement as a crucial aspect of the student’s construction of 
existence proofs. 

We also employ Weber’s (2001) notion of strategic knowledge for proof as knowledge 
chosen by a student in proving a statement. In the case of the statement (*), one might plug in 
specific values for a and b to check if b>a, then (3b+1)/(b+5)>2. Plugging in numbers this way 
is not a legitimate way to prove the statement (*), but can be considered as an initial step in 
proving it. We thus consider ‘plugging in numbers’ as the student’s strategic knowledge. 
Another strategic knowledge might be found when ‘working backwards’ from the inequality 
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(3b+1)/(b+5)>2. Such a process would produce a series of implications (e.g., (3b+1)/(b+5) 
>2º3b+1>2(b+5) º b>9). In fact, by working backwards, the student’s proof is not for the 
conditional ‘if b>a, then (3b+1)/(b+5)>2’ but for its converse, which is problematic. In 
addition, the first implication in the series is not valid unless b+5>0. Nonetheless a student 
might work backwards to prove the statement (*), in which case we identify ‘working 
backwards’ as the student’s strategic knowledge. Likewise, our notion of strategic knowledge 
includes not only mathematically precise definitions and theorems but also a student’s informal 
or heuristic knowledge of mathematical concepts. 

By a proving frame we refer to an outline or a structure of a proof (Zandieh, Roh, & Knapp, 
2014), similar to what Selden and Selden (2009) call the formal-rhetorical part of a proof. There 
would be at least three different proving frames that a student might recruit for his or her 
existence proof for a statement in the form of ( ( ))x p x� : (1) Constructive proving frame - 
construct or create a specific example for x and then verify such a chosen x satisfies p(x); (2) 
referential proving frame - refer to a previous theorem or property to imply the existence of x 
without constructing a specific x that satisfies p(x); and (3) proof by contradiction frame - 
assume it is not the case that there exists an x that satisfies p(x), and then generate a series of 
implications to derive a contradiction. Again, we accept students’ proving frames even if they 
may not be legitimate ways of structuring existence proofs.   

Research Methodology 
This study was conducted at a large public university in 2013. Three undergraduate students, 

who will be called Dawn, Susan, and Peter in this paper, participated in this study as a voluntary 
extra-curricular activity. All three students were majoring in mathematics, and had already 
completed calculus and a transition-to-proof course. During the semester when the students 
participated in the study, they were taking at least two upper division math courses among 
geometry, real analysis, and abstract algebra. Data for this study were collected from a half-
hour survey and 60-90 minute task-based exploratory interviews. The survey consisted of 
multiple choice and proof writing problems. The multiple choice problems were designed to 
examine students’ understanding of existential quantification. The statement (*) in the 
introduction section was given to the students as one of the proof writing problems. The main 
task of the follow-up interviews was then to ask the students the following three questions about 
their proofs for the statement (*): (1) What was your goal in proving the statement (*)? (2) 
What were the key mathematical ideas that you used in your proof? (3) How did you structure 
your proof? Students’ utterances were then compared with their written proofs and used in our 
analysis as evidence to support our conjecture on their interpretations of the statement (*), 
strategic knowledge, and proving frames. All interview sessions were video-taped and the 
students’ written work during the interviews were synchronized with their voice. 

Results and Analysis 
All students determined the statement (*) to be true, and constructed their proofs of the 

statement (*). However, their written proofs were to some extent different from each other. In 
addition, their reasoning behind their written proofs often included different invalid arguments. 
See Figures 1, 2, and 3 for Dawn’s, Peter’s, and Susan’s written proofs, respectively. 

 
Figure 1 Dawn's proof of the statement (*) 
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Figure 2 Peter's proof of the statement (*) 

Interpretations of the given statement  
When analyzing the students’ interpretations of the statement (*), one of our foci was on 

their understanding of the relationship between a and b. Dawn and Peter properly described a 
to be chosen independently from b. On the other hand, Susan considered a to be dependent on 
b. For instance, she interpreted ‘�a�R such that �b�R with b>a’ in the statement (*) as ‘�b�R, 
�a�R such that b>a’ (see Figure 3 Susan's proof of the statement (*)). In addition, she often read 
‘b>a’ not as ‘b is greater than a’ but as ‘a is less than b,’ which shows her thinking of a in 
terms of its dependence on b. Hence we found Susan’s case supports what Dubinsky and 
Yiparaki (2000) described as students’ tendency to interpret EA statements as AE statements.  

 

 

 
 

Figure 3 Susan's proof of the statement (*) 

Strategic knowledge for proof 
We examined the students’ strategic knowledge for proving the statement (*) by analyzing 

(1) how they knew of the existence of such an a; and (2) how they justified the existence of 
such an a. Regarding the question (1), Dawn plugged in numbers 1, 2, 3, 6, 7, 9, 10, and 11 for 
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b and checked that when b=9, 3b+1 = 2(b+5), and if b=10 or b=11, 3b+1 >2(b+5). Based on 
the values of b satisfying the inequality, she then concluded that a must exist. On the other 
hand, Susan and Peter worked backwards to determine the existence of a. They started from 
the inequality (3b+1)/(b+5) >2, implied 3b+1>2(b+5), and concluded that b>9 and hence a 
must exist. Concerning the question (2), the students recruited mainly their knowledge of 
algebra for justifications. However, we found that their algebraic knowledge for inequalities 
were often problematic. Dawn drew comparisons between numerators and denominators of 
(3b+1)/(b+5) and 28/14, and concluded that since 3b+1 >28 and b+5 > 14, (3b+1)/(b+5) > 
28/14. In fact, she believed it is always true that if x1>y1 and x2>y2, then x1/x2>y1/y2. Susan and 
Peter justified ‘if (3b+1)/(b+5)>2, then b>9’ which is in fact the converse of the conditional in 
the statement (*). In particular, they supposed (3b+1)/(b+5)>2 instead of verifying the 
inequality. Susan explained it because the inequality was given in the statement (*): “I picked 
the inequality (3b+1)/(b+5)>2 because that was the one that was given. […] Because it’s just 
given to us, so I’m saying ‘suppose.’ […] Because they give it to you, so we have no reason to 
believe that it’s not true, and then [I] continue to work on it from there.” Indeed, when saying 
“given” she referred to the statement (*) that we gave to her whereas the word “given” is often 
used in proof texts/courses to assume the premise or hypothesis of a conditional statement. 
Susan seemed to adopt such mathematical convention into her proof by supposing what she 
thought of as given. However, because of the incompatibility between her meaning of ‘given’ 
and its mathematical convention, she came to suppose improperly the inequality 
(3b+1)/(b+5)>2. In fact, Susan and Peter’s intention of working backwards was not to find 
under which condition the inequality (3b+1)/(b+5)>2 holds; but it was rather to find what 
(3b+1)/(b+5)>2 would entail. In addition, they multiplied b+5 to the both sides of the inequality 
(3b+1)/(b+5)>2 without justifying why b+5 is always positive. They rather treated the 
conditional statement ‘if (3b+1)/(b+5)>2, then (3b+1)>2(b+5)’ as if it must be true regardless 
of the value of b. 
Proving frames recruited 

We identified Dawn and Peter’s proving frame recruited for their proofs of the statement 
(*) as a constructive proving frame because they both stated ‘a = 9’ for their choice of a value 
for a (Figures 1 & 2). On the other hand, Susan was unsure if choosing an example for a (i.e. 
constructive proving frame) is a legitimate way to prove the statement (*). Pointing to the 
phrase ‘let a, b’ in the first sentence of her proof (Figure 3), Susan explained that she used the 
word ‘let’ to express her consideration of a and b as ‘random, ‘arbitrary’, or ‘all’ cases: “I’m 
just trying to show that it’s arbitrary. So we are choosing any two random a and b. I’m not 
saying okay if a=5 and b=7, then this holds true. […] It gives you an example, but it doesn’t 
prove that for all cases, it holds true. […] So ‘let’ is just my way of saying that it’s arbitrarily 
chosen.” Here, we identified Susan’s proving frame recruited as a generalization proving 
frame, by which we mean a proving frame recruited to prove p(x) holds true not for a particular 
x but for arbitrary x. In addition to a generalization proving frame, Susan also recruited a 
referential proving frame, i.e., she did not construct a specific example of a, but concluded the 
existence of a by referring to properties of real numbers. However, Susan neither explained 
exactly how her reference would work nor provided any warrant to her reference.  

Concluding Remarks 
Table 1 summarizes the main findings of this study in terms of the three aspects discussed 

in the theoretical framework, with some cells shaded in grey to highlight critical issues on the 
students’ existence proofs. These findings indicate that it is not easy to construct existence 
proofs properly even for the students who completed a transition-to-proof course.  

We also found that the three students had different conceptions of proof and these 
conceptions were related to the students’ activities for proving existence. Susan’s rejection of 
a constructive proving frame for existence proofs was based on her conception that a proof 
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should deal with all cases. Susan might have built up such a conception of proof from her 
experience with proving statements involving a universal quantifier (e.g., �x (p(x))). On the 
other hand, Peter believed that it is enough as an existence proof to demonstrate how to find a 
value for the existence. Since his proof described how he found a value for a in his proof, he 
did not see any more detailed justifications to be added to his proof. Contrasting to Peter, Dawn 
insisted that an existence proof does not need to explain how to find such a value for that value 
to exist. Dawn hence resisted to include her scratch work of plugging in numbers to her proof. 
An implication of these results is that our current instruction might not have enough emphasis 
on existence proofs and our students would need more guidance to understand what constitutes 
a valid proof for existence. 

Table 1 Summary of students’ proving activities in terms of the theoretical framework 
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This paper extends the theoretical framework for exploring student understanding of the 
concept of the derivative, which was developed by Zandieh (2000).  We expand upon the 
concept of a physical representation for the derivative by extending Zandieh's map of the 
territory to provide higher resolution in regions that are of interest to those operating in a 
physical context.  We also introduce the idea of "thick" derivatives, which are ratios of small 
but not infinitesimal changes, which are practically equivalent to the true derivative. 

Key words: derivative, theoretical framework, physical, experiment 

In this theoretical report we extend the theoretical framework for exploring student 
understanding of the concept of the derivative which was developed by Zandieh (2000).  We 
expand upon the concept of a “physical” representation for the derivative.  As with Zandieh's 
original framework, this work is not meant to explain how or why students learn as they do, 
nor to propose a learning trajectory.  Rather, this work extends Zandieh's “map of the 
territory,” to provide higher resolution in regions that are of interest to those working with 
derivatives in a physical context.  In addition to focusing on the physical context, we discuss 
challenges that have arisen in applying Zandieh's framework to an understanding of the 
derivative beyond the level of first-year calculus.  

This work is motivated by preliminary results of a project to study understanding of the 
derivative across STEM fields (Roundy, Weber, Sherer & Manogue 2014b).  In the process 
of interviewing physicists and engineers, we have identified shortcomings that arise when 
applying Zandieh's framework beyond the level of first-year calculus, and in particular 
outside the field of mathematics.  We have found that the concept image for the derivative of 
physicists and engineers contains substantial elements that are congruent with the three 
process-object layers identified by Zandieh, but lead to the introduction of new contexts and 
representations that could also be productive in the instruction of calculus. 

Physicists and engineers live and work in a world full of uncertainty, and are accustomed 
to use the language of equality where there is actually approximation.  This language reflects 
a somewhat “thicker” concept of the derivative than that held by mathematicians.  Where a 
mathematician would speak of the slope of the secant line as an approximation for the 
derivative, a physicist or engineer might say that the slope of a line drawn between two 
carefully chosen measurements of a physical observable is the derivative (with some 
unspecified uncertainty).  As we will explain, this “thickness” derives from the impossibility 
of achieving exact results in physical or numerical contexts.  Attempts to estimate a 
derivative over too small an interval, for example, could result in a highly erroneous estimate 
of a derivative due to numerical round-off error or limitations in experimental precision. 

Theoretical Background 

Concept Image 
In this work, we extend the theoretical framework of Zandieh (2000), which itself draws 

on the idea of concept image (Vinner, 1983).  Vinner (1983) describes the concept image as 
the set of properties associated with a concept together with mental pictures of the concept. 
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Thompson (2013) argues that the development of coherent meanings is at the heart of the 
mathematics that we want teachers to teach and what we want students to learn. He argued 
that meanings reside in the minds of the person producing them and the person interpreting 
them.  

Zandieh’s framework for the concept of the derivative 
Zandieh (2000) introduced a framework for the concept of the derivative, aimed at mapping 
student concept images at the level of first-year calculus.  This framework maps out the 
correct concepts as understood by the mathematical community, and thus does not 
incorporate incorrect understandings.  We reproduce in Fig. 1 below Zandieh’s outline of her 
framework. This table consists of columns corresponding to representations or contexts, and 
rows corresponding to process-object layers.  The process-object framework is taken from 
Sfard (1991), who conceives of mathematics as proceeding through processes acting on 
objects, with those processes then becoming reified into objects. 
  

Process-object 
layer 

Graphical Verbal Physical Symbolic Other 

Slope Rate Velocity Difference 
Quotient  

Ratio      
Limit      
Function      

Figure 1: Zandieh’s outline of the framework for the concept of the derivative.  

Representations 
Each of the representations in Zandieh’s table can be used to convey the concepts behind the 
three process-object layers. She also likens these columns to “contexts” in the sense that each 
of these provides a context within which we can think about the derivative. In the paragraphs 
below, we give a brief summary of each position in Fig. 1. 
 Graphical.  The graphical representation of the derivative is slope. At the ratio layer, 
this is the slope of a secant line between two points on the curve describing a function. When 
taking the limit, we arrive at the slope of the tangent line at a point. Finally, considering the 
derivative as a function requires us to recognize that the slope is different for different values 
of the independent variable. 
 Verbal.  The verbal representation for the derivative discussed by Zandieh is the “rate 
of change.”  At the ratio layer, this is expressed as an “average rate of change.”  When taking 
the limit, this becomes the “instantaneous rate of change.”  Understanding this verbal 
description as a function requires us to visualize the instantaneous rate of change for the 
inputs over the domain of the function.  
 Physical.  The physical representation, or paradigmatic physical representation is 
velocity: average velocity, instantaneous velocity, and the velocity as a function of time. 
These physical concepts provide a language that we can use to understand the derivative: a 
large derivative means “faster” and a varying derivative means there is acceleration going on.  
 Symbolic.  The symbolic representation of the derivative is the formal definition of 
the derivative in terms of the limit of a difference quotient. In this case, the distinction 
between the limit layer and the function layer can be subtle. They differ in the recognition 
that the variable describing the point at which the limit is taken can be treated as the 
argument of a function. Zandieh expresses this with a notational distinction between !! and 
!. 
 Other.  Finally, we point out that Zandieh explicitly placed in her framework space 
for additional contexts.  In particular, when discussing the physical context, she mentioned 
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that there is a wide set of physical contexts for understanding the derivative. In this paper, we 
will discuss some of the subtleties we have encountered in investigating understanding of the 
derivative within the context of a mechanical system (Sherer, Kustusch, Manogue & Roundy 
2013, Roundy et al. 2014b). 

Extensions to Zandieh’s framework  
Likwambe and Christiansen (2008) extend Zandieh’s framework in three ways. Firstly, 

they recognize the importance in a concept image that we be able to make connections 
between different representations, and extend the use of the table to include arrows indicating 
that a student has made a connection between two representations or ideas. Secondly, they 
add a “non-layer” row, which indicates a recognition or use of that representation of the 
derivative without indication of an understanding of any of the three process-objects layers. 
Finally, Likwambe and Christiansen (2008) added a separate category for what they refer to 
as instrumental understanding, a term taken from Skemp (1978). Instrumental understanding 
(as opposed to relational understanding refers to the knowledge of and ability to follow a 
procedure. Both Skemp (1978) and Lithner (2003) point out that instrumental understanding 
is commonly emphasized in both homework assignments and exams. Zandieh explicitly 
omits instrumental understanding from her framework, but Likwambe and Christiansen 
(2008) add an additional box for instrumental understanding, in order to include “the only 
learning exhibited by most of the interviewees.”  

Extending Zandieh’s Framework for the Derivative  
In our research on expert understanding of the derivative across disciplines, we have 

encountered several issues that led us to an extension of Zandieh’s framework for the 
derivative, with a particular focus on physical contexts. We propose a deeper understanding 
of the “physical” representation, and add an additional “numerical” representation, which fills 
out the Rule of Four: graphical, verbal, symbolic and numerical (Hughes-Hallett et al., 1998). 
In addition, we follow Likwambe and Christiansen (2008) in adding an instrumental 
understanding category that lives outside the three process-object layers. 

Figure 2 shows our framework for the concept of the derivative. This figure is modeled 
after Fig. 1, the framework of Zandieh, and is best understood in terms of the differences 
between these two frameworks. We have added one additional column labeled numerical 
(and removed the Other column to make space). We have added the instrumental 
understanding of Likwambe and Christiansen (2008) (which is to say, the rules of 
differentiation) as an entirely separate table, partially to reflect its weak connection to any 
other aspect of the concept of the derivative.  

Finally, we have added into each entry of the table (which Zandieh left blank) an iconic 
description of the concept meant by that entry. These entries are intended to aide in 
understanding the table by compactly describing the conception of the derivative indicated by 
that combination of row and column.  
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Process-
object layer 

Graphical Verbal Symbolic Numerical Physical 

Slope Rate of 
Change 

Difference 
Quotient 

Ratio of 
Changes Measurement 

Ratio 

 

“average rate 
of change” 

! ! + Δ! − ! !
Δ!  

1.00 − 0.84
1.5 − 1.0  

 

Limit 

 

“instantaneous 
…” 

lim
!→!

!!!⋯ 0.89 − 0.84
1.1 − 1.0  

 

Function 

 

“… at any 
point/time” !! ! = ⋯ 

! ! 
!"
!" 

0.0 0.00 0.96 
0.5 0.48 0.72 
1.0 0.84 0.32 
1.5 1.00 -.18 

 

tedious 
repetition 

      

 
  Symbolic   

Instrumental Understanding 

Function rules to “take a derivative” 
Figure 2: Our extended framework for the concept of the derivative.  
 

 

Changes in the framework  
In this section, we discuss individually the extensions we have made to Zandieh’s framework.  

 Physical.  We begin by noting that the physical examples given by Zandieh (2000) 
each involve a time derivative: velocity, acceleration, and the time rate of change of 
temperature. We suggest that although these quantities do reside in a physical context, 
perhaps at least some uses of these phrases properly belong in the realm of verbal 
representation. We propose here a more “physical” (as opposed to verbal) concept of the 
physical representation of the derivative.  

We define the physical representation for the derivative to be a process to measure that 
derivative (see, for instance Roundy, Kustusch, & Manogue, 2014a; Styer, 1999). Of course, 
the concept does not require us to actually perform a measurement, just to imagine one. 
However, we note that it is the process of measurement itself that is the physical 
representation. Actually obtaining a numerical measurement would (also) require the use of 
the numerical representation, and describing the measurement may involve a verbal or 
graphical representation (Roundy et al., 2014a; Styer, 1999), but the measurement process 
itself is the physical representation of the concept of the derivative.  

As an example, consider the derivative !"/!" of the volume of a piston full of air with 
respect to the pressure on the piston, as controlled by a set of weights on the piston 
(illustrated in Fig. 2).  At the ratio layer, one can say that you need to measure the volume 
twice, with two different pressures, and the derivative is the change in volume divided by the 
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change in pressure. The limit layer imposes on this process the idea that the two pressures 
need to be quite similar in order for this ratio to “be” the derivative in the thick sense used by 
physicists and engineers. However, it is not desirable to choose too small a value for Δ!, 
because this would result in an imprecise measurement, since the change in volume would be 
too small to be precisely measured, resulting in increased error in the value of the measured 
derivative. Finally, the function layer requires us to recognize that this ratio will depend on 
the pressure itself and that to fully explore the derivative, we must perform repeated 
experiments—or more likely a single experiment in which we gradually add weight to the 
piston and repeatedly measure its volume. 
The physical representation of a derivative can often (but not always) be felt or perceived 
directly, which leads scientists to give derivatives names such as compressibility, velocity, 
thermal conductivity, etc. Qualitatively, the derivative !"/!" describes the compressibility 
of the air: how easy it is to compress. We anticipate that as the piston is compressed at higher 
pressures, it will require more and more pressure to compress it further. Because the volume 
cannot be negative, we can conclude on physical grounds that the derivative must eventually 
approach zero as the pressure increases. .  

Numerical.  The numerical representation is the one member of the Rule of Four 
(Hughes-Hallett et al., 1998) that was not present in the framework of Zandieh (2000). We 
recognize a numerical representation of the derivative that is closely allied to but distinct 
from the physical representation. This representation parallels the formal symbolic concept of 
the derivative, but differs in ways that are of practical importance in the use of the derivative 
in the sciences and in numerical analysis. 

The numerical concept of the derivative begins with a ratio of change: 
 !! − !!

!! − !!
, 

 
where it is understood that the values in this equation are numerical values. When we take the 
limit numerically, we do not formally write lim!!→!⋯, and we do not apply a formal 
procedure.  Rather we select a value of Δ! that is small, where small is understood in terms of 
the desired precision.  As in the case of physical measurements, practically speaking it is 
possible to make the change Δ! too small, in this case due to truncation error in a computer 
or calculator. In this regard, when operating numerically we think of derivatives as having 
some “thickness,” in contrast to the formal definition which requires an infinitesimal limit. 
Finally, the derivative as function is understood as a sequence of numerical ratios of 
differences, just as a function can be understood numerically as an array of numbers or set of 
ordered pairs.  

Conclusions 
We have extended the framework of Zandieh (2000) in several ways: we have elaborated on 
the physical representation of the derivative; we have added a numerical representation of the 
derivative; and we have added space in the framework for the set of rules for finding 
symbolic derivatives.  Each of these changes reflects an expansion of the table to incorporate 
additional answers to the prompt, “find the derivative.” By making use of the numerical 
representation of the derivative, one can answer the prompt numerically. Similarly, if the 
derivative is situated in a physical context, one can respond with a measurement process. 
Both of these responses require a conceptual understanding of the derivative in terms of ratio, 
limit and function, and involve a certain “thickness” in the derivative. In contrast, as pointed 
out by Zandieh, the instrumental-understanding approach to “find the derivative” using the 
rules for symbolic derivatives does not require a conceptual understanding of the derivative.  
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The transition from AP to college calculus: Students’ perceptions of factors for success  
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!This%study%examines%similarities%and%differences%in%the%Advanced%Placement%and%college%calculus%experience%
from%the%student%perspective%to%characterize%how%taking%AP%Calculus%in%high%school%relates%to%student%success%
in%a%college%calculus%course.%Fourteen%first?semester%college%students%who%had%taken%the%AP%Calculus%exam%
were%interviewed%about%their%perceptions%of,%and%experiences%in%the%courses.%The%Academic%Performance%
Determinants%Model%(Credé%&%Kuncel,%2008)%was%used%to%develop%an%interview%protocol.%Qualitative%analysis%
of%the%interviews%revealed%four%categories%of%themes%about%the%students’%experience:%1)%Students’%study%
approaches%in%the%respective%classes,%2)%Students’%self?efficacy%and%metacognition,%3)%The%Class%format’s%effect%
on%student%success,%and%4)%Students’%beliefs%about%the%cognitive%demand%of%the%course.%All%the%themes,%their%
implications%for%those%teaching%in%AP%and%college%calculus,%and%the%need%for%further%research%are%presented.. 
 
Key words: Calculus, Student success, Advanced Placement 
 

Introduction 
It is estimated that over 300,000 students are entering college each year having taken some form of calculus 

in high school but not entering with credit for Calculus I (Bressoud, 2009). With so many students studying 
calculus for the second time in college, it is important to determine how the high school experience relates to 
their performance in the college course. This report will focus on the first part of a larger study that explored the 
differences in Advanced Placement (AP) and college calculus to better understand the potential impact that 
taking AP Calculus might have on students who repeat the course in college. This part of the study used semi-
structured interviews to examine the relationship between high school and college calculus from the student 
perspective. The following research questions were addressed: 1. What factors affect student success in calculus 
courses? 2. How do these factors differ in AP and college calculus?  

 
Review of Literature and Framework 

The College Board reported in 2008 that students who repeated Calculus I in college after taking AP 
Calculus in high school and not receiving credit on the AP exam actually underperformed in Calculus II, in 
comparison to students who had not taken AP Calculus (Keng & Dodd, 2008). This result, along with the 
growing number of students in this situation, requires examining how the AP Calculus experience may be 
affecting this large cohort of students that are retaking calculus I after taking AP Calculus. Bressoud asserts that 
“we need to know more about the preparation of the students who take calculus in college  
 and what they need in order to succeed once they get to our classes” (2009, p. 23).  

Klopfenstein and Thomas (2006) distinguish between college level and college preparatory courses, 
defining college level courses as those that teach the same material as college courses and college preparatory 
courses as those that develop skill sets students will need to be successful. These authors suggest that many AP 
courses are taught as college level courses when they should be college preparatory. The number of contact 
hours in most AP courses is often 2-3 times that of a typical college course, allowing for more discussion, 
practice, and exposure to specific types of problems under teachers’ supervision. While this gives students an 
advantage in learning to solve those particular problems, it may also decrease the cognitive demand of the course 
for students and/or decrease the amount of effort required by the student outside the classroom, in comparison to 
the college calculus experience (Hong 2009). Hourigan (2007) labels this loss of cognitive demand a 

18th Annual Conference on Research in Undergraduate Mathematics Education 92518th Annual Conference on Research in Undergraduate Mathematics Education 925



“reductionist orientation” and provides evidence that secondary school teachers are much 
more likely than college instructors to adopt this approach (p. 470).   

Students may develop poor study habits or not develop positive ones as a result of this 
experience.  Not surprisingly, study skills, attitudes, habits, and motivation are strongly 
correlated with success in college, but “exhibit near-zero relationships” to performance in 
high school (Credé & Kuncel, 2008, p. 442). The results of Anthony’s (2000) study clearly 
indicate a discrepancy in the amount of practice that is expected from instructors and the 
amount that students believe is necessary. “Insufficient work” was the number one reason 
instructors gave for failure, while this was ranked 18th by students.  55% of the students 
surveyed indicated they studied less than 4 hours per week for their mathematics course, 
which falls far short of the expectation set by most college mathematics departments.  This 
may be due in part to students’ high confidence levels.  In a study of first-semester college 
Calculus I students, Bressoud, Carlson, Mesa, and Rasmussen (2010) found that 95% of first-
year students in Calculus I enter the course confident they have the ability to succeed.  
However, the percentage of students that achieve this goal is far lower. 

 Credé & Kuncel (2008) assert that study skills, habits, attitudes, and motivation are 
essential factors in student success in college.  They propose a model of Academic 
Performance Determinants that shows that some performance factors affect others, and some 
are more closely related to success than others.  While this model is not specific to 
mathematics and cannot account for all factors of success in mathematics courses, it provides 
a lens for examining students’ experiences in calculus and interpreting the challenges they 
face.  This model was used to help create the interview protocol discussed below.   

 
       Figure 1.  Academic Performance Determinants Model from Credé & Kuncel (2008)   
 

Research Methodology 
The fourteen interview participants were college calculus students who were repeating 

Calculus I after taking AP Calculus in high school.  Participants were recruited with the help 
of instructors at six different universities in the southeastern United States.  Two of these 
were small private universities and four were large public universities.  Students were 
recruited anywhere 8-14 weeks into the 16 week fall 2012 semester.  To participate, a student 
must have taken the AP exam and also must have made a low C or worse on at least one of 
their recent in-class tests in their college course.  Some participants had passed the AP 
Calculus exam (earned a 3 or 4 out of 5, depending on their institution’s standards) and were 
choosing to repeat the course, while others had not received credit for AP Calculus.   
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Institution Type Student 
Participant 

Passed AP 
test? 

Passing 
Course? 

Large Public 1 Jeremy No Barely 
Large Public 1 Allen No Barely 
Large Public 1 Frank No No 
Large Public 1 Michael No No 
Small Private 1 Katelynn No Barely 
Small Private 1 Maggie No Barely 
Small Private 1 Isaac No Yes 
Large Public 2 Albert Yes Yes 
Small Private 2 Blake Yes Yes 
Large Public  3 Jeffrey Yes Yes 
Large Public 3 Wade No Yes 
Large Public 3 Erin Yes Yes 
Large Public 4 Samuel No No 
Large Public 4 Haley No Barely 

        Figure 2. Characteristics of Student Participants 
 
Interviews were conducted in two parts, with each part lasting approximately 45 minutes.  

They were conducted in the fall semester of 2012 between mid-October and early December 
and scheduled as soon as possible after the student agreed to participate.  Each interview was 
conducted face-to-face in an office or group study room on the participant’s campus. The 
results from the first part of the interviews are addressed in this report. The format of the first 
part of the interviews was semi-structured and conversational (Gall, Gall, & Borg, 2003). 
Detailed field notes were taken and the interviews were videotaped unless the student 
requested to be audiotaped instead.     

The interview protocol consisted of 17 open-ended questions.  The students were asked 
questions about both their AP and college calculus courses, including “What did your 
instructor expect from students?” “How do you define success in this course?” and “If you 
could start the semester over, would you do anything differently?”  The questions were 
influenced by the Academic Performance Determinants Model (Credé & Kuncel, 2008) 
which suggests that a student’s study skills, habits, and attitudes influence their acquisition of 
knowledge. 

The interviews were transcribed and then analyzed.  The first step of data analysis 
involved reading each transcript once.  During a second reading, open coding (Strauss & 
Corbin, 1998) was used to identify any experience potentially common to another participant.  
These codes were highlighted and noted in the transcripts and upon a third reading they were 
recorded.  Many of these codes were related in some way and the codes were listed in an 
order that showed connections, but at this point they were still written as distinct codes 
directly from the transcripts.  Axial coding was used to group the codes into themes (Strauss 
& Corbin, 1998).  For example, a theme emerged around the content focus of calculus 
courses.  Some students had discussed a shift from a concrete or procedural focus in high 
school to a conceptual or abstract focus in college.  Others described their experience in terms 
of “doing’ versus “understanding”.  Still other students highlighted the increased requirement 
of formal mathematical language and attention to detail on exams. However, all these codes 
were related to how content was presented or tested in the classroom and were therefore 
collapsed into a theme called content focus. 

Once the codes were sufficiently collapsed into themes, four categories of themes 
emerged and the themes were grouped into these categories.  For example, the theme of 
content focus, discussed above, was grouped under the category: Course Content and 
Cognitive Demand.  Transcripts were reviewed again to code line-by-line for each theme. If a 
theme was not found amongst at least 3 participants, it was eliminated. 
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Results 
Seventeen themes emerged that were then grouped into four categories.  These categories 

were 1) Student’s Study Approach, 2) Student’s Self-efficacy and Metacognition, 3) Class 
Format, and 4) Cognitive Demand of Course.  Note that the first two categories contain 
student-controlled or student-dependent themes and the last two are specific to the course or 
instructor.  Table --- shows each of the themes and how they were grouped into categories. 

 

CATEGORY THEMES 

COURSE 
CONTENT AND 
COGNITIVE 
DEMAND 

1. Memorization: Required Memorization Tends to Decrease Motivation.  Amount 
already memorized by students in college varies. 
2. Pre-Calculus Knowledge: Trigonometry is more prevalent in college calculus than 
in high school calculus.  It is one of the most challenging parts of college calculus. 
3. Calculator Use: Used all the time in some AP courses; these students must learn 
certain techniques for the first time in college.  College courses: students can use 
calculators on homework and sometimes in class but not on tests. 
4. Content Focus: College calculus is more abstract, conceptual, and formal; AP 
Calculus is more concrete, procedural, and informal. 
5. Problem Similarity: AP Courses focus on solving specific types of problems rather 
than general problem solving strategies.  College courses are more likely to test 
students on items different from those previously seen in class and on assignments. 

CLASS FORMAT 

1. Class Size: Students know to expect larger classes in college but are not prepared for 
the effects it will have on their participation. 
2. Classroom Interaction: Greater interaction is desired by students.  High school 
courses were typically more interactive.  Students who had interactive college courses 
like them as much or more than their high school courses. 
3. Instructor Relationships: Relationships with instructors have a larger impact than 
relationships with other students; relationships with instructors are much more 
common in high school and motivate students to increase their course goals. 
4. Structure and Accountability: Frequent assignments, assessments, and reminders 
by instructors increase motivation.  College courses had less structure and 
accountability; students are understanding of this, but say it is not helpful.  
5. Homework Setup: High school courses assign homework but grade it only for 
completion.  College courses use online only or a combination of online and written 
assignments; it is counted for a small percent of the course grade. 

 
STUDY 
APPROACH 

1. Uses of Homework: Students equate doing homework with studying.  Homework in 
high school is not completed because it is not graded for accuracy.  Online assignments 
in college can be completed by using similar examples available, computational tools, 
other students that would not be available during a test. 
2. Preferred Resources: Students go to their teachers first and classmates second in 
high school.  They use friends and acquaintances first in college and online resources 
second.  Written materials, particularly textbooks, are used as a last resort. 
3. Lack of Awareness of Study Approach: College students are sometimes unaware 
of their ineffective or inappropriate study strategies.  Some students who are aware do 
not take the initiative to change. 

SELF-EFFICACY 
AND 
METACOGNITION 

1. Calculus Affects Confidence: For some this happens in AP; for others it happens in 
college.  Some students believe some students are just “math people” or have 
“mathematical wit.”  AP Calculus can produce a sense of overconfidence going into 
college calculus which leads to under-preparedness.   

2. Online Homework Grades Don’t Reflect Understanding: Students get a false 
sense of confidence from high scores on online assignments.  There are many ways to 
get high homework scores without knowing how to solve the problem in a testing 
situation (multiple submissions, worked examples, solutions online, etc.) 

3. Belief Regarding Performance: Students give more weight to high school success 
than poor scores on first college tests. 
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4. Assessing Status in the College Course: Students are unsure about their status in 
the course because of not knowing other students and how they are performing in 
relation to others.  They often believe they will be successful, even despite low test 
scores. 

Figure 3.  Results from Interview Analysis 
 
In this paper, only one or two themes in each category will be discussed, but the 

presentation and full paper will address them all. 
Content Focus 

A prominent difference in the AP course and college course for some participants was the 
focus on concrete and procedural material in high school versus abstract and conceptual 
material in college.  While not all participants addressed this issue, no one suggested the 
reverse was true in their experience.  A couple of students discussed the amount of time spent 
in class in college on derivations and proofs.  For some, it went beyond a change in lecture 
emphasis to a change in requirements on exams.  Kelley explained how she had been required 
to memorize that  in high school but in her college course was required to know 
how to prove it. 

This distinction is similar to how other participants described the difference in their high 
school and college courses as doing versus understanding, respectively, or “learning how” 
versus “learning why”.  Stetson explains than in preparing for tests in his high school class, 
he’d “know how to do the problem without ever understanding the theory behind it.”  Other 
students described their college courses as going more “in depth” than their AP course.   

Another related difference that the students identified was an emphasis in the college 
setting on using proper mathematical language and notation.  Emilee described calculus as 
“nit-picky,” and expressed frustration for losing points for not including parentheses that 
were in fact necessary to make her answer correct.  Stetson described having difficulty 
expressing his answers completely and accurately, explaining that his college instructor often 
emphasized the importance of being able to “communicate mathematically.”   

Problem Similarity 
Students explained that their AP courses focused on solving specific types of problems, 

rather than on concepts or general problem solving strategies.  They recalled spending a 
significant amount of class time working old AP exams in preparation for their AP exam.  
Some instructors regularly included these problems in lecture and on in-class tests.  Students 
were divided in their appreciation for this approach.  Some thought it prevented them from 
understanding the material at a level needed for college, while others explained that had they 
worked harder to learn how to do these types of problems, they would have learned the 
material better or at least have gotten credit for the course and not had to repeat it in college. 

In contrast to this approach of “teaching-to-the-test” that some students saw in their AP 
course, the college courses were more likely to test students on items that differed from those 
seen previously in lecture and assignments.  Isaac explained that his study process, which was 
relatively thorough, did not allow him to prepare for all questions on his college instructor’s 
tests.  Erin described these problems that were in some way unique as “curveballs,” 
indicating she did not know to expect these problems.   

Classroom Interaction 
A majority of the participants discussed the opportunity for interaction and engagement 

during class as being an important aid to their learning in both high school and college.  
Several students mentioned more student interaction as the primary change they would make 
if teaching their own college calculus course.   

Perhaps the most interesting aspect of this finding is its consistency amongst participants 
in various types of college course settings.  While the majority of students were part of a 
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traditional lecture-based course, there were a handful of students who described their college 
courses as very interactive.  These students were just as vocal about the importance of this 
feature as those who only experienced it in high school.  Blake, in discussing how he would 
teach AP Calculus, described aspects of his college course: “interactive, very interactive.  
Work with the students, a lot of group work.  Spend time with each of my students.  Less 
time talking AT them, more time talking with them…[my college instructor] does a good job 
of talking WITH rather than AT.”  Keeping students engaged with the instructor and each 
other is viewed as a positive attribute of instruction both in the high school and college 
environments.  Moreover, the predominance of this type of instruction in the high school 
environment is seen as a strength of the AP course over college calculus. 

Instructor and Student Relationships 
A majority of the participants described knowing their AP Calculus teachers well and this 

being extremely motivating.  While knowing their peers tended to mostly affect how the 
participants behaved in class, having or not having a relationship with their instructor also 
impacted how they would study for the course outside of class.  Frank said that he would 
have been content with a lower grade than he actually received in his AP course, but because 
he did not want his teacher to think poorly of him and because he did not want the teacher to 
think s/he was not an effective teacher, he worked harder than he would have, had this 
relationship not existed.  So students were motivated by these relationships not only to meet 
their personal goals but to exceed them. 

Strong relationships with instructors were much more common in the AP course than in 
college and the lack of them was viewed by the participants as a negative factor in their 
college experience.  Haley described how she was not motivated as she had been in high 
school.  “I don’t know [my teacher] as well so I’m not motivated to do as well…It’s terrible 
to get bad grades, but not because I know him and I’ll be embarrassed.”  The participants 
were overwhelmingly understanding of this issue; they did not fault their college instructors 
for not knowing them, but rather seemed to have accepted it as how things have to be.  Most 
students had made little or no effort themselves to get to know their college instructors.  One 
exception was Frank.  He talked at length about having very recently gone to office hours and 
how much it had encouraged him to persist, despite his previous poor test scores.  He 
expressed regret for having not done this earlier in the semester. 

Uses of Homework 
Participants described using homework assignments in ways not intended by instructors 

or course designers.  In high school it was common for participants to quickly write down 
something to show their instructor for homework checks when they did not know how to 
solve the problems in their assignments.  Many were able to avoid learning how to do these 
problems because their instructors gave them review sheets or practice tests that were very 
similar to the tests and students would only need to learn these problems to be successful on 
the tests.  

In college, some students reported doing their homework but using resources to complete 
the assignments that removed the challenge and therefore did not allow them to really learn to 
solve the problems.  Sometimes solutions were provided within the homework systems and 
students would simply copy and paste their numbers into the solution.  Other times they 
would use computational tools to solve problems they were being asked to solve 
symbolically.  The students who reported doing this had, by the point of the interview, 
decided this was not effective and believed this approach had had a negative effect on their 
test grades.  

Online Homework Grades Do Not Reflect Understanding 
Several participants reported being made overconfident about their test preparation in 

college by their homework assignments. All of these students had regular online assignments 
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that were graded electronically for accuracy.  Some of these assignments had solutions 
provided to very similar problems that could easily be manipulated or copied to obtain full 
credit.  Wade explained, “They have ‘show me how to do this problem.  When you click this, 
it changes the numbers.  But the ‘show me an example,’ if you look at the end, you can find 
the pattern and b.s. the answer.”  Similarly, Maggie said that she “looked at so many 
examples in order to figure it out that in the end I didn’t really figure it out, I just looked at it 
and would substitute my own numbers in.”  She said that if she could start the semester over, 
“I wouldn’t trick myself with my online homework.  I’d actually take the time to learn how to 
do it.”   

Students struggled with knowing whether they really knew how to do a problem they 
received credit for in their online assignments.  One reason was that they often had multiple 
submissions for these assignments.  Frank said that he understood why this was setup like it 
was and understood its benefits for learning, but had mixed feelings about its results. He 
recommended having a companion section of homework where you only get one try because 
“it puts the pressure on you to really learn it rather than just try a couple things until 
something works.”  The other issue with the online homework was how the answer format 
requirements differed from exams.  Samuel’s instructor graded the students’ work on exams 
along with their answers but did not do this with homework.  Samuel explained, “Even if you 
write something off to the side [on the test], if it’s not exactly mathematically correct, you 
lose points.”  This student had completed his early homework assignments mostly “in his 
head,” without writing down full solutions.  He believed this set him up to fail.  He said, “I 
theorize that students twenty years ago understood calculus ten times better than anybody in 
our class does…[online homework] will unfortunately never go away, but I think it’s hurting 
our math students.” 

Belief Regarding Performance 
Some students were convinced their level of understanding of calculus was not reflected 

in their test grades.  For these students, their prior successes in high school outweighed the 
impact of their college calculus test grades in determining how much they believed they 
understood the material and how they would ultimately perform in the course, at least for a 
short period of time at the beginning of the semester.  Frank had done poorly on both of his 
first two tests but was still very confident about his understanding of calculus at the midpoint 
of the semester.  He explained that there was too much memorization and precalculus 
required in his college course, but he was very comfortable with topics like integration which 
he had learned in his AP course, so he felt good about his knowledge and ability. Despite 
having failing test grades, he believed he would ultimately succeed in the course. 

 
Discussion and Conclusion 

There is ample opportunity for both AP Calculus and college calculus instructors to learn 
from one another’s best practices, in light of the student perspectives revealed in this study.  
For example, this study provides evidence that AP Calculus may indeed be administered as a 
college level rather than a college preparatory course in many high schools.  This gives 
students a sense of overconfidence going into calculus I in college which may reduce their 
study efforts and diminish their success.  However, certain design aspects of AP Calculus 
such as the opportunity for student interaction in the classroom and the existence of strong 
relationships between students and teachers can produce very positive effects on student 
learning and the possibility of increasing these in college classrooms must be studied further. 

This study offers results from research that reveals the student perspective on their 
personal transitions from high school (Advanced Placement) to college calculus. Further 
research and implementation of what is learned here will allow us to improve teaching at both 
the high school and college level. 
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This paper presents ongoing research whose goal is to study theoretical frameworks that 
support teaching practices carried out in courses that are part of a Bachelor's Degree in 
mathematics which use information and communication technology resources - such as 
blogs, social networks and virtual learning environments - for the teaching and learning of 
mathematics content that is part of the curriculum in colleges and universities. The outline 
presented here refers to the ongoing study in the Mathematics, Culture, Art and Technology 
line of research being done by the research group THEM (Spices of History in Mathematics 
Education) about connectivism as a theoretical approach to teaching and learning. 

Key words: Information and communication technology, connectivism, meaning-making 

Introducing the Research 
Advances in information and communication technology (ICT) have enabled changes in 

the teaching and learning process in higher education. There are several initiatives, some 
proposed by institutions and others implemented by teachers, geared towards the use of 
internet technology to support classroom education. Some examples are virtual learning 
environments, social networks, blogs, wikis, etc. Finding ourselves in this context of the use 
of ICT in formal education, we, as teachers of mathematics and mathematics education 
courses in higher education, feel the need to lay out the reasons for our practices. One of our 
initiatives is the study we are doing about connectivism as a theoretical approach to teaching 
and learning. We will present here some of the initial results of our theoretical study with the 
intention to share experiences and receive contributions for the continuity of our research, 
which is focused on the processes of knowledge construction and meaning-making for 
mathematical content. This group's research around the theme of connectivism started in 
February 2014 led by a senior project in mathematics whose theme was the use of Facebook 
as a pedagogical architecture in one of the program's courses. One of the theoretical bases 
used was based on Connectivism. 

Connectivism 
Two Canadian researchers, George Siemens and Stephen Downes, have presented a set of 

studies on networked learning, defining the concept of connectivism as a theoretical approach 
to teaching and learning. This concept was first presented in 2004 in an online text. In 2006, 
Siemens presented connectivism in the book Knowing Knowledge. It was Siemens' interest in 
the pedagogical possibilities of ICTs that led him, along with Downes, to propose 
connectivism as a new theory of teaching and learning in the context of knowledge 
construction within a network, i.e., as an argument for situations in which educational 
processes connect different information sources and continuous communication. We use the 
work of Siemens and Downes as theoretical support for the discussion of this research 
regarding the concept of knowledge construction and networked learning. 

Connectivism is a new perspective to discuss teaching and learning, and the integration of 
principles explored by chaos, network, complexity and self-organization theories. It focuses 
on education in the digital age and takes into consideration how technology influences the 
current forms of communication and learning. According to connectivism, learning is a 
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process that occurs within environments where the central elements are constantly changing - 
not entirely under the control of people. Learning is defined as actionable knowledge that can 
reside outside of ourselves, for example, within an organization or a database. The focus of 
learning is on connecting specialized sets of information. (Siemens, 2004). 

According to Siemens (2004),  
Behaviorism, cognitivism, and constructivism are the three broad learning theories 
most often utilized in the creation of instructional environments. These theories, 
however, were developed in a time when learning was not impacted through 
technology. Over the last twenty years, technology has reorganized how we live, how 
we communicate, and how we learn. Learning needs and theories that describe 
learning principles and processes, should be reflective of underlying social 
environments. (Siemens, 2004, p.1) 

When Siemens says "not impacted through technology," he is talking about the fact that 
there was no previous existence of the countless resources coming from the internet and 
ICTs. The fact is that we now have at our disposal a networked world supported by resources 
such as blogs, websites, social networks, etc. We can be connected with many other people, 
and those people can also be connected to each other. Access to information is very broad 
and very fast. If we want, we can access in a few seconds, via the network, information that is 
on the other side of the world. All this directly affects the processes of teaching and learning, 
creating the need for new understanding about the theoretical approaches given to these 
processes. 

According to Siemens (2004), the following are some of the new trends in learning that 
justify the need to rethink the theoretical approaches of behaviorism, cognitivism and 
constructivism: 

Many learners will move into a variety of different, possibly unrelated fields over the 
course of their lifetime. Informal learning is a significant aspect of our learning 
experience. Formal education no longer comprises the majority of our learning. 
Learning now occurs in a variety of ways – through communities of practice, 
personal networks, and through completion of work-related tasks. Learning is a 
continual process, lasting for a lifetime. Learning and work related activities are no 
longer separate. In many situations, they are the same. Technology is altering 
(rewiring) our brains. The tools we use define and shape our thinking. The 
organization and the individual are both learning organisms. Increased attention to 
knowledge management highlights the need for a theory that attempts to explain the 
link between individual and organizational learning. Many of the processes 
previously handled by learning theories (especially in cognitive information 
processing) can now be off-loaded to, or supported by, technology. Know-how and 
know-what is being supplemented with know-where (the understanding of where to 
find knowledge needed). (Siemens, 2004, p.1) 

These issues raised by Siemens show some of the aspects that have caused changes in the 
role of the teacher, the learner and the teaching resources in both formal and informal 
processes of education. According to Siemens (2004, p. 2), “Behaviorism, cognitivism, and 
constructivism (built on the epistemological traditions) attempt to address how it is that a 
person learns” using “the notion that knowledge is an objective (or a state) that is attainable 
(if not already innate) through either reasoning or experiences. 

A central tenet of most learning theories is that learning occurs inside a person. Even 
social constructivist views, which hold that learning is a socially enacted process, 
promotes the principality of the individual (and her/his physical presence – i.e. brain-
based) in learning. These theories do not address learning that occurs outside of 
people (i.e. learning that is stored and manipulated by technology). They also fail to 
describe how learning happens within organizations. (Siemens, 2004, p. 2). 

18th Annual Conference on Research in Undergraduate Mathematics Education 93418th Annual Conference on Research in Undergraduate Mathematics Education 934



We see how important it is for the author to highlight the need to study and understand 
how learning evolves in processes that rely on technology and also those developed within 
organizations, i.e., in conditions external to the person. According to the author, 

Learning theories are concerned with the actual process of learning, not with the 
value of what is being learned. In a networked world, the very manner of information 
that we acquire is worth exploring. The need to evaluate the worthiness of learning 
something is a meta-skill that is applied before learning itself begins. (Siemens, 
2004, p. 2) 

This is an important issue raised by the author, which discusses the amount of 
information to which we have access in the networked world. When there was no such 
condition (established primarily through the use of technology that we have today), when we 
had more limited access to information, it was enough to discuss the theories of learning, 
since the process of discussing the means of access to information for knowledge 
construction was intrinsic to learning.  

Siemens thus justifies the need for new approaches in theoretical approaches to teaching 
and learning: 

Many important questions are raised when established learning theories are seen 
through technology. The natural attempt of theorists is to continue to revise and 
evolve theories as conditions change. At some point, however, the underlying 
conditions have altered so significantly, that further modification is no longer 
sensible. An entirely new approach is needed. (Siemens, 2004, p. 2). 

Continuing his argument about the need for new theoretical approaches to learning, 
the author stresses the differences in the context of constructing knowledge through network 
connections with the support of technology. According to the author, the inclusion of 
technology and connection-making as learning activities begins to move learning theories 
into a digital age. We can no longer personally experience and acquire learning. We achieve 
our skills as a result of the formation of connections. That sums up Siemens' defense for a 
new theoretical framework to the extent that he argues that when we use technology for 
constructing networked knowledge, we can no longer speak only in experimentation 
(behaviorism) and personal construction (cognitivism and constructivism) when discussing 
learning and teaching theoretically. We must go further, observing and reflecting on 
theoretical approaches that consider that knowledge construction depends on the formation of 
connections in the external world, which is greatly impacted by technology. Thus, Siemens 
presents his definition of connectivism: 

Connectivism is the integration of principles explored by chaos, network, and 
complexity and self-organization theories. Learning is a process that occurs within 
nebulous environments of shifting core elements – not entirely under the control of 
the individual. Learning (defined as actionable knowledge) can reside outside of 
ourselves (within an organization or a database), is focused on connecting specialized 
information sets, and the connections that enable us to learn more are more important 
than our current state of knowing. Connectivism is driven by the understanding that 
decisions are based on rapidly altering foundations. New information is continually 
being acquired. The ability to draw distinctions between important and unimportant 
information is vital. The ability to recognize when new information alters the 
landscape based on decisions made yesterday is also critical. (Siemens, 2004, p. 3) 

Although some authors and studies do not consider connectivism as a learning theory, 
such a new theoretical approach to learning and teaching leads us to consider the use of new 
teaching methodologies and learning architectures. Because of this, our research group is 
looking at connectivism as a theoretical framework to be incorporated into others already in 
use to investigate knowledge construction and meaning-making for mathematics in higher 
education. 
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Mathematicians’ views on spatial reasoning in undergraduate and graduate 
mathematics 

Existing research shows there is a strong correlation between spatial reasoning and 
mathematics achievement in K-12. Is spatial reasoning important then for succeeding in 
undergraduate and graduate mathematics? I interviewed four (N=4) young mathematicians 
about their conceptualizations of spatial reasoning and where they potentially saw spatial 
reasoning in undergraduate and graduate mathematics. Two participants identified 
themselves as geometers/topologists and the other two identified as algebraists. The two 
geometers/topologists emphasized understanding 2D representations of 3D shapes and the 
two algebraists emphasized the notion of dynamics, i.e. mental movement. Among graduate 
fields of mathematics, geometry/topology was cited most frequently as being spatial and 
algebra was cited the least. In undergraduate mathematics, all four participants drew 
connections to multivariable calculus and discussed examples from their teaching of 
multivariable calculus. This work has some implications for teaching multivariable calculus 
and discerning the relationship between spatial reasoning and mathematics.  

Key words: Graduate Mathematics, Mathematicians’ Practice, Spatial Reasoning, Nature of 
Mathematics 

Research over the twentieth century has shown there is a strong correlation between 
spatial reasoning and mathematics achievement (Uttal et al., 2012). Some studies have looked 
at the direct link between spatial reasoning and K-12 mathematical content areas, such as 
geometry (Battista, 1990) or arithmetic (Cheng & Mix, 2012). What is the link between 
spatial reasoning and undergraduate or even graduate mathematics? Many studies have 
looked at spatial abilities in children, but the world of mathematicians remains largely 
unexplored in this regard. My research questions are: 1) How do mathematicians 
conceptualize the term spatial reasoning? 2) What fields of mathematics do they identify as 
using spatial reasoning? 

 I conducted think-alouds/interviews with four (N=4) young mathematicians at a large 
Midwestern university. I define a young mathematician to be a doctoral student in 
mathematics. Two participants, Adam and Brian, identified themselves as 
geometers/topologists. The other two participants, Chris and Danielle, identified themselves 
as algebraists. In the think-aloud portion, mathematicians were given three paper-and-pencil 
examples of spatial tasks (mental rotation, cross section of three dimensional objects, and a 
perspective task), which served as stimuli for talking about spatial reasoning. The subsequent 
semi-structured interview consisted of questions about their conceptualizations of spatial 
reasoning and potential connections between spatial reasoning and their research area, other 
fields of mathematics, and their teaching. Data consisted of transcripts of hour-long audio 
recordings and field notes.  

Transcript data was analyzed using grounded theory techniques to identify key themes in 
how each participant conceptualized spatial reasoning. The following themes that emerged 
were visualizing, dynamics, intangibility, mental “jumps,” understanding 2D representations 
of 3D objects, non-rigid transformations, and spatial reasoning as a form of mental evidence. 
The two geometers/topologists emphasized understanding 2D representations of 3D objects, 
i.e. inferring 3D properties from the drawn paper-and-pencil figures. The two algebraists 
emphasized the idea of dynamics, i.e. imagining movement, for a task to use spatial 
reasoning.  

In this poster, I will also present the different fields of mathematics that the 
mathematicians referenced as using spatial reasoning and examples they gave (see Table 1).  
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Table 1 
 
Graduate mathematical fields participants identified as using spatial reasoning  
Participant Algebra Analysis Graph Theory Geometry/Topology 
Adam X X  

 
X  X  

Brian  X  X  X 
 

Chris   X  X  
Danielle X  X 

 
X  X  

 
 
Geometry/Topology was the field most often cited as spatial in nature (with examples) and Algebra 
was cited the least often. Participants also cited spatial reasoning as helpful in Analysis, for 
visualizing counterexamples. All four participants also referenced Graph Theory as using 
spatial reasoning but gave no specific examples. For undergraduate mathematics, all four 
participants cited multivariable calculus as relying heavily on spatial reasoning and discussed 
how their students could benefit from improved spatial reasoning in order to understand 
concepts. This works extends the research on mathematicians' practice and explores deeper 
how spatial reasoning and mathematics are intertwined. 
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!There is a considerable amount of mathematics education literature on creativity (e.g., Torrance, 
1966; Balka, 1974; Silver, 1997), yet there is little discussion of mathematical creativity in 
undergraduate mathematics education. Specifically, to our knowledge, there is no literature on 
mathematical creativity in the proving process. We attempt to contribute to the literature by 
developing a framework in which to discuss mathematical creativity in proving, Creativity-in- 
Progress Rubric (CPR) on proving. Through previous rubrics on creativity (Leikin, 2009; Rhodes, 
2010) and interviews with both mathematicians and undergraduate students, we claim 
that there are three aspects of creativity in proving: Making Connections, Taking Risks, and 
Creating Ideas. We demonstrate how to use the rubric with an example of a student’s proving 
process. Finally, we give future research considerations of using the rubric in proof-based 
 classrooms. 

 
Key$words:$mathematical creativity, proving process, creativity rubric, proof-based courses!

 
Introduction 

Many great historical mathematicians often discussed creativity in their work as an 
illumination that is somewhat unexpected (Poincare, 1946; Hadamard, 1945). Though creativity 
is one important aspect of professional mathematicians’ work, it is a complicated subject to 
research for mathematics educators, given that there are over 100 different definitions of 
creativity (Mann, 2005). In fact, a recent publication by the Mathematical Association of 
America (Borwein, Liljedahl, & Zhai, 2014) demonstrated that many brilliant mathematicians 
had different ideas about mathematical creativity. Some conceptualizations of creativity focus on 
emphasizing whether the end product is original and useful (Runco & Jaeger, 2012), while others 
describe mathematical creativity as a process that involves different modes of thinking, some of 
an unusual nature (Balka, 1974). Even though the process approach creates difficult hypotheses 
for testing and evaluating (Torrance, 1966), the product approach may not provide full 
understanding of the development of mathematical creativity. 

Despite the entangled state of mathematics creativity research, Sriraman (2004) stated that, 
“[i]t is in the best interest of the field of mathematics education that we identify and nurture 
creative talent in the mathematics classroom” (p. 32). It is also timely to consider investigating 
this topic as it gains momentum in education agendas (Askew, 2013). However, our examination 
of the undergraduate mathematics education literature yielded little discussion of how 
undergraduate students are creative or how creativity can be fostered in the classroom. 
Furthermore, there is little discussion of how creativity arises in proving processes. In our 
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proposal, we attempt to begin this discussion by proposing a “creativity-in-progress rubric” on 
proving to gauge undergraduate students’ mathematical creativity.  

Literature Review 
There have been numerous research articles demonstrating the difficulties students have with 

undergraduate proof-based courses (Moore, 1994; Weber, 2001). Setting up a proof framework 
(Selden & Selden, 2009) can be one way to alleviate some difficulty. Proof frameworks consist 
of writing the beginning (usually a re-written hypothesis from the statement of the theorem) and 
ending (the conclusion of the theorem) of a proof or subproof, coupled with understanding and 
unpacking the definitions occurring in the conclusion. Hypothetically, this can open up the 
student to focus more on the problem-solving part of the proof. However, what happens when 
the student experiences difficulty with the problem-solving part?  

A student may encounter the creative aspect of the proving process during this problem-
solving portion. Although most students will not create a proof analogous to that of Fermat’s 
Last Theorem, they may experience relative creativity. Relative creativity is defined as “the 
discoveries by a specific person within a specific reference group, to human imagination that 
creates something new” (Vygotsky, 1982, 1984; as cited by Leikin, 2009, p. 131). That is, 
students may create something that is new to them or to their peers, but it may not be new to the 
greater mathematical community. The latter would be considered absolute creativity or 
discoveries at a global level, such as the proof of Fermat’s Last Theorem by Andrew Wiles. We 
claim that explicitly valuing and assessing relative creativity in an undergraduate classroom 
could help students’ learning and develop their own mathematical creativity. The main goal of 
our research project is to investigate this claim.  

Therefore, our research question is:  
• In what ways can instructors make relative creativity explicit to their students and assess 

it in undergraduate proof-based courses?  
 

In our first attempt to address this question, we created the “Creativity-in-Progress Rubric” or 
CPR. Prior to sharing the development process of CPR and its use, in the next section we briefly 
discuss the theoretical framework that we considered during the development of the CPR. 

Theoretical Framework 
Simon (2009) hoped that “future researchers…deeply understand many of the [learning] 

theories available, are aware of the affordances and limitations of each, and use these theories 
strategically.” (p. 488). Kozbelt, Beghetto, and Runco (2010) provided a summary of ten major 
contemporary theories from a meta-analysis of creativity work: Developmental, Psychometric, 
Economics, Stage and Componential Process, Cognitive, Problem Solving and Expertise-Based, 
Problem Finding, Evolutionary, Typological, and Systems. The aim was to help researchers to 
better situate their theoretical assumptions, and possibly discover overlapping areas between 
theoretical perspectives, which may lead to advancement of our understanding of creativity in 
general. Both the Developmental and Problem Solving and Expertise theories, accompanied by 
Simon’s (2009) perspective, guided our project.  

The primary assertion of the Developmental theory is that creativity develops over time, and 
the main focus of investigation is a person’s process of creativity. It emphasizes the role of 
environment, in which interaction takes place, to enhance the creativity. The Problem Solving 
and Expertise theory emphasizes the role of an individual’s problem solving process and also 
argues “creative thought ultimately stems from mundane cognitive processes” (Kozbelt et al., 
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2010, p. 33). The tasks, problem representation, and heuristics are key concepts of this theory. 
The creation and use of the rubric falls under both theories due to our investigation of classroom 
environments and exploration of students’ heuristics. In both of these theories, relative creativity 
is the main focus, and the process of “creating” is mediated by an interaction between person 
and environment.  

Development of the CPR 
The development of the CPR was initiated on the key pieces (process and interaction) of the 

aforementioned theoretical frameworks. It was rigorously constructed through triangulating 
research-based rubrics, mathematicians’ and students’ views on mathematical creativity, and 
students’ proving attempts. We considered the Association of American Colleges and 
Universities (AAC&U) Creative Thinking Value rubric with six categories: acquiring 
competencies, taking risks, solving problems, embracing contradictions, innovative thinking, and 
connecting, synthesizing, transforming (Rhodes, 2010). Using this rubric as a starting point, two 
members of our research group interviewed six mathematicians about their perspectives in 
teaching and assessing creativity in proof-bases courses. All six mathematicians were given the 
AAC&U rubric along with three proofs of the same number theory theorem constructed by three 
students and published in Birky et al., (2011). Their discussions about mathematical creativity 
and feedback on the adaptability of the AAC&U rubric to the mathematics classroom were 
influential factors in our first draft of the CPR.  

In the mathematical creativity literature, Leikin (2009) created a rubric for mathematical 
creativity in problem solving that valued three categories: flexibility, fluency, and originality. 
These categories were influenced by the Torrance (1966; 1988) tests for assessing creativity and 
Silver’s (1997) work with K-12 instructional activities. Finally, one member of our research 
group interviewed eight students from a transition-to-proof or introduction to proofs course using 
the same three proofs used in the mathematician interviews. Selected scratch work of students in 
the course, which was collected via LiveScribe pen technology, were also thoroughly examined 
to refine the rubric. 

Creativity-in-Progress Rubric (CPR) on Proving 
Three main categories about creativity in students’ proving processes surfaced from the 

existing rubrics and the mathematicians’ and students’ data:  
• Making connections - demonstrating links between multiple representations 

and/or ideas from the student’s current and/or previous course(s).  
• Taking risks - approaching a proof and demonstrating flexibility in using 

different or multiple approaches.  
• Creating ideas - developing original mathematical ideas that are either 

pertinent to the proof or can be proven. 
Note that Leikin’s flexibility and originality are inherent in the above descriptions, and 

fluency can be helpful when making connections between mathematical concepts. Table 1 shows 
the subcategories that explicate the definitions of each category, and the desired milestones.   

We now clarify some terms used in the rubric. A mathematical representation in the rubric is 
used to mean “an external manifestation of mathematical objects” (Pape & Tchoshanov, 2001, p. 
119) (e.g., spoken words, written symbols/words, pictures or diagrams, gestures). Specifically, 
we can represent the symbols ! = !! as a graph with vertex at the origin “pointing” up, or with a 
gesture of U shape “opening” up, or with a table of inputs and outputs. Proof technique refers to 
a method of approaching a proof of a theorem. For example, “proof by contradiction” and 
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“induction” would be two different proof techniques. We mean by originality as the ability to 
create new, novel, unique, and/or unusual ideas, that are relative to the student or the course. 

 
Table 1: Creativity-in-Progress Rubric: On Proving 

MAKING CONNECTIONS: Beginner Developing Satisfactory  
Between Definitions or 
Theorems 

Introduces few 
definitions/theorems (some of 
them may be irrelevant) 

Recognizes some relevant 
definitions/theorems from the 
course or textbook and attempts 
to connect them in their proving 

Implements definitions/theorems 
from the course and/or prior 
knowledge (e.g. a prior course 
work) 

Between Representations 
 

Attempts a connection between 
two representations 

Demonstrates connections 
between multiple 
representations either to enhance 
an idea or help understanding 

Utilizes different representations 
to strengthen the proof 

Between Examples Generates one or two specific 
examples for the proof 

Attempts to make connections 
between specific and general 
examples 

Able to move freely back and 
forth between specific and general 
examples 

Between Proof Techniques 
and Previous Proofs 

Does not show a connection 
between proof techniques of 
previous proofs 

Attempts to utilize a proof 
technique due to its success in 
previous proofs 

Recognizes an understanding of 
previous success with proof 
techniques and groups certain 
mathematical concepts with 
certain proof techniques  

 
TAKING RISKS: Beginner Developing Satisfactory  
Attempting a Proof Attempts a proof Attempts a proof with some 

indication of directed thought 
Attempts a proof with some 
indication of exhaustive thought 
towards the proof 

Proof Technique Flexibility Attempts one proof technique Implements a proving technique 
completely 

Scratch work (verbal or written) 
indicates thinking of different 
proving approaches. 

Completeness Provides an incomplete proof Provides a complete argument 
(either verbal or written) without 
a rigorous written proof 

Provides a complete proof written 
rigorously 

Evaluation of the Attempt Checks work locally Recognizes a unsuccessful 
proving attempt 

Recognizes the key idea that 
makes the proving attempt 
unsuccessful or successful 

 
CREATING IDEAS: Beginner Developing Satisfactory  
Originality Attempts to create original 

ideas for the proving attempt 
Displays original ideas (for that 
student) that are somewhat 
expected but impressive 

Creates a whole new idea never 
expected or unusual for the course 

Posing Questions Poses questions clarifying a 
statement of a definition or 
theorem 

Poses questions about reasoning 
within a proof 

Poses questions that take account 
global understanding or 
modification of hypothesis of the 
theorem posed 

Conjectures Poses a trivial or incorrect 
conjecture, or rewords a 
previous theorem 

Extends theorems or definitions 
in the form of corollaries or 
poses conjectures from patterns 

Poses and attempts to prove a 
conjecture that leads to or 
indicates a generalization of prior 
ideas 

Using the CPR: An Example 
In an inquiry-based transition-to-proof course at a large Midwestern university, 24 students 

were given LiveScribe pens, a data collection tool capable of capturing audio and written work in 
real time. Use of this technology was an intentional attempt to capture the processes of student’s 
proof development. All students were required to do and turn in their homework using the pen 
and special paper; all homework was downloaded to the professor’s computer for both grading 
and analysis.  For example, we analyzed some of the proving actions that Student 10 enacted 
chronologically for Theorem 29: “If 3 divides the sum of the digits of !, then 3 divides !” for 
the development of the rubric. This theorem was the third theorem in the number theory section, 
located after the definition of even and odd numbers, divisibility, (DEF S: !|!⇔ ! =
!"!for$some!! ∈ ℤ) and theorems (27 and 28, respectively): “If ! and ! are even numbers, 
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prove that ! + ! and ! ⋅ ! are even numbers” and “If !|! and !|!, then !|(!" + !") for any 
!, ! ∈ ℤ.” Student 10’s first attempt involved thinking about proving by induction and looking at 
a specific case (123). He finished the attempt by acknowledging that Theorem 28 needed to be 
used. Prior to Student 10’s second attempt, the professor had given the hint: “Let ! = !! ⋅
10! +⋯+ !! ⋅ 10! + !!.” During the third proving attempt, Student 10 tried directly proving 
the statement by manipulating ! algebraically. He then skipped to the next two theorems in the 
assignment before attempting Theorem 29 again. He attempted the proof four times in the course 
of two days.  Figure 1 shows these attempts.  

 
Figure 1: Student 10’s Proving Actions for Theorem 29 

 
 

To use the rubric, you would simply highlight over the gray arrow up to the level in which 
you believe your student to be.  For example, Student 10’s Making Connection evaluation is 
presented in Figure 2. 
 
Figure 2: Student 10’s Making Connections Assessment 
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We assessed Student 10’s subcategory “Between Definitions or Theorems” of Making 
Connections as satisfactory since he implemented both Definition S (line 20 in Figure 1) and 
Theorem 28 (line 22). Student 10 scored developing on his proving attempts in the subcategory 
“Between Representations” since he transitions between writing out a sum (line 35) and 
representing that sum in sigma notation (line 36), which enhanced his understanding of the proof. 
He also uses modular arithmetic (line 36), writing that the sums of all the !!s are congruent to 0 
(mod 3), another representation of the sum that he believes enhanced the proof. However, we 
feel as if both representations did not strengthen the proof, a requirement for satisfactory. In the 
subcategory “Between Examples,” Student 10 received a developing score, noting that he 
generated multiple examples to understand his approaches to proving (lines 4-7, 23-28) and 
attempts to generalize (from lines 4-7 to line 8). Finally, we believe that Student 10 would score 
developing in the subcategory “Between Proof Techniques,” due to his use of a similar proving 
technique (lines 17-22) that was used in the proof of Theorem 28 (not shown above). 

Discussion/Future Research 
Notice that correctness of a proof is never addressed in the rubric. This decision was based 

on the interviewed mathematicians’ claims that in some instances, more mathematical creativity 
was generated when they were pursuing conjectures or proofs that were incorrect and that the 
results from incorrect proofs were somewhat useful (Savic, Karakok, Tang & El Turkey, 2014). 
Therefore, we claim that one way to teach with the CPR is by valuing and encouraging students 
to share their incorrect processes in attempting a proof. When students share their proving 
attempts in the course, the educator can use the CPR to emphasize certain categories that the 
student is enacting at that moment. However, an educator should be aware of a student’s affect or 
confidence when initially doing this. 

Our rubric is intended to assess an individual student’s progress in the course, and not to 
compare students’ to each other. We are attempting to value, and ultimately develop, each 
student’s relative mathematical creativity. The CPR can then be used as a formative assessment 
tool, where a student can monitor his/her own progress and evaluate his/her understanding to 
ultimately recognize where improvement is needed in his/her creative process. 

Our future research is focused on implementing the CPR within the transition-to-proof course 
in fall 2014, with possibly more in the spring of 2015 at different institutes. We aim to develop 
and implement different versions of CPR that are applicable to different undergraduate courses. 
We conjecture that if students focus on developing their own mathematical creativity through 
formative assessment, then the conceptual and computational understandings will follow. 
Therefore, we conjecture that students will ultimately self-improve if the CPR is valued and used 
consistently in undergraduate math courses. 
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A theoretical perspective for proof construction 
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This theoretical paper suggests a perspective for understanding undergraduate proof 
construction based on the ideas of conceptual and procedural knowledge, explicit and 
implicit learning, behavioral schemas, automaticity, working memory, consciousness, and 
System 1 and System 2 cognition.  In particular, we will discuss proving actions, such as the 
construction of proof frameworks that could be automated, thereby reducing the burden on 
working memory and enabling university students to devote more resources to the truly hard 
parts of proofs. 

Key words: proof construction, behavioral schemas, automaticity, consciousness, System 1 
and System 2 cognition  

Introduction 
Suppose a mathematician would like to help a student who has had difficulties solving a 

problem, for example, difficulties involving the chain rule. In this case, it is likely that the 
mathematician could look at the student’s written work, explain how the chain rule works, 
and provide practice problems. We think students’ written work can often be used in this 
way. However, suppose the student had difficulty, not with content, but with the process of 
proving. For example, suppose the student had understood the hypotheses of the theorem to 
be proved, but had failed to focus on the conclusion and unpack its meaning. This can be 
detrimental to constructing a proof; however, failing to focus on the conclusion typically does 
not show in a student’s written work. Because we are interested in teaching proof 
construction, we would like to find a finer-grained perspective than just using students’ 
written work. This has led us to the present nascent theoretical perspective based on actions, 
including mental actions. In the remainder of the introduction, we mention a number of ideas 
from psychology that we will call on and then foreshadow how they can be used. Then in the 
paper itself, we consider situations and actions; situation-action links; behavioral schemas; 
consciousness, implicit learning, and automaticity; decomposing the proving process; seeing 
similarities, searching and exploring; and implications thereof. 

Much has been written in the psychological, neuropsychological, and neuroscience 
literature about ideas of conceptual and procedural knowledge, explicit and implicit learning, 
behavioral schemas, automaticity, working memory, consciousness, and System 1 (S1) and 
System 2 (S2) cognition (e.g., Bargh & Chartrand, 2000; Bargh & Morsella, 2008; Bor, 2012; 
Cleeremans, 1993; Hassin, Bargh, Engell, & McCulloch, 2009; Stanovich, 2009, Stanovich & 
West, 2000). In trying to relate these ideas to proof construction, we have discussed 
procedural knowledge, situation-action links, and behavioral schemas (Selden, McKee, & 
Selden, 2010; Selden & Selden, 2011) However, more remains to be done in order to weave 
these ideas into a coherent perspective.  In doing this, a key idea is the roles that S1 and S2 
cognition can play in proof construction. S1 cognition is fast, unconscious, automatic, 
effortless, evolutionarily ancient, and places little burden on working memory. In contrast S2 
cognition is slow, conscious, effortful, evolutionarily recent, and puts considerable call on 
working memory (Stanovich & West, 2000). Of the several kinds of consciousness, we are 
referring to phenomenal consciousness—approximately, reportable experiences. 

It is our conjecture that large parts of proof construction can be automated, that is, that 
one can facilitate mid-level university students in turning parts of S2 cognition into S1 
cognition, and that doing so would make more resources, such as working memory, available 
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for the truly hard problems that need to be solved to complete many proofs. In particular, 
because a proof construction is a sequence of actions, or the results of actions, that arise from 
situations in the partly completed proof, with practice some of the situations can be “linked” 
to actions in an automated way. Here is an example of one such possible automated situation-
action link. One might be starting to prove a statement having a conclusion of the form p or q. 
This would be the situation at the beginning of the proof construction. If one had encountered 
this situation a few times before, one might readily take an appropriate action, namely, 
assume not p and prove q or vice versa. While this action can be warranted by logic, there 
would no longer be a need to do so. 

We are interested both in how various types of knowledge (e.g., implicit, explicit, 
procedural, conceptual) are used during proof construction, and also in how such knowledge 
can be constructed. If that were better understood, then it might be possible to facilitate 
university students’ learning through proof construction experiences. Although one can learn 
some things from lectures, this is almost certainly not the most effective, or efficient, way to 
learn proof construction. Indeed, inquiry-based transition-to-proof courses seem more 
effective than lecture-based courses (e.g, Smith, 2006).  

The idea that much of the deductive reasoning that occurs during proof construction could 
become automated may be counterintuitive because many psychologists (Schechter, 2012), 
and (given the terminology) probably many mathematicians, assume that deductive reasoning 
is largely S2. Nevertheless, we suggest that, with growing expertise, proof construction can 
become a combination of S1 and S2.  

Situations and Actions 
We mean by an (inner) situation in proving, a portion of a partly completed proof 

construction, perhaps including an interpretation, drawn from long term memory, that can 
suggest a further action. The interpretation is likely to depend on recognition of the situation 
which is easier than recall perhaps because fewer brain areas are involved (Cabeza, et al., 
1997). An inner situation is unobservable. However, a teacher can often infer an inner 
situation from the corresponding outer situation, that is, from the, usually written, portion of a 
partly completed proof. 

Here we are using the term, action, broadly, as a response to a situation. We include not 
only physical actions (e.g., writing a line of a proof), but also mental actions. The latter can 
include trying to recall something or bringing up a feeling, such as a feeling of caution or of 
self-efficacy. We also include “meta-actions” meant to alter one’s own thinking, such as 
focusing on another part of a developing proof construction.  

Situation-Action Links 
If, in several proof constructions in the past, similar situations have corresponded to 

similar actions, then, just as in classical Pavlovian conditioning, a link may be learned, so that 
another similar situation yields the corresponding action in future proof constructions without 
the earlier need for deliberate cognition, that is, the action occurs almost automatically. Use 
of situation-action links strengthens them and after sufficient practice/experience, they can 
become overlearned, and thus, automatic. Morsella (2009, p. 13) has pointed out, “Regarding 
skill learning and automaticity, it is known that the neural correlates of novel actions are 
distinct from those of actions that are overlearned, such as driving or tying one’s shoes. 
Regions [of the brain] primarily responsible for the control of movements during the early 
stages of skill acquisition are different from the regions that are activated by overlearned 
actions. In essence, when an action becomes automatized, there is a ‘gradual shift from 
cortical to subcortical involvement …’ ”. Returning to mental actions, because cognition 
often involves inner speech, which in turn is connected with the physical control of speech 
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production, the above information on the brain regions involved in skill acquisition is at least 
a hint that when one has automated a situation-action link that one has not only converted it 
from S2 to S1 cognition, but also that different parts of the brain are involved in access and 
retrieval. Something very similar to the above ideas of automaticity in proof construction has 
been investigated by social psychologists such as Bargh and Chartrand (2000).  

Behavioral Schemas 
 Some actions can be decomposed into sequences of smaller actions. If the action in a 

situation-action link is minimal with respect to decomposition into smaller actions, then we 
call it a behavioral schema. We see behavioral schemas as partly conceptual knowledge 
(recognizing the situation) and partly procedural knowledge (the action), and as related to 
Mason and Spence’s (1999) idea of “knowing to act in the moment”.  We suggest that, in the 
use of a situation-action link or a behavioral schema, almost always both the situation and the 
action (or its result) will be at least partly conscious. Also, at least for most people, it appears 
impossible to “chain together” several behavioral schemas completely outside of 
consciousness. For example, a person who could do so, should easily be able to start with the 
equation 3x + 5 = 14 (which can easily be solved with only three behavioral schemas), and 
without bringing anything else to mind, immediately say x =3. We expect that most people 
cannot do this, so we wonder what is happening (outside of consciousness) for 
mathematicians for whom a complex proof is said to come to mind all at once. Such a 
consideration is beyond the scope of our current perspective, and we think it might be a 
question for neuroscience or for those studying giftedness. 

Implicit Learning of Behavioral Schemas 
It appears that the entire process of learning a behavioral schema, as described above, can 

be implicit. We note a person can acquire a behavioral schema without being aware that this 
is happening. Indeed, such unintentional, or implicit, learning happens frequently and has 
been studied by psychologists and neuroscientists (Cleeremans, 1993). In the case of proof 
construction, it is possible that after the experience of proving a considerable number of 
theorems in which similar situations occur, an individual might acquire a number of relevant 
behavioral schema, and as a result, simply not have to think quite so deeply as before about 
certain portions of the proving process and might, as a consequence, make fewer “wrong 
turns”. 

Something similar has been described in the psychology literature regarding the 
automated actions of everyday life. For example, an experienced driver can reliably stop at a 
traffic light while carrying on a conversation. But not all automated actions are positive. For 
example, a person can develop a prejudice without being aware of the acquisition process and 
can even be unaware of its triggering features (Cleeremans & Jiménez, 2001). This suggests 
that we should consider the possibility of mathematics students developing similarly 
unintended negative situation-action links implicitly during mathematics learning, and in 
particular, during proof construction. 

Detrimental Behavioral Schemas 
We begin with a simple and perhaps very familiar algebraic error. Many teachers can 

recall having a student write �(a2 + b2) = a + b, giving a counterexample to the student, and 
then having the student making the same error somewhat later. Rather than being a 
misconception (i.e., believing something that is false), this may well be the result of an 
implicitly learned behavioral schema. If so, the student would not be thinking very deeply 
about this calculation when writing it. Furthermore, having previously understood the 
counterexample would also have little effect in the moment. It seems that to weaken/remove 
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this particular detrimental schema, the triggering situation, �(a2 + b2), should occur a number 
of times when the student can be prevented from automatically writing “= a + b” in response. 
However, this might be difficult to arrange. 

For another example of an apparently implicitly learned detrimental behavioral schema, 
we turn to Sofia, a first-year graduate student in a course meant to help students learn to 
improve their proving skills. Sofia was a diligent student, but as the course progressed what 
we came to call an “unreflective guess” schema emerged (Selden, McKee, & Selden, 2010, 
pp. 211-212). After completing just the formal-rhetorical part of a proof (essentially a proof 
framework) and realizing there was more to do, Sofia often offered a suggestion that we 
could not see as being remotely helpful. At first we thought she might be panicking, but on 
reviewing the videos there was no evidence of that. A first unreflective guess tended to lead 
to another, and another, and after a while, the proof would not be completed. 

In tutoring sessions, instead of trying to understand, and work with, Sofia’s unreflective 
guesses, we tried to prevent them. At what appeared to be the correct time, we offered an 
alternative suggestion, such as looking up a definition or reviewing the notes. Such positive 
suggestions eventually stopped the unreflective guesses, and Sofia was observed to have 
considerably improved in her proving ability by the end of the course. 

Decomposing the Proving Process  
In order to begin helping students automate certain portions of the proving process by 

developing positive behavioral schema, we would like to decompose the reasoning part of the 
proving process and focus on those portions that frequently occur. Some possibilities are: (1) 
writing the first- and second-level proof frameworks (Selden & Selden, 1995), which 
themselves can have parts; (2) noting when a conclusion is negatively phrased (e.g., a set is 
not empty or a number is irrational) and automatically attempting a contrapositive proof or a 
proof by contradiction; and (3) noting when the conclusion asserts the logical equivalence of 
two mathematical assertions and knowing there are two implications to prove.  

One can also change one’s focus by deciding to unpack the conclusion of a theorem, by 
finding or recalling a relevant definition, or by applying a definition—actions that are part of 
constructing a second-level proof framework (Selden, Benkhalti, & Selden, 2014; Selden & 
Selden, 1995). Having done that, one might get a feeling of knowing, of self-efficacy (Selden 
& Selden, 2014), or even of not knowing what to do next, that is, one might be at an impasse. 
Upon reaching such an impasse, one might spontaneously do something else for a while. That 
action may, or may not, include the conscious intent that doing so, and coming back later, 
might allow one to get a new idea. That is, while one might just give up in frustration (for the 
moment), one might “know” that, in the past, such alternative actions had been beneficial for 
getting new ideas. 

Proving exercises that we have tried to help students automate, with only modest success 
to date, are converting formal mathematical definitions into operable definitions (Bills & 
Tall, 1998). In this regard, we have tried providing “flash cards” for our transition-to-proof 
course students to practice with. On one side of a typical card was “What can you say if you 
know f: X oY is a function, A � Y, and x ϵ f -1(A)?”. On the other side of the card was “f(x) ϵ 
A”. One might think that this sort of translation into an operable form would be automatic 
(without such practice) given the definition f -1(A) = { x ϵ X | f(x) ϵ A}, but we have found that 
it is not, even when the definition can be consulted, and does not need to be remembered. 

Seeing Similarities, Searching and Exploring 
How does one recognize situations as similar? Different people see diverse situations as 

similar depending both upon their past experiences and upon what they choose to, or happen 
to, focus on or attend to. While similarities can be extracted implicitly during exposure 
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(Markman & Gentner, 2005), as teachers and researchers we want to direct students’ 
attention to relevant proving similarities. It would seem that some conceptual knowledge 
would come to bear when learning to see situations as similar.  

For example, we do not, as yet, have suggestions for helping students to “see” that the 
situations of a set being empty (i.e., having no elements), of a number being irrational (i.e., 
not rational), and of the primes being infinite (i.e., not finite) are similar. These three 
situations--empty, irrational, and infinite--do not seem similar until one rephrases them to 
expose the existence of a negative definition. Unless students rephrase these situations 
implicitly, or perhaps explicitly, it seems unlikely that they would see this similarity and link 
these situations, when they are given as conclusions to theorems, to the action of beginning a 
contrapositive proof or a proof by contradiction.  

In addition to automating small portions of the proving process, we would also like to 
enhance students’ searching skills (i.e., their tendency to look for previously proved related 
results that might be helpful) and to enhance students’ tendency and ability to “explore” 
possibilities when they don’t know what to do next. In a previous paper (Selden & Selden, 
2014, p. 250), we discussed the kind of exploring that was entailed in proving the rather 
difficult (for students) Theorem: If S is a commutative semigroup with no proper ideals, then 
S is a group.  

Teaching and Research Implications 
The above considerations can lead to many possible teaching interventions, not all of 

which can, or should, be attempted simultaneously if one also wants to obtain data on their 
effectiveness. This then brings up the question of priorities. What proving actions, of the 
kinds discussed above are most useful for mid-level university mathematics students to 
automate, when they are just learning how to construct proofs? Since such students are often 
asked to prove relatively easy theorems—ones that follow directly from definitions just 
given—it would seem that noting the kinds of structures that occur most often might be a 
place to start. Indeed, since every proof can be constructed using a proof framework, we 
consider constructing proof frameworks as a reasonable place to start.  

Also, helping students interpret formal mathematical definitions so that these become 
operable might be another place to start. This would be helpful because one often needs to 
unpack a definition into an operable form in order to use it to construct a second-level 
framework. However, it is becoming clear, that learning to use definitions is a multi-stage 
process.  

Finally, we believe this particular perspective on proving, using situation-action links and 
behavioral schemas, together with information from psychology and neuroscience, is new to 
the field. 
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An examination of college students’ reasoning about trigonometric functions 
with multiple representations 

 
Soo Yeon Shin 

Minnesota State University 
 
The purpose of this study is to examine how individual college students reason through tasks 
using trigonometric functions and translate among different types of representations of 
trigonometric functions across various mathematical tasks. 
 

To examine how individual college students reason through tasks using trigonometric 
functions among different types of representations, the author used a qualitative embedded 
multi-case study for this study. An embedded design was used to study various units within an 
identifiable case. In this study, the tasks served as the cases, with each case/task being 
purposefully designed to begin in a different one of Duval’s (2000, 2004) representation 
registers (natural language (N), drawings (D), symbolic systems (S), and graphs and 
mathematical diagrams (G)). Analysis of six participants’ work was embedded as sub-units 
within each of these cases. Data were collected and analyzed under two frameworks, Duval’s 
(2000, 2004) cognitive approach and Lithner’s (2004, 2008) mathematical reasoning–imitative 
reasoning and creative reasoning. 

In this study, the multiple-functional registers N and D were used less often by the 
participants than the mono-functional registers S and G. However, participants used mainly 
creative reasoning when employing the multiple-functional registers, N and D. Also, it was 
likely to see registers S and G used together when registers N and D were employed. Registers 
S and G were often used with imitative reasoning, although the use of register G contributed to 
several examples of local and global creative reasoning. 

Overall, translations among different registers that were based upon creative reasoning were 
more likely to lead participants to be able to complete given tasks. This study illustrated how 
college students employed their reasoning during open-ended and unfamiliar tasks, which 
helped students disclose their reasoning in informal ways without memorizing solutions. The 
study illustrated some interesting ways in which students were able to creatively use different 
registers to help them when they became stuck in the register in which they were working. By 
combining Duval’s and Lithners’ frameworks together, imitative and creative reasoning were 
classified in a new approach that could be usefully applied to studies other types of functions in 
future work. 
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The generalization of the function schema:
The case of parametric functions

Harrison E. Stalvey Draga Vidakovic
Georgia State University Georgia State University

This paper reports on an investigation of fifteen second-semester calculus students’ understanding
of the concept of parametric function, as a special relation from a subset of R to a subset of R2.
A substantial amount of research has revealed that the concept of function, in general, is very
difficult for students to understand. Furthermore, several studies have investigated students’
understanding of various types of functions. However, very little is known about how students
reason about parametric functions. Employing APOS theory as the guiding theoretical perspective,
this paper describes how students reason about parametric functions given in the form p(t) =
( f (t),g(t)). One common misconception that was observed among students is addressed.

Key words: Parametric function, Calculus students, APOS

Introduction
The concept of function is one of the most fundamental concepts in mathematics. Despite

its emphasis in secondary mathematics curriculum, researchers have reported that undergraduate
students continually demonstrate an impoverished understanding of the function concept (Breidenbach,
Dubinsky, Hawks, & Nichols, 1992; Carlson, 1998; Oehrtman, Carlson, & Thompson, 2008;
Thompson, 1994; Vinner & Dreyfus, 1989). As a result, there have been calls for “instructional
shifts that promote rich conceptions and powerful reasoning abilities” (Oehrtman et al., 2008,
p. 27). To serve as a backdrop for developing such rich conceptions, Oehrtman et al. (2008) recommend
that students should experience diverse function types with an emphasis on multiple representations,
including different coordinate systems (p. 29). Moreover, in the Principles and Standards for
School Mathematics, the National Council of Teachers of Mathematics has called for curriculum
to incorporate parametric equations as representations of functions and relations (NCTM, 2000,
p. 296). In order to effectively respond to these instructional calls, it is crucial to consider students’
conceptions (and misconceptions) of parametric functions.

Several recent studies have investigated students’ understanding of functions more sophisticated
than real-valued functions of a single-variable, such as two-variable functions (Kabael, 2011;
Martı́nez-Planell & Trigueros Gaisman, 2012; Trigueros & Martı́nez-Planell, 2010; Weber &
Thompson, 2014), while other studies have explored students’ understanding of functions in
different coordinate systems (Montiel, Vidakovic, & Kabael, 2008; Montiel, Wilhelmi, Vidakovic,
& Elstak, 2009; Moore, Paoletti, & Musgrave, 2013). However, only a few studies have addressed
students’ understanding of parametric functions (Bishop & John, 2008; Keene, 2007; Trigueros,
2004), and no prior study has focused specifically on calculus students’ understanding of parametric
functions. The goal of this study was to investigate and document calculus students’ conceptual
development of the notion of parametric function as a special relation from a subset of R to a
subset of R2. This report addresses the following research questions:

1. For p(t) = ( f (t),g(t)), can students perceive p as a function?
2. What are students’ misconceptions when reasoning about parametric functions given in the

form p(t) = ( f (t),g(t))?
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Theoretical Framework
The theoretical framework guiding this study is Action–Process–Object–Schema (APOS)

theory (Asiala et al., 1996). An action is a transformation of objects by reacting to external cues
that give precise details on what steps to take. When an action is repeated, and the individual
reflects on it, the action can be interiorized into a process. An individual who has a process conception
can reflect on or describe the steps of the transformation without actually performing those steps.
Additionally, new processes can be constructed by the means of reversal of a process or the coordination
of two or more processes. When an individual becomes aware of the process as a totality and
can perform additional actions or processes on it, then the process has been encapsulated into
an object. Furthermore, objects can be de-encapsulated to obtain the processes from which they
came. The individual’s collection of actions, processes, and objects organized in a structured
manner is his or her schema. When an individual learns to apply an existing schema to a wider
collection of phenomena, then we can say that the schema has been generalized.

Context and Methodology
This study was conducted in one section of the course Calculus of One Variable II at a large

public university in the southeastern United States during the fall semester of 2013. Out of forty-four
students enrolled, fifteen volunteered to be in the study. These students participated in a semi-structured,
video-recorded interview that was approximately 1.5 hours long. Some interviews were conducted
in groups of up to three students, while other interviews were individual, depending on students’
availability outside of class. The students were first given a questionnaire, which they completed
individually on paper prior to the discussion with the interviewer. For each question, the students
were asked to explain their solutions verbally on an individual basis, but group discussion was
encouraged when it arose. The instructor for the course (one of the authors) was not present
during the interviews. Instead, the interviews were conducted by three other instructors, each
with a carefully written protocol.

Although the function concept is considered prerequisite knowledge for the calculus sequence,
the instructor for the course briefly revisited the definition as a rule that accepts an input and
returns a unique output. Then the instructor adapted this definition to define a parametric function
as a function that accepts a real number as an input and returns one ordered pair of real numbers
as an output, which was supplemental to the way the concept was introduced in the textbook for
the course. It should be noted that the interviews were conducted after the students were taught
the concept of parametric function, which is a standard topic in the calculus II curriculum where
this study took place.

The data reported in this paper is from students’ responses to one subquestion of the interview
which asked to determine whether p(t) = (t2, t3) represents a function. A correct response would
affirm p as a function because for one value of t there is a unique ordered pair. It was hypothesized
that in order to develop an understanding of parametric functions, an individual should possess
schemas for function and R2. Furthermore, in order to generalize the function schema and view
p(t) = (t2, t3) as representing a function, it was conjectured that the individual should coordinate
his or her schemas for function and R2.

Results
Out of fifteen students, three affirmed that p(t)= (t2, t3) represents a function and gave correct

justification, two students gave an affirmative answer with correct justification as a result of prompting
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from the interviewer, and ten students gave a negative answer or an affirmative answer with incorrect
or unclear justification (even with prompting).

Mary is the most descriptive example of a student who without prompting affirmed that p is a
function with correct reasoning. She said:

M: Well, if you’re thinking of like the point, then you’re only going to have one point. So that’s why I said
it was a function, because for each t like there’s only one point that it’s going to come out with.

Mary further explained:

M: You get a x output and a y output, but then I thought about it, and then it’s like a coordinate on a plane.
So it’s like for every t that you plug in, you get a point on the plane. So it eventually creates a graph.
So that’s kinda why I thought it’s a function.

In Mary’s reasoning, her schema for R2 is apparent when she described how p(t) = (t2, t3)
constructs a point in the plane: “You get a x output and a y output . . . and then it’s like a coordinate
on a plane. So it’s like for every t that you plug in, you get a point on the plane.” When she said,
“so it eventually creates a graph,” she is treating a point as an object and is imagining the process
of the point tracing a curve in the plane. She concluded that p is a function by coordinating her
schema for R2 with her schema for function: “So that’s why I said it was a function, because for
each t like there’s only one point that it’s going to come out with.” In this previous statement,
Mary is clearly applying the generic definition of function and treating t as the input and the point
(x,y) as the output. Because Mary did not need to evaluate p(t) at particular values of t or plot
points, she is considered to be coordinating her schemas for function and R2 at the process level.

Several misconceptions about parametric functions emerged when students were reasoning
about the function given by p(t) = (t2, t3). These misconceptions fell into four categories: (1)
misconceptions about the function value p(t), (2) misconceptions about the domain and range
of p, (3) misconceptions about the vertical line test, and (4) misconceptions about the input and
output of p. Due to space limitations, this report focuses on the most common misconception,
which pertained to the function value p(t).

Misconception: Function value
The misconception about the function value p(t) appeared in a couple of different ways. One

way, which was anticipated, pertained to the uniqueness of the function value p(t). Eight students
perceived the function value as not unique because evaluating p(t) results in a value for the first
component, t2, and a value for the second component, t3, which were viewed as two outputs
instead of one output in the form of an ordered pair. Other students were not bothered by the
possibility of getting different values for the components. In fact, this was their reasoning for
affirming p as a function. In particular, two students believed that the values of the components
had to be different in order for p to be a function.

In the following excerpt, Lee and Bailey express the misconception about the uniqueness of
p(t), while Nicole expresses the misconception about the distinction of the coordinates.

L: I put no for (c) because I remember him (the instructor) saying for time you have to have one output
for every input. So it looks like for this one you have two outputs for time, which I thought made no
sense.

N: I put yes because, like, other than 1 and 0, the other numbers they were different points, and I thought
pretty much that they were just points.
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I: Okay.
B: I put no simply because one t input and then there are two outputs.

Although Nicole affirmed p as a function, her reasoning was not correct. When she said,
“other than 1 and 0, the other numbers were different points,” she was referring to the fact that
x and y have different values at all values of t except 0 and 1. In particular, she was saying that
(t,x) and (t,y) are “different points” except when t = 0 and t = 1. This suggests that when determining
whether p is a function, Nicole was considering separately the two functions defined by x(t)
and y(t), instead of considering (x,y) as a single output of p. This was confirmed later in her
written work when she graphed y versus t instead of the plane curve defined by (x,y). Moreover,
it seems that Nicole required that x be different from y (at least, most of the time), as this was
her reasoning when affirming p as a function. Lee and Bailey, on the other hand, rejected p as a
function, claiming that an input value t gives two output values. Furthermore, nowhere in their
reasoning did they consider t2 and t3 as components of an ordered pair, indicating the lack of
coordination of schemas for function and R2.

As a result of prompting, two of the eight students who initially expressed a misconception
about the uniqueness of the function value p(t) were able to resolve their misconception and
affirm p as a function with correct reasoning. Lee is an example of a student who resolved this
misconception, while Bailey is an example of a student who did not, as illustrated in the next two
excerpts.

After Lee, Nicole, and Bailey’s initial elaboration about their reasoning when answering this
question, the interviewer prompted them to think about the graph of the curve defined by p(t). In
the following excerpt, when Nicole describes plugging in values for t to obtain points, Lee and
Bailey reconsider their earlier answers that rejected p as a function.

I: How would you go about graphing it?
N: I have no idea [laughs].
I: You have no idea? But you’re the only one who said it was a function [laughs].
N: I mean like . . . I just put numbers in . . . like if it was, you have (0,0), then (1,1). If you have 2, it would

be 4 and 8, something like that . . .
L: Oh, it is a function. If you plot the points, it’s just saying, like, let’s say we choose t to be 1, then the

coordinates would (1,1). Then we choose t to be 2. Then then coordinates would be (4,8). And keep
going like that . . . I didn’t even look at it to plot the points. I just saw that there were three ts [laughs].

I: Remind us again what your definition of a function was.
B: One input, one output.
I: If you take a single value of t . . . Let’s take 2 for you. You take 5. And t = �1. Do you get more than

one input, I mean, more than one output?
B: Yes.
L: You get two numbers, but then you’re getting one output as a ordered pair.
I: As an ordered pair. So for each t in . . .
L: There’s one ordered pair out.
I: [Speaking to Bailey] Does that satisfy your definition of a function?
B: Yes.

Lee explained that she rejected p as a function because she “saw that there were three ts.”
This suggests that she was not applying her schema for R2 in order to consider the output as an
ordered pair. However, when Nicole described plugging in values of t to create ordered pairs,
Lee was prompted to coordinate her schemas for function and R2 and assign a unique ordered
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pair to each value of t. As a result, Lee was able to perceive p as a function and give the correct
justification, “you get two numbers, but then you’re getting one output as a ordered pair.” Furthermore,
after Lee described plugging in values of t, she said, “and keep going like that.” This statement
indicates that she can imagine evaluating (t2, t3) for all values of t, suggestive of a process conception
of parametric function.

In the previous excerpt, Bailey also changed his answer to the affirmative, but he did not
give any reasoning to suggest that he understood why. In the following excerpt, Bailey changes
his answer again, rejecting p as a function. His further reasoning demonstrates a weak schema
for R2. This discussion took place when Bailey was trying to determine if the y-coordinate is a
function of the x-coordinate in p(t) = (t2, t3).
B: You know what, I don’t think (c) is a function now. I’m going back to no.
I: Going back to no?
B: But this can’t be [pause] this can’t be a point.
I: Why not?
B: The variables are the same.
I: So?
B: I don’t see how it’s an ordered pair.
I: It’s in parentheses with a comma.
B: But it’s the same variable, t. So how can it be . . . it’s at two places at the same . . .
I: No, it’s only at one place. When t is 0, it’s at the place (0,0). When t is equal to 1, it’s at the ordered

pair (1,1). At that one particular spot.
B: Okay. I don’t see it, because t is our x-value [makes hand motions in the air drawing a horizontal line].
I: Why?
B: Because it’s p of t. So if I put in 2, I get 4 and 8.
I: 4 comma 8. You get the ordered pair.
B: But they’re both ts. So aren’t they both points on the line t?
I: No.
B: No? Okay.

Bailey’s response suggests that he is unable to coordinate the processes of x(t)= t2 and y(t)=
t3 to construct an ordered pair because he cannot conceive that the components of an ordered pair
could be defined by functions. He described plugging in 2 for t and getting the values 4 and 8,
which are “both points on the line t.” From this statement, it seems that when Bailey evaluated
p(2), he constructed two separate ordered pairs, (2,4) and (2,8). Furthermore, referring to t
as a line and making a linear hand motion when he stated, “t is our x-value,” suggests that he
views t as the horizontal axis and t2 and t3 as values on the vertical axis. The idea of viewing t
as belonging to an axis has been offered in literature to imagine (x,y,z) = (x(t),y(t), t) as a point
in space (Keene, 2007; Oehrtman et al., 2008). This idea also agrees with Euler’s presentation of
non-planar curves in Book II of his Introductio in Analysin Infinitorum. However, Bailey would
need to first construct a schema for R3 in order to view t, t2, and t3 as values on mutually perpendicular
axes.

Conclusion
It was previously hypothesized that an individual should possess schemas for function and

R2 in order to develop an understanding of parametric functions. In particular, it was conjectured
that the coordination of these schemas is necessary to generalize the function schema and view
p(t)= (t2, t3) as representing a function. The results reported in this paper support this hypothesis.
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Students who, either with or without prompting, correctly affirmed p(t)= (t2, t2) as representing
a function appeared to apply both schemas for function and R2. Meanwhile, students who rejected
p as a function appeared to have an underdeveloped schema for function or R2 (or both). Students
with a weak function schema did not appear to use a coherent function definition when discerning
whether or not p is a function. On the other hand, students who demonstrated having a well-developed
function schema did not always apply (or possibly even possess) a schema for R2, which led to
the misconception that p(t) is two-valued, namely t2 and t3. Based on these results, it is recommended
that students be provided with opportunities to develop and strengthen their schemas for function
and R2 prior to the study of parametric functions.
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Using journals to support student learning; The case of an elementary number theory course 
 

Christina Starkey, Hiroko K. Warshauer, and Max L. Warshauer 
Texas State University 

 
We present results from a study that examined the use of journal writing by undergraduates in an 
Honor’s Number Theory course and how the journals supported students’ learning, attitudinal 
changes, and proof writing. The 17 undergraduates in this course submitted weekly journals 
online to their instructor and reflected on their mathematical learning. The instructor provided 
comments to each of the students’ journal submissions that informed him of each student’s 
successes, challenges, issues, and questions. We analyzed the journals and share our preliminary 
findings on what the journal writing revealed about students’ learning and how their 
mathematical understanding developed over a semester. We include results of the pre-post 
survey of student attitudes toward mathematics along with interviews of 5 of the students that 
give additional insight into their experiences in the course. Future work will examine the uses of 
journals in other courses, and different ways journals support student learning 
 
Keywords: Transitions to proof, Journaling, Number Theory 
 

This poster will report on the results of a mixed methods study of an elementary number 
theory class in which students kept weekly reflective math journals as they learned how to prove. 
Students’ performance in proof writing has been investigated in recent years (Weber, 2001; 
Moore, 1994; Raman, 2003). The research indicates that learning to read and write proofs 
presents a significant challenge to undergraduate students (Weber, 2001; Raman, 2003), and 
Moore (1994) asserts that the challenge stems from the significant shift in thinking away from a 
computational view of mathematics necessary for proof competency. To address this, researchers 
are increasingly calling for shifts away from traditional proof instruction, in which students are 
presented complete proofs and must reproduce them on exams, to instruction that makes students 
more active in the proving process (Yoo, 2008; Jones, 2000; Blanton, Stylianou, and David, 
2009). This includes providing opportunities for students to reflect on proofs and to write proofs 
of their own. However, research is still needed to investigate innovative pedagogical approaches 
to teaching proof and how students’ thinking about proof develops. Reflective journaling has 
been shown to be a unique, valuable tool for supporting students’ learning and providing insight 
into students’ thinking in other mathematical domains (Borasi and Rose, 1989; Clark, Waywood, 
& Stephens, 1993). This study investigated the questions: How do reflective journals support 
students’ learning to prove in an undergraduate elementary number theory course? How do 
reflective journals demonstrate the development of students’ thinking about proof in an 
undergraduate elementary number theory course? 

Methods 
The elementary number course in this study allows students at different levels of 

mathematical maturity to participate and work together. It also provides a context for students to 
learn how to explore problems deeply and give careful, rigorous mathematical proofs. The 17 
undergraduate students in the course wrote weekly journal entries related to the elementary 
number theory course and submitted them online. The instructor of the course then read and 
responded to each student’s submission. The journal assignments consisted of both structured 
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and unstructured prompts. Our mixed methods study included pre-post attitude surveys, which 
we analyze quantitatively, using a t-test.   A qualitative portion of our data collection included 
pre-post surveys asking the students’ views about mathematical proof and their perceptions about 
journals; students’ open-ended and structured journal responses and task-based interview 
transcripts with five of the students. The qualitative data were coded according to the framework 
provided in Borasi and Rose (1989) for the journaling component, and the quantitative attitudes 
surveys were analyzed using a modified Fennema-Sherman Attitude Scales (Kalder & Lesik, 
2011; Tapia & Marsh, 2004). The students’ proof attempts from the task-based interviews were 
coded using Raman’s (2003) framework for students’ proof ideas.  

Results 
The ongoing analysis of students’ structured and unstructured journal entries, along with the 

interview data, suggest the students used the unstructured journal assignments primarily as a 
means to reflect on their feelings about the course material and their learning. However, in the 
structured journals, the students wrote specifically about the process of proving and their views 
about mathematics and proving. The entries also reveal students’ thinking about their use of 
definitions, examples, and strategy when attempting to write proofs. All of the interviewees 
discussed an appreciation for instructor feedback on their journals, and mentioned that they saw 
changes in instruction based on their journal entries, which supported their learning. Implications 
of this study suggest that journaling creates an added dimension of communication for students 
and the instructor to support students learning the course material in a more responsive manner. 
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  The calculus laboratory: Mathematical thinking in the embodied world 
 

Sepideh Stewart 
University of Oklahoma 

  
  Keywords: Calculus, Geogebra, Three Worlds Model of Mathematical Thinking   
 

The use of technology in teaching and learning has been explored by many mathematics 
education researchers. It is believed that, the technology itself is not a magic bullet to attract 
students to mathematics and more importantly help them to learn.  

 
The research described here is a case study that took place at a large research university, 

while the author was teaching a section of the Calculus I course. Throughout the semester, 
the instructor held one lecture per week at the mathematics department’s computer laboratory 
and encouraged students to solve calculus problems using the free software, Geogebra. 
During these sessions, the instructor answered questions and helped students individually or 
in groups. Almost all students (n=50) attended the laboratory sessions regularly and very 
seldom missed a class. Students were given approximately three days to complete the 
laboratory assignments and upload solutions in the dropbox for assessment (10% of total 
grade). The instructor then graded the assignments using an ipad and posted immediate 
feedback to students on D2L. The data for this study emerged from an online survey of the 
Calculus I students enrolled in the course and their reaction to the exposure to the weekly 
laboratory sessions. 

    
The aim of the study was to allow students to experience calculus first-hand and discover 

many fascinating aspects of the subject on their own. The underlying theory to guide the 
research was Tall’s (2013) framework of three world of embodied, symbolic and formal 
mathematical thinking. In his view, the world of conceptual embodiment is based on “our 
operation as biological creatures, with gestures that convey meaning, perception of objects 
that recognize properties and patterns...and other forms of figures and diagrams” (2010, p. 
22). Embodiment can also be perceived as the construction of complex ideas from sensory 
experiences, giving body to an abstract idea.   

 
Did visualizing complex and fancy equations such as y2 (y2 - 4)=x2 (x2 -5) (devil’s curve); 

looking for limits of functions and estimating local maximum and minimum values 
graphically, help a group of 50 students (non-mathematics majors) in this study to relate to 
what they were studying and connect them closer to calculus?  

 
As part of a larger visualization project the author is working with a group of three 

mathematicians, a physicist and a cognitive psychologist to discover more about the 
embodied world of mathematical thinking and its role and importance in understanding 
mathematics.    
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Pedagogical challenges of communicating mathematics with students: Living in the formal world of 

mathematical thinking 
 

Sepideh Stewart     Ralf Schmidt                             John Paul Cook                                               Ameya Pitale 
      University of Oklahoma           University of Sciences and Arts of Oklahoma           University of Oklahoma 
 
In this paper we examine an Abstract Algebra professor and one of his students’ thought 
processes simultaneously as the class was moving toward the proof of the Fundamental 
Theorem of Galois Theory. We employed Tall’s theory of three worlds of mathematical 
thinking to trace which route (embodied, symbolic, formal) the mathematician was choosing 
to take his students to the formal world. We will discuss the pedagogical challenges of 
proving an elegant theory as the events unfolded. 
 
Keywords: Reflections on Teaching, Abstract Algebra, Formal World of Mathematical 
Thinking 

Introduction  
  Research in pedagogy at the university level is fairly new, and regrettably the amount of 

communication between mathematicians and mathematics educators on pedagogy is still very 
limited. According to Byers (2007) “Many mathematicians usually don’t talk about 
mathematics because talking is not their thing – their thing is the “doing” of mathematics” 
(p. 7). As Dreyfus (1991) suggested, “one place to look for ideas on how to find ways to 
improve students’ understandings is the mind of the working mathematician. Not much has 
been written on how mathematicians actually work” (p. 29). Two decades later,  Speer, 
Smith, and Horvath (2010) declare  that “very little research has focused directly on teaching 
practice and what teachers do and think daily, in class and out, as they perform their teaching 
work” (p. 111).  In recent years some mathematics professors have been more willing to 
examine and reflect on their own teaching styles, leading to a growing body of research in 
this area (Paterson, Thomas, & Taylor, 2011; Hannah, Stewart, & Thomas, 2011; 2013; 
Kensington-Miller, Yoon, Sneddon, & Stewart, 2013).    

In this project, we collaborated with a mathematician to examine his thought processes 
over the period of two semesters. Since he was an abstract algebraist, naturally our attention 
shifted on the pedagogical challenges of teaching his subject.  In addition to a lack of 
information about teaching practices in abstract algebra, there is considerable evidence 
documenting student difficulty with the subject’s most basic concepts (Clark, Hemenway, St. 
John, Tolias, & Vakil, 2007; Dubinsky, Dautermann, Leron, & Zazkis, 1994).  This situation 
has led one group of researchers to starkly conclude that “the teaching of abstract algebra is a 
disaster” (Leron & Dubinsky, 1995, p. 227).  To further investigate what makes this course so 
challenging, we examined the mathematician’s daily mathematical activities through his 
teaching diaries to understand his way of thinking and possible challenges of teaching 
abstract algebra that many mathematicians and their students may face. The overarching aim 
of this study is to investigate how mathematicians live and operate in the formal world of 
mathematical thinking and, at the same time, communicate their knowledge to their students. 

 
  Theoretical Framework   

     The theoretical framework described in this paper is based on Tall’s three world model of 
embodied, symbolic and formal worlds of mathematical thinking. Tall (2010) defines the 
worlds as follow: The embodied world is based on “our operation as biological creatures, 
with gestures that convey meaning, perception of objects that recognise properties and 
patterns...and other forms of figures and diagrams” (p. 22). Embodiment can also be 
perceived as giving body to an abstract idea. The symbolic world is the world of practicing 
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sequences of actions which can be achieved effortlessly and accurately. The formal world 
“builds from lists of axioms expressed formally through sequences of theorems proved 
deductively with the intention of building a coherent formal knowledge structure” (p. 22). In 
Tall’s view (2013, p. 18), “formal mathematics is more powerful than the mathematics of 
embodiment and symbolism, which are constrained by the context in which the mathematics 
is used”.  He believes that the formal mathematics is “future-proofed in the sense that any 
system met in the future that satisfies the definitions of a given axiomatic structure will also 
satisfy all the theorems proved in that structure. The formal mathematics can reveal new 
embodied and symbolic ways of interpreting mathematics. ” (p.18). In his view “research 
mathematicians will focus attention on the higher demands of research and assert professional 
standards appropriate at that level” (p. 143), but they must make their subject appealing to all 
undergraduates, not just to an elite group who are going to become research mathematicians.      
    We employed this framework to examine which worlds of mathematical thinking the 
mathematician in this study was accessing the most while teaching certain abstract algebra 
concepts, and which route he was taking to take his students to the formal world. 
Furthermore, we will seek to find some of the pedagogical challenges that both the 
mathematician and the student were facing along the way.   
 

Method 
The research described here is a case study of a research mathematician (the second 

named author, Ralf) that took place at The University of Oklahoma in Fall 2012 and Spring 
2013. The research team consisted of two mathematicians and two mathematics educators. 
Ralf, one of the two mathematicians, was an experienced faculty member who had taught 
many mathematics courses from college algebra to algebraic geometry. He captured many 
details in his daily diaries and shared them promptly with the rest of the research team. The 
journals were brief, often included technical language, and gave an impression to the reader 
of being present in the class. He wrote journal entries for nearly each class period over the 
entire two semester course sequence.  In these entries, he would note the content discussed in 
that class period and reflect on any aspects of teaching that came to mind, including 
preparation, in-class decisions, student engagement, and pedagogical considerations (among 
others).  These were shared immediately with the rest of the research team.  Weekly meetings 
were convened to discuss and reflect upon the journal entries and emerging themes related to 
these entries and were audio recorded. Additionally, Ralf welcomed unannounced visits to his 
class by other members of the team. During the course of the two semesters he planned and 
devised a few teaching experiments in his abstract algebra lectures.   His positive attitude 
toward teaching and education enabled the team to get as close as possible to his way of 
thinking and interacting in the classroom. In addition, Kim (pseudonym) one of the 15 
students in Ralf’s class was recruited on a volunteer basis by the first author.  To protect her 
anonymity (and, correspondingly, the authenticity of her journal entries), Kim’s identity was 
not (and have not been) revealed to any other member of the research team.  Similarly to her 
instructor, Kim wrote daily journal entries and supplied them via email to the first author on a 
weekly basis.  These journals were not shown to the rest of the research team until several 
months after the conclusion of the year-long course sequence. Both journals, Kim’s and 
Ralf’s, along with the transcripts from the weekly research meetings were coded using a 
standard open-coding scheme (Strauss & Corbin, 1998).  

The main themes emerging from the data were: (a) pedagogical challenges of 
communicating the “greatness” of a concept (e.g. Galois Theory) to a beginner, (b) difficulties of 
teaching very abstract concepts (e.g. Tensor products) which are hard to explain or break down, 
(c) having a dynamical class while still being traditional, (d) mediating the disconnect between 
desire for mathematical elegance and the struggles of a student learning difficult material.   
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The course  

The class we discuss was a two-semester course in abstract algebra for beginning 
graduate students. The purpose of this class is to provide students with a good foundation in 
group theory, ring theory and field theory - basic material every mathematician should know. 
There is a corresponding abstract algebra qualifying exam for the PhD degree, which itself is 
not part of the class, but for which the class is supposed to prepare. Usually such a course has 
an enrollment of about 15 students in the first semester, and a slightly lower number in the 
second semester. In this respect the observed course was rather typical. This was the second 
time for Ralf to teach this course. The first time, five years earlier, he had presented the 
course material in the traditional order, i.e., groups - rings - fields. This time, he decided to 
reverse the order and teach fields - rings - groups. The book “Algebra: Volume 1, Fields and 
Galois Theory” by Falko Lorenz (2006), which takes this approach, was chosen as a textbook 
for the course. The traditional way seems more logical at first, as the material progresses 
from objects with minimal structures (groups) to objects with rich structures (fields). 
However, the reverse approach follows more closely the historical development, and it seems 
that students have no difficulty, in fact less difficulty, grasping the “rich” structures first. The 
sequence fields - rings - groups is somewhat simplified, the actual order of things being 
dictated by the overarching goal to get to the main theorem of Galois Theory. Accordingly, 
the book chosen does start with the basic theory of algebraic field extensions.   In the course 
taught, the main theorem of Galois Theory was presented about 1/3 into the second semester. 
In some sense, Galois Theory was the dominating theme of this two-semester course. The 
theory of algebraic field extensions, the development of the necessary ring-theoretic 
concepts, the study of separability of polynomials, all leading up a straight path to Galois 
Theory. The entire concept of “fields first” may be viewed as rooted in a desire to get to the 
Fundamental Theorem of Galois Theory as fast as possible.    

      
Results and Discussion 

    In this section, we will analyze Ralf and Kim’s journals on the four lectures leading up to 
the proof of Galois Theory. Ralf had mentioned the word “Galois Theory” several times, and 
much before getting to the subject itself. He had made comments about a connection between 
algebraic field extensions and group theory, which probably remained mysterious at the time. 
Although, these comments were designed to instill a feeling in the students that Galois 
Theory is something important. It seems that the students knew that they were heading for 
something “big”, without knowing precisely what it was.  
 
Day 1: February 4 
     In his journals, Ralf wrote: I started with a review of normal field extensions, a topic from 
last semester, since this was needed in our first theorem. Then I announced that we are now 
making the most important definition of the entire course: Galois extensions. Our first 
theorem was the characterization of Galois extensions as normal and separable, and this was 
followed by some easy consequences. We haven't proved the main theorem of Galois Theory 
yet, but already one can see the flavor of the whole theory. Towards the end we were in a 
position where I could explain to the students the basic principle, the correspondence 
between groups and field, and how this allows one to study fields using methods of group 
theory. Students didn't comment on this explicitly, but still I got a feeling this remark made 
sense to most of them. It was almost a small watershed moment, in the sense that after this 
class the students should be able to explain to someone else what the basic principle of 
Galois Theory is, while before this class they couldn't. 
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     On the same day Kim wrote: Today, Dr. Schmidt did a quick review over the material we 
covered in class last time, as well as, integrating a few things from previous classes that we 
would need for this lecture. (He usually does this every class. It takes only about five minutes, 
but it really helps me get in my “algebra groove”.) He also made sure to point out one of the 
theorems we learned today as “very important”. When a teacher says that, I make sure to 
highlight, star, and mark it with bold letters. (It has almost been a week, and I have used this 
theorem multiple times in my homework, the lecture, and even to better understand an 
algebraic concept.) 
       For a research mathematician, the need to make a transition from the formal world of 
mathematical thinking back to the symbolic and embodied worlds is pedagogically 
challenging and requires an awareness of students’ level of thinking and careful preparation.  
In one of the research meetings, Ralf said: “Mathematics drives the class, I don’t even think 
about pedagogy in some sense.”  We noted that Kim was aware of the fact that an important 
theory was mentioned in class but she did not elaborate on it.  Ralf suspected that the class 
was not quite ready for the proof of the main theorem, so he deliberately delayed it to provide 
the necessary preparations. 
 
Day 2: February 6 
      On February 6 Ralf wrote: We proved two more lemmas in our development of Galois 
Theory. At this stage, the interplay between groups and fields is all-present. The concept of 
normal subgroup of a group, and the accompanying quotient, was introduced two weeks ago 
via homework problems. Had we not had this concept, we would have had to define it in this 
class. This is a nice example of how group theory is naturally motivated through field theory. 
As was pointed out to me, so far this semester there was a decided lack of examples. The 
theory remained almost completely abstract. Somehow, it doesn't bother me, but I am not 
sure how the students think about it. In any case, the abstract phase will soon be over. The 
next homework sheet will have three instructive examples of Galois extensions over Q. It is 
easier to find good examples once the main theorem of Galois Theory will be proven. 
     On the same day Kim wrote: Today was pretty much the same as usual - a short recall, 
where he hits the key points of previous lectures again and a wonderful lecture with diagrams 
and helpful notes sprinkled throughout. One thing I noted is that he is really good about 
recalling theorems and propositions from previous lectures to helps us remember why 
statements are true.  
      Ralf had his eyes focused on the formal mathematics and was going to delay giving 
examples till after the theorem was proved.  On the other hand, Kim thought this was just 
another abstract algebra lecture and seemed unaware of the fact that Ralf was preparing the 
path for the proof of Galois Theory. It is noteworthy that on two occasions (February 4 and 
6), the second mathematician involved in this research visited Ralf’s class. From the level of 
the conversation that they had together at the research meeting, we noticed that his take of the 
classes was completely different from Kim’s. He mentioned: “Yes, I was very much 
distracted by the math, it was so nice that I was not paying attention to your teaching.” 
 
Day 3: February 8 
      On February 8 Ralf wrote: Today we got right up to the main theorem of Galois Theory 
for finite extensions. I went slowly and thoroughly, recalling concepts like the normal closure 
(something from last semester). I asked a lot of questions, and got a reasonable amount of 
replies. Made me think that the majority of the class is still with me. The amount of 
interaction with the class made for a good atmosphere today. I spent the last 10 minutes 
giving some explanations about the new homework sheet, which was handed out today. Since 
we are not having discussions this semester, I feel this is necessary. Otherwise the 
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homeworks and lectures would live side by side in parallel universes, and maybe students 
would not always see the connections. So I explained how they can use several of the results 
that were proven today to attack some of the homework problems.   
       In this lecture, Ralf used the homework to connect the symbolic and formal worlds of 
mathematical thinking together and despite going through some hard concepts, interacted 
well with his students. Unfortunately, we did not receive any journal entries from Kim on that 
day. At the weekly meeting, Ralf commented that “Well we are doing Galois Theory now, it’s 
very exciting, very attractive mathematics, it’s just going the same style, just old fashioned 
teaching and I ask some questions and I get some answers, it’s going pretty well”. 
 
Day 4: February 11 
       On February 11 Ralf wrote: In this class we proved the main theorem of Galois Theory. 
Looking at my notes right before class, I realized that all the pieces of the proof are in place, 
and there isn't really much more to do. So I decided to more or less have the students develop 
the proof. I started the class by not stating the theorem, but writing down some ingredients of 
the proof, without the students knowing that this is going to be a proof at all. Then I guided 
them towards the main theorem by asking questions. Within ten minutes the proof was 
complete, and only then did we state it formally as a theorem. This was followed by an 
example, in fact our first real example ever. I found this example very instructive, and I hope 
the students did too. In any case they seemed very alert, maybe having to do with the fact that 
similar examples are on the current homework sheet. This was a class with a lot of 
communication back and forth, and I found it to be maybe the best class so far this semester. 
After weeks of developing theory, it was like bringing in the harvest. 
       On the same day Kim wrote: Today, we are going to prove the main theorem of Galois 
Theory. That is how Dr. Schmidt started class. With that knowledge, how could one not smile 
happily at the prospect of learning a foundational theorem to one of her favorite subjects.  
Yep, I grinned and looked around at my classmates to share in each others’ excitement. After 
that he dived right into the lesson with a theorem which was pretty much intuitive after 
everything we had learned to this point, but by no means trivial. He then did something really 
cool. He started by explaining the concept of mapping intermediate extensions of E to 
subgroups of G(E/K). Then he asked questions to the class that lead us logically to proving 
this map was a bijection. Then he said, “Thus, we have the main theorem of Galois Theory”. 
It was so “Andrew Wiles” that I wanted to clap. He then gave us the formal theorem. Dr. 
Schmidt then proceeded to tell about how Galois was thinking in terms of polynomials when 
he came up with this theorem, not fields. Dr. Schmidt went on to give the definition of the 
“Galois Group of f over K” or (the way Galois thought of it) “the Galois group of the 
equation f(x) = 0”. It was great! 
      Ralf considered this class as the culmination of a great deal of work, and possibly the 
high point of the entire two-semester course. We noticed that Ralf was grounded firmly into 
the formal world throughout these four lectures. In the last lecture, Kim finally acknowledged 
the theory and expressed her excitements regarding its proof.   
 

Concluding Remarks 
     This study uncovered some of the complexities of communicating abstract algebra to 
students. Clearly, Ralf believed the need to remain as close as possible to the formal world of 
mathematical thinking and only on the last day decided to reverse back to the symbolic world 
by giving some examples. It seemed that Kim felt at home by this approach, however did not 
have sufficient experience and expertise to follow Ralf’s path leading up to the main proof. 

Over the past two years, Ralf’s daily teaching journals, the weekly research meetings and 
many hours of discussion while analyzing the data, has revealed a significant amount of 
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insight into his thought processes and has resulted in a fruitful collaboration for everyone 
involved in this project. Of course, this is but a small portion of his journals and reflections (a 
full-scale research report is beyond the scope of this proposal).  

To understand more about the nature of the formal world of mathematical thinking our 
future research directions will involve studying Ralf’s research activities. This will include 
analyzing his research journals, attending his seminars and observing some of his research 
meetings with his collaborators.     
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In this paper we present a mathematics professor’s thought processes while teaching 
Calculus I, as shared through her teaching diaries and later discussed in weekly meetings 
with a team of two other mathematicians, a mathematics educator, and a cognitive 
psychologist over the period of a semester. We examine the way she balanced formal and 
symbolic thinking while encouraging embodied thinking throughout her lectures. Moreover, 
we will discuss some data obtained from students through interviews, a questionnaire, and 
end-of-semester course evaluations.  
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Thinking, Expert-Novice Distinction, Cognitive Psychology 
 

Introduction  
    Research in pedagogy at the university level is still in its infancy, and the 

communication between mathematicians and those outside of the community on pedagogy is 
often very limited. Byers (2007) states that “many mathematicians usually don’t talk about 
mathematics because talking is not their thing – their thing is the “doing” of mathematics” (p. 
7). As Dreyfus (1991) suggested, “one place to look for ideas on how to find ways to improve 
students’ understandings is the mind of the working mathematician. Not much has been 
written on how mathematicians actually work” (p. 29). Two decades later, a study by Speer, 
Smith, and Horvath (2010) shows that “very little research has focused directly on teaching 
practice and what teachers do and think daily, in class and out, as they perform their teaching 
work” (p. 111). In an attempt to improve this situation, Hodgson (2012), in his plenary 
lecture at ICME 12, raised the point about the need for a community and forum where 
mathematicians and mathematics educators can work as closely as possible on teaching and 
learning mathematics. In recent years, more mathematicians are willing to examine and 
reflect on their own teaching styles, leading to a growing body of research in this area. For 
example, a study by Paterson, Thomas, and Taylor (2011) described a supportive and positive 
association of two groups of mathematicians and mathematics educators that allowed the 
“cross-fertilization of ideas” (p. 359). Hannah, Stewart, and Thomas (2011, 2013) indicated 
cases in which professors took careful diaries of their actions and thoughts during linear 
algebra lectures and reflected on them with the rest of the team. Also, a study by Kensington-
Miller, Yoon, Sneddon, and Stewart (2013) showed how a mathematician, with the support of 
a research team, made changes in his lecturing style by asking well-planned questions while 
teaching a large undergraduate mathematics course. 

In this paper, we will examine a mathematician’s daily mathematical activities through 
her teaching diaries to understand her way of thinking and possible challenges that many 
mathematicians (and their students) may face. The overarching goal of this project is to 
investigate how mathematicians live and function in the formal world of mathematical 
thinking and, at the same time, communicate their knowledge to their students. This research 
also has implications for instructors in Calculus I classrooms as many students find it difficult 
to transfer their relevant Calculus knowledge to other upper-division mathematics and 
science courses (Dray & Manogue, 1999). 
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Theoretical Framework   

Tall introduced a framework based on three worlds of mathematical thinking: the 
conceptual embodiment, operational symbolism, and axiomatic formalism. The world of 
conceptual embodiment is based on “our operation as biological creatures, with gestures that 
convey meaning, perception of objects that recognize properties and patterns...and other 
forms of figures and diagrams” (Tall, 2010, p. 22). Embodiment can also be perceived as the 
construction of complex ideas from sensory experiences, giving body to an abstract idea. The 
world of operational symbolism is the world of practicing sequences of actions that can be 
achieved effortlessly and accurately. The world of axiomatic formalism “builds from lists of 
axioms expressed formally through sequences of theorems proved deductively with the 
intention of building a coherent formal knowledge structure” (p. 22). Tall (2013) suggested 
that: “Formal mathematics is more powerful than the mathematics of embodiment and 
symbolism, which are constrained by the context in which the mathematics is used (p. 138). 
We employed this framework as a means of differentiating and drawing comparisons 
between the varying levels of mathematical thinking exhibited by the mathematician in her 
journals (and data from students). We hypothesized that the mathematician would “live” 
primarily in the formal world, whereas her students would operate mainly in the comfort zone 
of the symbolic world. How the mathematician promoted the value of the formal world to her 
students was of particular interest to our research team. 

Our research was also guided by the expert-novice distinction in cognitive psychology. 
The expert mathematician’s goal is to get her novice students to think about Calculus in a 
more expert-like manner (e.g., moving from the symbolic to formal worlds). This is quite an 
endeavor because, “children, or adults, may be able to reflect on their knowledge when asked 
(or may not), but it is unusual for an expert to be keenly aware of “how” they are operating 
on a problem while they are engaged in it” (Bjorklund, 2008). Experts and novices reason 
about problems and remember critical information quite differently (e.g., Chi, 1978). For 
example, chess experts were better able to remember the locations of chess pieces that were 
arranged in meaningful formations than were non-chess experts. However, it is important to 
note that the chess experts did not have superior memories for non-chess related information 
and for meaningless chess formations. When asked how to solve various physics problems, 
experts were more likely to categorize problems on the basis of the abstract formulas used to 
solve them, whereas novices were likely to categorize problems on the basis of literal, 
surface-level features (e.g., group all problems together that involved inclined planes vs. 
springs; Chi, Feltovich, & Glaser, 1981). Content knowledge plays a bigger role in the 
expert-novice distinction than does IQ (Schneider, Körkel & Weinert, 1989). The expert 
mathematician’s deep level of Calculus content knowledge will allow her to live in the formal 
world, whereas the students’ comparably shallow level of content knowledge will likely 
constrain the novices to operate in the symbolic world. Our research question is: Given that 
the mathematician in this study is able to think in all three worlds of mathematical thinking, 
how does she balance this in her Calculus lectures to facilitate students as they begin to 
reason beyond the level of symbol manipulation? 

 
Method 

The research described here is a case study of a research mathematician (Keri, one of the 
coauthors) that took place at The University of Oklahoma in Fall 2013. The research team 
consisted of three mathematicians, a mathematics educator, and a cognitive psychologist 
forming a community of enquiry to look into a mathematician’s daily thought processes 
while she taught a first-year Calculus course. The data emerged from the research 
mathematician’s daily reflections on her teaching of a Calculus I course, which were made 
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available to the group after each class; the team members’ observation of the classes and their 
comments; weekly discussion meetings of the whole group after reading each of these 
reflections; an online survey of the Calculus I students and interviews with several Honors 
students enrolled in the course; and the audio recordings of each meeting which were later 
transcribed. The mathematics professor in this study was an experienced faculty member who 
had taught Calculus I approximately 10 times at four different colleges and universities 
around the U.S. She captured many details in her daily diaries and during weekly meetings, 
and the rest of the research team, having already read the journals, gave the mathematician an 
opportunity to discuss her teaching from the past week. This was followed by questions from 
the research team, which often generated additional discussions. Additionally, the 
mathematician welcomed unannounced visits to her class by other members of the team. The 
main themes emerging from the data were: 1) teaching (e.g., preparation, pedagogy, 
examples, advice, rapport), 2) reflections (e.g., on students, timing, experiences of the 
instructor), 3) students (e.g., prior knowledge, group work), 4) technology (e.g., Webwork), 
5) questions (e.g., asked/answered by instructor and/or students), 6) visualizations (e.g., 
drawings, Wolfram demonstrations), 7) mathematics (e.g., Intermediate Value Theorem), 8) 
community of practice (e.g., seeking pedagogical advice outside or inside the research 
group), and 9) formal assessment (e.g., quizzes, exams). The coded data from the daily 
journals relating to teaching and reflection comprised 66% of the total data set; all other 
codes comprised less than 10% of the data each. For the purposes of this paper, we will 
concentrate on the teaching and reflection codes only. More specifically, we will describe 
how the instructor consciously thought about the best timing of concrete examples in her 
Calculus lessons and her reflections (and student reflections) on this teaching technique. We 
will also concentrate on the instructor’s use of visualizations, via chalkboard drawings and 
online demonstrations, to convey the mathematics in a more tangible manner.   

 
Results and Discussion 

Symbolic and Formal World Thinking in Calculus I  
As a formal thinker, Keri wanted her students to understand the theories and tried to 

balance the examples and amount of theory she provided. Was she successful?  How did the 
students react to this approach?   

Keri often reflected on students’ experiences and level of understanding in her Calculus 
course. In fact, out of the 87 total reflections coded from Keri’s daily class journals, nearly 
half were reflections where Keri attempted to gauge students’ understanding. One of Keri’s 
major reflections was that students greatly valued concrete examples and computations 
(symbolic world manipulations) and found very little value in the necessary framing 
discussion of theoretical background (formal thinking). Keri hypothesized that the reason 
students prefer instructors to work examples is because these are the types of skills often 
assessed on exams. “Maybe they have been trained to know that the examples tell them how 
to do what they are going to be evaluated on, whereas the definitions and the discussion…is 
the stuff that they can tune out because nobody is ever going to ask them that.” Keri also 
believed that students’ previous high school experience with Calculus was simply at the 
symbol-manipulation level. A student survey response provided evidence for Keri’s 
hypothesis, “Teacher focused too much on things that were not related to the tests and left us 
to learn some things by ourselves and did not provide many advanced examples that would 
help us either on the homework or test.” However, Keri realized that she often delivered the 
pertinent background information before presenting the concrete concept instantiations. “I'm 
thinking this afternoon about how I often explain all kinds of methods and reasons and 
background before I do examples. They don't get what I'm talking about until after they've 
tried some problems. So maybe I should restructure a bit by giving them the routine first, 

18th Annual Conference on Research in Undergraduate Mathematics Education 97218th Annual Conference on Research in Undergraduate Mathematics Education 972



letting them try some problems, and then talking about some of the motivations, background, 
etc.” Because Keri was so attuned to her students’ level of understanding and was willing to 
experiment with some new teaching techniques in her classroom, she decided to flip the order 
in which she presented theory and examples. “My reason for trying this was that I felt the 
students sort of zoned out during my supposedly-helpful introductory remarks, and only woke 
up when we started doing examples.” Examples have an important place in the learning 
process for novice undergraduates, expert mathematicians, and those advanced graduate 
students who fall somewhere between the two anchor points on the novice-expert continuum. 
Keri noted the value of concrete examples to help advanced mathematics students to better 
understand very complex concepts. “Well what’s the first thing, you know, when we want 
students to really dig in and understand a new abstract concept? The first thing we tell them 
to do is think of an example, a really finite concrete easy to understand, toy, if you want to 
use the word toy, example. And you run it through that abstract concept. So this is what we’re 
telling our graduate students right. When you get a new crazy abstract concept, right and of 
course it’s the way we learn too, cause how else do you understand anything except by trying 
to build a little example of it.”  

Also, it seems that Keri could relate to her students’ preference for concrete examples 
because she recalled being a student and having a very cursory understanding of the theory as 
she manipulated the symbols during calculations. It wasn’t until later that she established a 
firm, expert-like grasp on the underlying conceptual nature and interconnections of the 
mathematics. The vast majority of respondents (71%) in an optional end-of-semester survey 
agreed or strongly agreed with the statement, “I learned a lot from doing many in-class 
examples.” A student response on the end-of-semester mandatory instructor evaluations 
noted, “I think Dr. Kornelson did a good job on explaining things thoroughly--sometimes too 
thoroughly. Sometimes her explanations about what we were doing were so long that I would 
forget what exactly we were doing in the first place.” Or as one student put it rather simply, 
“too much theory based, not enough examples.” Keri knew that students under-valued the 
importance of theory and possessed an overreliance on examples, so she attempted to 
intersperse theory and examples more to help students make the connection between the two 
and begin thinking more like an expert in the discipline. 
Embodied Thinking 

In an effort to provide the most informative concrete examples, Keri often drew pictures. 
“There are certain things where a picture is not so helpful but there are certain kinds of 
topics… (where) the pictures are incredibly helpful…(because) you’d have a really hard time 
trying to do it without a picture or a demo on the computer. There are certainly times when 
students’ intuition lead them to exactly the right thing…you can say things that are more 
precise than that, but their intuition is good in that sense.” Sometimes students copy the 
images into their notes, but they don't understand the concept at a deep enough level to later 
make sense of their drawings. Keri mentions that the pictures are only helpful in conjunction 
with the background information that she’s talking about during lecture. “The students come 
and show you their notes and it will be exactly what you wrote on the board, and it makes 
absolutely no sense because whatever it was you were saying they didn’t get that down.” Keri 
is aware of this shortcoming of visualizations and says, “I wonder if I’ve written enough to 
make sure that when they look at the picture a week later they have any idea what it was 
about.”  

We wondered whether Keri, an expert mathematician, attempts to visualize and problem-
solve during her own mathematics research. She noted that there aren't many pictures that 
help to illustrate her own research. “I don’t have the opportunity to be visual very often 
because most of what I do doesn’t have much of a picture that is very illuminating. It’s great 
when there is. I do like to see examples.” Keri noted the pictures may be individualized from 
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one expert to the next, and sometimes there are multiple pictures that might represent the 
same topic under discussion. “So I have another picture in my head too but I don’t usually 
give that to the students. But I like that picture too because…it’s something…in a setting that 
looks completely different.”  

Further, Keri has insight into what her novice students must experience as they attempt to 
understand her drawings. When she views the visualizations of another expert devoid of any 
background or context, the pictures are nearly meaningless. “I work with a guy…and I’ll get 
this scanned set of notes that he’s written…and they’ll be these funny diagrams in there. And 
if I hadn’t had a face-to-face conversation with him where I’ve seen these things 
develop…these are completely incomprehensible. When we’ve had a face-to-face meeting I’ll 
know what this weird set of symbols means, but if we haven’t had a face-to-face meeting and 
this is all evolved in his own head outside of a conversation, it’s like I’ve got nothing.” The 
pictures are a visual representation of what is going on in the expert mathematician's mind. 
Sometimes Keri urges her students to draw pictures to get them in the ballpark of the right 
answer, “The graphs give you an intuition, but they may not tell you the whole story.” At 
times these visuals are clearly not optimal, “The picture I see is actually not a great 
picture…and loses a lot of the insight.” At other times, the pictures are all the proof one 
needs to solve a problem and no additional proof/theorem is necessary. “Rolle’s Theorem is a 
fun case…you draw a bunch of pictures and they believe that you have proved it. Even in the 
middle of class, I was still debating whether I was going to actually write a ‘proof proof’, but 
I decided the pictures were essentially the proof.” 

 
Concluding Remarks   

Without a doubt, the expert mathematician’s need to transition from the formal world of 
mathematical thinking to the symbolic and embodied worlds while teaching Calculus I is 
pedagogically challenging. The course demands a keen awareness of students’ level of 
understanding and background, and it is challenging for the instructor to balance the amount 
of the theory and examples that are presented.  

Returning to our research questions, the results of this study provide some insight into the 
daily thought processes engaged in by a mathematician. Specifically, this paper details the 
instructor’s efforts to help her students access the formal and embodied nature of Calculus. 
Of course, this is but a small portion of her journals and reflections. After her involvement in 
this project, Keri mentioned that she would do several things differently the next time she 
taught the Calculus I course. For example, she would like to implement her idea of starting 
off with examples followed later by information about the conceptual background of the 
material sooner in the semester.  

Our in-depth analysis of Keri’s day-to-day experiences is generalizable to other Calculus 
I instructors. We would recommend instructors to systematically reflect on what their 
students know and do not know. This process will help the expert mathematician to build on 
his novice students’ rudimentary understanding of Calculus to make it more expert-like. 
Although, it is not always clear in which order--embodied, symbolic and formal--the concepts 
may be introduced in different mathematics courses (Hannah, Stewart, & Thomas, 2014), our 
study suggests that Calculus instructors might consider making use of diagrams and 
visualizations to help their students intuitively understand the concept under consideration 
before the students begin attempting to compute the correct answer. The diagrams can be 
thought of as a way for students to estimate the correct answer. Estimation is a difficult skill 
for both children and adults to master (see Siegler, Thompson, & Opfer, 2009), so instructors 
may need to assist students as they attempt to hone this skill in the context of a Calculus I 
course. We also believe that if the instructor chooses to include diagrams in teaching, he 
should ensure that the students have a good explanation in their notes for what was drawn.  
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This collaboration has been positive because group members are not only focusing on the 
research mathematician’s teaching strategies and thinking processes, but also on how they 
might improve their own approaches to teaching. Moreover, it has provided a platform 
allowing mathematicians to freely talk about mathematics and share pedagogical challenges 
with each other. The presence of a cognitive psychologist has also illuminated some 
psychological principles that are in effect in the classroom.  

It is noteworthy that Keri continued writing daily journals for other classes because she 
found the process very helpful to her course preparation and reflection. Keri noted that this 
course gave her the opportunity to “tinker” with some new teaching techniques and gave her 
the confidence to do a major overhaul of her discrete mathematics course by offering it in a 
flipped format in Spring 2014 semester. The flipped format allowed Keri to spend more one-
on-one time with students as they grappled with particularly difficult course concepts.  

Future research could empirically investigate whether providing concrete practice prior to 
abstract understanding improves course performance in actual classrooms. Results from 
laboratory studies (Kaminski, Sloutsky, & Heckler, 2008) suggest that abstract understanding 
of mathematics concepts facilitates transfer of learning more so than does concrete examples. 
This has real implications for students who value examples over theory and are expected to 
transfer knowledge learned in Calculus to other relevant mathematics and science courses. 
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Components of a formal understanding of limit

Steve Strand

Portland State University

Abstract: This presentation reports on research investigating what mathematical constructs and 

ways of understanding constitute a formal understanding of limit. This work builds primarily on 

the genetic decomposition of Swinyard and Larsen (2012), which itself was modified from 

Cottrill, et al. (1996). Ten undergraduate students were interviewed in a semi-structured, 

clinical setting. While analysis is in the preliminary stages, the data suggest that the types of 

tasks given have a significant influence on whether or not formal understanding is demonstrated.

Key words: Limit, Real Analysis, APOS, RME

Introduction

The concept of limit has served as the theoretical foundation for the calculus and its 

applications ever since the work of Cauchy, Bolzano, and others in the early and mid 19th 

century (Grabiner, 1981). It follows that a formal understanding of the limit concept is essential 

to any investigation of the theoretical underpinnings of the calculus. As a part of my dissertation 

project to develop RME-based curriculum for introduction of the formal limit concept in Real 

Analysis, I am investigating the efficacy of, and hope to expand upon, the genetic decomposition 

of limit offered by Swinyard and Larsen (2012) (see Appendix A), which was itself modified 

from Cottril, et al. (1996). My goal with the current phase of the project is to deepen our 

knowledge of what mathematical constructs and ways of understanding constitute a formal 

understanding of limit.

I have interviewed ten undergraduate students, with varying degrees of experience with 

limits, about different aspects of their understanding of the limit concept. The interview tasks 

were designed to investigate the following questions:

What ways of understanding characterize a formal understanding of limit? In particular:

 a) Is there further evidence that a transition to a range-first perspective is required to 

have a formal understanding of limit?

 b) Is there further evidence that the development of the notion of arbitrary closeness is  

required to have a formal understanding of limit?

Literature Review

A great deal of research on student understanding of the limit concept has focused on 

investigating the struggles students face in working with limits and the tools they use to deal with 

those struggles (Bezuidenhout, 2001; Cornu, 1991; Davis & Vinner, 1986; Moru, 2009; 

Oehrtman, 2009; Sierpińksa, 1987; Szydlik, 2000; Tall & Schwarzenberger, 1978). The other 

main area of focus has been investigating the process of students formalizing their understanding 

of limit (Cottrill, et al., 1996; Oehrtman, Swinyard, & Martin, 2014; Swinyard & Larsen, 2012; 

Williams, 1991). In line with the aforementioned research, I will consider a student to have a 

formal understanding of limit if they can use a formal definition of limit to justify limit 

candidates and to construct formal proofs. That is, the student is able to engage in formal 

activities with limits using a formal definition. With my research I hope to contribute to our 
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growing understanding of what mathematical constructs and ways of understanding characterize 

a formal understanding of limits.

One of the first attempts to describe how students progress in their understanding of 

limits was put forward by Cottrill, et al. (1996). Using the Action, Process, Object, Schema 

framework (APOS), they described in a step-by-step manner how a student's understanding of 

limits of functions could deepen and become increasingly formal. In this model, a formal 

understanding of limit was achieved by abstracting processes at the informal level. This 

abstraction was exemplified in Step 5 of Cottrill, et al.'s genetic decomposition: “Reconstruct the 

processes of 3(c) in terms of intervals and inequalities. This is done by introducing numerical 

estimates of the closeness of approach, in symbols, 0 < | x – a | < δ and | f(x) – L | < ε.”

A further development of this model was offered by Swinyard and Larsen (2012). While 

the first three steps of the model put forward by Cottrill, et al. (1996), remained unchanged, it 

was Steps 4 – 7 which did not seem to describe what the authors were seeing in their data. 

Cottrill, et al.'s Step 1 – 3 described finding a limit, and rather than an abstraction of these 

processes, the formal definition described verifying a limit candidate. Swinyard and Larsen 

identified the fundamental shift in purpose from evaluating limits of concrete functions and 

sequences (less formal) to proving things about limits (more formal) as characterizing the 

transition to working with limits formally. The recognition of this change in the nature of the 

activity is what led them to propose a modification to the cognitive model. Specifically, if a 

student is to be able to work with limits formally, they must be able to reason from a range-first 

perspective, and they must have developed a reified notion of arbitrary closeness. In the standard 

definition, this reified notion of arbitrary closeness is represented by choosing a single arbitrary ε 

to stand in place of all possible measures of closeness.

The primary goal of this research is to verify and expand upon Swinyard and Larsen's 

(2012) genetic decomposition, as adapted from Cottrill, et al. (1996).

Theoretical Tools

The design of the interview study was guided by a few different resources. For the 

structure of the interview itself (apart from the content of the tasks), I looked to Zazkis and 

Hazzan's (1998) framework for designing interview instruments. Based on the authors' 

descriptions and my research questions, I opted for a semi-structured, clinical setup for the 

interviews. For the content, Swinyard and Larsen's (2012) genetic decomposition guided the 

design of the interview tasks. This decomposition uses the APOS framework to describe how a 

student might develop in their understanding of the limit of a function. Briefly, actions are 

procedures or transformations that are performed on objects, often in a very step-by-step manner. 

Through interiorization, a sequence of actions can be reflected upon, envisioned, and analyzed 

without needing to be carried out. When an individual interiorizes a sequence of actions we say 

that they have constructed a process. When an individual is able to reflect on a process as a 

whole and even apply other actions to that process, we say that the individual has encapsulated 

that process into an object. Actions, processes, and objects can be coordinated into schema. For a 

more thorough introduction to the APOS framework, see Brown, DeVries, Dubinsky, and 

Thomas (1997).

Together, APOS and Swinyard & Larsen's (2012) genetic decomposition helped me to 

focus my interview tasks, and will also be useful for analysis. One of my goals with each task 

was to provide insight into the level of formality (according to the genetic decomposition) at 

which each student was operating. I anticipate that one way to discern this will be to note in 
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which contexts and to what extent students use the language of actions, processes, or objects (in 

the APOS sense) to talk about limits.

Data Collection

In order to discern mathematical constructs and ways of understanding that characterized 

a formal understanding of limit, I interviewed ten students who were currently enrolled in an 

introductory analysis course, or courses that were upper-division prerequisites to analysis: Linear 

Algebra, Introduction to Proof, Abstract Algebra. Data consisted of video/audio recordings of the 

semi-structured, one-on-one clinical interviews, as well as my notes during and immediately 

following those interviews.

The interview questions were designed to get at different aspects of each student's 

understanding of limit. The first question asked them to evaluate a limit in algebraic form, while 

the rest of the questions explicitly asked them to explain or interpret different limit scenarios and 

statements about limits. The first three questions were somewhat informal, but the remaining six 

questions asked students to engage in formal activity with limits: explaining how the formal 

definition captures the idea of a limit, using the formal definition to verify a limit from a graph, 

using the formal definition to verify that a limit does not exist from a graph, and proving the 

additivity of limits for functions. From the outset I was interested in two different types of 

comparisons: 1) each students' language and activity on informal versus formal tasks; and 2) 

different students' language and activity on informal and formal tasks. That is, comparisons 

within students across different types of activities, as well as comparisons across students. In this 

way I hoped to identify mathematical constructs and ways of understanding that characterized a 

formal understanding of the notion of the limit of a function at a point.

Anticipated Results and Future Research

My objective is to expand our knowledge of what mathematical constructs and ways of 

understanding constitute a formal understanding of limits of real-valued functions. In particular, I 

hope that the analysis of my data will allow me to verify, refine, and perhaps expand upon the 

genetic decomposition of limit offered by Swinyard and Larsen (2012).

For the next steps in my research program, I will use this information to develop a local 

instructional theory, and an accompanying task sequence, that will explain how students can 

develop from an informal understanding of limit gained in the calculus sequence to a formal 

understanding as required for investigations in Real Analysis. This theory has been initially 

developed using my review of the relevant literature on limit and the design heuristics of 

Realistic Mathematics Education (RME), and will be further developed and refined in a series of 

teaching experiments.

Questions:

• What additional theoretical tools might be useful for this data/project?

• What contexts/problems do you use to introduce limits informally/formally?

• What should be some of the big-picture goals of a Real Analysis course?
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Appendix A

A genetic decomposition of the limit concept (Swinyard & Larsen, 2012).
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Some preliminary results on the influence of dynamic visualizations on undergraduate 
calculus learning 

 
Julie M. Skinner Sutton 

To produce more STEM graduates in the U.S., improving student success in calculus is 
crucial; previous research suggests that students with a proclivity to visualize when solving 
mathematics tasks are not the “star” students in mathematics classrooms. A study of 
undergraduate curriculum also found that common calculus tasks reinforce procedural 
understanding. Since incorporating dynamic visualization (DV) provides a possible tool for 
increasing understanding, we investigate the role of DV in calculus learning at the university 
level. We examine student understanding of derivative as a rate of change by comparing 
student experiences when exploring with DV software or engaging with static tasks in 
individual interviews collected in four episodes over one semester on four students identified 
as visualizers and five as non-visualizers. Comparisons reveal the emergence of cognitive 
conflict and its resolution for students encountering the DVs but this resolution is not evident 
for those only engaged in static work.  

Key words: undergraduate calculus, classroom technology, dynamic visualizations 
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 Some preliminary results on the influence of dynamic visualizations on undergraduate 
calculus learning 

 
Julie M. Skinner Sutton 

Increasing student success in calculus addresses the critical need to produce more 
STEM graduates in the United States. Students failing to obtain a deep understanding of 
calculus leave the sciences altogether (Carlson, Oehrtman & Thompson, 2008; PCAST 
2012). Since incorporating dynamic visualization into the calculus experience provides a 
possible avenue for increasing student understanding of the concepts in calculus we 
investigate the role of dynamic visualization in calculus learning. A study of calculus 
curriculum found that typical calculus tasks stress procedural understanding of calculus with 
little emphasis on developing and supporting development of conceptual understanding 
(Lithner, 2004).  Also, research suggests that students preferring to visualize when working 
on mathematical tasks are not the “super stars” in mathematics classrooms (Presmeg, 2006). 
Student experiences with dynamic visualization software (DVS) may generate the sufficient 
conflict between unaligned concept images and concept definitions in order to induce the 
cognitive shift needed to bring these two structures into agreement (Tall & Vinner, 1981; 
Williams, 1991; Carlson, Oehrtman & Engelke, 2010). 

DVS enables students to manipulate a mathematical object dynamically and facilitates 
visual exploration of mathematical relationships. Thus, our primary research questions center 
on how the use of DVS influences visualizer and non-visualizer student understanding of 
derivative as a rate of change of one quantity with respect to another and how experiences 
with DVS affect students’ graphical, analytical, and conceptual understanding of derivatives. 

One hundred and ten students enrolled in an introductory calculus course at a large 
university in the Southwest completed the Mathematical Processing Instrument (Presmeg, 
1986).  This instrument allowed classification of students into two groups: those who prefer 
to visualize when doing mathematics (visualizers) and those who prefer not to visualize (non-
visualizers).  We invited fifteen students to participate in a series of four individual 
interviews on topics from calculus.  Eight were classified as “high visualizers” and the 
remaining seven were “low visualizers”.  Twelve students agreed to participate in the study. 
Half of the students participated in static task interviews and the other half participated in 
task interviews incorporating DVS. The static interviews centered on typical tasks assigned in 
calculus.  While these tasks may have included a graph or table, they were not posed 
dynamically nor was DVS offered as a tool for investigation.  In contrast, students in the 
DVS interviews encountered topics analogous to those in the static interviews, but the 
students explored properties of functions, tangent lines, derivatives, etc., as they manipulated 
items using DVS.   

Preliminary analysis suggests that participants in the DVS interviews hold concept 
images of derivative that include geometric and algebraic interpretations.  Some evidence 
suggests that these students are more likely to refer to the derivative in terms of an 
instantaneous rate of change than the students participating in the static interviews.  This 
contrasts with patterns observed in the static interviews where we see little evidence of 
conceptual understanding of derivative as a rate of change to support students’ procedural 
knowledge.  Instead, they appear focused on the “rules” and procedures related to calculating 
a derivative at a point with little consideration for the “big picture.” Evidence suggests that 
students engaging with DVS experience sufficient conflict between their concept images and 
concept definitions of calculus constructs to undergo a cognitive change to reconcile the 
conflict.   The data does not show that students in the static interview group experience such a 
change.  Preliminary findings suggest that even those students who prefer not to visualize 
may benefit from exploring mathematical concepts related to derivative using DVS.  
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Examining the pedagogical implications of a secondary teacher’s understanding of 
angle measure 

 
Michael A. Tallman 

Arizona State University 

This paper reports the results of a series of task-based clinical interviews I conducted to 
examine how a secondary mathematics teacher’s understandings of angle measure afford or 
constrain his capacity to bring his mathematical knowledge to bear in the context of 
teaching. The results suggest that the teacher, David, possessed two complementary but 
conceptually distinct ways of understanding angle measure that he was not consciously 
aware of having. As a result David was unable to strategically employ his two ways of 
understanding in novel problem-solving situations and was unable to leverage his 
understandings in the context of teaching. I also discuss the effectiveness of an instructional 
intervention designed to support David in becoming aware of his understandings and 
conclude that engaging teachers in experiences that promote reflected abstraction is one way 
of supporting them in transforming their mathematical knowledge into a pedagogically 
efficacious form. 

Key words: Mathematical Knowledge for Teaching; Trigonometry; Secondary Mathematics; 
Clinical Interview. 

Introduction 
The overwhelming majority of scholarship on teacher knowledge in mathematics 

education has attended to one, or more, of the following foci: (1) characterizing the nature of 
mathematical and pedagogical knowledge teachers need to provide students with 
opportunities to develop a conceptual understanding of mathematics (e.g., Ball, 1990; Ball, 
Hill, & Bass, 2005; Ball, Thames, & Phelps, 2008; Hill & Ball, 2004; Hill, Ball, & Schilling, 
2008; Hill, Schilling, & Ball, 2004; Shulman, 1986, 1887); (2) understanding the experiences 
by which teachers may construct such knowledge (e.g., Harel, 2008; Harel & Lim, 2004; 
Silverman & Thompson, 2008); and (3) demonstrating the causal link between teacher 
knowledge and student achievement (e.g., Hill et al., 2008; Hill, Rowan, & Ball, 2005).  
In other words, research on teacher knowledge in mathematics education has largely focused 
on what teachers need to know, how they may come to know it, and the effect that this 
knowledge has on student performance. While this literature makes substantial contributions 
on several fronts, it appears to be based on the implicit assumption that when teachers 
develop strong mathematical knowledge, this knowledge is necessarily ready-made to inform 
their instructional actions. 

The present study challenges this assumption by addressing the following research 
question: How does a secondary mathematics teacher’s knowledge of angle measure afford or 
constrain his capacity to bring this knowledge to bear in the context of teaching? 

Methods 
 The sole participant for the present study was secondary mathematics teacher, David, 

teaching Honors Algebra II at a large urban public high school in the Southwestern United 
States. David used the Pathways Algebra II curriculum (Carlson, O’Bryan, & Joyner, 2013).  

I conducted four task-based clinical interviews (Clement, 2000) to construct a model of 
David’s way of understanding angle measure. Each interview lasted between 60 and 90 
minutes and focused on the geometric object of an angle, what it means to measure an angle 
in radians and degrees, and the condition that a unit of angle measure must satisfy. Many of 
the tasks from the series of clinical interviews involved the use of Geometer’s Sketchpad 

18th Annual Conference on Research in Undergraduate Mathematics Education 98518th Annual Conference on Research in Undergraduate Mathematics Education 985



(Jackiw, 2001). Data collection consisted of obtaining video recordings of the computer 
screen to capture David’s activity using Geometer’s Sketchpad and video recordings of 
David’s physical actions and written work. 

My analysis of the video data began with conducting a pass of open coding (Strauss & 
Corbin, 1990). I then transcribed all coded instances of each video and performed a line-by-
line conceptual analysis (Thompson, 2008) of the transcripts. During this detailed analysis of 
the transcripts, I attended to explicating hypothetical conceptual operations that explain my 
interpretation of David’s language and actions. I then identified themes in David’s reasoning 
within each interview and compared these themes against relevant data from other interviews. 
This comparative analysis allowed me to construct a comprehensive and viable model of 
David’s thinking. 

Theoretical Perspective 
I adopted aspects of Piaget’s genetic epistemology—particularly ideas of abstraction and 

equilibration—as a theoretical framework in the design and analysis of the series of task-
based clinical interviews. Action, according to Piaget, is the catalyst for knowledge 
development (Piaget, 1967). Piaget explained that higher forms of knowledge derive from 
abstractions of the subject’s actions and the results of his or her actions (Gallagher & Reid, 
2002). To characterize and advance David’s understanding of angle measure, I designed tasks 
to engage him in actions that promote his construction of particular understandings and to 
facilitate abstractions from these actions. My design of such tasks was therefore heavily 
informed by Piaget’s notion of abstraction (Piaget, 2001), of which he distinguished five 
varieties: empirical, pseudo-empirical, reflecting, reflected, and meta-reflection. The present 
study was guided primarily reflecting and reflected abstraction. 

Reflecting abstraction involves the reconstruction on a higher cognitive level the 
coordination of actions from a lower level (Chapman, 1988). Reflecting abstraction is thus an 
abstraction of actions and occurs in three steps: (1) the differentiation of an action from the 
effect of the action, (2) the projection of the action from the level of material action to the 
level of representation, and (3) the reorganization that occurs on the level of representation of 
the action projected from the level of material action. Reflected abstraction involves 
operating on the actions that result from prior reflecting abstractions at the level of 
representation, which results in a coherence of actions and operations accompanied by 
conscious awareness (Piaget, 2001). The subject’s ability to assimilate new experiences to the 
level of representation provides evidence that the subject has engaged in reflected abstraction.  

Results 
My analysis of the series of task-based clinical interviews suggests that David possessed 

two complementary but conceptually distinct ways of understanding what it means to 
measure an angle in radians. David demonstrated a way of understanding angle measure in 
radians as a fraction of 2π, the total number of radians “in a circle.”1 Consider, for instance, 
David’s remarks in Excerpt 1 from the first clinical interview. 
Excerpt 1. 
1 Michael What does it mean to say that an angle has a measure of one radian? 
2 David Then, um (pause). So one radian (pause) means that the complete 

circumference of a circle is made up of 2π, so 6.28, so one radian is 
approximately a sixth way around the circle if we're going to do approximates, 

                                                
1 Since a radian is a unit of angle measure, the suggestion that there are a certain number of 
radians “in a circle” is meaningless. My use of this phrase, however, is consistent with my 
interpretation of David’s vague and ill-defined way of understanding what 2π represents. 
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um, it would be (pause), it would be one over 2π if we wanted to associate a 
number value … 
… 

3 Michael So then a similar question: What does it mean to say that an angle has a 
measure of 2.1 radians? 

4 David So to say that it has a measure of 2.1 radians would mean that about, now 
about a third of the way around a complete circle, if I'm just approximating so 
that I can kind of understand where it would be in my head, um, without doing 
any real math, uh, involved.  

Based on David’s responses in Lines 2 and 4 of Excerpt 1, it does not appear that the 
word “radian” had any meaning for David beyond “a circle is made up of 2π” of them. 
Therefore, according to David’s way of understanding, to say an angle has a measure of n 
radians means the angle is n/(2π) of the “way around the circle.”  

Excerpt 2 further supports the claim that David understood angle measure in radians as a 
fraction of 2π. My question in Line 1 of Excerpt 2 refers to the image displayed in Figure 1.  

r

Circumference

Subtended Arc

Radius

Show Measurements
Hide Radius
Vary Radius

 
Figure 1. Approximate the measure of the angle. 
Excerpt 2.  
1 Michael What’s approximately the measure of this angle in radians? … 
2 David Uh, two, um, two-pi-thirds.  
3 Michael Why is that? 
4 David Uh, because it’s about a third of the, uh, circle. And so, uh, the entire circle in 

radians would be 2π so it's a third of 2π, which is  
2

3π . 
Notice that David could have approximated the measure of the angle in at least two 

different ways given the information provided in Figure 1. For instance, David could have 
estimated that the subtended arc length is two times as large as the radius, making the 
measure of the angle approximately two radians. Instead, David estimated that the subtended 
arc length is a third of the circumference, and thus the measure of the angle must be a third of 
2π, the number of radians in a complete circle. David’s response further reveals that he 
understood angle measure in radians as a fraction of 2π.  

To determine if David conceptualized angle measure in any way other than as a fraction 
of 2π, I asked him the same question that I asked in Line 1 of Excerpt 2, but without 
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displaying the length of the circumference at the bottom of the screen. When I asked David to 
estimate the measure of the angle in radians the second time, he was looking at the image 
displayed in Figure 2. David responded, “I would say it’s about two because there are about 
two, um, radius lengths in the, um, arc.” David’s response demonstrates that he was able to 
reason about angle measure in radians as a multiplicative comparison of the subtended arc 
length and the radius length. It is worth noting that I simply removed a piece of information 
that David previously used to estimate the measure of the angle. Without this information 
David was able to assimilate the task and produce an approximation for the measure of the 
angle in a completely different way than he had previously. 

r

Subtended Arc

Radius

Show Measurements
Hide Radius
Vary Radius

  
Figure 2. Approximate the measure of the angle (again).  

Immediately following David’s remark that the measure of the angle in Figure 2 is 
approximately two radians, I asked him to explain what it means to say that an angle has a 
measure of 3.92 radians. His response: “I would take the length of the radius, I would 
multiply the length of the radius by 3.92, and then I would use that to create the length of the 
arc desired, um, of a circle with the radius that I measured.” The way of understanding that 
David’s response suggests differs substantially from that which he demonstrated in Lines 2 
and 4 of Excerpt 1 and Lines 2 and 4 of Excerpt 2. David recognized that an angle with a 
measure of n radians subtends an arc length that is n times as large as the radius of the 
subtended arc. More generally, David understood angle measure in radians as a measurement 
of the length of the arc that an angle subtends in units of the radius of the subtended arc. 

It is clear that David possessed two complementary but conceptually distinct ways of 
understanding angle measure in radians, which I refer to as WoU 1 and WoU 2:  

(WoU 1) To say an angle has a measure of n radians means the angle is n/(2π) of the 
circle centered at the vertex of the angle. 

(WoU 2)  An angle with a measure of n radians subtends an arc length that is n radius 
lengths, or n times as large as the radius of the subtended arc. 

David demonstrated WoU 2 on several occasions during the first three clinical interviews. 
One would therefore expect that David would solve the task in Figure 3 by dividing the 
subtended arc length (5.3 inches) by the radius length.  
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1.4 inches

5.3 inches

 
Suppose an angle has a circle of radius 1.4 inches centered at its vertex and suppose the angle 
subtends an arc of 5.3 inches. What is the measure of the angle in radians?  
Figure 3. What is the measure of the angle in radians?  

I asked David the question in Figure 3 towards the end of the third clinical interview and, 
to my surprise, he did not employ WoU 2—an understanding that he utilized on several 
occasions prior to being asked this question. Instead, David determined the length of the 
circumference, by computing the product of 2π and 1.4, and divided the subtended arc length 
(5.3 inches) by the circumference, a ratio that is approximately 0.6. David then claimed that 
the angle has a measure of 0.6 radians. After a long pause, David was certain that his solution 
was not correct. He explained that the measure of the angle in radians must be at least π 
because the angle subtends an arc that is more than half of the circle. After a couple of 
minutes thinking in silence, David divided 5.3 by 1.4. When I asked David to describe why 
he divided these values, he explained that since there are 2π radius lengths “around the entire 
circumference,” he would need to multiply the ratio 5.3/(2π·1.4) by 2π. David simplified the 
product (5.3/(2π·1.4))·2π to 5.3/1.4 but did not appear to see this ratio as representing the 
number of times the subtended arc length is larger than the radius of the subtended arc. In 
other words, David did not appear to see the ratio 5.3/1.4 as the result of measuring the 
subtended arc in units of the radius. Figure 4 displays David’s written work. 

 
Figure 4. David’s written work.  

It is noteworthy that David did not utilize WoU 2 while responding to the task in Figure 3. 
Moreover, David did not utilize WoU 1 until he examined the appropriateness of his solution. 
David’s difficulty with this task suggests that his two ways of understanding what it means to 
measure an angle in radians were not always available to conscious awareness. As a result, 
David was not equipped to strategically apply the understanding most appropriate for the 
situation.  

I attempted to support David in becoming consciously aware of his two ways of 
understanding angle measure by providing opportunities for him to perform mental 
operations on them. In other words, I attempted to engender reflected abstraction. I presented 
David with the following task at the beginning of the fourth clinical interview: 
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Courtney claims that measuring an angle in radians means measuring the arc length that 
the angle subtends in units of the radius of the circle centered at the vertex of the angle. 
Rebecca says that to measure an angle in radians, you take the length of the arc that the 
angle subtends divided by the length of the circumference of the circle centered at the 
vertex of the angle and then multiply this ratio by 2π. Are they both correct? 

David was immediately convinced that Courtney’s claim (which represents WoU 2) is correct 
but was much more skeptical regarding the accuracy of Rebecca’s claim (which represents 
WoU 1). After a few minutes of thinking quietly to himself, he asserted with confidence that 
both Courtney and Rebecca are correct. David then made the observation in Excerpt 3. 
Excerpt 3. 
David And actually if we look at what I did on the last question (see task in Figure 3), 

that is basically what happened. When we do this (points to where he wrote 
“  

S
C = 5.3

2π (1.4) ≈
5.3

8.796 = 0.602 radians ”), this is the second method that was being 
described, the ratio of arc length to circumference, and I realized that this is just 
the percentage of the circle and if I multiplied it by 2π I would be back at the 
answer. … So this is Rebecca’s method (points to the crossed out work in Figure 
4) except I didn't multiply it by 2π. … Where this (pointing to where he wrote 
“5.3/1.4”) is taking the arc length and dividing it by the radius measurements to 
get the answer in, um, radians. … This is the first girl’s (Courtney’s) method, 
what we’re doing here (points to where he wrote “5.3/1.4”). We're saying we have 
the arc and we’re saying how many of the radiuses go into it. And then here 
(points to the work that he crossed out in Figure 4) … we figure out the 
percentage of the circle that we have and then by multiplying it by 2π then we 
figure out the percentage of radians, or we figure out the number of radians that 
we have where 2π is basically that there should be 2π radians in a complete circle 
and this is the percentage of the circle (points to the ratio “5.3/8.796”). 

Asking David to reflect on the accuracy of Courtney and Rebecca’s statements 
engendered a reflected abstraction by providing an occasion for him to operate on his two 
ways of understanding what it means to measure an angle in radians. Prior to engaging in this 
reflected abstraction, David was not aware of having two different ways of understanding 
what it means to measure an angle in radians. After engaging in this reflected abstraction, 
David could not only describe the validity of Courtney and Rebecca’s claims, but could 
identify how their meanings for angle measure were represented in his solution to a task that 
he previously struggled to solve and explain. The ease with which David recognized both 
WoU 1 and WoU 2 in his solution to the previous task, and the fluency with which he 
strategically utilized these two ways of understanding to solve subsequent tasks, suggests that 
David had reorganized his two ways of understanding what it means to measure an angle in 
radians into a coherent scheme and, as a result, had become consciously aware of having 
these understandings.  

Discussion 
While David demonstrated two rather useful ways of understanding what it means to 

measure an angle in radians, he had not previously reflected on these understandings in a way 
that enabled him to become consciously aware of having them. David was therefore unable to 
strategically employ his two ways of understanding to solve novel problems. 

These results suggest the following pedagogical implication: Teachers can only leverage 
understandings in their instruction that they are aware of having. Teachers’ subject matter 
knowledge is useful only to the extent that it informs the learning opportunities they provide 
for students. It is of little consequence for teachers to have mathematical knowledge that is 
incapable of informing their instructional actions. Teachers must have reflected on the mental 
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actions and operations that comprise their mathematical understandings in order to transform 
implicit subject matter knowledge into a form that maintains pedagogical utility. 

Characterizing, at the level of mental activity, the ways of understanding teachers want 
students to develop allows them to interact with students in productive ways and to employ 
effective instructional interventions in the moment. Since David was previously unaware of 
his own mathematical understandings for angle measure, his instruction could not have been 
informed by an image of the mental actions involved in constructing a desirable way of 
understanding angle measure. David was therefore ill-prepared to engage students in 
purposeful learning experiences that seek to promote specific mental activity. This study 
demonstrates that engaging teachers in experiences that promote reflected abstraction is one 
way of supporting them in transforming their mathematical knowledge into a form they can 
leverage to support students’ learning. 
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Mathematical creativity has been an object of discussion in mathematics for some time 
(Borwein, Liljedahl, & Zhai, 2014). Though there are recent efforts to include creativity in K-12 
education agendas (Askew, 2013) and a number of research articles in mathematics education 
literature about creativity focus K-12 (e.g., Silver, 1997), there is little research in undergraduate 
mathematics education about creativity. Our study aims to address this issue by examining what 
mathematicians and undergraduate students think about creativity in proving. We coded six 
mathematician and eight student interviews using the Creativity in Progress Rubric (CPR) on proving 
created by the research group. A majority of the students’ responses were of the Creating Ideas 
category of the rubric, while mathematicians were more balanced. We claim that the other two 
categories (Taking Risks and Making Connections) might need further explicit discussion in 
classrooms if the transition from student to mathematician is desired. 
 
Key words: creativity, proving, undergraduate students, mathematicians, assessment rubric 
 

Introduction 
Exploring mathematical creativity is an ongoing quest of researchers, with the earliest known 

attempt by two psychologists, Claparède and Flournoy, in 1902 (as cited in Borwein et al., 2014 
and Sriraman, 2009). The famous mathematician Hadamard (1945) extended the study of 
Claparède and Flournoy by surveying (via mail) mathematicians’ creative processes. Most 
recently, Sriraman (2009) and Borwein et al. (2014) reported their findings on mathematicians’ 
perspectives on creativity, indicating its importance for the growth of the field. In particular, 
Borwein et al. (2014) demonstrated “how people actively engaged in mathematics think about 
the undertaking as a creative and exciting pursuit” (p. xi). The important role of creativity in 
mathematicians’ work is undeniable. Thus, it is important to understand how creativity can be 
cultivated while learning mathematics. 

Especially while teaching, Mann (2005) stated that avoiding the acknowledgment of 
creativity could “drive the creatively talented underground, or worse yet, cause them to give up 
the study of mathematics altogether” (p. 239). In addition, Askew (2013) pointed out the recent 
efforts in education agendas and stated, “[c]alls for creativity within mathematics and science 
teaching and learning are not new, but having them enshrined in mandated curricula is relatively 
recent” (p.169). For such reasons, investigating creativity and understanding its role in teaching 
mathematics are essential. Although there have been explorations of mathematical creativity of 
students in K-12 (e.g., Sriraman, 2005, Silver, 1997; Lev-Zamir & Leikin, 2013), there is a need 
to extend the research efforts to undergraduate-level mathematics teaching and learning. 
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In our multi-tiered research project, we first investigated the mathematicians’ perspectives on 
creativity, values of creativity in teaching mathematics courses (especially proof-based ones), 
and possible ways of assessing students’ creativity in such courses (Savic, Karakok, Tang, & El 
Turkey, 2014). Following this first step of the project we developed a Creativity in-Progress 
Rubric (CPR) on proving (Savic, Karakok, Tang, & El Turkey, 2014). In this paper, we share our 
results from the second step of our project, which addresses the research question: 

What are some similarities and differences between mathematicians and undergraduate 
students’ perspectives on creativity? 

Literature Review 
Even though the efforts of understanding mathematical creativity have been around for about 

a century, there is no single definition for it. Mann (2006) reported that there are over 100 
different definitions of creativity. Some of these definitions highlight the end product view by 
evaluating the originality and the usefulness (Runco & Jaeger, 2012) of the final solution. On the 
other hand, some definitions emphasize the process view, which aims to understand the 
mechanism of creativity while a person is engaged in a creative activity (Balka, 1974; Torrance 
1966). For example, Pelczer and Rodriguez (2011) pointed out that “it is important that when 
judging the creativity of a student we pay attention also to the process by which he[/she] arrived 
to the results and not only to the final problem” (p. 394). 

As well as focusing on process, Sriraman (2005) advocated that students’ creativity needed to 
be evaluated according to their prior experiences. This particular point highlights the difference 
between absolute and relative creativity; the former one refers to historical inventions or 
discoveries at a global level and the latter one is defined as, “the discoveries by a specific person 
within a specific reference group, to human imagination that creates something new” (Vygotsky, 
1982, 1984; as cited by Leikin, 2009, p. 131). For example, Sriraman and Liljedahl (2006) use 
the relativistic perspective to define mathematical creativity at the school level as a process of 
offering new solutions or insights that are unexpected for the student, with respect to his/her 
mathematics background or the problems s/he has seen before. This definition acknowledges that 
students “have moments of creativity that may, or may not, result in the creation of a product 
they may, or may not, be either useful or novel” (Liljedahl, 2013, p. 256). 

Sriraman (2005) argued that these definitions of creativity, which were generated from 
investigating K-12 students, do not capture the kind employed by mathematicians. Furthermore, 
we claim that the creativity enacted in an upper-level undergraduate mathematics course is closer 
to the type of creativity that mathematicians use than that exhibited in K-12 courses. Thus, there 
are needs to: 

1. understand mathematicians’ perspectives of creativity in teaching and learning of 
mathematics in undergraduate level, and 

2. investigate the mathematical creativity of undergraduates. 
To address the first point, we interviewed mathematicians and developed a rubric, Creativity 

in-Progress Rubric (CPR) on proving (see Authors, 2014 for more detail on development of 
rubric study). In the next section, we describe the method of our study, in particular, how we 
implemented this rubric as an analytical framework to address the research question. More 
precisely, in this study we investigate the similarities and differences between mathematicians’ 
and students’ perspectives on creativity in the context of undergraduate mathematics education. 
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Methods 

Participants 
Participants of this study were six research mathematicians at two universities and eight 

undergraduate students who were enrolled in an introduction-to-proofs course. Six research 
mathematicians were selected for interviews according to their teaching and research 
experiences. Two professors (both male) that are from a predominantly teaching institute 
(University X) and four professors (three females, one male) from a large research institute 
(University Y) participated in the research. Varying from 8 to 30 years of experience, they teach 
both undergraduate and graduate mathematics courses and conduct research in different areas. 

The student participants of this study were enrolled in the introduction-to-proofs course 
offered Spring 2014 at University Y. This course is a requirement for all engineering and 
mathematics majors, and can be taken as early as completion of Integral Calculus. From the 24 
students enrolled, eight were selected for end-of-semester interviews based on his/her year of 
study, major, gender, and level in class. There were two freshmen, three sophomores, one junior, 
and two seniors. Four were mathematics majors, three of which were also double majoring in 
either Political Science, Management Systems, or Accounting. Two out of the three females in 
the course participated in the research. Three students received a final grade of A, four received 
B’s and one received a C. All interviews were video- and audio-taped and transcribed. 

Data Analysis 
The CPR on proving is used as an analytical framework to analyze the interview data. The 

purpose of using CPR as an analytic tool had two purposes: (1) to validate the categories created 
from the mathematician interviews; (2) to tease out similarities and differences between 
mathematicians’ and students’ views. 

The rubric was constructed through triangulating research-based rubrics, mathematicians’ 
views on mathematical creativity at the undergraduate level, and students’ proving processes and 
attempts in a transition-to-proof course. The Creative Thinking Value rubric, developed by the 
Association of American Colleges and Universities (AAC&U) (Rhodes, 2010), Leikin’s (2009) 
study implementing another rubric for mathematical creativity in problem solving, and the 
Torrance tests for assessing creativity (1966; 1988) were cross-analyzed with the interview data 
from mathematicians. Three main categories about creativity in students’ proving processes 
surfaced from the existing rubrics, mathematician interviews, and students’ in-class data: 

• Making connections - demonstrating links between multiple representations 
and/or ideas from the student’s current and/or previous course(s). 

• Taking risks - approaching a proof and demonstrate flexibility in using 
different or multiple approaches. 

• Creating ideas - developing original mathematical ideas that are either 
pertinent to the proof or can be proven. 

 Two researchers on the team separately categorized the student and mathematician 
interviews using these three categories of the CPR. In particular, they analyzed responses to 
participants’ definitions of creativity and reactions to three student-generated proofs published in 
Birky et al., (2011). After the separate coding, the two researchers compared their coding and 
combined their schemes into one in which they were in agreement. Any disagreements were 
resolved within the entire research team. 

When appropriate, student and mathematician quotes were matched to the subcategory 
criteria in the CPR. Since the CPR is designed to assess students’ relative creativity in their 
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proving processes, it was challenging to identify all subcategories of each main category in the 
CPR.  For this reason, quotes were classified generally under one of the three above aspects.  For 
example, Dr. C says, “I'm asking [the students] ... to make connections with things that they 
haven't made connections before.”  This clearly fits into the category Making Connections, but it 
does not specifically fall under any of the Making Connections subcategories in the CPR. 

Results 
In this section we provide a sample of quotes from mathematicians and students 

exemplifying the coding process. Tables 1 and 2 provide an overview of how each group of 
participants differ in their references to the three different categories of the CPR. 

Mathematicians’ Responses 
Mathematicians expressed certain ideas on creativity in their interviews. We show some 

examples of their quotes, themed by the three CPR on proving categories. 

Making Connections 
- Somehow your mind has to spread out a little bit to see connections, connections to other 

theorems you could use . . . That's creativity also. – Dr. A 
- I think when students realize that they can solve these problems with things that are not 

just in this section. It can be from some other part of the course. Be somewhat creative. 
You are encouraged to use everything you know.  – Dr. LS 

Taking Risks 
- [Y]ou're saying, “there is this problem, and I'm going to try this approach. And this 

approach, I don't even know what the next step should be.” So I think the creativity part 
of it affects the proof differently. – Dr. B 

- I think the creativity comes in thinking about which technique to use, what is it that 
you’re going to do next. You are trying to figure something out. – Dr. D 

Creating Ideas 
- So I was working on that and there was an implication that the colleague had proved, A 

implies B. And it occurred to me...is the converse true? Does B also imply A? … And 
then I proved it. And that was a great moment. Because it was some new discovery. But 
the actual creative moment was not the carrying out, … [b]ut having the idea was the 
spark. … It's that initial moment that is the creative part – Dr. A 

- Nobody knew how to do it that whoever did it was creative in the sense that he thought of 
some kind of idea or approach that no one ever thought of before.  – Dr. C 

- [Proofs 2 and 3 from Birky et al. (2011)] are both non-routine thinking. I like both of 
them. I'm not sure if I would be able to come up with any of those two proofs because it 
requires some unexpected ideas."– Dr. DA 

 
Table 1: Number of Mentions in each Category by Mathematician 

 Creativity Category 
Mathematician Making Connections Taking Risks Creating Ideas 
Dr. A 4  3 
Dr. B 1 3 6 
Dr. C 4  3 
Dr. DA 4 1 10 

18th Annual Conference on Research in Undergraduate Mathematics Education 99618th Annual Conference on Research in Undergraduate Mathematics Education 996



Dr. LS 6 2 3 
Dr. D 4 4 2 
Total 23 10 27 
Percentage 38 17 45 

 

Students’ Responses 
Students reported their ideas about creativity in their interviews. Some of their quotes are 

separated into the three categories. S15 denotes Student 15. 

Making Connections 
- I would have tried to do something similar based on other things we’d proved like this.  

– S10 
- The creativity would be using the rules that I can hold, tangible rules that are easily, 

relatively easily proven to build your way to something new.  – S15  

Taking Risks 
- Creativity in math would mostly be trial and error…  – S28 
- So you have a proof to do – there’s sometimes, you know, tons of different ways to do it 

and to be creative is when, you know, you don’t just use the simple one necessarily, but 
uh – uh think of something else. – S11  

- Most people would think induction, but they're like “okay, I'll try to think of another 
way" – S16 

Creating Ideas 
- [Proof 3 from Birky et al. (2011)] would be creative just because it's not necessarily 

something I would've thought of. – S5  
- Another aspect of being creative is that you have a theorem and then there’s different 

things – different implications of that theorem you can think about…all the what if’s. 
When you go down those roads, that’s being creative. – S11 

- Creative [sic] comes down to finding certain ideas to take the uh statement of a uh 
theorem or a conjecture and just coming up with a strange way to take it down to the 
solution. – S14 

 
Table 2: Number of Mentions of each Category by Student 

 Creativity Category 
Student Making Connections Taking Risks Creating Ideas 
5  3 4 
10 1 1 4 
11 1 6 6 
14   9 
15 3 2 8 
16  2 2 
26    
28 1 3 8 
Total 6 17 41 
Percentage 9 27 64 
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Table 2 shows that the mathematicians value Making Connections, Taking Risks, and 
Creating Ideas 38%, 17%, and 45% of their 60 total responses, respectively. However, students 
valued Creating Ideas at 64%, followed by Taking Risks at 27%, and finally Making 
Connections at 9% out of their 64 total responses. 

Discussion & Conclusion 
The largest difference between the participants is that the Making Connections aspect of 

creativity was not as valued by the students (9%) as it was by the mathematicians (38%). We 
claim that students rarely think of connecting mathematical ideas as being creative.  In addition 
to this particular finding, we observed that Creating Ideas was most valued by the two participant 
sets, which could be a result of the meaning of creativity in general sense. Mathematicians 
almost equally valued Making Connections (38%) and Creating Ideas (45%). The 
mathematicians’ least-valued category was Taking Risks (17%), perhaps due to the fact that 
mathematicians commonly take risks in proving in both their research (Burton, 1999) and in 
proving tasks (Savic, 2012). 

This difference in percentages between students and mathematicians could be the result of 
the varying mathematical experiences between mathematicians and students, or that students 
may not have been explicitly asked by the instructor to make many connections with the content 
given in previous courses. The latter reason could be alleviated if some explicit discussion of 
Making Connections happens in the classroom. The same could be true for increasing the value 
students see in Taking Risks while being creative.  Taking Risks is a category that is slightly 
difficult to promote, especially in a course that only grades proofs based on correctness. Some 
students may feel as if they will never create a correct proof so they should not even try.  This 
reason really underscores the importance of focusing on the process view of creativity rather than 
the product view. 

We asked the students if mathematical creativity could or should be assessed in class. All 
eight participants agreed that creativity should not be graded, due to issues with relative 
creativity. Student 14 claimed that “I think it would be really hard to pinpoint, um what is 
creative and what isn’t creative, partially because I think it is subjective to each of us, what is 
creative could be different.” We also asked the mathematicians about teaching creativity in 
proving and they, too, were unanimous in not explicitly grading creativity. We claim that the 
CPR on proving used to code the participants could also be used as a formative assessment 
(relative to each student) in proof-based courses, thus alleviating Student 14’s worry. The CPR 
on Proving may both reveal to students aspects of creativity that are valued by the 
mathematicians and help to foster these values in the classroom. For example, in this study, it is 
clear that mathematicians highly value Making Connections when discussing creativity, while 
students’ responses with Making Connections was limited.  The rubric would communicate this 
aspect to the students and the instructors could use it ssto help students develop this trait during 
the course of the class. 

In Fall 2014, the CPR will be used to explicitly value creativity in an introduction-to-proofs 
course. The rubric itself will be available to students so that they may monitor their own progress 
and evaluate their understandings. Tasks, such as asking for multiple proofs for a theorem or 
conjecturing and proving new theorems, will be implemented throughout the course to foster 
mathematical creativity in proving. Though students will not get grades on creativity for those 
particular tasks, creativity will be worth some portion of the final grade. We conjecture that if the 
teacher values mathematical creativity, students will value it also. 
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Leveraging historical number system to understand number and operation in base 10. 
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Abstract: Historical number systems were leveraged to build preservice teachers (PTs) 
understanding of base 10. Variation theory states that you cannot know something if all you 
know is that one thing. Thus to understand numbers and operations in base 10 PTs need to 
experience number and operations within and beyond base 10. In this study we examined how 
historical numbers systems can be used to allow PTs to build a conceptual understanding of 
numbers and operation in base ten by comparing and contrasting various number systems. 
Thirty-six PTs concepts of number were identified before and after they work through a series of 
tasks situated in various number systems and compared and contrasted across the systems. 
Almost all PTs developed a more sophisticated conception of number though these experiences.  
 
Keywords: Elementary Teacher Training, Number and Operation, Variation Theory. 
 
Rationale & Literature Review: Preservice elementary teachers (PTs) often enter our university 
mathematics classrooms efficient at performing procedures but struggling when asked to explain 
those procedures conceptually (Ball, 1988; Ma, 1999; Thanheiser, 2009, 2010). Much of this 
struggle may be related to their limited conceptions of number (Thanheiser, 2009, 2010). 

To understand how numbers are composed in the base 10 system and how algorithms take 
advantage of that composition PTs need to understand the underlying base ten system and how 
numbers are composed on that system. When we base-ten users read 527, the referent for the 
entire number is understood to be ones, so 527 is 527 ones. Each digit name also has ones as the 
referent unit: 500 ones, 20 ones, and 7 ones. But when working with standard algorithms, we 
usually think of the digits in columns: 5 hundreds, 2 tens, and 7 ones and work with a different 
referent unit (ones, tens, hundreds, etc.) in each column. The fact that a number can be 
decomposed into parts that refer to different referent units [e.g., 527 x (1)  = 5 x (100) + 2 x (10) 
+ 7 x  (1)] can be considered “one of the basic powerful ideas in the invention of the base ten 
numeration system” (Zazkis & Khoury, 1993, p. 41). Through this decomposition, columns can 
be treated individually in the context of the algorithms. Because of the underlying structure of 
the base-ten power sequence on which base-ten numbers are built, each referent unit is 10 times 
as large as the next lower referent unit; thus, we can group 10 units of a smaller size to make 1 
unit of the next larger size and vice versa. 

Thus to understand numbers in a way that allow PTs to explain the algorithms built on them 
they need to understand that a) each digit has two values, a face value indicating the number of 
groups (i.e. 5 in 527 for the digit 5) and a place value indicating the size of the group (i.e. 100 in 
527 for the digit 5), and that the value of the digit is determined by multiplying the face value 
(number of groups) by the place value (size of group); b) the group sizes are based on powers of 
ten, thus ten of a smaller unit form one of the next larger and one of a larger unit can be 
decomposed into ten of the next smaller; and c) numbers can be grouped and regrouped on this 
system.  

Thanheiser (2009) showed that most PTs hold limited conceptions of number restricting 
them from understanding why the algorithms work. She identified 4 conceptions PTs hold when 
entering mathematics content courses for teachers (see Table 1). With only 30% of the PTs 
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holding a correct conception (reference units or groups of ones) and only 20% holding the most 
sophisticated conception (reference units), which builds on the underlying base ten system and is 
required to explain all aspects of the algorithms. These results have held steady across several 
studies at the beginning and the end of teacher education programs (Thanheiser, 2010, 2014; 
Thanheiser, Philipp, Fasteen, Strand, & Mills, 2013) showing that only up to 30% of PTs hold 
correct conceptions.  

 
Table 1. Definition of conceptions in the context of the standard algorithm for the PTs in 

Thanheiser’s (2009) study 

 
 

This aligns with prior research, for example, Ross (2001) showed that PTs’ understanding of the 
digits in a multidigit number is lacking, and Zazkis and Khoury (1993) showed that PTs’ 
understanding of the underlying structure of powers of ten in our base-ten numeration system is 
deficient. 

We also know that children “experience considerable difficulty constructing appropriate 
number concepts of multidigit numeration and appropriate procedures for multidigit arithmetic’’ 
(Verschaffel, Greer, & De Corte, 2007, p. 565). If we want teachers to be in a position to help 
children develop appropriate number concepts we need to help PTs develop an understanding of 
number concepts so they can help children develop a rich mathematical understanding. However, 
developing this understanding is difficult since once the procedures are in place it is very hard 
make sense of the underlying mathematics (Pesek & Kirshner, 2000). One way to address this 
difficulty is to put PTs into a context in which they do not yet have the procedures available and 
thus have to make sense of the underlying mathematics. This can be accomplished by allowing 
PTs to explore number and operation in different number systems and then make comparisons 
between the systems.  In this study we examine how historical number systems can be leveraged 
to help PTs make sense of base 10 by stepping out of it.  
 
Theoretical Framework. Variation theory states that one cannot know something if all one knows 
is that one thing (Lo, 2012). To really understand something one needs to know what that thing 
is and what it is not as well as the difference (variation) between those two (Marton, 2009). 
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“According to Variation Theory, meanings do not originate primarily from sameness, but from 
difference, with sameness playing a secondary (Marton, 2009) role.” (Marton in Lo, 2012 
foreword). Thus, to fully understand our number system (built on base 10) one needs to know 
that system as well as other systems and understand the similarities and differences between the 
two systems.  

In addition to variation it is essential that PTs perceive the tasks that they are given as 
authentic. One way of making a task more authentic for is by connecting the university 
classroom to the real world (in the case of PTs the K-12 classroom) (Newman, King, & 
Carmichael, 2007). Research has shown the importance of authentic tasks; “students who 
experienced higher levels of authentic instruction and assessment showed higher achievement 
than students who experienced lower levels of authentic instruction“ (Newman et al., 2007, p. 
vii). PTs in particular are motivated by tasks for which they see a real connection to their future 
classroom (i.e. they can use that task with children later). Some research has explored the use of 
alternate bases with PTs to identify conceptions (Zazkis & Khoury, 1993) and the development 
thereof (Fasteen, Meluish, & Thanheiser, 2015; McClain, 2003; Yackel, Underwood, & Elias, 
2007). In this study we use historical number systems as a context to make sense of numbers and 
operation in base 10 . PTs typically enjoy learning about them and view them as authentic 
because they are relevant to their future teaching (ancient cultures are part of the K-8 
curriculum). We build on some prior work by Thanheiser (2014) and Thanheiser & Rhoads 
(2009), which examined the use of the base 20 Mayan numeral system as a context to explore 
shifts in the value of digits when comparing the values of a “one” with one, two, and six zeros 
attached at the end (Thanheiser, 2014; Thanheiser & Rhoads, 2009). This study showed that the 
Mayan system allowed the PTs to discuss the value of adjacent digits in a way that is not 
possible in base 10.  
 
Methods: Data is drawn from two sections of a mathematics content course for preservice 
teachers with a total of 36 PTs (13 PTs in a summer course and 23 PTs in a regular school year 
course) who gave consent to have their data used. Both courses were 4 credit courses in a 10-
week quarter system. All PTs were interviewed before and after the course to identify their 
conceptions of number (see Thanheiser et al., 2013 for interview protocol). Thanheiser’s 2009 
framework (see Table 1) was used to identify the conceptions. The interviews were double coded 
with an agreement of 88% (the disagreements were resolved through discussion). Both groups 
experienced the same sequence of tasks described below. All PT work was collected and scanned 
and read to make sense of how PTs approached each task.   

The Tally Activity presented students with the idea that all number systems share one thing 
in common; they have a symbol for 1 (tally). Students are then presented with a sheet of 
randomly placed tallies (about five hundred of them) and asked to count those. The goal of the 
activity is to create an authentic need for grouping (needed to count without loosing track). This 
activity then leads into number systems developed to record large numbers (grouping systems) in 
which groups of tallies are represented by new symbols (i.e. the Egyptian System). The variation 
emphasized between the tally system and other systems is that other systems utilize groups of 
various sizes while the tally system only has groups of size 1 and that some other systems utilize 
place value while the Tally System does not. See Table 2 for a comparison between the 
characteristics of each system described in this paper. 

The Egyptian Activity. The Egyptian number system is a grouping system, each digit 
represents its value independent of placement. A tally represents a one, an arch represents a ten, 
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a coil represents a hundred, etc. The group sizes are successive multiples of ten. Thus 25 can be 
represented by a tally followed by an arch followed by four tallies followed by another arch, or 
any other combination of those symbols (including non minimal collections). The activity 
allowed PTs to explore the idea that while different symbols represent different sized groups; the 
location of the symbols does not matter in the Egyptian system. PTs were asked to convert 
numbers between the base 10 and the Egyptian systems. Egyptian numerals were presented in 
mixed order (not ordered from largest to smallest) to highlight the fact that order doesn’t matter. 
Artifacts of children’s mathematical thinking were used to discuss the fact that a symbol for zero 
is not needed in a grouping system. For example, PTs were first asked to convert 4508 into 
Egyptian symbols and then viewed a video of children doing the same and discussing 
how/whether to represent the 0 tens (they decide to leave a space). Then PTs were asked to 
perform operations (multiplication in particular) in the Egyptian system to highlight the need for 
a system designed to allow easy computations. The variation emphasized between the Egyptian 
system and base 10 is that the location of the symbol in base 10 determines the size of the group 
it represents (ones, tens, hundreds, etc.) while the location is not relevant in the Egyptian system, 
there is no need for a symbol for zero, and computations are increasingly messy in the Egyptian 
system.  

The Mayan Activity allowed PTs to explore a different base. First students familiarize 
themselves with the Mayan number system (a base 20 system). Students are presented with the 
first 30 Mayan numbers and then asked what a one with one zero (20), a one with two zeros 
(400) and a one with six zeros (64 x 106) represents. After this activity - which is designed to 
help PTs explicate the underlying base system resulting in a x20 relationship between adjacent 
digits - PTs are asked to invent addition and subtraction algorithms in the Mayan system. The 
variation emphasized between the Mayan system and base 10 is the explication of the underlying 
base (20 vs 10) and the relationship between adjacent unit types as x20 (Mayan) and x10 (base 
10).  

Compare and contrast the different systems. Once PTs make sense of each of these systems 
they are asked to describe a grouping system and a place value system and discuss the 
similarities and differences among them and identify the important aspects of a place value 
system. 

 
Table 2. Comparison between the characteristics of each system described in this paper. 
 
Number 
System 

Number 
of 

Symbols 

Can a 
symbol 

represent 
more than 
one value 

Grouping 
System  

Place 
Value 

System  

Need 
for 

zero? 

Relationship 
of adjacent 

places 

Tally 1 No No No No N/A 
Egyptian Infinite No Yes  No No N/A 
Mayan 2 Yes No Yes  Yes 20 to 1 
Base 10 
system 

10 Yes No Yes  Yes 10 to 1 

 
Results and Implications for Teaching. Each of the activities helped PTs learn important 

information about numbers in base 10 by pulling them out of their typical context and discussing 
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the differences (variations). Almost all PTs developed more sophisticate concepts of number in 
the base ten system throughout the course (see Table 3).  

 
Table 3: PTs conceptions of number before and after the course 

 
Conception # of PTs before # of PTs after 
Reference units 2 27 
Groups of ones 7 4 
Concatenated-digits plus 18 4 
Concatenated-digits only 9 1 

 

In the Tally activity PTs naturally grouped the tallies by 2s, 5s, 10s, or 20s. If they started 
with 2 or 5 they often grouped those groups again into larger groups. This activity is a nice 
motivation activity for grouping and explicates what grouping is used for. It also most often 
leads to groupings found in historical number systems.  

In the Egyptian Activity PTs learned that the place of the symbols doesn’t matter, however, 
for ease of reading and writing numbers they (just like the Egyptians) would order the symbols 
from largest to smallest. This can then lead to a discussion of how our base ten system has the 
same underlying grouping structure (ones, tens, hundreds, etc.). Attempting to perform 
operations such as multiplication on larger Egyptian numbers also highlights the need for the 
development of a system designed for calculations. 

In the Mayan Activity PTs struggled identifying the value of a one with two zeros and a one 
with six zeros (see Thanheiser 2014 for a more detailed description of those struggles). The most 
common misconceptions were a one with two zeroes interpreted as 200 (since a one with one 
zero represented 20 and a zero was appended to that 20) and a one with six zeroes as 20,000,000 
(same line of reasoning). These arguments utilized the underlying idea that appending a zero is 
equivalent to multiplication by 10. While this notion is correct within each base system the PTs 
mixed systems by interpreting the multiplication by 10 as 10 in base ten (thus making the 20 into 
200) rather than interpreting the multiplication by 10 as 10 in Mayan (which would make the 20 
into a 400). The power of this task derives from the fact that conceptions, which would not be 
easily observable in base 10, become visible and can be examined by the PTs (i.e. appending 
zeros above) when comparing across number systems. This can then prompt a discussion why 
procedures such as appending zeros work in base 10. Along the same lines regrouping needs to 
be examined when working on adding and subtracting numbers, and the fact that we ungroup a 
group of larger size into the next smaller groups is explicated (as it is not hidden behind a 
procedure). PTs will also often quite naturally invent expanded addition and subtraction 
algorithms in the context of the Mayan numbers and thus develop algorithms that make sense. 

Comparing and contrasting the different systems allows PTs again to compare similarities 
and differences and thus to build a better understanding of what base 10 is.  
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Psychometric analysis of the Calculus Concept Inventory
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Introduction and motivation:

Concept inventories have become an increasingly popular way to measure conceptual 

understanding in STEM disciplines. The Force Concept Inventory (FCI; Hestenes, Wells and 

Swackhamer, 1992) was the first concept inventory to make a significant impact in the 

undergraduate education community, becoming widely used and significantly affecting the 

teaching of introductory hi physics. The FCI paved the way for the broad application of 

analyzing student conceptual understanding of the basic ideas in a STEM subject area (Hake, 

1998a, 2007; Hestenes & Wells, 1992; Hestenes et al., 1992); concept inventories have been 

written for biology, chemistry, and astronomy. 

The Calculus Concept Inventory (CCI), developed more recently (Epstein, 2007, 2013) is

seeing increasing use.  However, the descriptions of the validation and analysis have been less 

clear than in other concept inventories, and there is a lack of peer-reviewed literature on its 

development and psychometric analysis. One study showed that the current CCI did not measure 

a difference between student conceptual knowledge between students in a conceptually-focused 

class with frequent student group work and those in a traditional lecture-based class, though 

other measures indicated that a difference existed (Bagley, 2014).

Methods and Results:

Data of over 1500 students at four institutions from the Calculus Concept Inventory was 

collected using combinations of both pretest and posttest data to avoid bias from floor or ceiling 

effects. Using an exploratory factor analysis and a scree plot (see Figure 1), we found that the 

CCI instrument is unidimensional, as opposed to the proposed three dimensions in the 

development of the instrument (Epstein, 2007), but three of its 22 items had significantly lower 

loadings than the remaining 19 items (see Table 1). We confirmed this by IRT analysis with these

three items not modeled well by either two or three parameter models. The remaining 19 items 

had acceptable levels of internal reliability to use for group comparisons. However, the three 

problematic items are items that measure conceptual understanding without computational skills,

specialized calculus vocabulary, or specialized calculus notation. This raises questions about the 

instrument’s ability to measure conceptual, rather than simple procedural, knowledge based on 

increased notational and vocabulary background.

Conclusions:

There is currently no valid and reliable instrument to measure this conceptual 

understanding of differential calculus, yet such an instrument is essential in the work of 

determining evidence-based approaches for the teaching and learning of differential calculus. We

conclude there is a need to create and validate a criterion-referenced concept inventory on 

differential calculus. A concept inventory would significantly impact teaching and learning 

during the first two years of undergraduate STEM students by providing a resource to measure 

students’ conceptual understanding of differential calculus. This can be used for formative and 

summative assessment during calculus courses. Instructors can make instructional decisions 
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based on the feedback to improve student learning. The resource can also be used by researchers 

and evaluators to measure growth of student conceptual understanding during a first semester 

calculus course to compare gains of students in classrooms with differing instructional 

techniques. Our initial step to developing the concept inventory is create a taxonomy of calculus 

concepts. This is foundational to constructing items and interview protocols and to start the 

cyclic process of administering and revising the inventory to establish its validity and reliability.
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Figures

Figure 1: Scree Plot for the CCI
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Table 1: Factor Matrix for the CCI for 3-factor and 1-factor models

Three Factor Model One Factor Model

Factor 1 Factor 2 Factor 3 Factor 1

Question 1 .116 .113 .126

Question 2 .525 .197 -.105 .538

Question 3 .485 .174 .500

Question 4 .526 .249 .510

Question 5 .421 -.130 .415

Question 6 .328 .287 .329

Question 7 .362 -.133 .118 .344

Question 8 .465 .129 .475

Question 9 .433 .442

Question 10 .409 .209 -.112 .424

Question 11

Question 12 .225 .217

Question 13 .380 .386

Question 14 .324 .329

Question 15 .352 .347

Question 16 .290 .299

Question 17 .510 .507

Question 18 .182 .186

Question 19 .314 .322

Question 20 .310 .172 .326

Question 21 .312 .145 .323

Question 22 .456 -.581 .355

Goodness of 

Fit

Chi-Square: 197.4; 

df 168; 

sig. .060

Chi Square: 402.718; 

df: 209; 

sig: .000

Extraction Method: Maximum Likelihood
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Students’ visual attention while answering graphically-based fundamental theorem of calculus 
questions 

 
                     Rabindra R. Bajracharya                                             John R. Thompson 
                      Oregon State University                                            University of Maine 

  
As part of work on student understanding of the Fundamental Theorem of Calculus (FTC) and definite 
integrals, we incorporated a technique known as eye tracking to investigate how students attribute their 
visual attention while answering graphically-based questions. The direction and duration of eye gaze of 
17 students was recorded in real time. We analyzed the total proportion of time spent on various question 
domains (lexicons, equations & symbols, graphs, and question options) as well as on various relevant 
and irrelevant features of the graphs. We found that the students who responded correctly spent more 
time on relevant graphical features, whereas those responded incorrectly spent more time on irrelevant 
graphical features. We also found that student visual attribution depends on types of representations and 
notations provided in the questions. Most of the eye-tracking results corroborate previously reported 
written and interview results on student application of the FTC across the mathematics-physics interface. 
 
Key words: Fundamental Theorem of Calculus, Eye tracking, Graphical representations 
Physics 
 

Introduction 
Studies in undergraduate mathematics education have identified student difficulties with the 

Fundamental Theorem of Calculus (FTC) and related concepts [1,2,3,9,11,12]. Previous work has shown 
that students have common types of difficulties with the FTC across mathematics and physics and these 
difficulties affect students’ strategies to solve graphically based FTC problems with physics contexts. 
Studies in other mathematical and/or physical contexts have shown that representational aspects of a 
problem play a key role in student problem-solving [7,13,14]. Prior work in cognitive science using 
physics contexts suggests that some student difficulties stem from student focus on irrelevant question 
features [5,8]. However, there have been no explicit studies on the impacts of representations, in 
particular graphical and symbolic, on student strategies for solving these kinds of problems. 

We found that students’ written and interview responses were cued by various question features. Our 
initial results led us to explore visual cueing mechanisms and visual attention during problem solving 
with graphical representations. The main research questions here are: 

• To what extent are these difficulties due to difficulties with the graphical 
representation of the FTC? 
• How do students interact visually with the graphical representations? 
• Do correct and incorrect responders process graphs differently? 

Previous studies have shown that eye tracking is extremely useful in investigating the influence of 
visual cues on individual’s cognitive processing, as an individual’s visual attention reflects his/her 
cognitive processes [4,6,8,10]. We designed and conducted eye-tracking experiments to study individual 
student’s visual behaviors while answering graphically based FTC questions (Fig. 1). 
 

Method 
In this study, we investigated the visual attention of 17 individual college students who had at least one 
semester of calculus. These students were shown a series of graphically based FTC questions, 
constructed by modifying and expanding previous written and interview questions, on a computer 
monitor (see Fig. 2) and asked to answer those questions. Total 
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proportions of time spent in different areas of interest (AOI) were computed to design a 
number of repeated-measure mixed factorial ANOVAs. The single dependent variable was 
mean percentage of time spent (fixation) on different areas of interest (AOIs), whereas the 
independent variables were areas of interest, i.e., graph, equations, words, etc. (within-group) 
and correctness, i.e., correct vs. incorrect (between-groups). 

 
Figure 1. An eye-tracking experiment set-up and a zoomed in FTC question. 

 

 

Results 
We present following two important findings. First, correct responders spent more time 

looking at relevant graphical features, whereas incorrect responders spent more time looking 
at irrelevant graphical features (p < 0.01). Second, for particular questions (with rate and 
integral equations) correct responders spent relatively more time looking at equations than 
graphs, whereas incorrect responders spent relatively more time looking at graphs than 
equations (p = 0.02). We analyze our findings and interpret them primarily using a model for 
cognition known as top-down and bottom-up processing theory, which connects cognition to 
attention [5]. Within this analysis, we identify specific features of the FTC-based questions 
that affect students’ responses. Most of the eye-tracking findings align well with our 
previously reported written survey and the interview findings and previous research in this 
area. Eye tracking has promise as a method to investigate issues in RUME that are otherwise 
difficult to access, such as an individual’s cognitive involvement during problem solving. 
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One mathematical concept that is frequently applied in physics is the 
Fundamental Theorem of Calculus (FTC). Studies in undergraduate 
mathematics education research found that students have difficulties 
with the FTC and related concepts [1].  A few studies in PER have also 
implicitly indicated student difficulties with various facets of the FTC, 
such as with the definite integral and its graphical representation (area 
under the curve) in physics contexts [2]. 

We investigated the visual attention of participant students while 
solving FTC-based mathematics and physics problems with graphical 
representations. In particular, we were interested in understanding how 
the students interacted, visually, with specific aspects of the problems 
(e.g., graphical features).  

An individual’s visual attention reflects his/her cognitive processes [3,4].  
Participants:  
The participants were 17 college students who had at least one 
semester calculus and one semester of physics. Constructed a 
mathematics (M) and physics (P) version for 8 graphically-based FTC 
questions and participants were randomly assigned to one of the 
following groups: 
•  Group 1: M1, P2, M3, P4, M5, P6, M7, P8 
•  Group 2: P1, M2, P3, M4, P5, M6, P7, M8 

Experimental set-up:  

Stimulus 
Camera 

Infrared light 
Statistical analysis (Repeated measure mixed factorial ANOVA) 
Dependent variable: mean percentage of time spent (fixation) on 
different areas of interest (AOIs) 
Independent variables: 
(a)  Within-group – areas of interest 
(b)  Between-groups – correctness (correct vs. incorrect) 

 – version (mathematics vs. physics) 
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•  Correct responders spend more time on equations (rate and integral) 
than on the graph, while the opposite is true for incorrect responders. 

•  Correct students spend more time on relevant features than on 
irrelevant features, whereas it is opposite for incorrect responders. 
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We suggest that correct responders spend more time in equations  
in order to recognize meaningful relations among them.  

This is consistent with specific difficulties identified through written surveys 
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One mathematical concept that is frequently applied in physics is the 
Fundamental Theorem of Calculus (FTC). Studies in undergraduate 
mathematics education research found that students have difficulties 
with the FTC and related concepts [1].  A few studies in PER have also 
implicitly indicated student difficulties with various facets of the FTC, 
such as with the definite integral and its graphical representation (area 
under the curve) in physics contexts [2]. 

We investigated the visual attention of participant students while 
solving FTC-based mathematics and physics problems with graphical 
representations. In particular, we were interested in understanding how 
the students interacted, visually, with specific aspects of the problems 
(e.g., graphical features).  

An individual’s visual attention reflects his/her cognitive processes [3,4].  
Participants:  
The participants were 17 college students who had at least one 
semester calculus and one semester of physics. Constructed a 
mathematics (M) and physics (P) version for 8 graphically-based FTC 
questions and participants were randomly assigned to one of the 
following groups: 
•  Group 1: M1, P2, M3, P4, M5, P6, M7, P8 
•  Group 2: P1, M2, P3, M4, P5, M6, P7, M8 

Experimental set-up:  
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Statistical analysis (Repeated measure mixed factorial ANOVA) 
Dependent variable: mean percentage of time spent (fixation) on 
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Creating online videos to help students to overcome exam anxiety in statistics class 
 

Anna Titova 
Becker College 

 
In this poster I would like to share my ideas on how to help students overcome math anxiety, 
exam anxiety in particular. Math anxiety is reported to be a major learning obstacle for many 
students at various levels of learning mathematics; students worry about outcomes of in-class 
assessments, especially exams. Instructors typically place a lot of weight on exams, so 
students fear that if they do poorly their grade will go down. This is known as exam anxiety; 
not necessarily math test anxiety, but putting the two together would certainly multiply 
students’ stress. In this poster I would like to illustrate how videos can be utilized to ease 
math test anxiety and help improve students’ overall performance in math classrooms. 
 
Key words: math anxiety, exam anxiety, videos, statistics, technology. 
 

Many agree that a large number of students reveal a high level of stress when it comes to 
taking a math course whether or not their major is math-related. However, various majors 
require students to take an introductory mathematical statistics course. As a result, statistics 
classrooms are often made up of students with very little motivation. Consequently, this can 
elevate their anxiety level; students become apprehensive that they will not do well and that it 
will affect their overall GPA. Mathematics anxiety is a phenomenon that many instructors 
and researchers have observed. Betz (1978) quotes Richardson & Suinn’s definition of math 
anxiety as “feelings of tension and anxiety that interfere with the manipulation of numbers 
and the solving of mathematical problems in a wide variety of ordinary life and academic 
situations.”  

In statistics courses, students often experience anxiety about understanding the problems 
because they are word problems. Even those who feel confident in terms of procedural 
knowledge still have trouble interpreting word problems and understanding the variables they 
describe. This is especially evident during exams. Mixed with a math anxiety, the exam 
anxiety – “worrying about the outcome of the test and experiencing negative emotions during 
the test” (Gharib, Phillips, Mathew, 2012) – contributes to a student’s stress level and causes 
poor performance on exams.  

Researchers and instructors have been applying various techniques to help students 
overcome their anxiety. For instance, Gharib, Phillips, Mathew (2012) are exploring the 
effect of open-book or cheat-sheet exams on students’ performance. Balkam, Nellessen, and 
Ronney (2013) implemented collaborations during exam preparation in class. Batton (2010) 
looked at helping students overcome math anxiety using group work.  

Rapid evolution of technology in education practices gave me the idea to explore the 
possibility of using video applications to help students grow more confident in their test 
preparation. I believe that if a student feels a greater measure of self-assurance, their level of 
anxiety will be much lower and will result in better grades overall. I came up with the 
following methodology: every student was given a “mock exam” a few days prior to the in-
class exam. Students were told that the number and the types of problems match the actual 
exam. Students were instructed to take this exam outside of class, and the next day I emailed 
them a video with the solutions. They were asked to grade their own responses, take notes, 
and ask questions. This way they had a chance to experience “test-like” conditions and reflect 
on their own knowledge and responses.  

One of my introductory statistics classes was selected for this application and they were 
given exams on a regular basis. Prior to each exam students received a review sheet with a set 
of review problems and concepts. The students were expected to study for the exam by 
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working on the problems and discussing any questions with me. This procedure was changed 
once and students were asked to work on the “mock” exam instead. The average grade for the 
exam that followed the “mock” was higher than usual. I had a chance to do informal 
interviews with several students afterward. They were chosen from three groups: those with 
“weak”, “average”, and “good” grades (based on previous exam performance). Each student 
reported that the video increased their confidence, which lowered their stress level when it 
came time to take the exam, which, in turn, enabled them to get a higher grade. 

In future semesters I plan to elaborate more on this method. I am currently working on a 
questionnaire to measure students’ level of both math and test anxiety at the beginning of the 
course and again after the method described above is implemented. Formal, open-ended 
interviews will be conducted with students, and samples will be selected from clusters based 
on students’ anxiety level as well as on their performance in class. A more thorough literature 
review may suggest additional variables or evidence interpretation.  Current evidence 
(average class grade) supports the assumption that this type of exam preparation helps 
students stress less and perform better on exams, however more data, both qualitative and 
quantitative, is needed to provide further evidence to fully support this hypothesis. 
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Mathematicians’ ideas when proving 
 

                      Melissa Troudt                     Gulden Karakok                       Mickael Oehrtman 
               University of Nortnern          University of Northern           Oklahoma State University 
                        Colorado                                  Colorado 
 
!This%study%sought%to%describe%the%ideas%professional%mathematicians’%find%useful%in%moving%their%
arguments%forward%while%constructing%mathematical%proof%and%the%context%surrounding%the%
development%of%these%ideas.%Three%research%mathematicians%completed%real%analysis%tasks%while%
thinking%aloud%in%interview%and%independent%settings%recorded%through%Livescribe%technology.%
Follow>up%interviews%were%also%conducted.%Data%were%analyzed%for%perceived%useful%ideas%and%
coded%based%on%Dewey’s%inquiry%framework%and%Toulmin’s%argumentation%model.%Toulmin%
argumentation%diagrams%were%implemented%to%describe%the%evolution%of%the%arguments,%whereas%
Dewey’s%inquiry%framework%helped%to%describe%the%context%surrounding%the%development%of%the%
ideas.%Preliminary%findings%show%an%active%inquiry%into%forming%a%geometric%understanding%to%
develop%warrants%based%on%intuition%and%examples%and%then%working%to%find%backing%that%can%be%
rendered%into%a%formal%argument. 
 
!Key%words:%proof,!professional!mathematicians,!Toulmin!argumentation!model,!inquiry 
 

 Mathematicians and graduate students in mathematics have been shown to construct proof using 
both purely formal reasoning and also constructions that are accompanied by informal reasoning via 
the mathematicians’ instantiations of concepts (Weber & Alcock, 2004; Raman, 2003; Alcock & 
Inglis, 2008). Inglis, Mejia-Ramos, & Simpson (2007) found mathematics graduate students used 
warrants based on inductive reasoning (inductive warrants), intuitive observations about or 
experiments with some kind of mental structure (structural-intuitive warrants), and formal 
mathematical justifications (deductive warrants) when evaluating conjectures about a novel number 
theory topic. Tall, Yevdokimov, Koichu, Whitely, Kondratieva, and Cheng (2012) described what a 
proof is for professional mathematicians as “involv[ing] thinking about new situations, focusing on 
significant aspects, using previous knowledge to put new ideas together in new ways, consider 
relationships, make conjectures, formulate definitions as necessary and to build a valid argument” 
(p. 15). Little research has been performed that would describe the context around the formulation 
of the ideas that the prover finds useful and how these ideas influence the development of the 
mathematical argument. Looking at the moments where these ideas develop through the perspective 
of Dewey’s theory of inquiry (1938) may grant important information about the context of the 
generation of these ideas and the purposes that they serve as the argument evolves.  

 
Theoretical Perspective 

Since argument has been described as encompassing both informal and formal arguments and 
also arguments to convince oneself or another, I wish to describe the proving process as an evolving 
personal argument. The personal argument encompasses all thoughts that the individual deems 
relevant to making progress in proving the statement. It is a subset of the entire concept image of a 
proof situation. The focus of this study is to describe how mathematicians’ personal arguments 
evolve in that we are looking to see how they incorporate and use new ideas that they view as better 
enabling their arguments forward.  
Toulmin!(1958;!2003)!developed!an!approach!to!analyzing!arguments!that!focuses!on!the!

semantic!content!and!structure.!Toulmin’s!scheme!classifies!statements!of!an!argument!into!
six!different!categories.!The!claim!(C)!is!the!statement!or!conclusion!to!be!asserted.!The! 
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grounds (G) are the foundations on which the argument is based. The warrant (W) is the 
justification of the link between the grounds and the claim. Backing (B) presents further 
evidence that the warrant appropriately justifies that the data supports the claim. The modal 
qualifiers (Q) are statements that indicate the degree of certainty that the arguer believes that 
the warrant justifies the claims. The rebuttals (R) are statements that present the 
circumstances under which the claim would not hold. Toulmin’s framework for arguments 
provides a means of describing, structurally, the evolution of the personal argument. 

In addition to describing how the personal arguments evolve, this research seeks to 
describe the context surrounding the development and incorporation of new ideas. Dewey’s 
(1938) theory of inquiry gives us a means of understanding how knowledge is created and 
how it is perceived useful in problem-solving situations. In periods of inquiry, one is actively 
engaged in the cyclical process of reflecting on problem situations, applying tools to these 
situations, and evaluating the effectiveness of the tools (Hickman, 1990). Using the 
framework I describe the actions performed by the participants noting if the prover perceives 
a problem and what they perceive the problem to be. If the prover perceives a problem, I 
attempt to describe process of selecting a tool to apply to the problem, the individual’s 
expected outcome of using the tool, and the individual’s perspective of how the action 
affected the situation. These factors together provide an organization for the context of the 
situation from the participant’s point of view. 

Research Questions 
Part of a larger project with a greater research agenda, this report focuses on preliminary 

findings for the research question: What ideas move the argument forward as a professional 
mathematician’s personal argument evolves? Specifically, I address what problematic 
situation the prover is currently entered into solving when s/he articulates and attains an idea 
that moves the personal argument forward.  

Methods 
The participants for this research were three professional mathematicians with faculty 

appointments at 4-year universities who either specialized in researching or in teaching 
courses in real analysis. The data collection phase for each participant proceeded as follows: 
the participant worked on a task or tasks in a task-based interview, continued to work on the 
task or other tasks on their own, turned in their at home work captured via Livescribe 
technology (Savic, 2012), participated in a follow-up interview of their work, and repeated 
this process with new tasks in the next interview (see Table 1). Participants identified 
potentially challenging tasks from the field of real analysis for themselves and their peers; I 
provided the “researcher task” if the participants found the peer tasks to be familiar or 
unproblematic. Note in Table 1 that three of the six total tasks were completed by two 
participants; namely peer task B, peer task C, and the researcher’s task. 
Table 1. Sequence of interviews and tasks. 
Participant Interview 1 Interview 2 Interview 3 
Participant A Choose personal task A 

and peer task A. 
Work on personal task 
A. 

Stimulated recall of 
personal task A. Work on 
peer tasks B and C. 

Stimulated recall of peer 
tasks B and C. 

Participant B Choose personal task B 
and peer task B. 
Work on personal task 
B. 

Stimulated recall of 
personal task B. Work on 
peer tasks A and C and  
independent work on 
Researcher task 

Stimulated recall of peer 
task A and C and 
researcher task. 

Participant C Choose personal task C Stimulated recall of Stimulated recall of 
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and peer task C. 
Work on personal task C 
and peer task B.  

personal task C and peer 
task B. Work on 
researcher task. 

researcher task. 

 
I analyzed the work that each participant completed during the first interview and 

between the first two interviews to formulate hypotheses that could be tested in the second 
interview by asking questions and having participants describe their thinking of the 
completed tasks. I noted moments where the participant appeared to generate a new idea, to 
identify a certain tool as useful, or to gain some insight into the problem; and moments where 
it was unclear what motivated a certain action. The moments where the new ideas occurred 
acted as markers of transitions in the timeline of the evolution of the argument. I performed 
initial Toulmin (2003) analyses on the argument between these markers. Reviewing the 
context surrounding the emergence of the idea, I hypothesized what the participant perceived 
as problematic. 

Primary analysis, informed by the follow-up interviews is still in process. It includes the 
writing descriptions of each idea that appeared to move the argument forward and the context 
surrounding the generation of that idea, describing the argument’s evolving structure via 
Toulmin diagrams formulated in the preliminary analysis and informed by the follow-up 
interviews. Finally, pattern analysis will be conducted across all the ideas of each participant 
as well as across participants along the common tasks.  

I report some findings from Dr. B’s work on the researcher’s task: Let f be a continuous 
function defined on        . f maps I onto I, f is one-to-one, and f is its own inverse. Show 
that except for one possibility, f must be monotonically decreasing on I.  

Preliminary Results 
It appeared that Dr. B’s work involved addressing problems of getting a geometric 

interpretation of the situation, determining a warrant for his claims, and finding backing for 
those warrants that could be translated into a deductive argument. He began by, in his words, 
“chipping away at the geometric restrictions” developing a set of ideas leading to a geometric 
mental picture and his first physical picture, which he found useful in convincing himself of 
the claim underlined in the quote below and broken down as Argument 1 in Table 2. The 
backing of the warrant appeared to be based on the picture and intuition based on structural 
understandings.  

It would reflect back and forth and in order to be its own inverse and increasing. Its 
reflection would be the same thing that you started off with. [runs pen over line    ] 
And you’d have to be right on that line because there’s no other way of doing it. So, 
 ( )    suffices. That should be our only increasing function.  ( )    intuitively 
seems like the only increasing option they’re talking about.  
He shifted his inquiry to answering the following questions of “What have I convinced 

myself geometrically? And how do I prove those things? Why is f of x equals x the only 
increasing function?” I interpreted this as his tackling the problem of identifying a warrant 
backed by mathematical justifications. He identified a warrant based on his intuition. “So my 
intuition there, if it wasn’t, then if you reflected itself, there would have to be double values of 
this thing from its reflection.” The idea of potential double values (the potential for f(x) to not 
be able to pass the vertical line test) posed itself as a possible contradiction to be used in a 
proof. To find backing for this warrant, he drew a picture and used it as a means of searching 
for a backing of the idea that an increasing, non-identity function with the given constraints 
would necessarily violate the vertical line test if reflected across the line y=x. During this 
inquiry, he was interrupted by a colleague and returned to the problem articulating a new idea 
that manifested while previously working with the picture. “So what’s going on here? I was 
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just about to get on this. I have this nice picture. And on my picture, I can see that if I reflect 
this type of function, it’s not going to be one-to-one.” He then searched for a backing for the 
one-to-one warrant by returning to and modifying his third picture, but he found this picture 
did not capture the characteristic of f being its own inverse. He chose to abandon the third 
picture and restart. When asked about this decision in the follow-up interview, he said, “I’m 
trying to think what am I trying to contradict here. I sort of lost track of what I was doing 
because of when I got interrupted too. I think I’m just realizing I know what I’m doing. Now I 
just have to start over. I finally realized that’s the other fact I need. Because it’s its own 
inverse.” When he restarted, he drew and talked through a fourth picture developing 
Argument 4 which he was able to translate into algebraic symbols developing Argument 5. 
Finally, he deemed himself ready to write his arguments in a formal proof.  
Table 2. Progression of arguments. 
 Data Claim Warrant  Backing 
Argument 1 f maps I to I is 

continuous, 1-1, 
onto, and its own 
inverse 

If f is increasing, 
then it must be 
f(x)=x 

"there's no other 
way of doing it"; 

"its reflection 
would be the 
same thing that 
you started off 
with"; "you'd 
have to be right 
on that line" (first 
picture) 

Argument 2 If f is increasing 
and has the given 
restraints 

Then it must be 
f(x)=x 

otherwise there 
would be double 
values from 
reflection 

Geometric 
intuition and first 
picture 

Argument 3 If f is increasing 
and has the given 
restraints 

Then it must be 
f(x)=x 

Otherwise it 
wouldn’t be one-
to-one 

“on my picture, I 
can see” (third 
picture) 

Argument 4 If f is increasing 
and has the given 
restraints 

Then it must be 
f(x)=x 

Otherwise it 
wouldn’t be one-
to-one 

“it would result 
in double values 
if it went through 
here” (third 
picture) 

Argument 5 f increasing, one-
to-one, onto, and 
f inverse equals f 

then f(x)=x otherwise one 
would get 2 
different values 
for x=f(f^-1(x)) 

Fourth picture 

Argument 6 f increasing, one-
to-one, onto, and 
f inverse equals f 

then f(x)=x otherwise one 
would get 2 
different values 
for x=f(f^-1(x)) 

Algebraic 
translation and 
generalization of 
fourth picture 

Discussion 
Dr. B appeared to tackle the problems of understanding the situation geometrically and 

then searching for a deductive warrant. Dr. B’s developed geometric understanding 
contributed to his proposal of possible warrants based on examples and his own intuition 
based on structural understandings (Inglis, et al., 2007). He attempted to find a logical 
backing for those warrants by unpacking and testing the ideas without success. His final 
picture, potentially informed by his earlier work, captured an argument that could be 
translated into a logical proof.  

This initial report simply focuses on the problems addressed by the participant and how 
they related to the evolution of warrants. It does not yet describe the actions contributing to 
the generation of new ideas or how the previous arguments may have informed his 
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construction and analysis of the fourth picture. Further investigation will address these and 
other questions. 

Questions for Discussion 
Aside from inductive, structural-intuitive, and deductive, what other warrant-types have been 
discussed in the literature? This research uses two frameworks to understand the proof 
construction process. Do they appear to complement each other? 
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The efficacy of projects and discussions in increasing quantitative literacy outcomes in 
an online college algebra course 

 
Luke Tunstall 

Appalachian State University 

This research stems from efforts to infuse quantitative literacy (QL) in an online version of 
college algebra. College algebra fulfills Appalachian's QL requirement, and is a terminal 
course for most who take it. In light of the course’s traditional content and teaching methods, 
students often leave with little gained in QL. An online platform provides a unique means of 
engaging students in quantitative discussions and research, yet little research exists on online 
courses in the context of QL. The researcher’s course includes weekly news discussions as 
well as “messy” projects requiring data analysis. Students in online and face-to-face sections 
of the course took the QLRA (developed by the NNN) during the first and final weeks of the 
fall 2014 semester. There were significant statistical gains in the online students’ QLRA 
performance and mathematical affect but none for the face-to-face students.  Implications of 
this include that project-based learning in an online environment is a promising strategy for 
fostering QL in terminal math courses. 
 
Key words: Quantitative Literacy, College Algebra, Online Courses, Assessment, General 
Education 

Under leadership from the MAA and National Numeracy Network (among others), 
quantitative literacy (QL) has garnered significant attention in the twenty-first century 
(Madison & Steen, 2008). While a number of acceptable frameworks for QL exist, the 
researcher will use that from the charter of the SIGMAA on QL (2004):  

Quantitative literacy (QL) can be described as the ability to adequately use elementary 
mathematical tools to interpret and manipulate quantitative data and ideas that arise in 
an individual’s private, civic, and work life. Like reading and writing literacy, 
quantitative literacy is a habit of mind that is best formed by exposure in many 
contexts.  

Deborah Hallett (2003) suggests that though the foundations of QL are laid in middle-
school, it is the responsibility of high-school and college faculty to cultivate this knowledge – 
they are to ensure students receive the “exposure” the above definition calls for. In part, a 
reason for calling attention to this responsibility is that college algebra – a terminal math 
course for many – has a reputation for its complicity in failing to foster QL (Steen, 2006). 
Seeking improvement, Small (2006) believes the course should have little lecture and instead 
a considerable number of small-group activities. It should focus on real-world, ill-defined 
modeling rather than traditional word problems, emphasizing communication over traditional 
assessment. Data from a 2010 AMS survey suggests his vision has yet to manifest. Of the 
undergraduate programs surveyed, only 16% of college algebra sections required writing 
assignments, and 65% used a “traditional” approach, meaning the course content and delivery 
methods were essentially the same as those in 1990 (Blair, Kirkman, & Maxwell, 2010).  

A digital learning environment allows students to engage in activity conducive to QL. The 
purpose of the present study is to examine the efficacy of an online adaptation of Small’s 
vision. In light of the fact that 32% of students in higher-education institutions enrolled in at 
least one online course in 2011 (up from 18% in 2005), such research is overdue (Allen & 
Seaman, 2013). The researcher has created an online college algebra course that will be 
piloted in the fall 2014 semester. The primary assessment in the course is weekly discussion 
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(often news-related) and data-driven projects. The pedagogy underlying the structure is 
problem-based learning (PBL); research provides support for this method in both face-to-face 
and online courses (Strobel & Van Barnevald, 2009; Cheaney & Ingebritsen, 2005; Sendag & 
Odabasi, 2009).  

The researcher’s hypothesis is that the online course provides a significantly better means 
of increasing QL outcomes in comparison to traditional teaching of the course. The researcher 
will use the QLRA, developed by the National Numeracy Network; more than 25 institutions 
used the assessment in 2013 (Gaze, et. al, 2014). It includes 20 multiple-choice questions and 
five affective questions. As shown in Figure 1 below, students in both delivery modes will 
take the QLRA at the beginning and end of the semester. The online students will receive a 
grade for taking it, while face-to-face students will receive compensation (as the researcher is 
not teaching those sections). While there are limitations in this approach due to departmental 
logistics, potential implications include the placement of more QL-designated courses online. 
This poster will include statistical and qualitative analyses of the results of the study. The 
researcher looks forward to receiving feedback concerning future directions for research in 
online courses, QL, and college algebra. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Figure 1 – Setup of Study 
 
 
 

 
 

N = 60 Students 
Take QLRA in 1st 

Week of Class 
 

All Students 
Retake QLRA in 

Last Week of Class 
 

Online College Algebra 
• n = 30 Students 
• Taught by graduate 

student researcher 
• Weekly news 

discussions and QL-
based projects form 
majority of grade 

 

Face-to-Face College Algebra 
• n = 30 Students  
• Taught by various 

graduate student 
instructors 

• Traditional lecture and 
assessment methods 

• No specific focus on QL 
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Connecting Research on Students’ Common Misconceptions about Tangent Lines to Instructors’ 
Choice of Graphical Examples in a First Semester Calculus Course 

 
Brittany Vincent     Vicki Sealey 

 
     West Virginia University     West Virginia University 

 
Common misconceptions that students have about tangent lines are well documented in the 
research literature. This study seeks to understand the efforts that instructors make to address 
these common misconceptions in their classroom instruction. Specifically, we looked at video 
data from classroom sessions of five instructors when they covered the graphical representation 
of derivative. Language and gestures instructors used as well as the graphical examples they 
provided to the students were analyzed. 
 
Key words: Tangent Lines, Calculus, Instruction, Derivative  

 
Introduction 

When constructing tangent lines in first-semester calculus, students may try to apply 
geometric properties of lines tangent to a circle when attempting to sketch a line tangent to a 
point on a function. One common misconception is that students believe that a tangent line 
cannot cross the function at more than one point (Figure 1). While this is true of tangents to 
circles, it is not true of tangents to all functions. This study examines how undergraduate calculus 
instructors introduce the notion of tangent line. In particular, what language, gestures, and 
example spaces do instructors use in the classroom when introducing tangent lines? Furthermore, 
what efforts are made to address common misconceptions about tangent lines to a function 
graph? 

 
Figure 1. 

Literature Review 
Students’ prior knowledge about a line tangent to a circle influences their understanding of 

the more general tangent to a curve (Tall, 1987). Early experiences with tangents influence the 
way students think about tangents in subsequent settings, and consequently, many students have 
a concept image of tangent involving “circle-like pictures” (Biza, Souyoul, & Zachariades, 
2005). Biza et al., (2008) identified three basic perspectives on tangent lines. Students holding a 
Geometrical Global perspective often do not accept tangent lines that coincided with the graph, 
cross through the graph, or have more than one point in common with the curve. Essentially, 
their definition of a tangent line is still the one they learned in geometry class, and they just 
apply those properties globally when constructing tangent lines to a function graph (Biza et al., 
2008).  Students holding an Intermediate Local perspective often believe the tangent line can 
have only one point in common with the curve locally and must stay in the same semi-plane as 
the curve locally. While this is more accurate, it does not address the case of a tangent line drawn 
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at an inflection point, in which the tangent line cuts “through” the curve.  In general, students 
characterized by an Analytical Local perspective hold a more sophisticated concept image of 
tangent lines. Their concept image of tangent lines involves cases where the tangent line has 
more than one common point with the curve, intersects the curve at an inflection point, or 
coincides with the curve (Biza et al., 2008). 

Theoretical Perspectives 
Ball and Bass (2000) referred to pedagogical content knowledge as a “special form of 

knowledge,” and pedagogical content knowledge specific to mathematics as mathematical 
knowledge for teaching. It is a blending of mathematical knowledge with knowledge of learners, 
learning, and pedagogy (Ball & Bass, 2000). This special form of knowledge enables 
mathematics educators to anticipate areas where students will have difficulty and prepare 
alternative explanations and representations of the concept to mediate those difficulties. 

Additionally, we draw on the work of example space in our theoretical perspective. Watson 
and Mason (2005) defined the notion of example space as a “collection of examples that fulfill a 
specific function” and distinguished between various types of example spaces: personal example 
space- can be triggered by a task, personal potential example space- consisting of a person's past 
experience (though not explicitly remembered), which may be structured in a way that is difficult 
to access, conventional example space- understood by mathematicians and as displayed in 
textbooks, and collective example space- particular to a classroom or group.  

Methodology 
The participants of this study are five Calculus I instructors from a large research university. 

Due to the small sample size, limited background information will be provided on the 
participants, in order for the instructors to remain anonymous.  Each section consisted of 
approximately the same class size of twenty-five to thirty students, and all but one of the five 
instructors, in addition to meeting in their specific classrooms, also met with their students in the 
computer lab at least one of the two days of class. 

The data analysis is still preliminary, but we have begun by comparing the data to what we 
know about students' conceptions of tangent lines. In particular, students’ misconceptions that a 
tangent line cannot have more than one common point with the curve, cut through the curve, or 
coincide with the curve. The analysis focused on the instructors’ use of language and examples 
that addressed these issues, either explicitly or implicitly. The data was organized in a chart 
format to identify key phrases and classify examples. The instructional example spaces discussed 
in this paper refer specifically to the examples the instructor placed on the board or discussed 
with the students and does not include examples from in-class worksheets. It is important to 
make this distinction, although there does not seem to be evidence that the worksheets add any 
significant variety to the example space of the instructor.   

Results 
Of the five participants (A, B, C, D, and E), four used phrases that could be interpreted by 

students as support for a misconception of a tangent line only having one common point with the 
curve. It is possible that the instructors were intending to emphasize “one-point” in order to 
distinguish the tangent line from the secant lines used to approximate an instantaneous rate of 
change. However, such phrases may serve to further establish students’ wrong beliefs (Table 1). 
Instructor Quote 

A Tangent lines only touch the graph at one point. 
B ...the tangent line is a line that touches the function at a specific point and has the same 

18th Annual Conference on Research in Undergraduate Mathematics Education 102518th Annual Conference on Research in Undergraduate Mathematics Education 1025



direction of the function at that point. 
C Tangent lines are at one point and... it’s like two points become one 
E If I have one point, I don’t have a secant line. For a secant line I have two points. If I have 

one point, what kind of line do I have? [A student answers, “tangent line.”] 
Table 1. 

Similar to instructor E, instructor A also asked the class what kind of line only goes through 
one point, to which a student replied, “tangent line.” This is interesting because in both cases the 
question was confidently and quickly answered by a student. This could be interpreted that there 
is a strong association between the phrases “one-point” and “tangent line.” Two of the five 
instructors directly addressed the fact that their students may believe a tangent line can only 
intersect the graph at one point (Table 2). 
Instructor Quote 
A Sometimes a very bad definition of tangent line is 'ah it just crosses the graph once.' That's 

a very bad definition. 
C Is it ok that it intersects over here [pointing to a second intersection point]? Is that ok or 

not?... It is ok if it intersects some place way far away. 
Table 2. 

Of the five instructors, only A and C included graphs of tangent lines with more than one 
common point with the curve in their instructional example space, one and two examples, 
respectively. The remaining instructors did not include this type of example during the two days 
of instruction we observed. The phrasing “some place way far away” in C's quote above, may 
reinforce the wrong belief that a tangent line cannot coincide with the graph near the point of 
tangency. Two of the five instructors, C and E, included an example of a tangent line that 
coincided with the graph. For both instructors, the context of the example was sketching f '(x) 
given the graph of f (x). One instructor used f (x)=|x| at a point other than x = 0, and the other 
used a function that was not defined symbolically but had a portion of the graph that looked like f 
(x)= -|x|. The misconception that a tangent line cannot coincide with the graph was implicitly 
addressed in both cases through this example. However, neither instructor paid particular 
attention to the example or demonstrated evidence that this example may be troublesome to the 
students. In fact, instructor C did not sketch a tangent line. He/she just discussed, in so many 
words, that when the graph of f (x) is linear, the graph of f '(x) is horizontal.  

Three of the five instructors modeled an incorrect tangent line through a point on the curve 
and discussed why this tangent line was incorrect.  Instructor C sketched two tangent lines on the 
board and asked the class why the first represented a tangent and the second did not (Figure 2). 
One student responded quickly that the second was not a tangent line because it passed through 
two points on the curve. The instructor reiterated that it is ok for a tangent line to cross a graph 
more than once and provided a quick sketch of a tangent line with two common points (one at 
the point of tangency and one “far away”).  Another student responded, “Would it be because 
that's on the outside of the curve [referring to the tangent line on the left].” To this comment, 
instructor C agreed and explained that tangent lines “skim” or “float” along the “outside” of the 
curve. Instructor B used similar language by suggesting that the students think of the tangent line 
as a “surf board, surfing along the curve.” While these explanations are meaningful and can be 
helpful for sketching tangent lines, such language may reinforce the misconception that a tangent 
line can't cut through a curve, such as at an inflection point                     
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. 
Figure 2. 

Concerning this misconception, two of the five instructors, C and E, included two examples 
of a tangent line that cuts through the curve at the point of tangency. They used the same 
examples, sketching the tangent line at x = 0 for f (x) = x3 and f (x) = 3 x . The data does not show 
evidence of the five instructors directly addressing that a tangent line can “cut through” the curve 
during the two days of classroom video that we observed, when the definition of the derivative 
and the graphical representation of the derivative were being taught.  

In our previous work (blinded for review), we found that, despite working with tangent lines 
in their classes, some students still sketched the graph of y = tan(x) when asked to sketch a 
tangent line on a graph. In reviewing the classroom data, instructor D made a point to clarify 
that, although the tangent line and the tangent function share a common name, they are indeed 
different. We also found in our previous work that for several students, horizontal tangent lines 
dominated their concept images of tangent lines.  We noticed from the data that a majority of the 
instructors sketched a horizontal tangent line more than any other tangent line. Though these two 
results may not be related, it is worth noting and looking into further as we continue our analysis.  

Implications for Teaching and Directions for Future Research 
From informal conversations with the instructors in this study, we know that they often felt 

pressured for time. They often mentioned that they would have liked to have spent more time on 
certain topics, but often needed to move on to the next section in the textbook. Although we do 
not have specific advice for instructors at this point, we hope that our future research as well as 
our continued analysis of the data discussed in this preliminary report will help to shape 
curriculum materials to allow instructors to choose powerful examples to use in their classes with 
the limited time they have available.   

Questions for the Audience 
1. Do you have examples of other literature that discussed undergraduate instructors’ 

mathematical knowledge for teaching?  
2. Do you have recommendations for us on how we can capture all of the examples the student 

is using (in class, on homework assignments, or in the textbook)? Or, if we are unable to 
capture them all, how much is enough? 

3. For the next phase of the study, we plan to interview instructors prior to teaching the 
material as well as after the lessons are completed. How can we determine whether or not 
the instructor is aware of specific misconceptions that are common to students without 
teaching the instructor something he/she may not already know?  
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Student Understanding of Solution 
 

Rebecca K. Walker 
Guttman Community College 

 
Student understanding of solution is central to success in much of mathematics, from basic 
algebra through linear algebra and differential equations. This research explores college 
algebra students’ understanding of solution. In particular, it explores student definitions of 
what it means for a number to be a solution to an equation and whether students can 
determine if a number is a solution to an equation. Results show that most of the students 
could determine if a given number is a solution to an equation but that fewer than half of the 
students could write a reasonable definition of solution. Categories of student responses are 
identified along with possible reasons for the misconceptions. These results have implications 
for teaching all levels of mathematics.  

Key words: College Algebra, Solution 

At the heart of much of algebra is solving equations. However, it is not clear that students 
really understand what it means to find a solution to an equation. DeLima and Tall conclude 
that, “There is no evidence that the students are looking for a value of the unknown that 
satisfies the given equation” (p. 10). A 2010 study by Stigler, Givven, and Thompson, 
explored what community college developmental math students understood about solutions to 
equations.  They found that very few students were able to provide good explanations for 
why equations such as x + 1 = 1 or x2 = -9 do not have real solutions. A study by DeVries 
and Arnon (2004) looked at student understanding of solution in the context of undergraduate 
linear algebra. They found that students confused the concept of solution with the process of 
solving an equations.  

This research is related to the research in both of these studies and explores two 
questions: 
1. Are College Algebra students able to determine if a given value is a solutions to an 
algebraic equation? If so, how do they do it? 
2. What does it mean to College Algebra students when they are told that a number is a 
solution to an equation?  

The data for this work was gathered from 347 students as part of a final exam in an 
undergraduate College Algebra course. The two questions that were included on the final 
exam were:  

1. What does it mean for a number to be a solution to an equation?  
2. Is 3 a solution to 2x + 7 = 5x? 

The responses were then coded individually by two researchers and any discrepancies were 
discussed until agreement was reached on the most appropriate code for each response.  
 The results given in Table 1 indicate that almost all (93.1%) of the students were able 
to determine that 3 was a solution to 2x + 7 = 5x.  
 

Table 1 
Responses to, “Is 3 a solution to 2x + 7 = 5x? Explain your reasoning.” 
Student Response (n = 347) Percent 

(number) of 
students 
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Yes 3 is a solution and student provides appropriate reasoning 93.1%  (323) 
No, 3 is not a solution. But student answers no because of 
arithmetic error that indicates the two sides are not equal when 
x = 3 

1.7%  (6) 

Student shows that two sides are equal when x = 3 but does not 
state whether 3 is or is not a solution. 

1.2%  (4) 

No, 3 is not a solution.  3.2%  (11) 
Other response 0.9 %  (3) 

 
This indicates that for the most part students know how to check whether or not a given value 
is a solution to an equation. We can conclude that the instruction that students have received 
in this area has been effective and students can determine whether a given number is a 
solution, even for equations that cannot be solved through symbolic manipulation.  

However their knowledge of how to check if a given value is a solution does not seem to 
transfer to being able to write a good response to the question about what it means for a 
number to be a solution to an equation. The student responses to this question are 
summarized in Table 2.  

 
Table 2 
Responses to, “What does it mean if a number is a solution to an equation?” 
Student response Percent (number) of 

students 
The solution is the value of the variable that makes the 
equation true or makes the sides equal 

41.2% (143) 

It is the answer to the problem or the result when you 
solve the equation 

24.8% (86) 

It is the input that gives the correct output 12.7% (44) 
The solution is the output, what comes after the equal 
sign, or the result of calculations 

5.5% (19)  

The student stated something about the number or 
nature of the solutions 

3.7% (13) 

The solution makes the equation equal to zero 2.6% (9) 
Student response said something related to the 
definition or domain of a function 

2.0% (7) 

The solution gives point on the graph or line 1.4% (5) 
Other 6.1% (21) 

 
The data shows that far fewer of the students, only 41.2%, were able to say that the solution 
is the value of the variable that makes the equation true or makes the sides equal to each 
other. Other responses were quite varied and included that the solution was the answer to the 
problem, that it was the output or what comes after the equals sign, or the result of 
calculations.  

The incorrect responses seem to reflect several possible difficulties in the student 
understanding. The fact that many saw “answer” and “solution” as interchangeable terms 
may be a reflection of sloppy vocabulary usage on the part of students and instructors of 
mathematics. It is possible that more careful use of vocabulary could help alleviate this 
confusion. Another set of responses seem to be related to the lack of a robust understanding 
of the equals sign. Some of the students may be thinking of the equals sign as an operator 
rather than a relational symbol. This is related to research by Knuth et al (2006). Further 
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research, likely including student interviews and possible classroom observations would 
allow us to better pinpoint the reasons why these students were not able to provide an 
appropriate definition of solution and to explore what types of learning opportunities might 
help students develop a more robust understanding of solution.  
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Knowledge for teaching: Horizons and mathematical structures 

Nicholas H. Wasserman 
Teachers College, Columbia University 

Ami Mamolo 
University of Ontario Institute of Technology 

In this study we use the lens of knowledge at the mathematical horizon to shed light on the 
underlying structural components of school mathematics content. We attend specifically to 
algebraic structures, identifying ways in which awareness of such structure may be 
transformative to mathematical knowledge for teaching. In particular, we analyze curricular 
content from elementary, middle, and secondary school mathematics with respect to the inherent 
structures that encompass and connect that material, as well as with specific attention to the 
opportunities afforded to teachers by their horizon.  

Key words: Mathematical Knowledge for Teaching, Mathematical Horizon, Advanced 
Mathematics, Algebraic Structures 

 
The mathematical knowledge for teaching (MKT) framework (e.g., Ball, Thames, & Phelps, 

2008) frames a professional knowledge base rooted in the work of teaching, and builds on 
Shulman’s (1986) work, establishing sub-domains for both subject matter and pedagogical 
content knowledge, specifically in the context of teaching mathematics. Of the sub-domains for 
subject matter knowledge, Horizon Content Knowledge (HCK) was less developed within the 
MKT framework. Various scholars (e.g., Fernandez & Figueiras, 2014; Jakobsen, Thames, & 
Ribeiro, 2013; Wasserman & Stockton, 2013; Zazkis & Mamolo, 2011) have begun to further 
conceptualize and describe horizon knowledge by providing and analyzing examples from the 
profession. This preliminary study draws on some of the budding notions of horizon knowledge 
to conceptualize some of the ways that knowledge of advanced mathematics might inform and 
support middle and secondary school teaching. In particular, we investigate underlying 
mathematical structures within the scope of school mathematics, focusing on the potential utility 
of teachers’ awareness of such structures as transformative for more elementary ideas.  

Literature/Theoretical Perspective 
In developing the MKT framework, Ball, Thames, and Phelps (2008) operate under a 

practice-based approach to teacher knowledge: that knowledge for teachers must be linked to the 
actual work of teaching. As part of their delineation of content knowledge, they describe horizon 
content knowledge as “an awareness of how mathematical topics are related over the span of 
mathematics included in the curriculum” (p.403). Ball & Bass (2009) further described four 
elements of a teacher’s knowledge of her students’ horizons: a sense of the mathematical 
environment surrounding the current location in instruction; major disciplinary ideas and 
structures; key mathematical practices; and core values and sensibilities. Zazkis and Mamolo 
(2011) extended this conception to focus on teachers’ horizons and provided several examples of 
how teachers’ Advanced Mathematical Knowledge [AMK] (Zazkis & Leikin, 2010) informed 
their interactions with pupils. Paralleling Husserl’s philosophical constructs of the inner and 
outer horizons of a conceptual object, they interpret horizon knowledge as awareness of a 
mathematical object’s “periphery” – that is, the specific features or properties of the object which 
are not currently at the individual’s focus of attention (inner horizon), as well as the underlying 
mathematical structure, generalities, and connections which embed the object within a “greater 
mathematical world” (outer horizon) – as it relates to, and is accessed in, teaching situations.  
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Wasserman and Stockton (2013) argued for broadening the impact of horizon knowledge on 
the work of teaching. Their conceptualization of the horizon similarly relates to more advanced 
mathematics but with a focus on transformation. In particular, that horizon knowledge of 
advanced mathematics for teachers transforms their own perception of elementary, middle, or 
secondary content, in the sense that the content is seen in a new light, that the meaning or 
understanding of ideas is shifted, or that the content is re-organized, re-ordered, or re-structured 
in the teachers’ mind. This notion of transformation relates to Simon’s (2006) description of key 
developmental understandings (KDUs), which changes one’s thoughts about and perceptions of 
mathematical ideas and their relationships; however, in the context of the horizon this is specific 
to advanced mathematical knowledge serving as a KDU for more elementary mathematics. Such 
a transformation in understanding may inform teachers’ choices for sequencing content, impact 
what concepts they emphasize, alter their exposition of ideas, or shape ways they transition and 
prepare students for future ideas – all of which are connected to the work of teaching.  

This work focuses specifically on mathematical structures, drawing both inner- and outer-
horizon connections to advanced mathematics through a lens of transformation. Our broader 
work attends to structures from various areas of mathematics (e.g., measures, orders, sets); 
however, we focus here on algebraic structures and address the following research questions:  

(i) What mathematical structures underpin and connect the content areas across elementary, 
middle, and secondary school mathematics, and how can these structures provide 
avenues for transforming individuals’ perceptions of said content? In particular, what 
are the transformative possibilities of algebraic structures on more elementary content?  

(ii)  In what ways can awareness of a mathematical object’s periphery provide opportunities 
for connecting elementary, middle, and secondary mathematics content to their 
underlying mathematical structures?  

Methodology 
To address these questions, we began by analyzing the US-based Common Core State 

Standards for Mathematics (CCSS-M, 2010), focusing on standards that have similar trajectories 
and emphases in international curricula. Based on both independent and collaborative coding, we 
identified some of the primary standards for which knowledge of algebraic structures might be 
particularly transformative for teaching. The 65 standards identified were then analyzed using a 
grounded theory approach (Strauss & Corbin, 1990) to conceptualize primary content areas and 
their progression across K-12 mathematics. (Although projects to develop learning progressions 
for CCSS-M standards exist (e.g., http://commoncoretools.me/), which track the vertical 
progression of a mathematical topic (e.g., fractions or functions), the analysis for this work was 
independent of strand and complements existing work by allowing for cross-integration across 
different mathematical domains, but simultaneously related to more advanced algebraic 
structures.) In particular, we present a preliminary analysis of some of these content areas and 
their related conceptualizations “at the horizon”, providing both examples of the potential impact 
on teaching practice and a larger global progression of K-12 mathematics in relation to algebraic 
structures. Further synthesis work was done for conceptualizing and understanding the role that 
horizon knowledge might play in school mathematics teaching. On-going work will attend to 
how undergraduate mathematics programs may foster horizon knowledge for teaching. 

Findings/Implications 
Through our preliminary analysis, four content areas emerged within which knowledge of 

abstract algebra was potentially transformative to instruction (Table 1). For example, the notion 
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of inverse is evident throughout K-12 mathematics, and is one for which knowledge of the 
structures of abstract algebra has positively influenced teaching decisions (e.g., Zazkis & 
Mamolo, 2011; Zazkis & Zazkis, 2013). The concept plays an extremely important role for 
students understanding operations on sets and relations between them. For a teacher, 
understanding the general notion of inverse, where additive, multiplicative, functional, etc., 
inverses become examples of the same concept, unified within some algebraic structure, is 
insightful and may help provide consistency in developing and discussing these ideas. This 
awareness of structure characterizes outer-horizon knowledge and may provide a teacher with a 
better sense of the experiences and ways of reasoning that can support students’ mathematical 
growth (Mamolo & Pali, 2014). In the context of inverse functions, this transformation may 
impact the types of questions a teacher poses. For example, “Compare the following: –sin(x), 
csc(x), sin-1(x). Are any the same? Are they all different? Rewrite –sin(x) and csc(x) using a “-1” 
somewhere; why do all of these use “-1”?” This line of questioning draws attention away from 
the particular uses of “-1” as disparate entities (e.g., coefficients, powers) toward its general 
conceptualization. The notion of inverse from school mathematics to the advanced content in 
abstract algebra develops along the Action-Process-Object-Schema (APOS) framework (Asiala, 
et al., 1996), where inverses initially associated with an “opposite” action or process turn into 
“objects” themselves within a specified group. In fact, the development in secondary school of 
inverse functions also serves as the set for which inverse operations (elementary school) become 
inverse elements; the ontological shift required for viewing inverse operations as set elements 
exemplifies a KDU that transforms an understanding of inverse operations (inner horizon) along 
with the broader mathematical world to which those operations are connected (outer horizon).  

Awareness of these connections and structures requires a broad view of the periphery of the 
mathematical object of inverses, which is influenced by an individual’s focus of attention. As 
such, we have begun analyzing how the CCSS-M may direct a teacher’s attention, illuminating 
or obscuring the horizon. Though our analysis is still on-going, we have begun by attending to 
organizational aspects (e.g., where and how content is presented) as well as semantic aspects 
(e.g., process- vs. object-based language, syntax), and we note a few preliminary observations 
here. With respect to inverses, the word itself is not introduced by the CCSS-M until grade 7, 
although the concept appears implicitly as early as kindergarten. While the standards identify 
relationships between common arithmetic operations, early descriptions emphasize process-
based understandings (e.g., find the answer to a division problem by finding the answer to a 
multiplication problem). The relationships emphasized attend to operations that may be 
“inverted” but obscure ideas of inverse as a relationship between two numbers. When fractions 
are introduced (grade 3) and arithmetic properties developed (grade 4), no explicit connections to 
inverse relationships are made. A footnote in the grade 5 standards hints at inverse relationships 
between multiplication and division and their use in fraction arithmetic, however the relationship 
between b and 1/b, and their status as inverse elements, goes unaddressed. The first mention of 
inverse as an object appears in grade 7 (“Understand subtraction of rational numbers as adding 
the additive inverse”) and marks a distinct shift in focus of attention. Whereas elementary 
content focuses on processes applied to numbers as a way to understand (inverse) relationships 
between operations, middle and secondary content focuses on relationships between numbers (or 
matrices or functions) as a way to understand the relationship between operations. We note that 
these observations serve as a description (not judgement) of how the standards potentially direct 
or do not direct a teacher’s attention toward mathematical structure; indeed, developing 
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action/process notions of inverse early on may be beneficial, although whether teachers connect 
these ideas to broader structures in the horizon is unclear. 

By isolating common mathematical structures (conceptualized as elements of a 
“mathematical outer-horizon”) across school standards, we have highlighted some of the areas in 
which algebraic structures may become transformative for teaching. Attention to the particulars 
of the standards underscores how different conceptualizations and relationships are emphasized 
and, as such, influence what may be accessible in the periphery, both in terms of the specific 
properties of objects (inner horizon) and their structural connections (outer horizon). 
Additionally, how these structures are connected to the context of school mathematics can 
inform approaches in post-secondary mathematics courses for developing horizon knowledge 
and supporting the associated pedagogical sensitivities of prospective teachers. As part of the 
presentation, we propose the following questions for audience discussion: 1) Is knowledge of 
mathematical structure useful for school teaching?; 2) Should developing explicit links amongst 
school content and its underlying structure form part of prospective teachers’ mathematical 
preparation?; 3) What experiences at the undergraduate level could be relevant for developing 
teachers’ horizon knowledge, with a focus on transforming perceptions of elementary content? 
 

 
Table 1: Four content areas and their progression across school mathematics 

Content Area Elementary School Middle School High School 

Arithmetic Properties 

Properties of Addition, 
Multiplication on N, Q+ 

Properties of Addition, 
Multiplication on Z, Q, R; 

Algebraic expressions 

Properties of Addition, 
Multiplication on R, C; 
Polynomials, Rationals 

 

Properties of Matrix 
multiplication; Properties of 

Function composition 
Fields / Rings                                                   Groups 

Concrete  Abstract 

Inverses 
Inverse Operations Transitioning to Inverse 

Elements 
Inverse Elements and Inverse 

Functions 
  Comprehensive Framework for Inverses  

Structure of Sets 
Equivalence within number 

sets (identity) 

Equivalence within algebraic 
expressions (arithmetic 

properties); Expansion on 
number sets to Z, Q (closure) 

Expansion to C (closure); 
Parallel structures across 
number sets and algebraic 

expressions 
Within Sets   Across Sets  

Solving Equations 
(Guess and check) Systematic solving 

(arithmetic operations) 

Systematic solving (complex 
functions); Systems of 

equations 
Arithmetic Operations  Complex Functions 
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Secondary mathematics teachers’ perceptions of real analysis in relation to their 
teaching practice 
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Fourteen secondary mathematics teachers were given a task-based interview in which they 
were presented with four mathematical tasks from secondary school mathematics that a real 
analysis course might prepare them to handle. We found that most participants could not 
answer these questions correctly. Some participants believed the answers to some of these 
questions could inform their teaching, but felt these topics were not included in their real 
analysis course. We suggest that explicitly discussing the corollaries relevant to secondary 
school mathematics in real analysis courses for prospective teachers might be a useful first 
step in helping future teachers see real analysis as relevant to their instruction. 

Key words: Mathematical Knowledge for Teaching; Real Analysis; Teacher development. 

Teaching high school mathematics requires having a deep and flexible understanding of 
the content that is being taught. To build this knowledge, many future teachers are required to 
complete a substantial number of courses in advanced mathematics, sometimes even 
obtaining an undergraduate degree in mathematics (e.g., CBMS, 2001, 2012; Stacey, 2008). 
However, the effectiveness of these policies has been questioned. There is little relationship 
between the number of university mathematics courses that teachers complete and their 
students’ mathematical achievement (e.g., Darling-Hammond, 2000; Monk, 1994). Further, 
courses such as real analysis, which representatives of mathematical professional societies 
and some mathematics educators often consider necessary for truly understanding and being 
able to teach secondary mathematics (e.g., CBMS, 2012), are frequently viewed by teachers 
as unnecessary and unrelated to their teaching (Goulding, Hatch, & Rodd, 2003).  

In this paper, we focus on how secondary mathematics teachers perceive the value of 
their real analysis course. We chose to focus on real analysis because of the ostensibly strong 
links between the content of a real analysis course and the secondary mathematics 
curriculum. Many topics covered in most real analysis courses overlap with the high school 
curriculum, including the real number line, functions, inverses, the intermediate value 
theorem, limits, continuity, derivatives, and integrals. In principle, completing a real analysis 
course provides secondary teachers with the opportunity to address gaps in their knowledge 
(e.g., what does 5√2 mean?), address misconceptions (e.g., thinking that functions with cusps 
are not continuous), and illuminate why some statements about functions are true (e.g., the 
Intermediate Value Theorem). Hence, while we would not expect the mathematical content to 
be learned in this course to provide all the mathematical content needed to teach algebra and 
calculus effectively – the mathematical knowledge needed for teaching extends beyond a 
mastery of the content (e.g., Hill et al., 2007) – we might predict that this would help future 
teachers to develop some of the requisite content knowledge. The goal of this paper is to 
explore the extent to which this is the case. In this paper, we interviewed 14 secondary 
teachers about their experiences in a real analysis course and their perceptions on how this 
informed their teaching. We use this to shed light on the following questions: 

1. To what extent can teachers apply what they learned in real analysis to topics in 
high school mathematics? 

2. To what extent do these teachers think that real analysis informs their teaching? If 
they do not see value in learning real analysis, why do they feel this way? 

3. How might we change the way that real analysis courses are taught to teachers to 
increase their relevance to teachers’ classroom practice? 
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Literature Review 
Several studies have found that pre-service high school mathematics teachers have 

substantial gaps in their understanding of secondary mathematics, even after completing an 
undergraduate degree in mathematics. For instance, Bryan (1999) interviewed nine pre-
service secondary mathematics teachers near the end of their undergraduate degree. These 
teachers had difficulty explaining the meaning of important concepts such as function and 
exponents; in some cases, the teachers could not even complete procedural tasks regarding 
these concepts. These findings are consistent with other studies (e.g., Cankoy, 2010; Even, 
1990; Sanchez & Llinares, 2003) that find that completing a mathematics degree does not 
necessarily afford students with an understanding of and an ability to explain ideas from high 
school mathematics.  

Other studies have found that it is not clear to teachers how their experiences in advanced 
mathematics can be used to inform their instruction. Zazkis and Leikin (2010) surveyed 52 
practicing secondary teachers on how advanced mathematical knowledge impacted their 
pedagogical practice. Roughly half the participants indicated that they rarely used this 
knowledge in their teaching. Those that did find this information relevant generally could not 
provide specific ways in which it was used. Such results are similar to other studies where 
teachers viewed advanced mathematics courses as unimportant in their development as 
teachers (e.g., Goulding et al, 2003; Rhoads, 2014).  

Theoretical Perspective 
We view applying mathematical content knowledge learned in advanced mathematical 

coursework to topics in secondary mathematics as a particular case of transfer. In traditional 
theories of transfer, a learner is thought to form an abstract representation of some initial 
learning event, recognize similarities in the structure of a target learning event, and then 
apply similar reasoning in the targeted learning event as he or she did in the initial learning 
event (e.g., Gentner et al, 2003). For instance, in real analysis, students learn about the 
definition of inverse functions and theorems that specify conditions for when inverse 
functions will exist (e.g., the original function is injective) or cannot exist (e.g., a continuous 
function that is not strictly monotonic). If a secondary school student asks whether √x is an 
inverse function for x2, the hope is that a teacher who has completed a course in real analysis 
can draw on his or her knowledge of theorems learned in that course and explain that x2 has 
no inverse function because it is not injective, but that it can have an inverse function on a 
restricted domain in which it is strictly monotonic, such as the non-negative numbers. There 
are many factors that may inhibit this transfer, including time (the gap between real analysis 
and student teaching may be several years), representation systems (the formal epsilon-delta 
notation in real analysis differs from the diagrams and more informal notation of algebra and 
calculus), and the desired product (a formal proof vs. an explanation comprehensible to a 
high school student). In this paper, we examine a somewhat simpler transfer task. Can 
teachers apply what they used in real analysis to answer questions about high school math? 

Methods 
Fourteen secondary mathematics teachers participated in this study. Eight participants had 

recently completed a five-year masters and certification program in mathematics education. 
In completing their degree, these participants completed an undergraduate mathematics 
degree as well as a semester of student teaching in which they taught five courses. The other 
six participants had completed the same degree and had one to five years experience working 
as a high school math teacher. 

During the interviews, participants were first asked if they found real analysis useful in 
their teaching and then to elaborate on their response. Next they were given four tasks:  
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a. Explain why 0.999… = 1. 
b. What is 5√2? 
c. Is f (x) = √x an inverse function for g(x) = x2 and is h(x) = arcsin x an inverse 

function for i(x) = sin x? 
d. Is f (x) = x3 differentiable on all of the real numbers? 

Tasks (a) and (b) were selected after mathematicians whom we interviewed cited them as 
examples of knowledge from real analysis that was relevant to the teaching of high school 
mathematics. Tasks (c) and (d) were developed by our research team as related to knowledge 
from real analysis that can potentially inform the pedagogical practice of teachers. 

For each one of the four tasks above, participants were (i) asked to answer the question, 
and then (ii) given a normatively correct response to the task by using ideas from real 
analysis (e.g., a proof of why 0.999… = 1). After this, participants were (iii) asked if they 
understood the given explanation, and (iv) told that this topic was related to common student 
difficulties in mathematics (e.g., the belief that 0.999…=1 gets arbitrarily close to 1 but does 
not reach it) and asked if the response from (ii) could inform their teaching. Finally, 
participants were (v) asked if there was anything that could have been done in their real 
analysis class to help them relate this content to their teaching. Interviews were audiotaped 
and lasted about one hour. 

Preliminary Results and Significance 
Analysis of our data is ongoing, but we can report on four interesting trends that we have 

observed in our data. 
1. For each task, the majority of our participants were unable to solve the task correctly. 

That is, despite completing a real analysis course where this content was ostensibly covered, 
participants were generally unable to use this content to answer mathematical questions. This 
result is consistent the findings of Bryan (1999) and Cankoy (2010) that a degree in advanced 
mathematics may not prepare students with a mastery of the content in secondary 
mathematics.  

2. For tasks (a) and (b), participants generally did not think this mathematical knowledge 
was relevant to their teaching. This is notable because teachers’ inability to understand why 
0.999…=1 was viewed by some mathematicians as an important hole in their knowledge. The 
participants in our study did not agree with this. They argued that this topic did not come up 
during their teaching, suggesting that some assumed benefits of a real analysis course might 
not be that important for pedagogy, at least not from the perspective of high school teachers. 

3. For tasks (c) and (d), most participants thought this could inform their teaching, but 
they felt this was not covered in their real analysis course. From our study of the textbook 
used in the analysis course where this study took place, we observed that the content needed 
to address these questions was covered, but specific questions of this type were not. These 
are, in effect, corollaries to theorems covered in the book, although corollaries of this type 
(i.e., relating the real analysis content to secondary mathematics) were rarely given. 

4. Some participants thought teachers might benefit from a special section of real 
analysis that emphasized relationships to teaching. As mentioned above, connections to 
secondary mathematics and to pedagogy were notably absent from the textbook (Fitzpatrick, 
2006) we reviewed. This is perhaps because these topics are less important to the typical 
mathematics major who completes a real analysis course, who may be interested in practical 
applications or connections to other domains of advanced mathematics. Such connections are, 
however, of interest to teachers (as point (3) illustrates), but are not being made by the 
teachers (as point (1) illustrates). Having a class targeted for this population of students might 
be helpful. 
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Questions for the Audience 
1. What further questions could we ask about our data? 
2. How can we use different lenses of transfer (e.g., traditional vs. Actor-Oriented) to 

interpret our data? What different insights might these provide? 
3. How would we design a real analysis class that might be useful to teachers? 
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Adding explanatory power to descriptive power: Combining Zandieh’s derivative 
framework with analogical reasoning 

Kevin L. Watson      Steven R. Jones 
Brigham Young University     Brigham Young University 

The derivative is an important foundational concept in calculus that has applications in many 
fields of study. Existing frameworks for student understanding of the derivative are largely 
descriptive in nature, and there is little by way of theoretical frameworks that can explain or 
predict student difficulties in working with the derivative concept. In this paper we combine 
Zandieh’s framework for understanding the derivative with “analogical reasoning” from 
psychology into the “merged derivative-analog framework.” This framework allows us to 
take the useful descriptive capabilities of Zandieh’s framework and add a layer of 
explanatory power for student difficulties in applying the derivative to novel situations. 

Key words: calculus, derivative, theoretical framework, analogical reasoning 

The derivative is a widely used concept in many fields of study, both inside and outside 
of mathematics. Given its importance, we might hope that calculus students would develop a 
deep understanding of the derivative. However, many researchers have documented that 
students struggle to fully understand and use the derivative concept (e.g., Aspinwall, Shaw, & 
Presmeg, 1997; Byerley, Hatfield, & Thompson, 2012; Orton, 1983; Park, 2013; Siyepu, 
2013). While some frameworks have been developed to analyze student understanding of the 
derivative (García, Llinares, & Sánchez-Matamoros, 2011; Zandieh, 2000; Zandieh & Knapp, 
2006), most current frameworks focus on describing student understanding rather than 
explaining or predicting potential student difficulties. In this paper we present a blending of 
one such framework (Zandieh, 2000) with a theory of analogical reasoning from psychology 
(Holyoak, 2012), the result of which may help explain, in part, some of the difficulties 
students might face as they attempt to apply their derivative knowledge. In the following 
sections we provide brief descriptions of Zandieh’s derivative framework and Holyoak’s 
approach to analogical reasoning, discuss the merging of these two frameworks into the 
“merged derivative-analog framework,” and provide examples of the merged frameworks’ 
usefulness. 

Zandieh’s Derivative Framework 
Zandieh (2000) provided a useful way to map out students’ understanding of the 

derivative in order to “clarify, describe and organize the facets that we as a mathematical 
community consider to be part of the understanding of the concept of derivative” (p. 103). 
Her framework consists of two main components: multiple representations, or contexts, and 
layers of process-object pairs. 

Contexts. Based on existing categories of concept image from the mathematics education 
literature (see Hart, 1991; Tall & Vinner, 1981; Vinner & Dreyfus, 1989), Zandieh posits that 
the concept of the derivative can be represented (a) symbolically as the limit of a difference 
quotient, (b) graphically as the slope of the tangent line to a curve at a point, (c) verbally as 
the instantaneous rate of change, and (d) physically as speed or velocity. Each of these 
representations is referred to by Zandieh as a “context.” Other contexts are possible, but all 
have underlying commonalities that cause us to call all of them by the same name: the 
derivative. 

Process-object layers. The commonalities among the different contexts are what Zandieh 
refers to as the “layers” of the framework, consisting of the ideas of ratio, limit, and function. 
Each layer can be viewed as both processes and objects. That is, the division between two 
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quantities can be reified as a ratio. Then, “infinitely many of the ratios” (p. 107) are passed 
through to get the limit, a process that can also be reified. Finally, the derivative function can 
be thought of as the result of doing the limit process at every point in the domain.  

Pseudo-objects. Note that, at times, students will not grasp the underlying process of a 
layer, and fail to develop a deep, structural conception of the object on that layer, but will still 
be able to consider the next process in the derivative structure by using what Zandieh (2000) 
abbreviates as pseudo-objects. To define a pseudo-object, Zandieh uses what Sfard (1992) 
calls a pseudostructural conception, which “may be thought of as an object with no internal 
structure” (Zandieh, 2000, p. 107). For example, a student might consider the value of a limit 
as an object, without having an idea of the limiting process that gave rise to that value. Or a 
student might see a ratio as a fraction, such as ½, without perceiving that it can also mean a 
comparison of two quantities. While pseudo-objects are not inherently negative, as they can 
be used in efficiently simplifying thinking about later processes, students who only have a 
pseudo-object understanding may not fully grasp the concept of the derivative. 

Matrix of derivative understanding. The four contexts and the three layers mentioned in 
this section are compiled by Zandieh into a matrix (see Figure 1) that can map out a student’s 
understanding of the derivative and can be used to visually compare the student’s 
understanding with that of the mathematics community or other students. Zandieh 
recommends using an open circle in a box to represent that a student has demonstrated a 
pseudo-object understanding of that context and layer, and a filled in circle if the student also 
shows an understanding of the process involved. 

 
            Contexts: 
Layers: 

Graphical 
(Slope) 

Verbal 
(Rate) 

Physical 
(Velocity) 

Symbolic 
(Diff. Quot.) 

Other 

Ratio      
Limit      
Function      

Figure 1: Zandieh’s (2000) matrix for student understanding of the derivative concept 
 
While this framework is useful in analyzing student understanding of derivatives, Zandieh 

mentioned that her framework “is not meant to explain how or why students learn as they do, 
nor to predict a learning trajectory” (2000, p. 103). That is, her framework is largely 
descriptive and comparative in nature. In order to add some explanatory power to this 
framework, we propose combining it with analogical reasoning. 

Holyoak’s Analogical Reasoning 
Analogy and relational reasoning (for a more complete overview, see Holyoak, 2012) is 

the process of identifying common patterns of relationships between two (or more) situations 
through comparison, and using these commonalities to make inferences about the lesser 
known of the two situations (see Figure 2). This usually happens by first encountering a 
problematic situation, or target analog, that serves as a retrieval cue for a potentially useful 
source analog, or well-known situation in a person’s memory. The person then creates a 
mapping, or set of systematic correspondences between the two analogs, that seeks to align 
the elements of the source and target. Based on this mapping, and the relevant relationships 
within the source analog, new inferences can be made about the target that the “reasoner” 
hopes will help solve the problem. After this analogical reasoning has taken place, some form 
of relational generalization may take place, helping the reasoner develop a more abstract 
schema for a category of situations. 
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an entire function of such limits is a causal relation. These three “causal relations” form the 
derivative schema, which is applicable across all the contexts mentioned by Zandieh, 
including the graphical, symbolic, verbal, and physical contexts, as well as any other context 
which can be considered another representation of the derivative. Like with the wave schema, 
where the analogy only works if all aspects of the schema are applicable (propagation, 
reflection, etc.), any context that can be considered a representation of the derivative will 
necessarily have all three of these causal relations. 

If a student only has pseudo-object understandings of the different layers and contexts, we 
say “the reasoner fails to understand (or misunderstands) the causal [relations] of the source” 
(Holyoak & Richland, 2014, p. 227). If a student with a pseudo-object understanding 
attempts to use analogical reasoning with a new derivative context, their inferences from their 
source analog(s) to the target analog will most likely be problematic, as they will be based 
only on surface similarities, or simply on the fact that they were told to find the derivative in 
the new context (Gick & Holyoak, 1983; Holyoak & Richland, 2014). Furthermore, as 
suggested by Gick and Holyoak, a student who heavily relies on a single context/analog when 
thinking about derivatives is not likely to have formulated the underlying ratio-limit-function 
schema in their cognitive structure of derivatives, and will probably struggle to see the 
analogous mapping and inferences that will be useful in making sense of new derivative 
situations. 

What does this merged framework afford us? We offer three applications of the 
framework. First, while previous frameworks are largely descriptive of student 
understanding, our framework gives explanatory power for making sense of student 
difficulties in applying the derivative concept to novel situations. Second, our framework 
may provide some ability to predict how well a student might do in a new context, such as a 
physics or engineering context, based off of their understanding about the derivative in 
previous contexts. Third, our framework provides teaching implications, since analogical 
reasoning happens best when students have more than one analog, coupled with explicit 
extraction of the underlying schema. 

Examples of the Merged Derivative-Analog Framework’s Usefulness 
To illustrate the potential usefulness of this merged framework, we show an analysis of 

two students who participated in a derivative-focused interview at the end of a first-semester 
calculus course. In the interview, the students were first given two tasks in which they 
calculated and discussed derivatives within a pure-mathematics context. Next, they were 
given three subsequent tasks that asked them to calculate and discuss derivatives from real-
world contexts. We analyzed the interviews by first looking at the student data from the first 
two (mathematics) items and filling out a matrix of derivative understanding for each student. 
Each of our analyses was done independently so we could compare our matrices and ensure 
we were properly categorizing the students. Next, we used our framework to provide reasons 
for the difficulties one student had, and the facility in working with the derivative the other 
student had. While common sense would indicate that one of the students would struggle, our 
framework offers the ability to explain why these difficulties may occur. 

In Figure 3 and Figure 4 we show the results of our matrices for Don and Jay. Don’s 
understanding of the derivative seemed to heavily reside in the single, graphical 
context/analog. In addition, it is clear that he often operated with pseudo-object 
understandings, meaning he likely did not have an extracted ratio-limit-function schema from 
this single analog, as suggested by analogical reasoning (Gick & Holyoak, 1983). By 
contrast, Jay’s understanding cut across multiple contexts/analogs with strong, process-based 
understandings. Consequently, as analogical reasoning also suggests, we expect he has 
cognitively extracted and compiled the ratio-limit-function schema (Gick & Holyoak, 1983). 
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 Graphical Verbal Physical Symbolic Other 
Ratio ○     
Limit ○     
Function ○     

Figure 3: Matrix of derivative understanding for Don 
 

 Graphical Verbal Physical Symbolic Other 
Ratio ● ●  ●  
Limit ● ●  ●  
Function ● ●    

Figure 4: Matrix of derivative understanding for Jay 
 
Our merged framework would predict that Don would not perceive the causal relations 

that make up the ratio-limit-function schema and would therefore not be able to map from the 
graphical derivative context to the new physics derivative context (Holyoak & Richland, 
2014). Consider the following excerpts from an interview item dealing with the gravitational 
force between an object and the earth, 2

GmM
r

F  . In this item, the students were asked to 

calculate dF
dr  and discuss its meaning. Both Don and Jay correctly used differentiation 

rules to find 32 GmM
r

dF
dr  � , but differed significantly in their discussion of its meaning. Don 

began by reasserting that the derivative indicates the slope, or steepness at a given point. 
 
Don: I think it should mean that whenever you put in a value for r, you know whatever that value is, it 

should give you the slope, or I guess, you know, like, how steep the graph is at that point that you put 
in for r. 

 
When pushed to explain what the “slope” of the graph would mean in this context, he 

seemed to mostly focus on the direction of force, much like how slope can be reduced to 
thinking of a line pointing up or down. 

 
Don: I’m not really sure. But, I think, if I were to guess, then, so my guess would be, the force of gravity 

would be, I guess, positive if you were being pulled toward the earth, because gravity pulls you, you 
know, toward it. And then, I guess, if it was negative, it would be pulling you away. But, I don’t know, 
that’s just my best guess. 

 
In this excerpt, we can see that Don did attempt to use analogical reasoning to map from 

the graphical context to the force of gravity context. But because he did not grasp the causal 
relations that make up the ratio-limit-function schema, his inferences “suffered” (see Holyoak 
& Richland, 2014). Thus, our framework may be able to explain the underlying mechanisms 
regarding why a pseudo-object understanding of the derivative layers creates problems for 
applying derivative understanding to novel contexts. 

By contrast, our merged framework would predict that Jay would be able to take in a new 
analogical context (the derivative of force) and map his developed schema onto it, and use 
analogical inference in order to make sense of the meaning of the derivative. In fact, the data 
show that this is the case, as Jay was able to use the ratio-limit-function schema he had 
extracted from the graphical, verbal, and symbolic analogs to make sense of this new 
derivative context. 

 
Jay: It tells me the rate at which the force of the attraction, in between the earth and whatever object it is, is 

changing at any given height above the earth… As r changes, it tells me the rate at which the force is 
changing. 
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Interviewer: What does that negative sign mean? 
Jay: As the height gets higher, it means that the force is decreasing. 
… 
Jay: I mean, it’s negative, so the, the negative derivative, it’s basically the definition of what that means, is 

that the actual function, so F, uh, force, is decreasing at that given point. 
… 
Interviewer: What’s true about how quickly gravity is decreasing? For every mile you go, does it decrease 

the same amount of gravitational force for every mile? 
Jay: Looking at this [the derivative], it decreases less and less the farther you go. ‘Cause the larger the 

radius gets, the smaller this number gets, until eventually it begins to approach zero… So, in general, 
the, the force of gravity on an object is decreasing by less and less the farther away you get. 

 
Here we see Jay flexibly drawing on the ratio, limit, and function layers to make sense of 

the new context/analog. In particular, he described (a) how the derivative depicted the 
covariational relationship between distance and force (ratio), (b) how that rate of change 
could happen at a single point (limit), and (c) how the rate of change itself changes 
(function). The ratio-limit-function schema had been extracted from the various 
contexts/analogs and Jay had it cognitively “ready” to apply to a novel analog. 

Conclusion 
Our merged derivative-analog framework adds explanatory power to Zandieh’s (2000) 

derivative framework, allowing us to account for the reasons why students struggle with 
applying the derivative in novel contexts. Furthermore, it enables us to make reasonable 
predictions about how well a student will be able to apply their existing knowledge about 
derivatives to applications of the derivative they have never seen before. This framework we 
have presented can be used by researchers to better understand and explain why students 
struggle with the derivative concept, particularly those students who seem to understand the 
derivative in mathematical contexts, but struggle significantly when presented with different 
derivative applications. Additionally, this framework and analogical reasoning suggest that 
we, as calculus instructors, need to take time in class to discuss multiple derivative analogs 
(see Gick & Holyoak, 1983), and make sure that students recognize the key causal relations, 
or the processes of the ratio, limit, and function layers of the derivative, that underlie those 
analogs. By doing so, students will be more likely to extract the ratio-limit-function schema, 
and will be better prepared to apply their understanding of derivatives to unfamiliar 
situations. 
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An RME-Based Instructional Sequence For Change Of Basis And Eigentheory 
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Linear algebra is widely viewed as pivotal yet difficult for university students, and hence 
innovative instructional materials are essential. The goals of this NSF-funded research project 
include producing: (a) student materials composed of challenging and coherent task sequences 
that facilitate an inquiry-oriented approach to the teaching and learning of linear algebra; and 
(b) instructional support materials for implementing the student materials. This poster will 
highlight the third unit of the IOLA (Inquiry Oriented Linear Algebra) materials that focus on a 
research-based approach to introducing eigentheory, change of basis, and diagonalization.  
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Linear algebra is widely viewed as pivotal yet difficult for university students, and hence 

innovative instructional materials are essential. The goals of this NSF-funded research project 
include producing: (a) student materials composed of challenging and coherent task sequences 
that facilitate an inquiry-oriented approach to the teaching and learning of linear algebra; and (b) 
instructional support materials for implementing the student materials. This poster will highlight 
the third unit of the IOLA (Inquiry Oriented Linear Algebra) materials that focus on a research-
based approach to introducing eigentheory, change of basis, and diagonalization.  

 
Prior Work and Theoretical Framing 

Our current research program builds from a previously NSF-funded project focused on 
student learning of basic ideas in linear algebra as students transitioned from intuitive to more 
formal ways of reasoning. Through conducting interviews and watching classroom video data, 
we analyzed and reported extensively on student thinking about particular mathematical ideas 
(e.g., Larson & Zandieh, 2013; Wawro & Plaxco, 2013; Wawro, Rasmussen, Zandieh, Sweeney, 
& Larson, 2012). This design research consisted of a cyclical process of ongoing analysis of 
student reasoning and simultaneous task design and conjecture modification regarding the 
possible paths that students’ learning might take (Wawro, Rasmussen, Zandieh, & Larson, 2013; 
Cobb, 2000; Gravemeijer, 1994).  

Our theoretical framework for designing instructional materials draws on heuristics of 
Realistic Mathematics Education (summarized by Cobb, 2011). First, a task sequence should be 
based on experientially real starting points. Second, the task sequence should be designed to 
support students in making progress toward a set of associated mathematical learning goals. 
Third, classroom activity should be structured so as to support students in developing models-of 
their mathematical activity that can then be used as models-for subsequent mathematical activity. 
Finally, with instructor guidance, students’ activity evolves toward the reinvention of formal 
notions and ways of reasoning about the mathematics initially investigated.  
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Purpose of the Poster 
Initial versions of the sequence were used in classroom teaching experiments in 2009-2010, 

during which we collected written and video data of small group and whole class discussions.  
We present an innovative instructional sequence for an introductory linear algebra course that 
supports students' reinvention of change of basis, eigentheory, and how they are related through 
diagonalization. Task 1 builds from students' experience with linear transformations in ℝ! to 
introduce them to the idea of stretch factors and stretch directions and how these create a 
nonstandard coordinate system for ℝ!. In Task 2 students create matrices that convert between 
the standard and non-standard coordinate systems and work toward reinventing the equation 
!"!!!! = !". In Tasks 3 and 4, students build from their experience with stretch factors and 
directions to create for themselves ways to determine eigenvalues and eigenvectors, to develop 
the characteristic equation as a solution technique, and to connect ideas about eigentheory to 
their earlier work with change of basis through the idea of diagonalization. We will share 
information about our project website which contains instructor resources such as examples of 
student thinking, implementation notes, and homework suggestions for this task sequence.  
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The simple life: An exploration of student reasoning in verifying trigonometric 
identities 

Ben Wescoatt 
Valdosta State University 

Reasoning used by students as they verify trigonometric identities has not been investigated.  
Through analyzing students’ spoken explanations of their thought processes in clinical 
interviews, this current study explores why students choose certain expressions to begin 
manipulating and why certain manipulations or substitutions are performed as they verify the 
purported identity.  Preliminary findings suggest that students may use beliefs about 
mathematics to inform and monitor their decisions, namely, the belief that mathematical 
answers are results of a simplification process.  Thus, students spoke of the flow of 
verification problems in terms of a simplifying process.  This belief may be imported from a 
cultural belief that being simpler is better and more desired; thus, mathematical tasks could 
validate the imported belief and in turn strengthen the belief about mathematics as 
simplification.  To support this possibility, this paper will share student comments.  
Implications for instructional practice will also be suggested.   

Key words: Trigonometric identities, Problem solving, Mathematical reasoning, Simplifying 

Explorations into student understanding of trigonometric concepts remain sparse, yet, the 
field is rich with areas for exploration.  Specifically, the concept of verifying trigonometric 
identities allows for investigations of students’ algebraic reasoning applied to more advanced 
structures, trigonometric functions, and students’ nascent concepts of what it means to 
mathematically prove something to be true or false.  The intent of this current study is to 
continue an ongoing exploration into how students verify trigonometric identities, focusing 
on the verification process as an instance of problem-solving. 

In order to verify a trigonometric identity, an individual uses a series of steps to 
demonstrate that one expression is equivalent to another expression under a suitable domain.  
At each step, the individual replaces one expression with a more suitable equivalent 
expression.  The first decision typically made is to choose which expression to begin 
manipulating.  Generally, as individuals learn how to verify identities, advice is provided to 
choose the “most complicated” side.  The specific goal of this study is to explore the 
reasoning individuals use when determining which expression to begin manipulating and 
which following substitutions to perform and to better understand the meaning individuals 
attach to the advice given to choose the most “complicated side.” 

Related Literature 
In substituting equivalent expressions at each step of the verification process, individuals 

either use a known identity or they develop an equivalent expression through algebraic 
manipulation.  Delice (2002) investigated these steps as students manipulated trigonometric 
expressions.  He found that students followed a certain pattern as they “simplified” the given 
expression. The first stage was the “recognition” stage.  They began by reading the problem.  
Next, they recognized a certain visual form, or cue (Mamona-Downs & Downs, 2005), within 
the expression to be simplified.  Finally, they recalled the particular identity, a known identity 
or one created through algebraic manipulation, that they could use.  As suggested in Delice 
and Roper (2005), students may have relied on their knowledge of manipulating form-
equivalent algebraic expressions, a structure sense for trigonometric expressions, in order to 
successfully manipulate the trigonometric expression.  Once they recognized what to do, they 
transitioned to the “doing” stage.  The students rewrote the expression by performing the 
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proper substitution.  Then, they cycled back through the recognize, recall, and rewrite phases 
until they believed they had fully “simplified” the given expression.   

While the tasks in Delice’s study requested that students “simplify” the given expression, 
Delice admitted that what the “simplest” expression was to be was not always apparent.  
Wescoatt (2014) suggested that when students spoke of simplifying trigonometric 
suggestions, they implied “a process of taking an expression to its most basic state in order to 
reduce the perceived size (physical or cognitive) of the expression” (p. 6).  Viewing the 
simplification process in this way conforms to beliefs students may hold about mathematics 
and tendencies students display while working with mathematical expressions.  For example, 
many studies have explored the difficulties students have in accepting a “lack of closure” for 
an expression.  In an exploration of teachers’ awareness of such a tendencies (Tirosh, Even, 
& Robinson, 1998), one of the teacher participants commented, “Students tend to make it as 
simple as possible.  They tend to ‘finish’ it [the expression]” (p. 56).   

Theoretical Framework 
The manipulative actions that students performed while verifying the trigonometric 

identities were viewed through the lens of the Multidimensional Problem-Solving (MPS) 
Framework (Carlson & Bloom, 2005).  The MPS Framework characterizes problem solving 
in terms of four behavioral phases: orientation, planning, executing, and checking.  The 
framework also describes four attributes of problem solving (resources, heuristics, affect, and 
monitoring) and explains their roles during the phases.  Thus, the decisions students make 
while manipulating the trigonometric expressions were assumed in part to be guided by 
conceptual knowledge, problem-solving strategies, and mathematical beliefs.   

Methodology 
The data for this study were collected from a college trigonometry course at a large 

research university as part of a larger case study of a class unit on verifying trigonometric 
identities.  Thirty-three students participated, responding to prompts involving verifying 
identities and solving verification problems.  Of these thirty-three students, eight agreed to 
participate in individual task-based interviews.  Each interviewee solved verification 
problems while speaking aloud his or her thought processes.  The audio from the interviews 
was captured and transcribed.  

The transcripts were analyzed using an open-coding process.  Each transcript was read 
with an emphasis on analyzing participants’ reasoning as they began the verification problem 
and then the reasoning in subsequent actions.  From this initial analysis, an initial framework 
of student reasoning evolved.  Then, each interview underwent an in-depth analysis through 
the lens of the evolving framework.  As needed, the framework was adjusted to better capture 
the essence of the student reasoning.  This analysis is currently ongoing; interviews will 
continually be reanalyzed through the framework, and this cycle will continue to improve the 
explanatory power of the framework. 

Preliminary Results 
In order to describe how student verified identities, a discussion of the “flow” of a 

verification should occur.  Students describe the verification process using “breaking down” 
metaphors.  Helen stated, “Well, you’re breaking, you’re either breaking it down or 
condensing it to something smaller,” while Alan commented, “You’re just trying to, uh, strip 
apart, piece by piece, to get to where they’re equal.”  For the problems to flow in this manner 
was a natural thing for students to believe.  As Alan clarified, “It’s easier to condense things 
down than to try to build them up.”  Amber concurred, saying, “Normally it’s easier to go to, 
from complicated to simple than simple to complicated.” 
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The flow of verification in a sense controlled the actions that students took.  To begin 
with, it directed which expression they should start manipulating.  Alan furthered his 
discussion of the flow of verification.  “That’s why I start with the most complicated side to 
begin with,” he stated.  “So you’re kind of taking off the layers I guess you could say, 
unraveling them, to eventually get to its, to the more s-, to the simpler of the two sides.”  So, 
choosing the perceived more complicated side, related to the structure, went beyond just 
blindly following advice given to him by an authority; Alan formulated his own interpretation 
and meaning for the strategy. 

Beyond the picking of the initial expression, the flow still exerted an influence.  Some 
students used it to monitor their actions.  For example, students were asked to write an 
expression equivalent to    (  )     ⁄ .  After Cooper wrote      , he was asked if any 
other equivalent expressions existed.  Cooper responded, “I’m just kind of leaving it as is.  
And it’s in a pretty simplified form.”  In another problem, Maria had to choose which identity 
for    (  ) to utilize; she explained, “I just try to find the one that looks like it could, um, 
help me simplify it, I guess.  I mean, just the one that has the terms closest to the ones I 
already have, um, to try to condense it a little bit.”  Amber described her verification process 
in a blunt manner:  “If I can simplify stuff, I’ll simplify it.  And then I’ll keep simplifying it 
until I can’t do anything more with it.”  Thus, students appeared to use their beliefs about 
how verification problems should flow in order to monitor their progress. 

For many students, the flow of the problem matched their beliefs about mathematics.  
Present in many of the students’ explanations was the notion of “simplify.”  Students 
explained this phenomenon as a natural result of math.  Explaining her process, Bella said, “I 
do it like, you start with the big equation, you get it smaller and smaller and smaller.  … 
That’s just math in general.”  This belief about mathematics could be reinforced by the types 
of problems students encounter, as Helen explained, “That’s what we’re taught to do is 
something times something, you know, a small number is outside of a big parentheses 
number, you automatically distribute it.  So that seems like it breaks it down and makes it 
simpler.” 

Discussion and Implications 
Overall, students’ action while verifying identities appear to be influenced by beliefs 

about how the problems should flow which in turn may have been influenced by their general 
beliefs about what mathematics problems are supposed to do.  Thus, students chose the most 
complicated expression to begin manipulating and used actions that “simplified” it since that 
is how math supposedly works.  If the students truly have these beliefs, then one may ask 
questions as to how they came by these beliefs and if these beliefs are acceptable. 

Students offered clues about the origins.  In explaining her desire to work with simple 
expressions, Amber quoted, “Keep it simple, stupid.”  Cooper shared a similar sentiment 
when questioned about simplifying expressions:  “Uh, from being a kid I think, you know.  
From sitting there and looking at it and going, why can’t life just be mud puddles? … I think 
it’s something that’s just, uh, bred into people.  I think they’re born with it honestly.”  Thus, 
perhaps students enter the mathematical culture with either natural or nurtured views 
concerning how life should be.  Then, as early mathematics problems begin with procedural, 
condensing tasks (  is found to be the simpler version of    ), the beliefs about life are 
found to be true in the mathematical culture as well. 

These beliefs could be helpful.  A typical strategy in solving problems is to find a simpler 
problem to solve.  In mathematics, many times this is achieved by representing the problem 
with a simpler, equivalent representation.  However, these beliefs could be harmful, stunting 
the learning opportunities for students.  For example, rather than recognizing that in 
verification, expressions are being replaced with equivalent expressions, a conceptual issue, 
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students focus on a procedure aspect, simplification.  Additionally, the feeling that the answer 
should be simplified could relate to the process-object duality inherent in expressions, with 
students being stuck in the lower-level process conception.  Furthermore, if students view 
mathematics in terms of simplification, does this belief of the flow of a problem affect other 
processes that counter the flow, such as a partial fraction decomposition (e.g., Herscovics & 
Linchevski, 1994)? 

If this belief about simplification exists, as it appears to, how could negative affects be 
attenuated?  One suggestion would be to banish overuse of the word “simplify” and just say 
what is meant.  A typical textbook homework problem starts off by saying “Simplify the 
following expressions.”  Saying “simplify” is lazy and plays to and reinforces the trope that 
the simpler, the “better”, meaning, the sought after “correct” answer is the simpler form.  
Instead, questions should be phrased to emphasize conceptual relations:  “For each given 
expression, find an equivalent expression by,” and then list the particular results desired, e.g., 
“no negative exponents.” 
 

1. What theories or studies could better situate the results in the literature? 
2. How does the context of a problem influence student actions and reasoning? 
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Painter’s paradox: Epistemological and didactical obstacle 
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In mathematics education research paradoxes of infinity have been used in the investigation of 
students’ conceptions of infinity. We analyze one such paradox – the Painter’s Paradox – and 
examine the struggles of a group of Calculus students in an attempt to resolve it.  This study 
shows that contextual considerations hinder students’ ability to resolve the paradox 
mathematically. We suggest that the conventional approach to introducing area and volume 
concepts in Calculus presents a didactical obstacle. A possible alternative is considered.  

 
Keywords – Infinity, Paradoxes, Cognitive conflict, Gabriel’s horn, Calculus 

 
In mathematics education research paradoxes have been used as a lens on student learning. 

(e.g., Movshovitz-Hadar & Hadass, 1990). In particular, paradoxes of infinity have attracted 
attention of mathematics education researchers and played an important role in investigating 
students’ conception of infinity (e.g., Mamolo & Zazkis, 2008, Núñez, 1994). We extend this 
research by attending to a particular paradox, the Painter’s Paradox, which was not yet examined 
in mathematics education research.  Painter’s Paradox is different from other paradoxes of 
infinity used in mathematics education research to explore conceptions of infinity, as it does not 
involve infinite subdivision of space or time. 

Gabriel horn and Painter’s Paradox 
The surface of revolution formed by rotating the curve xy 1=  for 1≥x  about the x-axis is 

known as the Gabriel’s horn (Stewart, 2012), though the origin of the name is unclear. This 
surface and the resulting solid were discovered and studied by Evangelista Torricelli in 1641. 
Torricelli showed that a certain solid of infinite length, now known as the Gabriel’s horn, has a 
finite volume. Torricelli’s infinitely long solid gave rise to epistemological and ontological 
issues at the time of its discovery. It provided a non-trivial knowledge about infinity and 
generated lengthy debates between mathematicians and philosophers of the 17th century 
(Mancosu & Vailati, 1991) 

Torricelli’s solid raised the issue of the ontological status of geometrical entities and 
stretched some of the basic intuitive geometrical notions. In addition, it is exploited in the 
Painter’s Paradox given below: 

The inner surface of the Gabriel’s horn is infinite; therefore an infinite amount of paint is 
needed to paint the inner surface. But the volume of the horn is finite (π ), so the inner 
surface can be painted by pouring a π   amount of paint into the horn and then emptying it. 

In Calculus textbooks the paradox is mentioned occasionally, but the resolution is not elaborated 
upon explicitly. We were interested in how Calculus students react to the situation.  

Generalized area and volume in Painter’s Paradox 
In Calculus textbooks the definite integral is generalized to include integration over 

infinite intervals and of unbounded integrands. These integrals are called improper integrals. 
However, the textbooks usually do not explain that this kind of volume calculation through an 
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improper integral generalizes the volume concept to an infinite object. In fact, in calculating the 
area by a definite integral the underlying idea is the sum of infinite series in the guise of 
Riemann sums. 

Infinite series are often discussed in a separate section, with no apparent connection to 
area and volume calculations.  Such connection is introduced in the integral test, which links 
convergence of improper integrals of certain functions over infinite intervals with convergence 

of infinite series. The integral test can be stated as:   ∫
∞

N
dxxf )(  is convergent if and only if  

∑
∞

=Nn
na is convergent, where )(nfan = .  In Gabriel’s horn the surface area is associated with the 

divergent infinite series ∑
∞

=1

1

n
n  , and the volume is associated with the convergent infinite series

∑
∞

=1

1
2

n
n

.  This contradicts the intuitive expectation that for a horn generated by rotating a curve 

around the x-axis has either infinite surface area and infinite volume or has finite surface area 
and finite volume.  

In summary, the Painter’s Paradox is based on the fact that Gabriel’s horn has infinite 
surface area and finite volume. The paradox emerges when we attribute finite contextual 
interpretations of area and volume to an intangible object of Gabriel’s horn. Linking the volume 
and the area of Gabriel’s horn to infinite series may settle the paradox, or at least connect the 
perceived paradox to the counterintuitive fact that some infinite increasing series are converging, 
while others are diverging.  

THE STUDY 
We begin this section by introducing the participants, their background relevant to our 

study, and the Task. We then introduce theoretical considerations that guided our analysis and 
present our research questions. The subsequent data analysis is structured according to the 
themes identified in the data.  

Participants, Setting and Task 

Participants in our study were 12 undergraduate students enrolled in a Calculus course. At the 
time of the study they were familiar with integral calculus techniques in calculating volumes and 
surface areas of surfaces of revolution, including unbound regions, like Gabriel’s horn.  

The participants were presented the Painter’s Paradox with detailed mathematical 
justifications of computing the volume and surface area of the Gabriel’s horn and showing that 
its volume is finite while the surface area is infinite. The Task, in which participants were asked 
to respond to the paradox, is presented in Figure 1. Shortly after completing the Task the 
participants were interviewed by the first author. The interviews were aimed at probing the 
participants’ written responses and seeking additional articulation of their explanations.  The 
interviews were audio recorded and transcribed. 

Theoretical considerations 
We rely on several theoretical frameworks in our data analysis – epistemological obstacles 

by Brousseau (1983), and platonic and contextual distinction by Chernoff (2011).  
 Epistemological obstacles. Brousseau’s theoretical construct of epistemological obstacles is 
based on the assumption that knowledge is an optimal solution in a system of constraints. In his 
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view, knowledge is a solution to a problem independent of the solver. He characterized 
epistemological obstacles as “those [obstacles] that cannot and should not be avoided, precisely 
because of their constitutive role in the knowledge aimed at. One can recognize them in the 
history of the concepts themselves” (Brousseau, as quoted in Radford, Boero, & Vasco, 2000, p. 
163). Brousseau (1983) classified sources behind students’ recurrent and non-aleatorical 
mistakes in learning mathematics as follows: 

(1) an ontogenetic source (related to the students' own cognitive capacities); 
(2) a didactic source (related to the teaching choices); 
(3) an epistemological source (related to the knowledge itself). 
So, epistemological obstacles arise from the third source. Brousseau suggests that they can 

be detected through a confrontation of the history of mathematics and today’s students’ learning 
mistakes. We consider the area-volume relationship of the Gabriel’s horn as an epistemological 
obstacle, as it created a considerable debate among mathematicians at the time.   

 
 

Gabriel’s Horn Task 
         Look at the following problem in Calculus by James Stewart.  

If the region {(x, y) | ! ≥ 1, ! ≤ ! ≤ 1/!} is rotated around x-axis, the volume of the 
resulting solid is finite. Show that the surface area is infinite. (The surface is shown in the 
figure and is known as Gabriel’s horn.) 

 
 
The volume of the solid is given by  

 .  

And the surface area is given by .  

But .  

 
So the volume of the Gabriel’s horn is finite but its surface area is infinite. So to paint the inner 
surface of the horn we need an infinite amount of paint. But we could pour a amount of paint 
into the horn and then empty the horn so that the inner side is painted. What do you think of the 
paradoxical situation here? Please write down your thoughts. Please note that the above 
calculations of volume and surface area of the horn are correct. 

 
 

Figure 1: Gabriel’s Horn Task 
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Contextualization. We also rely on the theoretical constructs introduced by Chernoff 

(2011) in distinguishing between platonic and contextualized situations or objects. Chernoff 
distinguished between platonic and contextualized sequences in the relative likelihood tasks in 
probability. A platonic sequence is characterized by its idealism. “For example, a sequence of 
coin flips derived from an ideal experiment (where an infinitely thin coin, which has the same 
probability of success as failure, is tossed repeatedly in perfect, independent, identical trials) 
would represent a platonic sequence” (p. 4). But, a contextualized sequence is characterized by 
its pragmatism. For example, “the sequence of six numbers obtained when buying a lottery ticket 
(e.g., 4, 8, 15, 16, 23, 42)” (p. 4) would represent a contextualized sequence. 

Gabriel’s horn is a platonic object. It is formed by rotating a breathless and infinitely long 
curve. But Painter’s Paradox is presented in a ‘realistic’ context and its resolution requires de-
contextualization from the physical reality, which is assuming that the paint can reach every part 
of the Gabriel’s horn and time is not a factor.  

Research Questions. Our study explores the specific challenges faced by students in 
resolving the Painter’s Paradox. We address the following interrelated research questions: 

How do undergraduate calculus students attempt to resolve the Painter’s Paradox? What 
challenges do they face? What mathematical and what contextual considerations do 
students rely on in dealing with the challenges? 

Data analysis  
We examined all students’ written responses to the task as well as their further 

explanations, elaborations or clarifications in the interviews.  Several interwoven themes were 
identified; their frequency of occurrence is presented in Table 1. Note that more than one theme 
was present is some of the responses.  

 
Table 1: Themes is participants’ responses 

 
 
 
 
 
 
 
 
 
 

We now present analysis of the data according to the above themes. 
Epistemological obstacles. In identifying the theme of epistemological obstacles theme 

we looked for any firmly held notions that indicate that the infinitely long Gabriel’s horn should 
have infinite volume. Half of the students had trouble dealing with Gabriel’s horn having a finite 
volume. Like the seventeenth century mathematicians and philosophers they reacted in disbelief. 
For example, Sean wrote:  

 if it is infinitely long it’s going to have infinite volume. So I don’t know how we are 
getting a finite volume.  

Kevin’s resistance to accepting Gabriel’s horn having finite volume is captured in the 
following interview excerpt: 

Theme Subthemes # of Responses 
Epistemological 
obstacles 

  
6 

Inadequacy of 
mathematics 
 

Calculus will be developed further 1  
3 Paradoxes are part of mathematics 2 

 
Contextualization 

Horn cannot be filled in a finite time 3  
8 Paint will get stuck 4 

Cannot paint as the horn cannot be seen  1 
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Interviewer:  Why is it paradoxical? 
Kevin:  Because we can’t imagine this geometrical figure it does not make sense to 

us […] I can not imagine this situation where I keep adding this area and 
this area gets very very large but my volume stays the same. 

Kevin seems to think that if you keep adding to something it has to get very large. In fact, 
he has difficulty in seeing that a positive increasing infinite series can converge.  

Inadequacy of mathematics. Rather surprisingly, three participants treated this 
paradoxical situation as a consequence of the inadequacy of mathematics. Kevin expressed a 
belief that in a “more complicated” Calculus we will not have this paradox: 

I feel like this part of Calculus is not perfected yet. I mean, people always tend to 
think that their contemporary science is very good, but then new generations of 
scientists prove them wrong. […] I believe that in future someone can come up with 
a new more complicated Calculus, that will not have such paradoxes in it.  

Unlike Kevin, Bryan was not seeking a different Calculus, but rather referred to a similar 
situation within mathematics. Bryan’s response seems to suggest that the paradox is in the 
mathematics itself, as a similar paradoxical situation exists in infinite series. Bryan wrote that 
“the paradoxical situation is correct as defined by the solutions” and that it reminded him of the 
paradoxical situation that arises in the summation of an infinite geometric series:  

a geometrically infinite series never ends in the amount of terms in the series, 
however, the sum of all of all these terms is a finite number.  

We note that these ideas resonate with Wallis’s, who shared Leibniz’ opinion, that 
Torricelli’s solid having a finite volume was as surprising as the infinite series 

...32
1

16
1

8
1

4
1

2
1 +++++   being equal to 1.  

Contextualization. The paradox itself is presented in a contextual setting of painting the 
horn. However, several responses indicate further contextualization of the paradox, that is, 
adding contextual consideration that are not present in the description of the paradox. Three 
students suggested that the horn cannot be filled in a finite time. David wrote and further 
reiterated that “you can never fill the horn with paint since the horn is ∞ long. Time must be a 
factor”.  The time factor is an additional contextualization to demonstrate that the set task is 
impossible to carry out in reality.  

Alysa suggested that the horn cannot be painted “because paint molecules will get stuck in 
the horn”. And while Alysa referred to molecules in her explanation, Peter mentioned “atomic 
level”. For Peter, the horn cannot be painted because at the atomic level you cannot see the 
surface: 

 that surface.., when it goes to that atomic level…,you can’t see it anymore.., how can 
you paint something you can’t see? […] It goes smaller than the size of some 
microscopic.., we can’t see it.., we can’t paint it! 

These responses highlight the difficulty in decontextualizing the Painter’s Paradox.   
  A possible resolution?  Bruce was the only participant who wrote about the connection 
between area and volume, and Riemann sums. He noted that the area and volume are defined 
using Riemann sums. To say that the volume is finite, he wrote, is to say that the [Riemann] sum 
converges. And to say that the surface area is infinite is to say that the [Riemann] sum diverges. 
His thinking is captured well in the following excerpt:  

But not all Riemann sums are well behaved – some diverge and our intuition stops us 
from accepting so called paradoxes, like Gabriel’s Horn, as reality in the world of 
abstract mathematics. 
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Bruce’s written response is in accord with mathematical decontextualized resolution of the 
Painter’s Paradox presented above. During the interview, when asked to elaborate on his ideas, 
Bruce took a different approach. He suggested that there could be two kinds of paint, one that 
occupies volume and one that covers surface area. This was his apparent attempt to achieve an 
equilibrium focusing on the dimensional difference between the surface area and volume.  

Bruce considered the paradoxical finite-volume-infinite-surface area situation by 
connecting it to something tangible:  

Some finite things can occupy infinite surface area, like let’s say I have a cube let’s 
say I squash with some kind of really strong plate, so that no matter how thick it is it 
can always become thinner then the surface area… Yeah, it would be finite volume 
but it would spread over an infinite surface area if you think of painting that way [...] 
what is thickness of an area it would have to be infinitely thin… 

This new realization and his reference to “infinitely thin paint” is in accord with an 
additional resolution, suggested in Gethner (2005).  Gethner (2005) explains that the Painter’s 
Paradox is based on the “realistic” consideration that the thickness of paint is the same on the 
whole painted area, as is reasonable to assume in painting a wall. The alternative resolution does 
not reject contextualization, but includes an imaginary context, a “mathematical” paint of 
infinitely thin layers. The inner surface of the Gabriel’s horn can be painted with amount of 
paint (or less) if the thickness of the paint layer at x is smaller than or equal to . With this 
assumption the paint, when poured into the Gabriel’s horn, can reach every point of the infinite 
surface area.  

Discussion and Conclusion 
Painter’s Paradox, as well as any other mathematical paradox, presents a cognitive conflict 

to a learner.  In what follows we summarize and discuss the participants’ reactions to the paradox 
in their attempt to resolve the cognitive conflict.  We then suggest a possible emphasis in 
Calculus instruction that could deepen students’ understanding of frequently used approaches to 
determine surface area and volume of objects resulting from rotating graphs of functions.  

Cognitive conflict and different ways to deal with tension 
Movshovitz-Hadar and Hadass (1991) indicate that “as long as a person can not resolve a 

paradox, he or she is in a state of cognitive conflict” (p. 80). All of the participants seemed to be 
experiencing a cognitive conflict dealing with the Painter’s Paradox. They faced the seemingly 
paradoxical claims that an infinitely long solid has a finite volume and an infinite surface area, 
and the counterintuitive nature of this realization was reinforced by the story of paint.  

Movshovitz-Hadar and Hadass (1991) point out that the state of cognitive conflict and the 
tension it creates stimulates an attempt to get out of it and achieve a new equilibrium with a more 
advanced mental structure. While all students attempted to achieve equilibrium, their chosen 
approaches to deal with the situation differed. Some participants referred to the impossibility of 
the presented situation and in such echoed epistemological obstacles experiences by 
mathematicians of the 17th century. Others acknowledged the paradox, but accepted it as a part of 
“not yet fully developed mathematics”. A majority of participants added contextual 
considerations, suggesting that it was impossible to paint the horn due to time limits, thickness of 
paint, or the painter’s ability to see the object. So rather than resolving the paradox 
mathematically, these participants rejected the viability of the presented “story”.  Bruce appeared 
to be the only participant who generated ideas in accord with decontextualized resolution that 
attends to convergent and divergent series, as well as with the alternative resolution that 

π

x
1
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introduces imaginary-magic context of infinitely thin paint applied at not uniform paint layers 
(thickness of the paint layer at x is less than or equal to ) .  

De-contextualization of Painter’s Paradox seemed to be difficult as the majority of 
participants found various ways of contextualizing the paradox further and in such avoiding its 
resolution. But the ability to consider something platonically is an important skill to acquire in 
mathematics. In fact, Mamolo and Zazkis (2008) in their study of several paradoxes of infinity 
argued for an instructional approach that helps students separate their realistic and intuitive 
considerations from conventional mathematical ones.   
Obstacle, not only epistemological 

Associating a finite attribute with something infinite, as in the case of Gabriel’s horn, is 
clearly an epistemological obstacle as the difficulty of our participants replicates the 
development of the mathematical knowledge through history. But this also can be seen as a 
didactic obstacle, as Calculus textbooks – and consequently many instructors – do not emphasize 
that calculating areas and volumes of unbounded regions through improper integrals generalizes 
the concepts of area and volume to unbounded regions. The connection of integral calculations to 
converging series is a key to understanding why Gabriel’s’ horn has a finite volume. Explicit 
didactic attention to the connection between the generalizations of area and volume and infinite 
series, converging and diverging, is essential for students to be able to strive for and derive the 
paradox resolution, rather than accept paradoxes as inadequacy of mathematics. 
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An exploration of students’ conceptions of rational functions while working in a CAS-
enriched dynamic environment 

Derek Williams 
North Carolina State University 

Studying families of functions is important for developing an understanding of the concept of 
function. This study utilized a computer algebra system (CAS) learning environment as it 
explored how students conceptualize rational functions. Using APOS theory as a theoretical 
framework, student artifacts from video, audio, and screen recordings were coded as either: 
action, process, or object conceptions of rational functions. The results of this study describe 
how students portray different conceptions of rational functions.  This list is not exhaustive, but 
provides a starting point for identifying how students perceive of rational functions in a 
technological environment.  Developing an understanding of how students conceptualize 
rational functions could lead to useful implications for teaching. 
 
Keywords: Rational functions; APOS; conceptions; functions; technology 

 The purpose for this study was to begin gathering information about how community 
college students understand rational functions when technology is an integral part of the learning 
experience.  Research on technology and computer algebra systems (CAS) has indicated that 
learning environments with dynamic representations and CAS foster conceptual understandings 
without harming skills (Bostic & Pape, 2010; Heid, Blume, Hollebrands, & Piez, 2002). 
Specifically, the study aimed to identify characteristics of students’ conceptions of rational 
functions as an action, process, or object using APOS theory (Breidenbach, Dubinsky, Hawks, & 
Nichols, 1992; Dubinsky & Harel, 1992; Dubinsky, 1991) as a theoretical framework. 
 To address the research focus above, a group of three community college students 
participated in four teaching sessions in which they used pre-constructed GeoGebra 
(Hohenwarter, 2002) files to explore properties of rational functions. Students were given a 
handout to guide their exploration and discussion.  Each session lasted roughly one hour ending 
with an assessment activity which challenged students to formalize what they had discovered 
during their investigation. Each session was video-recorded and screen capturing software was 
used to record student interactions with the computer. The APOS theory was used to analyze 
artifacts obtained from video, audio, and screen recordings, and students’ actions, discussions, 
and justifications were coded as displaying either: action, process, or object conceptions of 
rational functions. 
 Results of this study indicate that an action conception of rational functions manifest 
primarily in three ways: 1) students are very questioning, and rarely make direct statements 
about their investigation, 2) students rely heavily on actions completed on the computer to 
complete their thoughts, and 3) students utilize a trial-and-error method of interaction with the 
computer while making and testing conjectures. As a process, students are able to perform 
actions on rational functions unassisted by the computer.  Students can now mentally account for 
changes in parameters and they no longer rely on trial-and-error approaches.  Finally, as an 
object, students now consider rational functions as a single entity composed of numerator and 
denominator. They are able to decompose this object into numerator and denominator and use 
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those as objects to complete processes, and then reconstruct the original function - understanding 
that the properties described by the numerator and denominator are properties of the entire 
function. 
 Results of this study include descriptions of student behaviors that are indicative of 
action, process, or object understandings of rational functions. However, a larger study of this 
kind is necessary to corroborate these findings as well as to provide implications for teaching. 
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Investigating backward transfer effects in calculus students 
 

Siobahn Young 
University of Delaware 

 
One of the most important concepts in calculus is the derivative. Unfortunately, many studies 
have shown that students have trouble understanding derivatives, possibly due to deficiencies in 
knowledge about concepts learned prior to calculus. However, few studies have investigated how 
learning about other calculus topics affects students’ understandings of the derivative. In this 
study, qualitative methods were used to investigate the influence, or backward transfer effect, 
that learning about integration has on students’ prior understandings of derivatives. Semi-
structured task-based interviews were conducted with four high school students before and after 
students received instruction on integration. Interview tasks involved finding derivatives and 
antiderivatives algebraically and graphically. Results from this study may show that learning 
about integration is another potential reason for why students have trouble understanding 
derivatives. Alternately, results may show that it is possible for teachers to help reinforce 
students’ understandings of derivatives through instruction on other calculus topics. 
 
Keywords: Calculus, Backward Transfer, Derivatives, High school students, Qualitative methods 

 
The derivative is an important topic in calculus because the derivative is used to describe 

rates of change, which in turn is an important topic in almost any field studying science, 
technology, engineering, or mathematics. Unfortunately, many studies have shown that students 
have trouble understanding the derivative (e.g. Baker & Cooley, 2000; Carlson, Jacobs, Coe, 
Larsen, & Hsu, 2002; Orton, 1983; Selden, Selden, & Mason, 1994; Teuscher & Reys, 2012; 
Thompson, 1994; Ubuz, 2007). Students may have difficulty understanding the derivative 
because their knowledge about rates (Teuscher & Reys, 2012; Thompson, 1994), slopes 
(Teuscher & Reys, 2012), and functions (Asiala, Cottrill, & Dubinsky, 1997; Orton, 1983; 
Selden et al., 1994) is not well developed. These three concepts are usually learned before 
calculus. However, few studies (if any) have investigated how learning about other calculus 
topics affects students’ understandings of the derivative.  

The purpose of this project is to investigate the influence that learning about integration has 
on students’ prior understandings of derivatives. This influence is conceptualized as a backward 
transfer (BT) effect. From the actor-oriented perspective of transfer, Lobato (2008) defines 
(forward) transfer as “the influence of a learner’s prior activities on his or her activity in novel 
situations” (p.169). Therefore, forward transfer is defined as prior knowledge influencing a 
learner’s way of thinking in a new situation. Hohensee (2014) proposed expanding the actor-
oriented transfer perspective to include BT, which is defined as “the influence that 
constructing…new knowledge has on one’s ways of reasoning about…topics that one has 
encountered previously” (p.4). In other words, BT is defined as how learning something new 
influences one’s prior knowledge. For example, learning about adjectives in a new language, 
such as Spanish, may influence one’s understanding of adjectives in English, since adjectives are 
placed in a different location in English sentences than in Spanish sentences. This describes a BT 
effect because Spanish was learned after English and the subject’s understanding of English 
adjectives was influenced by the act of learning a new language. Because integration is typically 
taught after derivatives, this study is situated within a context in which BT effects might be 
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present. The following research question guides this study: In what ways does learning about 
integration influence the ways in which students reason and think about derivatives?  

This study was conducted with four high school calculus students. Semi-structured task-
based interviews were conducted after students received two months of instruction on derivatives 
but before they received instruction on integration. Four tasks were given during the interview. 
The first two tasks involved algebraic functions (as opposed to graphical functions); the first task 
asked the students to find the derivative when given an explicit function, while the second task 
asked students to find the original function when given an explicit derivative function. The last 
two tasks were graphical tasks and asked students to sketch the derivative function when given a 
function graphically (without being provided with the explicit equation for the function) and to 
sketch an original function when given a derivative function. After being introduced to 
integration, the students will be interviewed again with similar tasks.  

In addition, classroom observations are being conducted to be able to relate to the influence 
that students may experience from instruction on integration. For example, if the participants 
begin solving a derivative problem during the second interview in a way that seems similar to 
something they did in class involving integration, I will be able to see some of the ways that 
instruction has influenced their thinking about derivatives. This will allow me to question and 
probe them further about what happened during class that they believe affected their way of 
thinking about derivatives, and I will have some knowledge as to what happened in class to be 
able to understand their response. From two classroom observations, I noticed that the class 
atmosphere is open, where students are allowed to openly debate with each other with little 
interference from the teacher. Unexpectedly, due to this nature of the classroom, the observations 
are also being used to further explore the ways the participants reason and think about 
derivatives. The interviews will be analyzed for ways in which students’ thinking about 
derivatives changed after learning about integration.  

Results from this study may show that learning about integration is another potential reason 
for why students have trouble understanding the derivative. Alternately, results may show that it 
is possible for teachers to help reinforce students’ understandings of derivatives through 
instruction on other topics in calculus, such as integration. Either finding would be important 
information for teachers and curriculum developers. 
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Code-switching and mathematics assessment: Some anecdotal evidence of persistence of first 
language 

 
 Balarabe Yushau 

Preparatory Year Math Program, 
King Fahd University of Petroleum and Minerals, 

 Dhahran 31261, Saudi Arabia 
 

 byushau@kfupm.edu.sa  
 

 One of the most difficult things for a monolingual teacher to decide is if errors by a student who is 
acquiring English language reflect a lack of mathematical understanding or some problems with 
English language. This paper buttresses this point with some anecdotal evidences from 
mathematical works of Preparatory Year University students in which students might be right, but 
the chances are high that the teacher, especially monolingual will wrong him. The result shows the 
dominance of students’ first language (Arabic) over the language of teaching and learning (English) 
while students are doing mathematics. This show how the language conflict can affect students’ 
assessment in mathematics. 

 
 Key words: mathematics, Assessment, code-switching, Bilingual Arabs, Preparatory Year Program 
 

Language is what teachers use largely to facilitate learning. Also, students use language to 
demonstrate knowledge and understanding of mathematical ideas (Bell, 1978). With English 
becoming the language of science, and a lingua franca in this era of globalization, many of the 
mathematics students are learning mathematics in their second or third language (Ellerton and 
Clarkson, 1996). As a result, researchers have highlighted the need for taking language factors into 
consideration in the mathematics classroom. In particular, the attention of teachers is called upon to 
consciously take into account a range of linguistic backgrounds in their classrooms. This will 
facilitate learning as well as give the students the opportunity to effectively participate in 
mathematics classroom discourse.  

Although the role of language proficiency on students performance in mathematics has been 
investigated (Barton, and Neville-Barton, 2003; Neville-Barton and Barton, 2005; Roardria, 2010; 
Yushau and Omar, 2015), not much is known on how code-switching can affect the mathematics 
assessment of bilingual Arabs students.  

 
Motivation for the study 

Students answering questions depend completely on their comprehension of the questions. In a 
way, it depends largely on the students’ reading and writing skills. A good number of students 
cannot do well in examinations simply because they cannot understand the questions. This is more 
common among bilingual students who are acquiring the language of assessment. Students 
sometimes have no option but to skip the questions, and in the case of multiple choice questions, 
students may resort to guessing. As a non Arab teacher, who has been teaching mathematics in 
English for students who are learning English as a second language, I appreciate how difficult it is 
for me to decide sometime if the students’ wrong answer in an exam script or during classroom 
discourse, is as result of lack of mathematical understanding or is due to lack of proficiency in the 
language of instruction. This tension was aptly observed by Secada & Cruz (2000). I have gathered 
many anecdotal evidences that show the case where the students might be right, but the chances are 
high that the teacher, especially monolingual will wrong him. 
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In addition, some students do most of their calculation in Arabic and then translate back 
into English. This process is not only cumbersome, but students often make silly mistakes 
due to a conflict between the Arabic and English languages. These calculation errors are 
often algebraically correct but notationally wrong due to conflict between Arabic and English 
languages. All these have some effects on the students assessment, and hence the need to be 
highlighted.  

Methodology 
Data were collected qualitatively from students’ exams scripts, as well as from the 

classroom discourse where the researcher saw in many occasions the dominance of Arabic in 
students work while doing mathematical activities using English language.  

Some Anecdotal Evidence of Code-Switching specific with Bilingual Arabs 
1. Wrong Reading of Numbers: Reading numbers from right to left in place of left to right is 

very common in classroom. For instance, reading 65 as 56.  
2. Confusion in writing Five and Zero: In Arabic, five is written as English zero, and zero is 

dot. A students asked why is 0 0  ? Thinking that we are saying square root of five is 
equal to five. And also the possibility of reading of writing 5.7 as five hundred and fifty 
seven. 

3. Comma and Dot: In Arabic, Comma is used as a Dot. Now the confusion between 2,3  
and 2.3. And the possibility of student writing 2.3 and 2,3? 

4. Distributive law: ( 3) ( 3) 3 3 6x x x x� � �  � � � �  ; thinking that the middle minus sign 
is for the first bracket as it is in Arabic. 

5. Exponential Notation and factorization: 2 ( 1)a b ab ab b�  � ; thinking that the exponent 2 
is for b - as in Arabic.  

6. Graphs related information: In getting information from graphs some students do commit 
the mistakes that are clearly due to the influence of their first language. For example, 
anything that reads from left to right or right to left, often cause confusion for Arabic 
speaking students. Interval notation; interval in which a graph is increasing, decreasing, 
constant; interval in which a graph is continuous; Domain and Range of the function 
from the graph are some of the mathematical notions that cause  confusion for the 
students. Some students write them wrongly by inverting the answers.  

Implication for the Assessment 
The anecdotal evidences highlighted above, are found in many students’ mathematical 

activities at the preparatory year. This certainly has ramification on the students’ assessment  
in mathematics. Therefore, there is the need for the teachers, especially those teaching 
bilingual to be aware of these language conflict.  

Conclusion  
In this note, we have highlighted some anecdotal evidences that indicate the persistence 

of students’ first language in the students’ cognitive mathematical activities while doing 
mathematics using a second language other than their mother tongues. Result show how 
code–switching can affect students’ assessment in mathematics. Certainly this is an area that 
needs further investigation. 
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 Lack of Proficiency in English is one of the major obstacles in students learning of mathematics in 
English medium universities in Saudi Arabia. Despite, this, some students are found doing 
exceptionally good in mathematics examinations conducted in English – a language that the 
students are not proficient in. In this paper, we share some of the challenges of learning 
mathematics in English language by this class of students, and the learning resources that help them 
to overcome the problems. 
 
 Key words: Mathematics learning, Bilingual Arabs, Challenges of learning, Resources of learning 
 

Public education in both primary and secondary school in Saudi Arabia is mediated through 
Arabic language. As a result, most of the high school graduates in Saudi Arabia have limited 
proficiency in English. It is then not surprising that students admitted into English medium 
universities face challenges related to the new language of instruction. A good number of these 
students face difficulties in following the classroom lectures and understanding the textbook both of 
which are in English language. Some of them find it difficult to ask or respond to questions in 
classroom due to lack of proficiency in the new language of instruction. Consequently, some of 
these students tend to get confused, lose confidence and question their intellectual capabilities. 
Despite, you come across some students that are classified as “very weak” in English, but are 
performing excellently in mathematics exams that were conducted in English.  

In the literature, bilingualism and multilingualism are no more considered as a setback 
(Cummins, 2000; Clarkson, 2006 Moschkovich, 2010). Rather, studies have shown that students use 
multiple resources in learning mathematics, and hence bilingualism and multilingualism can be 
advantage or disadvantage for the cognitive development of the students (Clarkson, 1992). 
Cummins (1976) speculatively hypothesized that there might be a threshold in which bilingualism 
or multilingualism can be advantageous or disadvantageous to the cognitive development of a 
student. However, the Threshold Hypothesis did not tell us the relationship between the students’ 
first language (L1) and second language (L2). Perhaps to address this, Cummins (1979) suggested 
another hypothesis known as Developmental Interdependence Hypothesis (DIH). The 
Interdependence Hypothesis proposed that the level of proficiency already achieved by a student in 
their first language would have an influence on the development of the student’s proficiency in their 
second language (Baker, 2001).  

 
Motivation and methodology of the study 

 
Participants in this study were students classified as very weak in English language, but they 

turn out to be among the outstanding performers in mathematics examination conducted 
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in English. To shed light on this, series of open ended questions were asked to this class of 
students. The questions border on the challenges they face due to the language switch from 
Arabic to English language as well as the resources that help them to overcome the 
challenges. In response to these questions, participants freely self reported among other 
things: their challenges in learning mathematics in English, and the resources that help them 
in the survival of the fittest. The findings in this study are reported below.  

Findings 
1. Challenges 

The major challenges faced by this class of students include: 
x Language barrier  
x Feeling shy for not understanding English language 
x Feeling shy to ask questions in class. 
x Knowing the answer but not knowing how to say it in English. 
x Demanding course contents  
 

Others challenges with minor rating include: 

x Adaptation with new environment  
x Personal problem  
x Boring class 

 
In particular, the linguistic challenges in order of difficulty are: 

x Vocabulary (41%) 
x Semantics (32%) 
x Syntax (17%) 
x Mathematical Concepts (10%) 
x Mathematical Symbols (none) 

 
2. Resources 
It was found that one major thing that is common with these students is their strong 

background in both Arabic and mathematics. On the scale of 10, their average proficiency 
level in Arabic and mathematics are 8.8 and 8.55, respectively.  
 Cummins’ Interdependence Hypothesis suggests that the students’ levels of proficiency 
already achieved in their first language (Arabic in this case), have an influence on the 
development of their proficiency in a second language (English in this case). The hypothesis 
also states that the greater the level of proficiency achieved by the students in their first 
language will allow for a better transfer of skills to the second language. This might be the 
major resources this class of students is utilizing to quickly adjust to the new language of 
instruction. 

It is interesting to see that top among the factors that respondents attributed to their 
success in learning mathematics in English, is their “commitment to their studies”. This 
coincides with the necessary conditions stated by Cummins (1982a) for a proper transfer to 
take place from L1 to L2, which is “adequate motivation to learn in Ly” (p.29). The other 
factors mentioned by the respondents that contribute to their success include “competent 
instructors and sufficient reading material”. This is also inline with the necessary condition 
of the transfer that was stated by Cummins (1982a) as “provided there is adequate exposure 
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to Ly” (p.29). From the response of the students, it appears that this class of students 
considers teachers as one of the major resources for their success. It is interesting that the 
respondents consider teachers support as second to their commitments among the top on the 
list of factors that contribute to their success. It has been noted that many students acquiring 
English receive little encouragement to speak about their ideas, in part due to the belief that 
they will find it too difficult to express themselves (Secada & Crux, 2000).  

Conclusion 
The findings of this study show that despite their impressive performance, this class of 

students still considers their lack of English proficiency as a major challenge of learning 
mathematics in the preparatory year. In line with the Interdependence Hypothesis theory, the 
strong Arabic and mathematics background appears to be the major resource of this class of 
students. This is followed by their commitment to work, and teachers’ supports.  

Other class of students should equally be investigated, and coherent pedagogical theories 
should be developed on how to minimize the challenges of these students as well as foster 
their learning resources. 
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The origins of linear algebra lie in efforts to solve systems of linear equations and understand 
the nature of their solution sets.  In our experience, instructors of linear algebra see the work of 
teaching students to solve linear systems as the more straightforward and procedural portion of 
the course.  We speculate that solving linear systems and interpreting their solution sets in fact 
entails hidden and significant challenges for students that are important for their later success in 
linear algebra, as well as their work in related STEM courses.  In this paper, we examine final 
exam data from 69 students in an introductory undergraduate linear algebra course at a large 
public university in the southwestern US.  Our analysis suggests that students are largely 
successful in representing systems of linear equations using augmented matrices, but that 
interpreting the row reduced echelon form of these matrices is a common source of difficulty.  
 
Key words: Linear algebra, systems of equations, augmented matrices, student reasoning 
 

The origins of linear algebra lie in efforts to solve systems of linear equations and understand 
the nature of their solution sets.  In our experience, instructors of linear algebra tend to see the 
work of teaching students to solve linear systems as the more straightforward and procedural 
portion of the course.  We speculate that solving linear systems and interpreting their solution 
sets in fact entails hidden and significant challenges for students that are important for their later 
success in linear algebra, as well as their work in related STEM courses.  In particular, students 
will encounter and need to make sense of systems of linear equations that have infinitely many 
solutions throughout an introductory linear algebra course: for instance when making sense of 
linearly dependent sets of vectors, when dealing with linear transformations whose null spaces 
are non-trivial, and when making sense of eigenvectors. 

In this paper we focus on the following research question: How are students reasoning when 
solving systems of equations in which the number of unknowns differs from the number of 
equations? 
 

Theoretical Framing and Literature 
The existence of student struggles in linear algebra is well-documented (e.g., Dreyfus, Hillel, 

& Sierpinska, 1999; Dorier, Robert, Robinet, & Rogalski, 2000; Harel, 2000; Stewart & Thomas, 
2009; Trigueros & Possani, 2013; Larson & Zandieh, 2013).  Researchers have speculated that 
the formalization of ideas such as span, linear independence, null spaces, basis, and eigenvectors 
is problematic for students for a variety of reasons ranging including their preference for 
practical rather than theoretical thinking (Dorier & Sierpinska, 2001) and struggles shifting 
among modes of representation (e.g., Hillel, 2000; Sierpinska, 2000).   

More recently, Larson and Zandieh (2013) have developed a framework for making sense of 
student thinking by identifying three important interpretations of the matrix equation Ax=b 
where A is an nxm matrix, x is in Rm and b is in Rn. We especially note how the role of the 
vector x shifts across those interpretations. Namely, Ax=b can be interpreted as a system of 
equations (where x is a point of intersection), a linear combination of column vectors (where x is 
a set of weights on the column vectors of A), or as a transformation from Rm to Rn (where x is an 
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input vector corresponding to the output vector b).  This framework has been useful for making 
sense of ways in which students blend ideas from these three interpretations. In this paper, we 
work to expand this framework to the context of augmented matrices – where the literal symbol 
x disappears completely from the algebraic representation [A|b]. 
 

Data Sources and Methods of Analysis 
In this work, we aim to identify student reasoning strategies and sources of difficulty when 

dealing with systems of equations, particularly when the number of equations differs from the 
number of unknowns. In order to explore this issue, we draw on data taken from the final exams 
of 69 students enrolled in two introductory linear algebra classes at a large public university in 
the southwestern United States.  Both sections were taught by the same instructor, who was a 
seasoned linear algebra instructor at the institution.  Most students in the class were engineering 
majors in their junior or senior year of college, and had completed Calculus III prior to enrolling 
in this linear algebra course.  About half of the students in the classes were non-traditional 
students (e.g. not continuously enrolled in post-secondary education since graduating from high 
school), about twenty percent of the students spoke a native language other than English, and 8 
of the 69 students were female. Course topics included systems of linear equations, span and 
linear independence, linear transformations, determinants, eigenvectors, eigenvalues, and 
diagonalization. 

In this preliminary report, we examine student responses to two versions of a similar 
question, asked on two different versions of the final exam.  Each question asked students to 
solve a system of 4 equations (which had a unique solution) and give the geometric interpretation 
of the solution set corresponding to each.  The questions analyzed are shown below in Figure X. 
Version A can be interpreted as equations of planes (3 unknowns), whereas version B can be 
interpreted as equations of lines (2 unknowns). Note that 32 students took version A of the exam, 
and 37 students took version B. 
 
Consider the system of equations below.  
Show your work.  Explain any work that 
you are using technology for. 

a. Find the intersection of the following 
four planes or show that there is no 
intersection.  
 

€ 

x − 2y + z = 0
x + y + z = 3
−x + 2y − z = 0
3x − y + 2z = 4  
 

b. Circle the correct answers: The 
intersection of the four planes is … a 
point  / a line  / a plane  / a 3-space 

Consider the system of equations below.  
Show your work.  Explain any work that 
you are using technology for. 

a. Find the intersection of the following 
four lines or show that there is no 
intersection. 
  

€ 

−2x + y = −2
6x − 3y = 6
4x − 2y = 4
x − 2y = 0

 

 
b. Circle the correct answers: The 

intersection of the four lines is … a 
point  / a line  / a plane  / no 
intersection 

Exam Version A Exam Version B 
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Figure 1: Exam questions to be analyzed 
 

In our analysis, we first examine the number of students who got each item correct.  We then 
categorize student approaches, which tended to take either a systems approach or an augmented 
matrix approach. We examine in particular the ways in which students draw on RREF to produce 
their solution to the system and its geometric interpretation. 
 

Findings 
An initial look at the data shows that a higher percentage of students found the correct 

solution in the line context than in the plane context (see Figure 2 above “Solution”).  In the line 
context, when students were asked to circle whether they thought the intersection was a point, 
line or a plane, all of the 23 students who got the algebraic solution correct and 3 additional 
students answered correctly.  However, in the plane context, only 11 of the 16 with a correct 
algebraic interpretation (and 4 others) answered the point, line or plane question accurately.  
Thus we see in Figure 2 above “Geom Interp” an even greater difference in the percent correct 
than when comparing the algebraic solution.  From this we can see that the two dimensional 
context (lines) was easier for students to interpret than the context of planes.  Our next step was 
to examine in more detail how students went about determining their algebraic solution and their 
geometric interpretation.   
 

 
Figure 2: Correct responses by version 

 
On both versions of the exam, most students attempted to set up an augmented matrix to try 

to solve the system of equations (81% of those in the plane context and 78% of those in the line 
context, see Figure 3).  However, while all of the students who set up the augmented matrix in 
the plane context went on to find the correct RREF (81% of the class), only 17 students (46% of 
the class) found the correct RREF in the line context.  Below we first explain the two main 
solution strategies of the students who found the correct RREF in the case of four planes.  
Second, we contrast the students in the line context who found the correct RREF with those who 
abandoned that approach. 

 

0%#
20%#
40%#
60%#
80%#

Solution# Geom#Interp#

Version#A#(planes);#
n=32#

Version#B#(lines);#
n=37#
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Figure 3: Solution accuracy using an augmented matrix approach 

 
 

The intersection of four planes (Exam Version A) 
In Figure 3 we see that 50% of the students answering the question about the intersection of 

the planes were able to interpret a correct RREF to find a correct algebraic solution.  Figure 4 is 
an example of student work of this type. 
 

 
Figure 4: Typical correct student approach using RREF (Version A) 

 
The other 10 students who had a correct RREF but could not interpret it correctly struggled 

with what we refer to in our title as reconstructing the vector x or reconstructing the values for 
each of the three variables.  Once one has correctly row reduced, the resulting matrix for this 
problem has three pivots and a bottom row of zeros (Figure 4 and Figure 5).  A student must then 
reconstruct information about x, y and z from this matrix.   

 

0%# 20%# 40%# 60%# 80%#100%#

Version#A#(4#planes);#n=32#

Version#B#(4#lines);#n=37# Correct#Geom#Interp#of#RREF##

Correct#Soln#from#RREF#

Correct#RREF#

Augmented#Matrix#
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Figure 5: Student introduces a fourth variable (Version A) 

 
 
 
The student work in Figure 4 illustrates a correct reconstruction and a further interpretation 

that this is a single point of intersection.  The student work in Figure 5 seems to ignore the 
variables of x, y and z that were stated in the problem and creates four new variables, seemingly 
one for each row of the matrix.  The student writes the word “free” next to the row of zeros and 
next to x4 to indicate the presence of a free variable.  In this case the student then interpreted that 
there were multiple solutions instead of just one. 
 
 
The intersection of four lines (Exam Version B) 

In contrast to student work on Exam Version A, students working in the context of lines had 
a different set of issues at play.  To begin with, the augmented matrix in this case has 4 rows and 
3 columns.  Since the number of rows is larger than the number of columns, the TI-83 and TI-84 
calculators used by many students will give an error message when asked to row reduce such a 
matrix.  Several students wrote comments on their paper that the matrix could not be row 
reduced and stopped trying to solve the problem guessing that this meant their was no solution.  
Other students chose to abandon their augmented matrix but continued on with a systems of 
equations approach.  The student work in Figure 6 illustrates a student abandoning a correct 
augmented matrix and correctly solving and interpreting the system of equations using their 
knowledge of the algebra and geometry of lines.    
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Figure 6: Student’s correct systems approach (version B) 

 
In the case of working with a system, a student never loses sight of the variables and no 

reconstruction is needed.  In addition, for students who did try to interpret a correct RREF, the 
context of lines intersecting may have been more familiar and thus made it easier to reconstruct 
the appropriate variables than in the case of the four planes.  In fact, only a few students tried to 
add an additional variable in the context of lines even though row reducing the matrix creates 
two rows of zeros. 
 
Future work 

These two exam questions were chosen for study in this preliminary report because they have 
the following three properties (1) the number of unknowns is different than (less than) the 
number of equations, (2) the solution is unique, and (3) a two or three dimensional geometric 
context is part of the problem statement.  In the future we intend to expand this work to (1) other 
relationships between the number of unknowns and the number of solutions, (2) situations where 
the solution does not exist or there are infinitely many solutions and (3) contexts that are not 
geometric or involve more than three variables. 

 
Questions 

By the time of the conference we expect to have analyzed data from some of the other 
situations described above in future work.  We look forward to discussing with the audience such 
questions as, What are the range of student strategies when solving problems that involve 
interpreting solutions using augmented matrices?  Does the answer differ when students come to 
the algebraic representation [A|b] from a question about systems versus a question about a vector 
equations (e.g., a question about span or linear independence) or a question involving a matrix 
equation (e.g., a questions about null-space or when solving for eigenvectors)? 
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The purpose of this preliminary report is to introduce a new type of assessment instrument to the 
mathematics education research community and to reflect with our colleagues about the possible 
affordances and constraints of this instrument. The questions that comprise the instrument 
consist of a multiple choice (MC) stem followed by a series of options from which students 
choose explanations (E) that support their multiple choice response. We call this style of 
question multiple-choice with explanation (MCE). Our decision to use MCE style questions is 
informed by cutting edge work in physics education research (Wilcox & Pollock, 2013) and 
introduces an innovative idea for assessing student thinking in mathematics. Our work is part of 
a larger project in linear algebra; as such, the mathematical context of the assessment 
instrument is linear algebra. The format of the questions, however, could be used for other 
subject matter as well. 
 
Key words: Assessment instrument, span, linear independence, student thinking  
 

The purpose of this preliminary report is to introduce a new type of assessment instrument to 
the mathematics education research community and to reflect with our colleagues about the 
possible affordances and constraints of this instrument. The questions that comprise the 
instrument consist of a multiple choice (MC) stem followed by a series of options from which 
students choose explanations (E) that support their multiple choice response (see Appendix A for 
examples). We call this style of question multiple-choice with explanation (MCE). Our decision 
to use MCE style questions is informed by cutting edge work in physics education research 
(Wilcox & Pollock, 2013) and introduces an innovative idea for assessing student thinking in 
mathematics. Our work is part of a larger project in linear algebra; as such, the mathematical 
context of the assessment instrument is linear algebra. The format of the questions, however, 
could be used for other subject matter as well. 
 

Literature Review and Theoretical Perspective 
We conducted a two-part literature review, investigating both frameworks for characterizing 

student understanding in linear algebra, as well as conceptually oriented assessment instruments 
in undergraduate mathematics and physics. Within linear algebra, we consulted well-known 
works that had potential to inform our work in characterizing what it means to understand linear 
algebra, such as Hillel’s (2000) modes of description, Sierpinska’s (2000) modes of reasoning, 
Stewart and Thomas’s (2009) dual framework utilizing Tall’s 3 Worlds and APOS Theory, 
Larson and Zandieh’s (2013) interpretations of the matrix equation Ax = b, Wawro and Plaxco’s 
(2013) concept images through modes of mathematical activity, and Selinski, Rasmussen, 
Wawro, and Zandieh’s (2014) within- and between-concept connections in linear algebra. As we 
move forward with the assessment we are developing and evaluating it by considering both the 
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structure of the linear algebra concepts themselves and the framing of connections within and 
between these concepts.  

Our review of the literature focusing on conceptually-oriented assessment instruments in 
undergraduate mathematics and physics revealed five main relevant sources: the Precalculus 
Concept Assessment (Carlson, Oehrtman, & Engelke, 2010), the Force Concept Inventory 
(Hestenes, Wells, & Swackhamer, 1992), the Calculus Concept Inventory (Epstein, 2013), the 
multiple choice format of the Quantum Mechanics Assessment Tool (Sadaghiani, Miller, Pollock, 
& Rehn, 2013), and the multiple choice adaptation of the Colorado Upper-division Electrostatics 
(CUE) diagnostic (Wilcox & Pollock, 2013). In particular, Wilcox and Pollock discussed their 
methods for adapting a valid and reliable free-response assessment instrument into a multiple 
choice style exam (with question format similar to our MCE format) that preserved the 
instrument’s validity and reliability. We found this work especially useful because of its efforts 
to bridge the gap between open- and closed-ended questions yet still illuminate students’ 
conceptual understanding.  

 
Methods 

We developed the assessment instrument in four phases: (a) reviewing literature and 
compiling possible questions, (b) developing MCE style questions, (c) piloting the assessment 
instrument, and (d) analyzing and refining the MCE questions. We began the first phase by 
exploring all questions used by our team over six separate studies in the previous four years as 
well as possible questions that existed in the research corpus, consulting various web resources 
(e.g., http://mathquest.carroll.edu/) and published papers (e.g., Britton & Henderson, 2009; 
Hamdan, 2005; Rensaa, 2007; Stewart & Thomas, 2009). We focused on questions that 
specifically addressed the concepts of span and linear independence. The team then iteratively 
reviewed and trimmed the question list, focusing on questions thought to elicit key aspects of 
student understanding. We then developed a taxonomy of possible representational systems 
through which the assessment questions might be asked or across which conceptual 
understandings might be related.  

In the second phase, the research team used this taxonomy and question list to develop 
thirteen pilot MCE questions. This adaptation focused on developing (E) responses most likely to 
reflect students’ understanding of relationships between concepts and different representations of 
the same concept. In the third phase, eight of the questions were used in individual interviews 
(Bernard, 1988) with seven students at two different universities; the other five questions were 
piloted with four students at one of these universities. We then used four of these MCE questions 
to conduct a larger pilot implementation with 124 students in five classrooms at three different 
universities. Student responses were collected, digitally scanned, and coded in a spreadsheet 
format, the organization of which we describe in the next section. 
 

Results and Discussion 
In this section we present three types of analyses that are possible with data from MCE style 

questions: (1) grid of mathematical relationships, (2) student-focused matrices, and (3) 
coincidence matrices (and associated Venn diagrams). Type 1 focuses on relationships between 
the MC and (E) parts of each question, type 2 focuses on patterns in students’ responses across 
questions, and type 3 focuses on a group’s responses to a particular question. As this is a 
preliminary report, we illustrate the beginnings of each analysis type and indicate what we think 
are interesting points to consider.  
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Grid of mathematical relationships 

Figure 1 illustrates the grid of relationships between the multiple choice (MC) stem of the 
question and the explanation (E) section. Some questions have 2-4 MC options (See Appendix 
A), but Figure 1 only includes the correct answer for each. These are listed across the top as 
column headings. Along the left side, the rows are the possible (E) responses. Within the grid the 
appropriate column and row intersection is blank if the (E) response was not part of the question 
in that column. If it was listed as a possible (E) response, then the intersection box indicates the 
(E) response number. For example, in Question 1, “Vectors span all of ℝ!” was (E) response (v). 
The color of each indicates the relationship of the response to the multiple choice answer. Green 
indicates that the answer is true and relevant and thus should have been chosen. Red indicates 
that the response is false and therefore should not have been chosen. Black indicates that the 
response is true but should not have been chosen because it is not relevant to the problem. For 
example, “Vectors span all of ℝ!” was not relevant to whether the set of three vectors in R2 was 
linearly dependent, so “v” is in black font for the corresponding cell in Figure 1. 

At minimum the grid gives us an indication of what types of relationships we are testing for 
with these questions. This should allow us to note if there is a relationship that we wished to test 
for and have not or if there is something that we have tested for more than once. In the latter case, 
we may choose to eliminate the extra to be efficient or use that opportunity to triangulate 
information about a student’s responses. We would like to expand our use of the gridding tool to 
indicate more about individual student thinking. For example, we could indicate whether a 
student chose certain (E) responses in coordination with certain MC answers to get a snapshot of 
an individual student’s understanding. One constraint we have with this method is that when a 
student does not choose a particular (E) response, we cannot be certain whether they did not 
choose it because they think it is false or because they think it is irrelevant.  

 
Figure 1. Grid indicating relationships between the MC and (E) parts for each question 

 
Student-focused matrices 

We focus on individual student thinking by using a matrix such as that in Figure 2. Across 
the top are the four question numbers and the (E) response numbers for each. Each row 
represents one of 29 different students. Under each question column, the student MC response is 
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listed first followed by a “1” in each column of an (E) response that the student chose and a “0” 
in each column of an (E) response that the student did not choose for that particular question. 

Through displaying the data in this way, we examine the variety of responses for an 
individual student. The data in one row indicates all responses for one student and could be re-
gridded into the format of Figure 1 to examine some aspects of that student’s response. In 
addition, through Figure 2 we can see how a student’s response corresponds to other students’ 
responses across questions. For example, in Question 1 we see that all students who answered B 
also chose (i), whereas only about half of the students who incorrectly chose A also chose (i). 
Because (i) states that the set contains the zero vector, it is likely that those who (incorrectly) 
answered A (the set is linearly independent) noticed that the zero vector was included in the set 
but thought it irrelevant to their claim of linear independence. Conversely, only two students who 
chose B chose (vi), whereas about half who chose A chose (vi). This is sensible because students 
who thought the set was linearly independent may associate independence with row reducing to 
the identity matrix.   

Another noteworthy aspect is whether students who chose one of the (E) responses chose 
another related response. For example, in Figure 2, all students who chose B for Question 1 
chose the (E) response (i) and half of those also chose (ii), much more than any other (E) choice 
for Question 1. We consider these types of paired responses in the next section.   

 

!
Figure 2. Student responses Fall 2013 

!
Coincidence matrices 

To check for pairs of student (E) responses we have constructed coincidence matrices. For 
instance, Figure 3 shows the participants’ selection of (E) responses for Question 1, sorting the 
(E) responses by MC response. In these matrices, each entry gives the number of participants 
who chose both the (E) response in a given row and also the (E) response in a given column. The 
diagonal entries show the number of participants who chose the particular (E) response. For 
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instance, in the matrix on the left, the entry in Row i, Column i shows that only 19 of the 49 
students who incorrectly chose MC response A (that the set of vectors 4

5 , 23 , 00  is linearly 
independent) also correctly chose (E) response (i) (that the set contains the zero vector). As 
discussed above these students likely thought that the zero vector was irrelevant to determining 
that the set is linearly independent. On the other hand, 73 of the 75 participants who correctly 
chose MC response B (the aforementioned set is linearly dependent) also correctly chose (E) 
response (i). In addition, 54 of the 75 participants who chose MC response B also chose (E) 
response (ii) (that the set is 3 vectors in ℝ!). All but one of these participants also chose (E) 
response (i) (note the 53 in the Row i, Column ii cell).  

Another example of a coincidence matrix shows participants who have correctly answered 
the MC part of Question 4. We see that these students have widely varying responses to the (E) 
part. The three correct (E) responses are (vi), (vii), and (viii). The students who chose these 
responses and pairs of these responses are highlighted in green in the right of Figure 4. The box 
in the lower right corner shows the total number of participants (32) who correctly responded to 
both the MC and (E) parts of this question. This example shows one of the limitations of the 
coincidence matrix organization of the data. Specifically, the coincidence matrix only provides 
pair-wise counts of coincidental responses, whereas it may be advantageous to consider whether 
more than two (E) responses are in common for a given student. This matrix can be 
supplemented with a Venn Diagram showing how the responses intersect. On the left of Figure 4 
is a Venn diagram that breaks down the 93 students who answered C into the 7 who chose none 
of the correct (E) responses, the 32 who chose all three of the correct (E) responses and other 
categories of pairs or singular responses from the three (E) correct responses.  

 

 
Figure 3. Coincidence matrices for Question 1, separated by MC response 

 
Figure 4. Venn diagram and coincidence matrix for Question 4, Response C 

! !
We would like the audience to think with us about the affordances and constraints of the 

MCE style question format, as well as these three ways of organizing the data for analysis. In 
particular, what types of student thinking can be measured with the MCE style questions? How 
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can we best leverage the different data organization methods to get at student thinking? In what 
ways do the various analyses help us study individuals versus classrooms?  
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Variation in successful mathematics majors proving 

Dov Zazkis Keith Weber Juan Pablo Mejía-Ramos 
Oklahoma State University Rutgers University Rutgers University 

We examined the proof-writing behaviors of six highly successful mathematics majors on 
proving tasks in calculus. We found that these students approached the proof writing tasks in 
two different ways. Three students, who we labeled as drillers, would develop a strong 
understanding of the statement they were proving, choose a plan based on this 
understanding, develop a graphical argument for why the statement is true, and formalize 
this graphical argument into a proof. The other three students, who we labeled as probers, 
would begin trying different proving approaches immediately after reading the statement and 
would abandon an approach at the first sign of difficulty. Despite being inconsistent with 
theories of effective problem solving in the mathematics literature, the probers were highly 
successful in their advanced mathematics courses and on the proving tasks in this study. 

Key words: problem solving; proof; metacognition. 

Educational research on proof writing at the undergraduate level is largely comprised of 
highlighting specific difficulties that prevent mathematics majors from successfully writing 
proofs (e.g. Harel & Sowder, 1998; Hart, 1994; Selden & Selden, 1995; Zandieh, Roh & 
Knapp, 2014). The research literature documents that mathematics majors struggle with proof 
and highlights broad competencies that these students lack. However, there has been 
comparatively little work on how students can or should construct proofs. Indeed, aside from 
suggesting that instructors pay more attention to areas in which students are deficient, the 
literature cited above does not offer guidance for how mathematics majors’ proof-writing 
performance might be improved. 

One approach to identifying the competencies needed to construct proofs is to carefully 
study the behavior of those who are proficient at proof writing. There has been limited work 
in this area. A first body of work has examined the proof-writing behavior of mathematicians 
using an expert-novice research paradigm (Lockwood, et al., 2012; Samkoff, Lai & Weber, 
2012, Weber, 2001). This focus on mathematicians provides valuable insight into how proofs 
may be successfully written. However, mathematicians’ proving strategies might rely on 
experiences and understandings that most undergraduates may lack. If so, teaching students 
to apply these strategies might be counterproductive (cf., Reif, 2008). A second set of studies 
has examined the behavior of students who wrote proofs successfully (Gibson, 1998; 
Sandefur et al. 2013). The goal of this paper is to contribute to this second set of studies.  

Theoretical framing. 
Schoenfeld (1985) described four competencies of problem solving expertise-- resources, 

heuristics, metacognition, and beliefs. He used these competencies to explain why 
mathematicians were more effective at solving mathematical problems than undergraduates, 
even when both populations possessed the requisite knowledge to solve these problems. Two 
aspects of Schoenfeld’s (1985) framework, resources and metacognition, were especially 
useful in helping us describe the successful mathematics majors’ proof-writing behavior.  

Homogeneity and heterogeneity in mathematical expertise 
There is an often implicit assumption present when mathematics educators investigate 

those who are successful in some aspect of mathematical practice-- namely that there are a 
core set of behaviors or competencies that are utilized by most who are successful at this 
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practice. We refer to this as the homogeneity assumption. Schoenfeld (1985) was explicit 
about this assumption in his discussion of heuristics for mathematical problem solving: 

“There is a substantial degree of homogeneity in the way that expert problem-solvers approach 
new problems […] if two experts grapple with an extended series of unfamiliar problems, there 
will be substantial overlap in the problem-solving strategies that they try” (p. 71). 
Although others are not as explicit in endorsing the homogeneity assumption, we find 

much of the research in mathematical problem solving as accepting this viewpoint. This can 
be evidenced by the focus on commonalities in experts’ problem solving behaviors (e.g., 
Carlson, 1999; Schoenfeld, 1985; Weber, 2001) and models that aim to capture the essence of 
mathematical problem solving (e.g., Carlson & Bloom, 2005; Polya, 1957).  

On the other hand, there is both anecdotal and empirical evidence that successful 
mathematical performance and mathematicians’ practice might not be homogeneous (Burton, 
2004; Pinto & Tall, 1999; Weber, Inglis & Mejía-Ramos, 2014). Recent work has also 
pointed to heterogeneity in undergraduate practice (e.g., Alcock & Simpson, 2004, 2005).  

If mathematical expertise in proof writing is indeed heterogeneous, then this complicates 
the goals of instruction. If we use a homogeneous assumption to analyze mathematical 
practice that is heterogeneous, we risk encouraging students to do mathematics in a certain 
way when there are other viable approaches to doing mathematics. In the analysis in this 
paper, we searched both for commonalities and differences in the successful mathematics 
majors’ behaviors on the proving tasks.  

Methods 
This study was conducted at a large state university in the northeastern United States with 

one of the top 25 mathematics departments in the country (US News and World report, 
2014). We recruited mathematics majors who had completed an advance calculus course, a 
second proof-oriented course in linear algebra and a transition-to-proof course. From this 
solicitation, 73 students volunteered to participate in our study in exchange for payment.  

We posed challenging non-routine proving tasks to our participants, but the content 
knowledge required to complete these proving tasks did not extent beyond a first course in 
calculus. These tasks are included in the Appendix. Participants met individually with an 
interviewer and were video-recorded as they were asked to “think aloud” as they completed 
seven proving tasks. They were told to write up their final proofs as if they were handing 
them in for a final exam. Participants were given ten minutes to complete each task and were 
allowed to stop working on a task at any time if they felt that they could make no more 
productive progress. 

We used two measures to identify the most successful mathematics majors in our sample-
- from hereon, the stars. A student was designated as a star if (i) they answered at least four 
of the seven proving tasks correctly and (ii) their GPA in the three math courses we 
considered was a 4.0. Six participants met these criteria. Answering only four of seven tasks 
correctly might not seem like exceptional performance. However, two of the tasks in the 
study were successfully answered by only one of the 73 participants in the study (both were 
amongst the six stars). These extremely difficult problems provided insight into what the stars 
did when they reached an impasse. 

Results 
In our analysis, we identified two qualitatively different approaches that the stars students 

used to generate proofs, which we termed probing and drilling. The probers exhibited the 
following characteristics: (i) After reading the problem statement, the probers expend little 
time or effort in understanding the statement to be proven. (ii) Probers also do not spend 
much time in choosing or evaluating a plan to address the problem. Rather, they usually 
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implemented the first plan that comes to mind without considering its likelihood of success. 
(iii) When implementing a plan, if they stop making progress for a short time or they perceive 
further progress to be difficult, they quickly either modified the plan or abandoned it. In the 
latter case, they chose another plan and implemented that.  

In contrast to probers, drillers exhibited the following characteristics on the proving tasks: 
(i) When reading the problem statement, the drillers invested considerable effort in 
understanding what the statement was asserting. (ii) After representing the hypotheses of the 
problem statement (often graphically), the drillers would try to understand why the 
conclusion of the statement would be true. (iii) The proof that the drillers wrote often 
consisted of trying to formalize an intuitive (often graphical) argument. (iv) The drillers were 
reluctant to abandon the plan that they were implementing. They would only do so if they 
reached an impasse that they could not resolve for some time.  

Probers and Drillers Unsuccessful proving 
In this section, we contrast excerpts that illustrate probing and drilling approaches to the 

same task. Here we focused on episodes where participants were unable to successfully 
construct a proof, as these allowed us to focus on how probers and drillers addressed 
impasses. We contrast the work of Wolfe, a prober, and Sarah, a driller, working on task 2 
(Prove that the only real solution to the equation x3+5x=3x2+sin(x) is x=0). We begin with 
Wolfe’s approach. 

[1] [00:00] Prove that the only real solution to the equation x3 + 5x = 3x2 + sin(x) is x=0. 
[2] [00:18] Well it's pretty obvious that zero is a solution, because if you just plug it in you get zero on both 
sides. Hurray. 
[3] [00:29] So why is that the only real solution? Well let’s see.  
[4] [00:44] I'm just going to write down. I'll write down the thing, the equation but leave the sin(x) by itself.  
[5] [00:50] So sin(x) = x3 + 5x -3x2 which equals x(x2 -3x +5).  
[6] [01:03] That doesn't factor nicely. And this is just tricky because of the sin(x) term.  
[7] [01:13] So is there anything I can do here to make the problem easier?  
[8] [01:20] Well squaring both sides wouldn't help.  
[9] [01:28] Dividing by sin(x) wouldn't help. 
[10] [01:32] Why is x the only real solution? Well usually with an x3 term that means that you will have 
three solutions. Sometimes it means that they are complex.  
[11] [01:49] So let me think of a way to prove those terms. Well I can't really think of any other x's that 
would work. Even complex. So I just have to work with what we got. 
[12] [2:14] So zero obviously works. And then so if some sort of a polynomial I want that to equal sin(x) 
which is some periodic term. [sketching the graph of sin(x)] That was a terrible sin(x) graph. But that's 
okay. 
[13] [2:47] So sin(x) is periodic and how about I take the derivative of the part without the sin(x). So I get 
3x2-6x2+5. Does that even factor? 15 could become 3 and 5.. only 5 is prime so it's 1 and 5. No, that doesn't 
really help. So taking the derivative doesn't really help. 
[14] [03:18] So why would there be no other solutions other than the fact that x is trivially a solution?  
[15] [03:30] Alright sin(x) just oscillates and I showed that the other stuff can factor into x and (x2 -3x +5). 
Which well I know that that this only has a root at zero and this only has complex... or no, not complex 
roots.  
[16] [04:12] So what can I use with sin. Are there properties of sin(x) that can help with this? Well sin(x) is 
bounded between ... well |sin(x)| ≤1. So does putting a bound on it do anything? Well it does. Like I could 
try to make another equation that uses one or minus one and see if that goes anywhere I don't want to just 
be stuck on a problem. Um but it doesn't look like it would help either way. 
[17] [04:59] So proving that the only solution is zero... what could I do.  
[18] [05:10] Interviewer: So it's been about five minutes. Do you want to keep going on this one? Or go 
onto the next one?  
[19] [05:13] [stares at the problem silently for 30 sec] I'm pretty sure I don't know what to do with this one 
so... we'll give up on this one. 

 
We observe several aspects of this transcript that are representative of Wolfe and probers 

in general. First, note that little effort is made trying to understand the problem. Immediately 
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after reading the problem in [1], Wolfe begins doing calculations in [2] to establish the trivial 
part of the problem statement, that x=0 is a solution. After that, Wolfe spends only 15 
seconds reflecting before attempting to factor the expression in [4-5]. He begins his attempts 
at proving the statement with little time spent understanding the statement or formulating a 
plan. Second, Wolfe proposes numerous strategies, such as factoring the polynomial [4], 
squaring both sides [8], dividing by sine [9], showing that all but one of the roots to the cubic 
equation will be complex [10], and using the fact that sine is bounded [16]. Most of these 
plans are dismissed quickly. Third, Wolfe twice asked “why” the statement would be true, 
but he does not appear to seek an intuitive explanation for why the proven statement is true; 
rather he responds by proposing techniques that he could plausibly use to establish the 
theorem. Finally, Wolfe generated many plausible approaches by thinking about the 
mathematical concepts in the statement to be proven and lists proving techniques and facts 
that he knows about these concepts. Generating ideas in this way did not result in a proof, but 
as we will show later, they often provided probers with insights that led to clever proofs. We 
compare Wolfe’s proof attempt with the work of Sarah, a driller, on the same task.  

[1] [00:00] Prove that the only real solution to the equation x3 + 5x = 3x2 + sin(x) is x=0. Oh great 
[sarcastic] 
[2] [00:15] Interviewer: What are you thinking about?  
[3] [00:16] How do I do this? I don't like this. So we have x3 -3x2 + 5x = sin(x). So what does this function 
look like? Hey I might actually use the calculator thing.  
[4] [00:52] Interviewer: Alright. Yeah here. You want to graph a new function?  
[5] [01:10] [Sarah and the interviewer work together to use the graphing software to plot both the graph of 
the polynomial part of the equation, f(x)=x3+5x-3x2 and sin(x)]  
[6] [01:58] So what is there to show here? Both functions are increasing there but one is increasing faster 
than the other. So they intersect right there and that function is increasing faster.  
[7] [02:43] Alright. So if you take the derivative 3x2-6x+5 and then the derivative of sin(x) is -cos(x). So 
what does this mean at x=0? At zero it's going to be 5 and the derivative of this thing is going to be between 
zero and one. So and after this this function is going to continue increase. Why does it continue to increase? 
Alright, so we have 3x2-6x+5. Um.... So right now I'm trying to show why it never intersects again after x is 
equal to zero. And I think that's because it intersects once and then it can't intersect again because the 
polynomial increases so much faster than the sin(x) function. I'm a bit confused as to why it continues to 
increase afterwards though. I mean this is given by f ‘(x). And this is always going to.. well this is 3x. When 
is this thing going to be equal to zero? 
[8] [04:53] 6x+5. Ohhh –b± √b2 -4ac. 3 times 5 so that's going to be 15 times something so this is going to 
be negative. So this is never going to be equal to zero. Which explains why the function is always 
increasing. I guess. Instead of switching around. Okay so.  
[9] [05:39][Sarah begins writing a proof] x3 + 5x = 3x2 + sin(x) is the same problem as x3 -3x2 + 5x=sin(x). 
Clearly x=0 is a solution because we can just plug it in. Solution. Um lets call this thing f(x). So f’(x) is 
actually always increasing. Right? Yeah. Can I clear this and graph something instead? [Sarah graphs the 
derivative, f’(x)=3x2+5-6x] 
[10] [06:45] Thanks, 3x, oh, 3x2+5, hold on. 3x2+5-6x. That's hopefully the derivative of this thing. It's starts 
decreasing after that. 3x2-6x+5. Oh wait no it doesn't have any x intercepts. But...  
[11] [07:51] Anyway that's the original function oh yeah here it... looks like it's negative. Oh this function is 
always increasing. [Sarah works unsuccessfully to show that f(x)=x3+5x-3x2 and sin(x) only intersect at zero 
by showing that f’(x)>cos(x). She deals with x>0 and x<0 as separate cases. She ends up running out of 
time before she is able to complete a rigorous proof.] 
There are several aspects of this transcript worth noting that are representative of Sarah’s 

behavior. First, Sarah does not begin doing calculations until 2:43 had elapsed when she 
computed the derivative of f(x) in [7]. Prior to that point, Sarah had been working to 
represent the problem that she was asked to solve to see why its statement might be true. 
Second, Sarah developed graphical arguments for why the task statement was true, which she 
then set as a goal to formalize. In [6], she notes that f(x) is increasing faster than sin x, which 
leads to her taking the derivative in [7]. The calculation that she undertook was not aimless or 
exploratory, but based on how she understood the task situation. 
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In Figure 1, we compare how Wolfe and Sarah spent their time trying to write this proof. 
As can be seen, Sarah spent substantially more time than Wolfe in trying to understand the 
problem statement and formulate a plan. Wolfe suggested multiple plans in quick succession, 
while Sarah adopted only a single plan. 

 

Figure 1: Sarah and Wolfe work on task 2 

Stars successfully writing proofs 
In the previous section we focused on episodes where star students were unable to 

produce proofs. This highlighted what star students did when they reached impasses and 
illustrated the differences between drilling and probing. However, this focus on unsuccessful 
proofs may give the reader a false impression regarding the mathematical abilities of these 
students. In addition to showing that the star students are often successful on proof writing 
tasks, this analysis allows the reader to see how these approaches could yield valid proofs and 
the resources that the probers drew upon to implement these strategies successfully. 

We begin by discussing an excerpt of Ronald working on task 4 (Prove that 
A2+AB+B2≥0 for all real numbers A and B).  

[1] [00:00] Alright. Prove that A2+AB+B2 ≥ 0 for all real numbers A and B.  
[2] [00:07] Alright well um... hmmm is greater than or equal to zero. 
[3] [00:13] Well this is a sum of three terms so one thing we could use is maybe the arithmetic mean 
geometric mean thing.  
[4] [00:24] Lets see if that works out. Well we have let see, what does the arithmetic mean thing say. 
(x+y+z)/3≥ 3√xyz. And if we can show that maybe 3√xyz≥0 then we are done.  
[5] [00:42] So lets see A2+AB+B2 is equal to, not equal to, greater than or equal to, three times the cube 
root of their product. So that would be oh wow A3 B3, [writes √A2ABB2=√A3B3=AB], which is equal to 
[writes ( A2+AB+B2)/3]. 
[6] [00:59] Wait, wait wait a second. Um....oh. The cubed root of A cubed B. That's 3AB. hmmm. 
[3AB≤A2+AB+B2].  Alright well this is not necessarily equal to zero for all A and B so. 
[7] [01:09] I guess that doesn't really work.  
[8] [01:20] Or maybe I'm doing this wrong. Anyways well.  
[9] [01:22] The other thing I noticed was that this term appears in the factorization of A3 -B3.  
[10] [01:36] So A3-B3=(A-B)(A2+AB+B2). Alright lets see. 
[11] [01:49] Alright well if we assume that A≥B then.... we should be able to..  
[12] [02:08] Alright. So I guess since this term A2+AB+B2 is symmetric. So I guess I'll write this down here 
too. Because of the symmetry of, I don't even know how to write this, of the above term. We can assume 
without loss of generality, which I will abbreviate here as WLOG. That A≥B. Then A-B is greater than or 
equal to zero. So, So A-B≥0 and A3-B3≥0. And well that implies that well that. Well lets see, we'll put this 
on a separate line, but, A3-B3≥0 implies that it's factorization (A-B)(A2+AB+B2)≥0. And I guess I'll have to 
be a little careful here. We'll split this into two cases. 
[Ronald proceeds to write a proof with two cases. Case 1: A=B. A2+AB+B2= A2+ A2+ A2=3A2 ≥0. Case 2: 
A>B=>Both A3-B3=A-B are positive. Since A3-B3=(A-B)(A2+AB+B2), A2+AB+B2 is also positive. The 
entire proof takes 4:37] 
In the above, after reading the task in [1], Ronald spends only six seconds reflecting on it 

before choosing his first strategy in [3], the arithmetic mean geometric mean inequality. 
Much like the other prober excerpts discussed Ronald spent little time reflecting on the task 
before choosing an initial strategy. Next notice that Ronald abandons the arithmetic 
mean/geometric mean strategy after encountering difficulty in [9]. He chooses to switch to a 

Wolfe (P)
Legend

Reading/understanding

Switching approaches
Sarah (D)

0 5 10
time

Chase (P)
Legend

Reading/understanding

Switching approaches
Theodore (D)

0 5 10
time

45

18th Annual Conference on Research in Undergraduate Mathematics Education 109018th Annual Conference on Research in Undergraduate Mathematics Education 1090



new strategy in [9], using the fact that A2+AB+B2 appears in the factorization of A3-B3. This 
strategy yields a clever solution, which Ronald proceeds to write up.  

Now we shift to discussing successful drilling. Below is Theodore’s work on task 3 
(Suppose f(x) is a differentiable even function. Prove that f’(x) is an odd function.): 

[1] [00:00] Okay, suppose f(x) is differentiable and even. Prove that f prime is odd. 
[2] [00:12] Alright, so f(x) is differentiable so it's like continuous and smooth. What's the definition? I need 
the definition of differentiability, which is an annoying one, limh!0 (f(x)-f(x+h))/h exists as h!0 from the 
left or right. 
[3] [00:43] f(x) is even. So let me just draw what an even function might look like. So across the origin. 
[Draws an arbitrary function with reflectional symmetry about the y-axis]. 
[4] [01:16] So basically, if I look at a slope on this function [draws a tangent on the negative side of the 
previously drawn function], then I look on the other side [draws a mirror tangent on the positive side], it's 
the same slope but negative. So that's going to show that f prime is odd.  
[5] [01:41] So if I look at the definition of derivative as a slope and then I find the derivative on the 
negative side using the fact that it's even I should get the negative of the derivative, showing that f prime is 
odd.  
[6] [01:56] [Theodore writes up a formal proof showing that- f’(x)=-f’(-x) by manipulating the limit 
definition of f’(-x) until it looks like -f’(x).] 
After reading the problem in [1] Theodore spends time recalling the limit definition of 

derivative in [2] and constructing a graph of a generic even function in [3]. This takes over a 
minute. Spending significant amounts of time getting to grips with a task is typical of drillers. 
The graph Theodore produced while working to understand the task is then use to construct 
an informal argument regarding why the result holds in [4]. Translating this argument is the 
basis of his proof strategy. Theodore works to formalize his intuitive argument by relating it 
to notation in [5] and then using this notation to write out a rigorous proof.  

Metacognition. 
A common assumption in the problem solving literature is that good problem solvers will 

devote substantial time to understanding the problem and formulating a plan to solve it 
(Polya, 1957; Schoenfeld, 1985). The probers in this paper did not do this. They began 
implementing a plan very early in the proof construction process. It is interesting to observe 
how the probers avoided what Schoenfeld (1985) referred to as “chasing wild mathematical 
geese” (i.e., failing to solve a problem since they spent all their time pursuing an 
unproductive approach). The probers avoided this by switching approaches frequently. They 
often switched the first time progress implementing an approach ceased to progress smoothly.  

In contrast the drillers’ proof construction efforts were consistent with recommendations 
in the literature. They followed the first three stages of Polya’s (1957) problem solving 
model. These students would understand the problem, choose a plan, and implement a plan1. 
The drillers were generally able to avoid “chasing wild mathematical geese” by carefully 
choosing productive plans that they believed were likely to succeed from the outset. 

Resources 
Since probers abandon a plan at the first sign of difficulty, in order to excel as a prober, a 

student would need to be able to quickly generate many plausible plans. One way that the 
probers did this was associating concepts with approaches used to write proofs related to 
those concepts. This type of “symbol sense”—immediately associating mathematical terms 
and expressions with other mathematical concepts and proving techniques—provide the 
probers with considerable power in quickly formulating many plausible plans. 

                                                
1 These participants were less consistent in implementing Polya’s fourth stage of problem solving, looking back. 
Theodore did so-- in fact, after writing a correct proof, Theodore sometimes put in considerable effort to make 
the proof more elegant. Frank and Sarah did not engage in looking back, although this may have been due to the 
time constraints imposed on them in this study. 
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In order to excel as a driller, a student would need to consistently generate informal 
arguments and work effectively to translate these into rigorous proofs. We note that the 
drillers in this study were quickly able to translate the assumptions in the to-be-proven 
statement into a graphical representation. They were also comfortable with formalizing a 
graphical argument into a deductive proof within the conventional verbal-symbolic 
representation system in which proofs were written (cf., Weber & Alcock, 2009). This 
translation ability is an important resource possessed by the drillers in this study. Although 
discussion of the mechanism behind such translation is beyond the scope of this paper, in 
related work we have established that ability to translate effectively is a non-trivial skill 
involving multiple interrelated abilities (Zazkis, Weber, Mejía-Ramos, 2014).  

Discussion 
This study explored the proving behaviors of star mathematics students. There was 

substantial variation in how stars generated proofs. The prober/driller distinction was 
introduced in this work to account for this variation. Probing involves moving between 
multiple approaches in an attempt to find an efficient solution. Drilling involves 
understanding the problem well, using this understanding to see why the result holds and then 
formalizing this reasoning. We are not suggesting that every successful mathematics student 
can be classified in this way, or that most students will reside on one extreme of the driller-
prober continuum. We are only claiming this data illustrates the existence of two types of 
successful mathematics majors. Further, we note that we only discussed participants’ 
behavior with tasks in calculus. We would need to observe these participants in other 
domains to see if their proof writing approaches varied. 

The drillers are consistent with several theories about how problem solving and proof 
writing should ideally proceed (e.g., Garuti, Boero, & Lemut, 1998; Gibson, 1998; Sandefur 
et al., 2013; Raman, 2003; Weber & Alcock, 2004). Consequently, the data in this study 
expand the scope of these theories by illustrating how they can account for the behavior of 
some highly successful mathematics majors, which to our knowledge has not yet been done. 

In contrast to the drillers, the probers were not consistent with the problem solving 
models of Polya (1957) and Schoenfeld (1985) and they did not base their proofs on informal 
arguments. Consequently, the prober/driller distinction contributes to theory in two ways. 
First, the probers provide interesting counterexamples to claims that success in proof writing 
requires one to understand problems deeply and to form intuitive arguments for why 
theorems are true. Second, the probers/driller distinction suggests that successful mathematics 
majors are not homogeneous in their proof writing behavior.  

A possible explanation of prober’s success might be the types of proofs that students are 
asked to produce in undergraduate mathematics. Most of these have proofs that are fairly 
short and we expect that mathematics majors can write these proofs in a relatively short 
period of time (e.g., write four or five proofs on a 50 minute exam). Hence, if probers find an 
approach that looks computationally or conceptually intimidating, they can abandon this 
approach with the confidence that an easier approach can inevitably be found. 

Since a probing approach enabled some mathematics majors to earn A’s and solve 
challenging problems, perhaps this is a high enough expectation for mathematics majors. 
That being said, one of the probers, who is now enrolled in a mathematics PhD program, 
indicated that the nature of graduate mathematics has encouraged him to shift to a driller 
approach. This data point hints that probing maybe less effective for graduate mathematics. 
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APPENDIX: Tasks 

1: Suppose . Suppose   for all positive x. Prove that . 

2: Prove that the only real solution to the equation x3 + 5x = 3x2 + sin x is x=0. 

3: Suppose  is a differentiable even function. Prove that  is an odd function. 

4: Prove that  for all real numbers a and b. 

5: Suppose  for all real numbers x. Suppose a and b are real numbers with . 
Define  as the line through the points  and . Prove that for all 

, . 

6: Prove that  for any real number a. 

7: Let f  be differentiable on , and suppose that  and  is increasing on .  

Prove that  is increasing on . 

 
Task  1 2 3 4 5 6 7 Total Correct 
Star % Correct 83% 67% 83% 83% 17% 100% 17% 64% 
Non-star % Correct 12% 7% 49% 39% 0% 43% 0% 22% 
 
Probers 

Chase √ √ √ √   √   5 
Ronald   √ √ √   √   4 
Wolfe √   √ √   √   4 

 
Drillers 

Sarah √     √   √ √ 4 
Frank √  √ √     √    4 
Theodore  √ √ √ √ √ √   6 

Table 1: Questions stars answered correctly. 

 

f (0) = !f (0) =1 !!f (x)> 0 f (2)> 2

f (x) f '(x)

a2 + ab+b2 ≥ 0

f ''(x) > 0 a < b
g(x) (a, f (a)) (b, f (b))

x ∈ [a,b] f (x) ≤ g(x)

sin3(x)dx
−a

a
∫ = 0

0,1[ ] f (0) = 0 !f 0,1[ ]

g(x) = f (x)
x

0,1( )
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Application of multiple integrals: From a physical to a virtual model1  
Ivanete Zuchi Siple  

Elisandra Bar de Figueiredo 
State University of Santa Catarina – BRAZIL  

This paper describes the evolution of a teaching technique for calculating volume using 
multiple integrals - from a physical to virtual model - in a Differential and Integral Calculus 
(CDI) course involving students in math and engineering programs at a public university in 
Brazil. This transition was made possible by the use of e-learning tools on the Moodle 
platform, which is used to support classroom activities. As a result of this technique, we saw 
the deepening of the concepts of parameterization taught in analytic geometry that were 
necessary to build the model using graphics software (virtual) as well as a change in the 
dynamic of sharing the technique among teachers and students through discussion forums in 
a continuous process.  

Key words: Multiple integrals. Technology. Model. Teaching technique. 

Introduction  
In this paper, we will report the evolution of a teaching technique that began as a manual 

technique in the classroom, developed over ten years in a teaching project in the CDI course, 
with students studying exact sciences at a public university.  The course was then moved to a 
blended learning modality. In both modalities, the work involved the application of multiple 
integrals in calculating the volume of a given solid taking into account its different 
representations - analytical, graphical and algebraic. In our experience as teachers, we have 
found that the teaching and learning process of this course is not an easy task.  It is a major 
challenge for most teachers and students involved, particularly in the teaching and learning of 
multiple integrals. One of the major difficulties is the three-dimensional visualization that is 
difficult to achieve with pencil and paper, and generates many difficulties in the graphical 
representation of the surfaces. 

In order to overcome such difficulties, it is essential to create mechanisms to enable 
students transitioning between different registers of representation of multiple integrals 
(DUVAL, 2003). Thus, we believe that the three-dimensional features of a computing 
environment, such as Winplot, can be instrumental in coping with this problem. 

So initially we will make some considerations on how the technology supported the 
classroom teaching system and how it contributed to the learning of mathematical content 
and continuous evaluation. We will describe the methodology developed, and then present 
parts of the discussions of the work in a virtual forum and inferences derived from this 
technique. 

Calculation of volume: a methodology mediated by technology 
With the goal of enriching the construction of the teaching and learning processes, we can 

speak of the combination of two educational modalities - classroom and virtual (Araújo & 
Paneirai, 2012; Oliveira, 2013). In this context, blended learning emerges. This term 
combines the two types of learning: classroom learning and online learning (e-learning). The 
blended learning modality seeks to enhance the best of classroom and online as the authors 
Owston, Garrison and Cook (2006, p 348, cited OLIVEIRA, 2013, p.26.) describe: "Blended 
learning has the potential to integrate immediate, spontaneous and rich verbal communication 

                                                 
1 The researchers wish to thank the Research and Innovation Support Foundation of Santa Catarina (FAPESC) for financial support of the 
PEMSA research group. 
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with reflective, rigorous, and precise written communication, as well as visually rich media 
and simulations." 

According to Araújo and Paneirai (2012), in blended learning there is a convergence of 
experiences from the classroom to the virtual classroom, allowing teachers and students to 
build knowledge in a more pluralistic and participatory way. In this paper, the Moodle 
learning management system (LMS) and Winplot graphic software were used, both free. The 
choice of these technologies was due to the potential convergence of the extension of the 
activities done in the classroom and complemented in the virtual environment. 

The activity consisted in giving students a volume calculation problem for a solid defined 
by the intersection of two or more surfaces. The problems were given by the teacher and each 
team (randomly selected) had the task of solving that problem, by following these steps: 

• Identification of the surfaces that delimit the solid;  
• Graphical representation of the projections of the intersections of surfaces in the 

coordinate planes;  
• Construction of the solid (model);  
• Determination of the volume of the solid using triple integrals;  
• Sharing. 
These steps were always present in both modalities. The differences occurred in the 

model construction stage, which was changed from physical to virtual, and in the form of 
sharing, which went from the classic final presentation in class to an ongoing discussion 
mediated by technology. To guide this discussion, each team had to: 

• Start a thread in the discussion forum on the choice of technological tool for building 
the  solid, and the difficulties related both to the construction of the solid and the 
resolution of the given problem;  

• Discuss and comment on the work presented by the other teams in the virtual 
environment;  

• Answer questions regarding their work in the Moodle discussion forum.  
The virtual model activity included three CDI classes, with an average of 40 students per 

class in the first semester of 2014. 

From a physical to a virtual model: extracts from the projects 
Below, we present a parallel between extracts of the work done by students in the 

classroom to that of the students in the blended learning modality. 
In the classroom modality, the use of the graphics capabilities of computer technology to 

aid visualization of the projections, the intersection of the surfaces and the resulting solid was 
encouraged. So in many studies the students used Winplot to make sketches of the 
projections, the graphical representation of surfaces and the graphical visualization of the 
intersection of these surfaces. In some cases, they used the parameterization of the surfaces to 
obtain the resulting solid, as shown in Figure 1, and in other cases they did not parameterize 
the resulting solid, as shown in Figure 2. 

In Figure 1, Team A identified the surfaces given by their algebraic representations doing 
a conversion of this representation to the graphic register and also doing it for the algebraic 
register2. In the graphic register, each cylinder is plotted first, then the overlap of the two and 
finally the solid without the excess parts, which highlights the importance of the use of 
parameterization. The team built the model found in Figure 3a. 

In Figure 2, Team B also used the computational resources to plot the projection on the 
coordinate plane, as well as the graphical representations of the surfaces that delimit the solid. 
                                                 
2 Due to the restriction on the number of pages, several steps of Team A's presentation were omitted, including the algebraic procedure in 
the identification of surfaces, projections and resolution. 
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However, parameterization that would allow the viewing of the resulting solid was not 
performed. The delimitation of the resulting solid was explored in the presentation of the 
physical model, as shown in Figure 3b. 

 
Figure 1: Identification of the surfaces, three-dimensional graphics and parameterizations of Team A. 

 
Figure 2: Three-dimensional graphical representation and projections of Team B 

All teams shared the work among their classmates in a classroom presentation at a 
scheduled time, using the physical model (see Figures 3a and 3b), the technological resources 
for 2D and 3D graphical representations of the activity developed and a justification of the 
choice of the type of integration that made it possible to determine the numerical value of the 
volume of the solid. 

 
 
Figure 3a: Team A's model                           Figure 3b: Team B's model     
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In the blended learning modality, all steps described above were also present: the 

identification of the surfaces, the graphical representation of the projections of the 
intersections of the surfaces in coordinate planes, the choice of the technological tool and 
determining the volume of the solid using triple integrals. What changed in this modality was 
the virtual construction of the model, and therefore knowledge of parameterization became 
essential. So there was a discussion among the students in Moodle about how to do this 
parameterization based on the tools chosen. There was an interaction between the teams to 
parameterize their respective solids. However, the main difference was the way that the work 
was shared, not being restricted to a single presentation of the teams on a predetermined 
date.  From the time the work was assigned, the students had to post to the Moodle forum, 
providing information about the progress of their work to their classmates. In this 
environment, the evaluation of the work was performed continuously since with every step 
posted by the team, there could be an interaction from the teacher or a classmate, either to 
ask for clarification, ask for help or facilitate a situation where the identification of the 
surfaces or the solution of the integral was not correct. 

Figure 4 shows the posting of the work of Team C, which used parameterization of 
curves to make the virtual model. The problem was to determine the volume of the solid 
delimited by !	 # 	0; %	 # 	0; y = 3;  % # &3( and % ) ! # 3. Initially, they did a graphical 
representation of the surfaces that delimited the solid, identifying the surfaces. However, 
they represented and identified only planes z = 0; %	 # 	0; y = 3. After the intervention of the 
professor, about the graphical representation of the other surfaces, they presented these ones 
too, as shown in Figure 4a. An interesting idea of this team was that they used the knowledge 
of parameterization of curves in space to delimit the solid (Figure 4b), including posting the 
way to do it in their tool of choice - Winplot (Figure 4c), after the question from the 
professor. In addition, they also made the parameterization of the surfaces, as illustrated in 
the virtual model (Figure 4d). 

 
Figure 4a: Graphical identification of the surfaces   
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Figure 4b: Identification of the curves that delimit the solid  

 
Figure 4c: Explanation of the parameterization of the curves in Winplot  

 
Figure 4d: Virtual model  
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Team D constructed and determined the volume of the solid delimited by 2!	 # 	%+ 	)
	(+ , 2  and ! # +

-./0.10. In their first post, the team posted the outline of the solid with 
pencil and paper and in Winplot, without using parameterization. After a discussion among 
Team D, classmates and the professor, the team constructed their virtual model, as shown in 
Figure 5. 

 

Figure 5: Steps to construct the solid - from pencil and paper to parameterization in Winplot 

It is important to reiterate that discussions also occurred in solving the integrals, 
especially regarding the choice of the domain of the integration region as well as in the 
choice of coordinate system - Cartesian, cylindrical or spherical. 

Conclusion  
Exploring the link between the classroom and distance modalities can enhance important 

elements in learning mathematics. The construction of the model in the virtual environment 
allowed for student involvement in active and continuous learning. Specifically addressing 
the use of technology in education, it is essential that the issues related to the use of virtual 
spaces for teaching and learning have their place in the program curriculum, especially for 
teacher training.  

The exploration of the relationship between the different registers of representation of a 
surface, mediated by a technological tool, can enhance important elements in learning 
mathematics. The movement between these different types of registers was a challenge for 
both students and teachers, because in traditional classes generally we observe that there are 
students with excellent algebraic skills and weak three-dimensional visualization or vice 
versa. This challenge is present in mathematical language and the meaning of concepts, as in 
the analytical, algebraic and graphical form of surfaces. It may be possible to use this 
research to verify the ability of students in treatment transformations occurring within the 
same system of representation, e.g. algebraically manipulating the equations of the surfaces; 
and conversions consisting of a system change conserving the selected objects, for example 
moving from the algebraic representation of a surface to its graphical representation. 

In the move from the physical model to the virtual model, it was possible to explore the 
important connections of the CDI course with courses such as analytical geometry and vector 
calculus. In the surface and graphical projection identification stage in the pencil and paper 
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environment, students needed to have knowledge of analytical geometry and, in general, used 
the Cartesian coordinate system that is not always the simplest graphical representation for a 
computing environment. Therefore, the student had to recognize the surfaces in the 
coordinate systems (Cartesian, cylindrical and spherical), since this facilitated the graphical 
representation as well as the resolution of the integral. In order to build the virtual model, it 
was necessary to have knowledge of surface parameterization, part of the content taught in 
vector calculus (next phase of the program). 

It is also important to discuss the challenges, both for the professor and the student 
teacher, of using LMS environments such as Moodle in classroom activities. One of the great 
challenges of an LMS is the time required for mediation, as well as the number of students. It 
is important to note that an activity such as the one reported in this paper requires time and 
dedication from the professor, in addition to technical training. The professor has an 
important role in classroom teaching and in distance education, usually requiring different 
approaches. For these approaches, he should propose interaction methods that enable the 
student to perform multiple connections, enabling cooperation and exchange of ideas. 

As professors, we can observe that the purpose of this activity was not only to acquire 
specific knowledge, but also the possibility of both students and professors to participate at 
all stages of its development. The activity was not restricted to the team, since the others 
could ask, assist and review the solutions in each post.  So the evaluation was ongoing, and 
based not only on the resolution of the task on which the team worked as an author, but also 
as a participant in the threads of other teams in the discussion forum. 

We know that the issue of the use of technology in education is not new, but the potential 
of tools enables a privileged space for the interaction between students and teachers, 
exchanges of experiences between researchers and the extension and evolution of classroom 
resources. 
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